GNU Linux-libre 5.15.137-gnu
[releases.git] / fs / afs / write.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* handling of writes to regular files and writing back to the server
3  *
4  * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7
8 #include <linux/backing-dev.h>
9 #include <linux/slab.h>
10 #include <linux/fs.h>
11 #include <linux/pagemap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/netfs.h>
15 #include <linux/fscache.h>
16 #include "internal.h"
17
18 /*
19  * mark a page as having been made dirty and thus needing writeback
20  */
21 int afs_set_page_dirty(struct page *page)
22 {
23         _enter("");
24         return __set_page_dirty_nobuffers(page);
25 }
26
27 /*
28  * prepare to perform part of a write to a page
29  */
30 int afs_write_begin(struct file *file, struct address_space *mapping,
31                     loff_t pos, unsigned len, unsigned flags,
32                     struct page **_page, void **fsdata)
33 {
34         struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
35         struct page *page;
36         unsigned long priv;
37         unsigned f, from;
38         unsigned t, to;
39         pgoff_t index;
40         int ret;
41
42         _enter("{%llx:%llu},%llx,%x",
43                vnode->fid.vid, vnode->fid.vnode, pos, len);
44
45         /* Prefetch area to be written into the cache if we're caching this
46          * file.  We need to do this before we get a lock on the page in case
47          * there's more than one writer competing for the same cache block.
48          */
49         ret = netfs_write_begin(file, mapping, pos, len, flags, &page, fsdata,
50                                 &afs_req_ops, NULL);
51         if (ret < 0)
52                 return ret;
53
54         index = page->index;
55         from = pos - index * PAGE_SIZE;
56         to = from + len;
57
58 try_again:
59         /* See if this page is already partially written in a way that we can
60          * merge the new write with.
61          */
62         if (PagePrivate(page)) {
63                 priv = page_private(page);
64                 f = afs_page_dirty_from(page, priv);
65                 t = afs_page_dirty_to(page, priv);
66                 ASSERTCMP(f, <=, t);
67
68                 if (PageWriteback(page)) {
69                         trace_afs_page_dirty(vnode, tracepoint_string("alrdy"), page);
70                         goto flush_conflicting_write;
71                 }
72                 /* If the file is being filled locally, allow inter-write
73                  * spaces to be merged into writes.  If it's not, only write
74                  * back what the user gives us.
75                  */
76                 if (!test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags) &&
77                     (to < f || from > t))
78                         goto flush_conflicting_write;
79         }
80
81         *_page = page;
82         _leave(" = 0");
83         return 0;
84
85         /* The previous write and this write aren't adjacent or overlapping, so
86          * flush the page out.
87          */
88 flush_conflicting_write:
89         _debug("flush conflict");
90         ret = write_one_page(page);
91         if (ret < 0)
92                 goto error;
93
94         ret = lock_page_killable(page);
95         if (ret < 0)
96                 goto error;
97         goto try_again;
98
99 error:
100         put_page(page);
101         _leave(" = %d", ret);
102         return ret;
103 }
104
105 /*
106  * finalise part of a write to a page
107  */
108 int afs_write_end(struct file *file, struct address_space *mapping,
109                   loff_t pos, unsigned len, unsigned copied,
110                   struct page *page, void *fsdata)
111 {
112         struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
113         unsigned long priv;
114         unsigned int f, from = pos & (thp_size(page) - 1);
115         unsigned int t, to = from + copied;
116         loff_t i_size, maybe_i_size;
117
118         _enter("{%llx:%llu},{%lx}",
119                vnode->fid.vid, vnode->fid.vnode, page->index);
120
121         if (!PageUptodate(page)) {
122                 if (copied < len) {
123                         copied = 0;
124                         goto out;
125                 }
126
127                 SetPageUptodate(page);
128         }
129
130         if (copied == 0)
131                 goto out;
132
133         maybe_i_size = pos + copied;
134
135         i_size = i_size_read(&vnode->vfs_inode);
136         if (maybe_i_size > i_size) {
137                 write_seqlock(&vnode->cb_lock);
138                 i_size = i_size_read(&vnode->vfs_inode);
139                 if (maybe_i_size > i_size)
140                         afs_set_i_size(vnode, maybe_i_size);
141                 write_sequnlock(&vnode->cb_lock);
142         }
143
144         if (PagePrivate(page)) {
145                 priv = page_private(page);
146                 f = afs_page_dirty_from(page, priv);
147                 t = afs_page_dirty_to(page, priv);
148                 if (from < f)
149                         f = from;
