GNU Linux-libre 5.10.215-gnu1
[releases.git] / fs / afs / rxrpc.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Maintain an RxRPC server socket to do AFS communications through
3  *
4  * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7
8 #include <linux/slab.h>
9 #include <linux/sched/signal.h>
10
11 #include <net/sock.h>
12 #include <net/af_rxrpc.h>
13 #include "internal.h"
14 #include "afs_cm.h"
15 #include "protocol_yfs.h"
16
17 struct workqueue_struct *afs_async_calls;
18
19 static void afs_wake_up_call_waiter(struct sock *, struct rxrpc_call *, unsigned long);
20 static void afs_wake_up_async_call(struct sock *, struct rxrpc_call *, unsigned long);
21 static void afs_process_async_call(struct work_struct *);
22 static void afs_rx_new_call(struct sock *, struct rxrpc_call *, unsigned long);
23 static void afs_rx_discard_new_call(struct rxrpc_call *, unsigned long);
24 static int afs_deliver_cm_op_id(struct afs_call *);
25
26 /* asynchronous incoming call initial processing */
27 static const struct afs_call_type afs_RXCMxxxx = {
28         .name           = "CB.xxxx",
29         .deliver        = afs_deliver_cm_op_id,
30 };
31
32 /*
33  * open an RxRPC socket and bind it to be a server for callback notifications
34  * - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT
35  */
36 int afs_open_socket(struct afs_net *net)
37 {
38         struct sockaddr_rxrpc srx;
39         struct socket *socket;
40         int ret;
41
42         _enter("");
43
44         ret = sock_create_kern(net->net, AF_RXRPC, SOCK_DGRAM, PF_INET6, &socket);
45         if (ret < 0)
46                 goto error_1;
47
48         socket->sk->sk_allocation = GFP_NOFS;
49
50         /* bind the callback manager's address to make this a server socket */
51         memset(&srx, 0, sizeof(srx));
52         srx.srx_family                  = AF_RXRPC;
53         srx.srx_service                 = CM_SERVICE;
54         srx.transport_type              = SOCK_DGRAM;
55         srx.transport_len               = sizeof(srx.transport.sin6);
56         srx.transport.sin6.sin6_family  = AF_INET6;
57         srx.transport.sin6.sin6_port    = htons(AFS_CM_PORT);
58
59         ret = rxrpc_sock_set_min_security_level(socket->sk,
60                                                 RXRPC_SECURITY_ENCRYPT);
61         if (ret < 0)
62                 goto error_2;
63
64         ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
65         if (ret == -EADDRINUSE) {
66                 srx.transport.sin6.sin6_port = 0;
67                 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
68         }
69         if (ret < 0)
70                 goto error_2;
71
72         srx.srx_service = YFS_CM_SERVICE;
73         ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
74         if (ret < 0)
75                 goto error_2;
76
77         /* Ideally, we'd turn on service upgrade here, but we can't because
78          * OpenAFS is buggy and leaks the userStatus field from packet to
79          * packet and between FS packets and CB packets - so if we try to do an
80          * upgrade on an FS packet, OpenAFS will leak that into the CB packet
81          * it sends back to us.
82          */
83
84         rxrpc_kernel_new_call_notification(socket, afs_rx_new_call,
85                                            afs_rx_discard_new_call);
86
87         ret = kernel_listen(socket, INT_MAX);
88         if (ret < 0)
89                 goto error_2;
90
91         net->socket = socket;
92         afs_charge_preallocation(&net->charge_preallocation_work);
93         _leave(" = 0");
94         return 0;
95
96 error_2:
97         sock_release(socket);
98 error_1:
99         _leave(" = %d", ret);
100         return ret;
101 }
102
103 /*
104  * close the RxRPC socket AFS was using
105  */
106 void afs_close_socket(struct afs_net *net)
107 {
108         _enter("");
109
110         kernel_listen(net->socket, 0);
111         flush_workqueue(afs_async_calls);
112
113         if (net->spare_incoming_call) {
114                 afs_put_call(net->spare_incoming_call);
115                 net->spare_incoming_call = NULL;
116         }
117
118         _debug("outstanding %u", atomic_read(&net->nr_outstanding_calls));
119         wait_var_event(&net->nr_outstanding_calls,
120                        !atomic_read(&net->nr_outstanding_calls));
121         _debug("no outstanding calls");
122
123         kernel_sock_shutdown(net->socket, SHUT_RDWR);
124         flush_workqueue(afs_async_calls);
125         sock_release(net->socket);
126
127         _debug("dework");
128         _leave("");
129 }
130
131 /*
132  * Allocate a call.
