GNU Linux-libre 6.8.9-gnu
[releases.git] / fs / bcachefs / util.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _BCACHEFS_UTIL_H
3 #define _BCACHEFS_UTIL_H
4
5 #include <linux/bio.h>
6 #include <linux/blkdev.h>
7 #include <linux/closure.h>
8 #include <linux/errno.h>
9 #include <linux/freezer.h>
10 #include <linux/kernel.h>
11 #include <linux/sched/clock.h>
12 #include <linux/llist.h>
13 #include <linux/log2.h>
14 #include <linux/percpu.h>
15 #include <linux/preempt.h>
16 #include <linux/ratelimit.h>
17 #include <linux/slab.h>
18 #include <linux/vmalloc.h>
19 #include <linux/workqueue.h>
20
21 #include "mean_and_variance.h"
22
23 #include "darray.h"
24
25 struct closure;
26
27 #ifdef CONFIG_BCACHEFS_DEBUG
28 #define EBUG_ON(cond)           BUG_ON(cond)
29 #else
30 #define EBUG_ON(cond)
31 #endif
32
33 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
34 #define CPU_BIG_ENDIAN          0
35 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
36 #define CPU_BIG_ENDIAN          1
37 #endif
38
39 /* type hackery */
40
41 #define type_is_exact(_val, _type)                                      \
42         __builtin_types_compatible_p(typeof(_val), _type)
43
44 #define type_is(_val, _type)                                            \
45         (__builtin_types_compatible_p(typeof(_val), _type) ||           \
46          __builtin_types_compatible_p(typeof(_val), const _type))
47
48 /* Userspace doesn't align allocations as nicely as the kernel allocators: */
49 static inline size_t buf_pages(void *p, size_t len)
50 {
51         return DIV_ROUND_UP(len +
52                             ((unsigned long) p & (PAGE_SIZE - 1)),
53                             PAGE_SIZE);
54 }
55
56 static inline void vpfree(void *p, size_t size)
57 {
58         if (is_vmalloc_addr(p))
59                 vfree(p);
60         else
61                 free_pages((unsigned long) p, get_order(size));
62 }
63
64 static inline void *vpmalloc(size_t size, gfp_t gfp_mask)
65 {
66         return (void *) __get_free_pages(gfp_mask|__GFP_NOWARN,
67                                          get_order(size)) ?:
68                 __vmalloc(size, gfp_mask);
69 }
70
71 static inline void kvpfree(void *p, size_t size)
72 {
73         if (size < PAGE_SIZE)
74                 kfree(p);
75         else
76                 vpfree(p, size);
77 }
78
79 static inline void *kvpmalloc(size_t size, gfp_t gfp_mask)
80 {
81         return size < PAGE_SIZE
82                 ? kmalloc(size, gfp_mask)
83                 : vpmalloc(size, gfp_mask);
84 }
85
86 int mempool_init_kvpmalloc_pool(mempool_t *, int, size_t);
87
88 #define HEAP(type)                                                      \
89 struct {                                                                \
90         size_t size, used;                                              \
91         type *data;                                                     \
92 }
93
94 #define DECLARE_HEAP(type, name) HEAP(type) name
95
96 #define init_heap(heap, _size, gfp)                                     \
97 ({                                                                      \
98         (heap)->used = 0;                                               \
99         (heap)->size = (_size);                                         \
100         (heap)->data = kvpmalloc((heap)->size * sizeof((heap)->data[0]),\
101                                  (gfp));                                \
102 })
103
104 #define free_heap(heap)                                                 \
105 do {                                                                    \
106         kvpfree((heap)->data, (heap)->size * sizeof((heap)->data[0]));  \
107         (heap)->data = NULL;                                            \
108 } while (0)
109
110 #define heap_set_backpointer(h, i, _fn)                                 \
111 do {                                                                    \
112         void (*fn)(typeof(h), size_t) = _fn;                            \
113         if (fn)                                                         \
114                 fn(h, i);                                               \
115 } while (0)
116
117 #define heap_swap(h, i, j, set_backpointer)                             \
118 do {                                                                    \
119         swap((h)->data[i], (h)->data[j]);                               \
120         heap_set_backpointer(h, i, set_backpointer);                    \
121         heap_set_backpointer(h, j, set_backpointer);                    \
122 } while (0)
123
124 #define heap_peek(h)                                                    \
125 ({                                                                      \
126         EBUG_ON(!(h)->used);                                            \