150                 if (to > t)
151                         t = to;
152                 priv = afs_page_dirty(page, f, t);
153                 set_page_private(page, priv);
154                 trace_afs_page_dirty(vnode, tracepoint_string("dirty+"), page);
155         } else {
156                 priv = afs_page_dirty(page, from, to);
157                 attach_page_private(page, (void *)priv);
158                 trace_afs_page_dirty(vnode, tracepoint_string("dirty"), page);
159         }
160
161         if (set_page_dirty(page))
162                 _debug("dirtied %lx", page->index);
163
164 out:
165         unlock_page(page);
166         put_page(page);
167         return copied;
168 }
169
170 /*
171  * kill all the pages in the given range
172  */
173 static void afs_kill_pages(struct address_space *mapping,
174                            loff_t start, loff_t len)
175 {
176         struct afs_vnode *vnode = AFS_FS_I(mapping->host);
177         struct pagevec pv;
178         unsigned int loop, psize;
179
180         _enter("{%llx:%llu},%llx @%llx",
181                vnode->fid.vid, vnode->fid.vnode, len, start);
182
183         pagevec_init(&pv);
184
185         do {
186                 _debug("kill %llx @%llx", len, start);
187
188                 pv.nr = find_get_pages_contig(mapping, start / PAGE_SIZE,
189                                               PAGEVEC_SIZE, pv.pages);
190                 if (pv.nr == 0)
191                         break;
192
193                 for (loop = 0; loop < pv.nr; loop++) {
194                         struct page *page = pv.pages[loop];
195
196                         if (page->index * PAGE_SIZE >= start + len)
197                                 break;
198
199                         psize = thp_size(page);
200                         start += psize;
201                         len -= psize;
202                         ClearPageUptodate(page);
203                         end_page_writeback(page);
204                         lock_page(page);
205                         generic_error_remove_page(mapping, page);
206                         unlock_page(page);
207                 }
208
209                 __pagevec_release(&pv);
210         } while (len > 0);
211
212         _leave("");
213 }
214
215 /*
216  * Redirty all the pages in a given range.
217  */
218 static void afs_redirty_pages(struct writeback_control *wbc,
219                               struct address_space *mapping,
220                               loff_t start, loff_t len)
221 {
222         struct afs_vnode *vnode = AFS_FS_I(mapping->host);
223         struct pagevec pv;
224         unsigned int loop, psize;
225
226         _enter("{%llx:%llu},%llx @%llx",
227                vnode->fid.vid, vnode->fid.vnode, len, start);
228
229         pagevec_init(&pv);
230
231         do {
232                 _debug("redirty %llx @%llx", len, start);
233
234                 pv.nr = find_get_pages_contig(mapping, start / PAGE_SIZE,
235                                               PAGEVEC_SIZE, pv.pages);
236                 if (pv.nr == 0)
237                         break;
238
239                 for (loop = 0; loop < pv.nr; loop++) {
240                         struct page *page = pv.pages[loop];
241
242                         if (page->index * PAGE_SIZE >= start + len)
243                                 break;
244
245                         psize = thp_size(page);
246                         start += psize;
247                         len -= psize;
248                         redirty_page_for_writepage(wbc, page);
249                         end_page_writeback(page);
250                 }
251
252                 __pagevec_release(&pv);
253         } while (len > 0);
254
255         _leave("");
256 }
257
258 /*
259  * completion of write to server
260  */
261 static void afs_pages_written_back(struct afs_vnode *vnode, loff_t start, unsigned int len)
262 {
263         struct address_space *mapping = vnode->vfs_inode.i_mapping;
264         struct page *page;
265         pgoff_t end;
266
267         XA_STATE(xas, &mapping->i_pages, start / PAGE_SIZE);
268
269         _enter("{%llx:%llu},{%x @%llx}",
270                vnode->fid.vid, vnode->fid.vnode, len, start);
271
272         rcu_read_lock();
273
274         end = (start + len - 1) / PAGE_SIZE;
275         xas_for_each(&xas, page, end) {
276                 if (!PageWriteback(page)) {
277                         kdebug("bad %x @%llx page %lx %lx", len, start, page->index, end);
278                         ASSERT(PageWriteback(page));
279                 }
280
281                 trace_afs_page_dirty(vnode, tracepoint_string("clear"), page);
282                 detach_page_private(page);
283                 page_endio(page, true, 0);
284         }
285
286         rcu_read_unlock();
287
288         afs_prune_wb_keys(vnode);
289         _leave("");
290 }
291
292 /*
293  * Find a key to use for the writeback.  We cached the keys used to author the
294  * writes on the vnode.  *_wbk will contain the last writeback key used or NULL
295  * and we need to start from there if it's set.
