1 /****************************************************************************/
3 * linux/fs/binfmt_flat.c
5 * Copyright (C) 2000-2003 David McCullough <davidm@snapgear.com>
6 * Copyright (C) 2002 Greg Ungerer <gerg@snapgear.com>
7 * Copyright (C) 2002 SnapGear, by Paul Dale <pauli@snapgear.com>
8 * Copyright (C) 2000, 2001 Lineo, by David McCullough <davidm@lineo.com>
11 * linux/fs/binfmt_aout.c:
12 * Copyright (C) 1991, 1992, 1996 Linus Torvalds
13 * linux/fs/binfmt_flat.c for 2.0 kernel
14 * Copyright (C) 1998 Kenneth Albanowski <kjahds@kjahds.com>
15 * JAN/99 -- coded full program relocation (gerg@snapgear.com)
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20 #include <linux/kernel.h>
21 #include <linux/sched.h>
23 #include <linux/mman.h>
24 #include <linux/errno.h>
25 #include <linux/signal.h>
26 #include <linux/string.h>
28 #include <linux/file.h>
29 #include <linux/ptrace.h>
30 #include <linux/user.h>
31 #include <linux/slab.h>
32 #include <linux/binfmts.h>
33 #include <linux/personality.h>
34 #include <linux/init.h>
35 #include <linux/flat.h>
36 #include <linux/uaccess.h>
37 #include <linux/vmalloc.h>
39 #include <asm/byteorder.h>
40 #include <asm/unaligned.h>
41 #include <asm/cacheflush.h>
44 /****************************************************************************/
47 * User data (data section and bss) needs to be aligned.
48 * We pick 0x20 here because it is the max value elf2flt has always
49 * used in producing FLAT files, and because it seems to be large
50 * enough to make all the gcc alignment related tests happy.
52 #define FLAT_DATA_ALIGN (0x20)
55 * User data (stack) also needs to be aligned.
56 * Here we can be a bit looser than the data sections since this
57 * needs to only meet arch ABI requirements.
59 #define FLAT_STACK_ALIGN max_t(unsigned long, sizeof(void *), ARCH_SLAB_MINALIGN)
61 #define RELOC_FAILED 0xff00ff01 /* Relocation incorrect somewhere */
62 #define UNLOADED_LIB 0x7ff000ff /* Placeholder for unused library */
66 unsigned long start_code; /* Start of text segment */
67 unsigned long start_data; /* Start of data segment */
68 unsigned long start_brk; /* End of data segment */
69 unsigned long text_len; /* Length of text segment */
70 unsigned long entry; /* Start address for this module */
71 unsigned long build_date; /* When this one was compiled */
72 bool loaded; /* Has this library been loaded? */
73 } lib_list[MAX_SHARED_LIBS];
76 #ifdef CONFIG_BINFMT_SHARED_FLAT
77 static int load_flat_shared_library(int id, struct lib_info *p);
80 static int load_flat_binary(struct linux_binprm *);
81 static int flat_core_dump(struct coredump_params *cprm);
83 static struct linux_binfmt flat_format = {
84 .module = THIS_MODULE,
85 .load_binary = load_flat_binary,
86 .core_dump = flat_core_dump,
87 .min_coredump = PAGE_SIZE
90 /****************************************************************************/
92 * Routine writes a core dump image in the current directory.
93 * Currently only a stub-function.
96 static int flat_core_dump(struct coredump_params *cprm)
98 pr_warn("Process %s:%d received signr %d and should have core dumped\n",
99 current->comm, current->pid, cprm->siginfo->si_signo);
103 /****************************************************************************/
105 * create_flat_tables() parses the env- and arg-strings in new user
106 * memory and creates the pointer tables from them, and puts their
107 * addresses on the "stack", recording the new stack pointer value.
