GNU Linux-libre 5.4.257-gnu1
[releases.git] / fs / afs / rxrpc.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Maintain an RxRPC server socket to do AFS communications through
3  *
4  * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7
8 #include <linux/slab.h>
9 #include <linux/sched/signal.h>
10
11 #include <net/sock.h>
12 #include <net/af_rxrpc.h>
13 #include "internal.h"
14 #include "afs_cm.h"
15 #include "protocol_yfs.h"
16
17 struct workqueue_struct *afs_async_calls;
18
19 static void afs_wake_up_call_waiter(struct sock *, struct rxrpc_call *, unsigned long);
20 static void afs_wake_up_async_call(struct sock *, struct rxrpc_call *, unsigned long);
21 static void afs_process_async_call(struct work_struct *);
22 static void afs_rx_new_call(struct sock *, struct rxrpc_call *, unsigned long);
23 static void afs_rx_discard_new_call(struct rxrpc_call *, unsigned long);
24 static int afs_deliver_cm_op_id(struct afs_call *);
25
26 /* asynchronous incoming call initial processing */
27 static const struct afs_call_type afs_RXCMxxxx = {
28         .name           = "CB.xxxx",
29         .deliver        = afs_deliver_cm_op_id,
30 };
31
32 /*
33  * open an RxRPC socket and bind it to be a server for callback notifications
34  * - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT
35  */
36 int afs_open_socket(struct afs_net *net)
37 {
38         struct sockaddr_rxrpc srx;
39         struct socket *socket;
40         unsigned int min_level;
41         int ret;
42
43         _enter("");
44
45         ret = sock_create_kern(net->net, AF_RXRPC, SOCK_DGRAM, PF_INET6, &socket);
46         if (ret < 0)
47                 goto error_1;
48
49         socket->sk->sk_allocation = GFP_NOFS;
50
51         /* bind the callback manager's address to make this a server socket */
52         memset(&srx, 0, sizeof(srx));
53         srx.srx_family                  = AF_RXRPC;
54         srx.srx_service                 = CM_SERVICE;
55         srx.transport_type              = SOCK_DGRAM;
56         srx.transport_len               = sizeof(srx.transport.sin6);
57         srx.transport.sin6.sin6_family  = AF_INET6;
58         srx.transport.sin6.sin6_port    = htons(AFS_CM_PORT);
59
60         min_level = RXRPC_SECURITY_ENCRYPT;
61         ret = kernel_setsockopt(socket, SOL_RXRPC, RXRPC_MIN_SECURITY_LEVEL,
62                                 (void *)&min_level, sizeof(min_level));
63         if (ret < 0)
64                 goto error_2;
65
66         ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
67         if (ret == -EADDRINUSE) {
68                 srx.transport.sin6.sin6_port = 0;
69                 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
70         }
71         if (ret < 0)
72                 goto error_2;
73
74         srx.srx_service = YFS_CM_SERVICE;
75         ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
76         if (ret < 0)
77                 goto error_2;
78
79         /* Ideally, we'd turn on service upgrade here, but we can't because
80          * OpenAFS is buggy and leaks the userStatus field from packet to
81          * packet and between FS packets and CB packets - so if we try to do an
82          * upgrade on an FS packet, OpenAFS will leak that into the CB packet
83          * it sends back to us.
84          */
85
86         rxrpc_kernel_new_call_notification(socket, afs_rx_new_call,
87                                            afs_rx_discard_new_call);
88
89         ret = kernel_listen(socket, INT_MAX);
90         if (ret < 0)
91                 goto error_2;
92
93         net->socket = socket;
94         afs_charge_preallocation(&net->charge_preallocation_work);
95         _leave(" = 0");
96         return 0;
97
98 error_2:
99         sock_release(socket);
100 error_1:
101         _leave(" = %d", ret);
102         return ret;
103 }
104
105 /*
106  * close the RxRPC socket AFS was using
107  */
108 void afs_close_socket(struct afs_net *net)
109 {
110         _enter("");
111
112         kernel_listen(net->socket, 0);
113         flush_workqueue(afs_async_calls);
114
115         if (net->spare_incoming_call) {
116                 afs_put_call(net->spare_incoming_call);
117                 net->spare_incoming_call = NULL;
118         }
119
120         _debug("outstanding %u", atomic_read(&net->nr_outstanding_calls));
121         wait_var_event(&net->nr_outstanding_calls,
122                        !atomic_read(&net->nr_outstanding_calls));
123         _debug("no outstanding calls");
124
125         kernel_sock_shutdown(net->socket, SHUT_RDWR);
126         flush_workqueue(afs_async_calls);
127         sock_release(net->socket);
128
129         _debug("dework");
130         _leave("");
131 }
132
133 /*
134  * Allocate a call.