296  */
297 static int afs_get_writeback_key(struct afs_vnode *vnode,
298                                  struct afs_wb_key **_wbk)
299 {
300         struct afs_wb_key *wbk = NULL;
301         struct list_head *p;
302         int ret = -ENOKEY, ret2;
303
304         spin_lock(&vnode->wb_lock);
305         if (*_wbk)
306                 p = (*_wbk)->vnode_link.next;
307         else
308                 p = vnode->wb_keys.next;
309
310         while (p != &vnode->wb_keys) {
311                 wbk = list_entry(p, struct afs_wb_key, vnode_link);
312                 _debug("wbk %u", key_serial(wbk->key));
313                 ret2 = key_validate(wbk->key);
314                 if (ret2 == 0) {
315                         refcount_inc(&wbk->usage);
316                         _debug("USE WB KEY %u", key_serial(wbk->key));
317                         break;
318                 }
319
320                 wbk = NULL;
321                 if (ret == -ENOKEY)
322                         ret = ret2;
323                 p = p->next;
324         }
325
326         spin_unlock(&vnode->wb_lock);
327         if (*_wbk)
328                 afs_put_wb_key(*_wbk);
329         *_wbk = wbk;
330         return 0;
331 }
332
333 static void afs_store_data_success(struct afs_operation *op)
334 {
335         struct afs_vnode *vnode = op->file[0].vnode;
336
337         op->ctime = op->file[0].scb.status.mtime_client;
338         afs_vnode_commit_status(op, &op->file[0]);
339         if (op->error == 0) {
340                 if (!op->store.laundering)
341                         afs_pages_written_back(vnode, op->store.pos, op->store.size);
342                 afs_stat_v(vnode, n_stores);
343                 atomic_long_add(op->store.size, &afs_v2net(vnode)->n_store_bytes);
344         }
345 }
346
347 static const struct afs_operation_ops afs_store_data_operation = {
348         .issue_afs_rpc  = afs_fs_store_data,
349         .issue_yfs_rpc  = yfs_fs_store_data,
350         .success        = afs_store_data_success,
351 };
352
353 /*
354  * write to a file
355  */
356 static int afs_store_data(struct afs_vnode *vnode, struct iov_iter *iter, loff_t pos,
357                           bool laundering)
358 {
359         struct afs_operation *op;
360         struct afs_wb_key *wbk = NULL;
361         loff_t size = iov_iter_count(iter), i_size;
362         int ret = -ENOKEY;
363
364         _enter("%s{%llx:%llu.%u},%llx,%llx",
365                vnode->volume->name,
366                vnode->fid.vid,
367                vnode->fid.vnode,
368                vnode->fid.unique,
369                size, pos);
370
371         ret = afs_get_writeback_key(vnode, &wbk);
372         if (ret) {
373                 _leave(" = %d [no keys]", ret);
374                 return ret;
375         }
376
377         op = afs_alloc_operation(wbk->key, vnode->volume);
378         if (IS_ERR(op)) {
379                 afs_put_wb_key(wbk);
380                 return -ENOMEM;
381         }
382
383         i_size = i_size_read(&vnode->vfs_inode);
384
385         afs_op_set_vnode(op, 0, vnode);
386         op->file[0].dv_delta = 1;
387         op->file[0].modification = true;
388         op->store.write_iter = iter;
389         op->store.pos = pos;
390         op->store.size = size;
391         op->store.i_size = max(pos + size, i_size);
392         op->store.laundering = laundering;
393         op->mtime = vnode->vfs_inode.i_mtime;
394         op->flags |= AFS_OPERATION_UNINTR;
395         op->ops = &afs_store_data_operation;
396
397 try_next_key:
398         afs_begin_vnode_operation(op);
399         afs_wait_for_operation(op);
400
401         switch (op->error) {
402         case -EACCES:
403         case -EPERM:
404         case -ENOKEY:
405         case -EKEYEXPIRED:
406         case -EKEYREJECTED:
407         case -EKEYREVOKED:
408                 _debug("next");
409
410                 ret = afs_get_writeback_key(vnode, &wbk);
411                 if (ret == 0) {
412                         key_put(op->key);
413                         op->key = key_get(wbk->key);
414                         goto try_next_key;
415                 }
416                 break;
