33b21a0c05481e08aae2892b8a9216fe2a726adb
[releases.git] / flow.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2007-2014 Nicira, Inc.
4  */
5
6 #include <linux/uaccess.h>
7 #include <linux/netdevice.h>
8 #include <linux/etherdevice.h>
9 #include <linux/if_ether.h>
10 #include <linux/if_vlan.h>
11 #include <net/llc_pdu.h>
12 #include <linux/kernel.h>
13 #include <linux/jhash.h>
14 #include <linux/jiffies.h>
15 #include <linux/llc.h>
16 #include <linux/module.h>
17 #include <linux/in.h>
18 #include <linux/rcupdate.h>
19 #include <linux/cpumask.h>
20 #include <linux/if_arp.h>
21 #include <linux/ip.h>
22 #include <linux/ipv6.h>
23 #include <linux/mpls.h>
24 #include <linux/sctp.h>
25 #include <linux/smp.h>
26 #include <linux/tcp.h>
27 #include <linux/udp.h>
28 #include <linux/icmp.h>
29 #include <linux/icmpv6.h>
30 #include <linux/rculist.h>
31 #include <net/ip.h>
32 #include <net/ip_tunnels.h>
33 #include <net/ipv6.h>
34 #include <net/mpls.h>
35 #include <net/ndisc.h>
36 #include <net/nsh.h>
37 #include <net/pkt_cls.h>
38 #include <net/netfilter/nf_conntrack_zones.h>
39
40 #include "conntrack.h"
41 #include "datapath.h"
42 #include "flow.h"
43 #include "flow_netlink.h"
44 #include "vport.h"
45
46 u64 ovs_flow_used_time(unsigned long flow_jiffies)
47 {
48         struct timespec64 cur_ts;
49         u64 cur_ms, idle_ms;
50
51         ktime_get_ts64(&cur_ts);
52         idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
53         cur_ms = (u64)(u32)cur_ts.tv_sec * MSEC_PER_SEC +
54                  cur_ts.tv_nsec / NSEC_PER_MSEC;
55
56         return cur_ms - idle_ms;
57 }
58
59 #define TCP_FLAGS_BE16(tp) (*(__be16 *)&tcp_flag_word(tp) & htons(0x0FFF))
60
61 void ovs_flow_stats_update(struct sw_flow *flow, __be16 tcp_flags,
62                            const struct sk_buff *skb)
63 {
64         struct sw_flow_stats *stats;
65         unsigned int cpu = smp_processor_id();
66         int len = skb->len + (skb_vlan_tag_present(skb) ? VLAN_HLEN : 0);
67
68         stats = rcu_dereference(flow->stats[cpu]);
69
70         /* Check if already have CPU-specific stats. */
71         if (likely(stats)) {
72                 spin_lock(&stats->lock);
73                 /* Mark if we write on the pre-allocated stats. */
74                 if (cpu == 0 && unlikely(flow->stats_last_writer != cpu))
75                         flow->stats_last_writer = cpu;
76         } else {
77                 stats = rcu_dereference(flow->stats[0]); /* Pre-allocated. */
78                 spin_lock(&stats->lock);
79
80                 /* If the current CPU is the only writer on the
81                  * pre-allocated stats keep using them.
82                  */
83                 if (unlikely(flow->stats_last_writer != cpu)) {
84                         /* A previous locker may have already allocated the
85                          * stats, so we need to check again.  If CPU-specific
86                          * stats were already allocated, we update the pre-
87                          * allocated stats as we have already locked them.
88                          */
89                         if (likely(flow->stats_last_writer != -1) &&
90                             likely(!rcu_access_pointer(flow->stats[cpu]))) {
91                                 /* Try to allocate CPU-specific stats. */
92                                 struct sw_flow_stats *new_stats;
93
94                                 new_stats =
95                                         kmem_cache_alloc_node(flow_stats_cache,
96                                                               GFP_NOWAIT |
97                                                               __GFP_THISNODE |
98                                                               __GFP_NOWARN |
99                                                               __GFP_NOMEMALLOC,
100                                                               numa_node_id());
101                                 if (likely(new_stats)) {
102                                         new_stats->used = jiffies;
103                                         new_stats->packet_count = 1;
104                                         new_stats->byte_count = len;
105                                         new_stats->tcp_flags = tcp_flags;
106                                         spin_lock_init(&new_stats->lock);
107
108                                         rcu_assign_pointer(flow->stats[cpu],
109                                                            new_stats);
110                                         cpumask_set_cpu(cpu,
111                                                         flow->cpu_used_mask);
112                                         goto unlock;
113                                 }
114                         }
115                         flow->stats_last_writer = cpu;
116                 }
117         }
118
119         stats->used = jiffies;
120         stats->packet_count++;
121         stats->byte_count += len;
122         stats->tcp_flags |= tcp_flags;
123 unlock:
124         spin_unlock(&stats->lock);
125 }
126
127 /* Must be called with rcu_read_lock or ovs_mutex. */
128 void ovs_flow_stats_get(const struct sw_flow *flow,
129                         struct ovs_flow_stats *ovs_stats,
130                         unsigned long *used, __be16 *tcp_flags)
131 {
132         int cpu;
133
134         *used = 0;
135         *tcp_flags = 0;
136         memset(ovs_stats, 0, sizeof(*ovs_stats));
137
138         /* We open code this to make sure cpu 0 is always considered */
139         for (cpu = 0; cpu < nr_cpu_ids;
140              cpu = cpumask_next(cpu, flow->cpu_used_mask)) {
141                 struct sw_flow_stats *stats = rcu_dereference_ovsl(flow->stats[cpu]);
142
143                 if (stats) {
144                         /* Local CPU may write on non-local stats, so we must
145                          * block bottom-halves here.
