GNU Linux-libre 6.9-gnu
[releases.git] / fs / bcachefs / fs-io-buffered.c
1 // SPDX-License-Identifier: GPL-2.0
2 #ifndef NO_BCACHEFS_FS
3
4 #include "bcachefs.h"
5 #include "alloc_foreground.h"
6 #include "bkey_buf.h"
7 #include "fs-io.h"
8 #include "fs-io-buffered.h"
9 #include "fs-io-direct.h"
10 #include "fs-io-pagecache.h"
11 #include "io_read.h"
12 #include "io_write.h"
13
14 #include <linux/backing-dev.h>
15 #include <linux/pagemap.h>
16 #include <linux/writeback.h>
17
18 static inline bool bio_full(struct bio *bio, unsigned len)
19 {
20         if (bio->bi_vcnt >= bio->bi_max_vecs)
21                 return true;
22         if (bio->bi_iter.bi_size > UINT_MAX - len)
23                 return true;
24         return false;
25 }
26
27 /* readpage(s): */
28
29 static void bch2_readpages_end_io(struct bio *bio)
30 {
31         struct folio_iter fi;
32
33         bio_for_each_folio_all(fi, bio) {
34                 if (!bio->bi_status) {
35                         folio_mark_uptodate(fi.folio);
36                 } else {
37                         folio_clear_uptodate(fi.folio);
38                         folio_set_error(fi.folio);
39                 }
40                 folio_unlock(fi.folio);
41         }
42
43         bio_put(bio);
44 }
45
46 struct readpages_iter {
47         struct address_space    *mapping;
48         unsigned                idx;
49         folios                  folios;
50 };
51
52 static int readpages_iter_init(struct readpages_iter *iter,
53                                struct readahead_control *ractl)
54 {
55         struct folio *folio;
56
57         *iter = (struct readpages_iter) { ractl->mapping };
58
59         while ((folio = __readahead_folio(ractl))) {
60                 if (!bch2_folio_create(folio, GFP_KERNEL) ||
61                     darray_push(&iter->folios, folio)) {
62                         bch2_folio_release(folio);
63                         ractl->_nr_pages += folio_nr_pages(folio);
64                         ractl->_index -= folio_nr_pages(folio);
65                         return iter->folios.nr ? 0 : -ENOMEM;
66                 }
67
68                 folio_put(folio);
69         }
70
71         return 0;
72 }
73
74 static inline struct folio *readpage_iter_peek(struct readpages_iter *iter)
75 {
76         if (iter->idx >= iter->folios.nr)
77                 return NULL;
78         return iter->folios.data[iter->idx];
79 }
80
81 static inline void readpage_iter_advance(struct readpages_iter *iter)
82 {
83         iter->idx++;
84 }
85
86 static bool extent_partial_reads_expensive(struct bkey_s_c k)
87 {
88         struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
89         struct bch_extent_crc_unpacked crc;
90         const union bch_extent_entry *i;
91
92         bkey_for_each_crc(k.k, ptrs, crc, i)
93                 if (crc.csum_type || crc.compression_type)
94                         return true;
95         return false;
96 }
97
98 static int readpage_bio_extend(struct btree_trans *trans,
99                                struct readpages_iter *iter,
100                                struct bio *bio,
101                                unsigned sectors_this_extent,
102                                bool get_more)
103 {
104         /* Don't hold btree locks while allocating memory: */
105         bch2_trans_unlock(trans);
106
107         while (bio_sectors(bio) < sectors_this_extent &&
108                bio->bi_vcnt < bio->bi_max_vecs) {
109                 struct folio *folio = readpage_iter_peek(iter);
110                 int ret;
111
112                 if (folio) {
113                         readpage_iter_advance(iter);
114                 } else {
115                         pgoff_t folio_offset = bio_end_sector(bio) >> PAGE_SECTORS_SHIFT;
116
117                         if (!get_more)
118                                 break;
119
120                         folio = xa_load(&iter->mapping->i_pages, folio_offset);
121                         if (folio && !xa_is_value(folio))
122                                 break;
123
124                         folio = filemap_alloc_folio(readahead_gfp_mask(iter->mapping), 0);
125                         if (!folio)
126                                 break;
127
128                         if (!__bch2_folio_create(folio, GFP_KERNEL)) {
129                                 folio_put(folio);
130                                 break;
131                         }
132
133                         ret = filemap_add_folio(iter->mapping, folio, folio_offset, GFP_KERNEL);
134                         if (ret) {
135                                 __bch2_folio_release(folio);
136                                 folio_put(folio);
137                                 break;
138                         }
139
140                         folio_put(folio);
141                 }
142
143                 BUG_ON(folio_sector(folio) != bio_end_sector(bio));
144
145                 BUG_ON(!bio_add_folio(bio, folio, folio_size(folio), 0));
146         }
147
148         return bch2_trans_relock(trans);
149 }
150
151 static void bchfs_read(struct btree_trans *trans,
152                        struct bch_read_bio *rbio,
153                        subvol_inum inum,
154                        struct readpages_iter *readpages_iter)
155 {
156         struct bch_fs *c = trans->c;
157         struct btree_iter iter;