133  */
134 static struct afs_call *afs_alloc_call(struct afs_net *net,
135                                        const struct afs_call_type *type,
136                                        gfp_t gfp)
137 {
138         struct afs_call *call;
139         int o;
140
141         call = kzalloc(sizeof(*call), gfp);
142         if (!call)
143                 return NULL;
144
145         call->type = type;
146         call->net = net;
147         call->debug_id = atomic_inc_return(&rxrpc_debug_id);
148         atomic_set(&call->usage, 1);
149         INIT_WORK(&call->async_work, afs_process_async_call);
150         init_waitqueue_head(&call->waitq);
151         spin_lock_init(&call->state_lock);
152         call->iter = &call->def_iter;
153
154         o = atomic_inc_return(&net->nr_outstanding_calls);
155         trace_afs_call(call, afs_call_trace_alloc, 1, o,
156                        __builtin_return_address(0));
157         return call;
158 }
159
160 /*
161  * Dispose of a reference on a call.
162  */
163 void afs_put_call(struct afs_call *call)
164 {
165         struct afs_net *net = call->net;
166         int n = atomic_dec_return(&call->usage);
167         int o = atomic_read(&net->nr_outstanding_calls);
168
169         trace_afs_call(call, afs_call_trace_put, n, o,
170                        __builtin_return_address(0));
171
172         ASSERTCMP(n, >=, 0);
173         if (n == 0) {
174                 ASSERT(!work_pending(&call->async_work));
175                 ASSERT(call->type->name != NULL);
176
177                 if (call->rxcall) {
178                         rxrpc_kernel_end_call(net->socket, call->rxcall);
179                         call->rxcall = NULL;
180                 }
181                 if (call->type->destructor)
182                         call->type->destructor(call);
183
184                 afs_unuse_server_notime(call->net, call->server, afs_server_trace_put_call);
185                 afs_put_addrlist(call->alist);
186                 kfree(call->request);
187
188                 trace_afs_call(call, afs_call_trace_free, 0, o,
189                                __builtin_return_address(0));
190                 kfree(call);
191
192                 o = atomic_dec_return(&net->nr_outstanding_calls);
193                 if (o == 0)
194                         wake_up_var(&net->nr_outstanding_calls);
195         }
196 }
197
198 static struct afs_call *afs_get_call(struct afs_call *call,
199                                      enum afs_call_trace why)
200 {
201         int u = atomic_inc_return(&call->usage);
202
203         trace_afs_call(call, why, u,
204                        atomic_read(&call->net->nr_outstanding_calls),
205                        __builtin_return_address(0));
206         return call;
207 }
208
209 /*
210  * Queue the call for actual work.
211  */
212 static void afs_queue_call_work(struct afs_call *call)
213 {
214         if (call->type->work) {
215                 INIT_WORK(&call->work, call->type->work);
216
217                 afs_get_call(call, afs_call_trace_work);
218                 if (!queue_work(afs_wq, &call->work))
219                         afs_put_call(call);
220         }
221 }
222
223 /*
224  * allocate a call with flat request and reply buffers
225  */
226 struct afs_call *afs_alloc_flat_call(struct afs_net *net,
227                                      const struct afs_call_type *type,
228                                      size_t request_size, size_t reply_max)
229 {
230         struct afs_call *call;
231
232         call = afs_alloc_call(net, type, GFP_NOFS);
233         if (!call)
234                 goto nomem_call;
235
236         if (request_size) {
237                 call->request_size = request_size;
238                 call->request = kmalloc(request_size, GFP_NOFS);
239                 if (!call->request)
240                         goto nomem_free;
241         }
242
243         if (reply_max) {
244                 call->reply_max = reply_max;
245                 call->buffer = kmalloc(reply_max, GFP_NOFS);
246                 if (!call->buffer)
247                         goto nomem_free;
248         }
249
250         afs_extract_to_buf(call, call->reply_max);
251         call->operation_ID = type->op;
252         init_waitqueue_head(&call->waitq);
253         return call;
254
255 nomem_free:
256         afs_put_call(call);
257 nomem_call:
258         return NULL;
259 }
260
261 /*
262  * clean up a call with flat buffer
263  */
264 void afs_flat_call_destructor(struct afs_call *call)
265 {
266         _enter("");
267
268         kfree(call->request);
269         call->request = NULL;
270         kfree(call->buffer);
271         call->buffer = NULL;
272 }
273
274 #define AFS_BVEC_MAX 8
275
276 /*
277  * Load the given bvec with the next few pages.