146                          */
147                         spin_lock_bh(&stats->lock);
148                         if (!*used || time_after(stats->used, *used))
149                                 *used = stats->used;
150                         *tcp_flags |= stats->tcp_flags;
151                         ovs_stats->n_packets += stats->packet_count;
152                         ovs_stats->n_bytes += stats->byte_count;
153                         spin_unlock_bh(&stats->lock);
154                 }
155         }
156 }
157
158 /* Called with ovs_mutex. */
159 void ovs_flow_stats_clear(struct sw_flow *flow)
160 {
161         int cpu;
162
163         /* We open code this to make sure cpu 0 is always considered */
164         for (cpu = 0; cpu < nr_cpu_ids;
165              cpu = cpumask_next(cpu, flow->cpu_used_mask)) {
166                 struct sw_flow_stats *stats = ovsl_dereference(flow->stats[cpu]);
167
168                 if (stats) {
169                         spin_lock_bh(&stats->lock);
170                         stats->used = 0;
171                         stats->packet_count = 0;
172                         stats->byte_count = 0;
173                         stats->tcp_flags = 0;
174                         spin_unlock_bh(&stats->lock);
175                 }
176         }
177 }
178
179 static int check_header(struct sk_buff *skb, int len)
180 {
181         if (unlikely(skb->len < len))
182                 return -EINVAL;
183         if (unlikely(!pskb_may_pull(skb, len)))
184                 return -ENOMEM;
185         return 0;
186 }
187
188 static bool arphdr_ok(struct sk_buff *skb)
189 {
190         return pskb_may_pull(skb, skb_network_offset(skb) +
191                                   sizeof(struct arp_eth_header));
192 }
193
194 static int check_iphdr(struct sk_buff *skb)
195 {
196         unsigned int nh_ofs = skb_network_offset(skb);
197         unsigned int ip_len;
198         int err;
199
200         err = check_header(skb, nh_ofs + sizeof(struct iphdr));
201         if (unlikely(err))
202                 return err;
203
204         ip_len = ip_hdrlen(skb);
205         if (unlikely(ip_len < sizeof(struct iphdr) ||
206                      skb->len < nh_ofs + ip_len))
207                 return -EINVAL;
208
209         skb_set_transport_header(skb, nh_ofs + ip_len);
210         return 0;
211 }
212
213 static bool tcphdr_ok(struct sk_buff *skb)
214 {
215         int th_ofs = skb_transport_offset(skb);
216         int tcp_len;
217
218         if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))))
219                 return false;
220
221         tcp_len = tcp_hdrlen(skb);
222         if (unlikely(tcp_len < sizeof(struct tcphdr) ||
223                      skb->len < th_ofs + tcp_len))
224                 return false;
225
226         return true;
227 }
228
229 static bool udphdr_ok(struct sk_buff *skb)
230 {
231         return pskb_may_pull(skb, skb_transport_offset(skb) +
232                                   sizeof(struct udphdr));
233 }
234
235 static bool sctphdr_ok(struct sk_buff *skb)
236 {
237         return pskb_may_pull(skb, skb_transport_offset(skb) +
238                                   sizeof(struct sctphdr));
239 }
240
241 static bool icmphdr_ok(struct sk_buff *skb)
242 {
243         return pskb_may_pull(skb, skb_transport_offset(skb) +
244                                   sizeof(struct icmphdr));
245 }
246
247 /**
248  * get_ipv6_ext_hdrs() - Parses packet and sets IPv6 extension header flags.
249  *
250  * @skb: buffer where extension header data starts in packet
251  * @nh: ipv6 header
252  * @ext_hdrs: flags are stored here
253  *
254  * OFPIEH12_UNREP is set if more than one of a given IPv6 extension header
255  * is unexpectedly encountered. (Two destination options headers may be
256  * expected and would not cause this bit to be set.)