158         struct bkey_buf sk;
159         int flags = BCH_READ_RETRY_IF_STALE|
160                 BCH_READ_MAY_PROMOTE;
161         u32 snapshot;
162         int ret = 0;
163
164         rbio->c = c;
165         rbio->start_time = local_clock();
166         rbio->subvol = inum.subvol;
167
168         bch2_bkey_buf_init(&sk);
169 retry:
170         bch2_trans_begin(trans);
171         iter = (struct btree_iter) { NULL };
172
173         ret = bch2_subvolume_get_snapshot(trans, inum.subvol, &snapshot);
174         if (ret)
175                 goto err;
176
177         bch2_trans_iter_init(trans, &iter, BTREE_ID_extents,
178                              SPOS(inum.inum, rbio->bio.bi_iter.bi_sector, snapshot),
179                              BTREE_ITER_SLOTS);
180         while (1) {
181                 struct bkey_s_c k;
182                 unsigned bytes, sectors, offset_into_extent;
183                 enum btree_id data_btree = BTREE_ID_extents;
184
185                 /*
186                  * read_extent -> io_time_reset may cause a transaction restart
187                  * without returning an error, we need to check for that here:
188                  */
189                 ret = bch2_trans_relock(trans);
190                 if (ret)
191                         break;
192
193                 bch2_btree_iter_set_pos(&iter,
194                                 POS(inum.inum, rbio->bio.bi_iter.bi_sector));
195
196                 k = bch2_btree_iter_peek_slot(&iter);
197                 ret = bkey_err(k);
198                 if (ret)
199                         break;
200
201                 offset_into_extent = iter.pos.offset -
202                         bkey_start_offset(k.k);
203                 sectors = k.k->size - offset_into_extent;
204
205                 bch2_bkey_buf_reassemble(&sk, c, k);
206
207                 ret = bch2_read_indirect_extent(trans, &data_btree,
208                                         &offset_into_extent, &sk);
209                 if (ret)
210                         break;
211
212                 k = bkey_i_to_s_c(sk.k);
213
214                 sectors = min(sectors, k.k->size - offset_into_extent);
215
216                 if (readpages_iter) {
217                         ret = readpage_bio_extend(trans, readpages_iter, &rbio->bio, sectors,
218                                                   extent_partial_reads_expensive(k));
219                         if (ret)
220                                 break;
221                 }
222
223                 bytes = min(sectors, bio_sectors(&rbio->bio)) << 9;
224                 swap(rbio->bio.bi_iter.bi_size, bytes);
225
226                 if (rbio->bio.bi_iter.bi_size == bytes)
227                         flags |= BCH_READ_LAST_FRAGMENT;
228
229                 bch2_bio_page_state_set(&rbio->bio, k);
230
231                 bch2_read_extent(trans, rbio, iter.pos,
232                                  data_btree, k, offset_into_extent, flags);
233
234                 if (flags & BCH_READ_LAST_FRAGMENT)
235                         break;
236
237                 swap(rbio->bio.bi_iter.bi_size, bytes);
238                 bio_advance(&rbio->bio, bytes);
239
240                 ret = btree_trans_too_many_iters(trans);
241                 if (ret)
242                         break;
243         }
244 err:
245         bch2_trans_iter_exit(trans, &iter);
246
247         if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
248                 goto retry;
249
250         if (ret) {
251                 bch_err_inum_offset_ratelimited(c,
252                                 iter.pos.inode,
253                                 iter.pos.offset << 9,
254                                 "read error %i from btree lookup", ret);
255                 rbio->bio.bi_status = BLK_STS_IOERR;
256                 bio_endio(&rbio->bio);
257         }
258
259         bch2_bkey_buf_exit(&sk, c);
260 }
261
262 void bch2_readahead(struct readahead_control *ractl)
263 {
264         struct bch_inode_info *inode = to_bch_ei(ractl->mapping->host);
265         struct bch_fs *c = inode->v.i_sb->s_fs_info;
266         struct bch_io_opts opts;
267         struct btree_trans *trans = bch2_trans_get(c);
268         struct folio *folio;
269         struct readpages_iter readpages_iter;
270
271         bch2_inode_opts_get(&opts, c, &inode->ei_inode);
272
273         int ret = readpages_iter_init(&readpages_iter, ractl);
274         if (ret)
275                 return;
276
277         bch2_pagecache_add_get(inode);
278
279         while ((folio = readpage_iter_peek(&readpages_iter))) {
280                 unsigned n = min_t(unsigned,
281                                    readpages_iter.folios.nr -
282                                    readpages_iter.idx,
283                                    BIO_MAX_VECS);
284                 struct bch_read_bio *rbio =
285                         rbio_init(bio_alloc_bioset(NULL, n, REQ_OP_READ,
286                                                    GFP_KERNEL, &c->bio_read),
287                                   opts);
288
289                 readpage_iter_advance(&readpages_iter);
290
291                 rbio->bio.bi_iter.bi_sector = folio_sector(folio);
292                 rbio->bio.bi_end_io = bch2_readpages_end_io;
293                 BUG_ON(!bio_add_folio(&rbio->bio, folio, folio_size(folio), 0));
294