110 static int create_flat_tables(struct linux_binprm *bprm, unsigned long arg_start)
113 unsigned long __user *sp;
116 p = (char __user *)arg_start;
117 sp = (unsigned long __user *)current->mm->start_stack;
119 sp -= bprm->envc + 1;
120 sp -= bprm->argc + 1;
121 sp -= flat_argvp_envp_on_stack() ? 2 : 0;
124 current->mm->start_stack = (unsigned long)sp & -FLAT_STACK_ALIGN;
125 sp = (unsigned long __user *)current->mm->start_stack;
127 __put_user(bprm->argc, sp++);
128 if (flat_argvp_envp_on_stack()) {
129 unsigned long argv, envp;
130 argv = (unsigned long)(sp + 2);
131 envp = (unsigned long)(sp + 2 + bprm->argc + 1);
132 __put_user(argv, sp++);
133 __put_user(envp, sp++);
136 current->mm->arg_start = (unsigned long)p;
137 for (i = bprm->argc; i > 0; i--) {
138 __put_user((unsigned long)p, sp++);
139 len = strnlen_user(p, MAX_ARG_STRLEN);
140 if (!len || len > MAX_ARG_STRLEN)
145 current->mm->arg_end = (unsigned long)p;
147 current->mm->env_start = (unsigned long) p;
148 for (i = bprm->envc; i > 0; i--) {
149 __put_user((unsigned long)p, sp++);
150 len = strnlen_user(p, MAX_ARG_STRLEN);
151 if (!len || len > MAX_ARG_STRLEN)
156 current->mm->env_end = (unsigned long)p;
161 /****************************************************************************/
163 #ifdef CONFIG_BINFMT_ZFLAT
165 #include <linux/zlib.h>
167 #define LBUFSIZE 4000
170 #define ASCII_FLAG 0x01 /* bit 0 set: file probably ASCII text */
171 #define CONTINUATION 0x02 /* bit 1 set: continuation of multi-part gzip file */
172 #define EXTRA_FIELD 0x04 /* bit 2 set: extra field present */
173 #define ORIG_NAME 0x08 /* bit 3 set: original file name present */
174 #define COMMENT 0x10 /* bit 4 set: file comment present */
175 #define ENCRYPTED 0x20 /* bit 5 set: file is encrypted */
176 #define RESERVED 0xC0 /* bit 6,7: reserved */
178 static int decompress_exec(
179 struct linux_binprm *bprm,
180 unsigned long offset,
190 pr_debug("decompress_exec(offset=%lx,buf=%p,len=%lx)\n", offset, dst, len);
192 memset(&strm, 0, sizeof(strm));
193 strm.workspace = kmalloc(zlib_inflate_workspacesize(), GFP_KERNEL);
194 if (strm.workspace == NULL) {
195 pr_debug("no memory for decompress workspace\n");
198 buf = kmalloc(LBUFSIZE, GFP_KERNEL);
200 pr_debug("no memory for read buffer\n");
205 /* Read in first chunk of data and parse gzip header. */
207 ret = kernel_read(bprm->file, offset, buf, LBUFSIZE);
216 /* Check minimum size -- gzip header */
218 pr_debug("file too small?\n");
222 /* Check gzip magic number */
223 if ((buf[0] != 037) || ((buf[1] != 0213) && (buf[1] != 0236))) {
224 pr_debug("unknown compression magic?\n");
228 /* Check gzip method */
230 pr_debug("unknown compression method?\n");
233 /* Check gzip flags */
234 if ((buf[3] & ENCRYPTED) || (buf[3] & CONTINUATION) ||
235 (buf[3] & RESERVED)) {
236 pr_debug("unknown flags?\n");
241 if (buf[3] & EXTRA_FIELD) {
242 ret += 2 + buf[10] + (buf[11] << 8);
243 if (unlikely(ret >= LBUFSIZE)) {
244 pr_debug("buffer overflow (EXTRA)?\n");
248 if (buf[3] & ORIG_NAME) {
249 while (ret < LBUFSIZE && buf[ret++] != 0)
251 if (unlikely(ret == LBUFSIZE)) {
252 pr_debug("buffer overflow (ORIG_NAME)?\n");
256 if (buf[3] & COMMENT) {
257 while (ret < LBUFSIZE && buf[ret++] != 0)
259 if (unlikely(ret == LBUFSIZE)) {
260 pr_debug("buffer overflow (COMMENT)?\n");
266 strm.avail_in -= ret;
269 strm.avail_out = len;
272 if (zlib_inflateInit2(&strm, -MAX_WBITS) != Z_OK) {
273 pr_debug("zlib init failed?\n");
277 while ((ret = zlib_inflate(&strm, Z_NO_FLUSH)) == Z_OK) {
278 ret = kernel_read(bprm->file, fpos, buf, LBUFSIZE);
290 pr_debug("decompression failed (%d), %s\n",
297 zlib_inflateEnd(&strm);
301 kfree(strm.workspace);
305 #endif /* CONFIG_BINFMT_ZFLAT */