135  */
136 static struct afs_call *afs_alloc_call(struct afs_net *net,
137                                        const struct afs_call_type *type,
138                                        gfp_t gfp)
139 {
140         struct afs_call *call;
141         int o;
142
143         call = kzalloc(sizeof(*call), gfp);
144         if (!call)
145                 return NULL;
146
147         call->type = type;
148         call->net = net;
149         call->debug_id = atomic_inc_return(&rxrpc_debug_id);
150         atomic_set(&call->usage, 1);
151         INIT_WORK(&call->async_work, afs_process_async_call);
152         init_waitqueue_head(&call->waitq);
153         spin_lock_init(&call->state_lock);
154         call->_iter = &call->iter;
155
156         o = atomic_inc_return(&net->nr_outstanding_calls);
157         trace_afs_call(call, afs_call_trace_alloc, 1, o,
158                        __builtin_return_address(0));
159         return call;
160 }
161
162 /*
163  * Dispose of a reference on a call.
164  */
165 void afs_put_call(struct afs_call *call)
166 {
167         struct afs_net *net = call->net;
168         int n = atomic_dec_return(&call->usage);
169         int o = atomic_read(&net->nr_outstanding_calls);
170
171         trace_afs_call(call, afs_call_trace_put, n, o,
172                        __builtin_return_address(0));
173
174         ASSERTCMP(n, >=, 0);
175         if (n == 0) {
176                 ASSERT(!work_pending(&call->async_work));
177                 ASSERT(call->type->name != NULL);
178
179                 if (call->rxcall) {
180                         rxrpc_kernel_end_call(net->socket, call->rxcall);
181                         call->rxcall = NULL;
182                 }
183                 if (call->type->destructor)
184                         call->type->destructor(call);
185
186                 afs_put_server(call->net, call->server, afs_server_trace_put_call);
187                 afs_put_cb_interest(call->net, call->cbi);
188                 afs_put_addrlist(call->alist);
189                 kfree(call->request);
190
191                 trace_afs_call(call, afs_call_trace_free, 0, o,
192                                __builtin_return_address(0));
193                 kfree(call);
194
195                 o = atomic_dec_return(&net->nr_outstanding_calls);
196                 if (o == 0)
197                         wake_up_var(&net->nr_outstanding_calls);
198         }
199 }
200
201 static struct afs_call *afs_get_call(struct afs_call *call,
202                                      enum afs_call_trace why)
203 {
204         int u = atomic_inc_return(&call->usage);
205
206         trace_afs_call(call, why, u,
207                        atomic_read(&call->net->nr_outstanding_calls),
208                        __builtin_return_address(0));
209         return call;
210 }
211
212 /*
213  * Queue the call for actual work.
