Mention branches and keyring.
[releases.git] / ext4 / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *      (jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/bitops.h>
41 #include <linux/iomap.h>
42 #include <linux/iversion.h>
43
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "truncate.h"
48
49 #include <trace/events/ext4.h>
50
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52                               struct ext4_inode_info *ei)
53 {
54         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55         __u32 csum;
56         __u16 dummy_csum = 0;
57         int offset = offsetof(struct ext4_inode, i_checksum_lo);
58         unsigned int csum_size = sizeof(dummy_csum);
59
60         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
61         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
62         offset += csum_size;
63         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
64                            EXT4_GOOD_OLD_INODE_SIZE - offset);
65
66         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
67                 offset = offsetof(struct ext4_inode, i_checksum_hi);
68                 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
69                                    EXT4_GOOD_OLD_INODE_SIZE,
70                                    offset - EXT4_GOOD_OLD_INODE_SIZE);
71                 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
72                         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
73                                            csum_size);
74                         offset += csum_size;
75                 }
76                 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
77                                    EXT4_INODE_SIZE(inode->i_sb) - offset);
78         }
79
80         return csum;
81 }
82
83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84                                   struct ext4_inode_info *ei)
85 {
86         __u32 provided, calculated;
87
88         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89             cpu_to_le32(EXT4_OS_LINUX) ||
90             !ext4_has_metadata_csum(inode->i_sb))
91                 return 1;
92
93         provided = le16_to_cpu(raw->i_checksum_lo);
94         calculated = ext4_inode_csum(inode, raw, ei);
95         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
98         else
99                 calculated &= 0xFFFF;
100
101         return provided == calculated;
102 }
103
104 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105                          struct ext4_inode_info *ei)
106 {
107         __u32 csum;
108
109         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110             cpu_to_le32(EXT4_OS_LINUX) ||
111             !ext4_has_metadata_csum(inode->i_sb))
112                 return;
113
114         csum = ext4_inode_csum(inode, raw, ei);
115         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
119 }
120
121 static inline int ext4_begin_ordered_truncate(struct inode *inode,
122                                               loff_t new_size)
123 {
124         trace_ext4_begin_ordered_truncate(inode, new_size);
125         /*
126          * If jinode is zero, then we never opened the file for
127          * writing, so there's no need to call
128          * jbd2_journal_begin_ordered_truncate() since there's no
129          * outstanding writes we need to flush.
130          */
131         if (!EXT4_I(inode)->jinode)
132                 return 0;
133         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134                                                    EXT4_I(inode)->jinode,
135                                                    new_size);
136 }
137
138 static void ext4_invalidatepage(struct page *page, unsigned int offset,
139                                 unsigned int length);
140 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143                                   int pextents);
144
145 /*
146  * Test whether an inode is a fast symlink.
147  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
148  */
149 int ext4_inode_is_fast_symlink(struct inode *inode)
150 {
151         if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
152                 int ea_blocks = EXT4_I(inode)->i_file_acl ?
153                                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
154
155                 if (ext4_has_inline_data(inode))
156                         return 0;
157
158                 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
159         }
160         return S_ISLNK(inode->i_mode) && inode->i_size &&
161                (inode->i_size < EXT4_N_BLOCKS * 4);
162 }
163
164 /*
165  * Called at the last iput() if i_nlink is zero.
166  */
167 void ext4_evict_inode(struct inode *inode)
168 {
169         handle_t *handle;
170         int err;
171         /*
172          * Credits for final inode cleanup and freeing:
173          * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
174          * (xattr block freeing), bitmap, group descriptor (inode freeing)
175          */
176         int extra_credits = 6;
177         struct ext4_xattr_inode_array *ea_inode_array = NULL;
178         bool freeze_protected = false;
179
180         trace_ext4_evict_inode(inode);
181
182         if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)
183                 ext4_evict_ea_inode(inode);
184         if (inode->i_nlink) {
185                 /*
186                  * When journalling data dirty buffers are tracked only in the
187                  * journal. So although mm thinks everything is clean and
188                  * ready for reaping the inode might still have some pages to
189                  * write in the running transaction or waiting to be
190                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
191                  * (via truncate_inode_pages()) to discard these buffers can
192                  * cause data loss. Also even if we did not discard these
193                  * buffers, we would have no way to find them after the inode
194                  * is reaped and thus user could see stale data if he tries to
195                  * read them before the transaction is checkpointed. So be
196                  * careful and force everything to disk here... We use
197                  * ei->i_datasync_tid to store the newest transaction
198                  * containing inode's data.
199                  *
200                  * Note that directories do not have this problem because they
201                  * don't use page cache.
202                  */
203                 if (inode->i_ino != EXT4_JOURNAL_INO &&
204                     ext4_should_journal_data(inode) &&
205                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
206                     inode->i_data.nrpages) {
207                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
208                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
209
210                         jbd2_complete_transaction(journal, commit_tid);
211                         filemap_write_and_wait(&inode->i_data);
212                 }
213                 truncate_inode_pages_final(&inode->i_data);
214
215                 goto no_delete;
216         }
217
218         if (is_bad_inode(inode))
219                 goto no_delete;
220         dquot_initialize(inode);
221
222         if (ext4_should_order_data(inode))
223                 ext4_begin_ordered_truncate(inode, 0);
224         truncate_inode_pages_final(&inode->i_data);
225
226         /*
227          * For inodes with journalled data, transaction commit could have
228          * dirtied the inode. And for inodes with dioread_nolock, unwritten
229          * extents converting worker could merge extents and also have dirtied
230          * the inode. Flush worker is ignoring it because of I_FREEING flag but
231          * we still need to remove the inode from the writeback lists.
232          */
233         if (!list_empty_careful(&inode->i_io_list))
234                 inode_io_list_del(inode);
235
236         /*
237          * Protect us against freezing - iput() caller didn't have to have any
238          * protection against it. When we are in a running transaction though,
239          * we are already protected against freezing and we cannot grab further
240          * protection due to lock ordering constraints.
241          */
242         if (!ext4_journal_current_handle()) {
243                 sb_start_intwrite(inode->i_sb);
244                 freeze_protected = true;
245         }
246
247         if (!IS_NOQUOTA(inode))
248                 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
249
250         /*
251          * Block bitmap, group descriptor, and inode are accounted in both
252          * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
253          */
254         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
255                          ext4_blocks_for_truncate(inode) + extra_credits - 3);
256         if (IS_ERR(handle)) {
257                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
258                 /*
259                  * If we're going to skip the normal cleanup, we still need to
260                  * make sure that the in-core orphan linked list is properly
261                  * cleaned up.
262                  */
263                 ext4_orphan_del(NULL, inode);
264                 if (freeze_protected)
265                         sb_end_intwrite(inode->i_sb);
266                 goto no_delete;
267         }
268
269         if (IS_SYNC(inode))
270                 ext4_handle_sync(handle);
271
272         /*
273          * Set inode->i_size to 0 before calling ext4_truncate(). We need
274          * special handling of symlinks here because i_size is used to
275          * determine whether ext4_inode_info->i_data contains symlink data or
276          * block mappings. Setting i_size to 0 will remove its fast symlink
277          * status. Erase i_data so that it becomes a valid empty block map.
278          */
279         if (ext4_inode_is_fast_symlink(inode))
280                 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
281         inode->i_size = 0;
282         err = ext4_mark_inode_dirty(handle, inode);
283         if (err) {
284                 ext4_warning(inode->i_sb,
285                              "couldn't mark inode dirty (err %d)", err);
286                 goto stop_handle;
287         }
288         if (inode->i_blocks) {
289                 err = ext4_truncate(inode);
290                 if (err) {
291                         ext4_error_err(inode->i_sb, -err,
292                                        "couldn't truncate inode %lu (err %d)",
293                                        inode->i_ino, err);
294                         goto stop_handle;
295                 }
296         }
297
298         /* Remove xattr references. */
299         err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
300                                       extra_credits);
301         if (err) {
302                 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
303 stop_handle:
304                 ext4_journal_stop(handle);
305                 ext4_orphan_del(NULL, inode);
306                 if (freeze_protected)
307                         sb_end_intwrite(inode->i_sb);
308                 ext4_xattr_inode_array_free(ea_inode_array);
309                 goto no_delete;
310         }
311
312         /*
313          * Kill off the orphan record which ext4_truncate created.
314          * AKPM: I think this can be inside the above `if'.
315          * Note that ext4_orphan_del() has to be able to cope with the
316          * deletion of a non-existent orphan - this is because we don't
317          * know if ext4_truncate() actually created an orphan record.
318          * (Well, we could do this if we need to, but heck - it works)
319          */
320         ext4_orphan_del(handle, inode);
321         EXT4_I(inode)->i_dtime  = (__u32)ktime_get_real_seconds();
322
323         /*
324          * One subtle ordering requirement: if anything has gone wrong
325          * (transaction abort, IO errors, whatever), then we can still
326          * do these next steps (the fs will already have been marked as
327          * having errors), but we can't free the inode if the mark_dirty
328          * fails.
329          */
330         if (ext4_mark_inode_dirty(handle, inode))
331                 /* If that failed, just do the required in-core inode clear. */
332                 ext4_clear_inode(inode);
333         else
334                 ext4_free_inode(handle, inode);
335         ext4_journal_stop(handle);
336         if (freeze_protected)
337                 sb_end_intwrite(inode->i_sb);
338         ext4_xattr_inode_array_free(ea_inode_array);
339         return;
340 no_delete:
341         /*
342          * Check out some where else accidentally dirty the evicting inode,
343          * which may probably cause inode use-after-free issues later.
344          */
345         WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list));
346
347         if (!list_empty(&EXT4_I(inode)->i_fc_list))
348                 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM);
349         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
350 }
351
352 #ifdef CONFIG_QUOTA
353 qsize_t *ext4_get_reserved_space(struct inode *inode)
354 {
355         return &EXT4_I(inode)->i_reserved_quota;
356 }
357 #endif
358
359 /*
360  * Called with i_data_sem down, which is important since we can call
361  * ext4_discard_preallocations() from here.
362  */
363 void ext4_da_update_reserve_space(struct inode *inode,
364                                         int used, int quota_claim)
365 {
366         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
367         struct ext4_inode_info *ei = EXT4_I(inode);
368
369         spin_lock(&ei->i_block_reservation_lock);
370         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
371         if (unlikely(used > ei->i_reserved_data_blocks)) {
372                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
373                          "with only %d reserved data blocks",
374                          __func__, inode->i_ino, used,
375                          ei->i_reserved_data_blocks);
376                 WARN_ON(1);
377                 used = ei->i_reserved_data_blocks;
378         }
379
380         /* Update per-inode reservations */
381         ei->i_reserved_data_blocks -= used;
382         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
383
384         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
385
386         /* Update quota subsystem for data blocks */
387         if (quota_claim)
388                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
389         else {
390                 /*
391                  * We did fallocate with an offset that is already delayed
392                  * allocated. So on delayed allocated writeback we should
393                  * not re-claim the quota for fallocated blocks.
394                  */
395                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
396         }
397
398         /*
399          * If we have done all the pending block allocations and if
400          * there aren't any writers on the inode, we can discard the
401          * inode's preallocations.
402          */
403         if ((ei->i_reserved_data_blocks == 0) &&
404             !inode_is_open_for_write(inode))
405                 ext4_discard_preallocations(inode, 0);
406 }
407
408 static int __check_block_validity(struct inode *inode, const char *func,
409                                 unsigned int line,
410                                 struct ext4_map_blocks *map)
411 {
412         if (ext4_has_feature_journal(inode->i_sb) &&
413             (inode->i_ino ==
414              le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
415                 return 0;
416         if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
417                 ext4_error_inode(inode, func, line, map->m_pblk,
418                                  "lblock %lu mapped to illegal pblock %llu "
419                                  "(length %d)", (unsigned long) map->m_lblk,
420                                  map->m_pblk, map->m_len);
421                 return -EFSCORRUPTED;
422         }
423         return 0;
424 }
425
426 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
427                        ext4_lblk_t len)
428 {
429         int ret;
430
431         if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
432                 return fscrypt_zeroout_range(inode, lblk, pblk, len);
433
434         ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
435         if (ret > 0)
436                 ret = 0;
437
438         return ret;
439 }
440
441 #define check_block_validity(inode, map)        \
442         __check_block_validity((inode), __func__, __LINE__, (map))
443
444 #ifdef ES_AGGRESSIVE_TEST
445 static void ext4_map_blocks_es_recheck(handle_t *handle,
446                                        struct inode *inode,
447                                        struct ext4_map_blocks *es_map,
448                                        struct ext4_map_blocks *map,
449                                        int flags)
450 {
451         int retval;
452
453         map->m_flags = 0;
454         /*
455          * There is a race window that the result is not the same.
456          * e.g. xfstests #223 when dioread_nolock enables.  The reason
457          * is that we lookup a block mapping in extent status tree with
458          * out taking i_data_sem.  So at the time the unwritten extent
459          * could be converted.
460          */
461         down_read(&EXT4_I(inode)->i_data_sem);
462         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
463                 retval = ext4_ext_map_blocks(handle, inode, map, 0);
464         } else {
465                 retval = ext4_ind_map_blocks(handle, inode, map, 0);
466         }
467         up_read((&EXT4_I(inode)->i_data_sem));
468
469         /*
470          * We don't check m_len because extent will be collpased in status
471          * tree.  So the m_len might not equal.
472          */
473         if (es_map->m_lblk != map->m_lblk ||
474             es_map->m_flags != map->m_flags ||
475             es_map->m_pblk != map->m_pblk) {
476                 printk("ES cache assertion failed for inode: %lu "
477                        "es_cached ex [%d/%d/%llu/%x] != "
478                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
479                        inode->i_ino, es_map->m_lblk, es_map->m_len,
480                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
481                        map->m_len, map->m_pblk, map->m_flags,
482                        retval, flags);
483         }
484 }
485 #endif /* ES_AGGRESSIVE_TEST */
486
487 /*
488  * The ext4_map_blocks() function tries to look up the requested blocks,
489  * and returns if the blocks are already mapped.
490  *
491  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
492  * and store the allocated blocks in the result buffer head and mark it
493  * mapped.
494  *
495  * If file type is extents based, it will call ext4_ext_map_blocks(),
496  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
497  * based files
498  *
499  * On success, it returns the number of blocks being mapped or allocated.  if
500  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
501  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
502  *
503  * It returns 0 if plain look up failed (blocks have not been allocated), in
504  * that case, @map is returned as unmapped but we still do fill map->m_len to
505  * indicate the length of a hole starting at map->m_lblk.
506  *
507  * It returns the error in case of allocation failure.
508  */
509 int ext4_map_blocks(handle_t *handle, struct inode *inode,
510                     struct ext4_map_blocks *map, int flags)
511 {
512         struct extent_status es;
513         int retval;
514         int ret = 0;
515 #ifdef ES_AGGRESSIVE_TEST
516         struct ext4_map_blocks orig_map;
517
518         memcpy(&orig_map, map, sizeof(*map));
519 #endif
520
521         map->m_flags = 0;
522         ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
523                   flags, map->m_len, (unsigned long) map->m_lblk);
524
525         /*
526          * ext4_map_blocks returns an int, and m_len is an unsigned int
527          */
528         if (unlikely(map->m_len > INT_MAX))
529                 map->m_len = INT_MAX;
530
531         /* We can handle the block number less than EXT_MAX_BLOCKS */
532         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
533                 return -EFSCORRUPTED;
534
535         /* Lookup extent status tree firstly */
536         if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
537             ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
538                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
539                         map->m_pblk = ext4_es_pblock(&es) +
540                                         map->m_lblk - es.es_lblk;
541                         map->m_flags |= ext4_es_is_written(&es) ?
542                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
543                         retval = es.es_len - (map->m_lblk - es.es_lblk);
544                         if (retval > map->m_len)
545                                 retval = map->m_len;
546                         map->m_len = retval;
547                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
548                         map->m_pblk = 0;
549                         retval = es.es_len - (map->m_lblk - es.es_lblk);
550                         if (retval > map->m_len)
551                                 retval = map->m_len;
552                         map->m_len = retval;
553                         retval = 0;
554                 } else {
555                         BUG();
556                 }
557 #ifdef ES_AGGRESSIVE_TEST
558                 ext4_map_blocks_es_recheck(handle, inode, map,
559                                            &orig_map, flags);
560 #endif
561                 goto found;
562         }
563
564         /*
565          * Try to see if we can get the block without requesting a new
566          * file system block.
567          */
568         down_read(&EXT4_I(inode)->i_data_sem);
569         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
570                 retval = ext4_ext_map_blocks(handle, inode, map, 0);
571         } else {
572                 retval = ext4_ind_map_blocks(handle, inode, map, 0);
573         }
574         if (retval > 0) {
575                 unsigned int status;
576
577                 if (unlikely(retval != map->m_len)) {
578                         ext4_warning(inode->i_sb,
579                                      "ES len assertion failed for inode "
580                                      "%lu: retval %d != map->m_len %d",
581                                      inode->i_ino, retval, map->m_len);
582                         WARN_ON(1);
583                 }
584
585                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
586                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
587                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
588                     !(status & EXTENT_STATUS_WRITTEN) &&
589                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
590                                        map->m_lblk + map->m_len - 1))
591                         status |= EXTENT_STATUS_DELAYED;
592                 ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
593                                       map->m_pblk, status);
594         }
595         up_read((&EXT4_I(inode)->i_data_sem));
596
597 found:
598         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
599                 ret = check_block_validity(inode, map);
600                 if (ret != 0)
601                         return ret;
602         }
603
604         /* If it is only a block(s) look up */
605         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
606                 return retval;
607
608         /*
609          * Returns if the blocks have already allocated
610          *
611          * Note that if blocks have been preallocated
612          * ext4_ext_get_block() returns the create = 0
613          * with buffer head unmapped.
614          */
615         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
616                 /*
617                  * If we need to convert extent to unwritten
618                  * we continue and do the actual work in
619                  * ext4_ext_map_blocks()
620                  */
621                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
622                         return retval;
623
624         /*
625          * Here we clear m_flags because after allocating an new extent,
626          * it will be set again.
627          */
628         map->m_flags &= ~EXT4_MAP_FLAGS;
629
630         /*
631          * New blocks allocate and/or writing to unwritten extent
632          * will possibly result in updating i_data, so we take
633          * the write lock of i_data_sem, and call get_block()
634          * with create == 1 flag.
635          */
636         down_write(&EXT4_I(inode)->i_data_sem);
637
638         /*
639          * We need to check for EXT4 here because migrate
640          * could have changed the inode type in between
641          */
642         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
643                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
644         } else {
645                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
646
647                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
648                         /*
649                          * We allocated new blocks which will result in
650                          * i_data's format changing.  Force the migrate
651                          * to fail by clearing migrate flags
652                          */
653                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
654                 }
655         }
656
657         if (retval > 0) {
658                 unsigned int status;
659
660                 if (unlikely(retval != map->m_len)) {
661                         ext4_warning(inode->i_sb,
662                                      "ES len assertion failed for inode "
663                                      "%lu: retval %d != map->m_len %d",
664                                      inode->i_ino, retval, map->m_len);
665                         WARN_ON(1);
666                 }
667
668                 /*
669                  * We have to zeroout blocks before inserting them into extent
670                  * status tree. Otherwise someone could look them up there and
671                  * use them before they are really zeroed. We also have to
672                  * unmap metadata before zeroing as otherwise writeback can
673                  * overwrite zeros with stale data from block device.
674                  */
675                 if (flags & EXT4_GET_BLOCKS_ZERO &&
676                     map->m_flags & EXT4_MAP_MAPPED &&
677                     map->m_flags & EXT4_MAP_NEW) {
678                         ret = ext4_issue_zeroout(inode, map->m_lblk,
679                                                  map->m_pblk, map->m_len);
680                         if (ret) {
681                                 retval = ret;
682                                 goto out_sem;
683                         }
684                 }
685
686                 /*
687                  * If the extent has been zeroed out, we don't need to update
688                  * extent status tree.
689                  */
690                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
691                     ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
692                         if (ext4_es_is_written(&es))
693                                 goto out_sem;
694                 }
695                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
696                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
697                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
698                     !(status & EXTENT_STATUS_WRITTEN) &&
699                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
700                                        map->m_lblk + map->m_len - 1))
701                         status |= EXTENT_STATUS_DELAYED;
702                 ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
703                                       map->m_pblk, status);
704         }
705
706 out_sem:
707         up_write((&EXT4_I(inode)->i_data_sem));
708         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
709                 ret = check_block_validity(inode, map);
710                 if (ret != 0)
711                         return ret;
712
713                 /*
714                  * Inodes with freshly allocated blocks where contents will be
715                  * visible after transaction commit must be on transaction's
716                  * ordered data list.
717                  */
718                 if (map->m_flags & EXT4_MAP_NEW &&
719                     !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
720                     !(flags & EXT4_GET_BLOCKS_ZERO) &&
721                     !ext4_is_quota_file(inode) &&
722                     ext4_should_order_data(inode)) {
723                         loff_t start_byte =
724                                 (loff_t)map->m_lblk << inode->i_blkbits;
725                         loff_t length = (loff_t)map->m_len << inode->i_blkbits;
726
727                         if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
728                                 ret = ext4_jbd2_inode_add_wait(handle, inode,
729                                                 start_byte, length);
730                         else
731                                 ret = ext4_jbd2_inode_add_write(handle, inode,
732                                                 start_byte, length);
733                         if (ret)
734                                 return ret;
735                 }
736         }
737         if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
738                                 map->m_flags & EXT4_MAP_MAPPED))
739                 ext4_fc_track_range(handle, inode, map->m_lblk,
740                                         map->m_lblk + map->m_len - 1);
741         if (retval < 0)
742                 ext_debug(inode, "failed with err %d\n", retval);
743         return retval;
744 }
745
746 /*
747  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
748  * we have to be careful as someone else may be manipulating b_state as well.
749  */
750 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
751 {
752         unsigned long old_state;
753         unsigned long new_state;
754
755         flags &= EXT4_MAP_FLAGS;
756
757         /* Dummy buffer_head? Set non-atomically. */
758         if (!bh->b_page) {
759                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
760                 return;
761         }
762         /*
763          * Someone else may be modifying b_state. Be careful! This is ugly but
764          * once we get rid of using bh as a container for mapping information
765          * to pass to / from get_block functions, this can go away.
766          */
767         do {
768                 old_state = READ_ONCE(bh->b_state);
769                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
770         } while (unlikely(
771                  cmpxchg(&bh->b_state, old_state, new_state) != old_state));
772 }
773
774 static int _ext4_get_block(struct inode *inode, sector_t iblock,
775                            struct buffer_head *bh, int flags)
776 {
777         struct ext4_map_blocks map;
778         int ret = 0;
779
780         if (ext4_has_inline_data(inode))
781                 return -ERANGE;
782
783         map.m_lblk = iblock;
784         map.m_len = bh->b_size >> inode->i_blkbits;
785
786         ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
787                               flags);
788         if (ret > 0) {
789                 map_bh(bh, inode->i_sb, map.m_pblk);
790                 ext4_update_bh_state(bh, map.m_flags);
791                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
792                 ret = 0;
793         } else if (ret == 0) {
794                 /* hole case, need to fill in bh->b_size */
795                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
796         }
797         return ret;
798 }
799
800 int ext4_get_block(struct inode *inode, sector_t iblock,
801                    struct buffer_head *bh, int create)
802 {
803         return _ext4_get_block(inode, iblock, bh,
804                                create ? EXT4_GET_BLOCKS_CREATE : 0);
805 }
806
807 /*
808  * Get block function used when preparing for buffered write if we require
809  * creating an unwritten extent if blocks haven't been allocated.  The extent
810  * will be converted to written after the IO is complete.
811  */
812 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
813                              struct buffer_head *bh_result, int create)
814 {
815         ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
816                    inode->i_ino, create);
817         return _ext4_get_block(inode, iblock, bh_result,
818                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
819 }
820
821 /* Maximum number of blocks we map for direct IO at once. */
822 #define DIO_MAX_BLOCKS 4096
823
824 /*
825  * `handle' can be NULL if create is zero
826  */
827 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
828                                 ext4_lblk_t block, int map_flags)
829 {
830         struct ext4_map_blocks map;
831         struct buffer_head *bh;
832         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
833         int err;
834
835         J_ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
836                  || handle != NULL || create == 0);
837
838         map.m_lblk = block;
839         map.m_len = 1;
840         err = ext4_map_blocks(handle, inode, &map, map_flags);
841
842         if (err == 0)
843                 return create ? ERR_PTR(-ENOSPC) : NULL;
844         if (err < 0)
845                 return ERR_PTR(err);
846
847         bh = sb_getblk(inode->i_sb, map.m_pblk);
848         if (unlikely(!bh))
849                 return ERR_PTR(-ENOMEM);
850         if (map.m_flags & EXT4_MAP_NEW) {
851                 J_ASSERT(create != 0);
852                 J_ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
853                          || (handle != NULL));
854
855                 /*
856                  * Now that we do not always journal data, we should
857                  * keep in mind whether this should always journal the
858                  * new buffer as metadata.  For now, regular file
859                  * writes use ext4_get_block instead, so it's not a
860                  * problem.
