GNU Linux-libre 5.10.217-gnu1
[releases.git] / fs / afs / write.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* handling of writes to regular files and writing back to the server
3  *
4  * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7
8 #include <linux/backing-dev.h>
9 #include <linux/slab.h>
10 #include <linux/fs.h>
11 #include <linux/pagemap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include "internal.h"
15
16 /*
17  * mark a page as having been made dirty and thus needing writeback
18  */
19 int afs_set_page_dirty(struct page *page)
20 {
21         _enter("");
22         return __set_page_dirty_nobuffers(page);
23 }
24
25 /*
26  * partly or wholly fill a page that's under preparation for writing
27  */
28 static int afs_fill_page(struct afs_vnode *vnode, struct key *key,
29                          loff_t pos, unsigned int len, struct page *page)
30 {
31         struct afs_read *req;
32         size_t p;
33         void *data;
34         int ret;
35
36         _enter(",,%llu", (unsigned long long)pos);
37
38         if (pos >= vnode->vfs_inode.i_size) {
39                 p = pos & ~PAGE_MASK;
40                 ASSERTCMP(p + len, <=, PAGE_SIZE);
41                 data = kmap(page);
42                 memset(data + p, 0, len);
43                 kunmap(page);
44                 return 0;
45         }
46
47         req = kzalloc(struct_size(req, array, 1), GFP_KERNEL);
48         if (!req)
49                 return -ENOMEM;
50
51         refcount_set(&req->usage, 1);
52         req->pos = pos;
53         req->len = len;
54         req->nr_pages = 1;
55         req->pages = req->array;
56         req->pages[0] = page;
57         get_page(page);
58
59         ret = afs_fetch_data(vnode, key, req);
60         afs_put_read(req);
61         if (ret < 0) {
62                 if (ret == -ENOENT) {
63                         _debug("got NOENT from server"
64                                " - marking file deleted and stale");
65                         set_bit(AFS_VNODE_DELETED, &vnode->flags);
66                         ret = -ESTALE;
67                 }
68         }
69
70         _leave(" = %d", ret);
71         return ret;
72 }
73
74 /*
75  * prepare to perform part of a write to a page
76  */
77 int afs_write_begin(struct file *file, struct address_space *mapping,
78                     loff_t pos, unsigned len, unsigned flags,
79                     struct page **_page, void **fsdata)
80 {
81         struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
82         struct page *page;
83         struct key *key = afs_file_key(file);
84         unsigned long priv;
85         unsigned f, from = pos & (PAGE_SIZE - 1);
86         unsigned t, to = from + len;
87         pgoff_t index = pos >> PAGE_SHIFT;
88         int ret;
89
90         _enter("{%llx:%llu},{%lx},%u,%u",
91                vnode->fid.vid, vnode->fid.vnode, index, from, to);
92
93         page = grab_cache_page_write_begin(mapping, index, flags);
94         if (!page)
95                 return -ENOMEM;
96
97         if (!PageUptodate(page) && len != PAGE_SIZE) {
98                 ret = afs_fill_page(vnode, key, pos & PAGE_MASK, PAGE_SIZE, page);
99                 if (ret < 0) {
100                         unlock_page(page);
101                         put_page(page);
102                         _leave(" = %d [prep]", ret);
103                         return ret;
104                 }
105                 SetPageUptodate(page);
106         }
107
108 try_again:
109         /* See if this page is already partially written in a way that we can
110          * merge the new write with.
111          */
112         t = f = 0;
113         if (PagePrivate(page)) {
114                 priv = page_private(page);
115                 f = afs_page_dirty_from(priv);
116                 t = afs_page_dirty_to(priv);
117                 ASSERTCMP(f, <=, t);
118         }
119
120         if (f != t) {
121                 if (PageWriteback(page)) {
122                         trace_afs_page_dirty(vnode, tracepoint_string("alrdy"),
123                                              page->index, priv);
124                         goto flush_conflicting_write;
125                 }
126                 /* If the file is being filled locally, allow inter-write
127                  * spaces to be merged into writes.  If it's not, only write
128                  * back what the user gives us.