295                 bchfs_read(trans, rbio, inode_inum(inode),
296                            &readpages_iter);
297                 bch2_trans_unlock(trans);
298         }
299
300         bch2_pagecache_add_put(inode);
301
302         bch2_trans_put(trans);
303         darray_exit(&readpages_iter.folios);
304 }
305
306 static void bch2_read_single_folio_end_io(struct bio *bio)
307 {
308         complete(bio->bi_private);
309 }
310
311 int bch2_read_single_folio(struct folio *folio, struct address_space *mapping)
312 {
313         struct bch_inode_info *inode = to_bch_ei(mapping->host);
314         struct bch_fs *c = inode->v.i_sb->s_fs_info;
315         struct bch_read_bio *rbio;
316         struct bch_io_opts opts;
317         int ret;
318         DECLARE_COMPLETION_ONSTACK(done);
319
320         if (!bch2_folio_create(folio, GFP_KERNEL))
321                 return -ENOMEM;
322
323         bch2_inode_opts_get(&opts, c, &inode->ei_inode);
324
325         rbio = rbio_init(bio_alloc_bioset(NULL, 1, REQ_OP_READ, GFP_KERNEL, &c->bio_read),
326                          opts);
327         rbio->bio.bi_private = &done;
328         rbio->bio.bi_end_io = bch2_read_single_folio_end_io;
329
330         rbio->bio.bi_opf = REQ_OP_READ|REQ_SYNC;
331         rbio->bio.bi_iter.bi_sector = folio_sector(folio);
332         BUG_ON(!bio_add_folio(&rbio->bio, folio, folio_size(folio), 0));
333
334         bch2_trans_run(c, (bchfs_read(trans, rbio, inode_inum(inode), NULL), 0));
335         wait_for_completion(&done);
336
337         ret = blk_status_to_errno(rbio->bio.bi_status);
338         bio_put(&rbio->bio);
339
340         if (ret < 0)
341                 return ret;
342
343         folio_mark_uptodate(folio);
344         return 0;
345 }
346
347 int bch2_read_folio(struct file *file, struct folio *folio)
348 {
349         int ret;
350
351         ret = bch2_read_single_folio(folio, folio->mapping);
352         folio_unlock(folio);
353         return bch2_err_class(ret);
354 }
355
356 /* writepages: */
357
358 struct bch_writepage_io {
359         struct bch_inode_info           *inode;
360
361         /* must be last: */
362         struct bch_write_op             op;
363 };
364
365 struct bch_writepage_state {
366         struct bch_writepage_io *io;
367         struct bch_io_opts      opts;
368         struct bch_folio_sector *tmp;
369         unsigned                tmp_sectors;
370 };
371
372 static inline struct bch_writepage_state bch_writepage_state_init(struct bch_fs *c,
373                                                                   struct bch_inode_info *inode)
374 {
375         struct bch_writepage_state ret = { 0 };
376
377         bch2_inode_opts_get(&ret.opts, c, &inode->ei_inode);
378         return ret;
379 }
380
381 /*
382  * Determine when a writepage io is full. We have to limit writepage bios to a
383  * single page per bvec (i.e. 1MB with 4k pages) because that is the limit to
384  * what the bounce path in bch2_write_extent() can handle. In theory we could
385  * loosen this restriction for non-bounce I/O, but we don't have that context
386  * here. Ideally, we can up this limit and make it configurable in the future
387  * when the bounce path can be enhanced to accommodate larger source bios.
388  */
389 static inline bool bch_io_full(struct bch_writepage_io *io, unsigned len)
390 {
391         struct bio *bio = &io->op.wbio.bio;
392         return bio_full(bio, len) ||
393                 (bio->bi_iter.bi_size + len > BIO_MAX_VECS * PAGE_SIZE);
394 }
395
396 static void bch2_writepage_io_done(struct bch_write_op *op)
397 {
398         struct bch_writepage_io *io =
399                 container_of(op, struct bch_writepage_io, op);
400         struct bch_fs *c = io->op.c;
401         struct bio *bio = &io->op.wbio.bio;
402         struct folio_iter fi;
403         unsigned i;
404
405         if (io->op.error) {
406                 set_bit(EI_INODE_ERROR, &io->inode->ei_flags);
407
408                 bio_for_each_folio_all(fi, bio) {
409                         struct bch_folio *s;
410
411                         folio_set_error(fi.folio);
412                         mapping_set_error(fi.folio->mapping, -EIO);
413
414                         s = __bch2_folio(fi.folio);
415                         spin_lock(&s->lock);
416                         for (i = 0; i < folio_sectors(fi.folio); i++)
417                                 s->s[i].nr_replicas = 0;
418                         spin_unlock(&s->lock);
419                 }
420         }
421
422         if (io->op.flags & BCH_WRITE_WROTE_DATA_INLINE) {
423                 bio_for_each_folio_all(fi, bio) {
424                         struct bch_folio *s;
425
426                         s = __bch2_folio(fi.folio);
427                         spin_lock(&s->lock);
428                         for (i = 0; i < folio_sectors(fi.folio); i++)
429                                 s->s[i].nr_replicas = 0;
430                         spin_unlock(&s->lock);
431                 }
432         }
433
434         /*
435          * racing with fallocate can cause us to add fewer sectors than
436          * expected - but we shouldn't add more sectors than expected:
437          */
438         WARN_ON_ONCE(io->op.i_sectors_delta > 0);
439
440         /*
441          * (error (due to going RO) halfway through a page can screw that up
442          * slightly)
443          * XXX wtf?