861                  */
862                 lock_buffer(bh);
863                 BUFFER_TRACE(bh, "call get_create_access");
864                 err = ext4_journal_get_create_access(handle, bh);
865                 if (unlikely(err)) {
866                         unlock_buffer(bh);
867                         goto errout;
868                 }
869                 if (!buffer_uptodate(bh)) {
870                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
871                         set_buffer_uptodate(bh);
872                 }
873                 unlock_buffer(bh);
874                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
875                 err = ext4_handle_dirty_metadata(handle, inode, bh);
876                 if (unlikely(err))
877                         goto errout;
878         } else
879                 BUFFER_TRACE(bh, "not a new buffer");
880         return bh;
881 errout:
882         brelse(bh);
883         return ERR_PTR(err);
884 }
885
886 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
887                                ext4_lblk_t block, int map_flags)
888 {
889         struct buffer_head *bh;
890         int ret;
891
892         bh = ext4_getblk(handle, inode, block, map_flags);
893         if (IS_ERR(bh))
894                 return bh;
895         if (!bh || ext4_buffer_uptodate(bh))
896                 return bh;
897
898         ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
899         if (ret) {
900                 put_bh(bh);
901                 return ERR_PTR(ret);
902         }
903         return bh;
904 }
905
906 /* Read a contiguous batch of blocks. */
907 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
908                      bool wait, struct buffer_head **bhs)
909 {
910         int i, err;
911
912         for (i = 0; i < bh_count; i++) {
913                 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
914                 if (IS_ERR(bhs[i])) {
915                         err = PTR_ERR(bhs[i]);
916                         bh_count = i;
917                         goto out_brelse;
918                 }
919         }
920
921         for (i = 0; i < bh_count; i++)
922                 /* Note that NULL bhs[i] is valid because of holes. */
923                 if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
924                         ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
925
926         if (!wait)
927                 return 0;
928
929         for (i = 0; i < bh_count; i++)
930                 if (bhs[i])
931                         wait_on_buffer(bhs[i]);
932
933         for (i = 0; i < bh_count; i++) {
934                 if (bhs[i] && !buffer_uptodate(bhs[i])) {
935                         err = -EIO;
936                         goto out_brelse;
937                 }
938         }
939         return 0;
940
941 out_brelse:
942         for (i = 0; i < bh_count; i++) {
943                 brelse(bhs[i]);
944                 bhs[i] = NULL;
945         }
946         return err;
947 }
948
949 int ext4_walk_page_buffers(handle_t *handle,
950                            struct buffer_head *head,
951                            unsigned from,
952                            unsigned to,
953                            int *partial,
954                            int (*fn)(handle_t *handle,
955                                      struct buffer_head *bh))
956 {
957         struct buffer_head *bh;
958         unsigned block_start, block_end;
959         unsigned blocksize = head->b_size;
960         int err, ret = 0;
961         struct buffer_head *next;
962
963         for (bh = head, block_start = 0;
964              ret == 0 && (bh != head || !block_start);
965              block_start = block_end, bh = next) {
966                 next = bh->b_this_page;
967                 block_end = block_start + blocksize;
968                 if (block_end <= from || block_start >= to) {
969                         if (partial && !buffer_uptodate(bh))
970                                 *partial = 1;
971                         continue;
972                 }
973                 err = (*fn)(handle, bh);
974                 if (!ret)
975                         ret = err;
976         }
977         return ret;
978 }
979
980 /*
981  * To preserve ordering, it is essential that the hole instantiation and
982  * the data write be encapsulated in a single transaction.  We cannot
983  * close off a transaction and start a new one between the ext4_get_block()
984  * and the commit_write().  So doing the jbd2_journal_start at the start of
985  * prepare_write() is the right place.
986  *
987  * Also, this function can nest inside ext4_writepage().  In that case, we
988  * *know* that ext4_writepage() has generated enough buffer credits to do the
989  * whole page.  So we won't block on the journal in that case, which is good,
990  * because the caller may be PF_MEMALLOC.
991  *
992  * By accident, ext4 can be reentered when a transaction is open via
993  * quota file writes.  If we were to commit the transaction while thus
994  * reentered, there can be a deadlock - we would be holding a quota
995  * lock, and the commit would never complete if another thread had a
996  * transaction open and was blocking on the quota lock - a ranking
997  * violation.
998  *
999  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1000  * will _not_ run commit under these circumstances because handle->h_ref
1001  * is elevated.  We'll still have enough credits for the tiny quotafile
1002  * write.
1003  */
1004 int do_journal_get_write_access(handle_t *handle,
1005                                 struct buffer_head *bh)
1006 {
1007         int dirty = buffer_dirty(bh);
1008         int ret;
1009
1010         if (!buffer_mapped(bh) || buffer_freed(bh))
1011                 return 0;
1012         /*
1013          * __block_write_begin() could have dirtied some buffers. Clean
1014          * the dirty bit as jbd2_journal_get_write_access() could complain
1015          * otherwise about fs integrity issues. Setting of the dirty bit
1016          * by __block_write_begin() isn't a real problem here as we clear
1017          * the bit before releasing a page lock and thus writeback cannot
1018          * ever write the buffer.
1019          */
1020         if (dirty)
1021                 clear_buffer_dirty(bh);
1022         BUFFER_TRACE(bh, "get write access");
1023         ret = ext4_journal_get_write_access(handle, bh);
1024         if (!ret && dirty)
1025                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1026         return ret;
1027 }
1028
1029 #ifdef CONFIG_FS_ENCRYPTION
1030 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1031                                   get_block_t *get_block)
1032 {
1033         unsigned from = pos & (PAGE_SIZE - 1);
1034         unsigned to = from + len;
1035         struct inode *inode = page->mapping->host;
1036         unsigned block_start, block_end;
1037         sector_t block;
1038         int err = 0;
1039         unsigned blocksize = inode->i_sb->s_blocksize;
1040         unsigned bbits;
1041         struct buffer_head *bh, *head, *wait[2];
1042         int nr_wait = 0;
1043         int i;
1044
1045         BUG_ON(!PageLocked(page));
1046         BUG_ON(from > PAGE_SIZE);
1047         BUG_ON(to > PAGE_SIZE);
1048         BUG_ON(from > to);
1049
1050         if (!page_has_buffers(page))
1051                 create_empty_buffers(page, blocksize, 0);
1052         head = page_buffers(page);
1053         bbits = ilog2(blocksize);
1054         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1055
1056         for (bh = head, block_start = 0; bh != head || !block_start;
1057             block++, block_start = block_end, bh = bh->b_this_page) {
1058                 block_end = block_start + blocksize;
1059                 if (block_end <= from || block_start >= to) {
1060                         if (PageUptodate(page)) {
1061                                 if (!buffer_uptodate(bh))
1062                                         set_buffer_uptodate(bh);
1063                         }
1064                         continue;
1065                 }
1066                 if (buffer_new(bh))
1067                         clear_buffer_new(bh);
1068                 if (!buffer_mapped(bh)) {
1069                         WARN_ON(bh->b_size != blocksize);
1070                         err = get_block(inode, block, bh, 1);
1071                         if (err)
1072                                 break;
1073                         if (buffer_new(bh)) {
1074                                 if (PageUptodate(page)) {
1075                                         clear_buffer_new(bh);
1076                                         set_buffer_uptodate(bh);
1077                                         mark_buffer_dirty(bh);
1078                                         continue;
1079                                 }
1080                                 if (block_end > to || block_start < from)
1081                                         zero_user_segments(page, to, block_end,
1082                                                            block_start, from);
1083                                 continue;
1084                         }
1085                 }
1086                 if (PageUptodate(page)) {
1087                         if (!buffer_uptodate(bh))
1088                                 set_buffer_uptodate(bh);
1089                         continue;
1090                 }
1091                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1092                     !buffer_unwritten(bh) &&
1093                     (block_start < from || block_end > to)) {
1094                         ext4_read_bh_lock(bh, 0, false);
1095                         wait[nr_wait++] = bh;
1096                 }
1097         }
1098         /*
1099          * If we issued read requests, let them complete.
1100          */
1101         for (i = 0; i < nr_wait; i++) {
1102                 wait_on_buffer(wait[i]);
1103                 if (!buffer_uptodate(wait[i]))
1104                         err = -EIO;
1105         }
1106         if (unlikely(err)) {
1107                 page_zero_new_buffers(page, from, to);
1108         } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1109                 for (i = 0; i < nr_wait; i++) {
1110                         int err2;
1111
1112                         err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1113                                                                 bh_offset(wait[i]));
1114                         if (err2) {
1115                                 clear_buffer_uptodate(wait[i]);
1116                                 err = err2;
1117                         }
1118                 }
1119         }
1120
1121         return err;
1122 }
1123 #endif
1124
1125 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1126                             loff_t pos, unsigned len, unsigned flags,
1127                             struct page **pagep, void **fsdata)
1128 {
1129         struct inode *inode = mapping->host;
1130         int ret, needed_blocks;
1131         handle_t *handle;
1132         int retries = 0;
1133         struct page *page;
1134         pgoff_t index;
1135         unsigned from, to;
1136
1137         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1138                 return -EIO;
1139
1140         trace_ext4_write_begin(inode, pos, len, flags);
1141         /*
1142          * Reserve one block more for addition to orphan list in case
1143          * we allocate blocks but write fails for some reason
1144          */
1145         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1146         index = pos >> PAGE_SHIFT;
1147         from = pos & (PAGE_SIZE - 1);
1148         to = from + len;
1149
1150         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1151                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1152                                                     flags, pagep);
1153                 if (ret < 0)
1154                         return ret;
1155                 if (ret == 1)
1156                         return 0;
1157         }
1158
1159         /*
1160          * grab_cache_page_write_begin() can take a long time if the
1161          * system is thrashing due to memory pressure, or if the page
1162          * is being written back.  So grab it first before we start
1163          * the transaction handle.  This also allows us to allocate
1164          * the page (if needed) without using GFP_NOFS.
1165          */
1166 retry_grab:
1167         page = grab_cache_page_write_begin(mapping, index, flags);
1168         if (!page)
1169                 return -ENOMEM;
1170         /*
1171          * The same as page allocation, we prealloc buffer heads before
1172          * starting the handle.
1173          */
1174         if (!page_has_buffers(page))
1175                 create_empty_buffers(page, inode->i_sb->s_blocksize, 0);
1176
1177         unlock_page(page);
1178
1179 retry_journal:
1180         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1181         if (IS_ERR(handle)) {
1182                 put_page(page);
1183                 return PTR_ERR(handle);
1184         }
1185
1186         lock_page(page);
1187         if (page->mapping != mapping) {
1188                 /* The page got truncated from under us */
1189                 unlock_page(page);
1190                 put_page(page);
1191                 ext4_journal_stop(handle);
1192                 goto retry_grab;
1193         }
1194         /* In case writeback began while the page was unlocked */
1195         wait_for_stable_page(page);
1196
1197 #ifdef CONFIG_FS_ENCRYPTION
1198         if (ext4_should_dioread_nolock(inode))
1199                 ret = ext4_block_write_begin(page, pos, len,
1200                                              ext4_get_block_unwritten);
1201         else
1202                 ret = ext4_block_write_begin(page, pos, len,
1203                                              ext4_get_block);
1204 #else
1205         if (ext4_should_dioread_nolock(inode))
1206                 ret = __block_write_begin(page, pos, len,
1207                                           ext4_get_block_unwritten);
1208         else
1209                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1210 #endif
1211         if (!ret && ext4_should_journal_data(inode)) {
1212                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1213                                              from, to, NULL,
1214                                              do_journal_get_write_access);
1215         }
1216
1217         if (ret) {
1218                 bool extended = (pos + len > inode->i_size) &&
1219                                 !ext4_verity_in_progress(inode);
1220
1221                 unlock_page(page);
1222                 /*
1223                  * __block_write_begin may have instantiated a few blocks
1224                  * outside i_size.  Trim these off again. Don't need
1225                  * i_size_read because we hold i_mutex.
1226                  *
1227                  * Add inode to orphan list in case we crash before
1228                  * truncate finishes
1229                  */
1230                 if (extended && ext4_can_truncate(inode))
1231                         ext4_orphan_add(handle, inode);
1232
1233                 ext4_journal_stop(handle);
1234                 if (extended) {
1235                         ext4_truncate_failed_write(inode);
1236                         /*
1237                          * If truncate failed early the inode might
1238                          * still be on the orphan list; we need to
1239                          * make sure the inode is removed from the
1240                          * orphan list in that case.
1241                          */
1242                         if (inode->i_nlink)
1243                                 ext4_orphan_del(NULL, inode);
1244                 }
1245
1246                 if (ret == -ENOSPC &&
1247                     ext4_should_retry_alloc(inode->i_sb, &retries))
1248                         goto retry_journal;
1249                 put_page(page);
1250                 return ret;
1251         }
1252         *pagep = page;
1253         return ret;
1254 }
1255
1256 /* For write_end() in data=journal mode */
1257 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1258 {
1259         int ret;
1260         if (!buffer_mapped(bh) || buffer_freed(bh))
1261                 return 0;
1262         set_buffer_uptodate(bh);
1263         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1264         clear_buffer_meta(bh);
1265         clear_buffer_prio(bh);
1266         return ret;
1267 }
1268
1269 /*
1270  * We need to pick up the new inode size which generic_commit_write gave us
1271  * `file' can be NULL - eg, when called from page_symlink().
1272  *
1273  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1274  * buffers are managed internally.
1275  */
1276 static int ext4_write_end(struct file *file,
1277                           struct address_space *mapping,
1278                           loff_t pos, unsigned len, unsigned copied,
1279                           struct page *page, void *fsdata)
1280 {
1281         handle_t *handle = ext4_journal_current_handle();
1282         struct inode *inode = mapping->host;
1283         loff_t old_size = inode->i_size;
1284         int ret = 0, ret2;
1285         int i_size_changed = 0;
1286         int inline_data = ext4_has_inline_data(inode);
1287         bool verity = ext4_verity_in_progress(inode);
1288
1289         trace_ext4_write_end(inode, pos, len, copied);
1290         if (inline_data &&
1291             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1292                 ret = ext4_write_inline_data_end(inode, pos, len,
1293                                                  copied, page);
1294                 if (ret < 0) {
1295                         unlock_page(page);
1296                         put_page(page);
1297                         goto errout;
1298                 }
1299                 copied = ret;
1300                 ret = 0;
1301         } else
1302                 copied = block_write_end(file, mapping, pos,
1303                                          len, copied, page, fsdata);
1304         /*
1305          * it's important to update i_size while still holding page lock:
1306          * page writeout could otherwise come in and zero beyond i_size.
1307          *
1308          * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1309          * blocks are being written past EOF, so skip the i_size update.
1310          */
1311         if (!verity)
1312                 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1313         unlock_page(page);
1314         put_page(page);
1315
1316         if (old_size < pos && !verity)
1317                 pagecache_isize_extended(inode, old_size, pos);
1318         /*
1319          * Don't mark the inode dirty under page lock. First, it unnecessarily
1320          * makes the holding time of page lock longer. Second, it forces lock
1321          * ordering of page lock and transaction start for journaling
1322          * filesystems.
1323          */
1324         if (i_size_changed || inline_data)
1325                 ret = ext4_mark_inode_dirty(handle, inode);
1326
1327 errout:
1328         if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1329                 /* if we have allocated more blocks and copied
1330                  * less. We will have blocks allocated outside
1331                  * inode->i_size. So truncate them
1332                  */
1333                 ext4_orphan_add(handle, inode);
1334
1335         ret2 = ext4_journal_stop(handle);
1336         if (!ret)
1337                 ret = ret2;
1338
1339         if (pos + len > inode->i_size && !verity) {
1340                 ext4_truncate_failed_write(inode);
1341                 /*
1342                  * If truncate failed early the inode might still be
1343                  * on the orphan list; we need to make sure the inode
1344                  * is removed from the orphan list in that case.
1345                  */
1346                 if (inode->i_nlink)
1347                         ext4_orphan_del(NULL, inode);
1348         }
1349
1350         return ret ? ret : copied;
1351 }
1352
1353 /*
1354  * This is a private version of page_zero_new_buffers() which doesn't
1355  * set the buffer to be dirty, since in data=journalled mode we need
1356  * to call ext4_handle_dirty_metadata() instead.
1357  */
1358 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1359                                             struct page *page,
1360                                             unsigned from, unsigned to)
1361 {
1362         unsigned int block_start = 0, block_end;
1363         struct buffer_head *head, *bh;
1364
1365         bh = head = page_buffers(page);
1366         do {
1367                 block_end = block_start + bh->b_size;
1368                 if (buffer_new(bh)) {
1369                         if (block_end > from && block_start < to) {
1370                                 if (!PageUptodate(page)) {
1371                                         unsigned start, size;
1372
1373                                         start = max(from, block_start);
1374                                         size = min(to, block_end) - start;
1375
1376                                         zero_user(page, start, size);
1377                                         write_end_fn(handle, bh);
1378                                 }
1379                                 clear_buffer_new(bh);
1380                         }
1381                 }
1382                 block_start = block_end;
1383                 bh = bh->b_this_page;
1384         } while (bh != head);
1385 }
1386
1387 static int ext4_journalled_write_end(struct file *file,
1388                                      struct address_space *mapping,
1389                                      loff_t pos, unsigned len, unsigned copied,
1390                                      struct page *page, void *fsdata)
1391 {
1392         handle_t *handle = ext4_journal_current_handle();
1393         struct inode *inode = mapping->host;
1394         loff_t old_size = inode->i_size;
1395         int ret = 0, ret2;
1396         int partial = 0;
1397         unsigned from, to;
1398         int size_changed = 0;
1399         int inline_data = ext4_has_inline_data(inode);
1400         bool verity = ext4_verity_in_progress(inode);
1401
1402         trace_ext4_journalled_write_end(inode, pos, len, copied);
1403         from = pos & (PAGE_SIZE - 1);
1404         to = from + len;
1405
1406         BUG_ON(!ext4_handle_valid(handle));
1407
1408         if (inline_data) {
1409                 ret = ext4_write_inline_data_end(inode, pos, len,
1410                                                  copied, page);
1411                 if (ret < 0) {
1412                         unlock_page(page);
1413                         put_page(page);
1414                         goto errout;
1415                 }
1416                 copied = ret;
1417                 ret = 0;
1418         } else if (unlikely(copied < len) && !PageUptodate(page)) {
1419                 copied = 0;
1420                 ext4_journalled_zero_new_buffers(handle, page, from, to);
1421         } else {
1422                 if (unlikely(copied < len))
1423                         ext4_journalled_zero_new_buffers(handle, page,
1424                                                          from + copied, to);
1425                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1426                                              from + copied, &partial,
1427                                              write_end_fn);
1428                 if (!partial)
1429                         SetPageUptodate(page);
1430         }
1431         if (!verity)
1432                 size_changed = ext4_update_inode_size(inode, pos + copied);
1433         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1434         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1435         unlock_page(page);
1436         put_page(page);
1437
1438         if (old_size < pos && !verity)
1439                 pagecache_isize_extended(inode, old_size, pos);
1440
1441         if (size_changed || inline_data) {
1442                 ret2 = ext4_mark_inode_dirty(handle, inode);
1443                 if (!ret)
1444                         ret = ret2;
1445         }
1446
1447 errout:
1448         if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1449                 /* if we have allocated more blocks and copied
1450                  * less. We will have blocks allocated outside
1451                  * inode->i_size. So truncate them
1452                  */
1453                 ext4_orphan_add(handle, inode);
1454
1455         ret2 = ext4_journal_stop(handle);
1456         if (!ret)
1457                 ret = ret2;
1458         if (pos + len > inode->i_size && !verity) {
1459                 ext4_truncate_failed_write(inode);
1460                 /*
1461                  * If truncate failed early the inode might still be
1462                  * on the orphan list; we need to make sure the inode
1463                  * is removed from the orphan list in that case.
1464                  */
1465                 if (inode->i_nlink)
1466                         ext4_orphan_del(NULL, inode);
1467         }
1468
1469         return ret ? ret : copied;
1470 }
1471
1472 /*
1473  * Reserve space for a single cluster
1474  */
1475 static int ext4_da_reserve_space(struct inode *inode)
1476 {
1477         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1478         struct ext4_inode_info *ei = EXT4_I(inode);
1479         int ret;
1480
1481         /*
1482          * We will charge metadata quota at writeout time; this saves
1483          * us from metadata over-estimation, though we may go over by
1484          * a small amount in the end.  Here we just reserve for data.
1485          */
1486         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1487         if (ret)
1488                 return ret;
1489
1490         spin_lock(&ei->i_block_reservation_lock);
1491         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1492                 spin_unlock(&ei->i_block_reservation_lock);
1493                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1494                 return -ENOSPC;
1495         }
1496         ei->i_reserved_data_blocks++;
1497         trace_ext4_da_reserve_space(inode);
1498         spin_unlock(&ei->i_block_reservation_lock);
1499
1500         return 0;       /* success */
1501 }
1502
1503 void ext4_da_release_space(struct inode *inode, int to_free)
1504 {
1505         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1506         struct ext4_inode_info *ei = EXT4_I(inode);
1507
1508         if (!to_free)
1509                 return;         /* Nothing to release, exit */
1510
1511         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1512
1513         trace_ext4_da_release_space(inode, to_free);
1514         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1515                 /*
1516                  * if there aren't enough reserved blocks, then the
1517                  * counter is messed up somewhere.  Since this
1518                  * function is called from invalidate page, it's
1519                  * harmless to return without any action.
1520                  */
1521                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1522                          "ino %lu, to_free %d with only %d reserved "
1523                          "data blocks", inode->i_ino, to_free,
1524                          ei->i_reserved_data_blocks);
1525                 WARN_ON(1);
1526                 to_free = ei->i_reserved_data_blocks;
1527         }
1528         ei->i_reserved_data_blocks -= to_free;
1529
1530         /* update fs dirty data blocks counter */
1531         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1532
1533         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1534
1535         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1536 }
1537
1538 /*
1539  * Delayed allocation stuff
1540  */
1541
1542 struct mpage_da_data {
1543         struct inode *inode;
1544         struct writeback_control *wbc;
1545
1546         pgoff_t first_page;     /* The first page to write */
1547         pgoff_t next_page;      /* Current page to examine */
1548         pgoff_t last_page;      /* Last page to examine */
1549         /*
1550          * Extent to map - this can be after first_page because that can be
1551          * fully mapped. We somewhat abuse m_flags to store whether the extent
1552          * is delalloc or unwritten.
1553          */
1554         struct ext4_map_blocks map;
1555         struct ext4_io_submit io_submit;        /* IO submission data */
1556         unsigned int do_map:1;
1557         unsigned int scanned_until_end:1;
1558 };
1559
1560 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1561                                        bool invalidate)
1562 {
1563         int nr_pages, i;
1564         pgoff_t index, end;
1565         struct pagevec pvec;
1566         struct inode *inode = mpd->inode;
1567         struct address_space *mapping = inode->i_mapping;
1568
1569         /* This is necessary when next_page == 0. */
1570         if (mpd->first_page >= mpd->next_page)
1571                 return;
1572
1573         mpd->scanned_until_end = 0;
1574         index = mpd->first_page;
1575         end   = mpd->next_page - 1;
1576         if (invalidate) {
1577                 ext4_lblk_t start, last;
1578                 start = index << (PAGE_SHIFT - inode->i_blkbits);
1579                 last = end << (PAGE_SHIFT - inode->i_blkbits);
1580
1581                 /*
1582                  * avoid racing with extent status tree scans made by
1583                  * ext4_insert_delayed_block()
1584                  */
1585                 down_write(&EXT4_I(inode)->i_data_sem);
1586                 ext4_es_remove_extent(inode, start, last - start + 1);
1587                 up_write(&EXT4_I(inode)->i_data_sem);
1588         }
1589
1590         pagevec_init(&pvec);
1591         while (index <= end) {
1592                 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1593                 if (nr_pages == 0)
1594                         break;
1595                 for (i = 0; i < nr_pages; i++) {
1596                         struct page *page = pvec.pages[i];
1597
1598                         BUG_ON(!PageLocked(page));
1599                         BUG_ON(PageWriteback(page));
1600                         if (invalidate) {
1601                                 if (page_mapped(page))
1602                                         clear_page_dirty_for_io(page);
1603                                 block_invalidatepage(page, 0, PAGE_SIZE);
1604                                 ClearPageUptodate(page);
1605                         }
1606                         unlock_page(page);
1607                 }
1608                 pagevec_release(&pvec);
1609         }
1610 }
1611
1612 static void ext4_print_free_blocks(struct inode *inode)
1613 {
1614         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1615         struct super_block *sb = inode->i_sb;
1616         struct ext4_inode_info *ei = EXT4_I(inode);
1617
1618         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1619                EXT4_C2B(EXT4_SB(inode->i_sb),
1620                         ext4_count_free_clusters(sb)));
1621         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1622         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1623                (long long) EXT4_C2B(EXT4_SB(sb),
1624                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1625         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1626                (long long) EXT4_C2B(EXT4_SB(sb),
1627                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1628         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1629         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1630                  ei->i_reserved_data_blocks);
1631         return;
1632 }
1633
1634 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1635 {
1636         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1637 }
1638
1639 /*
1640  * ext4_insert_delayed_block - adds a delayed block to the extents status
1641  *                             tree, incrementing the reserved cluster/block
1642  *                             count or making a pending reservation
1643  *                             where needed
1644  *
1645  * @inode - file containing the newly added block
1646  * @lblk - logical block to be added
1647  *
1648  * Returns 0 on success, negative error code on failure.
1649  */
1650 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1651 {
1652         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1653         int ret;
1654         bool allocated = false;
1655         bool reserved = false;
1656
1657         /*
1658          * If the cluster containing lblk is shared with a delayed,
1659          * written, or unwritten extent in a bigalloc file system, it's
1660          * already been accounted for and does not need to be reserved.