129                  */
130                 if (!test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags) &&
131                     (to < f || from > t))
132                         goto flush_conflicting_write;
133         }
134
135         *_page = page;
136         _leave(" = 0");
137         return 0;
138
139         /* The previous write and this write aren't adjacent or overlapping, so
140          * flush the page out.
141          */
142 flush_conflicting_write:
143         _debug("flush conflict");
144         ret = write_one_page(page);
145         if (ret < 0)
146                 goto error;
147
148         ret = lock_page_killable(page);
149         if (ret < 0)
150                 goto error;
151         goto try_again;
152
153 error:
154         put_page(page);
155         _leave(" = %d", ret);
156         return ret;
157 }
158
159 /*
160  * finalise part of a write to a page
161  */
162 int afs_write_end(struct file *file, struct address_space *mapping,
163                   loff_t pos, unsigned len, unsigned copied,
164                   struct page *page, void *fsdata)
165 {
166         struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
167         struct key *key = afs_file_key(file);
168         unsigned long priv;
169         unsigned int f, from = pos & (PAGE_SIZE - 1);
170         unsigned int t, to = from + copied;
171         loff_t i_size, maybe_i_size;
172         int ret = 0;
173
174         _enter("{%llx:%llu},{%lx}",
175                vnode->fid.vid, vnode->fid.vnode, page->index);
176
177         if (copied == 0)
178                 goto out;
179
180         maybe_i_size = pos + copied;
181
182         i_size = i_size_read(&vnode->vfs_inode);
183         if (maybe_i_size > i_size) {
184                 write_seqlock(&vnode->cb_lock);
185                 i_size = i_size_read(&vnode->vfs_inode);
186                 if (maybe_i_size > i_size)
187                         afs_set_i_size(vnode, maybe_i_size);
188                 write_sequnlock(&vnode->cb_lock);
189         }
190
191         if (!PageUptodate(page)) {
192                 if (copied < len) {
193                         /* Try and load any missing data from the server.  The
194                          * unmarshalling routine will take care of clearing any
195                          * bits that are beyond the EOF.
196                          */
197                         ret = afs_fill_page(vnode, key, pos + copied,
198                                             len - copied, page);
199                         if (ret < 0)
200                                 goto out;
201                 }
202                 SetPageUptodate(page);
203         }
204
205         if (PagePrivate(page)) {
206                 priv = page_private(page);
207                 f = afs_page_dirty_from(priv);
208                 t = afs_page_dirty_to(priv);
209                 if (from < f)
210                         f = from;
211                 if (to > t)
212                         t = to;
213                 priv = afs_page_dirty(f, t);
214                 set_page_private(page, priv);
215                 trace_afs_page_dirty(vnode, tracepoint_string("dirty+"),
216                                      page->index, priv);
217         } else {
218                 priv = afs_page_dirty(from, to);
219                 attach_page_private(page, (void *)priv);
220                 trace_afs_page_dirty(vnode, tracepoint_string("dirty"),
221                                      page->index, priv);
222         }
223
224         set_page_dirty(page);
225         if (PageDirty(page))
226                 _debug("dirtied");
227         ret = copied;
228
229 out:
230         unlock_page(page);
231         put_page(page);
232         return ret;
233 }
234
235 /*
236  * kill all the pages in the given range
237  */
238 static void afs_kill_pages(struct address_space *mapping,
239                            pgoff_t first, pgoff_t last)
240 {
241         struct afs_vnode *vnode = AFS_FS_I(mapping->host);
242         struct pagevec pv;
243         unsigned count, loop;
244
245         _enter("{%llx:%llu},%lx-%lx",
246                vnode->fid.vid, vnode->fid.vnode, first, last);
247
248         pagevec_init(&pv);
249
250         do {
251                 _debug("kill %lx-%lx", first, last);
252
253                 count = last - first + 1;
254                 if (count > PAGEVEC_SIZE)
255                         count = PAGEVEC_SIZE;
256                 pv.nr = find_get_pages_contig(mapping, first, count, pv.pages);
257                 ASSERTCMP(pv.nr, ==, count);
258
259                 for (loop = 0; loop < count; loop++) {
260                         struct page *page = pv.pages[loop];
261                         ClearPageUptodate(page);
262                         SetPageError(page);
263                         end_page_writeback(page);
264                         if (page->index >= first)
265                                 first = page->index + 1;
266                         lock_page(page);
267                         generic_error_remove_page(mapping, page);
268                         unlock_page(page);
269                 }
270
271                 __pagevec_release(&pv);
272         } while (first <= last);
273
274         _leave("");
275 }
276
277 /*
278  * Redirty all the pages in a given range.