257  *
258  * OFPIEH12_UNSEQ is set if IPv6 extension headers were not in the order
259  * preferred (but not required) by RFC 2460:
260  *
261  * When more than one extension header is used in the same packet, it is
262  * recommended that those headers appear in the following order:
263  *      IPv6 header
264  *      Hop-by-Hop Options header
265  *      Destination Options header
266  *      Routing header
267  *      Fragment header
268  *      Authentication header
269  *      Encapsulating Security Payload header
270  *      Destination Options header
271  *      upper-layer header
272  */
273 static void get_ipv6_ext_hdrs(struct sk_buff *skb, struct ipv6hdr *nh,
274                               u16 *ext_hdrs)
275 {
276         u8 next_type = nh->nexthdr;
277         unsigned int start = skb_network_offset(skb) + sizeof(struct ipv6hdr);
278         int dest_options_header_count = 0;
279
280         *ext_hdrs = 0;
281
282         while (ipv6_ext_hdr(next_type)) {
283                 struct ipv6_opt_hdr _hdr, *hp;
284
285                 switch (next_type) {
286                 case IPPROTO_NONE:
287                         *ext_hdrs |= OFPIEH12_NONEXT;
288                         /* stop parsing */
289                         return;
290
291                 case IPPROTO_ESP:
292                         if (*ext_hdrs & OFPIEH12_ESP)
293                                 *ext_hdrs |= OFPIEH12_UNREP;
294                         if ((*ext_hdrs & ~(OFPIEH12_HOP | OFPIEH12_DEST |
295                                            OFPIEH12_ROUTER | IPPROTO_FRAGMENT |
296                                            OFPIEH12_AUTH | OFPIEH12_UNREP)) ||
297                             dest_options_header_count >= 2) {
298                                 *ext_hdrs |= OFPIEH12_UNSEQ;
299                         }
300                         *ext_hdrs |= OFPIEH12_ESP;
301                         break;
302
303                 case IPPROTO_AH:
304                         if (*ext_hdrs & OFPIEH12_AUTH)
305                                 *ext_hdrs |= OFPIEH12_UNREP;
306                         if ((*ext_hdrs &
307                              ~(OFPIEH12_HOP | OFPIEH12_DEST | OFPIEH12_ROUTER |
308                                IPPROTO_FRAGMENT | OFPIEH12_UNREP)) ||
309                             dest_options_header_count >= 2) {
310                                 *ext_hdrs |= OFPIEH12_UNSEQ;
311                         }
312                         *ext_hdrs |= OFPIEH12_AUTH;
313                         break;
314
315                 case IPPROTO_DSTOPTS:
316                         if (dest_options_header_count == 0) {
317                                 if (*ext_hdrs &
318                                     ~(OFPIEH12_HOP | OFPIEH12_UNREP))
319                                         *ext_hdrs |= OFPIEH12_UNSEQ;
320                                 *ext_hdrs |= OFPIEH12_DEST;
321                         } else if (dest_options_header_count == 1) {
322                                 if (*ext_hdrs &
323                                     ~(OFPIEH12_HOP | OFPIEH12_DEST |
324                                       OFPIEH12_ROUTER | OFPIEH12_FRAG |
325                                       OFPIEH12_AUTH | OFPIEH12_ESP |
326                                       OFPIEH12_UNREP)) {
327                                         *ext_hdrs |= OFPIEH12_UNSEQ;
328                                 }
329                         } else {
330                                 *ext_hdrs |= OFPIEH12_UNREP;
331                         }
332                         dest_options_header_count++;
333                         break;
334
335                 case IPPROTO_FRAGMENT:
336                         if (*ext_hdrs & OFPIEH12_FRAG)
337                                 *ext_hdrs |= OFPIEH12_UNREP;
338                         if ((*ext_hdrs & ~(OFPIEH12_HOP |
339                                            OFPIEH12_DEST |
340                                            OFPIEH12_ROUTER |
341                                            OFPIEH12_UNREP)) ||
342                             dest_options_header_count >= 2) {
343                                 *ext_hdrs |= OFPIEH12_UNSEQ;
344                         }
345                         *ext_hdrs |= OFPIEH12_FRAG;
346                         break;
347
348                 case IPPROTO_ROUTING:
349                         if (*ext_hdrs & OFPIEH12_ROUTER)
350                                 *ext_hdrs |= OFPIEH12_UNREP;
351                         if ((*ext_hdrs & ~(OFPIEH12_HOP |
352                                            OFPIEH12_DEST |
353                                            OFPIEH12_UNREP)) ||
354                             dest_options_header_count >= 2) {
355                                 *ext_hdrs |= OFPIEH12_UNSEQ;
356                         }
357                         *ext_hdrs |= OFPIEH12_ROUTER;
358                         break;
359
360                 case IPPROTO_HOPOPTS:
361                         if (*ext_hdrs & OFPIEH12_HOP)
362                                 *ext_hdrs |= OFPIEH12_UNREP;
363                         /* OFPIEH12_HOP is set to 1 if a hop-by-hop IPv6
364                          * extension header is present as the first
365                          * extension header in the packet.
366                          */
367                         if (*ext_hdrs == 0)
368                                 *ext_hdrs |= OFPIEH12_HOP;
369                         else
370                                 *ext_hdrs |= OFPIEH12_UNSEQ;
371                         break;
372
373                 default:
374                         return;
375                 }
376
377                 hp = skb_header_pointer(skb, start, sizeof(_hdr), &_hdr);
378                 if (!hp)
379                         break;
380                 next_type = hp->nexthdr;
381                 start += ipv6_optlen(hp);
382         }
383 }
384
385 static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key)
386 {
387         unsigned short frag_off;
388         unsigned int payload_ofs = 0;
389         unsigned int nh_ofs = skb_network_offset(skb);
390         unsigned int nh_len;
391         struct ipv6hdr *nh;
392         int err, nexthdr, flags = 0;
393
394         err = check_header(skb, nh_ofs + sizeof(*nh));
395         if (unlikely(err))
396                 return err;
397
398         nh = ipv6_hdr(skb);
399
400         get_ipv6_ext_hdrs(skb, nh, &key->ipv6.exthdrs);
401
402         key->ip.proto = NEXTHDR_NONE;
403         key->ip.tos = ipv6_get_dsfield(nh);
404         key->ip.ttl = nh->hop_limit;
405         key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
406         key->ipv6.addr.src = nh->saddr;
407         key->ipv6.addr.dst = nh->daddr;
408
409         nexthdr = ipv6_find_hdr(skb, &payload_ofs, -1, &frag_off, &flags);
410         if (flags & IP6_FH_F_FRAG) {
411                 if (frag_off) {
412                         key->ip.frag = OVS_FRAG_TYPE_LATER;
413                         key->ip.proto = NEXTHDR_FRAGMENT;
414                         return 0;
415                 }
416                 key->ip.frag = OVS_FRAG_TYPE_FIRST;
417         } else {
418                 key->ip.frag = OVS_FRAG_TYPE_NONE;
419         }
420
421         /* Delayed handling of error in ipv6_find_hdr() as it
422          * always sets flags and frag_off to a valid value which may be
423          * used to set key->ip.frag above.