278  */
279 static void afs_load_bvec(struct afs_call *call, struct msghdr *msg,
280                           struct bio_vec *bv, pgoff_t first, pgoff_t last,
281                           unsigned offset)
282 {
283         struct afs_operation *op = call->op;
284         struct page *pages[AFS_BVEC_MAX];
285         unsigned int nr, n, i, to, bytes = 0;
286
287         nr = min_t(pgoff_t, last - first + 1, AFS_BVEC_MAX);
288         n = find_get_pages_contig(op->store.mapping, first, nr, pages);
289         ASSERTCMP(n, ==, nr);
290
291         msg->msg_flags |= MSG_MORE;
292         for (i = 0; i < nr; i++) {
293                 to = PAGE_SIZE;
294                 if (first + i >= last) {
295                         to = op->store.last_to;
296                         msg->msg_flags &= ~MSG_MORE;
297                 }
298                 bv[i].bv_page = pages[i];
299                 bv[i].bv_len = to - offset;
300                 bv[i].bv_offset = offset;
301                 bytes += to - offset;
302                 offset = 0;
303         }
304
305         iov_iter_bvec(&msg->msg_iter, WRITE, bv, nr, bytes);
306 }
307
308 /*
309  * Advance the AFS call state when the RxRPC call ends the transmit phase.
310  */
311 static void afs_notify_end_request_tx(struct sock *sock,
312                                       struct rxrpc_call *rxcall,
313                                       unsigned long call_user_ID)
314 {
315         struct afs_call *call = (struct afs_call *)call_user_ID;
316
317         afs_set_call_state(call, AFS_CALL_CL_REQUESTING, AFS_CALL_CL_AWAIT_REPLY);
318 }
319
320 /*
321  * attach the data from a bunch of pages on an inode to a call
322  */
323 static int afs_send_pages(struct afs_call *call, struct msghdr *msg)
324 {
325         struct afs_operation *op = call->op;
326         struct bio_vec bv[AFS_BVEC_MAX];
327         unsigned int bytes, nr, loop, offset;
328         pgoff_t first = op->store.first, last = op->store.last;
329         int ret;
330
331         offset = op->store.first_offset;
332         op->store.first_offset = 0;
333
334         do {
335                 afs_load_bvec(call, msg, bv, first, last, offset);
336                 trace_afs_send_pages(call, msg, first, last, offset);
337
338                 offset = 0;
339                 bytes = msg->msg_iter.count;
340                 nr = msg->msg_iter.nr_segs;
341
342                 ret = rxrpc_kernel_send_data(op->net->socket, call->rxcall, msg,
343                                              bytes, afs_notify_end_request_tx);
344                 for (loop = 0; loop < nr; loop++)
345                         put_page(bv[loop].bv_page);
346                 if (ret < 0)
347                         break;
348
349                 first += nr;
350         } while (first <= last);
351
352         trace_afs_sent_pages(call, op->store.first, last, first, ret);
353         return ret;
354 }
355
356 /*
357  * Initiate a call and synchronously queue up the parameters for dispatch.  Any
358  * error is stored into the call struct, which the caller must check for.