279  */
280 static void afs_redirty_pages(struct writeback_control *wbc,
281                               struct address_space *mapping,
282                               pgoff_t first, pgoff_t last)
283 {
284         struct afs_vnode *vnode = AFS_FS_I(mapping->host);
285         struct pagevec pv;
286         unsigned count, loop;
287
288         _enter("{%llx:%llu},%lx-%lx",
289                vnode->fid.vid, vnode->fid.vnode, first, last);
290
291         pagevec_init(&pv);
292
293         do {
294                 _debug("redirty %lx-%lx", first, last);
295
296                 count = last - first + 1;
297                 if (count > PAGEVEC_SIZE)
298                         count = PAGEVEC_SIZE;
299                 pv.nr = find_get_pages_contig(mapping, first, count, pv.pages);
300                 ASSERTCMP(pv.nr, ==, count);
301
302                 for (loop = 0; loop < count; loop++) {
303                         struct page *page = pv.pages[loop];
304
305                         redirty_page_for_writepage(wbc, page);
306                         end_page_writeback(page);
307                         if (page->index >= first)
308                                 first = page->index + 1;
309                 }
310
311                 __pagevec_release(&pv);
312         } while (first <= last);
313
314         _leave("");
315 }
316
317 /*
318  * completion of write to server
319  */
320 static void afs_pages_written_back(struct afs_vnode *vnode,
321                                    pgoff_t first, pgoff_t last)
322 {
323         struct pagevec pv;
324         unsigned long priv;
325         unsigned count, loop;
326
327         _enter("{%llx:%llu},{%lx-%lx}",
328                vnode->fid.vid, vnode->fid.vnode, first, last);
329
330         pagevec_init(&pv);
331
332         do {
333                 _debug("done %lx-%lx", first, last);
334
335                 count = last - first + 1;
336                 if (count > PAGEVEC_SIZE)
337                         count = PAGEVEC_SIZE;
338                 pv.nr = find_get_pages_contig(vnode->vfs_inode.i_mapping,
339                                               first, count, pv.pages);
340                 ASSERTCMP(pv.nr, ==, count);
341
342                 for (loop = 0; loop < count; loop++) {
343                         priv = (unsigned long)detach_page_private(pv.pages[loop]);
344                         trace_afs_page_dirty(vnode, tracepoint_string("clear"),
345                                              pv.pages[loop]->index, priv);
346                         end_page_writeback(pv.pages[loop]);
347                 }
348                 first += count;
349                 __pagevec_release(&pv);
350         } while (first <= last);
351
352         afs_prune_wb_keys(vnode);
353         _leave("");
354 }
355
356 /*
357  * Find a key to use for the writeback.  We cached the keys used to author the
358  * writes on the vnode.  *_wbk will contain the last writeback key used or NULL
359  * and we need to start from there if it's set.