307 /****************************************************************************/
310 calc_reloc(unsigned long r, struct lib_info *p, int curid, int internalp)
314 unsigned long start_brk;
315 unsigned long start_data;
316 unsigned long text_len;
317 unsigned long start_code;
319 #ifdef CONFIG_BINFMT_SHARED_FLAT
321 id = curid; /* Relocs of 0 are always self referring */
323 id = (r >> 24) & 0xff; /* Find ID for this reloc */
324 r &= 0x00ffffff; /* Trim ID off here */
326 if (id >= MAX_SHARED_LIBS) {
327 pr_err("reference 0x%lx to shared library %d", r, id);
332 pr_err("reloc address 0x%lx not in same module "
333 "(%d != %d)", r, curid, id);
335 } else if (!p->lib_list[id].loaded &&
336 load_flat_shared_library(id, p) < 0) {
337 pr_err("failed to load library %d", id);
340 /* Check versioning information (i.e. time stamps) */
341 if (p->lib_list[id].build_date && p->lib_list[curid].build_date &&
342 p->lib_list[curid].build_date < p->lib_list[id].build_date) {
343 pr_err("library %d is younger than %d", id, curid);
351 start_brk = p->lib_list[id].start_brk;
352 start_data = p->lib_list[id].start_data;
353 start_code = p->lib_list[id].start_code;
354 text_len = p->lib_list[id].text_len;
356 if (!flat_reloc_valid(r, start_brk - start_data + text_len)) {
357 pr_err("reloc outside program 0x%lx (0 - 0x%lx/0x%lx)",
358 r, start_brk-start_data+text_len, text_len);
362 if (r < text_len) /* In text segment */
363 addr = r + start_code;
364 else /* In data segment */
365 addr = r - text_len + start_data;
367 /* Range checked already above so doing the range tests is redundant...*/
371 pr_cont(", killing %s!\n", current->comm);
372 send_sig(SIGSEGV, current, 0);
377 /****************************************************************************/
379 static void old_reloc(unsigned long rl)
381 static const char *segment[] = { "TEXT", "DATA", "BSS", "*UNKNOWN*" };
383 unsigned long __user *ptr;
387 #if defined(CONFIG_COLDFIRE)
388 ptr = (unsigned long __user *)(current->mm->start_code + r.reloc.offset);
390 ptr = (unsigned long __user *)(current->mm->start_data + r.reloc.offset);
394 pr_debug("Relocation of variable at DATASEG+%x "
395 "(address %p, currently %lx) into segment %s\n",
396 r.reloc.offset, ptr, val, segment[r.reloc.type]);
398 switch (r.reloc.type) {
399 case OLD_FLAT_RELOC_TYPE_TEXT:
400 val += current->mm->start_code;
402 case OLD_FLAT_RELOC_TYPE_DATA:
403 val += current->mm->start_data;
405 case OLD_FLAT_RELOC_TYPE_BSS:
406 val += current->mm->end_data;
409 pr_err("Unknown relocation type=%x\n", r.reloc.type);
414 pr_debug("Relocation became %lx\n", val);
417 /****************************************************************************/
419 static int load_flat_file(struct linux_binprm *bprm,
420 struct lib_info *libinfo, int id, unsigned long *extra_stack)
422 struct flat_hdr *hdr;
423 unsigned long textpos, datapos, realdatastart;
424 unsigned long text_len, data_len, bss_len, stack_len, full_data, flags;
425 unsigned long len, memp, memp_size, extra, rlim;
426 unsigned long __user *reloc, *rp;
430 unsigned long start_code, end_code;
434 hdr = ((struct flat_hdr *) bprm->buf); /* exec-header */
435 inode = file_inode(bprm->file);
437 text_len = ntohl(hdr->data_start);
438 data_len = ntohl(hdr->data_end) - ntohl(hdr->data_start);
439 bss_len = ntohl(hdr->bss_end) - ntohl(hdr->data_end);
440 stack_len = ntohl(hdr->stack_size);
442 stack_len += *extra_stack;
443 *extra_stack = stack_len;
445 relocs = ntohl(hdr->reloc_count);
446 flags = ntohl(hdr->flags);
447 rev = ntohl(hdr->rev);
448 full_data = data_len + relocs * sizeof(unsigned long);
450 if (strncmp(hdr->magic, "bFLT", 4)) {
452 * Previously, here was a printk to tell people
453 * "BINFMT_FLAT: bad header magic".