359  */
360 void afs_make_call(struct afs_addr_cursor *ac, struct afs_call *call, gfp_t gfp)
361 {
362         struct sockaddr_rxrpc *srx = &ac->alist->addrs[ac->index];
363         struct rxrpc_call *rxcall;
364         struct msghdr msg;
365         struct kvec iov[1];
366         s64 tx_total_len;
367         int ret;
368
369         _enter(",{%pISp},", &srx->transport);
370
371         ASSERT(call->type != NULL);
372         ASSERT(call->type->name != NULL);
373
374         _debug("____MAKE %p{%s,%x} [%d]____",
375                call, call->type->name, key_serial(call->key),
376                atomic_read(&call->net->nr_outstanding_calls));
377
378         call->addr_ix = ac->index;
379         call->alist = afs_get_addrlist(ac->alist);
380
381         /* Work out the length we're going to transmit.  This is awkward for
382          * calls such as FS.StoreData where there's an extra injection of data
383          * after the initial fixed part.
384          */
385         tx_total_len = call->request_size;
386         if (call->send_pages) {
387                 struct afs_operation *op = call->op;
388
389                 if (op->store.last == op->store.first) {
390                         tx_total_len += op->store.last_to - op->store.first_offset;
391                 } else {
392                         /* It looks mathematically like you should be able to
393                          * combine the following lines with the ones above, but
394                          * unsigned arithmetic is fun when it wraps...
395                          */
396                         tx_total_len += PAGE_SIZE - op->store.first_offset;
397                         tx_total_len += op->store.last_to;
398                         tx_total_len += (op->store.last - op->store.first - 1) * PAGE_SIZE;
399                 }
400         }
401
402         /* If the call is going to be asynchronous, we need an extra ref for
403          * the call to hold itself so the caller need not hang on to its ref.
404          */
405         if (call->async) {
406                 afs_get_call(call, afs_call_trace_get);
407                 call->drop_ref = true;
408         }
409
410         /* create a call */
411         rxcall = rxrpc_kernel_begin_call(call->net->socket, srx, call->key,
412                                          (unsigned long)call,
413                                          tx_total_len, gfp,
414                                          (call->async ?
415                                           afs_wake_up_async_call :
416                                           afs_wake_up_call_waiter),
417                                          call->upgrade,
418                                          (call->intr ? RXRPC_PREINTERRUPTIBLE :
419                                           RXRPC_UNINTERRUPTIBLE),
420                                          call->debug_id);
421         if (IS_ERR(rxcall)) {
422                 ret = PTR_ERR(rxcall);
423                 call->error = ret;
424                 goto error_kill_call;
425         }
426
427         call->rxcall = rxcall;
428
429         if (call->max_lifespan)
430                 rxrpc_kernel_set_max_life(call->net->socket, rxcall,
431                                           call->max_lifespan);
432         call->issue_time = ktime_get_real();
433
434         /* send the request */
435         iov[0].iov_base = call->request;
436         iov[0].iov_len  = call->request_size;
437
438         msg.msg_name            = NULL;
439         msg.msg_namelen         = 0;
440         iov_iter_kvec(&msg.msg_iter, WRITE, iov, 1, call->request_size);
441         msg.msg_control         = NULL;
442         msg.msg_controllen      = 0;
443         msg.msg_flags           = MSG_WAITALL | (call->send_pages ? MSG_MORE : 0);
444
445         ret = rxrpc_kernel_send_data(call->net->socket, rxcall,
446                                      &msg, call->request_size,
447                                      afs_notify_end_request_tx);
448         if (ret < 0)
449                 goto error_do_abort;
450
451         if (call->send_pages) {
452                 ret = afs_send_pages(call, &msg);
453                 if (ret < 0)
454                         goto error_do_abort;
455         }
456
457         /* Note that at this point, we may have received the reply or an abort
458          * - and an asynchronous call may already have completed.
459          *
460          * afs_wait_for_call_to_complete(call, ac)
461          * must be called to synchronously clean up.