360  */
361 static int afs_get_writeback_key(struct afs_vnode *vnode,
362                                  struct afs_wb_key **_wbk)
363 {
364         struct afs_wb_key *wbk = NULL;
365         struct list_head *p;
366         int ret = -ENOKEY, ret2;
367
368         spin_lock(&vnode->wb_lock);
369         if (*_wbk)
370                 p = (*_wbk)->vnode_link.next;
371         else
372                 p = vnode->wb_keys.next;
373
374         while (p != &vnode->wb_keys) {
375                 wbk = list_entry(p, struct afs_wb_key, vnode_link);
376                 _debug("wbk %u", key_serial(wbk->key));
377                 ret2 = key_validate(wbk->key);
378                 if (ret2 == 0) {
379                         refcount_inc(&wbk->usage);
380                         _debug("USE WB KEY %u", key_serial(wbk->key));
381                         break;
382                 }
383
384                 wbk = NULL;
385                 if (ret == -ENOKEY)
386                         ret = ret2;
387                 p = p->next;
388         }
389
390         spin_unlock(&vnode->wb_lock);
391         if (*_wbk)
392                 afs_put_wb_key(*_wbk);
393         *_wbk = wbk;
394         return 0;
395 }
396
397 static void afs_store_data_success(struct afs_operation *op)
398 {
399         struct afs_vnode *vnode = op->file[0].vnode;
400
401         op->ctime = op->file[0].scb.status.mtime_client;
402         afs_vnode_commit_status(op, &op->file[0]);
403         if (op->error == 0) {
404                 if (!op->store.laundering)
405                         afs_pages_written_back(vnode, op->store.first, op->store.last);
406                 afs_stat_v(vnode, n_stores);
407                 atomic_long_add((op->store.last * PAGE_SIZE + op->store.last_to) -
408                                 (op->store.first * PAGE_SIZE + op->store.first_offset),
409                                 &afs_v2net(vnode)->n_store_bytes);
410         }
411 }
412
413 static const struct afs_operation_ops afs_store_data_operation = {
414         .issue_afs_rpc  = afs_fs_store_data,
415         .issue_yfs_rpc  = yfs_fs_store_data,
416         .success        = afs_store_data_success,
417 };
418
419 /*
420  * write to a file
421  */
422 static int afs_store_data(struct address_space *mapping,
423                           pgoff_t first, pgoff_t last,
424                           unsigned offset, unsigned to, bool laundering)
425 {
426         struct afs_vnode *vnode = AFS_FS_I(mapping->host);
427         struct afs_operation *op;
428         struct afs_wb_key *wbk = NULL;
429         int ret;
430
431         _enter("%s{%llx:%llu.%u},%lx,%lx,%x,%x",
432                vnode->volume->name,
433                vnode->fid.vid,
434                vnode->fid.vnode,
435                vnode->fid.unique,
436                first, last, offset, to);
437
438         ret = afs_get_writeback_key(vnode, &wbk);
439         if (ret) {
440                 _leave(" = %d [no keys]", ret);
441                 return ret;
442         }
443
444         op = afs_alloc_operation(wbk->key, vnode->volume);
445         if (IS_ERR(op)) {
446                 afs_put_wb_key(wbk);
447                 return -ENOMEM;
448         }
449
450         afs_op_set_vnode(op, 0, vnode);
451         op->file[0].dv_delta = 1;
452         op->store.mapping = mapping;
453         op->file[0].modification = true;
454         op->store.first = first;
455         op->store.last = last;
456         op->store.first_offset = offset;
457         op->store.last_to = to;
458         op->store.laundering = laundering;
459         op->mtime = vnode->vfs_inode.i_mtime;
460         op->flags |= AFS_OPERATION_UNINTR;
461         op->ops = &afs_store_data_operation;
462
463 try_next_key:
464         afs_begin_vnode_operation(op);
465         afs_wait_for_operation(op);
466
467         switch (op->error) {
468         case -EACCES:
469         case -EPERM:
470         case -ENOKEY:
471         case -EKEYEXPIRED:
472         case -EKEYREJECTED:
473         case -EKEYREVOKED:
474                 _debug("next");
475
476                 ret = afs_get_writeback_key(vnode, &wbk);
477                 if (ret == 0) {
478                         key_put(op->key);
479                         op->key = key_get(wbk->key);
480                         goto try_next_key;
481                 }
482                 break;
483         }
484
485         afs_put_wb_key(wbk);
486         _leave(" = %d", op->error);
487         return afs_put_operation(op);
488 }
489
490 /*
491  * Synchronously write back the locked page and any subsequent non-locked dirty
492  * pages.