444            BUG_ON(io->op.op.i_sectors_delta >= PAGE_SECTORS);
445          */
446
447         /*
448          * PageWriteback is effectively our ref on the inode - fixup i_blocks
449          * before calling end_page_writeback:
450          */
451         bch2_i_sectors_acct(c, io->inode, NULL, io->op.i_sectors_delta);
452
453         bio_for_each_folio_all(fi, bio) {
454                 struct bch_folio *s = __bch2_folio(fi.folio);
455
456                 if (atomic_dec_and_test(&s->write_count))
457                         folio_end_writeback(fi.folio);
458         }
459
460         bio_put(&io->op.wbio.bio);
461 }
462
463 static void bch2_writepage_do_io(struct bch_writepage_state *w)
464 {
465         struct bch_writepage_io *io = w->io;
466
467         w->io = NULL;
468         closure_call(&io->op.cl, bch2_write, NULL, NULL);
469 }
470
471 /*
472  * Get a bch_writepage_io and add @page to it - appending to an existing one if
473  * possible, else allocating a new one:
474  */
475 static void bch2_writepage_io_alloc(struct bch_fs *c,
476                                     struct writeback_control *wbc,
477                                     struct bch_writepage_state *w,
478                                     struct bch_inode_info *inode,
479                                     u64 sector,
480                                     unsigned nr_replicas)
481 {
482         struct bch_write_op *op;
483
484         w->io = container_of(bio_alloc_bioset(NULL, BIO_MAX_VECS,
485                                               REQ_OP_WRITE,
486                                               GFP_KERNEL,
487                                               &c->writepage_bioset),
488                              struct bch_writepage_io, op.wbio.bio);
489
490         w->io->inode            = inode;
491         op                      = &w->io->op;
492         bch2_write_op_init(op, c, w->opts);
493         op->target              = w->opts.foreground_target;
494         op->nr_replicas         = nr_replicas;
495         op->res.nr_replicas     = nr_replicas;
496         op->write_point         = writepoint_hashed(inode->ei_last_dirtied);
497         op->subvol              = inode->ei_subvol;
498         op->pos                 = POS(inode->v.i_ino, sector);
499         op->end_io              = bch2_writepage_io_done;
500         op->devs_need_flush     = &inode->ei_devs_need_flush;
501         op->wbio.bio.bi_iter.bi_sector = sector;
502         op->wbio.bio.bi_opf     = wbc_to_write_flags(wbc);
503 }
504
505 static int __bch2_writepage(struct folio *folio,
506                             struct writeback_control *wbc,
507                             void *data)
508 {
509         struct bch_inode_info *inode = to_bch_ei(folio->mapping->host);
510         struct bch_fs *c = inode->v.i_sb->s_fs_info;
511         struct bch_writepage_state *w = data;
512         struct bch_folio *s;
513         unsigned i, offset, f_sectors, nr_replicas_this_write = U32_MAX;
514         loff_t i_size = i_size_read(&inode->v);
515         int ret;
516
517         EBUG_ON(!folio_test_uptodate(folio));
518
519         /* Is the folio fully inside i_size? */
520         if (folio_end_pos(folio) <= i_size)
521                 goto do_io;
522
523         /* Is the folio fully outside i_size? (truncate in progress) */
524         if (folio_pos(folio) >= i_size) {
525                 folio_unlock(folio);
526                 return 0;
527         }
528
529         /*
530          * The folio straddles i_size.  It must be zeroed out on each and every
531          * writepage invocation because it may be mmapped.  "A file is mapped
532          * in multiples of the folio size.  For a file that is not a multiple of
533          * the  folio size, the remaining memory is zeroed when mapped, and
534          * writes to that region are not written out to the file."
535          */
536         folio_zero_segment(folio,
537                            i_size - folio_pos(folio),
538                            folio_size(folio));
539 do_io:
540         f_sectors = folio_sectors(folio);
541         s = bch2_folio(folio);
542
543         if (f_sectors > w->tmp_sectors) {
544                 kfree(w->tmp);
545                 w->tmp = kcalloc(f_sectors, sizeof(struct bch_folio_sector), __GFP_NOFAIL);
546                 w->tmp_sectors = f_sectors;
547         }
548
549         /*
550          * Things get really hairy with errors during writeback:
551          */
552         ret = bch2_get_folio_disk_reservation(c, inode, folio, false);
553         BUG_ON(ret);
554
555         /* Before unlocking the page, get copy of reservations: */
556         spin_lock(&s->lock);
557         memcpy(w->tmp, s->s, sizeof(struct bch_folio_sector) * f_sectors);
558
559         for (i = 0; i < f_sectors; i++) {
560                 if (s->s[i].state < SECTOR_dirty)
561                         continue;
562
563                 nr_replicas_this_write =
564                         min_t(unsigned, nr_replicas_this_write,
565                               s->s[i].nr_replicas +
566                               s->s[i].replicas_reserved);
567         }
568
569         for (i = 0; i < f_sectors; i++) {
570                 if (s->s[i].state < SECTOR_dirty)
571                         continue;
572
573                 s->s[i].nr_replicas = w->opts.compression
574                         ? 0 : nr_replicas_this_write;
575
576                 s->s[i].replicas_reserved = 0;
577                 bch2_folio_sector_set(folio, s, i, SECTOR_allocated);
578         }
579         spin_unlock(&s->lock);
580
581         BUG_ON(atomic_read(&s->write_count));