417         }
418
419         afs_put_wb_key(wbk);
420         _leave(" = %d", op->error);
421         return afs_put_operation(op);
422 }
423
424 /*
425  * Extend the region to be written back to include subsequent contiguously
426  * dirty pages if possible, but don't sleep while doing so.
427  *
428  * If this page holds new content, then we can include filler zeros in the
429  * writeback.
430  */
431 static void afs_extend_writeback(struct address_space *mapping,
432                                  struct afs_vnode *vnode,
433                                  long *_count,
434                                  loff_t start,
435                                  loff_t max_len,
436                                  bool new_content,
437                                  unsigned int *_len)
438 {
439         struct pagevec pvec;
440         struct page *page;
441         unsigned long priv;
442         unsigned int psize, filler = 0;
443         unsigned int f, t;
444         loff_t len = *_len;
445         pgoff_t index = (start + len) / PAGE_SIZE;
446         bool stop = true;
447         unsigned int i;
448
449         XA_STATE(xas, &mapping->i_pages, index);
450         pagevec_init(&pvec);
451
452         do {
453                 /* Firstly, we gather up a batch of contiguous dirty pages
454                  * under the RCU read lock - but we can't clear the dirty flags
455                  * there if any of those pages are mapped.
456                  */
457                 rcu_read_lock();
458
459                 xas_for_each(&xas, page, ULONG_MAX) {
460                         stop = true;
461                         if (xas_retry(&xas, page))
462                                 continue;
463                         if (xa_is_value(page))
464                                 break;
465                         if (page->index != index)
466                                 break;
467
468                         if (!page_cache_get_speculative(page)) {
469                                 xas_reset(&xas);
470                                 continue;
471                         }
472
473                         /* Has the page moved or been split? */
474                         if (unlikely(page != xas_reload(&xas))) {
475                                 put_page(page);
476                                 break;
477                         }
478
479                         if (!trylock_page(page)) {
480                                 put_page(page);
481                                 break;
482                         }
483                         if (!PageDirty(page) || PageWriteback(page)) {
484                                 unlock_page(page);
485                                 put_page(page);
486                                 break;
487                         }
488
489                         psize = thp_size(page);
490                         priv = page_private(page);
491                         f = afs_page_dirty_from(page, priv);
492                         t = afs_page_dirty_to(page, priv);
493                         if (f != 0 && !new_content) {
494                                 unlock_page(page);
495                                 put_page(page);
496                                 break;
497                         }
498
499                         len += filler + t;
500                         filler = psize - t;
501                         if (len >= max_len || *_count <= 0)
502                                 stop = true;
503                         else if (t == psize || new_content)
504                                 stop = false;
505
506                         index += thp_nr_pages(page);
507                         if (!pagevec_add(&pvec, page))
508                                 break;
509                         if (stop)
510                                 break;
511                 }
512
513                 if (!stop)
514                         xas_pause(&xas);
515                 rcu_read_unlock();
516
517                 /* Now, if we obtained any pages, we can shift them to being
518                  * writable and mark them for caching.