493  */
494 static int afs_write_back_from_locked_page(struct address_space *mapping,
495                                            struct writeback_control *wbc,
496                                            struct page *primary_page,
497                                            pgoff_t final_page)
498 {
499         struct afs_vnode *vnode = AFS_FS_I(mapping->host);
500         struct page *pages[8], *page;
501         unsigned long count, priv;
502         unsigned n, offset, to, f, t;
503         pgoff_t start, first, last;
504         loff_t i_size, end;
505         int loop, ret;
506
507         _enter(",%lx", primary_page->index);
508
509         count = 1;
510         if (test_set_page_writeback(primary_page))
511                 BUG();
512
513         /* Find all consecutive lockable dirty pages that have contiguous
514          * written regions, stopping when we find a page that is not
515          * immediately lockable, is not dirty or is missing, or we reach the
516          * end of the range.
517          */
518         start = primary_page->index;
519         priv = page_private(primary_page);
520         offset = afs_page_dirty_from(priv);
521         to = afs_page_dirty_to(priv);
522         trace_afs_page_dirty(vnode, tracepoint_string("store"),
523                              primary_page->index, priv);
524
525         WARN_ON(offset == to);
526         if (offset == to)
527                 trace_afs_page_dirty(vnode, tracepoint_string("WARN"),
528                                      primary_page->index, priv);
529
530         if (start >= final_page ||
531             (to < PAGE_SIZE && !test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags)))
532                 goto no_more;
533
534         start++;
535         do {
536                 _debug("more %lx [%lx]", start, count);
537                 n = final_page - start + 1;
538                 if (n > ARRAY_SIZE(pages))
539                         n = ARRAY_SIZE(pages);
540                 n = find_get_pages_contig(mapping, start, ARRAY_SIZE(pages), pages);
541                 _debug("fgpc %u", n);
542                 if (n == 0)
543                         goto no_more;
544                 if (pages[0]->index != start) {
545                         do {
546                                 put_page(pages[--n]);
547                         } while (n > 0);
548                         goto no_more;
549                 }
550
551                 for (loop = 0; loop < n; loop++) {
552                         page = pages[loop];
553                         if (to != PAGE_SIZE &&
554                             !test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags))
555                                 break;
556                         if (page->index > final_page)
557                                 break;
558                         if (!trylock_page(page))
559                                 break;
560                         if (!PageDirty(page) || PageWriteback(page)) {
561                                 unlock_page(page);
562                                 break;
563                         }
564
565                         priv = page_private(page);
566                         f = afs_page_dirty_from(priv);
567                         t = afs_page_dirty_to(priv);
568                         if (f != 0 &&
569                             !test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags)) {
570                                 unlock_page(page);
571                                 break;
572                         }
573                         to = t;
574
575                         trace_afs_page_dirty(vnode, tracepoint_string("store+"),
576                                              page->index, priv);
577
578                         if (!clear_page_dirty_for_io(page))
579                                 BUG();
580                         if (test_set_page_writeback(page))
581                                 BUG();
582                         unlock_page(page);
583                         put_page(page);
584                 }
585                 count += loop;
586                 if (loop < n) {
587                         for (; loop < n; loop++)
588                                 put_page(pages[loop]);
589                         goto no_more;
590                 }
591
592                 start += loop;
593         } while (start <= final_page && count < 65536);
594
595 no_more:
596         /* We now have a contiguous set of dirty pages, each with writeback
597          * set; the first page is still locked at this point, but all the rest
598          * have been unlocked.