582         atomic_set(&s->write_count, 1);
583
584         BUG_ON(folio_test_writeback(folio));
585         folio_start_writeback(folio);
586
587         folio_unlock(folio);
588
589         offset = 0;
590         while (1) {
591                 unsigned sectors = 0, dirty_sectors = 0, reserved_sectors = 0;
592                 u64 sector;
593
594                 while (offset < f_sectors &&
595                        w->tmp[offset].state < SECTOR_dirty)
596                         offset++;
597
598                 if (offset == f_sectors)
599                         break;
600
601                 while (offset + sectors < f_sectors &&
602                        w->tmp[offset + sectors].state >= SECTOR_dirty) {
603                         reserved_sectors += w->tmp[offset + sectors].replicas_reserved;
604                         dirty_sectors += w->tmp[offset + sectors].state == SECTOR_dirty;
605                         sectors++;
606                 }
607                 BUG_ON(!sectors);
608
609                 sector = folio_sector(folio) + offset;
610
611                 if (w->io &&
612                     (w->io->op.res.nr_replicas != nr_replicas_this_write ||
613                      bch_io_full(w->io, sectors << 9) ||
614                      bio_end_sector(&w->io->op.wbio.bio) != sector))
615                         bch2_writepage_do_io(w);
616
617                 if (!w->io)
618                         bch2_writepage_io_alloc(c, wbc, w, inode, sector,
619                                                 nr_replicas_this_write);
620
621                 atomic_inc(&s->write_count);
622
623                 BUG_ON(inode != w->io->inode);
624                 BUG_ON(!bio_add_folio(&w->io->op.wbio.bio, folio,
625                                      sectors << 9, offset << 9));
626
627                 /* Check for writing past i_size: */
628                 WARN_ONCE((bio_end_sector(&w->io->op.wbio.bio) << 9) >
629                           round_up(i_size, block_bytes(c)) &&
630                           !test_bit(BCH_FS_emergency_ro, &c->flags),
631                           "writing past i_size: %llu > %llu (unrounded %llu)\n",
632                           bio_end_sector(&w->io->op.wbio.bio) << 9,
633                           round_up(i_size, block_bytes(c)),
634                           i_size);
635
636                 w->io->op.res.sectors += reserved_sectors;
637                 w->io->op.i_sectors_delta -= dirty_sectors;
638                 w->io->op.new_i_size = i_size;
639
640                 offset += sectors;
641         }
642
643         if (atomic_dec_and_test(&s->write_count))
644                 folio_end_writeback(folio);
645
646         return 0;
647 }
648
649 int bch2_writepages(struct address_space *mapping, struct writeback_control *wbc)
650 {
651         struct bch_fs *c = mapping->host->i_sb->s_fs_info;
652         struct bch_writepage_state w =
653                 bch_writepage_state_init(c, to_bch_ei(mapping->host));
654         struct blk_plug plug;
655         int ret;
656
657         blk_start_plug(&plug);
658         ret = write_cache_pages(mapping, wbc, __bch2_writepage, &w);
659         if (w.io)
660                 bch2_writepage_do_io(&w);
661         blk_finish_plug(&plug);
662         kfree(w.tmp);
663         return bch2_err_class(ret);
664 }
665
666 /* buffered writes: */
667
668 int bch2_write_begin(struct file *file, struct address_space *mapping,
669                      loff_t pos, unsigned len,
670                      struct page **pagep, void **fsdata)
671 {
672         struct bch_inode_info *inode = to_bch_ei(mapping->host);
673         struct bch_fs *c = inode->v.i_sb->s_fs_info;
674         struct bch2_folio_reservation *res;
675         struct folio *folio;
676         unsigned offset;
677         int ret = -ENOMEM;
678
679         res = kmalloc(sizeof(*res), GFP_KERNEL);
680         if (!res)
681                 return -ENOMEM;
682
683         bch2_folio_reservation_init(c, inode, res);
684         *fsdata = res;
685
686         bch2_pagecache_add_get(inode);
687
688         folio = __filemap_get_folio(mapping, pos >> PAGE_SHIFT,
689                                 FGP_LOCK|FGP_WRITE|FGP_CREAT|FGP_STABLE,
690                                 mapping_gfp_mask(mapping));
691         if (IS_ERR_OR_NULL(folio))
692                 goto err_unlock;
693
694         offset = pos - folio_pos(folio);
695         len = min_t(size_t, len, folio_end_pos(folio) - pos);
696
697         if (folio_test_uptodate(folio))
698                 goto out;
699
700         /* If we're writing entire folio, don't need to read it in first: */
701         if (!offset && len == folio_size(folio))
702                 goto out;
703
704         if (!offset && pos + len >= inode->v.i_size) {
705                 folio_zero_segment(folio, len, folio_size(folio));
706                 flush_dcache_folio(folio);
707                 goto out;
708         }
709
710         if (folio_pos(folio) >= inode->v.i_size) {
711                 folio_zero_segments(folio, 0, offset, offset + len, folio_size(folio));
712                 flush_dcache_folio(folio);
713                 goto out;
714         }
715 readpage:
716         ret = bch2_read_single_folio(folio, mapping);
717         if (ret)
718                 goto err;
719 out:
720         ret = bch2_folio_set(c, inode_inum(inode), &folio, 1);
721         if (ret)
722                 goto err;
723
724         ret = bch2_folio_reservation_get(c, inode, folio, res, offset, len);
725         if (ret) {
726                 if (!folio_test_uptodate(folio)) {
727                         /*