462          */
463         return;
464
465 error_do_abort:
466         if (ret != -ECONNABORTED) {
467                 rxrpc_kernel_abort_call(call->net->socket, rxcall,
468                                         RX_USER_ABORT, ret, "KSD");
469         } else {
470                 iov_iter_kvec(&msg.msg_iter, READ, NULL, 0, 0);
471                 rxrpc_kernel_recv_data(call->net->socket, rxcall,
472                                        &msg.msg_iter, false,
473                                        &call->abort_code, &call->service_id);
474                 ac->abort_code = call->abort_code;
475                 ac->responded = true;
476         }
477         call->error = ret;
478         trace_afs_call_done(call);
479 error_kill_call:
480         if (call->type->done)
481                 call->type->done(call);
482
483         /* We need to dispose of the extra ref we grabbed for an async call.
484          * The call, however, might be queued on afs_async_calls and we need to
485          * make sure we don't get any more notifications that might requeue it.
486          */
487         if (call->rxcall) {
488                 rxrpc_kernel_end_call(call->net->socket, call->rxcall);
489                 call->rxcall = NULL;
490         }
491         if (call->async) {
492                 if (cancel_work_sync(&call->async_work))
493                         afs_put_call(call);
494                 afs_set_call_complete(call, ret, 0);
495         }
496
497         ac->error = ret;
498         call->state = AFS_CALL_COMPLETE;
499         _leave(" = %d", ret);
500 }
501
502 /*
503  * deliver messages to a call
504  */
505 static void afs_deliver_to_call(struct afs_call *call)
506 {
507         enum afs_call_state state;
508         u32 abort_code, remote_abort = 0;
509         int ret;
510
511         _enter("%s", call->type->name);
512
513         while (state = READ_ONCE(call->state),
514                state == AFS_CALL_CL_AWAIT_REPLY ||
515                state == AFS_CALL_SV_AWAIT_OP_ID ||
516                state == AFS_CALL_SV_AWAIT_REQUEST ||
517                state == AFS_CALL_SV_AWAIT_ACK
518                ) {
519                 if (state == AFS_CALL_SV_AWAIT_ACK) {
520                         iov_iter_kvec(&call->def_iter, READ, NULL, 0, 0);
521                         ret = rxrpc_kernel_recv_data(call->net->socket,
522                                                      call->rxcall, &call->def_iter,
523                                                      false, &remote_abort,
524                                                      &call->service_id);
525                         trace_afs_receive_data(call, &call->def_iter, false, ret);
526
527                         if (ret == -EINPROGRESS || ret == -EAGAIN)
528                                 return;
529                         if (ret < 0 || ret == 1) {
530                                 if (ret == 1)
531                                         ret = 0;
532                                 goto call_complete;
533                         }
534                         return;
535                 }
536
537                 ret = call->type->deliver(call);
538                 state = READ_ONCE(call->state);
539                 if (ret == 0 && call->unmarshalling_error)
540                         ret = -EBADMSG;
541                 switch (ret) {
542                 case 0:
543                         afs_queue_call_work(call);
544                         if (state == AFS_CALL_CL_PROC_REPLY) {
545                                 if (call->op)
546                                         set_bit(AFS_SERVER_FL_MAY_HAVE_CB,
547                                                 &call->op->server->flags);
548                                 goto call_complete;
549                         }
550                         ASSERTCMP(state, >, AFS_CALL_CL_PROC_REPLY);
551                         goto done;
552                 case -EINPROGRESS:
553                 case -EAGAIN:
554                         goto out;
555                 case -ECONNABORTED:
556                         ASSERTCMP(state, ==, AFS_CALL_COMPLETE);
557                         goto done;
558                 case -ENOTSUPP:
559                         abort_code = RXGEN_OPCODE;
560                         rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
561                                                 abort_code, ret, "KIV");
562                         goto local_abort;
563                 case -EIO:
564                         pr_err("kAFS: Call %u in bad state %u\n",
565                                call->debug_id, state);
566                         fallthrough;
567                 case -ENODATA:
568                 case -EBADMSG:
569                 case -EMSGSIZE:
570                 case -ENOMEM:
571                 case -EFAULT:
572                         abort_code = RXGEN_CC_UNMARSHAL;
573                         if (state != AFS_CALL_CL_AWAIT_REPLY)
574                                 abort_code = RXGEN_SS_UNMARSHAL;
575                         rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
576                                                 abort_code, ret, "KUM");
577                         goto local_abort;
578                 default:
579                         abort_code = RX_CALL_DEAD;
580                         rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
581                                                 abort_code, ret, "KER");
582                         goto local_abort;
583                 }
584         }
585
586 done:
587         if (call->type->done)
588                 call->type->done(call);
589 out:
590         _leave("");
591         return;
592
593 local_abort:
594         abort_code = 0;
595 call_complete:
596         afs_set_call_complete(call, ret, remote_abort);
597         state = AFS_CALL_COMPLETE;
598         goto done;
599 }
600
601 /*
602  * Wait synchronously for a call to complete and clean up the call struct.