599          */
600         unlock_page(primary_page);
601
602         first = primary_page->index;
603         last = first + count - 1;
604
605         end = (loff_t)last * PAGE_SIZE + to;
606         i_size = i_size_read(&vnode->vfs_inode);
607
608         _debug("write back %lx[%u..] to %lx[..%u]", first, offset, last, to);
609         if (end > i_size)
610                 to = i_size & ~PAGE_MASK;
611
612         ret = afs_store_data(mapping, first, last, offset, to, false);
613         switch (ret) {
614         case 0:
615                 ret = count;
616                 break;
617
618         default:
619                 pr_notice("kAFS: Unexpected error from FS.StoreData %d\n", ret);
620                 fallthrough;
621         case -EACCES:
622         case -EPERM:
623         case -ENOKEY:
624         case -EKEYEXPIRED:
625         case -EKEYREJECTED:
626         case -EKEYREVOKED:
627                 afs_redirty_pages(wbc, mapping, first, last);
628                 mapping_set_error(mapping, ret);
629                 break;
630
631         case -EDQUOT:
632         case -ENOSPC:
633                 afs_redirty_pages(wbc, mapping, first, last);
634                 mapping_set_error(mapping, -ENOSPC);
635                 break;
636
637         case -EROFS:
638         case -EIO:
639         case -EREMOTEIO:
640         case -EFBIG:
641         case -ENOENT:
642         case -ENOMEDIUM:
643         case -ENXIO:
644                 trace_afs_file_error(vnode, ret, afs_file_error_writeback_fail);
645                 afs_kill_pages(mapping, first, last);
646                 mapping_set_error(mapping, ret);
647                 break;
648         }
649
650         _leave(" = %d", ret);
651         return ret;
652 }
653
654 /*
655  * write a page back to the server
656  * - the caller locked the page for us
657  */
658 int afs_writepage(struct page *page, struct writeback_control *wbc)
659 {
660         int ret;
661
662         _enter("{%lx},", page->index);
663
664         ret = afs_write_back_from_locked_page(page->mapping, wbc, page,
665                                               wbc->range_end >> PAGE_SHIFT);
666         if (ret < 0) {
667                 _leave(" = %d", ret);
668                 return 0;
669         }
670
671         wbc->nr_to_write -= ret;
672
673         _leave(" = 0");
674         return 0;
675 }
676
677 /*
678  * write a region of pages back to the server
679  */
680 static int afs_writepages_region(struct address_space *mapping,
681                                  struct writeback_control *wbc,
682                                  pgoff_t index, pgoff_t end, pgoff_t *_next)
683 {
684         struct page *page;
685         int ret, n;
686
687         _enter(",,%lx,%lx,", index, end);
688
689         do {
690                 n = find_get_pages_range_tag(mapping, &index, end,
691                                         PAGECACHE_TAG_DIRTY, 1, &page);
692                 if (!n)
693                         break;
694
695                 _debug("wback %lx", page->index);
696
697                 /*
698                  * at this point we hold neither the i_pages lock nor the
699                  * page lock: the page may be truncated or invalidated
700                  * (changing page->mapping to NULL), or even swizzled
701                  * back from swapper_space to tmpfs file mapping
702                  */
703                 ret = lock_page_killable(page);
704                 if (ret < 0) {
705                         put_page(page);
706                         _leave(" = %d", ret);
707                         return ret;
708                 }
709
710                 if (page->mapping != mapping || !PageDirty(page)) {
711                         unlock_page(page);
712                         put_page(page);
713                         continue;
714                 }
715
716                 if (PageWriteback(page)) {
717                         unlock_page(page);
718                         if (wbc->sync_mode != WB_SYNC_NONE)
719                                 wait_on_page_writeback(page);
720                         put_page(page);
721                         continue;
722                 }
723
724                 if (!clear_page_dirty_for_io(page))
725                         BUG();
726                 ret = afs_write_back_from_locked_page(mapping, wbc, page, end);
727                 put_page(page);
728                 if (ret < 0) {
729                         _leave(" = %d", ret);
730                         return ret;
731                 }
732
733                 wbc->nr_to_write -= ret;
734
735                 cond_resched();
736         } while (index < end && wbc->nr_to_write > 0);
737
738         *_next = index;
739         _leave(" = 0 [%lx]", *_next);
740         return 0;
741 }
742
743 /*
744  * write some of the pending data back to the server
745  */
746 int afs_writepages(struct address_space *mapping,
747                    struct writeback_control *wbc)
748 {
749         struct afs_vnode *vnode = AFS_FS_I(mapping->host);
750         pgoff_t start, end, next;
751         int ret;
752
753         _enter("");
754
755         /* We have to be careful as we can end up racing with setattr()
756          * truncating the pagecache since the caller doesn't take a lock here
757          * to prevent it.