1661          * A pending reservation must be made for the cluster if it's
1662          * shared with a written or unwritten extent and doesn't already
1663          * have one.  Written and unwritten extents can be purged from the
1664          * extents status tree if the system is under memory pressure, so
1665          * it's necessary to examine the extent tree if a search of the
1666          * extents status tree doesn't get a match.
1667          */
1668         if (sbi->s_cluster_ratio == 1) {
1669                 ret = ext4_da_reserve_space(inode);
1670                 if (ret != 0)   /* ENOSPC */
1671                         goto errout;
1672                 reserved = true;
1673         } else {   /* bigalloc */
1674                 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1675                         if (!ext4_es_scan_clu(inode,
1676                                               &ext4_es_is_mapped, lblk)) {
1677                                 ret = ext4_clu_mapped(inode,
1678                                                       EXT4_B2C(sbi, lblk));
1679                                 if (ret < 0)
1680                                         goto errout;
1681                                 if (ret == 0) {
1682                                         ret = ext4_da_reserve_space(inode);
1683                                         if (ret != 0)   /* ENOSPC */
1684                                                 goto errout;
1685                                         reserved = true;
1686                                 } else {
1687                                         allocated = true;
1688                                 }
1689                         } else {
1690                                 allocated = true;
1691                         }
1692                 }
1693         }
1694
1695         ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1696         if (ret && reserved)
1697                 ext4_da_release_space(inode, 1);
1698
1699 errout:
1700         return ret;
1701 }
1702
1703 /*
1704  * This function is grabs code from the very beginning of
1705  * ext4_map_blocks, but assumes that the caller is from delayed write
1706  * time. This function looks up the requested blocks and sets the
1707  * buffer delay bit under the protection of i_data_sem.
1708  */
1709 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1710                               struct ext4_map_blocks *map,
1711                               struct buffer_head *bh)
1712 {
1713         struct extent_status es;
1714         int retval;
1715         sector_t invalid_block = ~((sector_t) 0xffff);
1716 #ifdef ES_AGGRESSIVE_TEST
1717         struct ext4_map_blocks orig_map;
1718
1719         memcpy(&orig_map, map, sizeof(*map));
1720 #endif
1721
1722         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1723                 invalid_block = ~0;
1724
1725         map->m_flags = 0;
1726         ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1727                   (unsigned long) map->m_lblk);
1728
1729         /* Lookup extent status tree firstly */
1730         if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1731                 if (ext4_es_is_hole(&es))
1732                         goto add_delayed;
1733
1734                 /*
1735                  * Delayed extent could be allocated by fallocate.
1736                  * So we need to check it.
1737                  */
1738                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1739                         map_bh(bh, inode->i_sb, invalid_block);
1740                         set_buffer_new(bh);
1741                         set_buffer_delay(bh);
1742                         return 0;
1743                 }
1744
1745                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1746                 retval = es.es_len - (iblock - es.es_lblk);
1747                 if (retval > map->m_len)
1748                         retval = map->m_len;
1749                 map->m_len = retval;
1750                 if (ext4_es_is_written(&es))
1751                         map->m_flags |= EXT4_MAP_MAPPED;
1752                 else if (ext4_es_is_unwritten(&es))
1753                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1754                 else
1755                         BUG();
1756
1757 #ifdef ES_AGGRESSIVE_TEST
1758                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1759 #endif
1760                 return retval;
1761         }
1762
1763         /*
1764          * Try to see if we can get the block without requesting a new
1765          * file system block.
1766          */
1767         down_read(&EXT4_I(inode)->i_data_sem);
1768         if (ext4_has_inline_data(inode))
1769                 retval = 0;
1770         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1771                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1772         else
1773                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1774         if (retval < 0) {
1775                 up_read(&EXT4_I(inode)->i_data_sem);
1776                 return retval;
1777         }
1778         if (retval > 0) {
1779                 unsigned int status;
1780
1781                 if (unlikely(retval != map->m_len)) {
1782                         ext4_warning(inode->i_sb,
1783                                      "ES len assertion failed for inode "
1784                                      "%lu: retval %d != map->m_len %d",
1785                                      inode->i_ino, retval, map->m_len);
1786                         WARN_ON(1);
1787                 }
1788
1789                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1790                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1791                 ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1792                                       map->m_pblk, status);
1793                 up_read(&EXT4_I(inode)->i_data_sem);
1794                 return retval;
1795         }
1796         up_read(&EXT4_I(inode)->i_data_sem);
1797
1798 add_delayed:
1799         down_write(&EXT4_I(inode)->i_data_sem);
1800         retval = ext4_insert_delayed_block(inode, map->m_lblk);
1801         up_write(&EXT4_I(inode)->i_data_sem);
1802         if (retval)
1803                 return retval;
1804
1805         map_bh(bh, inode->i_sb, invalid_block);
1806         set_buffer_new(bh);
1807         set_buffer_delay(bh);
1808         return retval;
1809 }
1810
1811 /*
1812  * This is a special get_block_t callback which is used by
1813  * ext4_da_write_begin().  It will either return mapped block or
1814  * reserve space for a single block.
1815  *
1816  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1817  * We also have b_blocknr = -1 and b_bdev initialized properly
1818  *
1819  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1820  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1821  * initialized properly.
1822  */
1823 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1824                            struct buffer_head *bh, int create)
1825 {
1826         struct ext4_map_blocks map;
1827         int ret = 0;
1828
1829         BUG_ON(create == 0);
1830         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1831
1832         map.m_lblk = iblock;
1833         map.m_len = 1;
1834
1835         /*
1836          * first, we need to know whether the block is allocated already
1837          * preallocated blocks are unmapped but should treated
1838          * the same as allocated blocks.
1839          */
1840         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1841         if (ret <= 0)
1842                 return ret;
1843
1844         map_bh(bh, inode->i_sb, map.m_pblk);
1845         ext4_update_bh_state(bh, map.m_flags);
1846
1847         if (buffer_unwritten(bh)) {
1848                 /* A delayed write to unwritten bh should be marked
1849                  * new and mapped.  Mapped ensures that we don't do
1850                  * get_block multiple times when we write to the same
1851                  * offset and new ensures that we do proper zero out
1852                  * for partial write.
1853                  */
1854                 set_buffer_new(bh);
1855                 set_buffer_mapped(bh);
1856         }
1857         return 0;
1858 }
1859
1860 static int bget_one(handle_t *handle, struct buffer_head *bh)
1861 {
1862         get_bh(bh);
1863         return 0;
1864 }
1865
1866 static int bput_one(handle_t *handle, struct buffer_head *bh)
1867 {
1868         put_bh(bh);
1869         return 0;
1870 }
1871
1872 static int __ext4_journalled_writepage(struct page *page,
1873                                        unsigned int len)
1874 {
1875         struct address_space *mapping = page->mapping;
1876         struct inode *inode = mapping->host;
1877         struct buffer_head *page_bufs = NULL;
1878         handle_t *handle = NULL;
1879         int ret = 0, err = 0;
1880         int inline_data = ext4_has_inline_data(inode);
1881         struct buffer_head *inode_bh = NULL;
1882
1883         ClearPageChecked(page);
1884
1885         if (inline_data) {
1886                 BUG_ON(page->index != 0);
1887                 BUG_ON(len > ext4_get_max_inline_size(inode));
1888                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1889                 if (inode_bh == NULL)
1890                         goto out;
1891         } else {
1892                 page_bufs = page_buffers(page);
1893                 if (!page_bufs) {
1894                         BUG();
1895                         goto out;
1896                 }
1897                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1898                                        NULL, bget_one);
1899         }
1900         /*
1901          * We need to release the page lock before we start the
1902          * journal, so grab a reference so the page won't disappear
1903          * out from under us.
1904          */
1905         get_page(page);
1906         unlock_page(page);
1907
1908         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1909                                     ext4_writepage_trans_blocks(inode));
1910         if (IS_ERR(handle)) {
1911                 ret = PTR_ERR(handle);
1912                 put_page(page);
1913                 goto out_no_pagelock;
1914         }
1915         BUG_ON(!ext4_handle_valid(handle));
1916
1917         lock_page(page);
1918         put_page(page);
1919         if (page->mapping != mapping) {
1920                 /* The page got truncated from under us */
1921                 ext4_journal_stop(handle);
1922                 ret = 0;
1923                 goto out;
1924         }
1925
1926         if (inline_data) {
1927                 ret = ext4_mark_inode_dirty(handle, inode);
1928         } else {
1929                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1930                                              do_journal_get_write_access);
1931
1932                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1933                                              write_end_fn);
1934         }
1935         if (ret == 0)
1936                 ret = err;
1937         err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len);
1938         if (ret == 0)
1939                 ret = err;
1940         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1941         err = ext4_journal_stop(handle);
1942         if (!ret)
1943                 ret = err;
1944
1945         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1946 out:
1947         unlock_page(page);
1948 out_no_pagelock:
1949         if (!inline_data && page_bufs)
1950                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1951                                        NULL, bput_one);
1952         brelse(inode_bh);
1953         return ret;
1954 }
1955
1956 /*
1957  * Note that we don't need to start a transaction unless we're journaling data
1958  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1959  * need to file the inode to the transaction's list in ordered mode because if
1960  * we are writing back data added by write(), the inode is already there and if
1961  * we are writing back data modified via mmap(), no one guarantees in which
1962  * transaction the data will hit the disk. In case we are journaling data, we
1963  * cannot start transaction directly because transaction start ranks above page
1964  * lock so we have to do some magic.
1965  *
1966  * This function can get called via...
1967  *   - ext4_writepages after taking page lock (have journal handle)
1968  *   - journal_submit_inode_data_buffers (no journal handle)
1969  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1970  *   - grab_page_cache when doing write_begin (have journal handle)
1971  *
1972  * We don't do any block allocation in this function. If we have page with
1973  * multiple blocks we need to write those buffer_heads that are mapped. This
1974  * is important for mmaped based write. So if we do with blocksize 1K
1975  * truncate(f, 1024);
1976  * a = mmap(f, 0, 4096);
1977  * a[0] = 'a';
1978  * truncate(f, 4096);
1979  * we have in the page first buffer_head mapped via page_mkwrite call back
1980  * but other buffer_heads would be unmapped but dirty (dirty done via the
1981  * do_wp_page). So writepage should write the first block. If we modify
1982  * the mmap area beyond 1024 we will again get a page_fault and the
1983  * page_mkwrite callback will do the block allocation and mark the
1984  * buffer_heads mapped.
1985  *
1986  * We redirty the page if we have any buffer_heads that is either delay or
1987  * unwritten in the page.
1988  *
1989  * We can get recursively called as show below.
1990  *
1991  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1992  *              ext4_writepage()
1993  *
1994  * But since we don't do any block allocation we should not deadlock.
1995  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1996  */
1997 static int ext4_writepage(struct page *page,
1998                           struct writeback_control *wbc)
1999 {
2000         int ret = 0;
2001         loff_t size;
2002         unsigned int len;
2003         struct buffer_head *page_bufs = NULL;
2004         struct inode *inode = page->mapping->host;
2005         struct ext4_io_submit io_submit;
2006         bool keep_towrite = false;
2007
2008         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2009                 inode->i_mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
2010                 unlock_page(page);
2011                 return -EIO;
2012         }
2013
2014         trace_ext4_writepage(page);
2015         size = i_size_read(inode);
2016         if (page->index == size >> PAGE_SHIFT &&
2017             !ext4_verity_in_progress(inode))
2018                 len = size & ~PAGE_MASK;
2019         else
2020                 len = PAGE_SIZE;
2021
2022         /* Should never happen but for bugs in other kernel subsystems */
2023         if (!page_has_buffers(page)) {
2024                 ext4_warning_inode(inode,
2025                    "page %lu does not have buffers attached", page->index);
2026                 ClearPageDirty(page);
2027                 unlock_page(page);
2028                 return 0;
2029         }
2030
2031         page_bufs = page_buffers(page);
2032         /*
2033          * We cannot do block allocation or other extent handling in this
2034          * function. If there are buffers needing that, we have to redirty
2035          * the page. But we may reach here when we do a journal commit via
2036          * journal_submit_inode_data_buffers() and in that case we must write
2037          * allocated buffers to achieve data=ordered mode guarantees.
2038          *
2039          * Also, if there is only one buffer per page (the fs block
2040          * size == the page size), if one buffer needs block
2041          * allocation or needs to modify the extent tree to clear the
2042          * unwritten flag, we know that the page can't be written at
2043          * all, so we might as well refuse the write immediately.
2044          * Unfortunately if the block size != page size, we can't as
2045          * easily detect this case using ext4_walk_page_buffers(), but
2046          * for the extremely common case, this is an optimization that
2047          * skips a useless round trip through ext4_bio_write_page().
2048          */
2049         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2050                                    ext4_bh_delay_or_unwritten)) {
2051                 redirty_page_for_writepage(wbc, page);
2052                 if ((current->flags & PF_MEMALLOC) ||
2053                     (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2054                         /*
2055                          * For memory cleaning there's no point in writing only
2056                          * some buffers. So just bail out. Warn if we came here
2057                          * from direct reclaim.
2058                          */
2059                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2060                                                         == PF_MEMALLOC);
2061                         unlock_page(page);
2062                         return 0;
2063                 }
2064                 keep_towrite = true;
2065         }
2066
2067         if (PageChecked(page) && ext4_should_journal_data(inode))
2068                 /*
2069                  * It's mmapped pagecache.  Add buffers and journal it.  There
2070                  * doesn't seem much point in redirtying the page here.
2071                  */
2072                 return __ext4_journalled_writepage(page, len);
2073
2074         ext4_io_submit_init(&io_submit, wbc);
2075         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2076         if (!io_submit.io_end) {
2077                 redirty_page_for_writepage(wbc, page);
2078                 unlock_page(page);
2079                 return -ENOMEM;
2080         }
2081         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2082         ext4_io_submit(&io_submit);
2083         /* Drop io_end reference we got from init */
2084         ext4_put_io_end_defer(io_submit.io_end);
2085         return ret;
2086 }
2087
2088 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2089 {
2090         int len;
2091         loff_t size;
2092         int err;
2093
2094         BUG_ON(page->index != mpd->first_page);
2095         clear_page_dirty_for_io(page);
2096         /*
2097          * We have to be very careful here!  Nothing protects writeback path
2098          * against i_size changes and the page can be writeably mapped into
2099          * page tables. So an application can be growing i_size and writing
2100          * data through mmap while writeback runs. clear_page_dirty_for_io()
2101          * write-protects our page in page tables and the page cannot get
2102          * written to again until we release page lock. So only after
2103          * clear_page_dirty_for_io() we are safe to sample i_size for
2104          * ext4_bio_write_page() to zero-out tail of the written page. We rely
2105          * on the barrier provided by TestClearPageDirty in
2106          * clear_page_dirty_for_io() to make sure i_size is really sampled only
2107          * after page tables are updated.
2108          */
2109         size = i_size_read(mpd->inode);
2110         if (page->index == size >> PAGE_SHIFT &&
2111             !ext4_verity_in_progress(mpd->inode))
2112                 len = size & ~PAGE_MASK;
2113         else
2114                 len = PAGE_SIZE;
2115         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2116         if (!err)
2117                 mpd->wbc->nr_to_write--;
2118         mpd->first_page++;
2119
2120         return err;
2121 }
2122
2123 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2124
2125 /*
2126  * mballoc gives us at most this number of blocks...
2127  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2128  * The rest of mballoc seems to handle chunks up to full group size.
2129  */
2130 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2131
2132 /*
2133  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2134  *
2135  * @mpd - extent of blocks
2136  * @lblk - logical number of the block in the file
2137  * @bh - buffer head we want to add to the extent
2138  *
2139  * The function is used to collect contig. blocks in the same state. If the
2140  * buffer doesn't require mapping for writeback and we haven't started the
2141  * extent of buffers to map yet, the function returns 'true' immediately - the
2142  * caller can write the buffer right away. Otherwise the function returns true
2143  * if the block has been added to the extent, false if the block couldn't be
2144  * added.
2145  */
2146 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2147                                    struct buffer_head *bh)
2148 {
2149         struct ext4_map_blocks *map = &mpd->map;
2150
2151         /* Buffer that doesn't need mapping for writeback? */
2152         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2153             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2154                 /* So far no extent to map => we write the buffer right away */
2155                 if (map->m_len == 0)
2156                         return true;
2157                 return false;
2158         }
2159
2160         /* First block in the extent? */
2161         if (map->m_len == 0) {
2162                 /* We cannot map unless handle is started... */
2163                 if (!mpd->do_map)
2164                         return false;
2165                 map->m_lblk = lblk;
2166                 map->m_len = 1;
2167                 map->m_flags = bh->b_state & BH_FLAGS;
2168                 return true;
2169         }
2170
2171         /* Don't go larger than mballoc is willing to allocate */
2172         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2173                 return false;
2174
2175         /* Can we merge the block to our big extent? */
2176         if (lblk == map->m_lblk + map->m_len &&
2177             (bh->b_state & BH_FLAGS) == map->m_flags) {
2178                 map->m_len++;
2179                 return true;
2180         }
2181         return false;
2182 }
2183
2184 /*
2185  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2186  *
2187  * @mpd - extent of blocks for mapping
2188  * @head - the first buffer in the page
2189  * @bh - buffer we should start processing from
2190  * @lblk - logical number of the block in the file corresponding to @bh
2191  *
2192  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2193  * the page for IO if all buffers in this page were mapped and there's no
2194  * accumulated extent of buffers to map or add buffers in the page to the
2195  * extent of buffers to map. The function returns 1 if the caller can continue
2196  * by processing the next page, 0 if it should stop adding buffers to the
2197  * extent to map because we cannot extend it anymore. It can also return value
2198  * < 0 in case of error during IO submission.
2199  */
2200 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2201                                    struct buffer_head *head,
2202                                    struct buffer_head *bh,
2203                                    ext4_lblk_t lblk)
2204 {
2205         struct inode *inode = mpd->inode;
2206         int err;
2207         ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2208                                                         >> inode->i_blkbits;
2209
2210         if (ext4_verity_in_progress(inode))
2211                 blocks = EXT_MAX_BLOCKS;
2212
2213         do {
2214                 BUG_ON(buffer_locked(bh));
2215
2216                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2217                         /* Found extent to map? */
2218                         if (mpd->map.m_len)
2219                                 return 0;
2220                         /* Buffer needs mapping and handle is not started? */
2221                         if (!mpd->do_map)
2222                                 return 0;
2223                         /* Everything mapped so far and we hit EOF */
2224                         break;
2225                 }
2226         } while (lblk++, (bh = bh->b_this_page) != head);
2227         /* So far everything mapped? Submit the page for IO. */
2228         if (mpd->map.m_len == 0) {
2229                 err = mpage_submit_page(mpd, head->b_page);
2230                 if (err < 0)
2231                         return err;
2232         }
2233         if (lblk >= blocks) {
2234                 mpd->scanned_until_end = 1;
2235                 return 0;
2236         }
2237         return 1;
2238 }
2239
2240 /*
2241  * mpage_process_page - update page buffers corresponding to changed extent and
2242  *                     may submit fully mapped page for IO
2243  *
2244  * @mpd         - description of extent to map, on return next extent to map
2245  * @m_lblk      - logical block mapping.
2246  * @m_pblk      - corresponding physical mapping.
2247  * @map_bh      - determines on return whether this page requires any further
2248  *                mapping or not.
2249  * Scan given page buffers corresponding to changed extent and update buffer
2250  * state according to new extent state.
2251  * We map delalloc buffers to their physical location, clear unwritten bits.
2252  * If the given page is not fully mapped, we update @map to the next extent in
2253  * the given page that needs mapping & return @map_bh as true.
2254  */
2255 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2256                               ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2257                               bool *map_bh)
2258 {
2259         struct buffer_head *head, *bh;
2260         ext4_io_end_t *io_end = mpd->io_submit.io_end;
2261         ext4_lblk_t lblk = *m_lblk;
2262         ext4_fsblk_t pblock = *m_pblk;
2263         int err = 0;
2264         int blkbits = mpd->inode->i_blkbits;
2265         ssize_t io_end_size = 0;
2266         struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2267
2268         bh = head = page_buffers(page);
2269         do {
2270                 if (lblk < mpd->map.m_lblk)
2271                         continue;
2272                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2273                         /*
2274                          * Buffer after end of mapped extent.
2275                          * Find next buffer in the page to map.
2276                          */
2277                         mpd->map.m_len = 0;
2278                         mpd->map.m_flags = 0;
2279                         io_end_vec->size += io_end_size;
2280                         io_end_size = 0;
2281
2282                         err = mpage_process_page_bufs(mpd, head, bh, lblk);
2283                         if (err > 0)
2284                                 err = 0;
2285                         if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2286                                 io_end_vec = ext4_alloc_io_end_vec(io_end);
2287                                 if (IS_ERR(io_end_vec)) {
2288                                         err = PTR_ERR(io_end_vec);
2289                                         goto out;
2290                                 }
2291                                 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2292                         }
2293                         *map_bh = true;
2294                         goto out;
2295                 }
2296                 if (buffer_delay(bh)) {
2297                         clear_buffer_delay(bh);
2298                         bh->b_blocknr = pblock++;
2299                 }
2300                 clear_buffer_unwritten(bh);
2301                 io_end_size += (1 << blkbits);
2302         } while (lblk++, (bh = bh->b_this_page) != head);
2303
2304         io_end_vec->size += io_end_size;
2305         io_end_size = 0;
2306         *map_bh = false;
2307 out:
2308         *m_lblk = lblk;
2309         *m_pblk = pblock;
2310         return err;
2311 }
2312
2313 /*
2314  * mpage_map_buffers - update buffers corresponding to changed extent and
2315  *                     submit fully mapped pages for IO
2316  *
2317  * @mpd - description of extent to map, on return next extent to map
2318  *
2319  * Scan buffers corresponding to changed extent (we expect corresponding pages
2320  * to be already locked) and update buffer state according to new extent state.
2321  * We map delalloc buffers to their physical location, clear unwritten bits,
2322  * and mark buffers as uninit when we perform writes to unwritten extents
2323  * and do extent conversion after IO is finished. If the last page is not fully
2324  * mapped, we update @map to the next extent in the last page that needs
2325  * mapping. Otherwise we submit the page for IO.
2326  */
2327 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2328 {
2329         struct pagevec pvec;
2330         int nr_pages, i;
2331         struct inode *inode = mpd->inode;
2332         int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2333         pgoff_t start, end;
2334         ext4_lblk_t lblk;
2335         ext4_fsblk_t pblock;
2336         int err;
2337         bool map_bh = false;
2338
2339         start = mpd->map.m_lblk >> bpp_bits;
2340         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2341         lblk = start << bpp_bits;
2342         pblock = mpd->map.m_pblk;
2343
2344         pagevec_init(&pvec);
2345         while (start <= end) {
2346                 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2347                                                 &start, end);
2348                 if (nr_pages == 0)
2349                         break;
2350                 for (i = 0; i < nr_pages; i++) {
2351                         struct page *page = pvec.pages[i];
2352
2353                         err = mpage_process_page(mpd, page, &lblk, &pblock,
2354                                                  &map_bh);
2355                         /*
2356                          * If map_bh is true, means page may require further bh
2357                          * mapping, or maybe the page was submitted for IO.
2358                          * So we return to call further extent mapping.
2359                          */
2360                         if (err < 0 || map_bh)
2361                                 goto out;
2362                         /* Page fully mapped - let IO run! */
2363                         err = mpage_submit_page(mpd, page);
2364                         if (err < 0)
2365                                 goto out;
2366                 }
2367                 pagevec_release(&pvec);
2368         }
2369         /* Extent fully mapped and matches with page boundary. We are done. */
2370         mpd->map.m_len = 0;
2371         mpd->map.m_flags = 0;
2372         return 0;
2373 out:
2374         pagevec_release(&pvec);
2375         return err;
2376 }
2377
2378 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2379 {
2380         struct inode *inode = mpd->inode;
2381         struct ext4_map_blocks *map = &mpd->map;
2382         int get_blocks_flags;
2383         int err, dioread_nolock;
2384
2385         trace_ext4_da_write_pages_extent(inode, map);
2386         /*
2387          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2388          * to convert an unwritten extent to be initialized (in the case
2389          * where we have written into one or more preallocated blocks).  It is
2390          * possible that we're going to need more metadata blocks than
2391          * previously reserved. However we must not fail because we're in
2392          * writeback and there is nothing we can do about it so it might result
2393          * in data loss.  So use reserved blocks to allocate metadata if
2394          * possible.
2395          *
2396          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2397          * the blocks in question are delalloc blocks.  This indicates
2398          * that the blocks and quotas has already been checked when
2399          * the data was copied into the page cache.
2400          */
2401         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2402                            EXT4_GET_BLOCKS_METADATA_NOFAIL |
2403                            EXT4_GET_BLOCKS_IO_SUBMIT;
2404         dioread_nolock = ext4_should_dioread_nolock(inode);
2405         if (dioread_nolock)
2406                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2407         if (map->m_flags & BIT(BH_Delay))
2408                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2409
2410         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2411         if (err < 0)
2412                 return err;
2413         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2414                 if (!mpd->io_submit.io_end->handle &&
2415                     ext4_handle_valid(handle)) {
2416                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2417                         handle->h_rsv_handle = NULL;
2418                 }
2419                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2420         }
2421
2422         BUG_ON(map->m_len == 0);
2423         return 0;
2424 }
2425
2426 /*
2427  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2428  *                               mpd->len and submit pages underlying it for IO
2429  *
2430  * @handle - handle for journal operations
2431  * @mpd - extent to map
2432  * @give_up_on_write - we set this to true iff there is a fatal error and there
2433  *                     is no hope of writing the data. The caller should discard
2434  *                     dirty pages to avoid infinite loops.