728                          * If the folio hasn't been read in, we won't know if we
729                          * actually need a reservation - we don't actually need
730                          * to read here, we just need to check if the folio is
731                          * fully backed by uncompressed data:
732                          */
733                         goto readpage;
734                 }
735
736                 goto err;
737         }
738
739         *pagep = &folio->page;
740         return 0;
741 err:
742         folio_unlock(folio);
743         folio_put(folio);
744         *pagep = NULL;
745 err_unlock:
746         bch2_pagecache_add_put(inode);
747         kfree(res);
748         *fsdata = NULL;
749         return bch2_err_class(ret);
750 }
751
752 int bch2_write_end(struct file *file, struct address_space *mapping,
753                    loff_t pos, unsigned len, unsigned copied,
754                    struct page *page, void *fsdata)
755 {
756         struct bch_inode_info *inode = to_bch_ei(mapping->host);
757         struct bch_fs *c = inode->v.i_sb->s_fs_info;
758         struct bch2_folio_reservation *res = fsdata;
759         struct folio *folio = page_folio(page);
760         unsigned offset = pos - folio_pos(folio);
761
762         lockdep_assert_held(&inode->v.i_rwsem);
763         BUG_ON(offset + copied > folio_size(folio));
764
765         if (unlikely(copied < len && !folio_test_uptodate(folio))) {
766                 /*
767                  * The folio needs to be read in, but that would destroy
768                  * our partial write - simplest thing is to just force
769                  * userspace to redo the write:
770                  */
771                 folio_zero_range(folio, 0, folio_size(folio));
772                 flush_dcache_folio(folio);
773                 copied = 0;
774         }
775
776         spin_lock(&inode->v.i_lock);
777         if (pos + copied > inode->v.i_size)
778                 i_size_write(&inode->v, pos + copied);
779         spin_unlock(&inode->v.i_lock);
780
781         if (copied) {
782                 if (!folio_test_uptodate(folio))
783                         folio_mark_uptodate(folio);
784
785                 bch2_set_folio_dirty(c, inode, folio, res, offset, copied);
786
787                 inode->ei_last_dirtied = (unsigned long) current;
788         }
789
790         folio_unlock(folio);
791         folio_put(folio);
792         bch2_pagecache_add_put(inode);
793
794         bch2_folio_reservation_put(c, inode, res);
795         kfree(res);
796
797         return copied;
798 }
799
800 static noinline void folios_trunc(folios *fs, struct folio **fi)
801 {
802         while (fs->data + fs->nr > fi) {
803                 struct folio *f = darray_pop(fs);
804
805                 folio_unlock(f);
806                 folio_put(f);
807         }
808 }
809
810 static int __bch2_buffered_write(struct bch_inode_info *inode,
811                                  struct address_space *mapping,
812                                  struct iov_iter *iter,
813                                  loff_t pos, unsigned len,
814                                  bool inode_locked)
815 {
816         struct bch_fs *c = inode->v.i_sb->s_fs_info;
817         struct bch2_folio_reservation res;
818         folios fs;
819         struct folio *f;
820         unsigned copied = 0, f_offset, f_copied;
821         u64 end = pos + len, f_pos, f_len;
822         loff_t last_folio_pos = inode->v.i_size;
823         int ret = 0;
824
825         BUG_ON(!len);
826
827         bch2_folio_reservation_init(c, inode, &res);
828         darray_init(&fs);
829
830         ret = bch2_filemap_get_contig_folios_d(mapping, pos, end,
831                                    FGP_LOCK|FGP_WRITE|FGP_STABLE|FGP_CREAT,
832                                    mapping_gfp_mask(mapping),
833                                    &fs);
834         if (ret)
835                 goto out;
836
837         BUG_ON(!fs.nr);
838
839         /*
840          * If we're not using the inode lock, we need to lock all the folios for
841          * atomiticity of writes vs. other writes:
842          */
843         if (!inode_locked && folio_end_pos(darray_last(fs)) < end) {
844                 ret = -BCH_ERR_need_inode_lock;
845                 goto out;
846         }
847
848         f = darray_first(fs);
849         if (pos != folio_pos(f) && !folio_test_uptodate(f)) {
850                 ret = bch2_read_single_folio(f, mapping);
851                 if (ret)
852                         goto out;
853         }
854
855         f = darray_last(fs);
856         end = min(end, folio_end_pos(f));
857         last_folio_pos = folio_pos(f);
858         if (end != folio_end_pos(f) && !folio_test_uptodate(f)) {
859                 if (end >= inode->v.i_size) {
860                         folio_zero_range(f, 0, folio_size(f));
861                 } else {
862                         ret = bch2_read_single_folio(f, mapping);
863                         if (ret)
864                                 goto out;
865                 }
866         }
867
868         ret = bch2_folio_set(c, inode_inum(inode), fs.data, fs.nr);
869         if (ret)
870                 goto out;
871
872         f_pos = pos;
873         f_offset = pos - folio_pos(darray_first(fs));
874         darray_for_each(fs, fi) {
875                 f = *fi;
876                 f_len = min(end, folio_end_pos(f)) - f_pos;
877
878                 /*
879                  * XXX: per POSIX and fstests generic/275, on -ENOSPC we're
880                  * supposed to write as much as we have disk space for.