424          */
425         if (unlikely(nexthdr < 0))
426                 return -EPROTO;
427
428         nh_len = payload_ofs - nh_ofs;
429         skb_set_transport_header(skb, nh_ofs + nh_len);
430         key->ip.proto = nexthdr;
431         return nh_len;
432 }
433
434 static bool icmp6hdr_ok(struct sk_buff *skb)
435 {
436         return pskb_may_pull(skb, skb_transport_offset(skb) +
437                                   sizeof(struct icmp6hdr));
438 }
439
440 /**
441  * parse_vlan_tag - Parse vlan tag from vlan header.
442  * @skb: skb containing frame to parse
443  * @key_vh: pointer to parsed vlan tag
444  * @untag_vlan: should the vlan header be removed from the frame
445  *
446  * Return: ERROR on memory error.
447  * %0 if it encounters a non-vlan or incomplete packet.
448  * %1 after successfully parsing vlan tag.
449  */
450 static int parse_vlan_tag(struct sk_buff *skb, struct vlan_head *key_vh,
451                           bool untag_vlan)
452 {
453         struct vlan_head *vh = (struct vlan_head *)skb->data;
454
455         if (likely(!eth_type_vlan(vh->tpid)))
456                 return 0;
457
458         if (unlikely(skb->len < sizeof(struct vlan_head) + sizeof(__be16)))
459                 return 0;
460
461         if (unlikely(!pskb_may_pull(skb, sizeof(struct vlan_head) +
462                                  sizeof(__be16))))
463                 return -ENOMEM;
464
465         vh = (struct vlan_head *)skb->data;
466         key_vh->tci = vh->tci | htons(VLAN_CFI_MASK);
467         key_vh->tpid = vh->tpid;
468
469         if (unlikely(untag_vlan)) {
470                 int offset = skb->data - skb_mac_header(skb);
471                 u16 tci;
472                 int err;
473
474                 __skb_push(skb, offset);
475                 err = __skb_vlan_pop(skb, &tci);
476                 __skb_pull(skb, offset);
477                 if (err)
478                         return err;
479                 __vlan_hwaccel_put_tag(skb, key_vh->tpid, tci);
480         } else {
481                 __skb_pull(skb, sizeof(struct vlan_head));
482         }
483         return 1;
484 }
485
486 static void clear_vlan(struct sw_flow_key *key)
487 {
488         key->eth.vlan.tci = 0;
489         key->eth.vlan.tpid = 0;
490         key->eth.cvlan.tci = 0;
491         key->eth.cvlan.tpid = 0;
492 }
493
494 static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
495 {
496         int res;
497
498         if (skb_vlan_tag_present(skb)) {
499                 key->eth.vlan.tci = htons(skb->vlan_tci) | htons(VLAN_CFI_MASK);
500                 key->eth.vlan.tpid = skb->vlan_proto;
501         } else {
502                 /* Parse outer vlan tag in the non-accelerated case. */
503                 res = parse_vlan_tag(skb, &key->eth.vlan, true);
504                 if (res <= 0)
505                         return res;
506         }
507
508         /* Parse inner vlan tag. */
509         res = parse_vlan_tag(skb, &key->eth.cvlan, false);
510         if (res <= 0)
511                 return res;
512
513         return 0;
514 }
515
516 static __be16 parse_ethertype(struct sk_buff *skb)
517 {
518         struct llc_snap_hdr {
519                 u8  dsap;  /* Always 0xAA */
520                 u8  ssap;  /* Always 0xAA */
521                 u8  ctrl;
522                 u8  oui[3];
523                 __be16 ethertype;
524         };
525         struct llc_snap_hdr *llc;
526         __be16 proto;
527
528         proto = *(__be16 *) skb->data;
529         __skb_pull(skb, sizeof(__be16));
530
531         if (eth_proto_is_802_3(proto))
532                 return proto;
533
534         if (skb->len < sizeof(struct llc_snap_hdr))
535                 return htons(ETH_P_802_2);
536
537         if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr))))
538                 return htons(0);
539
540         llc = (struct llc_snap_hdr *) skb->data;
541         if (llc->dsap != LLC_SAP_SNAP ||
542             llc->ssap != LLC_SAP_SNAP ||
543             (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
544                 return htons(ETH_P_802_2);
545
546         __skb_pull(skb, sizeof(struct llc_snap_hdr));
547
548         if (eth_proto_is_802_3(llc->ethertype))
549                 return llc->ethertype;
550
551         return htons(ETH_P_802_2);
552 }
553
554 static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
555                         int nh_len)
556 {
557         struct icmp6hdr *icmp = icmp6_hdr(skb);
558
559         /* The ICMPv6 type and code fields use the 16-bit transport port
560          * fields, so we need to store them in 16-bit network byte order.