2435  *
2436  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2437  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2438  * them to initialized or split the described range from larger unwritten
2439  * extent. Note that we need not map all the described range since allocation
2440  * can return less blocks or the range is covered by more unwritten extents. We
2441  * cannot map more because we are limited by reserved transaction credits. On
2442  * the other hand we always make sure that the last touched page is fully
2443  * mapped so that it can be written out (and thus forward progress is
2444  * guaranteed). After mapping we submit all mapped pages for IO.
2445  */
2446 static int mpage_map_and_submit_extent(handle_t *handle,
2447                                        struct mpage_da_data *mpd,
2448                                        bool *give_up_on_write)
2449 {
2450         struct inode *inode = mpd->inode;
2451         struct ext4_map_blocks *map = &mpd->map;
2452         int err;
2453         loff_t disksize;
2454         int progress = 0;
2455         ext4_io_end_t *io_end = mpd->io_submit.io_end;
2456         struct ext4_io_end_vec *io_end_vec;
2457
2458         io_end_vec = ext4_alloc_io_end_vec(io_end);
2459         if (IS_ERR(io_end_vec))
2460                 return PTR_ERR(io_end_vec);
2461         io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2462         do {
2463                 err = mpage_map_one_extent(handle, mpd);
2464                 if (err < 0) {
2465                         struct super_block *sb = inode->i_sb;
2466
2467                         if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2468                             ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
2469                                 goto invalidate_dirty_pages;
2470                         /*
2471                          * Let the uper layers retry transient errors.
2472                          * In the case of ENOSPC, if ext4_count_free_blocks()
2473                          * is non-zero, a commit should free up blocks.
2474                          */
2475                         if ((err == -ENOMEM) ||
2476                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2477                                 if (progress)
2478                                         goto update_disksize;
2479                                 return err;
2480                         }
2481                         ext4_msg(sb, KERN_CRIT,
2482                                  "Delayed block allocation failed for "
2483                                  "inode %lu at logical offset %llu with"
2484                                  " max blocks %u with error %d",
2485                                  inode->i_ino,
2486                                  (unsigned long long)map->m_lblk,
2487                                  (unsigned)map->m_len, -err);
2488                         ext4_msg(sb, KERN_CRIT,
2489                                  "This should not happen!! Data will "
2490                                  "be lost\n");
2491                         if (err == -ENOSPC)
2492                                 ext4_print_free_blocks(inode);
2493                 invalidate_dirty_pages:
2494                         *give_up_on_write = true;
2495                         return err;
2496                 }
2497                 progress = 1;
2498                 /*
2499                  * Update buffer state, submit mapped pages, and get us new
2500                  * extent to map
2501                  */
2502                 err = mpage_map_and_submit_buffers(mpd);
2503                 if (err < 0)
2504                         goto update_disksize;
2505         } while (map->m_len);
2506
2507 update_disksize:
2508         /*
2509          * Update on-disk size after IO is submitted.  Races with
2510          * truncate are avoided by checking i_size under i_data_sem.
2511          */
2512         disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2513         if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2514                 int err2;
2515                 loff_t i_size;
2516
2517                 down_write(&EXT4_I(inode)->i_data_sem);
2518                 i_size = i_size_read(inode);
2519                 if (disksize > i_size)
2520                         disksize = i_size;
2521                 if (disksize > EXT4_I(inode)->i_disksize)
2522                         EXT4_I(inode)->i_disksize = disksize;
2523                 up_write(&EXT4_I(inode)->i_data_sem);
2524                 err2 = ext4_mark_inode_dirty(handle, inode);
2525                 if (err2) {
2526                         ext4_error_err(inode->i_sb, -err2,
2527                                        "Failed to mark inode %lu dirty",
2528                                        inode->i_ino);
2529                 }
2530                 if (!err)
2531                         err = err2;
2532         }
2533         return err;
2534 }
2535
2536 /*
2537  * Calculate the total number of credits to reserve for one writepages
2538  * iteration. This is called from ext4_writepages(). We map an extent of
2539  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2540  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2541  * bpp - 1 blocks in bpp different extents.
2542  */
2543 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2544 {
2545         int bpp = ext4_journal_blocks_per_page(inode);
2546
2547         return ext4_meta_trans_blocks(inode,
2548                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2549 }
2550
2551 /*
2552  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2553  *                               and underlying extent to map
2554  *
2555  * @mpd - where to look for pages
2556  *
2557  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2558  * IO immediately. When we find a page which isn't mapped we start accumulating
2559  * extent of buffers underlying these pages that needs mapping (formed by
2560  * either delayed or unwritten buffers). We also lock the pages containing
2561  * these buffers. The extent found is returned in @mpd structure (starting at
2562  * mpd->lblk with length mpd->len blocks).
2563  *
2564  * Note that this function can attach bios to one io_end structure which are
2565  * neither logically nor physically contiguous. Although it may seem as an
2566  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2567  * case as we need to track IO to all buffers underlying a page in one io_end.
2568  */
2569 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2570 {
2571         struct address_space *mapping = mpd->inode->i_mapping;
2572         struct pagevec pvec;
2573         unsigned int nr_pages;
2574         long left = mpd->wbc->nr_to_write;
2575         pgoff_t index = mpd->first_page;
2576         pgoff_t end = mpd->last_page;
2577         xa_mark_t tag;
2578         int i, err = 0;
2579         int blkbits = mpd->inode->i_blkbits;
2580         ext4_lblk_t lblk;
2581         struct buffer_head *head;
2582
2583         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2584                 tag = PAGECACHE_TAG_TOWRITE;
2585         else
2586                 tag = PAGECACHE_TAG_DIRTY;
2587
2588         pagevec_init(&pvec);
2589         mpd->map.m_len = 0;
2590         mpd->next_page = index;
2591         while (index <= end) {
2592                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2593                                 tag);
2594                 if (nr_pages == 0)
2595                         break;
2596
2597                 for (i = 0; i < nr_pages; i++) {
2598                         struct page *page = pvec.pages[i];
2599
2600                         /*
2601                          * Accumulated enough dirty pages? This doesn't apply
2602                          * to WB_SYNC_ALL mode. For integrity sync we have to
2603                          * keep going because someone may be concurrently
2604                          * dirtying pages, and we might have synced a lot of
2605                          * newly appeared dirty pages, but have not synced all
2606                          * of the old dirty pages.
2607                          */
2608                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2609                                 goto out;
2610
2611                         /* If we can't merge this page, we are done. */
2612                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2613                                 goto out;
2614
2615                         lock_page(page);
2616                         /*
2617                          * If the page is no longer dirty, or its mapping no
2618                          * longer corresponds to inode we are writing (which
2619                          * means it has been truncated or invalidated), or the
2620                          * page is already under writeback and we are not doing
2621                          * a data integrity writeback, skip the page
2622                          */
2623                         if (!PageDirty(page) ||
2624                             (PageWriteback(page) &&
2625                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2626                             unlikely(page->mapping != mapping)) {
2627                                 unlock_page(page);
2628                                 continue;
2629                         }
2630
2631                         wait_on_page_writeback(page);
2632                         BUG_ON(PageWriteback(page));
2633
2634                         /*
2635                          * Should never happen but for buggy code in
2636                          * other subsystems that call
2637                          * set_page_dirty() without properly warning
2638                          * the file system first.  See [1] for more
2639                          * information.
2640                          *
2641                          * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2642                          */
2643                         if (!page_has_buffers(page)) {
2644                                 ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", page->index);
2645                                 ClearPageDirty(page);
2646                                 unlock_page(page);
2647                                 continue;
2648                         }
2649
2650                         if (mpd->map.m_len == 0)
2651                                 mpd->first_page = page->index;
2652                         mpd->next_page = page->index + 1;
2653                         /* Add all dirty buffers to mpd */
2654                         lblk = ((ext4_lblk_t)page->index) <<
2655                                 (PAGE_SHIFT - blkbits);
2656                         head = page_buffers(page);
2657                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2658                         if (err <= 0)
2659                                 goto out;
2660                         err = 0;
2661                         left--;
2662                 }
2663                 pagevec_release(&pvec);
2664                 cond_resched();
2665         }
2666         mpd->scanned_until_end = 1;
2667         return 0;
2668 out:
2669         pagevec_release(&pvec);
2670         return err;
2671 }
2672
2673 static int ext4_writepages(struct address_space *mapping,
2674                            struct writeback_control *wbc)
2675 {
2676         pgoff_t writeback_index = 0;
2677         long nr_to_write = wbc->nr_to_write;
2678         int range_whole = 0;
2679         int cycled = 1;
2680         handle_t *handle = NULL;
2681         struct mpage_da_data mpd;
2682         struct inode *inode = mapping->host;
2683         int needed_blocks, rsv_blocks = 0, ret = 0;
2684         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2685         struct blk_plug plug;
2686         bool give_up_on_write = false;
2687
2688         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2689                 return -EIO;
2690
2691         percpu_down_read(&sbi->s_writepages_rwsem);
2692         trace_ext4_writepages(inode, wbc);
2693
2694         /*
2695          * No pages to write? This is mainly a kludge to avoid starting
2696          * a transaction for special inodes like journal inode on last iput()
2697          * because that could violate lock ordering on umount
2698          */
2699         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2700                 goto out_writepages;
2701
2702         if (ext4_should_journal_data(inode)) {
2703                 ret = generic_writepages(mapping, wbc);
2704                 goto out_writepages;
2705         }
2706
2707         /*
2708          * If the filesystem has aborted, it is read-only, so return
2709          * right away instead of dumping stack traces later on that
2710          * will obscure the real source of the problem.  We test
2711          * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2712          * the latter could be true if the filesystem is mounted
2713          * read-only, and in that case, ext4_writepages should
2714          * *never* be called, so if that ever happens, we would want
2715          * the stack trace.
2716          */
2717         if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2718                      ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) {
2719                 ret = -EROFS;
2720                 goto out_writepages;
2721         }
2722
2723         /*
2724          * If we have inline data and arrive here, it means that
2725          * we will soon create the block for the 1st page, so
2726          * we'd better clear the inline data here.
2727          */
2728         if (ext4_has_inline_data(inode)) {
2729                 /* Just inode will be modified... */
2730                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2731                 if (IS_ERR(handle)) {
2732                         ret = PTR_ERR(handle);
2733                         goto out_writepages;
2734                 }
2735                 BUG_ON(ext4_test_inode_state(inode,
2736                                 EXT4_STATE_MAY_INLINE_DATA));
2737                 ext4_destroy_inline_data(handle, inode);
2738                 ext4_journal_stop(handle);
2739         }
2740
2741         if (ext4_should_dioread_nolock(inode)) {
2742                 /*
2743                  * We may need to convert up to one extent per block in
2744                  * the page and we may dirty the inode.
2745                  */
2746                 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2747                                                 PAGE_SIZE >> inode->i_blkbits);
2748         }
2749
2750         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2751                 range_whole = 1;
2752
2753         if (wbc->range_cyclic) {
2754                 writeback_index = mapping->writeback_index;
2755                 if (writeback_index)
2756                         cycled = 0;
2757                 mpd.first_page = writeback_index;
2758                 mpd.last_page = -1;
2759         } else {
2760                 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2761                 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2762         }
2763
2764         mpd.inode = inode;
2765         mpd.wbc = wbc;
2766         ext4_io_submit_init(&mpd.io_submit, wbc);
2767 retry:
2768         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2769                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2770         blk_start_plug(&plug);
2771
2772         /*
2773          * First writeback pages that don't need mapping - we can avoid
2774          * starting a transaction unnecessarily and also avoid being blocked
2775          * in the block layer on device congestion while having transaction
2776          * started.
2777          */
2778         mpd.do_map = 0;
2779         mpd.scanned_until_end = 0;
2780         mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2781         if (!mpd.io_submit.io_end) {
2782                 ret = -ENOMEM;
2783                 goto unplug;
2784         }
2785         ret = mpage_prepare_extent_to_map(&mpd);
2786         /* Unlock pages we didn't use */
2787         mpage_release_unused_pages(&mpd, false);
2788         /* Submit prepared bio */
2789         ext4_io_submit(&mpd.io_submit);
2790         ext4_put_io_end_defer(mpd.io_submit.io_end);
2791         mpd.io_submit.io_end = NULL;
2792         if (ret < 0)
2793                 goto unplug;
2794
2795         while (!mpd.scanned_until_end && wbc->nr_to_write > 0) {
2796                 /* For each extent of pages we use new io_end */
2797                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2798                 if (!mpd.io_submit.io_end) {
2799                         ret = -ENOMEM;
2800                         break;
2801                 }
2802
2803                 /*
2804                  * We have two constraints: We find one extent to map and we
2805                  * must always write out whole page (makes a difference when
2806                  * blocksize < pagesize) so that we don't block on IO when we
2807                  * try to write out the rest of the page. Journalled mode is
2808                  * not supported by delalloc.
2809                  */
2810                 BUG_ON(ext4_should_journal_data(inode));
2811                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2812
2813                 /* start a new transaction */
2814                 handle = ext4_journal_start_with_reserve(inode,
2815                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2816                 if (IS_ERR(handle)) {
2817                         ret = PTR_ERR(handle);
2818                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2819                                "%ld pages, ino %lu; err %d", __func__,
2820                                 wbc->nr_to_write, inode->i_ino, ret);
2821                         /* Release allocated io_end */
2822                         ext4_put_io_end(mpd.io_submit.io_end);
2823                         mpd.io_submit.io_end = NULL;
2824                         break;
2825                 }
2826                 mpd.do_map = 1;
2827
2828                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2829                 ret = mpage_prepare_extent_to_map(&mpd);
2830                 if (!ret && mpd.map.m_len)
2831                         ret = mpage_map_and_submit_extent(handle, &mpd,
2832                                         &give_up_on_write);
2833                 /*
2834                  * Caution: If the handle is synchronous,
2835                  * ext4_journal_stop() can wait for transaction commit
2836                  * to finish which may depend on writeback of pages to
2837                  * complete or on page lock to be released.  In that
2838                  * case, we have to wait until after we have
2839                  * submitted all the IO, released page locks we hold,
2840                  * and dropped io_end reference (for extent conversion
2841                  * to be able to complete) before stopping the handle.
2842                  */
2843                 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2844                         ext4_journal_stop(handle);
2845                         handle = NULL;
2846                         mpd.do_map = 0;
2847                 }
2848                 /* Unlock pages we didn't use */
2849                 mpage_release_unused_pages(&mpd, give_up_on_write);
2850                 /* Submit prepared bio */
2851                 ext4_io_submit(&mpd.io_submit);
2852
2853                 /*
2854                  * Drop our io_end reference we got from init. We have
2855                  * to be careful and use deferred io_end finishing if
2856                  * we are still holding the transaction as we can
2857                  * release the last reference to io_end which may end
2858                  * up doing unwritten extent conversion.
2859                  */
2860                 if (handle) {
2861                         ext4_put_io_end_defer(mpd.io_submit.io_end);
2862                         ext4_journal_stop(handle);
2863                 } else
2864                         ext4_put_io_end(mpd.io_submit.io_end);
2865                 mpd.io_submit.io_end = NULL;
2866
2867                 if (ret == -ENOSPC && sbi->s_journal) {
2868                         /*
2869                          * Commit the transaction which would
2870                          * free blocks released in the transaction
2871                          * and try again
2872                          */
2873                         jbd2_journal_force_commit_nested(sbi->s_journal);
2874                         ret = 0;
2875                         continue;
2876                 }
2877                 /* Fatal error - ENOMEM, EIO... */
2878                 if (ret)
2879                         break;
2880         }
2881 unplug:
2882         blk_finish_plug(&plug);
2883         if (!ret && !cycled && wbc->nr_to_write > 0) {
2884                 cycled = 1;
2885                 mpd.last_page = writeback_index - 1;
2886                 mpd.first_page = 0;
2887                 goto retry;
2888         }
2889
2890         /* Update index */
2891         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2892                 /*
2893                  * Set the writeback_index so that range_cyclic
2894                  * mode will write it back later
2895                  */
2896                 mapping->writeback_index = mpd.first_page;
2897
2898 out_writepages:
2899         trace_ext4_writepages_result(inode, wbc, ret,
2900                                      nr_to_write - wbc->nr_to_write);
2901         percpu_up_read(&sbi->s_writepages_rwsem);
2902         return ret;
2903 }
2904
2905 static int ext4_dax_writepages(struct address_space *mapping,
2906                                struct writeback_control *wbc)
2907 {
2908         int ret;
2909         long nr_to_write = wbc->nr_to_write;
2910         struct inode *inode = mapping->host;
2911         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2912
2913         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2914                 return -EIO;
2915
2916         percpu_down_read(&sbi->s_writepages_rwsem);
2917         trace_ext4_writepages(inode, wbc);
2918
2919         ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
2920         trace_ext4_writepages_result(inode, wbc, ret,
2921                                      nr_to_write - wbc->nr_to_write);
2922         percpu_up_read(&sbi->s_writepages_rwsem);
2923         return ret;
2924 }
2925
2926 static int ext4_nonda_switch(struct super_block *sb)
2927 {
2928         s64 free_clusters, dirty_clusters;
2929         struct ext4_sb_info *sbi = EXT4_SB(sb);
2930
2931         /*
2932          * switch to non delalloc mode if we are running low
2933          * on free block. The free block accounting via percpu
2934          * counters can get slightly wrong with percpu_counter_batch getting
2935          * accumulated on each CPU without updating global counters
2936          * Delalloc need an accurate free block accounting. So switch
2937          * to non delalloc when we are near to error range.
2938          */
2939         free_clusters =
2940                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2941         dirty_clusters =
2942                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2943         /*
2944          * Start pushing delalloc when 1/2 of free blocks are dirty.
2945          */
2946         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2947                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2948
2949         if (2 * free_clusters < 3 * dirty_clusters ||
2950             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2951                 /*
2952                  * free block count is less than 150% of dirty blocks
2953                  * or free blocks is less than watermark
2954                  */
2955                 return 1;
2956         }
2957         return 0;
2958 }
2959
2960 /* We always reserve for an inode update; the superblock could be there too */
2961 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2962 {
2963         if (likely(ext4_has_feature_large_file(inode->i_sb)))
2964                 return 1;
2965
2966         if (pos + len <= 0x7fffffffULL)
2967                 return 1;
2968
2969         /* We might need to update the superblock to set LARGE_FILE */
2970         return 2;
2971 }
2972
2973 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2974                                loff_t pos, unsigned len, unsigned flags,
2975                                struct page **pagep, void **fsdata)
2976 {
2977         int ret, retries = 0;
2978         struct page *page;
2979         pgoff_t index;
2980         struct inode *inode = mapping->host;
2981         handle_t *handle;
2982
2983         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2984                 return -EIO;
2985
2986         index = pos >> PAGE_SHIFT;
2987
2988         if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
2989             ext4_verity_in_progress(inode)) {
2990                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2991                 return ext4_write_begin(file, mapping, pos,
2992                                         len, flags, pagep, fsdata);
2993         }
2994         *fsdata = (void *)0;
2995         trace_ext4_da_write_begin(inode, pos, len, flags);
2996
2997         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2998                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2999                                                       pos, len, flags,
3000                                                       pagep, fsdata);
3001                 if (ret < 0)
3002                         return ret;
3003                 if (ret == 1)
3004                         return 0;
3005         }
3006
3007         /*
3008          * grab_cache_page_write_begin() can take a long time if the
3009          * system is thrashing due to memory pressure, or if the page
3010          * is being written back.  So grab it first before we start
3011          * the transaction handle.  This also allows us to allocate
3012          * the page (if needed) without using GFP_NOFS.
3013          */
3014 retry_grab:
3015         page = grab_cache_page_write_begin(mapping, index, flags);
3016         if (!page)
3017                 return -ENOMEM;
3018         unlock_page(page);
3019
3020         /*
3021          * With delayed allocation, we don't log the i_disksize update
3022          * if there is delayed block allocation. But we still need
3023          * to journalling the i_disksize update if writes to the end
3024          * of file which has an already mapped buffer.
3025          */
3026 retry_journal:
3027         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3028                                 ext4_da_write_credits(inode, pos, len));
3029         if (IS_ERR(handle)) {
3030                 put_page(page);
3031                 return PTR_ERR(handle);
3032         }
3033
3034         lock_page(page);
3035         if (page->mapping != mapping) {
3036                 /* The page got truncated from under us */
3037                 unlock_page(page);
3038                 put_page(page);
3039                 ext4_journal_stop(handle);
3040                 goto retry_grab;
3041         }
3042         /* In case writeback began while the page was unlocked */
3043         wait_for_stable_page(page);
3044
3045 #ifdef CONFIG_FS_ENCRYPTION
3046         ret = ext4_block_write_begin(page, pos, len,
3047                                      ext4_da_get_block_prep);
3048 #else
3049         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3050 #endif
3051         if (ret < 0) {
3052                 unlock_page(page);
3053                 ext4_journal_stop(handle);
3054                 /*
3055                  * block_write_begin may have instantiated a few blocks
3056                  * outside i_size.  Trim these off again. Don't need
3057                  * i_size_read because we hold i_mutex.
3058                  */
3059                 if (pos + len > inode->i_size)
3060                         ext4_truncate_failed_write(inode);
3061
3062                 if (ret == -ENOSPC &&
3063                     ext4_should_retry_alloc(inode->i_sb, &retries))
3064                         goto retry_journal;
3065
3066                 put_page(page);
3067                 return ret;
3068         }
3069
3070         *pagep = page;
3071         return ret;
3072 }
3073
3074 /*
3075  * Check if we should update i_disksize
3076  * when write to the end of file but not require block allocation
3077  */
3078 static int ext4_da_should_update_i_disksize(struct page *page,
3079                                             unsigned long offset)
3080 {
3081         struct buffer_head *bh;
3082         struct inode *inode = page->mapping->host;
3083         unsigned int idx;
3084         int i;
3085
3086         bh = page_buffers(page);
3087         idx = offset >> inode->i_blkbits;
3088
3089         for (i = 0; i < idx; i++)
3090                 bh = bh->b_this_page;
3091
3092         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3093                 return 0;
3094         return 1;
3095 }
3096
3097 static int ext4_da_write_end(struct file *file,
3098                              struct address_space *mapping,
3099                              loff_t pos, unsigned len, unsigned copied,
3100                              struct page *page, void *fsdata)
3101 {
3102         struct inode *inode = mapping->host;
3103         int ret = 0, ret2;
3104         handle_t *handle = ext4_journal_current_handle();
3105         loff_t new_i_size;
3106         unsigned long start, end;
3107         int write_mode = (int)(unsigned long)fsdata;
3108
3109         if (write_mode == FALL_BACK_TO_NONDELALLOC)
3110                 return ext4_write_end(file, mapping, pos,
3111                                       len, copied, page, fsdata);
3112
3113         trace_ext4_da_write_end(inode, pos, len, copied);
3114         start = pos & (PAGE_SIZE - 1);
3115         end = start + copied - 1;
3116
3117         /*
3118          * Since we are holding inode lock, we are sure i_disksize <=
3119          * i_size. We also know that if i_disksize < i_size, there are
3120          * delalloc writes pending in the range upto i_size. If the end of
3121          * the current write is <= i_size, there's no need to touch
3122          * i_disksize since writeback will push i_disksize upto i_size
3123          * eventually. If the end of the current write is > i_size and
3124          * inside an allocated block (ext4_da_should_update_i_disksize()
3125          * check), we need to update i_disksize here as neither
3126          * ext4_writepage() nor certain ext4_writepages() paths not
3127          * allocating blocks update i_disksize.
3128          *
3129          * Note that we defer inode dirtying to generic_write_end() /
3130          * ext4_da_write_inline_data_end().
3131          */
3132         new_i_size = pos + copied;
3133         if (copied && new_i_size > inode->i_size) {
3134                 if (ext4_has_inline_data(inode) ||
3135                     ext4_da_should_update_i_disksize(page, end))
3136                         ext4_update_i_disksize(inode, new_i_size);
3137         }
3138
3139         if (write_mode != CONVERT_INLINE_DATA &&
3140             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3141             ext4_has_inline_data(inode))
3142                 ret = ext4_da_write_inline_data_end(inode, pos, len, copied,
3143                                                      page);
3144         else
3145                 ret = generic_write_end(file, mapping, pos, len, copied,
3146                                                         page, fsdata);
3147
3148         copied = ret;
3149         ret2 = ext4_journal_stop(handle);
3150         if (unlikely(ret2 && !ret))
3151                 ret = ret2;
3152
3153         return ret ? ret : copied;
3154 }
3155
3156 /*
3157  * Force all delayed allocation blocks to be allocated for a given inode.
3158  */
3159 int ext4_alloc_da_blocks(struct inode *inode)
3160 {
3161         trace_ext4_alloc_da_blocks(inode);
3162
3163         if (!EXT4_I(inode)->i_reserved_data_blocks)
3164                 return 0;
3165
3166         /*
3167          * We do something simple for now.  The filemap_flush() will
3168          * also start triggering a write of the data blocks, which is
3169          * not strictly speaking necessary (and for users of
3170          * laptop_mode, not even desirable).  However, to do otherwise
3171          * would require replicating code paths in:
3172          *
3173          * ext4_writepages() ->
3174          *    write_cache_pages() ---> (via passed in callback function)
3175          *        __mpage_da_writepage() -->
3176          *           mpage_add_bh_to_extent()
3177          *           mpage_da_map_blocks()
3178          *
3179          * The problem is that write_cache_pages(), located in
3180          * mm/page-writeback.c, marks pages clean in preparation for
3181          * doing I/O, which is not desirable if we're not planning on
3182          * doing I/O at all.