881                  *
882                  * On failure here we should still write out a partial page if
883                  * we aren't completely out of disk space - we don't do that
884                  * yet:
885                  */
886                 ret = bch2_folio_reservation_get(c, inode, f, &res, f_offset, f_len);
887                 if (unlikely(ret)) {
888                         folios_trunc(&fs, fi);
889                         if (!fs.nr)
890                                 goto out;
891
892                         end = min(end, folio_end_pos(darray_last(fs)));
893                         break;
894                 }
895
896                 f_pos = folio_end_pos(f);
897                 f_offset = 0;
898         }
899
900         if (mapping_writably_mapped(mapping))
901                 darray_for_each(fs, fi)
902                         flush_dcache_folio(*fi);
903
904         f_pos = pos;
905         f_offset = pos - folio_pos(darray_first(fs));
906         darray_for_each(fs, fi) {
907                 f = *fi;
908                 f_len = min(end, folio_end_pos(f)) - f_pos;
909                 f_copied = copy_page_from_iter_atomic(&f->page, f_offset, f_len, iter);
910                 if (!f_copied) {
911                         folios_trunc(&fs, fi);
912                         break;
913                 }
914
915                 if (!folio_test_uptodate(f) &&
916                     f_copied != folio_size(f) &&
917                     pos + copied + f_copied < inode->v.i_size) {
918                         iov_iter_revert(iter, f_copied);
919                         folio_zero_range(f, 0, folio_size(f));
920                         folios_trunc(&fs, fi);
921                         break;
922                 }
923
924                 flush_dcache_folio(f);
925                 copied += f_copied;
926
927                 if (f_copied != f_len) {
928                         folios_trunc(&fs, fi + 1);
929                         break;
930                 }
931
932                 f_pos = folio_end_pos(f);
933                 f_offset = 0;
934         }
935
936         if (!copied)
937                 goto out;
938
939         end = pos + copied;
940
941         spin_lock(&inode->v.i_lock);
942         if (end > inode->v.i_size) {
943                 BUG_ON(!inode_locked);
944                 i_size_write(&inode->v, end);
945         }
946         spin_unlock(&inode->v.i_lock);
947
948         f_pos = pos;
949         f_offset = pos - folio_pos(darray_first(fs));
950         darray_for_each(fs, fi) {
951                 f = *fi;
952                 f_len = min(end, folio_end_pos(f)) - f_pos;
953
954                 if (!folio_test_uptodate(f))
955                         folio_mark_uptodate(f);
956
957                 bch2_set_folio_dirty(c, inode, f, &res, f_offset, f_len);
958
959                 f_pos = folio_end_pos(f);
960                 f_offset = 0;
961         }
962
963         inode->ei_last_dirtied = (unsigned long) current;
964 out:
965         darray_for_each(fs, fi) {
966                 folio_unlock(*fi);
967                 folio_put(*fi);
968         }
969
970         /*
971          * If the last folio added to the mapping starts beyond current EOF, we
972          * performed a short write but left around at least one post-EOF folio.
973          * Clean up the mapping before we return.
974          */
975         if (last_folio_pos >= inode->v.i_size)
976                 truncate_pagecache(&inode->v, inode->v.i_size);
977
978         darray_exit(&fs);
979         bch2_folio_reservation_put(c, inode, &res);
980
981         return copied ?: ret;
982 }
983
984 static ssize_t bch2_buffered_write(struct kiocb *iocb, struct iov_iter *iter)
985 {
986         struct file *file = iocb->ki_filp;
987         struct address_space *mapping = file->f_mapping;
988         struct bch_inode_info *inode = file_bch_inode(file);
989         loff_t pos;
990         bool inode_locked = false;
991         ssize_t written = 0, written2 = 0, ret = 0;
992
993         /*
994          * We don't take the inode lock unless i_size will be changing. Folio
995          * locks provide exclusion with other writes, and the pagecache add lock
996          * provides exclusion with truncate and hole punching.
997          *
998          * There is one nasty corner case where atomicity would be broken
999          * without great care: when copying data from userspace to the page
1000          * cache, we do that with faults disable - a page fault would recurse
1001          * back into the filesystem, taking filesystem locks again, and
1002          * deadlock; so it's done with faults disabled, and we fault in the user
1003          * buffer when we aren't holding locks.
1004          *
1005          * If we do part of the write, but we then race and in the userspace
1006          * buffer have been evicted and are no longer resident, then we have to
1007          * drop our folio locks to re-fault them in, breaking write atomicity.
1008          *
1009          * To fix this, we restart the write from the start, if we weren't
1010          * holding the inode lock.
1011          *
1012          * There is another wrinkle after that; if we restart the write from the
1013          * start, and then get an unrecoverable error, we _cannot_ claim to
1014          * userspace that we did not write data we actually did - so we must
1015          * track (written2) the most we ever wrote.