561          */
562         key->tp.src = htons(icmp->icmp6_type);
563         key->tp.dst = htons(icmp->icmp6_code);
564         memset(&key->ipv6.nd, 0, sizeof(key->ipv6.nd));
565
566         if (icmp->icmp6_code == 0 &&
567             (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION ||
568              icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) {
569                 int icmp_len = skb->len - skb_transport_offset(skb);
570                 struct nd_msg *nd;
571                 int offset;
572
573                 /* In order to process neighbor discovery options, we need the
574                  * entire packet.
575                  */
576                 if (unlikely(icmp_len < sizeof(*nd)))
577                         return 0;
578
579                 if (unlikely(skb_linearize(skb)))
580                         return -ENOMEM;
581
582                 nd = (struct nd_msg *)skb_transport_header(skb);
583                 key->ipv6.nd.target = nd->target;
584
585                 icmp_len -= sizeof(*nd);
586                 offset = 0;
587                 while (icmp_len >= 8) {
588                         struct nd_opt_hdr *nd_opt =
589                                  (struct nd_opt_hdr *)(nd->opt + offset);
590                         int opt_len = nd_opt->nd_opt_len * 8;
591
592                         if (unlikely(!opt_len || opt_len > icmp_len))
593                                 return 0;
594
595                         /* Store the link layer address if the appropriate
596                          * option is provided.  It is considered an error if
597                          * the same link layer option is specified twice.
598                          */
599                         if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
600                             && opt_len == 8) {
601                                 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll)))
602                                         goto invalid;
603                                 ether_addr_copy(key->ipv6.nd.sll,
604                                                 &nd->opt[offset+sizeof(*nd_opt)]);
605                         } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
606                                    && opt_len == 8) {
607                                 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll)))
608                                         goto invalid;
609                                 ether_addr_copy(key->ipv6.nd.tll,
610                                                 &nd->opt[offset+sizeof(*nd_opt)]);
611                         }
612
613                         icmp_len -= opt_len;
614                         offset += opt_len;
615                 }
616         }
617
618         return 0;
619
620 invalid:
621         memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target));
622         memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll));
623         memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll));
624
625         return 0;
626 }
627
628 static int parse_nsh(struct sk_buff *skb, struct sw_flow_key *key)
629 {
630         struct nshhdr *nh;
631         unsigned int nh_ofs = skb_network_offset(skb);
632         u8 version, length;
633         int err;
634
635         err = check_header(skb, nh_ofs + NSH_BASE_HDR_LEN);
636         if (unlikely(err))
637                 return err;
638
639         nh = nsh_hdr(skb);
640         version = nsh_get_ver(nh);
641         length = nsh_hdr_len(nh);
642
643         if (version != 0)
644                 return -EINVAL;
645
646         err = check_header(skb, nh_ofs + length);
647         if (unlikely(err))
648                 return err;
649
650         nh = nsh_hdr(skb);
651         key->nsh.base.flags = nsh_get_flags(nh);
652         key->nsh.base.ttl = nsh_get_ttl(nh);
653         key->nsh.base.mdtype = nh->mdtype;
654         key->nsh.base.np = nh->np;
655         key->nsh.base.path_hdr = nh->path_hdr;
656         switch (key->nsh.base.mdtype) {
657         case NSH_M_TYPE1:
658                 if (length != NSH_M_TYPE1_LEN)
659                         return -EINVAL;
660                 memcpy(key->nsh.context, nh->md1.context,
661                        sizeof(nh->md1));
662                 break;
663         case NSH_M_TYPE2:
664                 memset(key->nsh.context, 0,
665                        sizeof(nh->md1));
666                 break;
667         default:
668                 return -EINVAL;
669         }
670
671         return 0;
672 }
673
674 /**
675  * key_extract_l3l4 - extracts L3/L4 header information.
676  * @skb: sk_buff that contains the frame, with skb->data pointing to the
677  *       L3 header
678  * @key: output flow key
679  *
680  * Return: %0 if successful, otherwise a negative errno value.