3183          *
3184          * We could call write_cache_pages(), and then redirty all of
3185          * the pages by calling redirty_page_for_writepage() but that
3186          * would be ugly in the extreme.  So instead we would need to
3187          * replicate parts of the code in the above functions,
3188          * simplifying them because we wouldn't actually intend to
3189          * write out the pages, but rather only collect contiguous
3190          * logical block extents, call the multi-block allocator, and
3191          * then update the buffer heads with the block allocations.
3192          *
3193          * For now, though, we'll cheat by calling filemap_flush(),
3194          * which will map the blocks, and start the I/O, but not
3195          * actually wait for the I/O to complete.
3196          */
3197         return filemap_flush(inode->i_mapping);
3198 }
3199
3200 /*
3201  * bmap() is special.  It gets used by applications such as lilo and by
3202  * the swapper to find the on-disk block of a specific piece of data.
3203  *
3204  * Naturally, this is dangerous if the block concerned is still in the
3205  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3206  * filesystem and enables swap, then they may get a nasty shock when the
3207  * data getting swapped to that swapfile suddenly gets overwritten by
3208  * the original zero's written out previously to the journal and
3209  * awaiting writeback in the kernel's buffer cache.
3210  *
3211  * So, if we see any bmap calls here on a modified, data-journaled file,
3212  * take extra steps to flush any blocks which might be in the cache.
3213  */
3214 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3215 {
3216         struct inode *inode = mapping->host;
3217         journal_t *journal;
3218         sector_t ret = 0;
3219         int err;
3220
3221         inode_lock_shared(inode);
3222         /*
3223          * We can get here for an inline file via the FIBMAP ioctl
3224          */
3225         if (ext4_has_inline_data(inode))
3226                 goto out;
3227
3228         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3229                         test_opt(inode->i_sb, DELALLOC)) {
3230                 /*
3231                  * With delalloc we want to sync the file
3232                  * so that we can make sure we allocate
3233                  * blocks for file
3234                  */
3235                 filemap_write_and_wait(mapping);
3236         }
3237
3238         if (EXT4_JOURNAL(inode) &&
3239             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3240                 /*
3241                  * This is a REALLY heavyweight approach, but the use of
3242                  * bmap on dirty files is expected to be extremely rare:
3243                  * only if we run lilo or swapon on a freshly made file
3244                  * do we expect this to happen.
3245                  *
3246                  * (bmap requires CAP_SYS_RAWIO so this does not
3247                  * represent an unprivileged user DOS attack --- we'd be
3248                  * in trouble if mortal users could trigger this path at
3249                  * will.)
3250                  *
3251                  * NB. EXT4_STATE_JDATA is not set on files other than
3252                  * regular files.  If somebody wants to bmap a directory
3253                  * or symlink and gets confused because the buffer
3254                  * hasn't yet been flushed to disk, they deserve
3255                  * everything they get.
3256                  */
3257
3258                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3259                 journal = EXT4_JOURNAL(inode);
3260                 jbd2_journal_lock_updates(journal);
3261                 err = jbd2_journal_flush(journal);
3262                 jbd2_journal_unlock_updates(journal);
3263
3264                 if (err)
3265                         goto out;
3266         }
3267
3268         ret = iomap_bmap(mapping, block, &ext4_iomap_ops);
3269
3270 out:
3271         inode_unlock_shared(inode);
3272         return ret;
3273 }
3274
3275 static int ext4_readpage(struct file *file, struct page *page)
3276 {
3277         int ret = -EAGAIN;
3278         struct inode *inode = page->mapping->host;
3279
3280         trace_ext4_readpage(page);
3281
3282         if (ext4_has_inline_data(inode))
3283                 ret = ext4_readpage_inline(inode, page);
3284
3285         if (ret == -EAGAIN)
3286                 return ext4_mpage_readpages(inode, NULL, page);
3287
3288         return ret;
3289 }
3290
3291 static void ext4_readahead(struct readahead_control *rac)
3292 {
3293         struct inode *inode = rac->mapping->host;
3294
3295         /* If the file has inline data, no need to do readahead. */
3296         if (ext4_has_inline_data(inode))
3297                 return;
3298
3299         ext4_mpage_readpages(inode, rac, NULL);
3300 }
3301
3302 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3303                                 unsigned int length)
3304 {
3305         trace_ext4_invalidatepage(page, offset, length);
3306
3307         /* No journalling happens on data buffers when this function is used */
3308         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3309
3310         block_invalidatepage(page, offset, length);
3311 }
3312
3313 static int __ext4_journalled_invalidatepage(struct page *page,
3314                                             unsigned int offset,
3315                                             unsigned int length)
3316 {
3317         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3318
3319         trace_ext4_journalled_invalidatepage(page, offset, length);
3320
3321         /*
3322          * If it's a full truncate we just forget about the pending dirtying
3323          */
3324         if (offset == 0 && length == PAGE_SIZE)
3325                 ClearPageChecked(page);
3326
3327         return jbd2_journal_invalidatepage(journal, page, offset, length);
3328 }
3329
3330 /* Wrapper for aops... */
3331 static void ext4_journalled_invalidatepage(struct page *page,
3332                                            unsigned int offset,
3333                                            unsigned int length)
3334 {
3335         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3336 }
3337
3338 static int ext4_releasepage(struct page *page, gfp_t wait)
3339 {
3340         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3341
3342         trace_ext4_releasepage(page);
3343
3344         /* Page has dirty journalled data -> cannot release */
3345         if (PageChecked(page))
3346                 return 0;
3347         if (journal)
3348                 return jbd2_journal_try_to_free_buffers(journal, page);
3349         else
3350                 return try_to_free_buffers(page);
3351 }
3352
3353 static bool ext4_inode_datasync_dirty(struct inode *inode)
3354 {
3355         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3356
3357         if (journal) {
3358                 if (jbd2_transaction_committed(journal,
3359                         EXT4_I(inode)->i_datasync_tid))
3360                         return false;
3361                 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3362                         return !list_empty(&EXT4_I(inode)->i_fc_list);
3363                 return true;
3364         }
3365
3366         /* Any metadata buffers to write? */
3367         if (!list_empty(&inode->i_mapping->private_list))
3368                 return true;
3369         return inode->i_state & I_DIRTY_DATASYNC;
3370 }
3371
3372 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3373                            struct ext4_map_blocks *map, loff_t offset,
3374                            loff_t length)
3375 {
3376         u8 blkbits = inode->i_blkbits;
3377
3378         /*
3379          * Writes that span EOF might trigger an I/O size update on completion,
3380          * so consider them to be dirty for the purpose of O_DSYNC, even if
3381          * there is no other metadata changes being made or are pending.
3382          */
3383         iomap->flags = 0;
3384         if (ext4_inode_datasync_dirty(inode) ||
3385             offset + length > i_size_read(inode))
3386                 iomap->flags |= IOMAP_F_DIRTY;
3387
3388         if (map->m_flags & EXT4_MAP_NEW)
3389                 iomap->flags |= IOMAP_F_NEW;
3390
3391         iomap->bdev = inode->i_sb->s_bdev;
3392         iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3393         iomap->offset = (u64) map->m_lblk << blkbits;
3394         iomap->length = (u64) map->m_len << blkbits;
3395
3396         if ((map->m_flags & EXT4_MAP_MAPPED) &&
3397             !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3398                 iomap->flags |= IOMAP_F_MERGED;
3399
3400         /*
3401          * Flags passed to ext4_map_blocks() for direct I/O writes can result
3402          * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3403          * set. In order for any allocated unwritten extents to be converted
3404          * into written extents correctly within the ->end_io() handler, we
3405          * need to ensure that the iomap->type is set appropriately. Hence, the
3406          * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3407          * been set first.
3408          */
3409         if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3410                 iomap->type = IOMAP_UNWRITTEN;
3411                 iomap->addr = (u64) map->m_pblk << blkbits;
3412         } else if (map->m_flags & EXT4_MAP_MAPPED) {
3413                 iomap->type = IOMAP_MAPPED;
3414                 iomap->addr = (u64) map->m_pblk << blkbits;
3415         } else {
3416                 iomap->type = IOMAP_HOLE;
3417                 iomap->addr = IOMAP_NULL_ADDR;
3418         }
3419 }
3420
3421 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3422                             unsigned int flags)
3423 {
3424         handle_t *handle;
3425         u8 blkbits = inode->i_blkbits;
3426         int ret, dio_credits, m_flags = 0, retries = 0;
3427
3428         /*
3429          * Trim the mapping request to the maximum value that we can map at
3430          * once for direct I/O.
3431          */
3432         if (map->m_len > DIO_MAX_BLOCKS)
3433                 map->m_len = DIO_MAX_BLOCKS;
3434         dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3435
3436 retry:
3437         /*
3438          * Either we allocate blocks and then don't get an unwritten extent, so
3439          * in that case we have reserved enough credits. Or, the blocks are
3440          * already allocated and unwritten. In that case, the extent conversion
3441          * fits into the credits as well.
3442          */
3443         handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3444         if (IS_ERR(handle))
3445                 return PTR_ERR(handle);
3446
3447         /*
3448          * DAX and direct I/O are the only two operations that are currently
3449          * supported with IOMAP_WRITE.
3450          */
3451         WARN_ON(!IS_DAX(inode) && !(flags & IOMAP_DIRECT));
3452         if (IS_DAX(inode))
3453                 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3454         /*
3455          * We use i_size instead of i_disksize here because delalloc writeback
3456          * can complete at any point during the I/O and subsequently push the
3457          * i_disksize out to i_size. This could be beyond where direct I/O is
3458          * happening and thus expose allocated blocks to direct I/O reads.
3459          */
3460         else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3461                 m_flags = EXT4_GET_BLOCKS_CREATE;
3462         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3463                 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3464
3465         ret = ext4_map_blocks(handle, inode, map, m_flags);
3466
3467         /*
3468          * We cannot fill holes in indirect tree based inodes as that could
3469          * expose stale data in the case of a crash. Use the magic error code
3470          * to fallback to buffered I/O.
3471          */
3472         if (!m_flags && !ret)
3473                 ret = -ENOTBLK;
3474
3475         ext4_journal_stop(handle);
3476         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3477                 goto retry;
3478
3479         return ret;
3480 }
3481
3482
3483 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3484                 unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3485 {
3486         int ret;
3487         struct ext4_map_blocks map;
3488         u8 blkbits = inode->i_blkbits;
3489
3490         if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3491                 return -EINVAL;
3492
3493         if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3494                 return -ERANGE;
3495
3496         /*
3497          * Calculate the first and last logical blocks respectively.
3498          */
3499         map.m_lblk = offset >> blkbits;
3500         map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3501                           EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3502
3503         if (flags & IOMAP_WRITE) {
3504                 /*
3505                  * We check here if the blocks are already allocated, then we
3506                  * don't need to start a journal txn and we can directly return
3507                  * the mapping information. This could boost performance
3508                  * especially in multi-threaded overwrite requests.
3509                  */
3510                 if (offset + length <= i_size_read(inode)) {
3511                         ret = ext4_map_blocks(NULL, inode, &map, 0);
3512                         if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3513                                 goto out;
3514                 }
3515                 ret = ext4_iomap_alloc(inode, &map, flags);
3516         } else {
3517                 ret = ext4_map_blocks(NULL, inode, &map, 0);
3518         }
3519
3520         if (ret < 0)
3521                 return ret;
3522 out:
3523         ext4_set_iomap(inode, iomap, &map, offset, length);
3524
3525         return 0;
3526 }
3527
3528 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3529                 loff_t length, unsigned flags, struct iomap *iomap,
3530                 struct iomap *srcmap)
3531 {
3532         int ret;
3533
3534         /*
3535          * Even for writes we don't need to allocate blocks, so just pretend
3536          * we are reading to save overhead of starting a transaction.
3537          */
3538         flags &= ~IOMAP_WRITE;
3539         ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3540         WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED);
3541         return ret;
3542 }
3543
3544 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3545                           ssize_t written, unsigned flags, struct iomap *iomap)
3546 {
3547         /*
3548          * Check to see whether an error occurred while writing out the data to
3549          * the allocated blocks. If so, return the magic error code so that we
3550          * fallback to buffered I/O and attempt to complete the remainder of
3551          * the I/O. Any blocks that may have been allocated in preparation for
3552          * the direct I/O will be reused during buffered I/O.
3553          */
3554         if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3555                 return -ENOTBLK;
3556
3557         return 0;
3558 }
3559
3560 const struct iomap_ops ext4_iomap_ops = {
3561         .iomap_begin            = ext4_iomap_begin,
3562         .iomap_end              = ext4_iomap_end,
3563 };
3564
3565 const struct iomap_ops ext4_iomap_overwrite_ops = {
3566         .iomap_begin            = ext4_iomap_overwrite_begin,
3567         .iomap_end              = ext4_iomap_end,
3568 };
3569
3570 static bool ext4_iomap_is_delalloc(struct inode *inode,
3571                                    struct ext4_map_blocks *map)
3572 {
3573         struct extent_status es;
3574         ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3575
3576         ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3577                                   map->m_lblk, end, &es);
3578
3579         if (!es.es_len || es.es_lblk > end)
3580                 return false;
3581
3582         if (es.es_lblk > map->m_lblk) {
3583                 map->m_len = es.es_lblk - map->m_lblk;
3584                 return false;
3585         }
3586
3587         offset = map->m_lblk - es.es_lblk;
3588         map->m_len = es.es_len - offset;
3589
3590         return true;
3591 }
3592
3593 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3594                                    loff_t length, unsigned int flags,
3595                                    struct iomap *iomap, struct iomap *srcmap)
3596 {
3597         int ret;
3598         bool delalloc = false;
3599         struct ext4_map_blocks map;
3600         u8 blkbits = inode->i_blkbits;
3601
3602         if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3603                 return -EINVAL;
3604
3605         if (ext4_has_inline_data(inode)) {
3606                 ret = ext4_inline_data_iomap(inode, iomap);
3607                 if (ret != -EAGAIN) {
3608                         if (ret == 0 && offset >= iomap->length)
3609                                 ret = -ENOENT;
3610                         return ret;
3611                 }
3612         }
3613
3614         /*
3615          * Calculate the first and last logical block respectively.
3616          */
3617         map.m_lblk = offset >> blkbits;
3618         map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3619                           EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3620
3621         /*
3622          * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3623          * So handle it here itself instead of querying ext4_map_blocks().
3624          * Since ext4_map_blocks() will warn about it and will return
3625          * -EIO error.
3626          */
3627         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3628                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3629
3630                 if (offset >= sbi->s_bitmap_maxbytes) {
3631                         map.m_flags = 0;
3632                         goto set_iomap;
3633                 }
3634         }
3635
3636         ret = ext4_map_blocks(NULL, inode, &map, 0);
3637         if (ret < 0)
3638                 return ret;
3639         if (ret == 0)
3640                 delalloc = ext4_iomap_is_delalloc(inode, &map);
3641
3642 set_iomap:
3643         ext4_set_iomap(inode, iomap, &map, offset, length);
3644         if (delalloc && iomap->type == IOMAP_HOLE)
3645                 iomap->type = IOMAP_DELALLOC;
3646
3647         return 0;
3648 }
3649
3650 const struct iomap_ops ext4_iomap_report_ops = {
3651         .iomap_begin = ext4_iomap_begin_report,
3652 };
3653
3654 /*
3655  * Pages can be marked dirty completely asynchronously from ext4's journalling
3656  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3657  * much here because ->set_page_dirty is called under VFS locks.  The page is
3658  * not necessarily locked.
3659  *
3660  * We cannot just dirty the page and leave attached buffers clean, because the
3661  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3662  * or jbddirty because all the journalling code will explode.
3663  *
3664  * So what we do is to mark the page "pending dirty" and next time writepage
3665  * is called, propagate that into the buffers appropriately.
3666  */
3667 static int ext4_journalled_set_page_dirty(struct page *page)
3668 {
3669         SetPageChecked(page);
3670         return __set_page_dirty_nobuffers(page);
3671 }
3672
3673 static int ext4_set_page_dirty(struct page *page)
3674 {
3675         WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3676         WARN_ON_ONCE(!page_has_buffers(page));
3677         return __set_page_dirty_buffers(page);
3678 }
3679
3680 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3681                                     struct file *file, sector_t *span)
3682 {
3683         return iomap_swapfile_activate(sis, file, span,
3684                                        &ext4_iomap_report_ops);
3685 }
3686
3687 static const struct address_space_operations ext4_aops = {
3688         .readpage               = ext4_readpage,
3689         .readahead              = ext4_readahead,
3690         .writepage              = ext4_writepage,
3691         .writepages             = ext4_writepages,
3692         .write_begin            = ext4_write_begin,
3693         .write_end              = ext4_write_end,
3694         .set_page_dirty         = ext4_set_page_dirty,
3695         .bmap                   = ext4_bmap,
3696         .invalidatepage         = ext4_invalidatepage,
3697         .releasepage            = ext4_releasepage,
3698         .direct_IO              = noop_direct_IO,
3699         .migratepage            = buffer_migrate_page,
3700         .is_partially_uptodate  = block_is_partially_uptodate,
3701         .error_remove_page      = generic_error_remove_page,
3702         .swap_activate          = ext4_iomap_swap_activate,
3703 };
3704
3705 static const struct address_space_operations ext4_journalled_aops = {
3706         .readpage               = ext4_readpage,
3707         .readahead              = ext4_readahead,
3708         .writepage              = ext4_writepage,
3709         .writepages             = ext4_writepages,
3710         .write_begin            = ext4_write_begin,
3711         .write_end              = ext4_journalled_write_end,
3712         .set_page_dirty         = ext4_journalled_set_page_dirty,
3713         .bmap                   = ext4_bmap,
3714         .invalidatepage         = ext4_journalled_invalidatepage,
3715         .releasepage            = ext4_releasepage,
3716         .direct_IO              = noop_direct_IO,
3717         .is_partially_uptodate  = block_is_partially_uptodate,
3718         .error_remove_page      = generic_error_remove_page,
3719         .swap_activate          = ext4_iomap_swap_activate,
3720 };
3721
3722 static const struct address_space_operations ext4_da_aops = {
3723         .readpage               = ext4_readpage,
3724         .readahead              = ext4_readahead,
3725         .writepage              = ext4_writepage,
3726         .writepages             = ext4_writepages,
3727         .write_begin            = ext4_da_write_begin,
3728         .write_end              = ext4_da_write_end,
3729         .set_page_dirty         = ext4_set_page_dirty,
3730         .bmap                   = ext4_bmap,
3731         .invalidatepage         = ext4_invalidatepage,
3732         .releasepage            = ext4_releasepage,
3733         .direct_IO              = noop_direct_IO,
3734         .migratepage            = buffer_migrate_page,
3735         .is_partially_uptodate  = block_is_partially_uptodate,
3736         .error_remove_page      = generic_error_remove_page,
3737         .swap_activate          = ext4_iomap_swap_activate,
3738 };
3739
3740 static const struct address_space_operations ext4_dax_aops = {
3741         .writepages             = ext4_dax_writepages,
3742         .direct_IO              = noop_direct_IO,
3743         .set_page_dirty         = noop_set_page_dirty,
3744         .bmap                   = ext4_bmap,
3745         .invalidatepage         = noop_invalidatepage,
3746         .swap_activate          = ext4_iomap_swap_activate,
3747 };
3748
3749 void ext4_set_aops(struct inode *inode)
3750 {
3751         switch (ext4_inode_journal_mode(inode)) {
3752         case EXT4_INODE_ORDERED_DATA_MODE:
3753         case EXT4_INODE_WRITEBACK_DATA_MODE:
3754                 break;
3755         case EXT4_INODE_JOURNAL_DATA_MODE:
3756                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3757                 return;
3758         default:
3759                 BUG();
3760         }
3761         if (IS_DAX(inode))
3762                 inode->i_mapping->a_ops = &ext4_dax_aops;
3763         else if (test_opt(inode->i_sb, DELALLOC))
3764                 inode->i_mapping->a_ops = &ext4_da_aops;
3765         else
3766                 inode->i_mapping->a_ops = &ext4_aops;
3767 }
3768
3769 static int __ext4_block_zero_page_range(handle_t *handle,
3770                 struct address_space *mapping, loff_t from, loff_t length)
3771 {
3772         ext4_fsblk_t index = from >> PAGE_SHIFT;
3773         unsigned offset = from & (PAGE_SIZE-1);
3774         unsigned blocksize, pos;
3775         ext4_lblk_t iblock;
3776         struct inode *inode = mapping->host;
3777         struct buffer_head *bh;
3778         struct page *page;
3779         int err = 0;
3780
3781         page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3782                                    mapping_gfp_constraint(mapping, ~__GFP_FS));
3783         if (!page)
3784                 return -ENOMEM;
3785
3786         blocksize = inode->i_sb->s_blocksize;
3787
3788         iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3789
3790         if (!page_has_buffers(page))
3791                 create_empty_buffers(page, blocksize, 0);
3792
3793         /* Find the buffer that contains "offset" */
3794         bh = page_buffers(page);
3795         pos = blocksize;
3796         while (offset >= pos) {
3797                 bh = bh->b_this_page;
3798                 iblock++;
3799                 pos += blocksize;
3800         }
3801         if (buffer_freed(bh)) {
3802                 BUFFER_TRACE(bh, "freed: skip");
3803                 goto unlock;
3804         }
3805         if (!buffer_mapped(bh)) {
3806                 BUFFER_TRACE(bh, "unmapped");
3807                 ext4_get_block(inode, iblock, bh, 0);
3808                 /* unmapped? It's a hole - nothing to do */
3809                 if (!buffer_mapped(bh)) {
3810                         BUFFER_TRACE(bh, "still unmapped");
3811                         goto unlock;
3812                 }
3813         }
3814
3815         /* Ok, it's mapped. Make sure it's up-to-date */
3816         if (PageUptodate(page))
3817                 set_buffer_uptodate(bh);
3818
3819         if (!buffer_uptodate(bh)) {
3820                 err = ext4_read_bh_lock(bh, 0, true);
3821                 if (err)
3822                         goto unlock;
3823                 if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3824                         /* We expect the key to be set. */
3825                         BUG_ON(!fscrypt_has_encryption_key(inode));
3826                         err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3827                                                                bh_offset(bh));
3828                         if (err) {
3829                                 clear_buffer_uptodate(bh);
3830                                 goto unlock;
3831                         }
3832                 }
3833         }
3834         if (ext4_should_journal_data(inode)) {
3835                 BUFFER_TRACE(bh, "get write access");
3836                 err = ext4_journal_get_write_access(handle, bh);
3837                 if (err)
3838                         goto unlock;
3839         }
3840         zero_user(page, offset, length);
3841         BUFFER_TRACE(bh, "zeroed end of block");
3842
3843         if (ext4_should_journal_data(inode)) {
3844                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3845         } else {
3846                 err = 0;
3847                 mark_buffer_dirty(bh);
3848                 if (ext4_should_order_data(inode))
3849                         err = ext4_jbd2_inode_add_write(handle, inode, from,
3850                                         length);
3851         }
3852
3853 unlock:
3854         unlock_page(page);
3855         put_page(page);
3856         return err;
3857 }
3858
3859 /*
3860  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3861  * starting from file offset 'from'.  The range to be zero'd must
3862  * be contained with in one block.  If the specified range exceeds
3863  * the end of the block it will be shortened to end of the block
3864  * that corresponds to 'from'
3865  */
3866 static int ext4_block_zero_page_range(handle_t *handle,
3867                 struct address_space *mapping, loff_t from, loff_t length)
3868 {
3869         struct inode *inode = mapping->host;
3870         unsigned offset = from & (PAGE_SIZE-1);
3871         unsigned blocksize = inode->i_sb->s_blocksize;
3872         unsigned max = blocksize - (offset & (blocksize - 1));
3873
3874         /*
3875          * correct length if it does not fall between
3876          * 'from' and the end of the block
3877          */
3878         if (length > max || length < 0)
3879                 length = max;
3880
3881         if (IS_DAX(inode)) {
3882                 return iomap_zero_range(inode, from, length, NULL,
3883                                         &ext4_iomap_ops);
3884         }
3885         return __ext4_block_zero_page_range(handle, mapping, from, length);
3886 }
3887
3888 /*
3889  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3890  * up to the end of the block which corresponds to `from'.
3891  * This required during truncate. We need to physically zero the tail end
3892  * of that block so it doesn't yield old data if the file is later grown.