454 * But for the kernel which also use ELF FD-PIC format, this
455 * error message is confusing.
456 * because a lot of people do not manage to produce good
462 if (flags & FLAT_FLAG_KTRACE)
463 pr_info("Loading file: %s\n", bprm->filename);
465 if (rev != FLAT_VERSION && rev != OLD_FLAT_VERSION) {
466 pr_err("bad flat file version 0x%x (supported 0x%lx and 0x%lx)\n",
467 rev, FLAT_VERSION, OLD_FLAT_VERSION);
472 /* Don't allow old format executables to use shared libraries */
473 if (rev == OLD_FLAT_VERSION && id != 0) {
474 pr_err("shared libraries are not available before rev 0x%lx\n",
481 * Make sure the header params are sane.
482 * 28 bits (256 MB) is way more than reasonable in this case.
483 * If some top bits are set we have probable binary corruption.
485 if ((text_len | data_len | bss_len | stack_len | full_data) >> 28) {
486 pr_err("bad header\n");
492 * fix up the flags for the older format, there were all kinds
493 * of endian hacks, this only works for the simple cases
495 if (rev == OLD_FLAT_VERSION && flat_old_ram_flag(flags))
496 flags = FLAT_FLAG_RAM;
498 #ifndef CONFIG_BINFMT_ZFLAT
499 if (flags & (FLAT_FLAG_GZIP|FLAT_FLAG_GZDATA)) {
500 pr_err("Support for ZFLAT executables is not enabled.\n");
507 * Check initial limits. This avoids letting people circumvent
508 * size limits imposed on them by creating programs with large
509 * arrays in the data or bss.
511 rlim = rlimit(RLIMIT_DATA);
512 if (rlim >= RLIM_INFINITY)
514 if (data_len + bss_len > rlim) {
519 /* Flush all traces of the currently running executable */
521 ret = flush_old_exec(bprm);
525 /* OK, This is the point of no return */
526 set_personality(PER_LINUX_32BIT);
527 setup_new_exec(bprm);
531 * calculate the extra space we need to map in
533 extra = max_t(unsigned long, bss_len + stack_len,
534 relocs * sizeof(unsigned long));
537 * there are a couple of cases here, the separate code/data
538 * case, and then the fully copied to RAM case which lumps
541 if (!IS_ENABLED(CONFIG_MMU) && !(flags & (FLAT_FLAG_RAM|FLAT_FLAG_GZIP))) {
543 * this should give us a ROM ptr, but if it doesn't we don't
546 pr_debug("ROM mapping of file (we hope)\n");
548 textpos = vm_mmap(bprm->file, 0, text_len, PROT_READ|PROT_EXEC,
549 MAP_PRIVATE|MAP_EXECUTABLE, 0);
550 if (!textpos || IS_ERR_VALUE(textpos)) {
554 pr_err("Unable to mmap process text, errno %d\n", ret);
558 len = data_len + extra + MAX_SHARED_LIBS * sizeof(unsigned long);
559 len = PAGE_ALIGN(len);
560 realdatastart = vm_mmap(NULL, 0, len,
561 PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, 0);
563 if (realdatastart == 0 || IS_ERR_VALUE(realdatastart)) {
567 pr_err("Unable to allocate RAM for process data, "
569 vm_munmap(textpos, text_len);
572 datapos = ALIGN(realdatastart +
573 MAX_SHARED_LIBS * sizeof(unsigned long),
576 pr_debug("Allocated data+bss+stack (%ld bytes): %lx\n",
577 data_len + bss_len + stack_len, datapos);
579 fpos = ntohl(hdr->data_start);
580 #ifdef CONFIG_BINFMT_ZFLAT
581 if (flags & FLAT_FLAG_GZDATA) {
582 result = decompress_exec(bprm, fpos, (char *)datapos,
587 result = read_code(bprm->file, datapos, fpos,