681  */
682 static int key_extract_l3l4(struct sk_buff *skb, struct sw_flow_key *key)
683 {
684         int error;
685
686         /* Network layer. */
687         if (key->eth.type == htons(ETH_P_IP)) {
688                 struct iphdr *nh;
689                 __be16 offset;
690
691                 error = check_iphdr(skb);
692                 if (unlikely(error)) {
693                         memset(&key->ip, 0, sizeof(key->ip));
694                         memset(&key->ipv4, 0, sizeof(key->ipv4));
695                         if (error == -EINVAL) {
696                                 skb->transport_header = skb->network_header;
697                                 error = 0;
698                         }
699                         return error;
700                 }
701
702                 nh = ip_hdr(skb);
703                 key->ipv4.addr.src = nh->saddr;
704                 key->ipv4.addr.dst = nh->daddr;
705
706                 key->ip.proto = nh->protocol;
707                 key->ip.tos = nh->tos;
708                 key->ip.ttl = nh->ttl;
709
710                 offset = nh->frag_off & htons(IP_OFFSET);
711                 if (offset) {
712                         key->ip.frag = OVS_FRAG_TYPE_LATER;
713                         memset(&key->tp, 0, sizeof(key->tp));
714                         return 0;
715                 }
716                 if (nh->frag_off & htons(IP_MF) ||
717                         skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
718                         key->ip.frag = OVS_FRAG_TYPE_FIRST;
719                 else
720                         key->ip.frag = OVS_FRAG_TYPE_NONE;
721
722                 /* Transport layer. */
723                 if (key->ip.proto == IPPROTO_TCP) {
724                         if (tcphdr_ok(skb)) {
725                                 struct tcphdr *tcp = tcp_hdr(skb);
726                                 key->tp.src = tcp->source;
727                                 key->tp.dst = tcp->dest;
728                                 key->tp.flags = TCP_FLAGS_BE16(tcp);
729                         } else {
730                                 memset(&key->tp, 0, sizeof(key->tp));
731                         }
732
733                 } else if (key->ip.proto == IPPROTO_UDP) {
734                         if (udphdr_ok(skb)) {
735                                 struct udphdr *udp = udp_hdr(skb);
736                                 key->tp.src = udp->source;
737                                 key->tp.dst = udp->dest;
738                         } else {
739                                 memset(&key->tp, 0, sizeof(key->tp));
740                         }
741                 } else if (key->ip.proto == IPPROTO_SCTP) {
742                         if (sctphdr_ok(skb)) {
743                                 struct sctphdr *sctp = sctp_hdr(skb);
744                                 key->tp.src = sctp->source;
745                                 key->tp.dst = sctp->dest;
746                         } else {
747                                 memset(&key->tp, 0, sizeof(key->tp));
748                         }
749                 } else if (key->ip.proto == IPPROTO_ICMP) {
750                         if (icmphdr_ok(skb)) {
751                                 struct icmphdr *icmp = icmp_hdr(skb);
752                                 /* The ICMP type and code fields use the 16-bit
753                                  * transport port fields, so we need to store
754                                  * them in 16-bit network byte order. */
755                                 key->tp.src = htons(icmp->type);
756                                 key->tp.dst = htons(icmp->code);
757                         } else {
758                                 memset(&key->tp, 0, sizeof(key->tp));
759                         }
760                 }
761
762         } else if (key->eth.type == htons(ETH_P_ARP) ||
763                    key->eth.type == htons(ETH_P_RARP)) {
764                 struct arp_eth_header *arp;
765                 bool arp_available = arphdr_ok(skb);
766
767                 arp = (struct arp_eth_header *)skb_network_header(skb);
768
769                 if (arp_available &&
770                     arp->ar_hrd == htons(ARPHRD_ETHER) &&
771                     arp->ar_pro == htons(ETH_P_IP) &&
772                     arp->ar_hln == ETH_ALEN &&
773                     arp->ar_pln == 4) {
774
775                         /* We only match on the lower 8 bits of the opcode. */
776                         if (ntohs(arp->ar_op) <= 0xff)
777                                 key->ip.proto = ntohs(arp->ar_op);
778                         else
779                                 key->ip.proto = 0;
780
781                         memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
782                         memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
783                         ether_addr_copy(key->ipv4.arp.sha, arp->ar_sha);
784                         ether_addr_copy(key->ipv4.arp.tha, arp->ar_tha);
785                 } else {
786                         memset(&key->ip, 0, sizeof(key->ip));
787                         memset(&key->ipv4, 0, sizeof(key->ipv4));
788                 }
789         } else if (eth_p_mpls(key->eth.type)) {
790                 u8 label_count = 1;
791
792                 memset(&key->mpls, 0, sizeof(key->mpls));
793                 skb_set_inner_network_header(skb, skb->mac_len);
794                 while (1) {
795                         __be32 lse;
796
797                         error = check_header(skb, skb->mac_len +
798                                              label_count * MPLS_HLEN);
799                         if (unlikely(error))
800                                 return 0;
801
802                         memcpy(&lse, skb_inner_network_header(skb), MPLS_HLEN);
803
804                         if (label_count <= MPLS_LABEL_DEPTH)
805                                 memcpy(&key->mpls.lse[label_count - 1], &lse,
806                                        MPLS_HLEN);
807
808                         skb_set_inner_network_header(skb, skb->mac_len +
809                                                      label_count * MPLS_HLEN);
810                         if (lse & htonl(MPLS_LS_S_MASK))
811                                 break;
812
813                         label_count++;
814                 }
815                 if (label_count > MPLS_LABEL_DEPTH)
816                         label_count = MPLS_LABEL_DEPTH;
817