214  */
215 static void afs_queue_call_work(struct afs_call *call)
216 {
217         if (call->type->work) {
218                 INIT_WORK(&call->work, call->type->work);
219
220                 afs_get_call(call, afs_call_trace_work);
221                 if (!queue_work(afs_wq, &call->work))
222                         afs_put_call(call);
223         }
224 }
225
226 /*
227  * allocate a call with flat request and reply buffers
228  */
229 struct afs_call *afs_alloc_flat_call(struct afs_net *net,
230                                      const struct afs_call_type *type,
231                                      size_t request_size, size_t reply_max)
232 {
233         struct afs_call *call;
234
235         call = afs_alloc_call(net, type, GFP_NOFS);
236         if (!call)
237                 goto nomem_call;
238
239         if (request_size) {
240                 call->request_size = request_size;
241                 call->request = kmalloc(request_size, GFP_NOFS);
242                 if (!call->request)
243                         goto nomem_free;
244         }
245
246         if (reply_max) {
247                 call->reply_max = reply_max;
248                 call->buffer = kmalloc(reply_max, GFP_NOFS);
249                 if (!call->buffer)
250                         goto nomem_free;
251         }
252
253         afs_extract_to_buf(call, call->reply_max);
254         call->operation_ID = type->op;
255         init_waitqueue_head(&call->waitq);
256         return call;
257
258 nomem_free:
259         afs_put_call(call);
260 nomem_call:
261         return NULL;
262 }
263
264 /*
265  * clean up a call with flat buffer
266  */
267 void afs_flat_call_destructor(struct afs_call *call)
268 {
269         _enter("");
270
271         kfree(call->request);
272         call->request = NULL;
273         kfree(call->buffer);
274         call->buffer = NULL;
275 }
276
277 #define AFS_BVEC_MAX 8
278
279 /*
280  * Load the given bvec with the next few pages.
281  */
282 static void afs_load_bvec(struct afs_call *call, struct msghdr *msg,
283                           struct bio_vec *bv, pgoff_t first, pgoff_t last,
284                           unsigned offset)
285 {
286         struct page *pages[AFS_BVEC_MAX];
287         unsigned int nr, n, i, to, bytes = 0;
288
289         nr = min_t(pgoff_t, last - first + 1, AFS_BVEC_MAX);
290         n = find_get_pages_contig(call->mapping, first, nr, pages);
291         ASSERTCMP(n, ==, nr);
292
293         msg->msg_flags |= MSG_MORE;
294         for (i = 0; i < nr; i++) {
295                 to = PAGE_SIZE;
296                 if (first + i >= last) {
297                         to = call->last_to;
298                         msg->msg_flags &= ~MSG_MORE;
299                 }
300                 bv[i].bv_page = pages[i];
301                 bv[i].bv_len = to - offset;
302                 bv[i].bv_offset = offset;
303                 bytes += to - offset;
304                 offset = 0;
305         }
306
307         iov_iter_bvec(&msg->msg_iter, WRITE, bv, nr, bytes);
308 }
309
310 /*
311  * Advance the AFS call state when the RxRPC call ends the transmit phase.
312  */
313 static void afs_notify_end_request_tx(struct sock *sock,
314                                       struct rxrpc_call *rxcall,
315                                       unsigned long call_user_ID)
316 {
317         struct afs_call *call = (struct afs_call *)call_user_ID;
318
319         afs_set_call_state(call, AFS_CALL_CL_REQUESTING, AFS_CALL_CL_AWAIT_REPLY);
320 }
321
322 /*
323  * attach the data from a bunch of pages on an inode to a call
324  */
325 static int afs_send_pages(struct afs_call *call, struct msghdr *msg)
326 {
327         struct bio_vec bv[AFS_BVEC_MAX];
328         unsigned int bytes, nr, loop, offset;
329         pgoff_t first = call->first, last = call->last;
330         int ret;
331
332         offset = call->first_offset;
333         call->first_offset = 0;
334
335         do {
336                 afs_load_bvec(call, msg, bv, first, last, offset);
337                 trace_afs_send_pages(call, msg, first, last, offset);
338
339                 offset = 0;
340                 bytes = msg->msg_iter.count;
341                 nr = msg->msg_iter.nr_segs;
342
343                 ret = rxrpc_kernel_send_data(call->net->socket, call->rxcall, msg,
344                                              bytes, afs_notify_end_request_tx);
345                 for (loop = 0; loop < nr; loop++)
346                         put_page(bv[loop].bv_page);
347                 if (ret < 0)
348                         break;
349
350                 first += nr;
351         } while (first <= last);
352
353         trace_afs_sent_pages(call, call->first, last, first, ret);
354         return ret;
355 }
356
357 /*
358  * Initiate a call and synchronously queue up the parameters for dispatch.  Any
359  * error is stored into the call struct, which the caller must check for.