590 if (IS_ERR_VALUE(result)) {
592 pr_err("Unable to read data+bss, errno %d\n", ret);
593 vm_munmap(textpos, text_len);
594 vm_munmap(realdatastart, len);
598 reloc = (unsigned long __user *)
599 (datapos + (ntohl(hdr->reloc_start) - text_len));
600 memp = realdatastart;
604 len = text_len + data_len + extra + MAX_SHARED_LIBS * sizeof(unsigned long);
605 len = PAGE_ALIGN(len);
606 textpos = vm_mmap(NULL, 0, len,
607 PROT_READ | PROT_EXEC | PROT_WRITE, MAP_PRIVATE, 0);
609 if (!textpos || IS_ERR_VALUE(textpos)) {
613 pr_err("Unable to allocate RAM for process text/data, "
618 realdatastart = textpos + ntohl(hdr->data_start);
619 datapos = ALIGN(realdatastart +
620 MAX_SHARED_LIBS * sizeof(unsigned long),
623 reloc = (unsigned long __user *)
624 (datapos + (ntohl(hdr->reloc_start) - text_len));
627 #ifdef CONFIG_BINFMT_ZFLAT
629 * load it all in and treat it like a RAM load from now on
631 if (flags & FLAT_FLAG_GZIP) {
633 result = decompress_exec(bprm, sizeof(struct flat_hdr),
634 (((char *)textpos) + sizeof(struct flat_hdr)),
635 (text_len + full_data
636 - sizeof(struct flat_hdr)),
638 memmove((void *) datapos, (void *) realdatastart,
642 * This is used on MMU systems mainly for testing.
643 * Let's use a kernel buffer to simplify things.
645 long unz_text_len = text_len - sizeof(struct flat_hdr);
646 long unz_len = unz_text_len + full_data;
647 char *unz_data = vmalloc(unz_len);
651 result = decompress_exec(bprm, sizeof(struct flat_hdr),
652 unz_data, unz_len, 0);
654 (copy_to_user((void __user *)textpos + sizeof(struct flat_hdr),
655 unz_data, unz_text_len) ||
656 copy_to_user((void __user *)datapos,
657 unz_data + unz_text_len, full_data)))
662 } else if (flags & FLAT_FLAG_GZDATA) {
663 result = read_code(bprm->file, textpos, 0, text_len);
664 if (!IS_ERR_VALUE(result)) {
666 result = decompress_exec(bprm, text_len, (char *) datapos,
669 char *unz_data = vmalloc(full_data);
673 result = decompress_exec(bprm, text_len,
674 unz_data, full_data, 0);
676 copy_to_user((void __user *)datapos,
677 unz_data, full_data))
684 #endif /* CONFIG_BINFMT_ZFLAT */
686 result = read_code(bprm->file, textpos, 0, text_len);
687 if (!IS_ERR_VALUE(result))
688 result = read_code(bprm->file, datapos,
689 ntohl(hdr->data_start),
692 if (IS_ERR_VALUE(result)) {
694 pr_err("Unable to read code+data+bss, errno %d\n", ret);
695 vm_munmap(textpos, text_len + data_len + extra +
696 MAX_SHARED_LIBS * sizeof(unsigned long));
701 start_code = textpos + sizeof(struct flat_hdr);
702 end_code = textpos + text_len;
703 text_len -= sizeof(struct flat_hdr); /* the real code len */
705 /* The main program needs a little extra setup in the task structure */
707 current->mm->start_code = start_code;
708 current->mm->end_code = end_code;
709 current->mm->start_data = datapos;
710 current->mm->end_data = datapos + data_len;
712 * set up the brk stuff, uses any slack left in data/bss/stack
713 * allocation. We put the brk after the bss (between the bss
714 * and stack) like other platforms.
715 * Userspace code relies on the stack pointer starting out at
716 * an address right at the end of a page.