127         (h)->data[0];                                                   \
128 })
129
130 #define heap_full(h)    ((h)->used == (h)->size)
131
132 #define heap_sift_down(h, i, cmp, set_backpointer)                      \
133 do {                                                                    \
134         size_t _c, _j = i;                                              \
135                                                                         \
136         for (; _j * 2 + 1 < (h)->used; _j = _c) {                       \
137                 _c = _j * 2 + 1;                                        \
138                 if (_c + 1 < (h)->used &&                               \
139                     cmp(h, (h)->data[_c], (h)->data[_c + 1]) >= 0)      \
140                         _c++;                                           \
141                                                                         \
142                 if (cmp(h, (h)->data[_c], (h)->data[_j]) >= 0)          \
143                         break;                                          \
144                 heap_swap(h, _c, _j, set_backpointer);                  \
145         }                                                               \
146 } while (0)
147
148 #define heap_sift_up(h, i, cmp, set_backpointer)                        \
149 do {                                                                    \
150         while (i) {                                                     \
151                 size_t p = (i - 1) / 2;                                 \
152                 if (cmp(h, (h)->data[i], (h)->data[p]) >= 0)            \
153                         break;                                          \
154                 heap_swap(h, i, p, set_backpointer);                    \
155                 i = p;                                                  \
156         }                                                               \
157 } while (0)
158
159 #define __heap_add(h, d, cmp, set_backpointer)                          \
160 ({                                                                      \
161         size_t _i = (h)->used++;                                        \
162         (h)->data[_i] = d;                                              \
163         heap_set_backpointer(h, _i, set_backpointer);                   \
164                                                                         \
165         heap_sift_up(h, _i, cmp, set_backpointer);                      \
166         _i;                                                             \
167 })
168
169 #define heap_add(h, d, cmp, set_backpointer)                            \
170 ({                                                                      \
171         bool _r = !heap_full(h);                                        \
172         if (_r)                                                         \
173                 __heap_add(h, d, cmp, set_backpointer);                 \
174         _r;                                                             \
175 })
176
177 #define heap_add_or_replace(h, new, cmp, set_backpointer)               \
178 do {                                                                    \
179         if (!heap_add(h, new, cmp, set_backpointer) &&                  \
180             cmp(h, new, heap_peek(h)) >= 0) {                           \
181                 (h)->data[0] = new;                                     \
182                 heap_set_backpointer(h, 0, set_backpointer);            \
183                 heap_sift_down(h, 0, cmp, set_backpointer);             \
184         }                                                               \
185 } while (0)
186
187 #define heap_del(h, i, cmp, set_backpointer)                            \
188 do {                                                                    \
189         size_t _i = (i);                                                \
190                                                                         \
191         BUG_ON(_i >= (h)->used);                                        \
192         (h)->used--;                                                    \
193         if ((_i) < (h)->used) {                                         \
194                 heap_swap(h, _i, (h)->used, set_backpointer);           \
195                 heap_sift_up(h, _i, cmp, set_backpointer);              \
196                 heap_sift_down(h, _i, cmp, set_backpointer);            \
197         }                                                               \
198 } while (0)
199
200 #define heap_pop(h, d, cmp, set_backpointer)                            \
201 ({                                                                      \
202         bool _r = (h)->used;                                            \