360  */
361 void afs_make_call(struct afs_addr_cursor *ac, struct afs_call *call, gfp_t gfp)
362 {
363         struct sockaddr_rxrpc *srx = &ac->alist->addrs[ac->index];
364         struct rxrpc_call *rxcall;
365         struct msghdr msg;
366         struct kvec iov[1];
367         s64 tx_total_len;
368         int ret;
369
370         _enter(",{%pISp},", &srx->transport);
371
372         ASSERT(call->type != NULL);
373         ASSERT(call->type->name != NULL);
374
375         _debug("____MAKE %p{%s,%x} [%d]____",
376                call, call->type->name, key_serial(call->key),
377                atomic_read(&call->net->nr_outstanding_calls));
378
379         call->addr_ix = ac->index;
380         call->alist = afs_get_addrlist(ac->alist);
381
382         /* Work out the length we're going to transmit.  This is awkward for
383          * calls such as FS.StoreData where there's an extra injection of data
384          * after the initial fixed part.
385          */
386         tx_total_len = call->request_size;
387         if (call->send_pages) {
388                 if (call->last == call->first) {
389                         tx_total_len += call->last_to - call->first_offset;
390                 } else {
391                         /* It looks mathematically like you should be able to
392                          * combine the following lines with the ones above, but
393                          * unsigned arithmetic is fun when it wraps...
394                          */
395                         tx_total_len += PAGE_SIZE - call->first_offset;
396                         tx_total_len += call->last_to;
397                         tx_total_len += (call->last - call->first - 1) * PAGE_SIZE;
398                 }
399         }
400
401         /* If the call is going to be asynchronous, we need an extra ref for
402          * the call to hold itself so the caller need not hang on to its ref.
403          */
404         if (call->async) {
405                 afs_get_call(call, afs_call_trace_get);
406                 call->drop_ref = true;
407         }
408
409         /* create a call */
410         rxcall = rxrpc_kernel_begin_call(call->net->socket, srx, call->key,
411                                          (unsigned long)call,
412                                          tx_total_len, gfp,
413                                          (call->async ?
414                                           afs_wake_up_async_call :
415                                           afs_wake_up_call_waiter),
416                                          call->upgrade,
417                                          (call->intr ? RXRPC_PREINTERRUPTIBLE :
418                                           RXRPC_UNINTERRUPTIBLE),
419                                          call->debug_id);
420         if (IS_ERR(rxcall)) {
421                 ret = PTR_ERR(rxcall);
422                 call->error = ret;
423                 goto error_kill_call;
424         }
425
426         call->rxcall = rxcall;
427
428         if (call->max_lifespan)
429                 rxrpc_kernel_set_max_life(call->net->socket, rxcall,
430                                           call->max_lifespan);
431         call->issue_time = ktime_get_real();
432
433         /* send the request */
434         iov[0].iov_base = call->request;
435         iov[0].iov_len  = call->request_size;
436
437         msg.msg_name            = NULL;
438         msg.msg_namelen         = 0;
439         iov_iter_kvec(&msg.msg_iter, WRITE, iov, 1, call->request_size);
440         msg.msg_control         = NULL;
441         msg.msg_controllen      = 0;
442         msg.msg_flags           = MSG_WAITALL | (call->send_pages ? MSG_MORE : 0);
443
444         ret = rxrpc_kernel_send_data(call->net->socket, rxcall,
445                                      &msg, call->request_size,
446                                      afs_notify_end_request_tx);
447         if (ret < 0)
448                 goto error_do_abort;
449
450         if (call->send_pages) {
451                 ret = afs_send_pages(call, &msg);
452                 if (ret < 0)
453                         goto error_do_abort;
454         }
455
456         /* Note that at this point, we may have received the reply or an abort
457          * - and an asynchronous call may already have completed.
458          *
459          * afs_wait_for_call_to_complete(call, ac)
460          * must be called to synchronously clean up.