758          */
759         if (wbc->sync_mode == WB_SYNC_ALL)
760                 down_read(&vnode->validate_lock);
761         else if (!down_read_trylock(&vnode->validate_lock))
762                 return 0;
763
764         if (wbc->range_cyclic) {
765                 start = mapping->writeback_index;
766                 end = -1;
767                 ret = afs_writepages_region(mapping, wbc, start, end, &next);
768                 if (start > 0 && wbc->nr_to_write > 0 && ret == 0)
769                         ret = afs_writepages_region(mapping, wbc, 0, start,
770                                                     &next);
771                 mapping->writeback_index = next;
772         } else if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) {
773                 end = (pgoff_t)(LLONG_MAX >> PAGE_SHIFT);
774                 ret = afs_writepages_region(mapping, wbc, 0, end, &next);
775                 if (wbc->nr_to_write > 0)
776                         mapping->writeback_index = next;
777         } else {
778                 start = wbc->range_start >> PAGE_SHIFT;
779                 end = wbc->range_end >> PAGE_SHIFT;
780                 ret = afs_writepages_region(mapping, wbc, start, end, &next);
781         }
782
783         up_read(&vnode->validate_lock);
784         _leave(" = %d", ret);
785         return ret;
786 }
787
788 /*
789  * write to an AFS file
790  */
791 ssize_t afs_file_write(struct kiocb *iocb, struct iov_iter *from)
792 {
793         struct afs_vnode *vnode = AFS_FS_I(file_inode(iocb->ki_filp));
794         ssize_t result;
795         size_t count = iov_iter_count(from);
796
797         _enter("{%llx:%llu},{%zu},",
798                vnode->fid.vid, vnode->fid.vnode, count);
799
800         if (IS_SWAPFILE(&vnode->vfs_inode)) {
801                 printk(KERN_INFO
802                        "AFS: Attempt to write to active swap file!\n");
803                 return -EBUSY;
804         }
805
806         if (!count)
807                 return 0;
808
809         result = generic_file_write_iter(iocb, from);
810
811         _leave(" = %zd", result);
812         return result;
813 }
814
815 /*
816  * flush any dirty pages for this process, and check for write errors.
817  * - the return status from this call provides a reliable indication of
818  *   whether any write errors occurred for this process.
819  */
820 int afs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
821 {
822         struct inode *inode = file_inode(file);
823         struct afs_vnode *vnode = AFS_FS_I(inode);
824
825         _enter("{%llx:%llu},{n=%pD},%d",
826                vnode->fid.vid, vnode->fid.vnode, file,
827                datasync);
828
829         return file_write_and_wait_range(file, start, end);
830 }
831
832 /*
833  * notification that a previously read-only page is about to become writable
834  * - if it returns an error, the caller will deliver a bus error signal
835  */
836 vm_fault_t afs_page_mkwrite(struct vm_fault *vmf)
837 {
838         struct file *file = vmf->vma->vm_file;
839         struct inode *inode = file_inode(file);
840         struct afs_vnode *vnode = AFS_FS_I(inode);
841         unsigned long priv;
842
843         _enter("{{%llx:%llu}},{%lx}",
844                vnode->fid.vid, vnode->fid.vnode, vmf->page->index);
845
846         sb_start_pagefault(inode->i_sb);
847
848         /* Wait for the page to be written to the cache before we allow it to
849          * be modified.  We then assume the entire page will need writing back.