818                 key->mpls.num_labels_mask = GENMASK(label_count - 1, 0);
819         } else if (key->eth.type == htons(ETH_P_IPV6)) {
820                 int nh_len;             /* IPv6 Header + Extensions */
821
822                 nh_len = parse_ipv6hdr(skb, key);
823                 if (unlikely(nh_len < 0)) {
824                         switch (nh_len) {
825                         case -EINVAL:
826                                 memset(&key->ip, 0, sizeof(key->ip));
827                                 memset(&key->ipv6.addr, 0, sizeof(key->ipv6.addr));
828                                 fallthrough;
829                         case -EPROTO:
830                                 skb->transport_header = skb->network_header;
831                                 error = 0;
832                                 break;
833                         default:
834                                 error = nh_len;
835                         }
836                         return error;
837                 }
838
839                 if (key->ip.frag == OVS_FRAG_TYPE_LATER) {
840                         memset(&key->tp, 0, sizeof(key->tp));
841                         return 0;
842                 }
843                 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
844                         key->ip.frag = OVS_FRAG_TYPE_FIRST;
845
846                 /* Transport layer. */
847                 if (key->ip.proto == NEXTHDR_TCP) {
848                         if (tcphdr_ok(skb)) {
849                                 struct tcphdr *tcp = tcp_hdr(skb);
850                                 key->tp.src = tcp->source;
851                                 key->tp.dst = tcp->dest;
852                                 key->tp.flags = TCP_FLAGS_BE16(tcp);
853                         } else {
854                                 memset(&key->tp, 0, sizeof(key->tp));
855                         }
856                 } else if (key->ip.proto == NEXTHDR_UDP) {
857                         if (udphdr_ok(skb)) {
858                                 struct udphdr *udp = udp_hdr(skb);
859                                 key->tp.src = udp->source;
860                                 key->tp.dst = udp->dest;
861                         } else {
862                                 memset(&key->tp, 0, sizeof(key->tp));
863                         }
864                 } else if (key->ip.proto == NEXTHDR_SCTP) {
865                         if (sctphdr_ok(skb)) {
866                                 struct sctphdr *sctp = sctp_hdr(skb);
867                                 key->tp.src = sctp->source;
868                                 key->tp.dst = sctp->dest;
869                         } else {
870                                 memset(&key->tp, 0, sizeof(key->tp));
871                         }
872                 } else if (key->ip.proto == NEXTHDR_ICMP) {
873                         if (icmp6hdr_ok(skb)) {
874                                 error = parse_icmpv6(skb, key, nh_len);
875                                 if (error)
876                                         return error;
877                         } else {
878                                 memset(&key->tp, 0, sizeof(key->tp));
879                         }
880                 }
881         } else if (key->eth.type == htons(ETH_P_NSH)) {
882                 error = parse_nsh(skb, key);
883                 if (error)
884                         return error;
885         }
886         return 0;
887 }
888
889 /**
890  * key_extract - extracts a flow key from an Ethernet frame.
891  * @skb: sk_buff that contains the frame, with skb->data pointing to the
892  * Ethernet header
893  * @key: output flow key
894  *
895  * The caller must ensure that skb->len >= ETH_HLEN.
896  *
897  * Initializes @skb header fields as follows:
898  *
899  *    - skb->mac_header: the L2 header.
900  *
901  *    - skb->network_header: just past the L2 header, or just past the
902  *      VLAN header, to the first byte of the L2 payload.
903  *
904  *    - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6
905  *      on output, then just past the IP header, if one is present and
906  *      of a correct length, otherwise the same as skb->network_header.
907  *      For other key->eth.type values it is left untouched.
908  *
909  *    - skb->protocol: the type of the data starting at skb->network_header.
910  *      Equals to key->eth.type.
911  *
912  * Return: %0 if successful, otherwise a negative errno value.
913  */
914 static int key_extract(struct sk_buff *skb, struct sw_flow_key *key)
915 {
916         struct ethhdr *eth;
917
918         /* Flags are always used as part of stats */
919         key->tp.flags = 0;
920
921         skb_reset_mac_header(skb);
922
923         /* Link layer. */
924         clear_vlan(key);
925         if (ovs_key_mac_proto(key) == MAC_PROTO_NONE) {
926                 if (unlikely(eth_type_vlan(skb->protocol)))
927                         return -EINVAL;
928
929                 skb_reset_network_header(skb);
930                 key->eth.type = skb->protocol;
931         } else {
932                 eth = eth_hdr(skb);
933                 ether_addr_copy(key->eth.src, eth->h_source);
934                 ether_addr_copy(key->eth.dst, eth->h_dest);
935
936                 __skb_pull(skb, 2 * ETH_ALEN);
937                 /* We are going to push all headers that we pull, so no need to
938                  * update skb->csum here.
939                  */
940
941                 if (unlikely(parse_vlan(skb, key)))
942                         return -ENOMEM;
943
944                 key->eth.type = parse_ethertype(skb);
945                 if (unlikely(key->eth.type == htons(0)))
946                         return -ENOMEM;
947
948                 /* Multiple tagged packets need to retain TPID to satisfy
949                  * skb_vlan_pop(), which will later shift the ethertype into
950                  * skb->protocol.
951                  */
952                 if (key->eth.cvlan.tci & htons(VLAN_CFI_MASK))
953                         skb->protocol = key->eth.cvlan.tpid;
954                 else
955                         skb->protocol = key->eth.type;
956
957                 skb_reset_network_header(skb);
958                 __skb_push(skb, skb->data - skb_mac_header(skb));
959         }
960
961         skb_reset_mac_len(skb);
962
963         /* Fill out L3/L4 key info, if any */
964         return key_extract_l3l4(skb, key);
965 }
966
967 /* In the case of conntrack fragment handling it expects L3 headers,
968  * add a helper.