461          */
462         return;
463
464 error_do_abort:
465         if (ret != -ECONNABORTED) {
466                 rxrpc_kernel_abort_call(call->net->socket, rxcall,
467                                         RX_USER_ABORT, ret, "KSD");
468         } else {
469                 iov_iter_kvec(&msg.msg_iter, READ, NULL, 0, 0);
470                 rxrpc_kernel_recv_data(call->net->socket, rxcall,
471                                        &msg.msg_iter, false,
472                                        &call->abort_code, &call->service_id);
473                 ac->abort_code = call->abort_code;
474                 ac->responded = true;
475         }
476         call->error = ret;
477         trace_afs_call_done(call);
478 error_kill_call:
479         if (call->type->done)
480                 call->type->done(call);
481
482         /* We need to dispose of the extra ref we grabbed for an async call.
483          * The call, however, might be queued on afs_async_calls and we need to
484          * make sure we don't get any more notifications that might requeue it.
485          */
486         if (call->rxcall) {
487                 rxrpc_kernel_end_call(call->net->socket, call->rxcall);
488                 call->rxcall = NULL;
489         }
490         if (call->async) {
491                 if (cancel_work_sync(&call->async_work))
492                         afs_put_call(call);
493                 afs_put_call(call);
494         }
495
496         ac->error = ret;
497         call->state = AFS_CALL_COMPLETE;
498         _leave(" = %d", ret);
499 }
500
501 /*
502  * deliver messages to a call
503  */
504 static void afs_deliver_to_call(struct afs_call *call)
505 {
506         enum afs_call_state state;
507         u32 abort_code, remote_abort = 0;
508         int ret;
509
510         _enter("%s", call->type->name);
511
512         while (state = READ_ONCE(call->state),
513                state == AFS_CALL_CL_AWAIT_REPLY ||
514                state == AFS_CALL_SV_AWAIT_OP_ID ||
515                state == AFS_CALL_SV_AWAIT_REQUEST ||
516                state == AFS_CALL_SV_AWAIT_ACK
517                ) {
518                 if (state == AFS_CALL_SV_AWAIT_ACK) {
519                         iov_iter_kvec(&call->iter, READ, NULL, 0, 0);
520                         ret = rxrpc_kernel_recv_data(call->net->socket,
521                                                      call->rxcall, &call->iter,
522                                                      false, &remote_abort,
523                                                      &call->service_id);
524                         trace_afs_receive_data(call, &call->iter, false, ret);
525
526                         if (ret == -EINPROGRESS || ret == -EAGAIN)
527                                 return;
528                         if (ret < 0 || ret == 1) {
529                                 if (ret == 1)
530                                         ret = 0;
531                                 goto call_complete;
532                         }
533                         return;
534                 }
535
536                 ret = call->type->deliver(call);
537                 state = READ_ONCE(call->state);
538                 if (ret == 0 && call->unmarshalling_error)
539                         ret = -EBADMSG;
540                 switch (ret) {
541                 case 0:
542                         afs_queue_call_work(call);
543                         if (state == AFS_CALL_CL_PROC_REPLY) {
544                                 if (call->cbi)
545                                         set_bit(AFS_SERVER_FL_MAY_HAVE_CB,
546                                                 &call->cbi->server->flags);
547                                 goto call_complete;
548                         }
549                         ASSERTCMP(state, >, AFS_CALL_CL_PROC_REPLY);
550                         goto done;
551                 case -EINPROGRESS:
552                 case -EAGAIN:
553                         goto out;
554                 case -ECONNABORTED:
555                         ASSERTCMP(state, ==, AFS_CALL_COMPLETE);
556                         goto done;
557                 case -ENOTSUPP:
558                         abort_code = RXGEN_OPCODE;
559                         rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
560                                                 abort_code, ret, "KIV");
561                         goto local_abort;
562                 case -EIO:
563                         pr_err("kAFS: Call %u in bad state %u\n",
564                                call->debug_id, state);
565                         /* Fall through */
566                 case -ENODATA:
567                 case -EBADMSG:
568                 case -EMSGSIZE:
569                         abort_code = RXGEN_CC_UNMARSHAL;
570                         if (state != AFS_CALL_CL_AWAIT_REPLY)
571                                 abort_code = RXGEN_SS_UNMARSHAL;
572                         rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
573                                                 abort_code, ret, "KUM");
574                         goto local_abort;
575                 default:
576                         abort_code = RX_USER_ABORT;
577                         rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
578                                                 abort_code, ret, "KER");
579                         goto local_abort;
580                 }
581         }
582
583 done:
584         if (call->type->done)
585                 call->type->done(call);
586 out:
587         _leave("");
588         return;
589
590 local_abort:
591         abort_code = 0;
592 call_complete:
593         afs_set_call_complete(call, ret, remote_abort);
594         state = AFS_CALL_COMPLETE;
595         goto done;
596 }
597
598 /*
599  * Wait synchronously for a call to complete and clean up the call struct.