718 current->mm->start_brk = datapos + data_len + bss_len;
719 current->mm->brk = (current->mm->start_brk + 3) & ~3;
721 current->mm->context.end_brk = memp + memp_size - stack_len;
725 if (flags & FLAT_FLAG_KTRACE) {
726 pr_info("Mapping is %lx, Entry point is %x, data_start is %x\n",
727 textpos, 0x00ffffff&ntohl(hdr->entry), ntohl(hdr->data_start));
728 pr_info("%s %s: TEXT=%lx-%lx DATA=%lx-%lx BSS=%lx-%lx\n",
729 id ? "Lib" : "Load", bprm->filename,
730 start_code, end_code, datapos, datapos + data_len,
731 datapos + data_len, (datapos + data_len + bss_len + 3) & ~3);
734 /* Store the current module values into the global library structure */
735 libinfo->lib_list[id].start_code = start_code;
736 libinfo->lib_list[id].start_data = datapos;
737 libinfo->lib_list[id].start_brk = datapos + data_len + bss_len;
738 libinfo->lib_list[id].text_len = text_len;
739 libinfo->lib_list[id].loaded = 1;
740 libinfo->lib_list[id].entry = (0x00ffffff & ntohl(hdr->entry)) + textpos;
741 libinfo->lib_list[id].build_date = ntohl(hdr->build_date);
744 * We just load the allocations into some temporary memory to
745 * help simplify all this mumbo jumbo
747 * We've got two different sections of relocation entries.
748 * The first is the GOT which resides at the beginning of the data segment
749 * and is terminated with a -1. This one can be relocated in place.
750 * The second is the extra relocation entries tacked after the image's
751 * data segment. These require a little more processing as the entry is
752 * really an offset into the image which contains an offset into the
755 if (flags & FLAT_FLAG_GOTPIC) {
756 for (rp = (unsigned long __user *)datapos; ; rp++) {
757 unsigned long addr, rp_val;
758 if (get_user(rp_val, rp))
760 if (rp_val == 0xffffffff)
763 addr = calc_reloc(rp_val, libinfo, id, 0);
764 if (addr == RELOC_FAILED) {
768 if (put_user(addr, rp))
775 * Now run through the relocation entries.
776 * We've got to be careful here as C++ produces relocatable zero
777 * entries in the constructor and destructor tables which are then
778 * tested for being not zero (which will always occur unless we're
779 * based from address zero). This causes an endless loop as __start
780 * is at zero. The solution used is to not relocate zero addresses.
781 * This has the negative side effect of not allowing a global data
782 * reference to be statically initialised to _stext (I've moved
783 * __start to address 4 so that is okay).
785 if (rev > OLD_FLAT_VERSION) {
786 unsigned long __maybe_unused persistent = 0;
787 for (i = 0; i < relocs; i++) {
788 unsigned long addr, relval;
791 * Get the address of the pointer to be
792 * relocated (of course, the address has to be
795 if (get_user(relval, reloc + i))
797 relval = ntohl(relval);
798 if (flat_set_persistent(relval, &persistent))
800 addr = flat_get_relocate_addr(relval);
801 rp = (unsigned long __user *)calc_reloc(addr, libinfo, id, 1);
802 if (rp == (unsigned long __user *)RELOC_FAILED) {
807 /* Get the pointer's value. */
808 addr = flat_get_addr_from_rp(rp, relval, flags,
812 * Do the relocation. PIC relocs in the data section are
813 * already in target order
815 if ((flags & FLAT_FLAG_GOTPIC) == 0)
817 addr = calc_reloc(addr, libinfo, id, 0);
818 if (addr == RELOC_FAILED) {
823 /* Write back the relocated pointer. */
824 flat_put_addr_at_rp(rp, addr, relval);
828 for (i = 0; i < relocs; i++) {
829 unsigned long relval;
830 if (get_user(relval, reloc + i))
832 relval = ntohl(relval);
837 flush_icache_range(start_code, end_code);
839 /* zero the BSS, BRK and stack areas */
840 if (clear_user((void __user *)(datapos + data_len), bss_len +
841 (memp + memp_size - stack_len - /* end brk */
842 libinfo->lib_list[id].start_brk) + /* start brk */
852 /****************************************************************************/
853 #ifdef CONFIG_BINFMT_SHARED_FLAT
856 * Load a shared library into memory. The library gets its own data
857 * segment (including bss) but not argv/argc/environ.
860 static int load_flat_shared_library(int id, struct lib_info *libs)
863 * This is a fake bprm struct; only the members "buf", "file" and
864 * "filename" are actually used.