519                  */
520                 if (!pagevec_count(&pvec))
521                         break;
522
523                 for (i = 0; i < pagevec_count(&pvec); i++) {
524                         page = pvec.pages[i];
525                         trace_afs_page_dirty(vnode, tracepoint_string("store+"), page);
526
527                         if (!clear_page_dirty_for_io(page))
528                                 BUG();
529                         if (test_set_page_writeback(page))
530                                 BUG();
531
532                         *_count -= thp_nr_pages(page);
533                         unlock_page(page);
534                 }
535
536                 pagevec_release(&pvec);
537                 cond_resched();
538         } while (!stop);
539
540         *_len = len;
541 }
542
543 /*
544  * Synchronously write back the locked page and any subsequent non-locked dirty
545  * pages.
546  */
547 static ssize_t afs_write_back_from_locked_page(struct address_space *mapping,
548                                                struct writeback_control *wbc,
549                                                struct page *page,
550                                                loff_t start, loff_t end)
551 {
552         struct afs_vnode *vnode = AFS_FS_I(mapping->host);
553         struct iov_iter iter;
554         unsigned long priv;
555         unsigned int offset, to, len, max_len;
556         loff_t i_size = i_size_read(&vnode->vfs_inode);
557         bool new_content = test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags);
558         long count = wbc->nr_to_write;
559         int ret;
560
561         _enter(",%lx,%llx-%llx", page->index, start, end);
562
563         if (test_set_page_writeback(page))
564                 BUG();
565
566         count -= thp_nr_pages(page);
567
568         /* Find all consecutive lockable dirty pages that have contiguous
569          * written regions, stopping when we find a page that is not
570          * immediately lockable, is not dirty or is missing, or we reach the
571          * end of the range.
572          */
573         priv = page_private(page);
574         offset = afs_page_dirty_from(page, priv);
575         to = afs_page_dirty_to(page, priv);
576         trace_afs_page_dirty(vnode, tracepoint_string("store"), page);
577
578         len = to - offset;
579         start += offset;
580         if (start < i_size) {
581                 /* Trim the write to the EOF; the extra data is ignored.  Also
582                  * put an upper limit on the size of a single storedata op.
583                  */
584                 max_len = 65536 * 4096;
585                 max_len = min_t(unsigned long long, max_len, end - start + 1);
586                 max_len = min_t(unsigned long long, max_len, i_size - start);
587
588                 if (len < max_len &&
589                     (to == thp_size(page) || new_content))
590                         afs_extend_writeback(mapping, vnode, &count,
591                                              start, max_len, new_content, &len);
592                 len = min_t(loff_t, len, max_len);
593         }
594
595         /* We now have a contiguous set of dirty pages, each with writeback
596          * set; the first page is still locked at this point, but all the rest
597          * have been unlocked.