203         if (_r) {                                                       \
204                 (d) = (h)->data[0];                                     \
205                 heap_del(h, 0, cmp, set_backpointer);                   \
206         }                                                               \
207         _r;                                                             \
208 })
209
210 #define heap_resort(heap, cmp, set_backpointer)                         \
211 do {                                                                    \
212         ssize_t _i;                                                     \
213         for (_i = (ssize_t) (heap)->used / 2 -  1; _i >= 0; --_i)       \
214                 heap_sift_down(heap, _i, cmp, set_backpointer);         \
215 } while (0)
216
217 #define ANYSINT_MAX(t)                                                  \
218         ((((t) 1 << (sizeof(t) * 8 - 2)) - (t) 1) * (t) 2 + (t) 1)
219
220 #include "printbuf.h"
221
222 #define prt_vprintf(_out, ...)          bch2_prt_vprintf(_out, __VA_ARGS__)
223 #define prt_printf(_out, ...)           bch2_prt_printf(_out, __VA_ARGS__)
224 #define printbuf_str(_buf)              bch2_printbuf_str(_buf)
225 #define printbuf_exit(_buf)             bch2_printbuf_exit(_buf)
226
227 #define printbuf_tabstops_reset(_buf)   bch2_printbuf_tabstops_reset(_buf)
228 #define printbuf_tabstop_pop(_buf)      bch2_printbuf_tabstop_pop(_buf)
229 #define printbuf_tabstop_push(_buf, _n) bch2_printbuf_tabstop_push(_buf, _n)
230
231 #define printbuf_indent_add(_out, _n)   bch2_printbuf_indent_add(_out, _n)
232 #define printbuf_indent_sub(_out, _n)   bch2_printbuf_indent_sub(_out, _n)
233
234 #define prt_newline(_out)               bch2_prt_newline(_out)
235 #define prt_tab(_out)                   bch2_prt_tab(_out)
236 #define prt_tab_rjust(_out)             bch2_prt_tab_rjust(_out)
237
238 #define prt_bytes_indented(...)         bch2_prt_bytes_indented(__VA_ARGS__)
239 #define prt_u64(_out, _v)               prt_printf(_out, "%llu", (u64) (_v))
240 #define prt_human_readable_u64(...)     bch2_prt_human_readable_u64(__VA_ARGS__)
241 #define prt_human_readable_s64(...)     bch2_prt_human_readable_s64(__VA_ARGS__)
242 #define prt_units_u64(...)              bch2_prt_units_u64(__VA_ARGS__)
243 #define prt_units_s64(...)              bch2_prt_units_s64(__VA_ARGS__)
244 #define prt_string_option(...)          bch2_prt_string_option(__VA_ARGS__)
245 #define prt_bitflags(...)               bch2_prt_bitflags(__VA_ARGS__)
246 #define prt_bitflags_vector(...)        bch2_prt_bitflags_vector(__VA_ARGS__)
247
248 void bch2_pr_time_units(struct printbuf *, u64);
249 void bch2_prt_datetime(struct printbuf *, time64_t);
250
251 #ifdef __KERNEL__
252 static inline void uuid_unparse_lower(u8 *uuid, char *out)
253 {
254         sprintf(out, "%pUb", uuid);
255 }
256 #else
257 #include <uuid/uuid.h>
258 #endif
259
260 static inline void pr_uuid(struct printbuf *out, u8 *uuid)
261 {
262         char uuid_str[40];
263
264         uuid_unparse_lower(uuid, uuid_str);
265         prt_printf(out, "%s", uuid_str);
266 }
267
268 int bch2_strtoint_h(const char *, int *);
269 int bch2_strtouint_h(const char *, unsigned int *);
270 int bch2_strtoll_h(const char *, long long *);
271 int bch2_strtoull_h(const char *, unsigned long long *);
272 int bch2_strtou64_h(const char *, u64 *);
273
274 static inline int bch2_strtol_h(const char *cp, long *res)
275 {
276 #if BITS_PER_LONG == 32
277         return bch2_strtoint_h(cp, (int *) res);
278 #else
279         return bch2_strtoll_h(cp, (long long *) res);
280 #endif
281 }
282
283 static inline int bch2_strtoul_h(const char *cp, long *res)
284 {
285 #if BITS_PER_LONG == 32
286         return bch2_strtouint_h(cp, (unsigned int *) res);
287 #else
288         return bch2_strtoull_h(cp, (unsigned long long *) res);
289 #endif
290 }
291
292 #define strtoi_h(cp, res)                                               \
293         ( type_is(*res, int)            ? bch2_strtoint_h(cp, (void *) res)\
294         : type_is(*res, long)           ? bch2_strtol_h(cp, (void *) res)\
295         : type_is(*res, long long)      ? bch2_strtoll_h(cp, (void *) res)\
296         : type_is(*res, unsigned)       ? bch2_strtouint_h(cp, (void *) res)\
297         : type_is(*res, unsigned long)  ? bch2_strtoul_h(cp, (void *) res)\
298         : type_is(*res, unsigned long long) ? bch2_strtoull_h(cp, (void *) res)\
299         : -EINVAL)
300
301 #define strtoul_safe(cp, var)                                           \
302 ({                                                                      \
303         unsigned long _v;                                               \
304         int _r = kstrtoul(cp, 10, &_v);                                 \