866 struct linux_binprm bprm;
871 memset(&bprm, 0, sizeof(bprm));
873 /* Create the file name */
874 sprintf(buf, "/lib/lib%d.so", id);
876 /* Open the file up */
878 bprm.file = open_exec(bprm.filename);
879 res = PTR_ERR(bprm.file);
880 if (IS_ERR(bprm.file))
883 res = kernel_read(bprm.file, pos, bprm.buf, BINPRM_BUF_SIZE);
886 res = load_flat_file(&bprm, libs, id, NULL);
888 allow_write_access(bprm.file);
894 #endif /* CONFIG_BINFMT_SHARED_FLAT */
895 /****************************************************************************/
898 * These are the functions used to load flat style executables and shared
899 * libraries. There is no binary dependent code anywhere else.
902 static int load_flat_binary(struct linux_binprm *bprm)
904 struct lib_info libinfo;
905 struct pt_regs *regs = current_pt_regs();
906 unsigned long stack_len = 0;
907 unsigned long start_addr;
911 memset(&libinfo, 0, sizeof(libinfo));
914 * We have to add the size of our arguments to our stack size
915 * otherwise it's too easy for users to create stack overflows
916 * by passing in a huge argument list. And yes, we have to be
917 * pedantic and include space for the argv/envp array as it may have
921 stack_len += PAGE_SIZE * MAX_ARG_PAGES - bprm->p; /* the strings */
923 stack_len += (bprm->argc + 1) * sizeof(char *); /* the argv array */
924 stack_len += (bprm->envc + 1) * sizeof(char *); /* the envp array */
925 stack_len = ALIGN(stack_len, FLAT_STACK_ALIGN);
927 res = load_flat_file(bprm, &libinfo, 0, &stack_len);
931 /* Update data segment pointers for all libraries */
932 for (i = 0; i < MAX_SHARED_LIBS; i++) {
933 if (!libinfo.lib_list[i].loaded)
935 for (j = 0; j < MAX_SHARED_LIBS; j++) {
936 unsigned long val = libinfo.lib_list[j].loaded ?
937 libinfo.lib_list[j].start_data : UNLOADED_LIB;
938 unsigned long __user *p = (unsigned long __user *)
939 libinfo.lib_list[i].start_data;
941 if (put_user(val, p))
946 install_exec_creds(bprm);
948 set_binfmt(&flat_format);
951 res = setup_arg_pages(bprm, STACK_TOP, EXSTACK_DEFAULT);
953 res = create_flat_tables(bprm, bprm->p);
955 /* Stash our initial stack pointer into the mm structure */
956 current->mm->start_stack =
957 ((current->mm->context.end_brk + stack_len + 3) & ~3) - 4;
958 pr_debug("sp=%lx\n", current->mm->start_stack);
960 /* copy the arg pages onto the stack */
961 res = transfer_args_to_stack(bprm, ¤t->mm->start_stack);
963 res = create_flat_tables(bprm, current->mm->start_stack);
968 /* Fake some return addresses to ensure the call chain will
969 * initialise library in order for us. We are required to call
970 * lib 1 first, then 2, ... and finally the main program (id 0).
972 start_addr = libinfo.lib_list[0].entry;
974 #ifdef CONFIG_BINFMT_SHARED_FLAT
975 for (i = MAX_SHARED_LIBS-1; i > 0; i--) {
976 if (libinfo.lib_list[i].loaded) {
977 /* Push previos first to call address */
978 unsigned long __user *sp;
979 current->mm->start_stack -= sizeof(unsigned long);
980 sp = (unsigned long __user *)current->mm->start_stack;
981 __put_user(start_addr, sp);
982 start_addr = libinfo.lib_list[i].entry;
987 #ifdef FLAT_PLAT_INIT
988 FLAT_PLAT_INIT(regs);
991 pr_debug("start_thread(regs=0x%p, entry=0x%lx, start_stack=0x%lx)\n",
992 regs, start_addr, current->mm->start_stack);
993 start_thread(regs, start_addr, current->mm->start_stack);
998 /****************************************************************************/
1000 static int __init init_flat_binfmt(void)
1002 register_binfmt(&flat_format);
1005 core_initcall(init_flat_binfmt);
1007 /****************************************************************************/