598          */
599         unlock_page(page);
600
601         if (start < i_size) {
602                 _debug("write back %x @%llx [%llx]", len, start, i_size);
603
604                 iov_iter_xarray(&iter, WRITE, &mapping->i_pages, start, len);
605                 ret = afs_store_data(vnode, &iter, start, false);
606         } else {
607                 _debug("write discard %x @%llx [%llx]", len, start, i_size);
608
609                 /* The dirty region was entirely beyond the EOF. */
610                 afs_pages_written_back(vnode, start, len);
611                 ret = 0;
612         }
613
614         switch (ret) {
615         case 0:
616                 wbc->nr_to_write = count;
617                 ret = len;
618                 break;
619
620         default:
621                 pr_notice("kAFS: Unexpected error from FS.StoreData %d\n", ret);
622                 fallthrough;
623         case -EACCES:
624         case -EPERM:
625         case -ENOKEY:
626         case -EKEYEXPIRED:
627         case -EKEYREJECTED:
628         case -EKEYREVOKED:
629         case -ENETRESET:
630                 afs_redirty_pages(wbc, mapping, start, len);
631                 mapping_set_error(mapping, ret);
632                 break;
633
634         case -EDQUOT:
635         case -ENOSPC:
636                 afs_redirty_pages(wbc, mapping, start, len);
637                 mapping_set_error(mapping, -ENOSPC);
638                 break;
639
640         case -EROFS:
641         case -EIO:
642         case -EREMOTEIO:
643         case -EFBIG:
644         case -ENOENT:
645         case -ENOMEDIUM:
646         case -ENXIO:
647                 trace_afs_file_error(vnode, ret, afs_file_error_writeback_fail);
648                 afs_kill_pages(mapping, start, len);
649                 mapping_set_error(mapping, ret);
650                 break;
651         }
652
653         _leave(" = %d", ret);
654         return ret;
655 }
656
657 /*
658  * write a page back to the server
659  * - the caller locked the page for us
660  */
661 int afs_writepage(struct page *page, struct writeback_control *wbc)
662 {
663         ssize_t ret;
664         loff_t start;
665
666         _enter("{%lx},", page->index);
667
668         start = page->index * PAGE_SIZE;
669         ret = afs_write_back_from_locked_page(page->mapping, wbc, page,
670                                               start, LLONG_MAX - start);
671         if (ret < 0) {
672                 _leave(" = %zd", ret);
673                 return ret;
674         }
675
676         _leave(" = 0");
677         return 0;
678 }
679
680 /*
681  * write a region of pages back to the server
682  */
683 static int afs_writepages_region(struct address_space *mapping,
684                                  struct writeback_control *wbc,
685                                  loff_t start, loff_t end, loff_t *_next)
686 {
687         struct page *page;
688         ssize_t ret;
689         int n;
690
691         _enter("%llx,%llx,", start, end);
692
693         do {
694                 pgoff_t index = start / PAGE_SIZE;
695
696                 n = find_get_pages_range_tag(mapping, &index, end / PAGE_SIZE,
697                                              PAGECACHE_TAG_DIRTY, 1, &page);
698                 if (!n)
699                         break;
700
701                 start = (loff_t)page->index * PAGE_SIZE; /* May regress with THPs */
702
703                 _debug("wback %lx", page->index);
704
705                 /* At this point we hold neither the i_pages lock nor the
706                  * page lock: the page may be truncated or invalidated
707                  * (changing page->mapping to NULL), or even swizzled
708                  * back from swapper_space to tmpfs file mapping
709                  */
710                 if (wbc->sync_mode != WB_SYNC_NONE) {
711                         ret = lock_page_killable(page);
712                         if (ret < 0) {
713                                 put_page(page);
714                                 return ret;
715                         }
716                 } else {
717                         if (!trylock_page(page)) {
718                                 put_page(page);
719                                 return 0;
720                         }
721                 }
722
723                 if (page->mapping != mapping || !PageDirty(page)) {
724                         start += thp_size(page);
725                         unlock_page(page);
726                         put_page(page);
727                         continue;
728                 }
729
730                 if (PageWriteback(page)) {
731                         unlock_page(page);
732                         if (wbc->sync_mode != WB_SYNC_NONE)
733                                 wait_on_page_writeback(page);
734                         put_page(page);
735                         continue;
736                 }
737
738                 if (!clear_page_dirty_for_io(page))
739                         BUG();
740                 ret = afs_write_back_from_locked_page(mapping, wbc, page, start, end);
741                 put_page(page);
742                 if (ret < 0) {
743                         _leave(" = %zd", ret);
744                         return ret;
745                 }
746
747                 start += ret;
748
749                 cond_resched();
750         } while (wbc->nr_to_write > 0);
751
752         *_next = start;
753         _leave(" = 0 [%llx]", *_next);
754         return 0;
755 }
756
757 /*
758  * write some of the pending data back to the server
759  */
760 int afs_writepages(struct address_space *mapping,
761                    struct writeback_control *wbc)
762 {
763         struct afs_vnode *vnode = AFS_FS_I(mapping->host);
764         loff_t start, next;
765         int ret;
766
767         _enter("");
768
769         /* We have to be careful as we can end up racing with setattr()
770          * truncating the pagecache since the caller doesn't take a lock here
771          * to prevent it.