603  */
604 long afs_wait_for_call_to_complete(struct afs_call *call,
605                                    struct afs_addr_cursor *ac)
606 {
607         long ret;
608         bool rxrpc_complete = false;
609
610         DECLARE_WAITQUEUE(myself, current);
611
612         _enter("");
613
614         ret = call->error;
615         if (ret < 0)
616                 goto out;
617
618         add_wait_queue(&call->waitq, &myself);
619         for (;;) {
620                 set_current_state(TASK_UNINTERRUPTIBLE);
621
622                 /* deliver any messages that are in the queue */
623                 if (!afs_check_call_state(call, AFS_CALL_COMPLETE) &&
624                     call->need_attention) {
625                         call->need_attention = false;
626                         __set_current_state(TASK_RUNNING);
627                         afs_deliver_to_call(call);
628                         continue;
629                 }
630
631                 if (afs_check_call_state(call, AFS_CALL_COMPLETE))
632                         break;
633
634                 if (!rxrpc_kernel_check_life(call->net->socket, call->rxcall)) {
635                         /* rxrpc terminated the call. */
636                         rxrpc_complete = true;
637                         break;
638                 }
639
640                 schedule();
641         }
642
643         remove_wait_queue(&call->waitq, &myself);
644         __set_current_state(TASK_RUNNING);
645
646         if (!afs_check_call_state(call, AFS_CALL_COMPLETE)) {
647                 if (rxrpc_complete) {
648                         afs_set_call_complete(call, call->error, call->abort_code);
649                 } else {
650                         /* Kill off the call if it's still live. */
651                         _debug("call interrupted");
652                         if (rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
653                                                     RX_USER_ABORT, -EINTR, "KWI"))
654                                 afs_set_call_complete(call, -EINTR, 0);
655                 }
656         }
657
658         spin_lock_bh(&call->state_lock);
659         ac->abort_code = call->abort_code;
660         ac->error = call->error;
661         spin_unlock_bh(&call->state_lock);
662
663         ret = ac->error;
664         switch (ret) {
665         case 0:
666                 ret = call->ret0;
667                 call->ret0 = 0;
668
669                 fallthrough;
670         case -ECONNABORTED:
671                 ac->responded = true;
672                 break;
673         }
674
675 out:
676         _debug("call complete");
677         afs_put_call(call);
678         _leave(" = %p", (void *)ret);
679         return ret;
680 }
681
682 /*
683  * wake up a waiting call
684  */
685 static void afs_wake_up_call_waiter(struct sock *sk, struct rxrpc_call *rxcall,
686                                     unsigned long call_user_ID)
687 {
688         struct afs_call *call = (struct afs_call *)call_user_ID;
689
690         call->need_attention = true;
691         wake_up(&call->waitq);
692 }
693
694 /*
695  * wake up an asynchronous call
696  */
697 static void afs_wake_up_async_call(struct sock *sk, struct rxrpc_call *rxcall,
698                                    unsigned long call_user_ID)
699 {
700         struct afs_call *call = (struct afs_call *)call_user_ID;
701         int u;
702
703         trace_afs_notify_call(rxcall, call);
704         call->need_attention = true;
705
706         u = atomic_fetch_add_unless(&call->usage, 1, 0);
707         if (u != 0) {
708                 trace_afs_call(call, afs_call_trace_wake, u + 1,
709                                atomic_read(&call->net->nr_outstanding_calls),
710                                __builtin_return_address(0));
711
712                 if (!queue_work(afs_async_calls, &call->async_work))
713                         afs_put_call(call);
714         }
715 }
716
717 /*
718  * Perform I/O processing on an asynchronous call.  The work item carries a ref
719  * to the call struct that we either need to release or to pass on.