850          */
851 #ifdef CONFIG_AFS_FSCACHE
852         fscache_wait_on_page_write(vnode->cache, vmf->page);
853 #endif
854
855         if (PageWriteback(vmf->page) &&
856             wait_on_page_bit_killable(vmf->page, PG_writeback) < 0)
857                 return VM_FAULT_RETRY;
858
859         if (lock_page_killable(vmf->page) < 0)
860                 return VM_FAULT_RETRY;
861
862         /* We mustn't change page->private until writeback is complete as that
863          * details the portion of the page we need to write back and we might
864          * need to redirty the page if there's a problem.
865          */
866         wait_on_page_writeback(vmf->page);
867
868         priv = afs_page_dirty(0, PAGE_SIZE);
869         priv = afs_page_dirty_mmapped(priv);
870         trace_afs_page_dirty(vnode, tracepoint_string("mkwrite"),
871                              vmf->page->index, priv);
872         if (PagePrivate(vmf->page))
873                 set_page_private(vmf->page, priv);
874         else
875                 attach_page_private(vmf->page, (void *)priv);
876         file_update_time(file);
877
878         sb_end_pagefault(inode->i_sb);
879         return VM_FAULT_LOCKED;
880 }
881
882 /*
883  * Prune the keys cached for writeback.  The caller must hold vnode->wb_lock.
884  */
885 void afs_prune_wb_keys(struct afs_vnode *vnode)
886 {
887         LIST_HEAD(graveyard);
888         struct afs_wb_key *wbk, *tmp;
889
890         /* Discard unused keys */
891         spin_lock(&vnode->wb_lock);
892
893         if (!mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_WRITEBACK) &&
894             !mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_DIRTY)) {
895                 list_for_each_entry_safe(wbk, tmp, &vnode->wb_keys, vnode_link) {
896                         if (refcount_read(&wbk->usage) == 1)
897                                 list_move(&wbk->vnode_link, &graveyard);
898                 }
899         }
900
901         spin_unlock(&vnode->wb_lock);
902
903         while (!list_empty(&graveyard)) {
904                 wbk = list_entry(graveyard.next, struct afs_wb_key, vnode_link);
905                 list_del(&wbk->vnode_link);
906                 afs_put_wb_key(wbk);
907         }
908 }
909
910 /*
911  * Clean up a page during invalidation.
912  */
913 int afs_launder_page(struct page *page)
914 {
915         struct address_space *mapping = page->mapping;
916         struct afs_vnode *vnode = AFS_FS_I(mapping->host);
917         unsigned long priv;
918         unsigned int f, t;
919         int ret = 0;
920
921         _enter("{%lx}", page->index);
922
923         priv = page_private(page);
924         if (clear_page_dirty_for_io(page)) {
925                 f = 0;
926                 t = PAGE_SIZE;
927                 if (PagePrivate(page)) {
928                         f = afs_page_dirty_from(priv);
929                         t = afs_page_dirty_to(priv);
930                 }
931
932                 trace_afs_page_dirty(vnode, tracepoint_string("launder"),
933                                      page->index, priv);
934                 ret = afs_store_data(mapping, page->index, page->index, t, f, true);
935         }
936
937         priv = (unsigned long)detach_page_private(page);
938         trace_afs_page_dirty(vnode, tracepoint_string("laundered"),
939                              page->index, priv);
940
941 #ifdef CONFIG_AFS_FSCACHE
942         if (PageFsCache(page)) {
943                 fscache_wait_on_page_write(vnode->cache, page);
944                 fscache_uncache_page(vnode->cache, page);
945         }
946 #endif
947         return ret;
948 }