772          */
773         if (wbc->sync_mode == WB_SYNC_ALL)
774                 down_read(&vnode->validate_lock);
775         else if (!down_read_trylock(&vnode->validate_lock))
776                 return 0;
777
778         if (wbc->range_cyclic) {
779                 start = mapping->writeback_index * PAGE_SIZE;
780                 ret = afs_writepages_region(mapping, wbc, start, LLONG_MAX, &next);
781                 if (ret == 0) {
782                         mapping->writeback_index = next / PAGE_SIZE;
783                         if (start > 0 && wbc->nr_to_write > 0) {
784                                 ret = afs_writepages_region(mapping, wbc, 0,
785                                                             start, &next);
786                                 if (ret == 0)
787                                         mapping->writeback_index =
788                                                 next / PAGE_SIZE;
789                         }
790                 }
791         } else if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) {
792                 ret = afs_writepages_region(mapping, wbc, 0, LLONG_MAX, &next);
793                 if (wbc->nr_to_write > 0 && ret == 0)
794                         mapping->writeback_index = next / PAGE_SIZE;
795         } else {
796                 ret = afs_writepages_region(mapping, wbc,
797                                             wbc->range_start, wbc->range_end, &next);
798         }
799
800         up_read(&vnode->validate_lock);
801         _leave(" = %d", ret);
802         return ret;
803 }
804
805 /*
806  * write to an AFS file
807  */
808 ssize_t afs_file_write(struct kiocb *iocb, struct iov_iter *from)
809 {
810         struct afs_vnode *vnode = AFS_FS_I(file_inode(iocb->ki_filp));
811         struct afs_file *af = iocb->ki_filp->private_data;
812         ssize_t result;
813         size_t count = iov_iter_count(from);
814
815         _enter("{%llx:%llu},{%zu},",
816                vnode->fid.vid, vnode->fid.vnode, count);
817
818         if (IS_SWAPFILE(&vnode->vfs_inode)) {
819                 printk(KERN_INFO
820                        "AFS: Attempt to write to active swap file!\n");
821                 return -EBUSY;
822         }
823
824         if (!count)
825                 return 0;
826
827         result = afs_validate(vnode, af->key);
828         if (result < 0)
829                 return result;
830
831         result = generic_file_write_iter(iocb, from);
832
833         _leave(" = %zd", result);
834         return result;
835 }
836
837 /*
838  * flush any dirty pages for this process, and check for write errors.
839  * - the return status from this call provides a reliable indication of
840  *   whether any write errors occurred for this process.
841  */
842 int afs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
843 {
844         struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
845         struct afs_file *af = file->private_data;
846         int ret;
847
848         _enter("{%llx:%llu},{n=%pD},%d",
849                vnode->fid.vid, vnode->fid.vnode, file,
850                datasync);
851
852         ret = afs_validate(vnode, af->key);
853         if (ret < 0)
854                 return ret;
855
856         return file_write_and_wait_range(file, start, end);
857 }
858
859 /*
860  * notification that a previously read-only page is about to become writable
861  * - if it returns an error, the caller will deliver a bus error signal
862  */
863 vm_fault_t afs_page_mkwrite(struct vm_fault *vmf)
864 {
865         struct page *page = thp_head(vmf->page);
866         struct file *file = vmf->vma->vm_file;
867         struct inode *inode = file_inode(file);
868         struct afs_vnode *vnode = AFS_FS_I(inode);
869         struct afs_file *af = file->private_data;
870         unsigned long priv;
871         vm_fault_t ret = VM_FAULT_RETRY;
872
873         _enter("{{%llx:%llu}},{%lx}", vnode->fid.vid, vnode->fid.vnode, page->index);
874
875         afs_validate(vnode, af->key);
876
877         sb_start_pagefault(inode->i_sb);
878
879         /* Wait for the page to be written to the cache before we allow it to
880          * be modified.  We then assume the entire page will need writing back.