720  */
721 static void afs_process_async_call(struct work_struct *work)
722 {
723         struct afs_call *call = container_of(work, struct afs_call, async_work);
724
725         _enter("");
726
727         if (call->state < AFS_CALL_COMPLETE && call->need_attention) {
728                 call->need_attention = false;
729                 afs_deliver_to_call(call);
730         }
731
732         afs_put_call(call);
733         _leave("");
734 }
735
736 static void afs_rx_attach(struct rxrpc_call *rxcall, unsigned long user_call_ID)
737 {
738         struct afs_call *call = (struct afs_call *)user_call_ID;
739
740         call->rxcall = rxcall;
741 }
742
743 /*
744  * Charge the incoming call preallocation.
745  */
746 void afs_charge_preallocation(struct work_struct *work)
747 {
748         struct afs_net *net =
749                 container_of(work, struct afs_net, charge_preallocation_work);
750         struct afs_call *call = net->spare_incoming_call;
751
752         for (;;) {
753                 if (!call) {
754                         call = afs_alloc_call(net, &afs_RXCMxxxx, GFP_KERNEL);
755                         if (!call)
756                                 break;
757
758                         call->drop_ref = true;
759                         call->async = true;
760                         call->state = AFS_CALL_SV_AWAIT_OP_ID;
761                         init_waitqueue_head(&call->waitq);
762                         afs_extract_to_tmp(call);
763                 }
764
765                 if (rxrpc_kernel_charge_accept(net->socket,
766                                                afs_wake_up_async_call,
767                                                afs_rx_attach,
768                                                (unsigned long)call,
769                                                GFP_KERNEL,
770                                                call->debug_id) < 0)
771                         break;
772                 call = NULL;
773         }
774         net->spare_incoming_call = call;
775 }
776
777 /*
778  * Discard a preallocated call when a socket is shut down.
779  */
780 static void afs_rx_discard_new_call(struct rxrpc_call *rxcall,
781                                     unsigned long user_call_ID)
782 {
783         struct afs_call *call = (struct afs_call *)user_call_ID;
784
785         call->rxcall = NULL;
786         afs_put_call(call);
787 }
788
789 /*
790  * Notification of an incoming call.
791  */
792 static void afs_rx_new_call(struct sock *sk, struct rxrpc_call *rxcall,
793                             unsigned long user_call_ID)
794 {
795         struct afs_net *net = afs_sock2net(sk);
796
797         queue_work(afs_wq, &net->charge_preallocation_work);
798 }
799
800 /*
801  * Grab the operation ID from an incoming cache manager call.  The socket
802  * buffer is discarded on error or if we don't yet have sufficient data.
803  */
804 static int afs_deliver_cm_op_id(struct afs_call *call)
805 {
806         int ret;
807
808         _enter("{%zu}", iov_iter_count(call->iter));
809
810         /* the operation ID forms the first four bytes of the request data */
811         ret = afs_extract_data(call, true);
812         if (ret < 0)
813                 return ret;
814
815         call->operation_ID = ntohl(call->tmp);
816         afs_set_call_state(call, AFS_CALL_SV_AWAIT_OP_ID, AFS_CALL_SV_AWAIT_REQUEST);
817
818         /* ask the cache manager to route the call (it'll change the call type
819          * if successful) */
820         if (!afs_cm_incoming_call(call))
821                 return -ENOTSUPP;
822
823         trace_afs_cb_call(call);
824
825         /* pass responsibility for the remainer of this message off to the
826          * cache manager op */
827         return call->type->deliver(call);
828 }
829
830 /*
831  * Advance the AFS call state when an RxRPC service call ends the transmit
832  * phase.