3893  */
3894 static int ext4_block_truncate_page(handle_t *handle,
3895                 struct address_space *mapping, loff_t from)
3896 {
3897         unsigned offset = from & (PAGE_SIZE-1);
3898         unsigned length;
3899         unsigned blocksize;
3900         struct inode *inode = mapping->host;
3901
3902         /* If we are processing an encrypted inode during orphan list handling */
3903         if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3904                 return 0;
3905
3906         blocksize = inode->i_sb->s_blocksize;
3907         length = blocksize - (offset & (blocksize - 1));
3908
3909         return ext4_block_zero_page_range(handle, mapping, from, length);
3910 }
3911
3912 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3913                              loff_t lstart, loff_t length)
3914 {
3915         struct super_block *sb = inode->i_sb;
3916         struct address_space *mapping = inode->i_mapping;
3917         unsigned partial_start, partial_end;
3918         ext4_fsblk_t start, end;
3919         loff_t byte_end = (lstart + length - 1);
3920         int err = 0;
3921
3922         partial_start = lstart & (sb->s_blocksize - 1);
3923         partial_end = byte_end & (sb->s_blocksize - 1);
3924
3925         start = lstart >> sb->s_blocksize_bits;
3926         end = byte_end >> sb->s_blocksize_bits;
3927
3928         /* Handle partial zero within the single block */
3929         if (start == end &&
3930             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3931                 err = ext4_block_zero_page_range(handle, mapping,
3932                                                  lstart, length);
3933                 return err;
3934         }
3935         /* Handle partial zero out on the start of the range */
3936         if (partial_start) {
3937                 err = ext4_block_zero_page_range(handle, mapping,
3938                                                  lstart, sb->s_blocksize);
3939                 if (err)
3940                         return err;
3941         }
3942         /* Handle partial zero out on the end of the range */
3943         if (partial_end != sb->s_blocksize - 1)
3944                 err = ext4_block_zero_page_range(handle, mapping,
3945                                                  byte_end - partial_end,
3946                                                  partial_end + 1);
3947         return err;
3948 }
3949
3950 int ext4_can_truncate(struct inode *inode)
3951 {
3952         if (S_ISREG(inode->i_mode))
3953                 return 1;
3954         if (S_ISDIR(inode->i_mode))
3955                 return 1;
3956         if (S_ISLNK(inode->i_mode))
3957                 return !ext4_inode_is_fast_symlink(inode);
3958         return 0;
3959 }
3960
3961 /*
3962  * We have to make sure i_disksize gets properly updated before we truncate
3963  * page cache due to hole punching or zero range. Otherwise i_disksize update
3964  * can get lost as it may have been postponed to submission of writeback but
3965  * that will never happen after we truncate page cache.
3966  */
3967 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3968                                       loff_t len)
3969 {
3970         handle_t *handle;
3971         int ret;
3972
3973         loff_t size = i_size_read(inode);
3974
3975         WARN_ON(!inode_is_locked(inode));
3976         if (offset > size || offset + len < size)
3977                 return 0;
3978
3979         if (EXT4_I(inode)->i_disksize >= size)
3980                 return 0;
3981
3982         handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3983         if (IS_ERR(handle))
3984                 return PTR_ERR(handle);
3985         ext4_update_i_disksize(inode, size);
3986         ret = ext4_mark_inode_dirty(handle, inode);
3987         ext4_journal_stop(handle);
3988
3989         return ret;
3990 }
3991
3992 static void ext4_wait_dax_page(struct ext4_inode_info *ei)
3993 {
3994         up_write(&ei->i_mmap_sem);
3995         schedule();
3996         down_write(&ei->i_mmap_sem);
3997 }
3998
3999 int ext4_break_layouts(struct inode *inode)
4000 {
4001         struct ext4_inode_info *ei = EXT4_I(inode);
4002         struct page *page;
4003         int error;
4004
4005         if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
4006                 return -EINVAL;
4007
4008         do {
4009                 page = dax_layout_busy_page(inode->i_mapping);
4010                 if (!page)
4011                         return 0;
4012
4013                 error = ___wait_var_event(&page->_refcount,
4014                                 atomic_read(&page->_refcount) == 1,
4015                                 TASK_INTERRUPTIBLE, 0, 0,
4016                                 ext4_wait_dax_page(ei));
4017         } while (error == 0);
4018
4019         return error;
4020 }
4021
4022 /*
4023  * ext4_punch_hole: punches a hole in a file by releasing the blocks
4024  * associated with the given offset and length
4025  *
4026  * @inode:  File inode
4027  * @offset: The offset where the hole will begin
4028  * @len:    The length of the hole
4029  *
4030  * Returns: 0 on success or negative on failure
4031  */
4032
4033 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
4034 {
4035         struct inode *inode = file_inode(file);
4036         struct super_block *sb = inode->i_sb;
4037         ext4_lblk_t first_block, stop_block;
4038         struct address_space *mapping = inode->i_mapping;
4039         loff_t first_block_offset, last_block_offset, max_length;
4040         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4041         handle_t *handle;
4042         unsigned int credits;
4043         int ret = 0, ret2 = 0;
4044
4045         trace_ext4_punch_hole(inode, offset, length, 0);
4046
4047         /*
4048          * Write out all dirty pages to avoid race conditions
4049          * Then release them.
4050          */
4051         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4052                 ret = filemap_write_and_wait_range(mapping, offset,
4053                                                    offset + length - 1);
4054                 if (ret)
4055                         return ret;
4056         }
4057
4058         inode_lock(inode);
4059
4060         /* No need to punch hole beyond i_size */
4061         if (offset >= inode->i_size)
4062                 goto out_mutex;
4063
4064         /*
4065          * If the hole extends beyond i_size, set the hole
4066          * to end after the page that contains i_size
4067          */
4068         if (offset + length > inode->i_size) {
4069                 length = inode->i_size +
4070                    PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4071                    offset;
4072         }
4073
4074         /*
4075          * For punch hole the length + offset needs to be within one block
4076          * before last range. Adjust the length if it goes beyond that limit.
4077          */
4078         max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize;
4079         if (offset + length > max_length)
4080                 length = max_length - offset;
4081
4082         if (offset & (sb->s_blocksize - 1) ||
4083             (offset + length) & (sb->s_blocksize - 1)) {
4084                 /*
4085                  * Attach jinode to inode for jbd2 if we do any zeroing of
4086                  * partial block
4087                  */
4088                 ret = ext4_inode_attach_jinode(inode);
4089                 if (ret < 0)
4090                         goto out_mutex;
4091
4092         }
4093
4094         /* Wait all existing dio workers, newcomers will block on i_mutex */
4095         inode_dio_wait(inode);
4096
4097         ret = file_modified(file);
4098         if (ret)
4099                 goto out_mutex;
4100
4101         /*
4102          * Prevent page faults from reinstantiating pages we have released from
4103          * page cache.
4104          */
4105         down_write(&EXT4_I(inode)->i_mmap_sem);
4106
4107         ret = ext4_break_layouts(inode);
4108         if (ret)
4109                 goto out_dio;
4110
4111         first_block_offset = round_up(offset, sb->s_blocksize);
4112         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4113
4114         /* Now release the pages and zero block aligned part of pages*/
4115         if (last_block_offset > first_block_offset) {
4116                 ret = ext4_update_disksize_before_punch(inode, offset, length);
4117                 if (ret)
4118                         goto out_dio;
4119                 truncate_pagecache_range(inode, first_block_offset,
4120                                          last_block_offset);
4121         }
4122
4123         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4124                 credits = ext4_writepage_trans_blocks(inode);
4125         else
4126                 credits = ext4_blocks_for_truncate(inode);
4127         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4128         if (IS_ERR(handle)) {
4129                 ret = PTR_ERR(handle);
4130                 ext4_std_error(sb, ret);
4131                 goto out_dio;
4132         }
4133
4134         ret = ext4_zero_partial_blocks(handle, inode, offset,
4135                                        length);
4136         if (ret)
4137                 goto out_stop;
4138
4139         first_block = (offset + sb->s_blocksize - 1) >>
4140                 EXT4_BLOCK_SIZE_BITS(sb);
4141         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4142
4143         /* If there are blocks to remove, do it */
4144         if (stop_block > first_block) {
4145
4146                 down_write(&EXT4_I(inode)->i_data_sem);
4147                 ext4_discard_preallocations(inode, 0);
4148
4149                 ret = ext4_es_remove_extent(inode, first_block,
4150                                             stop_block - first_block);
4151                 if (ret) {
4152                         up_write(&EXT4_I(inode)->i_data_sem);
4153                         goto out_stop;
4154                 }
4155
4156                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4157                         ret = ext4_ext_remove_space(inode, first_block,
4158                                                     stop_block - 1);
4159                 else
4160                         ret = ext4_ind_remove_space(handle, inode, first_block,
4161                                                     stop_block);
4162
4163                 up_write(&EXT4_I(inode)->i_data_sem);
4164         }
4165         ext4_fc_track_range(handle, inode, first_block, stop_block);
4166         if (IS_SYNC(inode))
4167                 ext4_handle_sync(handle);
4168
4169         inode->i_mtime = inode->i_ctime = current_time(inode);
4170         ret2 = ext4_mark_inode_dirty(handle, inode);
4171         if (unlikely(ret2))
4172                 ret = ret2;
4173         if (ret >= 0)
4174                 ext4_update_inode_fsync_trans(handle, inode, 1);
4175 out_stop:
4176         ext4_journal_stop(handle);
4177 out_dio:
4178         up_write(&EXT4_I(inode)->i_mmap_sem);
4179 out_mutex:
4180         inode_unlock(inode);
4181         return ret;
4182 }
4183
4184 int ext4_inode_attach_jinode(struct inode *inode)
4185 {
4186         struct ext4_inode_info *ei = EXT4_I(inode);
4187         struct jbd2_inode *jinode;
4188
4189         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4190                 return 0;
4191
4192         jinode = jbd2_alloc_inode(GFP_KERNEL);
4193         spin_lock(&inode->i_lock);
4194         if (!ei->jinode) {
4195                 if (!jinode) {
4196                         spin_unlock(&inode->i_lock);
4197                         return -ENOMEM;
4198                 }
4199                 ei->jinode = jinode;
4200                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4201                 jinode = NULL;
4202         }
4203         spin_unlock(&inode->i_lock);
4204         if (unlikely(jinode != NULL))
4205                 jbd2_free_inode(jinode);
4206         return 0;
4207 }
4208
4209 /*
4210  * ext4_truncate()
4211  *
4212  * We block out ext4_get_block() block instantiations across the entire
4213  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4214  * simultaneously on behalf of the same inode.
4215  *
4216  * As we work through the truncate and commit bits of it to the journal there
4217  * is one core, guiding principle: the file's tree must always be consistent on
4218  * disk.  We must be able to restart the truncate after a crash.
4219  *
4220  * The file's tree may be transiently inconsistent in memory (although it
4221  * probably isn't), but whenever we close off and commit a journal transaction,
4222  * the contents of (the filesystem + the journal) must be consistent and
4223  * restartable.  It's pretty simple, really: bottom up, right to left (although
4224  * left-to-right works OK too).
4225  *
4226  * Note that at recovery time, journal replay occurs *before* the restart of
4227  * truncate against the orphan inode list.
4228  *
4229  * The committed inode has the new, desired i_size (which is the same as
4230  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4231  * that this inode's truncate did not complete and it will again call
4232  * ext4_truncate() to have another go.  So there will be instantiated blocks
4233  * to the right of the truncation point in a crashed ext4 filesystem.  But
4234  * that's fine - as long as they are linked from the inode, the post-crash
4235  * ext4_truncate() run will find them and release them.
4236  */
4237 int ext4_truncate(struct inode *inode)
4238 {
4239         struct ext4_inode_info *ei = EXT4_I(inode);
4240         unsigned int credits;
4241         int err = 0, err2;
4242         handle_t *handle;
4243         struct address_space *mapping = inode->i_mapping;
4244
4245         /*
4246          * There is a possibility that we're either freeing the inode
4247          * or it's a completely new inode. In those cases we might not
4248          * have i_mutex locked because it's not necessary.
4249          */
4250         if (!(inode->i_state & (I_NEW|I_FREEING)))
4251                 WARN_ON(!inode_is_locked(inode));
4252         trace_ext4_truncate_enter(inode);
4253
4254         if (!ext4_can_truncate(inode))
4255                 goto out_trace;
4256
4257         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4258                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4259
4260         if (ext4_has_inline_data(inode)) {
4261                 int has_inline = 1;
4262
4263                 err = ext4_inline_data_truncate(inode, &has_inline);
4264                 if (err || has_inline)
4265                         goto out_trace;
4266         }
4267
4268         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4269         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4270                 err = ext4_inode_attach_jinode(inode);
4271                 if (err)
4272                         goto out_trace;
4273         }
4274
4275         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4276                 credits = ext4_writepage_trans_blocks(inode);
4277         else
4278                 credits = ext4_blocks_for_truncate(inode);
4279
4280         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4281         if (IS_ERR(handle)) {
4282                 err = PTR_ERR(handle);
4283                 goto out_trace;
4284         }
4285
4286         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4287                 ext4_block_truncate_page(handle, mapping, inode->i_size);
4288
4289         /*
4290          * We add the inode to the orphan list, so that if this
4291          * truncate spans multiple transactions, and we crash, we will
4292          * resume the truncate when the filesystem recovers.  It also
4293          * marks the inode dirty, to catch the new size.
4294          *
4295          * Implication: the file must always be in a sane, consistent
4296          * truncatable state while each transaction commits.
4297          */
4298         err = ext4_orphan_add(handle, inode);
4299         if (err)
4300                 goto out_stop;
4301
4302         down_write(&EXT4_I(inode)->i_data_sem);
4303
4304         ext4_discard_preallocations(inode, 0);
4305
4306         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4307                 err = ext4_ext_truncate(handle, inode);
4308         else
4309                 ext4_ind_truncate(handle, inode);
4310
4311         up_write(&ei->i_data_sem);
4312         if (err)
4313                 goto out_stop;
4314
4315         if (IS_SYNC(inode))
4316                 ext4_handle_sync(handle);
4317
4318 out_stop:
4319         /*
4320          * If this was a simple ftruncate() and the file will remain alive,
4321          * then we need to clear up the orphan record which we created above.
4322          * However, if this was a real unlink then we were called by
4323          * ext4_evict_inode(), and we allow that function to clean up the
4324          * orphan info for us.
4325          */
4326         if (inode->i_nlink)
4327                 ext4_orphan_del(handle, inode);
4328
4329         inode->i_mtime = inode->i_ctime = current_time(inode);
4330         err2 = ext4_mark_inode_dirty(handle, inode);
4331         if (unlikely(err2 && !err))
4332                 err = err2;
4333         ext4_journal_stop(handle);
4334
4335 out_trace:
4336         trace_ext4_truncate_exit(inode);
4337         return err;
4338 }
4339
4340 /*
4341  * ext4_get_inode_loc returns with an extra refcount against the inode's
4342  * underlying buffer_head on success. If 'in_mem' is true, we have all
4343  * data in memory that is needed to recreate the on-disk version of this
4344  * inode.
4345  */
4346 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4347                                 struct ext4_iloc *iloc, int in_mem,
4348                                 ext4_fsblk_t *ret_block)
4349 {
4350         struct ext4_group_desc  *gdp;
4351         struct buffer_head      *bh;
4352         ext4_fsblk_t            block;
4353         struct blk_plug         plug;
4354         int                     inodes_per_block, inode_offset;
4355
4356         iloc->bh = NULL;
4357         if (ino < EXT4_ROOT_INO ||
4358             ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4359                 return -EFSCORRUPTED;
4360
4361         iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4362         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4363         if (!gdp)
4364                 return -EIO;
4365
4366         /*
4367          * Figure out the offset within the block group inode table
4368          */
4369         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4370         inode_offset = ((ino - 1) %
4371                         EXT4_INODES_PER_GROUP(sb));
4372         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4373
4374         block = ext4_inode_table(sb, gdp);
4375         if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) ||
4376             (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) {
4377                 ext4_error(sb, "Invalid inode table block %llu in "
4378                            "block_group %u", block, iloc->block_group);
4379                 return -EFSCORRUPTED;
4380         }
4381         block += (inode_offset / inodes_per_block);
4382
4383         bh = sb_getblk(sb, block);
4384         if (unlikely(!bh))
4385                 return -ENOMEM;
4386         if (ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO))
4387                 goto simulate_eio;
4388         if (!buffer_uptodate(bh)) {
4389                 lock_buffer(bh);
4390
4391                 if (ext4_buffer_uptodate(bh)) {
4392                         /* someone brought it uptodate while we waited */
4393                         unlock_buffer(bh);
4394                         goto has_buffer;
4395                 }
4396
4397                 /*
4398                  * If we have all information of the inode in memory and this
4399                  * is the only valid inode in the block, we need not read the
4400                  * block.
4401                  */
4402                 if (in_mem) {
4403                         struct buffer_head *bitmap_bh;
4404                         int i, start;
4405
4406                         start = inode_offset & ~(inodes_per_block - 1);
4407
4408                         /* Is the inode bitmap in cache? */
4409                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4410                         if (unlikely(!bitmap_bh))
4411                                 goto make_io;
4412
4413                         /*
4414                          * If the inode bitmap isn't in cache then the
4415                          * optimisation may end up performing two reads instead
4416                          * of one, so skip it.
4417                          */
4418                         if (!buffer_uptodate(bitmap_bh)) {
4419                                 brelse(bitmap_bh);
4420                                 goto make_io;
4421                         }
4422                         for (i = start; i < start + inodes_per_block; i++) {
4423                                 if (i == inode_offset)
4424                                         continue;
4425                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4426                                         break;
4427                         }
4428                         brelse(bitmap_bh);
4429                         if (i == start + inodes_per_block) {
4430                                 /* all other inodes are free, so skip I/O */
4431                                 memset(bh->b_data, 0, bh->b_size);
4432                                 set_buffer_uptodate(bh);
4433                                 unlock_buffer(bh);
4434                                 goto has_buffer;
4435                         }
4436                 }
4437
4438 make_io:
4439                 /*
4440                  * If we need to do any I/O, try to pre-readahead extra
4441                  * blocks from the inode table.
4442                  */
4443                 blk_start_plug(&plug);
4444                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4445                         ext4_fsblk_t b, end, table;
4446                         unsigned num;
4447                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4448
4449                         table = ext4_inode_table(sb, gdp);
4450                         /* s_inode_readahead_blks is always a power of 2 */
4451                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
4452                         if (table > b)
4453                                 b = table;
4454                         end = b + ra_blks;
4455                         num = EXT4_INODES_PER_GROUP(sb);
4456                         if (ext4_has_group_desc_csum(sb))
4457                                 num -= ext4_itable_unused_count(sb, gdp);
4458                         table += num / inodes_per_block;
4459                         if (end > table)
4460                                 end = table;
4461                         while (b <= end)
4462                                 ext4_sb_breadahead_unmovable(sb, b++);
4463                 }
4464
4465                 /*
4466                  * There are other valid inodes in the buffer, this inode
4467                  * has in-inode xattrs, or we don't have this inode in memory.
4468                  * Read the block from disk.
4469                  */
4470                 trace_ext4_load_inode(sb, ino);
4471                 ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4472                 blk_finish_plug(&plug);
4473                 wait_on_buffer(bh);
4474                 if (!buffer_uptodate(bh)) {
4475                 simulate_eio:
4476                         if (ret_block)
4477                                 *ret_block = block;
4478                         brelse(bh);
4479                         return -EIO;
4480                 }
4481         }
4482 has_buffer:
4483         iloc->bh = bh;
4484         return 0;
4485 }
4486
4487 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4488                                         struct ext4_iloc *iloc)
4489 {
4490         ext4_fsblk_t err_blk = 0;
4491         int ret;
4492
4493         ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, iloc, 0,
4494                                         &err_blk);
4495
4496         if (ret == -EIO)
4497                 ext4_error_inode_block(inode, err_blk, EIO,
4498                                         "unable to read itable block");
4499
4500         return ret;
4501 }
4502
4503 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4504 {
4505         ext4_fsblk_t err_blk = 0;
4506         int ret;
4507
4508         /* We have all inode data except xattrs in memory here. */
4509         ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, iloc,
4510                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR), &err_blk);
4511
4512         if (ret == -EIO)
4513                 ext4_error_inode_block(inode, err_blk, EIO,
4514                                         "unable to read itable block");
4515
4516         return ret;
4517 }
4518
4519
4520 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4521                           struct ext4_iloc *iloc)
4522 {
4523         return __ext4_get_inode_loc(sb, ino, iloc, 0, NULL);
4524 }
4525
4526 static bool ext4_should_enable_dax(struct inode *inode)
4527 {
4528         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4529
4530         if (test_opt2(inode->i_sb, DAX_NEVER))
4531                 return false;
4532         if (!S_ISREG(inode->i_mode))
4533                 return false;
4534         if (ext4_should_journal_data(inode))
4535                 return false;
4536         if (ext4_has_inline_data(inode))
4537                 return false;
4538         if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4539                 return false;
4540         if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4541                 return false;
4542         if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4543                 return false;
4544         if (test_opt(inode->i_sb, DAX_ALWAYS))
4545                 return true;
4546
4547         return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4548 }
4549
4550 void ext4_set_inode_flags(struct inode *inode, bool init)
4551 {
4552         unsigned int flags = EXT4_I(inode)->i_flags;
4553         unsigned int new_fl = 0;
4554
4555         WARN_ON_ONCE(IS_DAX(inode) && init);
4556
4557         if (flags & EXT4_SYNC_FL)
4558                 new_fl |= S_SYNC;
4559         if (flags & EXT4_APPEND_FL)
4560                 new_fl |= S_APPEND;
4561         if (flags & EXT4_IMMUTABLE_FL)
4562                 new_fl |= S_IMMUTABLE;
4563         if (flags & EXT4_NOATIME_FL)
4564                 new_fl |= S_NOATIME;
4565         if (flags & EXT4_DIRSYNC_FL)
4566                 new_fl |= S_DIRSYNC;
4567
4568         /* Because of the way inode_set_flags() works we must preserve S_DAX
4569          * here if already set. */
4570         new_fl |= (inode->i_flags & S_DAX);
4571         if (init && ext4_should_enable_dax(inode))
4572                 new_fl |= S_DAX;
4573
4574         if (flags & EXT4_ENCRYPT_FL)
4575                 new_fl |= S_ENCRYPTED;
4576         if (flags & EXT4_CASEFOLD_FL)
4577                 new_fl |= S_CASEFOLD;
4578         if (flags & EXT4_VERITY_FL)
4579                 new_fl |= S_VERITY;
4580         inode_set_flags(inode, new_fl,
4581                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4582                         S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4583 }
4584
4585 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4586                                   struct ext4_inode_info *ei)
4587 {
4588         blkcnt_t i_blocks ;
4589         struct inode *inode = &(ei->vfs_inode);
4590         struct super_block *sb = inode->i_sb;
4591
4592         if (ext4_has_feature_huge_file(sb)) {
4593                 /* we are using combined 48 bit field */
4594                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4595                                         le32_to_cpu(raw_inode->i_blocks_lo);
4596                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4597                         /* i_blocks represent file system block size */
4598                         return i_blocks  << (inode->i_blkbits - 9);
4599                 } else {
4600                         return i_blocks;
4601                 }
4602         } else {
4603                 return le32_to_cpu(raw_inode->i_blocks_lo);
4604         }
4605 }
4606
4607 static inline int ext4_iget_extra_inode(struct inode *inode,
4608                                          struct ext4_inode *raw_inode,
4609                                          struct ext4_inode_info *ei)
4610 {
4611         __le32 *magic = (void *)raw_inode +
4612                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4613
4614         if (EXT4_INODE_HAS_XATTR_SPACE(inode)  &&
4615             *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4616                 int err;
4617
4618                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4619                 err = ext4_find_inline_data_nolock(inode);
4620                 if (!err && ext4_has_inline_data(inode))
4621                         ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4622                 return err;
4623         } else
4624                 EXT4_I(inode)->i_inline_off = 0;
4625         return 0;
4626 }
4627
4628 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4629 {
4630         if (!ext4_has_feature_project(inode->i_sb))
4631                 return -EOPNOTSUPP;
4632         *projid = EXT4_I(inode)->i_projid;
4633         return 0;
4634 }
4635
4636 /*
4637  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4638  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4639  * set.