305         if (!_r)                                                        \
306                 var = _v;                                               \
307         _r;                                                             \
308 })
309
310 #define strtoul_safe_clamp(cp, var, min, max)                           \
311 ({                                                                      \
312         unsigned long _v;                                               \
313         int _r = kstrtoul(cp, 10, &_v);                                 \
314         if (!_r)                                                        \
315                 var = clamp_t(typeof(var), _v, min, max);               \
316         _r;                                                             \
317 })
318
319 #define strtoul_safe_restrict(cp, var, min, max)                        \
320 ({                                                                      \
321         unsigned long _v;                                               \
322         int _r = kstrtoul(cp, 10, &_v);                                 \
323         if (!_r && _v >= min && _v <= max)                              \
324                 var = _v;                                               \
325         else                                                            \
326                 _r = -EINVAL;                                           \
327         _r;                                                             \
328 })
329
330 #define snprint(out, var)                                               \
331         prt_printf(out,                                                 \
332                    type_is(var, int)            ? "%i\n"                \
333                  : type_is(var, unsigned)       ? "%u\n"                \
334                  : type_is(var, long)           ? "%li\n"               \
335                  : type_is(var, unsigned long)  ? "%lu\n"               \
336                  : type_is(var, s64)            ? "%lli\n"              \
337                  : type_is(var, u64)            ? "%llu\n"              \
338                  : type_is(var, char *)         ? "%s\n"                \
339                  : "%i\n", var)
340
341 bool bch2_is_zero(const void *, size_t);
342
343 u64 bch2_read_flag_list(char *, const char * const[]);
344
345 void bch2_prt_u64_base2_nbits(struct printbuf *, u64, unsigned);
346 void bch2_prt_u64_base2(struct printbuf *, u64);
347
348 void bch2_print_string_as_lines(const char *prefix, const char *lines);
349
350 typedef DARRAY(unsigned long) bch_stacktrace;
351 int bch2_save_backtrace(bch_stacktrace *stack, struct task_struct *, unsigned, gfp_t);
352 void bch2_prt_backtrace(struct printbuf *, bch_stacktrace *);
353 int bch2_prt_task_backtrace(struct printbuf *, struct task_struct *, unsigned, gfp_t);
354
355 static inline void prt_bdevname(struct printbuf *out, struct block_device *bdev)
356 {
357 #ifdef __KERNEL__
358         prt_printf(out, "%pg", bdev);
359 #else
360         prt_str(out, bdev->name);
361 #endif
362 }
363
364 #define NR_QUANTILES    15
365 #define QUANTILE_IDX(i) inorder_to_eytzinger0(i, NR_QUANTILES)
366 #define QUANTILE_FIRST  eytzinger0_first(NR_QUANTILES)
367 #define QUANTILE_LAST   eytzinger0_last(NR_QUANTILES)
368
369 struct bch2_quantiles {
370         struct bch2_quantile_entry {
371                 u64     m;
372                 u64     step;
373         }               entries[NR_QUANTILES];
374 };
375
376 struct bch2_time_stat_buffer {
377         unsigned        nr;
378         struct bch2_time_stat_buffer_entry {
379                 u64     start;
380                 u64     end;
381         }               entries[32];
382 };
383
384 struct bch2_time_stats {
385         spinlock_t      lock;
386         /* all fields are in nanoseconds */
387         u64             min_duration;
388         u64             max_duration;
389         u64             total_duration;
390         u64             max_freq;
391         u64             min_freq;
392         u64             last_event;
393         struct bch2_quantiles quantiles;
394
395         struct mean_and_variance          duration_stats;
396         struct mean_and_variance_weighted duration_stats_weighted;
397         struct mean_and_variance          freq_stats;
398         struct mean_and_variance_weighted freq_stats_weighted;
399         struct bch2_time_stat_buffer __percpu *buffer;
400 };
401
402 #ifndef CONFIG_BCACHEFS_NO_LATENCY_ACCT
403 void __bch2_time_stats_update(struct bch2_time_stats *stats, u64, u64);
404
405 static inline void bch2_time_stats_update(struct bch2_time_stats *stats, u64 start)
406 {
407         __bch2_time_stats_update(stats, start, local_clock());
408 }
409
410 static inline bool track_event_change(struct bch2_time_stats *stats,