833  */
834 static void afs_notify_end_reply_tx(struct sock *sock,
835                                     struct rxrpc_call *rxcall,
836                                     unsigned long call_user_ID)
837 {
838         struct afs_call *call = (struct afs_call *)call_user_ID;
839
840         afs_set_call_state(call, AFS_CALL_SV_REPLYING, AFS_CALL_SV_AWAIT_ACK);
841 }
842
843 /*
844  * send an empty reply
845  */
846 void afs_send_empty_reply(struct afs_call *call)
847 {
848         struct afs_net *net = call->net;
849         struct msghdr msg;
850
851         _enter("");
852
853         rxrpc_kernel_set_tx_length(net->socket, call->rxcall, 0);
854
855         msg.msg_name            = NULL;
856         msg.msg_namelen         = 0;
857         iov_iter_kvec(&msg.msg_iter, WRITE, NULL, 0, 0);
858         msg.msg_control         = NULL;
859         msg.msg_controllen      = 0;
860         msg.msg_flags           = 0;
861
862         switch (rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, 0,
863                                        afs_notify_end_reply_tx)) {
864         case 0:
865                 _leave(" [replied]");
866                 return;
867
868         case -ENOMEM:
869                 _debug("oom");
870                 rxrpc_kernel_abort_call(net->socket, call->rxcall,
871                                         RXGEN_SS_MARSHAL, -ENOMEM, "KOO");
872                 fallthrough;
873         default:
874                 _leave(" [error]");
875                 return;
876         }
877 }
878
879 /*
880  * send a simple reply
881  */
882 void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len)
883 {
884         struct afs_net *net = call->net;
885         struct msghdr msg;
886         struct kvec iov[1];
887         int n;
888
889         _enter("");
890
891         rxrpc_kernel_set_tx_length(net->socket, call->rxcall, len);
892
893         iov[0].iov_base         = (void *) buf;
894         iov[0].iov_len          = len;
895         msg.msg_name            = NULL;
896         msg.msg_namelen         = 0;
897         iov_iter_kvec(&msg.msg_iter, WRITE, iov, 1, len);
898         msg.msg_control         = NULL;
899         msg.msg_controllen      = 0;
900         msg.msg_flags           = 0;
901
902         n = rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, len,
903                                    afs_notify_end_reply_tx);
904         if (n >= 0) {
905                 /* Success */
906                 _leave(" [replied]");
907                 return;
908         }
909
910         if (n == -ENOMEM) {
911                 _debug("oom");
912                 rxrpc_kernel_abort_call(net->socket, call->rxcall,
913                                         RXGEN_SS_MARSHAL, -ENOMEM, "KOO");
914         }
915         _leave(" [error]");
916 }
917
918 /*
919  * Extract a piece of data from the received data socket buffers.
920  */
921 int afs_extract_data(struct afs_call *call, bool want_more)
922 {
923         struct afs_net *net = call->net;
924         struct iov_iter *iter = call->iter;
925         enum afs_call_state state;
926         u32 remote_abort = 0;
927         int ret;
928
929         _enter("{%s,%zu},%d", call->type->name, iov_iter_count(iter), want_more);
930
931         ret = rxrpc_kernel_recv_data(net->socket, call->rxcall, iter,
932                                      want_more, &remote_abort,
933                                      &call->service_id);
934         if (ret == 0 || ret == -EAGAIN)
935                 return ret;
936
937         state = READ_ONCE(call->state);
938         if (ret == 1) {
939                 switch (state) {
940                 case AFS_CALL_CL_AWAIT_REPLY:
941                         afs_set_call_state(call, state, AFS_CALL_CL_PROC_REPLY);
942                         break;
943                 case AFS_CALL_SV_AWAIT_REQUEST:
944                         afs_set_call_state(call, state, AFS_CALL_SV_REPLYING);
945                         break;
946                 case AFS_CALL_COMPLETE:
947                         kdebug("prem complete %d", call->error);
948                         return afs_io_error(call, afs_io_error_extract);
949                 default:
950                         break;
951                 }
952                 return 0;
953         }
954
955         afs_set_call_complete(call, ret, remote_abort);
956         return ret;
957 }
958
959 /*
960  * Log protocol error production.
961  */
962 noinline int afs_protocol_error(struct afs_call *call,
963                                 enum afs_eproto_cause cause)
964 {
965         trace_afs_protocol_error(call, cause);
966         if (call)
967                 call->unmarshalling_error = true;
968         return -EBADMSG;
969 }