600  */
601 long afs_wait_for_call_to_complete(struct afs_call *call,
602                                    struct afs_addr_cursor *ac)
603 {
604         long ret;
605         bool rxrpc_complete = false;
606
607         DECLARE_WAITQUEUE(myself, current);
608
609         _enter("");
610
611         ret = call->error;
612         if (ret < 0)
613                 goto out;
614
615         add_wait_queue(&call->waitq, &myself);
616         for (;;) {
617                 set_current_state(TASK_UNINTERRUPTIBLE);
618
619                 /* deliver any messages that are in the queue */
620                 if (!afs_check_call_state(call, AFS_CALL_COMPLETE) &&
621                     call->need_attention) {
622                         call->need_attention = false;
623                         __set_current_state(TASK_RUNNING);
624                         afs_deliver_to_call(call);
625                         continue;
626                 }
627
628                 if (afs_check_call_state(call, AFS_CALL_COMPLETE))
629                         break;
630
631                 if (!rxrpc_kernel_check_life(call->net->socket, call->rxcall)) {
632                         /* rxrpc terminated the call. */
633                         rxrpc_complete = true;
634                         break;
635                 }
636
637                 schedule();
638         }
639
640         remove_wait_queue(&call->waitq, &myself);
641         __set_current_state(TASK_RUNNING);
642
643         if (!afs_check_call_state(call, AFS_CALL_COMPLETE)) {
644                 if (rxrpc_complete) {
645                         afs_set_call_complete(call, call->error, call->abort_code);
646                 } else {
647                         /* Kill off the call if it's still live. */
648                         _debug("call interrupted");
649                         if (rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
650                                                     RX_USER_ABORT, -EINTR, "KWI"))
651                                 afs_set_call_complete(call, -EINTR, 0);
652                 }
653         }
654
655         spin_lock_bh(&call->state_lock);
656         ac->abort_code = call->abort_code;
657         ac->error = call->error;
658         spin_unlock_bh(&call->state_lock);
659
660         ret = ac->error;
661         switch (ret) {
662         case 0:
663                 ret = call->ret0;
664                 call->ret0 = 0;
665
666                 /* Fall through */
667         case -ECONNABORTED:
668                 ac->responded = true;
669                 break;
670         }
671
672 out:
673         _debug("call complete");
674         afs_put_call(call);
675         _leave(" = %p", (void *)ret);
676         return ret;
677 }
678
679 /*
680  * wake up a waiting call
681  */
682 static void afs_wake_up_call_waiter(struct sock *sk, struct rxrpc_call *rxcall,
683                                     unsigned long call_user_ID)
684 {
685         struct afs_call *call = (struct afs_call *)call_user_ID;
686
687         call->need_attention = true;
688         wake_up(&call->waitq);
689 }
690
691 /*
692  * wake up an asynchronous call
693  */
694 static void afs_wake_up_async_call(struct sock *sk, struct rxrpc_call *rxcall,
695                                    unsigned long call_user_ID)
696 {
697         struct afs_call *call = (struct afs_call *)call_user_ID;
698         int u;
699
700         trace_afs_notify_call(rxcall, call);
701         call->need_attention = true;
702
703         u = atomic_fetch_add_unless(&call->usage, 1, 0);
704         if (u != 0) {
705                 trace_afs_call(call, afs_call_trace_wake, u + 1,
706                                atomic_read(&call->net->nr_outstanding_calls),
707                                __builtin_return_address(0));
708
709                 if (!queue_work(afs_async_calls, &call->async_work))
710                         afs_put_call(call);
711         }
712 }
713
714 /*
715  * Perform I/O processing on an asynchronous call.  The work item carries a ref
716  * to the call struct that we either need to release or to pass on.