411                                       u64 *start, bool v)
412 {
413         if (v != !!*start) {
414                 if (!v) {
415                         bch2_time_stats_update(stats, *start);
416                         *start = 0;
417                 } else {
418                         *start = local_clock() ?: 1;
419                         return true;
420                 }
421         }
422
423         return false;
424 }
425 #else
426 static inline void __bch2_time_stats_update(struct bch2_time_stats *stats, u64 start, u64 end) {}
427 static inline void bch2_time_stats_update(struct bch2_time_stats *stats, u64 start) {}
428 static inline bool track_event_change(struct bch2_time_stats *stats,
429                                       u64 *start, bool v)
430 {
431         bool ret = v && !*start;
432         *start = v;
433         return ret;
434 }
435 #endif
436
437 void bch2_time_stats_to_text(struct printbuf *, struct bch2_time_stats *);
438
439 void bch2_time_stats_exit(struct bch2_time_stats *);
440 void bch2_time_stats_init(struct bch2_time_stats *);
441
442 #define ewma_add(ewma, val, weight)                                     \
443 ({                                                                      \
444         typeof(ewma) _ewma = (ewma);                                    \
445         typeof(weight) _weight = (weight);                              \
446                                                                         \
447         (((_ewma << _weight) - _ewma) + (val)) >> _weight;              \
448 })
449
450 struct bch_ratelimit {
451         /* Next time we want to do some work, in nanoseconds */
452         u64                     next;
453
454         /*
455          * Rate at which we want to do work, in units per nanosecond
456          * The units here correspond to the units passed to
457          * bch2_ratelimit_increment()
458          */
459         unsigned                rate;
460 };
461
462 static inline void bch2_ratelimit_reset(struct bch_ratelimit *d)
463 {
464         d->next = local_clock();
465 }
466
467 u64 bch2_ratelimit_delay(struct bch_ratelimit *);
468 void bch2_ratelimit_increment(struct bch_ratelimit *, u64);
469
470 struct bch_pd_controller {
471         struct bch_ratelimit    rate;
472         unsigned long           last_update;
473
474         s64                     last_actual;
475         s64                     smoothed_derivative;
476
477         unsigned                p_term_inverse;
478         unsigned                d_smooth;
479         unsigned                d_term;
480
481         /* for exporting to sysfs (no effect on behavior) */
482         s64                     last_derivative;
483         s64                     last_proportional;
484         s64                     last_change;
485         s64                     last_target;
486
487         /*
488          * If true, the rate will not increase if bch2_ratelimit_delay()
489          * is not being called often enough.
490          */
491         bool                    backpressure;
492 };
493
494 void bch2_pd_controller_update(struct bch_pd_controller *, s64, s64, int);
495 void bch2_pd_controller_init(struct bch_pd_controller *);
496 void bch2_pd_controller_debug_to_text(struct printbuf *, struct bch_pd_controller *);
497
498 #define sysfs_pd_controller_attribute(name)                             \
499         rw_attribute(name##_rate);                                      \
500         rw_attribute(name##_rate_bytes);                                \
501         rw_attribute(name##_rate_d_term);                               \
502         rw_attribute(name##_rate_p_term_inverse);                       \
503         read_attribute(name##_rate_debug)
504
505 #define sysfs_pd_controller_files(name)                                 \
506         &sysfs_##name##_rate,                                           \
507         &sysfs_##name##_rate_bytes,                                     \
508         &sysfs_##name##_rate_d_term,                                    \
509         &sysfs_##name##_rate_p_term_inverse,                            \
510         &sysfs_##name##_rate_debug
511
512 #define sysfs_pd_controller_show(name, var)                             \
513 do {                                                                    \
514         sysfs_hprint(name##_rate,               (var)->rate.rate);      \
515         sysfs_print(name##_rate_bytes,          (var)->rate.rate);      \
516         sysfs_print(name##_rate_d_term,         (var)->d_term);         \
517         sysfs_print(name##_rate_p_term_inverse, (var)->p_term_inverse); \
518                                                                         \
519         if (attr == &sysfs_##name##_rate_debug)                         \