969  */
970 int ovs_flow_key_update_l3l4(struct sk_buff *skb, struct sw_flow_key *key)
971 {
972         return key_extract_l3l4(skb, key);
973 }
974
975 int ovs_flow_key_update(struct sk_buff *skb, struct sw_flow_key *key)
976 {
977         int res;
978
979         res = key_extract(skb, key);
980         if (!res)
981                 key->mac_proto &= ~SW_FLOW_KEY_INVALID;
982
983         return res;
984 }
985
986 static int key_extract_mac_proto(struct sk_buff *skb)
987 {
988         switch (skb->dev->type) {
989         case ARPHRD_ETHER:
990                 return MAC_PROTO_ETHERNET;
991         case ARPHRD_NONE:
992                 if (skb->protocol == htons(ETH_P_TEB))
993                         return MAC_PROTO_ETHERNET;
994                 return MAC_PROTO_NONE;
995         }
996         WARN_ON_ONCE(1);
997         return -EINVAL;
998 }
999
1000 int ovs_flow_key_extract(const struct ip_tunnel_info *tun_info,
1001                          struct sk_buff *skb, struct sw_flow_key *key)
1002 {
1003 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
1004         struct tc_skb_ext *tc_ext;
1005 #endif
1006         bool post_ct = false, post_ct_snat = false, post_ct_dnat = false;
1007         int res, err;
1008         u16 zone = 0;
1009
1010         /* Extract metadata from packet. */
1011         if (tun_info) {
1012                 key->tun_proto = ip_tunnel_info_af(tun_info);
1013                 memcpy(&key->tun_key, &tun_info->key, sizeof(key->tun_key));
1014
1015                 if (tun_info->options_len) {
1016                         BUILD_BUG_ON((1 << (sizeof(tun_info->options_len) *
1017                                                    8)) - 1
1018                                         > sizeof(key->tun_opts));
1019
1020                         ip_tunnel_info_opts_get(TUN_METADATA_OPTS(key, tun_info->options_len),
1021                                                 tun_info);
1022                         key->tun_opts_len = tun_info->options_len;
1023                 } else {
1024                         key->tun_opts_len = 0;
1025                 }
1026         } else  {
1027                 key->tun_proto = 0;
1028                 key->tun_opts_len = 0;
1029                 memset(&key->tun_key, 0, sizeof(key->tun_key));
1030         }
1031
1032         key->phy.priority = skb->priority;
1033         key->phy.in_port = OVS_CB(skb)->input_vport->port_no;
1034         key->phy.skb_mark = skb->mark;
1035         key->ovs_flow_hash = 0;
1036         res = key_extract_mac_proto(skb);
1037         if (res < 0)
1038                 return res;
1039         key->mac_proto = res;
1040
1041 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
1042         if (tc_skb_ext_tc_enabled()) {
1043                 tc_ext = skb_ext_find(skb, TC_SKB_EXT);
1044                 key->recirc_id = tc_ext && !tc_ext->act_miss ?
1045                                  tc_ext->chain : 0;
1046                 OVS_CB(skb)->mru = tc_ext ? tc_ext->mru : 0;
1047                 post_ct = tc_ext ? tc_ext->post_ct : false;
1048                 post_ct_snat = post_ct ? tc_ext->post_ct_snat : false;
1049                 post_ct_dnat = post_ct ? tc_ext->post_ct_dnat : false;
1050                 zone = post_ct ? tc_ext->zone : 0;
1051         } else {
1052                 key->recirc_id = 0;
1053         }
1054 #else
1055         key->recirc_id = 0;
1056 #endif
1057
1058         err = key_extract(skb, key);
1059         if (!err) {
1060                 ovs_ct_fill_key(skb, key, post_ct);   /* Must be after key_extract(). */
1061                 if (post_ct) {
1062                         if (!skb_get_nfct(skb)) {
1063                                 key->ct_zone = zone;
1064                         } else {
1065                                 if (!post_ct_dnat)
1066                                         key->ct_state &= ~OVS_CS_F_DST_NAT;
1067                                 if (!post_ct_snat)
1068                                         key->ct_state &= ~OVS_CS_F_SRC_NAT;
1069                         }
1070                 }
1071         }
1072         return err;
1073 }
1074
1075 int ovs_flow_key_extract_userspace(struct net *net, const struct nlattr *attr,
1076                                    struct sk_buff *skb,
1077                                    struct sw_flow_key *key, bool log)
1078 {
1079         const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1080         u64 attrs = 0;
1081         int err;
1082
1083         err = parse_flow_nlattrs(attr, a, &attrs, log);
1084         if (err)
1085                 return -EINVAL;
1086
1087         /* Extract metadata from netlink attributes. */
1088         err = ovs_nla_get_flow_metadata(net, a, attrs, key, log);
1089         if (err)
1090                 return err;
1091
1092         /* key_extract assumes that skb->protocol is set-up for
1093          * layer 3 packets which is the case for other callers,
1094          * in particular packets received from the network stack.
1095          * Here the correct value can be set from the metadata
1096          * extracted above.
1097          * For L2 packet key eth type would be zero. skb protocol
1098          * would be set to correct value later during key-extact.
1099          */
1100
1101         skb->protocol = key->eth.type;
1102         err = key_extract(skb, key);
1103         if (err)
1104                 return err;
1105
1106         /* Check that we have conntrack original direction tuple metadata only
1107          * for packets for which it makes sense.  Otherwise the key may be
1108          * corrupted due to overlapping key fields.
1109          */
1110         if (attrs & (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4) &&
1111             key->eth.type != htons(ETH_P_IP))
1112                 return -EINVAL;
1113         if (attrs & (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6) &&
1114             (key->eth.type != htons(ETH_P_IPV6) ||
1115              sw_flow_key_is_nd(key)))
1116                 return -EINVAL;
1117
1118         return 0;
1119 }