717  */
718 static void afs_process_async_call(struct work_struct *work)
719 {
720         struct afs_call *call = container_of(work, struct afs_call, async_work);
721
722         _enter("");
723
724         if (call->state < AFS_CALL_COMPLETE && call->need_attention) {
725                 call->need_attention = false;
726                 afs_deliver_to_call(call);
727         }
728
729         afs_put_call(call);
730         _leave("");
731 }
732
733 static void afs_rx_attach(struct rxrpc_call *rxcall, unsigned long user_call_ID)
734 {
735         struct afs_call *call = (struct afs_call *)user_call_ID;
736
737         call->rxcall = rxcall;
738 }
739
740 /*
741  * Charge the incoming call preallocation.
742  */
743 void afs_charge_preallocation(struct work_struct *work)
744 {
745         struct afs_net *net =
746                 container_of(work, struct afs_net, charge_preallocation_work);
747         struct afs_call *call = net->spare_incoming_call;
748
749         for (;;) {
750                 if (!call) {
751                         call = afs_alloc_call(net, &afs_RXCMxxxx, GFP_KERNEL);
752                         if (!call)
753                                 break;
754
755                         call->drop_ref = true;
756                         call->async = true;
757                         call->state = AFS_CALL_SV_AWAIT_OP_ID;
758                         init_waitqueue_head(&call->waitq);
759                         afs_extract_to_tmp(call);
760                 }
761
762                 if (rxrpc_kernel_charge_accept(net->socket,
763                                                afs_wake_up_async_call,
764                                                afs_rx_attach,
765                                                (unsigned long)call,
766                                                GFP_KERNEL,
767                                                call->debug_id) < 0)
768                         break;
769                 call = NULL;
770         }
771         net->spare_incoming_call = call;
772 }
773
774 /*
775  * Discard a preallocated call when a socket is shut down.
776  */
777 static void afs_rx_discard_new_call(struct rxrpc_call *rxcall,
778                                     unsigned long user_call_ID)
779 {
780         struct afs_call *call = (struct afs_call *)user_call_ID;
781
782         call->rxcall = NULL;
783         afs_put_call(call);
784 }
785
786 /*
787  * Notification of an incoming call.
788  */
789 static void afs_rx_new_call(struct sock *sk, struct rxrpc_call *rxcall,
790                             unsigned long user_call_ID)
791 {
792         struct afs_net *net = afs_sock2net(sk);
793
794         queue_work(afs_wq, &net->charge_preallocation_work);
795 }
796
797 /*
798  * Grab the operation ID from an incoming cache manager call.  The socket
799  * buffer is discarded on error or if we don't yet have sufficient data.
800  */
801 static int afs_deliver_cm_op_id(struct afs_call *call)
802 {
803         int ret;
804
805         _enter("{%zu}", iov_iter_count(call->_iter));
806
807         /* the operation ID forms the first four bytes of the request data */
808         ret = afs_extract_data(call, true);
809         if (ret < 0)
810                 return ret;
811
812         call->operation_ID = ntohl(call->tmp);
813         afs_set_call_state(call, AFS_CALL_SV_AWAIT_OP_ID, AFS_CALL_SV_AWAIT_REQUEST);
814
815         /* ask the cache manager to route the call (it'll change the call type
816          * if successful) */
817         if (!afs_cm_incoming_call(call))
818                 return -ENOTSUPP;
819
820         trace_afs_cb_call(call);
821
822         /* pass responsibility for the remainer of this message off to the
823          * cache manager op */
824         return call->type->deliver(call);
825 }
826
827 /*
828  * Advance the AFS call state when an RxRPC service call ends the transmit
829  * phase.