520                 bch2_pd_controller_debug_to_text(out, var);             \
521 } while (0)
522
523 #define sysfs_pd_controller_store(name, var)                            \
524 do {                                                                    \
525         sysfs_strtoul_clamp(name##_rate,                                \
526                             (var)->rate.rate, 1, UINT_MAX);             \
527         sysfs_strtoul_clamp(name##_rate_bytes,                          \
528                             (var)->rate.rate, 1, UINT_MAX);             \
529         sysfs_strtoul(name##_rate_d_term,       (var)->d_term);         \
530         sysfs_strtoul_clamp(name##_rate_p_term_inverse,                 \
531                             (var)->p_term_inverse, 1, INT_MAX);         \
532 } while (0)
533
534 #define container_of_or_null(ptr, type, member)                         \
535 ({                                                                      \
536         typeof(ptr) _ptr = ptr;                                         \
537         _ptr ? container_of(_ptr, type, member) : NULL;                 \
538 })
539
540 /* Does linear interpolation between powers of two */
541 static inline unsigned fract_exp_two(unsigned x, unsigned fract_bits)
542 {
543         unsigned fract = x & ~(~0 << fract_bits);
544
545         x >>= fract_bits;
546         x   = 1 << x;
547         x  += (x * fract) >> fract_bits;
548
549         return x;
550 }
551
552 void bch2_bio_map(struct bio *bio, void *base, size_t);
553 int bch2_bio_alloc_pages(struct bio *, size_t, gfp_t);
554
555 static inline sector_t bdev_sectors(struct block_device *bdev)
556 {
557         return bdev->bd_inode->i_size >> 9;
558 }
559
560 #define closure_bio_submit(bio, cl)                                     \
561 do {                                                                    \
562         closure_get(cl);                                                \
563         submit_bio(bio);                                                \
564 } while (0)
565
566 #define kthread_wait(cond)                                              \
567 ({                                                                      \
568         int _ret = 0;                                                   \
569                                                                         \
570         while (1) {                                                     \
571                 set_current_state(TASK_INTERRUPTIBLE);                  \
572                 if (kthread_should_stop()) {                            \
573                         _ret = -1;                                      \
574                         break;                                          \
575                 }                                                       \
576                                                                         \
577                 if (cond)                                               \
578                         break;                                          \
579                                                                         \
580                 schedule();                                             \
581         }                                                               \
582         set_current_state(TASK_RUNNING);                                \
583         _ret;                                                           \
584 })
585
586 #define kthread_wait_freezable(cond)                                    \
587 ({                                                                      \
588         int _ret = 0;                                                   \
589         while (1) {                                                     \
590                 set_current_state(TASK_INTERRUPTIBLE);                  \
591                 if (kthread_should_stop()) {                            \
592                         _ret = -1;                                      \
593                         break;                                          \
594                 }                                                       \
595                                                                         \
596                 if (cond)                                               \
597                         break;                                          \
598                                                                         \
599                 schedule();                                             \
600                 try_to_freeze();                                        \
601         }                                                               \
602         set_current_state(TASK_RUNNING);                                \
603         _ret;                                                           \