4640  */
4641 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4642 {
4643         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4644                 inode_set_iversion_raw(inode, val);
4645         else
4646                 inode_set_iversion_queried(inode, val);
4647 }
4648 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4649 {
4650         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4651                 return inode_peek_iversion_raw(inode);
4652         else
4653                 return inode_peek_iversion(inode);
4654 }
4655
4656 static const char *check_igot_inode(struct inode *inode, ext4_iget_flags flags)
4657
4658 {
4659         if (flags & EXT4_IGET_EA_INODE) {
4660                 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4661                         return "missing EA_INODE flag";
4662                 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4663                     EXT4_I(inode)->i_file_acl)
4664                         return "ea_inode with extended attributes";
4665         } else {
4666                 if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4667                         return "unexpected EA_INODE flag";
4668         }
4669         if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD))
4670                 return "unexpected bad inode w/o EXT4_IGET_BAD";
4671         return NULL;
4672 }
4673
4674 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4675                           ext4_iget_flags flags, const char *function,
4676                           unsigned int line)
4677 {
4678         struct ext4_iloc iloc;
4679         struct ext4_inode *raw_inode;
4680         struct ext4_inode_info *ei;
4681         struct inode *inode;
4682         const char *err_str;
4683         journal_t *journal = EXT4_SB(sb)->s_journal;
4684         long ret;
4685         loff_t size;
4686         int block;
4687         uid_t i_uid;
4688         gid_t i_gid;
4689         projid_t i_projid;
4690
4691         if ((!(flags & EXT4_IGET_SPECIAL) &&
4692              (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4693             (ino < EXT4_ROOT_INO) ||
4694             (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4695                 if (flags & EXT4_IGET_HANDLE)
4696                         return ERR_PTR(-ESTALE);
4697                 __ext4_error(sb, function, line, EFSCORRUPTED, 0,
4698                              "inode #%lu: comm %s: iget: illegal inode #",
4699                              ino, current->comm);
4700                 return ERR_PTR(-EFSCORRUPTED);
4701         }
4702
4703         inode = iget_locked(sb, ino);
4704         if (!inode)
4705                 return ERR_PTR(-ENOMEM);
4706         if (!(inode->i_state & I_NEW)) {
4707                 if ((err_str = check_igot_inode(inode, flags)) != NULL) {
4708                         ext4_error_inode(inode, function, line, 0, err_str);
4709                         iput(inode);
4710                         return ERR_PTR(-EFSCORRUPTED);
4711                 }
4712                 return inode;
4713         }
4714
4715         ei = EXT4_I(inode);
4716         iloc.bh = NULL;
4717
4718         ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4719         if (ret < 0)
4720                 goto bad_inode;
4721         raw_inode = ext4_raw_inode(&iloc);
4722
4723         if ((flags & EXT4_IGET_HANDLE) &&
4724             (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4725                 ret = -ESTALE;
4726                 goto bad_inode;
4727         }
4728
4729         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4730                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4731                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4732                         EXT4_INODE_SIZE(inode->i_sb) ||
4733                     (ei->i_extra_isize & 3)) {
4734                         ext4_error_inode(inode, function, line, 0,
4735                                          "iget: bad extra_isize %u "
4736                                          "(inode size %u)",
4737                                          ei->i_extra_isize,
4738                                          EXT4_INODE_SIZE(inode->i_sb));
4739                         ret = -EFSCORRUPTED;
4740                         goto bad_inode;
4741                 }
4742         } else
4743                 ei->i_extra_isize = 0;
4744
4745         /* Precompute checksum seed for inode metadata */
4746         if (ext4_has_metadata_csum(sb)) {
4747                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4748                 __u32 csum;
4749                 __le32 inum = cpu_to_le32(inode->i_ino);
4750                 __le32 gen = raw_inode->i_generation;
4751                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4752                                    sizeof(inum));
4753                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4754                                               sizeof(gen));
4755         }
4756
4757         if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4758             ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4759              (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4760                 ext4_error_inode_err(inode, function, line, 0,
4761                                 EFSBADCRC, "iget: checksum invalid");
4762                 ret = -EFSBADCRC;
4763                 goto bad_inode;
4764         }
4765
4766         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4767         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4768         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4769         if (ext4_has_feature_project(sb) &&
4770             EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4771             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4772                 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4773         else
4774                 i_projid = EXT4_DEF_PROJID;
4775
4776         if (!(test_opt(inode->i_sb, NO_UID32))) {
4777                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4778                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4779         }
4780         i_uid_write(inode, i_uid);
4781         i_gid_write(inode, i_gid);
4782         ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4783         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4784
4785         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4786         ei->i_inline_off = 0;
4787         ei->i_dir_start_lookup = 0;
4788         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4789         /* We now have enough fields to check if the inode was active or not.
4790          * This is needed because nfsd might try to access dead inodes
4791          * the test is that same one that e2fsck uses
4792          * NeilBrown 1999oct15
4793          */
4794         if (inode->i_nlink == 0) {
4795                 if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL ||
4796                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4797                     ino != EXT4_BOOT_LOADER_INO) {
4798                         /* this inode is deleted or unallocated */
4799                         if (flags & EXT4_IGET_SPECIAL) {
4800                                 ext4_error_inode(inode, function, line, 0,
4801                                                  "iget: special inode unallocated");
4802                                 ret = -EFSCORRUPTED;
4803                         } else
4804                                 ret = -ESTALE;
4805                         goto bad_inode;
4806                 }
4807                 /* The only unlinked inodes we let through here have
4808                  * valid i_mode and are being read by the orphan
4809                  * recovery code: that's fine, we're about to complete
4810                  * the process of deleting those.
4811                  * OR it is the EXT4_BOOT_LOADER_INO which is
4812                  * not initialized on a new filesystem. */
4813         }
4814         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4815         ext4_set_inode_flags(inode, true);
4816         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4817         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4818         if (ext4_has_feature_64bit(sb))
4819                 ei->i_file_acl |=
4820                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4821         inode->i_size = ext4_isize(sb, raw_inode);
4822         if ((size = i_size_read(inode)) < 0) {
4823                 ext4_error_inode(inode, function, line, 0,
4824                                  "iget: bad i_size value: %lld", size);
4825                 ret = -EFSCORRUPTED;
4826                 goto bad_inode;
4827         }
4828         /*
4829          * If dir_index is not enabled but there's dir with INDEX flag set,
4830          * we'd normally treat htree data as empty space. But with metadata
4831          * checksumming that corrupts checksums so forbid that.
4832          */
4833         if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4834             ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4835                 ext4_error_inode(inode, function, line, 0,
4836                          "iget: Dir with htree data on filesystem without dir_index feature.");
4837                 ret = -EFSCORRUPTED;
4838                 goto bad_inode;
4839         }
4840         ei->i_disksize = inode->i_size;
4841 #ifdef CONFIG_QUOTA
4842         ei->i_reserved_quota = 0;
4843 #endif
4844         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4845         ei->i_block_group = iloc.block_group;
4846         ei->i_last_alloc_group = ~0;
4847         /*
4848          * NOTE! The in-memory inode i_data array is in little-endian order
4849          * even on big-endian machines: we do NOT byteswap the block numbers!
4850          */
4851         for (block = 0; block < EXT4_N_BLOCKS; block++)
4852                 ei->i_data[block] = raw_inode->i_block[block];
4853         INIT_LIST_HEAD(&ei->i_orphan);
4854         ext4_fc_init_inode(&ei->vfs_inode);
4855
4856         /*
4857          * Set transaction id's of transactions that have to be committed
4858          * to finish f[data]sync. We set them to currently running transaction
4859          * as we cannot be sure that the inode or some of its metadata isn't
4860          * part of the transaction - the inode could have been reclaimed and
4861          * now it is reread from disk.
4862          */
4863         if (journal) {
4864                 transaction_t *transaction;
4865                 tid_t tid;
4866
4867                 read_lock(&journal->j_state_lock);
4868                 if (journal->j_running_transaction)
4869                         transaction = journal->j_running_transaction;
4870                 else
4871                         transaction = journal->j_committing_transaction;
4872                 if (transaction)
4873                         tid = transaction->t_tid;
4874                 else
4875                         tid = journal->j_commit_sequence;
4876                 read_unlock(&journal->j_state_lock);
4877                 ei->i_sync_tid = tid;
4878                 ei->i_datasync_tid = tid;
4879         }
4880
4881         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4882                 if (ei->i_extra_isize == 0) {
4883                         /* The extra space is currently unused. Use it. */
4884                         BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4885                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4886                                             EXT4_GOOD_OLD_INODE_SIZE;
4887                 } else {
4888                         ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4889                         if (ret)
4890                                 goto bad_inode;
4891                 }
4892         }
4893
4894         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4895         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4896         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4897         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4898
4899         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4900                 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4901
4902                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4903                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4904                                 ivers |=
4905                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4906                 }
4907                 ext4_inode_set_iversion_queried(inode, ivers);
4908         }
4909
4910         ret = 0;
4911         if (ei->i_file_acl &&
4912             !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4913                 ext4_error_inode(inode, function, line, 0,
4914                                  "iget: bad extended attribute block %llu",
4915                                  ei->i_file_acl);
4916                 ret = -EFSCORRUPTED;
4917                 goto bad_inode;
4918         } else if (!ext4_has_inline_data(inode)) {
4919                 /* validate the block references in the inode */
4920                 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4921                         (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4922                         (S_ISLNK(inode->i_mode) &&
4923                         !ext4_inode_is_fast_symlink(inode)))) {
4924                         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4925                                 ret = ext4_ext_check_inode(inode);
4926                         else
4927                                 ret = ext4_ind_check_inode(inode);
4928                 }
4929         }
4930         if (ret)
4931                 goto bad_inode;
4932
4933         if (S_ISREG(inode->i_mode)) {
4934                 inode->i_op = &ext4_file_inode_operations;
4935                 inode->i_fop = &ext4_file_operations;
4936                 ext4_set_aops(inode);
4937         } else if (S_ISDIR(inode->i_mode)) {
4938                 inode->i_op = &ext4_dir_inode_operations;
4939                 inode->i_fop = &ext4_dir_operations;
4940         } else if (S_ISLNK(inode->i_mode)) {
4941                 /* VFS does not allow setting these so must be corruption */
4942                 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4943                         ext4_error_inode(inode, function, line, 0,
4944                                          "iget: immutable or append flags "
4945                                          "not allowed on symlinks");
4946                         ret = -EFSCORRUPTED;
4947                         goto bad_inode;
4948                 }
4949                 if (IS_ENCRYPTED(inode)) {
4950                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
4951                         ext4_set_aops(inode);
4952                 } else if (ext4_inode_is_fast_symlink(inode)) {
4953                         inode->i_link = (char *)ei->i_data;
4954                         inode->i_op = &ext4_fast_symlink_inode_operations;
4955                         nd_terminate_link(ei->i_data, inode->i_size,
4956                                 sizeof(ei->i_data) - 1);
4957                 } else {
4958                         inode->i_op = &ext4_symlink_inode_operations;
4959                         ext4_set_aops(inode);
4960                 }
4961                 inode_nohighmem(inode);
4962         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4963               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4964                 inode->i_op = &ext4_special_inode_operations;
4965                 if (raw_inode->i_block[0])
4966                         init_special_inode(inode, inode->i_mode,
4967                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4968                 else
4969                         init_special_inode(inode, inode->i_mode,
4970                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4971         } else if (ino == EXT4_BOOT_LOADER_INO) {
4972                 make_bad_inode(inode);
4973         } else {
4974                 ret = -EFSCORRUPTED;
4975                 ext4_error_inode(inode, function, line, 0,
4976                                  "iget: bogus i_mode (%o)", inode->i_mode);
4977                 goto bad_inode;
4978         }
4979         if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
4980                 ext4_error_inode(inode, function, line, 0,
4981                                  "casefold flag without casefold feature");
4982         if ((err_str = check_igot_inode(inode, flags)) != NULL) {
4983                 ext4_error_inode(inode, function, line, 0, err_str);
4984                 ret = -EFSCORRUPTED;
4985                 goto bad_inode;
4986         }
4987
4988         brelse(iloc.bh);
4989         unlock_new_inode(inode);
4990         return inode;
4991
4992 bad_inode:
4993         brelse(iloc.bh);
4994         iget_failed(inode);
4995         return ERR_PTR(ret);
4996 }
4997
4998 static int ext4_inode_blocks_set(handle_t *handle,
4999                                 struct ext4_inode *raw_inode,
5000                                 struct ext4_inode_info *ei)
5001 {
5002         struct inode *inode = &(ei->vfs_inode);
5003         u64 i_blocks = READ_ONCE(inode->i_blocks);
5004         struct super_block *sb = inode->i_sb;
5005
5006         if (i_blocks <= ~0U) {
5007                 /*
5008                  * i_blocks can be represented in a 32 bit variable
5009                  * as multiple of 512 bytes
5010                  */
5011                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5012                 raw_inode->i_blocks_high = 0;
5013                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5014                 return 0;
5015         }
5016         if (!ext4_has_feature_huge_file(sb))
5017                 return -EFBIG;
5018
5019         if (i_blocks <= 0xffffffffffffULL) {
5020                 /*
5021                  * i_blocks can be represented in a 48 bit variable
5022                  * as multiple of 512 bytes
5023                  */
5024                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5025                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5026                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5027         } else {
5028                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5029                 /* i_block is stored in file system block size */
5030                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5031                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5032                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5033         }
5034         return 0;
5035 }
5036
5037 static void __ext4_update_other_inode_time(struct super_block *sb,
5038                                            unsigned long orig_ino,
5039                                            unsigned long ino,
5040                                            struct ext4_inode *raw_inode)
5041 {
5042         struct inode *inode;
5043
5044         inode = find_inode_by_ino_rcu(sb, ino);
5045         if (!inode)
5046                 return;
5047
5048         if ((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5049                                I_DIRTY_INODE)) ||
5050             ((inode->i_state & I_DIRTY_TIME) == 0))
5051                 return;
5052
5053         spin_lock(&inode->i_lock);
5054         if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5055                                 I_DIRTY_INODE)) == 0) &&
5056             (inode->i_state & I_DIRTY_TIME)) {
5057                 struct ext4_inode_info  *ei = EXT4_I(inode);
5058
5059                 inode->i_state &= ~I_DIRTY_TIME;
5060                 spin_unlock(&inode->i_lock);
5061
5062                 spin_lock(&ei->i_raw_lock);
5063                 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5064                 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5065                 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5066                 ext4_inode_csum_set(inode, raw_inode, ei);
5067                 spin_unlock(&ei->i_raw_lock);
5068                 trace_ext4_other_inode_update_time(inode, orig_ino);
5069                 return;
5070         }
5071         spin_unlock(&inode->i_lock);
5072 }
5073
5074 /*
5075  * Opportunistically update the other time fields for other inodes in
5076  * the same inode table block.
5077  */
5078 static void ext4_update_other_inodes_time(struct super_block *sb,
5079                                           unsigned long orig_ino, char *buf)
5080 {
5081         unsigned long ino;
5082         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5083         int inode_size = EXT4_INODE_SIZE(sb);
5084
5085         /*
5086          * Calculate the first inode in the inode table block.  Inode
5087          * numbers are one-based.  That is, the first inode in a block
5088          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5089          */
5090         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5091         rcu_read_lock();
5092         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5093                 if (ino == orig_ino)
5094                         continue;
5095                 __ext4_update_other_inode_time(sb, orig_ino, ino,
5096                                                (struct ext4_inode *)buf);
5097         }
5098         rcu_read_unlock();
5099 }
5100
5101 /*
5102  * Post the struct inode info into an on-disk inode location in the
5103  * buffer-cache.  This gobbles the caller's reference to the
5104  * buffer_head in the inode location struct.
5105  *
5106  * The caller must have write access to iloc->bh.
5107  */
5108 static int ext4_do_update_inode(handle_t *handle,
5109                                 struct inode *inode,
5110                                 struct ext4_iloc *iloc)
5111 {
5112         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5113         struct ext4_inode_info *ei = EXT4_I(inode);
5114         struct buffer_head *bh = iloc->bh;
5115         struct super_block *sb = inode->i_sb;
5116         int err = 0, block;
5117         int need_datasync = 0, set_large_file = 0;
5118         uid_t i_uid;
5119         gid_t i_gid;
5120         projid_t i_projid;
5121
5122         spin_lock(&ei->i_raw_lock);
5123
5124         /* For fields not tracked in the in-memory inode,
5125          * initialise them to zero for new inodes. */
5126         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5127                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5128
5129         err = ext4_inode_blocks_set(handle, raw_inode, ei);
5130         if (err) {
5131                 spin_unlock(&ei->i_raw_lock);
5132                 goto out_brelse;
5133         }
5134
5135         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5136         i_uid = i_uid_read(inode);
5137         i_gid = i_gid_read(inode);
5138         i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5139         if (!(test_opt(inode->i_sb, NO_UID32))) {
5140                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5141                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5142 /*
5143  * Fix up interoperability with old kernels. Otherwise, old inodes get
5144  * re-used with the upper 16 bits of the uid/gid intact
5145  */
5146                 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5147                         raw_inode->i_uid_high = 0;
5148                         raw_inode->i_gid_high = 0;
5149                 } else {
5150                         raw_inode->i_uid_high =
5151                                 cpu_to_le16(high_16_bits(i_uid));
5152                         raw_inode->i_gid_high =
5153                                 cpu_to_le16(high_16_bits(i_gid));
5154                 }
5155         } else {
5156                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5157                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5158                 raw_inode->i_uid_high = 0;
5159                 raw_inode->i_gid_high = 0;
5160         }
5161         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5162
5163         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5164         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5165         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5166         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5167
5168         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5169         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5170         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5171                 raw_inode->i_file_acl_high =
5172                         cpu_to_le16(ei->i_file_acl >> 32);
5173         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5174         if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) {
5175                 ext4_isize_set(raw_inode, ei->i_disksize);
5176                 need_datasync = 1;
5177         }
5178         if (ei->i_disksize > 0x7fffffffULL) {
5179                 if (!ext4_has_feature_large_file(sb) ||
5180                                 EXT4_SB(sb)->s_es->s_rev_level ==
5181                     cpu_to_le32(EXT4_GOOD_OLD_REV))
5182                         set_large_file = 1;
5183         }
5184         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5185         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5186                 if (old_valid_dev(inode->i_rdev)) {
5187                         raw_inode->i_block[0] =
5188                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
5189                         raw_inode->i_block[1] = 0;
5190                 } else {
5191                         raw_inode->i_block[0] = 0;
5192                         raw_inode->i_block[1] =
5193                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
5194                         raw_inode->i_block[2] = 0;
5195                 }
5196         } else if (!ext4_has_inline_data(inode)) {
5197                 for (block = 0; block < EXT4_N_BLOCKS; block++)
5198                         raw_inode->i_block[block] = ei->i_data[block];
5199         }
5200
5201         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5202                 u64 ivers = ext4_inode_peek_iversion(inode);
5203
5204                 raw_inode->i_disk_version = cpu_to_le32(ivers);
5205                 if (ei->i_extra_isize) {
5206                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5207                                 raw_inode->i_version_hi =
5208                                         cpu_to_le32(ivers >> 32);
5209                         raw_inode->i_extra_isize =
5210                                 cpu_to_le16(ei->i_extra_isize);
5211                 }
5212         }
5213
5214         BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5215                i_projid != EXT4_DEF_PROJID);
5216
5217         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5218             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5219                 raw_inode->i_projid = cpu_to_le32(i_projid);
5220
5221         ext4_inode_csum_set(inode, raw_inode, ei);
5222         spin_unlock(&ei->i_raw_lock);
5223         if (inode->i_sb->s_flags & SB_LAZYTIME)
5224                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5225                                               bh->b_data);
5226
5227         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5228         err = ext4_handle_dirty_metadata(handle, NULL, bh);
5229         if (err)
5230                 goto out_brelse;
5231         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5232         if (set_large_file) {
5233                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5234                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5235                 if (err)
5236                         goto out_brelse;
5237                 ext4_set_feature_large_file(sb);
5238                 ext4_handle_sync(handle);
5239                 err = ext4_handle_dirty_super(handle, sb);
5240         }
5241         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5242 out_brelse:
5243         brelse(bh);
5244         ext4_std_error(inode->i_sb, err);
5245         return err;
5246 }
5247
5248 /*
5249  * ext4_write_inode()
5250  *
5251  * We are called from a few places:
5252  *
5253  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5254  *   Here, there will be no transaction running. We wait for any running
5255  *   transaction to commit.
5256  *
5257  * - Within flush work (sys_sync(), kupdate and such).
5258  *   We wait on commit, if told to.
5259  *
5260  * - Within iput_final() -> write_inode_now()
5261  *   We wait on commit, if told to.
5262  *
5263  * In all cases it is actually safe for us to return without doing anything,
5264  * because the inode has been copied into a raw inode buffer in
5265  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5266  * writeback.
5267  *
5268  * Note that we are absolutely dependent upon all inode dirtiers doing the
5269  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5270  * which we are interested.
5271  *
5272  * It would be a bug for them to not do this.  The code:
5273  *
5274  *      mark_inode_dirty(inode)
5275  *      stuff();
5276  *      inode->i_size = expr;
5277  *
5278  * is in error because write_inode() could occur while `stuff()' is running,
5279  * and the new i_size will be lost.  Plus the inode will no longer be on the
5280  * superblock's dirty inode list.
5281  */
5282 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5283 {
5284         int err;
5285
5286         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5287             sb_rdonly(inode->i_sb))
5288                 return 0;
5289
5290         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5291                 return -EIO;
5292
5293         if (EXT4_SB(inode->i_sb)->s_journal) {
5294                 if (ext4_journal_current_handle()) {
5295                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5296                         dump_stack();
5297                         return -EIO;
5298                 }
5299
5300                 /*
5301                  * No need to force transaction in WB_SYNC_NONE mode. Also
5302                  * ext4_sync_fs() will force the commit after everything is
5303                  * written.
5304                  */
5305                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5306                         return 0;
5307
5308                 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5309                                                 EXT4_I(inode)->i_sync_tid);
5310         } else {
5311                 struct ext4_iloc iloc;
5312
5313                 err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5314                 if (err)
5315                         return err;
5316                 /*
5317                  * sync(2) will flush the whole buffer cache. No need to do
5318                  * it here separately for each inode.
5319                  */
5320                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5321                         sync_dirty_buffer(iloc.bh);
5322                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5323                         ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5324                                                "IO error syncing inode");
5325                         err = -EIO;
5326                 }
5327                 brelse(iloc.bh);
5328         }
5329         return err;
5330 }
5331
5332 /*
5333  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5334  * buffers that are attached to a page stradding i_size and are undergoing
5335  * commit. In that case we have to wait for commit to finish and try again.
5336  */
5337 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5338 {
5339         struct page *page;
5340         unsigned offset;
5341         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5342         tid_t commit_tid = 0;
5343         int ret;
5344
5345         offset = inode->i_size & (PAGE_SIZE - 1);
5346         /*
5347          * If the page is fully truncated, we don't need to wait for any commit
5348          * (and we even should not as __ext4_journalled_invalidatepage() may
5349          * strip all buffers from the page but keep the page dirty which can then
5350          * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5351          * buffers). Also we don't need to wait for any commit if all buffers in
5352          * the page remain valid. This is most beneficial for the common case of
5353          * blocksize == PAGESIZE.
5354          */
5355         if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5356                 return;
5357         while (1) {
5358                 page = find_lock_page(inode->i_mapping,
5359                                       inode->i_size >> PAGE_SHIFT);
5360                 if (!page)
5361                         return;
5362                 ret = __ext4_journalled_invalidatepage(page, offset,
5363                                                 PAGE_SIZE - offset);
5364                 unlock_page(page);
5365                 put_page(page);
5366                 if (ret != -EBUSY)
5367                         return;
5368                 commit_tid = 0;
5369                 read_lock(&journal->j_state_lock);
5370                 if (journal->j_committing_transaction)
5371                         commit_tid = journal->j_committing_transaction->t_tid;
5372                 read_unlock(&journal->j_state_lock);
5373                 if (commit_tid)
5374                         jbd2_log_wait_commit(journal, commit_tid);
5375         }
5376 }
5377
5378 /*
5379  * ext4_setattr()
5380  *
5381  * Called from notify_change.
5382  *
5383  * We want to trap VFS attempts to truncate the file as soon as
5384  * possible.  In particular, we want to make sure that when the VFS
5385  * shrinks i_size, we put the inode on the orphan list and modify
5386  * i_disksize immediately, so that during the subsequent flushing of
5387  * dirty pages and freeing of disk blocks, we can guarantee that any
5388  * commit will leave the blocks being flushed in an unused state on
5389  * disk.  (On recovery, the inode will get truncated and the blocks will
5390  * be freed, so we have a strong guarantee that no future commit will
5391  * leave these blocks visible to the user.)
5392  *
5393  * Another thing we have to assure is that if we are in ordered mode
5394  * and inode is still attached to the committing transaction, we must
5395  * we start writeout of all the dirty pages which are being truncated.
5396  * This way we are sure that all the data written in the previous
5397  * transaction are already on disk (truncate waits for pages under
5398  * writeback).
5399  *
5400  * Called with inode->i_mutex down.
5401  */
5402 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5403 {
5404         struct inode *inode = d_inode(dentry);
5405         int error, rc = 0;
5406         int orphan = 0;
5407         const unsigned int ia_valid = attr->ia_valid;
5408
5409         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5410                 return -EIO;
5411
5412         if (unlikely(IS_IMMUTABLE(inode)))
5413                 return -EPERM;
5414
5415         if (unlikely(IS_APPEND(inode) &&
5416                      (ia_valid & (ATTR_MODE | ATTR_UID |
5417                                   ATTR_GID | ATTR_TIMES_SET))))
5418                 return -EPERM;
5419
5420         error = setattr_prepare(dentry, attr);
5421         if (error)
5422                 return error;
5423
5424         error = fscrypt_prepare_setattr(dentry, attr);
5425         if (error)
5426                 return error;
5427
5428         error = fsverity_prepare_setattr(dentry, attr);
5429         if (error)
5430                 return error;
5431
5432         if (is_quota_modification(inode, attr)) {
5433                 error = dquot_initialize(inode);
5434                 if (error)
5435                         return error;
5436         }
5437
5438         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5439             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5440                 handle_t *handle;
5441
5442                 /* (user+group)*(old+new) structure, inode write (sb,
5443                  * inode block, ? - but truncate inode update has it) */
5444                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5445                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5446                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5447                 if (IS_ERR(handle)) {
5448                         error = PTR_ERR(handle);
5449                         goto err_out;
5450                 }
5451
5452                 /* dquot_transfer() calls back ext4_get_inode_usage() which
5453                  * counts xattr inode references.
5454                  */
5455                 down_read(&EXT4_I(inode)->xattr_sem);
5456                 error = dquot_transfer(inode, attr);
5457                 up_read(&EXT4_I(inode)->xattr_sem);
5458
5459                 if (error) {
5460                         ext4_journal_stop(handle);
5461                         return error;
5462                 }
5463                 /* Update corresponding info in inode so that everything is in
5464                  * one transaction */
5465                 if (attr->ia_valid & ATTR_UID)
5466                         inode->i_uid = attr->ia_uid;
5467                 if (attr->ia_valid & ATTR_GID)
5468                         inode->i_gid = attr->ia_gid;
5469                 error = ext4_mark_inode_dirty(handle, inode);
5470                 ext4_journal_stop(handle);
5471                 if (unlikely(error)) {
5472                         return error;
5473                 }
5474         }
5475
5476         if (attr->ia_valid & ATTR_SIZE) {
5477                 handle_t *handle;
5478                 loff_t oldsize = inode->i_size;
5479                 loff_t old_disksize;
5480                 int shrink = (attr->ia_size < inode->i_size);
5481
5482                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5483                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5484
5485                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5486                                 return -EFBIG;
5487                         }
5488                 }
5489                 if (!S_ISREG(inode->i_mode)) {
5490                         return -EINVAL;
5491                 }
5492
5493                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5494                         inode_inc_iversion(inode);
5495
5496                 if (shrink) {
5497                         if (ext4_should_order_data(inode)) {
5498                                 error = ext4_begin_ordered_truncate(inode,
5499                                                             attr->ia_size);
5500                                 if (error)
5501                                         goto err_out;
5502                         }
5503                         /*
5504                          * Blocks are going to be removed from the inode. Wait
5505                          * for dio in flight.