830  */
831 static void afs_notify_end_reply_tx(struct sock *sock,
832                                     struct rxrpc_call *rxcall,
833                                     unsigned long call_user_ID)
834 {
835         struct afs_call *call = (struct afs_call *)call_user_ID;
836
837         afs_set_call_state(call, AFS_CALL_SV_REPLYING, AFS_CALL_SV_AWAIT_ACK);
838 }
839
840 /*
841  * send an empty reply
842  */
843 void afs_send_empty_reply(struct afs_call *call)
844 {
845         struct afs_net *net = call->net;
846         struct msghdr msg;
847
848         _enter("");
849
850         rxrpc_kernel_set_tx_length(net->socket, call->rxcall, 0);
851
852         msg.msg_name            = NULL;
853         msg.msg_namelen         = 0;
854         iov_iter_kvec(&msg.msg_iter, WRITE, NULL, 0, 0);
855         msg.msg_control         = NULL;
856         msg.msg_controllen      = 0;
857         msg.msg_flags           = 0;
858
859         switch (rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, 0,
860                                        afs_notify_end_reply_tx)) {
861         case 0:
862                 _leave(" [replied]");
863                 return;
864
865         case -ENOMEM:
866                 _debug("oom");
867                 rxrpc_kernel_abort_call(net->socket, call->rxcall,
868                                         RX_USER_ABORT, -ENOMEM, "KOO");
869                 /* Fall through */
870         default:
871                 _leave(" [error]");
872                 return;
873         }
874 }
875
876 /*
877  * send a simple reply
878  */
879 void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len)
880 {
881         struct afs_net *net = call->net;
882         struct msghdr msg;
883         struct kvec iov[1];
884         int n;
885
886         _enter("");
887
888         rxrpc_kernel_set_tx_length(net->socket, call->rxcall, len);
889
890         iov[0].iov_base         = (void *) buf;
891         iov[0].iov_len          = len;
892         msg.msg_name            = NULL;
893         msg.msg_namelen         = 0;
894         iov_iter_kvec(&msg.msg_iter, WRITE, iov, 1, len);
895         msg.msg_control         = NULL;
896         msg.msg_controllen      = 0;
897         msg.msg_flags           = 0;
898
899         n = rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, len,
900                                    afs_notify_end_reply_tx);
901         if (n >= 0) {
902                 /* Success */
903                 _leave(" [replied]");
904                 return;
905         }
906
907         if (n == -ENOMEM) {
908                 _debug("oom");
909                 rxrpc_kernel_abort_call(net->socket, call->rxcall,
910                                         RX_USER_ABORT, -ENOMEM, "KOO");
911         }
912         _leave(" [error]");
913 }
914
915 /*
916  * Extract a piece of data from the received data socket buffers.
917  */
918 int afs_extract_data(struct afs_call *call, bool want_more)
919 {
920         struct afs_net *net = call->net;
921         struct iov_iter *iter = call->_iter;
922         enum afs_call_state state;
923         u32 remote_abort = 0;
924         int ret;
925
926         _enter("{%s,%zu},%d", call->type->name, iov_iter_count(iter), want_more);
927
928         ret = rxrpc_kernel_recv_data(net->socket, call->rxcall, iter,
929                                      want_more, &remote_abort,
930                                      &call->service_id);
931         if (ret == 0 || ret == -EAGAIN)
932                 return ret;
933
934         state = READ_ONCE(call->state);
935         if (ret == 1) {
936                 switch (state) {
937                 case AFS_CALL_CL_AWAIT_REPLY:
938                         afs_set_call_state(call, state, AFS_CALL_CL_PROC_REPLY);
939                         break;
940                 case AFS_CALL_SV_AWAIT_REQUEST:
941                         afs_set_call_state(call, state, AFS_CALL_SV_REPLYING);
942                         break;
943                 case AFS_CALL_COMPLETE:
944                         kdebug("prem complete %d", call->error);
945                         return afs_io_error(call, afs_io_error_extract);
946                 default:
947                         break;
948                 }
949                 return 0;
950         }
951
952         afs_set_call_complete(call, ret, remote_abort);
953         return ret;
954 }
955
956 /*
957  * Log protocol error production.
958  */
959 noinline int afs_protocol_error(struct afs_call *call, int error,
960                                 enum afs_eproto_cause cause)
961 {
962         trace_afs_protocol_error(call, error, cause);
963         if (call)
964                 call->unmarshalling_error = true;
965         return error;
966 }