604 })
605
606 size_t bch2_rand_range(size_t);
607
608 void memcpy_to_bio(struct bio *, struct bvec_iter, const void *);
609 void memcpy_from_bio(void *, struct bio *, struct bvec_iter);
610
611 static inline void memcpy_u64s_small(void *dst, const void *src,
612                                      unsigned u64s)
613 {
614         u64 *d = dst;
615         const u64 *s = src;
616
617         while (u64s--)
618                 *d++ = *s++;
619 }
620
621 static inline void __memcpy_u64s(void *dst, const void *src,
622                                  unsigned u64s)
623 {
624 #ifdef CONFIG_X86_64
625         long d0, d1, d2;
626
627         asm volatile("rep ; movsq"
628                      : "=&c" (d0), "=&D" (d1), "=&S" (d2)
629                      : "0" (u64s), "1" (dst), "2" (src)
630                      : "memory");
631 #else
632         u64 *d = dst;
633         const u64 *s = src;
634
635         while (u64s--)
636                 *d++ = *s++;
637 #endif
638 }
639
640 static inline void memcpy_u64s(void *dst, const void *src,
641                                unsigned u64s)
642 {
643         EBUG_ON(!(dst >= src + u64s * sizeof(u64) ||
644                  dst + u64s * sizeof(u64) <= src));
645
646         __memcpy_u64s(dst, src, u64s);
647 }
648
649 static inline void __memmove_u64s_down(void *dst, const void *src,
650                                        unsigned u64s)
651 {
652         __memcpy_u64s(dst, src, u64s);
653 }
654
655 static inline void memmove_u64s_down(void *dst, const void *src,
656                                      unsigned u64s)
657 {
658         EBUG_ON(dst > src);
659
660         __memmove_u64s_down(dst, src, u64s);
661 }
662
663 static inline void __memmove_u64s_down_small(void *dst, const void *src,
664                                        unsigned u64s)
665 {
666         memcpy_u64s_small(dst, src, u64s);
667 }
668
669 static inline void memmove_u64s_down_small(void *dst, const void *src,
670                                      unsigned u64s)
671 {
672         EBUG_ON(dst > src);
673
674         __memmove_u64s_down_small(dst, src, u64s);
675 }
676
677 static inline void __memmove_u64s_up_small(void *_dst, const void *_src,
678                                            unsigned u64s)
679 {
680         u64 *dst = (u64 *) _dst + u64s;
681         u64 *src = (u64 *) _src + u64s;
682
683         while (u64s--)
684                 *--dst = *--src;
685 }
686
687 static inline void memmove_u64s_up_small(void *dst, const void *src,
688                                          unsigned u64s)
689 {
690         EBUG_ON(dst < src);
691
692         __memmove_u64s_up_small(dst, src, u64s);
693 }
694
695 static inline void __memmove_u64s_up(void *_dst, const void *_src,
696                                      unsigned u64s)
697 {
698         u64 *dst = (u64 *) _dst + u64s - 1;
699         u64 *src = (u64 *) _src + u64s - 1;
700
701 #ifdef CONFIG_X86_64
702         long d0, d1, d2;
703
704         asm volatile("std ;\n"
705                      "rep ; movsq\n"
706                      "cld ;\n"
707                      : "=&c" (d0), "=&D" (d1), "=&S" (d2)
708                      : "0" (u64s), "1" (dst), "2" (src)
709                      : "memory");
710 #else
711         while (u64s--)
712                 *dst-- = *src--;
713 #endif
714 }
715
716 static inline void memmove_u64s_up(void *dst, const void *src,
717                                    unsigned u64s)
718 {
719         EBUG_ON(dst < src);
720
721         __memmove_u64s_up(dst, src, u64s);
722 }
723
724 static inline void memmove_u64s(void *dst, const void *src,
725                                 unsigned u64s)
726 {
727         if (dst < src)
728                 __memmove_u64s_down(dst, src, u64s);
729         else
730                 __memmove_u64s_up(dst, src, u64s);
731 }
732
733 /* Set the last few bytes up to a u64 boundary given an offset into a buffer. */
734 static inline void memset_u64s_tail(void *s, int c, unsigned bytes)
735 {
736         unsigned rem = round_up(bytes, sizeof(u64)) - bytes;
737
738         memset(s + bytes, c, rem);
739 }
740
741 void sort_cmp_size(void *base, size_t num, size_t size,
742           int (*cmp_func)(const void *, const void *, size_t),
743           void (*swap_func)(void *, void *, size_t));
744
745 /* just the memmove, doesn't update @_nr */
746 #define __array_insert_item(_array, _nr, _pos)                          \
747         memmove(&(_array)[(_pos) + 1],                                  \
748                 &(_array)[(_pos)],                                      \
749                 sizeof((_array)[0]) * ((_nr) - (_pos)))
750
751 #define array_insert_item(_array, _nr, _pos, _new_item)                 \
752 do {                                                                    \