881          */
882 #ifdef CONFIG_AFS_FSCACHE
883         if (PageFsCache(page) &&
884             wait_on_page_fscache_killable(page) < 0)
885                 goto out;
886 #endif
887
888         if (wait_on_page_writeback_killable(page))
889                 goto out;
890
891         if (lock_page_killable(page) < 0)
892                 goto out;
893
894         /* We mustn't change page->private until writeback is complete as that
895          * details the portion of the page we need to write back and we might
896          * need to redirty the page if there's a problem.
897          */
898         if (wait_on_page_writeback_killable(page) < 0) {
899                 unlock_page(page);
900                 goto out;
901         }
902
903         priv = afs_page_dirty(page, 0, thp_size(page));
904         priv = afs_page_dirty_mmapped(priv);
905         if (PagePrivate(page)) {
906                 set_page_private(page, priv);
907                 trace_afs_page_dirty(vnode, tracepoint_string("mkwrite+"), page);
908         } else {
909                 attach_page_private(page, (void *)priv);
910                 trace_afs_page_dirty(vnode, tracepoint_string("mkwrite"), page);
911         }
912         file_update_time(file);
913
914         ret = VM_FAULT_LOCKED;
915 out:
916         sb_end_pagefault(inode->i_sb);
917         return ret;
918 }
919
920 /*
921  * Prune the keys cached for writeback.  The caller must hold vnode->wb_lock.
922  */
923 void afs_prune_wb_keys(struct afs_vnode *vnode)
924 {
925         LIST_HEAD(graveyard);
926         struct afs_wb_key *wbk, *tmp;
927
928         /* Discard unused keys */
929         spin_lock(&vnode->wb_lock);
930
931         if (!mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_WRITEBACK) &&
932             !mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_DIRTY)) {
933                 list_for_each_entry_safe(wbk, tmp, &vnode->wb_keys, vnode_link) {
934                         if (refcount_read(&wbk->usage) == 1)
935                                 list_move(&wbk->vnode_link, &graveyard);
936                 }
937         }
938
939         spin_unlock(&vnode->wb_lock);
940
941         while (!list_empty(&graveyard)) {
942                 wbk = list_entry(graveyard.next, struct afs_wb_key, vnode_link);
943                 list_del(&wbk->vnode_link);
944                 afs_put_wb_key(wbk);
945         }
946 }
947
948 /*
949  * Clean up a page during invalidation.
950  */
951 int afs_launder_page(struct page *page)
952 {
953         struct address_space *mapping = page->mapping;
954         struct afs_vnode *vnode = AFS_FS_I(mapping->host);
955         struct iov_iter iter;
956         struct bio_vec bv[1];
957         unsigned long priv;
958         unsigned int f, t;
959         int ret = 0;
960
961         _enter("{%lx}", page->index);
962
963         priv = page_private(page);
964         if (clear_page_dirty_for_io(page)) {
965                 f = 0;
966                 t = thp_size(page);
967                 if (PagePrivate(page)) {
968                         f = afs_page_dirty_from(page, priv);
969                         t = afs_page_dirty_to(page, priv);
970                 }
971
972                 bv[0].bv_page = page;
973                 bv[0].bv_offset = f;
974                 bv[0].bv_len = t - f;
975                 iov_iter_bvec(&iter, WRITE, bv, 1, bv[0].bv_len);
976
977                 trace_afs_page_dirty(vnode, tracepoint_string("launder"), page);
978                 ret = afs_store_data(vnode, &iter, page_offset(page) + f, true);
979         }
980
981         trace_afs_page_dirty(vnode, tracepoint_string("laundered"), page);
982         detach_page_private(page);
983         wait_on_page_fscache(page);
984         return ret;
985 }