1016          */
1017
1018         if ((iocb->ki_flags & IOCB_APPEND) ||
1019             (iocb->ki_pos + iov_iter_count(iter) > i_size_read(&inode->v))) {
1020                 inode_lock(&inode->v);
1021                 inode_locked = true;
1022         }
1023
1024         ret = generic_write_checks(iocb, iter);
1025         if (ret <= 0)
1026                 goto unlock;
1027
1028         ret = file_remove_privs_flags(file, !inode_locked ? IOCB_NOWAIT : 0);
1029         if (ret) {
1030                 if (!inode_locked) {
1031                         inode_lock(&inode->v);
1032                         inode_locked = true;
1033                         ret = file_remove_privs_flags(file, 0);
1034                 }
1035                 if (ret)
1036                         goto unlock;
1037         }
1038
1039         ret = file_update_time(file);
1040         if (ret)
1041                 goto unlock;
1042
1043         pos = iocb->ki_pos;
1044
1045         bch2_pagecache_add_get(inode);
1046
1047         if (!inode_locked &&
1048             (iocb->ki_pos + iov_iter_count(iter) > i_size_read(&inode->v)))
1049                 goto get_inode_lock;
1050
1051         do {
1052                 unsigned offset = pos & (PAGE_SIZE - 1);
1053                 unsigned bytes = iov_iter_count(iter);
1054 again:
1055                 /*
1056                  * Bring in the user page that we will copy from _first_.
1057                  * Otherwise there's a nasty deadlock on copying from the
1058                  * same page as we're writing to, without it being marked
1059                  * up-to-date.
1060                  *
1061                  * Not only is this an optimisation, but it is also required
1062                  * to check that the address is actually valid, when atomic
1063                  * usercopies are used, below.
1064                  */
1065                 if (unlikely(fault_in_iov_iter_readable(iter, bytes))) {
1066                         bytes = min_t(unsigned long, iov_iter_count(iter),
1067                                       PAGE_SIZE - offset);
1068
1069                         if (unlikely(fault_in_iov_iter_readable(iter, bytes))) {
1070                                 ret = -EFAULT;
1071                                 break;
1072                         }
1073                 }
1074
1075                 if (unlikely(bytes != iov_iter_count(iter) && !inode_locked))
1076                         goto get_inode_lock;
1077
1078                 if (unlikely(fatal_signal_pending(current))) {
1079                         ret = -EINTR;
1080                         break;
1081                 }
1082
1083                 ret = __bch2_buffered_write(inode, mapping, iter, pos, bytes, inode_locked);
1084                 if (ret == -BCH_ERR_need_inode_lock)
1085                         goto get_inode_lock;
1086                 if (unlikely(ret < 0))
1087                         break;
1088
1089                 cond_resched();
1090
1091                 if (unlikely(ret == 0)) {
1092                         /*
1093                          * If we were unable to copy any data at all, we must
1094                          * fall back to a single segment length write.
1095                          *
1096                          * If we didn't fallback here, we could livelock
1097                          * because not all segments in the iov can be copied at
1098                          * once without a pagefault.
1099                          */
1100                         bytes = min_t(unsigned long, PAGE_SIZE - offset,
1101                                       iov_iter_single_seg_count(iter));
1102                         goto again;
1103                 }
1104                 pos += ret;
1105                 written += ret;
1106                 written2 = max(written, written2);
1107
1108                 if (ret != bytes && !inode_locked)
1109                         goto get_inode_lock;
1110                 ret = 0;
1111
1112                 balance_dirty_pages_ratelimited(mapping);
1113
1114                 if (0) {
1115 get_inode_lock:
1116                         bch2_pagecache_add_put(inode);
1117                         inode_lock(&inode->v);
1118                         inode_locked = true;
1119                         bch2_pagecache_add_get(inode);
1120
1121                         iov_iter_revert(iter, written);
1122                         pos -= written;
1123                         written = 0;
1124                         ret = 0;
1125                 }
1126         } while (iov_iter_count(iter));
1127         bch2_pagecache_add_put(inode);
1128 unlock:
1129         if (inode_locked)
1130                 inode_unlock(&inode->v);
1131
1132         iocb->ki_pos += written;
1133
1134         ret = max(written, written2) ?: ret;
1135         if (ret > 0)
1136                 ret = generic_write_sync(iocb, ret);
1137         return ret;
1138 }
1139
1140 ssize_t bch2_write_iter(struct kiocb *iocb, struct iov_iter *iter)
1141 {
1142         ssize_t ret = iocb->ki_flags & IOCB_DIRECT
1143                 ? bch2_direct_write(iocb, iter)
1144                 : bch2_buffered_write(iocb, iter);
1145
1146         return bch2_err_class(ret);
1147 }
1148
1149 void bch2_fs_fs_io_buffered_exit(struct bch_fs *c)
1150 {
1151         bioset_exit(&c->writepage_bioset);
1152 }
1153
1154 int bch2_fs_fs_io_buffered_init(struct bch_fs *c)
1155 {
1156         if (bioset_init(&c->writepage_bioset,
1157                         4, offsetof(struct bch_writepage_io, op.wbio.bio),
1158                         BIOSET_NEED_BVECS))
1159                 return -BCH_ERR_ENOMEM_writepage_bioset_init;
1160
1161         return 0;
1162 }
1163
1164 #endif /* NO_BCACHEFS_FS */