753         __array_insert_item(_array, _nr, _pos);                         \
754         (_nr)++;                                                        \
755         (_array)[(_pos)] = (_new_item);                                 \
756 } while (0)
757
758 #define array_remove_items(_array, _nr, _pos, _nr_to_remove)            \
759 do {                                                                    \
760         (_nr) -= (_nr_to_remove);                                       \
761         memmove(&(_array)[(_pos)],                                      \
762                 &(_array)[(_pos) + (_nr_to_remove)],                    \
763                 sizeof((_array)[0]) * ((_nr) - (_pos)));                \
764 } while (0)
765
766 #define array_remove_item(_array, _nr, _pos)                            \
767         array_remove_items(_array, _nr, _pos, 1)
768
769 static inline void __move_gap(void *array, size_t element_size,
770                               size_t nr, size_t size,
771                               size_t old_gap, size_t new_gap)
772 {
773         size_t gap_end = old_gap + size - nr;
774
775         if (new_gap < old_gap) {
776                 size_t move = old_gap - new_gap;
777
778                 memmove(array + element_size * (gap_end - move),
779                         array + element_size * (old_gap - move),
780                                 element_size * move);
781         } else if (new_gap > old_gap) {
782                 size_t move = new_gap - old_gap;
783
784                 memmove(array + element_size * old_gap,
785                         array + element_size * gap_end,
786                                 element_size * move);
787         }
788 }
789
790 /* Move the gap in a gap buffer: */
791 #define move_gap(_array, _nr, _size, _old_gap, _new_gap)        \
792         __move_gap(_array, sizeof(_array[0]), _nr, _size, _old_gap, _new_gap)
793
794 #define bubble_sort(_base, _nr, _cmp)                                   \
795 do {                                                                    \
796         ssize_t _i, _last;                                              \
797         bool _swapped = true;                                           \
798                                                                         \
799         for (_last= (ssize_t) (_nr) - 1; _last > 0 && _swapped; --_last) {\
800                 _swapped = false;                                       \
801                 for (_i = 0; _i < _last; _i++)                          \
802                         if (_cmp((_base)[_i], (_base)[_i + 1]) > 0) {   \
803                                 swap((_base)[_i], (_base)[_i + 1]);     \
804                                 _swapped = true;                        \
805                         }                                               \
806         }                                                               \
807 } while (0)
808
809 static inline u64 percpu_u64_get(u64 __percpu *src)
810 {
811         u64 ret = 0;
812         int cpu;
813
814         for_each_possible_cpu(cpu)
815                 ret += *per_cpu_ptr(src, cpu);
816         return ret;
817 }
818
819 static inline void percpu_u64_set(u64 __percpu *dst, u64 src)
820 {
821         int cpu;
822
823         for_each_possible_cpu(cpu)
824                 *per_cpu_ptr(dst, cpu) = 0;
825         this_cpu_write(*dst, src);
826 }
827
828 static inline void acc_u64s(u64 *acc, const u64 *src, unsigned nr)
829 {
830         unsigned i;
831
832         for (i = 0; i < nr; i++)
833                 acc[i] += src[i];
834 }
835
836 static inline void acc_u64s_percpu(u64 *acc, const u64 __percpu *src,
837                                    unsigned nr)
838 {
839         int cpu;
840
841         for_each_possible_cpu(cpu)
842                 acc_u64s(acc, per_cpu_ptr(src, cpu), nr);
843 }
844
845 static inline void percpu_memset(void __percpu *p, int c, size_t bytes)
846 {
847         int cpu;
848
849         for_each_possible_cpu(cpu)
850                 memset(per_cpu_ptr(p, cpu), c, bytes);
851 }
852
853 u64 *bch2_acc_percpu_u64s(u64 __percpu *, unsigned);
854
855 #define cmp_int(l, r)           ((l > r) - (l < r))
856
857 static inline int u8_cmp(u8 l, u8 r)
858 {
859         return cmp_int(l, r);
860 }
861
862 static inline int cmp_le32(__le32 l, __le32 r)
863 {
864         return cmp_int(le32_to_cpu(l), le32_to_cpu(r));
865 }
866
867 #include <linux/uuid.h>
868
869 #define QSTR(n) { { { .len = strlen(n) } }, .name = n }
870
871 static inline bool qstr_eq(const struct qstr l, const struct qstr r)
872 {
873         return l.len == r.len && !memcmp(l.name, r.name, l.len);
874 }
875
876 void bch2_darray_str_exit(darray_str *);
877 int bch2_split_devs(const char *, darray_str *);
878
879 #endif /* _BCACHEFS_UTIL_H */