5506                          */
5507                         inode_dio_wait(inode);
5508                 }
5509
5510                 down_write(&EXT4_I(inode)->i_mmap_sem);
5511
5512                 rc = ext4_break_layouts(inode);
5513                 if (rc) {
5514                         up_write(&EXT4_I(inode)->i_mmap_sem);
5515                         goto err_out;
5516                 }
5517
5518                 if (attr->ia_size != inode->i_size) {
5519                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5520                         if (IS_ERR(handle)) {
5521                                 error = PTR_ERR(handle);
5522                                 goto out_mmap_sem;
5523                         }
5524                         if (ext4_handle_valid(handle) && shrink) {
5525                                 error = ext4_orphan_add(handle, inode);
5526                                 orphan = 1;
5527                         }
5528                         /*
5529                          * Update c/mtime on truncate up, ext4_truncate() will
5530                          * update c/mtime in shrink case below
5531                          */
5532                         if (!shrink) {
5533                                 inode->i_mtime = current_time(inode);
5534                                 inode->i_ctime = inode->i_mtime;
5535                         }
5536
5537                         if (shrink)
5538                                 ext4_fc_track_range(handle, inode,
5539                                         (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5540                                         inode->i_sb->s_blocksize_bits,
5541                                         EXT_MAX_BLOCKS - 1);
5542                         else
5543                                 ext4_fc_track_range(
5544                                         handle, inode,
5545                                         (oldsize > 0 ? oldsize - 1 : oldsize) >>
5546                                         inode->i_sb->s_blocksize_bits,
5547                                         (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5548                                         inode->i_sb->s_blocksize_bits);
5549
5550                         down_write(&EXT4_I(inode)->i_data_sem);
5551                         old_disksize = EXT4_I(inode)->i_disksize;
5552                         EXT4_I(inode)->i_disksize = attr->ia_size;
5553                         rc = ext4_mark_inode_dirty(handle, inode);
5554                         if (!error)
5555                                 error = rc;
5556                         /*
5557                          * We have to update i_size under i_data_sem together
5558                          * with i_disksize to avoid races with writeback code
5559                          * running ext4_wb_update_i_disksize().
5560                          */
5561                         if (!error)
5562                                 i_size_write(inode, attr->ia_size);
5563                         else
5564                                 EXT4_I(inode)->i_disksize = old_disksize;
5565                         up_write(&EXT4_I(inode)->i_data_sem);
5566                         ext4_journal_stop(handle);
5567                         if (error)
5568                                 goto out_mmap_sem;
5569                         if (!shrink) {
5570                                 pagecache_isize_extended(inode, oldsize,
5571                                                          inode->i_size);
5572                         } else if (ext4_should_journal_data(inode)) {
5573                                 ext4_wait_for_tail_page_commit(inode);
5574                         }
5575                 }
5576
5577                 /*
5578                  * Truncate pagecache after we've waited for commit
5579                  * in data=journal mode to make pages freeable.
5580                  */
5581                 truncate_pagecache(inode, inode->i_size);
5582                 /*
5583                  * Call ext4_truncate() even if i_size didn't change to
5584                  * truncate possible preallocated blocks.
5585                  */
5586                 if (attr->ia_size <= oldsize) {
5587                         rc = ext4_truncate(inode);
5588                         if (rc)
5589                                 error = rc;
5590                 }
5591 out_mmap_sem:
5592                 up_write(&EXT4_I(inode)->i_mmap_sem);
5593         }
5594
5595         if (!error) {
5596                 setattr_copy(inode, attr);
5597                 mark_inode_dirty(inode);
5598         }
5599
5600         /*
5601          * If the call to ext4_truncate failed to get a transaction handle at
5602          * all, we need to clean up the in-core orphan list manually.
5603          */
5604         if (orphan && inode->i_nlink)
5605                 ext4_orphan_del(NULL, inode);
5606
5607         if (!error && (ia_valid & ATTR_MODE))
5608                 rc = posix_acl_chmod(inode, inode->i_mode);
5609
5610 err_out:
5611         if  (error)
5612                 ext4_std_error(inode->i_sb, error);
5613         if (!error)
5614                 error = rc;
5615         return error;
5616 }
5617
5618 int ext4_getattr(const struct path *path, struct kstat *stat,
5619                  u32 request_mask, unsigned int query_flags)
5620 {
5621         struct inode *inode = d_inode(path->dentry);
5622         struct ext4_inode *raw_inode;
5623         struct ext4_inode_info *ei = EXT4_I(inode);
5624         unsigned int flags;
5625
5626         if ((request_mask & STATX_BTIME) &&
5627             EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5628                 stat->result_mask |= STATX_BTIME;
5629                 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5630                 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5631         }
5632
5633         flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5634         if (flags & EXT4_APPEND_FL)
5635                 stat->attributes |= STATX_ATTR_APPEND;
5636         if (flags & EXT4_COMPR_FL)
5637                 stat->attributes |= STATX_ATTR_COMPRESSED;
5638         if (flags & EXT4_ENCRYPT_FL)
5639                 stat->attributes |= STATX_ATTR_ENCRYPTED;
5640         if (flags & EXT4_IMMUTABLE_FL)
5641                 stat->attributes |= STATX_ATTR_IMMUTABLE;
5642         if (flags & EXT4_NODUMP_FL)
5643                 stat->attributes |= STATX_ATTR_NODUMP;
5644         if (flags & EXT4_VERITY_FL)
5645                 stat->attributes |= STATX_ATTR_VERITY;
5646
5647         stat->attributes_mask |= (STATX_ATTR_APPEND |
5648                                   STATX_ATTR_COMPRESSED |
5649                                   STATX_ATTR_ENCRYPTED |
5650                                   STATX_ATTR_IMMUTABLE |
5651                                   STATX_ATTR_NODUMP |
5652                                   STATX_ATTR_VERITY);
5653
5654         generic_fillattr(inode, stat);
5655         return 0;
5656 }
5657
5658 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5659                       u32 request_mask, unsigned int query_flags)
5660 {
5661         struct inode *inode = d_inode(path->dentry);
5662         u64 delalloc_blocks;
5663
5664         ext4_getattr(path, stat, request_mask, query_flags);
5665
5666         /*
5667          * If there is inline data in the inode, the inode will normally not
5668          * have data blocks allocated (it may have an external xattr block).
5669          * Report at least one sector for such files, so tools like tar, rsync,
5670          * others don't incorrectly think the file is completely sparse.
5671          */
5672         if (unlikely(ext4_has_inline_data(inode)))
5673                 stat->blocks += (stat->size + 511) >> 9;
5674
5675         /*
5676          * We can't update i_blocks if the block allocation is delayed
5677          * otherwise in the case of system crash before the real block
5678          * allocation is done, we will have i_blocks inconsistent with
5679          * on-disk file blocks.
5680          * We always keep i_blocks updated together with real
5681          * allocation. But to not confuse with user, stat
5682          * will return the blocks that include the delayed allocation
5683          * blocks for this file.
5684          */
5685         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5686                                    EXT4_I(inode)->i_reserved_data_blocks);
5687         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5688         return 0;
5689 }
5690
5691 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5692                                    int pextents)
5693 {
5694         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5695                 return ext4_ind_trans_blocks(inode, lblocks);
5696         return ext4_ext_index_trans_blocks(inode, pextents);
5697 }
5698
5699 /*
5700  * Account for index blocks, block groups bitmaps and block group
5701  * descriptor blocks if modify datablocks and index blocks
5702  * worse case, the indexs blocks spread over different block groups
5703  *
5704  * If datablocks are discontiguous, they are possible to spread over
5705  * different block groups too. If they are contiguous, with flexbg,
5706  * they could still across block group boundary.
5707  *
5708  * Also account for superblock, inode, quota and xattr blocks
5709  */
5710 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5711                                   int pextents)
5712 {
5713         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5714         int gdpblocks;
5715         int idxblocks;
5716         int ret = 0;
5717
5718         /*
5719          * How many index blocks need to touch to map @lblocks logical blocks
5720          * to @pextents physical extents?
5721          */
5722         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5723
5724         ret = idxblocks;
5725
5726         /*
5727          * Now let's see how many group bitmaps and group descriptors need
5728          * to account
5729          */
5730         groups = idxblocks + pextents;
5731         gdpblocks = groups;
5732         if (groups > ngroups)
5733                 groups = ngroups;
5734         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5735                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5736
5737         /* bitmaps and block group descriptor blocks */
5738         ret += groups + gdpblocks;
5739
5740         /* Blocks for super block, inode, quota and xattr blocks */
5741         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5742
5743         return ret;
5744 }
5745
5746 /*
5747  * Calculate the total number of credits to reserve to fit
5748  * the modification of a single pages into a single transaction,
5749  * which may include multiple chunks of block allocations.
5750  *
5751  * This could be called via ext4_write_begin()
5752  *
5753  * We need to consider the worse case, when
5754  * one new block per extent.
5755  */
5756 int ext4_writepage_trans_blocks(struct inode *inode)
5757 {
5758         int bpp = ext4_journal_blocks_per_page(inode);
5759         int ret;
5760
5761         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5762
5763         /* Account for data blocks for journalled mode */
5764         if (ext4_should_journal_data(inode))
5765                 ret += bpp;
5766         return ret;
5767 }
5768
5769 /*
5770  * Calculate the journal credits for a chunk of data modification.
5771  *
5772  * This is called from DIO, fallocate or whoever calling
5773  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5774  *
5775  * journal buffers for data blocks are not included here, as DIO
5776  * and fallocate do no need to journal data buffers.
5777  */
5778 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5779 {
5780         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5781 }
5782
5783 /*
5784  * The caller must have previously called ext4_reserve_inode_write().
5785  * Give this, we know that the caller already has write access to iloc->bh.
5786  */
5787 int ext4_mark_iloc_dirty(handle_t *handle,
5788                          struct inode *inode, struct ext4_iloc *iloc)
5789 {
5790         int err = 0;
5791
5792         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5793                 put_bh(iloc->bh);
5794                 return -EIO;
5795         }
5796         ext4_fc_track_inode(handle, inode);
5797
5798         /*
5799          * ea_inodes are using i_version for storing reference count, don't
5800          * mess with it
5801          */
5802         if (IS_I_VERSION(inode) &&
5803             !(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
5804                 inode_inc_iversion(inode);
5805
5806         /* the do_update_inode consumes one bh->b_count */
5807         get_bh(iloc->bh);
5808
5809         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5810         err = ext4_do_update_inode(handle, inode, iloc);
5811         put_bh(iloc->bh);
5812         return err;
5813 }
5814
5815 /*
5816  * On success, We end up with an outstanding reference count against
5817  * iloc->bh.  This _must_ be cleaned up later.
5818  */
5819
5820 int
5821 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5822                          struct ext4_iloc *iloc)
5823 {
5824         int err;
5825
5826         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5827                 return -EIO;
5828
5829         err = ext4_get_inode_loc(inode, iloc);
5830         if (!err) {
5831                 BUFFER_TRACE(iloc->bh, "get_write_access");
5832                 err = ext4_journal_get_write_access(handle, iloc->bh);
5833                 if (err) {
5834                         brelse(iloc->bh);
5835                         iloc->bh = NULL;
5836                 }
5837         }
5838         ext4_std_error(inode->i_sb, err);
5839         return err;
5840 }
5841
5842 static int __ext4_expand_extra_isize(struct inode *inode,
5843                                      unsigned int new_extra_isize,
5844                                      struct ext4_iloc *iloc,
5845                                      handle_t *handle, int *no_expand)
5846 {
5847         struct ext4_inode *raw_inode;
5848         struct ext4_xattr_ibody_header *header;
5849         unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5850         struct ext4_inode_info *ei = EXT4_I(inode);
5851         int error;
5852
5853         /* this was checked at iget time, but double check for good measure */
5854         if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5855             (ei->i_extra_isize & 3)) {
5856                 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5857                                  ei->i_extra_isize,
5858                                  EXT4_INODE_SIZE(inode->i_sb));
5859                 return -EFSCORRUPTED;
5860         }
5861         if ((new_extra_isize < ei->i_extra_isize) ||
5862             (new_extra_isize < 4) ||
5863             (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5864                 return -EINVAL; /* Should never happen */
5865
5866         raw_inode = ext4_raw_inode(iloc);
5867
5868         header = IHDR(inode, raw_inode);
5869
5870         /* No extended attributes present */
5871         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5872             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5873                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5874                        EXT4_I(inode)->i_extra_isize, 0,
5875                        new_extra_isize - EXT4_I(inode)->i_extra_isize);
5876                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5877                 return 0;
5878         }
5879
5880         /*
5881          * We may need to allocate external xattr block so we need quotas
5882          * initialized. Here we can be called with various locks held so we
5883          * cannot affort to initialize quotas ourselves. So just bail.
5884          */
5885         if (dquot_initialize_needed(inode))
5886                 return -EAGAIN;
5887
5888         /* try to expand with EAs present */
5889         error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5890                                            raw_inode, handle);
5891         if (error) {
5892                 /*
5893                  * Inode size expansion failed; don't try again
5894                  */
5895                 *no_expand = 1;
5896         }
5897
5898         return error;
5899 }
5900
5901 /*
5902  * Expand an inode by new_extra_isize bytes.
5903  * Returns 0 on success or negative error number on failure.
5904  */
5905 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5906                                           unsigned int new_extra_isize,
5907                                           struct ext4_iloc iloc,
5908                                           handle_t *handle)
5909 {
5910         int no_expand;
5911         int error;
5912
5913         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5914                 return -EOVERFLOW;
5915
5916         /*
5917          * In nojournal mode, we can immediately attempt to expand
5918          * the inode.  When journaled, we first need to obtain extra
5919          * buffer credits since we may write into the EA block
5920          * with this same handle. If journal_extend fails, then it will
5921          * only result in a minor loss of functionality for that inode.
5922          * If this is felt to be critical, then e2fsck should be run to
5923          * force a large enough s_min_extra_isize.
5924          */
5925         if (ext4_journal_extend(handle,
5926                                 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5927                 return -ENOSPC;
5928
5929         if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5930                 return -EBUSY;
5931
5932         error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5933                                           handle, &no_expand);
5934         ext4_write_unlock_xattr(inode, &no_expand);
5935
5936         return error;
5937 }
5938
5939 int ext4_expand_extra_isize(struct inode *inode,
5940                             unsigned int new_extra_isize,
5941                             struct ext4_iloc *iloc)
5942 {
5943         handle_t *handle;
5944         int no_expand;
5945         int error, rc;
5946
5947         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5948                 brelse(iloc->bh);
5949                 return -EOVERFLOW;
5950         }
5951
5952         handle = ext4_journal_start(inode, EXT4_HT_INODE,
5953                                     EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5954         if (IS_ERR(handle)) {
5955                 error = PTR_ERR(handle);
5956                 brelse(iloc->bh);
5957                 return error;
5958         }
5959
5960         ext4_write_lock_xattr(inode, &no_expand);
5961
5962         BUFFER_TRACE(iloc->bh, "get_write_access");
5963         error = ext4_journal_get_write_access(handle, iloc->bh);
5964         if (error) {
5965                 brelse(iloc->bh);
5966                 goto out_unlock;
5967         }
5968
5969         error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5970                                           handle, &no_expand);
5971
5972         rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5973         if (!error)
5974                 error = rc;
5975
5976 out_unlock:
5977         ext4_write_unlock_xattr(inode, &no_expand);
5978         ext4_journal_stop(handle);
5979         return error;
5980 }
5981
5982 /*
5983  * What we do here is to mark the in-core inode as clean with respect to inode
5984  * dirtiness (it may still be data-dirty).
5985  * This means that the in-core inode may be reaped by prune_icache
5986  * without having to perform any I/O.  This is a very good thing,
5987  * because *any* task may call prune_icache - even ones which
5988  * have a transaction open against a different journal.
5989  *
5990  * Is this cheating?  Not really.  Sure, we haven't written the
5991  * inode out, but prune_icache isn't a user-visible syncing function.
5992  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5993  * we start and wait on commits.
5994  */
5995 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5996                                 const char *func, unsigned int line)
5997 {
5998         struct ext4_iloc iloc;
5999         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6000         int err;
6001
6002         might_sleep();
6003         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
6004         err = ext4_reserve_inode_write(handle, inode, &iloc);
6005         if (err)
6006                 goto out;
6007
6008         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
6009                 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
6010                                                iloc, handle);
6011
6012         err = ext4_mark_iloc_dirty(handle, inode, &iloc);
6013 out:
6014         if (unlikely(err))
6015                 ext4_error_inode_err(inode, func, line, 0, err,
6016                                         "mark_inode_dirty error");
6017         return err;
6018 }
6019
6020 /*
6021  * ext4_dirty_inode() is called from __mark_inode_dirty()
6022  *
6023  * We're really interested in the case where a file is being extended.
6024  * i_size has been changed by generic_commit_write() and we thus need
6025  * to include the updated inode in the current transaction.
6026  *
6027  * Also, dquot_alloc_block() will always dirty the inode when blocks
6028  * are allocated to the file.
6029  *
6030  * If the inode is marked synchronous, we don't honour that here - doing
6031  * so would cause a commit on atime updates, which we don't bother doing.
6032  * We handle synchronous inodes at the highest possible level.
6033  *
6034  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
6035  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
6036  * to copy into the on-disk inode structure are the timestamp files.
6037  */
6038 void ext4_dirty_inode(struct inode *inode, int flags)
6039 {
6040         handle_t *handle;
6041
6042         if (flags == I_DIRTY_TIME)
6043                 return;
6044         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
6045         if (IS_ERR(handle))
6046                 goto out;
6047
6048         ext4_mark_inode_dirty(handle, inode);
6049
6050         ext4_journal_stop(handle);
6051 out:
6052         return;
6053 }
6054
6055 int ext4_change_inode_journal_flag(struct inode *inode, int val)
6056 {
6057         journal_t *journal;
6058         handle_t *handle;
6059         int err;
6060         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6061
6062         /*
6063          * We have to be very careful here: changing a data block's
6064          * journaling status dynamically is dangerous.  If we write a
6065          * data block to the journal, change the status and then delete
6066          * that block, we risk forgetting to revoke the old log record
6067          * from the journal and so a subsequent replay can corrupt data.
6068          * So, first we make sure that the journal is empty and that
6069          * nobody is changing anything.
6070          */
6071
6072         journal = EXT4_JOURNAL(inode);
6073         if (!journal)
6074                 return 0;
6075         if (is_journal_aborted(journal))
6076                 return -EROFS;
6077
6078         /* Wait for all existing dio workers */
6079         inode_dio_wait(inode);
6080
6081         /*
6082          * Before flushing the journal and switching inode's aops, we have
6083          * to flush all dirty data the inode has. There can be outstanding
6084          * delayed allocations, there can be unwritten extents created by
6085          * fallocate or buffered writes in dioread_nolock mode covered by
6086          * dirty data which can be converted only after flushing the dirty
6087          * data (and journalled aops don't know how to handle these cases).
6088          */
6089         if (val) {
6090                 down_write(&EXT4_I(inode)->i_mmap_sem);
6091                 err = filemap_write_and_wait(inode->i_mapping);
6092                 if (err < 0) {
6093                         up_write(&EXT4_I(inode)->i_mmap_sem);
6094                         return err;
6095                 }
6096         }
6097
6098         percpu_down_write(&sbi->s_writepages_rwsem);
6099         jbd2_journal_lock_updates(journal);
6100
6101         /*
6102          * OK, there are no updates running now, and all cached data is
6103          * synced to disk.  We are now in a completely consistent state
6104          * which doesn't have anything in the journal, and we know that
6105          * no filesystem updates are running, so it is safe to modify
6106          * the inode's in-core data-journaling state flag now.
6107          */
6108
6109         if (val)
6110                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6111         else {
6112                 err = jbd2_journal_flush(journal);
6113                 if (err < 0) {
6114                         jbd2_journal_unlock_updates(journal);
6115                         percpu_up_write(&sbi->s_writepages_rwsem);
6116                         return err;
6117                 }
6118                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6119         }
6120         ext4_set_aops(inode);
6121
6122         jbd2_journal_unlock_updates(journal);
6123         percpu_up_write(&sbi->s_writepages_rwsem);
6124
6125         if (val)
6126                 up_write(&EXT4_I(inode)->i_mmap_sem);
6127
6128         /* Finally we can mark the inode as dirty. */
6129
6130         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6131         if (IS_ERR(handle))
6132                 return PTR_ERR(handle);
6133
6134         ext4_fc_mark_ineligible(inode->i_sb,
6135                 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE);
6136         err = ext4_mark_inode_dirty(handle, inode);
6137         ext4_handle_sync(handle);
6138         ext4_journal_stop(handle);
6139         ext4_std_error(inode->i_sb, err);
6140
6141         return err;
6142 }
6143
6144 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6145 {
6146         return !buffer_mapped(bh);
6147 }
6148
6149 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6150 {
6151         struct vm_area_struct *vma = vmf->vma;
6152         struct page *page = vmf->page;
6153         loff_t size;
6154         unsigned long len;
6155         int err;
6156         vm_fault_t ret;
6157         struct file *file = vma->vm_file;
6158         struct inode *inode = file_inode(file);
6159         struct address_space *mapping = inode->i_mapping;
6160         handle_t *handle;
6161         get_block_t *get_block;
6162         int retries = 0;
6163
6164         if (unlikely(IS_IMMUTABLE(inode)))
6165                 return VM_FAULT_SIGBUS;
6166
6167         sb_start_pagefault(inode->i_sb);
6168         file_update_time(vma->vm_file);
6169
6170         down_read(&EXT4_I(inode)->i_mmap_sem);
6171
6172         err = ext4_convert_inline_data(inode);
6173         if (err)
6174                 goto out_ret;
6175
6176         /*
6177          * On data journalling we skip straight to the transaction handle:
6178          * there's no delalloc; page truncated will be checked later; the
6179          * early return w/ all buffers mapped (calculates size/len) can't
6180          * be used; and there's no dioread_nolock, so only ext4_get_block.
6181          */
6182         if (ext4_should_journal_data(inode))
6183                 goto retry_alloc;
6184
6185         /* Delalloc case is easy... */
6186         if (test_opt(inode->i_sb, DELALLOC) &&
6187             !ext4_nonda_switch(inode->i_sb)) {
6188                 do {
6189                         err = block_page_mkwrite(vma, vmf,
6190                                                    ext4_da_get_block_prep);
6191                 } while (err == -ENOSPC &&
6192                        ext4_should_retry_alloc(inode->i_sb, &retries));
6193                 goto out_ret;
6194         }
6195
6196         lock_page(page);
6197         size = i_size_read(inode);
6198         /* Page got truncated from under us? */
6199         if (page->mapping != mapping || page_offset(page) > size) {
6200                 unlock_page(page);
6201                 ret = VM_FAULT_NOPAGE;
6202                 goto out;
6203         }
6204
6205         if (page->index == size >> PAGE_SHIFT)
6206                 len = size & ~PAGE_MASK;
6207         else
6208                 len = PAGE_SIZE;
6209         /*
6210          * Return if we have all the buffers mapped. This avoids the need to do
6211          * journal_start/journal_stop which can block and take a long time
6212          *
6213          * This cannot be done for data journalling, as we have to add the
6214          * inode to the transaction's list to writeprotect pages on commit.
6215          */
6216         if (page_has_buffers(page)) {
6217                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6218                                             0, len, NULL,
6219                                             ext4_bh_unmapped)) {
6220                         /* Wait so that we don't change page under IO */
6221                         wait_for_stable_page(page);
6222                         ret = VM_FAULT_LOCKED;
6223                         goto out;
6224                 }
6225         }
6226         unlock_page(page);
6227         /* OK, we need to fill the hole... */
6228         if (ext4_should_dioread_nolock(inode))
6229                 get_block = ext4_get_block_unwritten;
6230         else
6231                 get_block = ext4_get_block;
6232 retry_alloc:
6233         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6234                                     ext4_writepage_trans_blocks(inode));
6235         if (IS_ERR(handle)) {
6236                 ret = VM_FAULT_SIGBUS;
6237                 goto out;
6238         }
6239         /*
6240          * Data journalling can't use block_page_mkwrite() because it
6241          * will set_buffer_dirty() before do_journal_get_write_access()
6242          * thus might hit warning messages for dirty metadata buffers.
6243          */
6244         if (!ext4_should_journal_data(inode)) {
6245                 err = block_page_mkwrite(vma, vmf, get_block);
6246         } else {
6247                 lock_page(page);
6248                 size = i_size_read(inode);
6249                 /* Page got truncated from under us? */
6250                 if (page->mapping != mapping || page_offset(page) > size) {
6251                         ret = VM_FAULT_NOPAGE;
6252                         goto out_error;
6253                 }
6254
6255                 if (page->index == size >> PAGE_SHIFT)
6256                         len = size & ~PAGE_MASK;
6257                 else
6258                         len = PAGE_SIZE;
6259
6260                 err = __block_write_begin(page, 0, len, ext4_get_block);
6261                 if (!err) {
6262                         ret = VM_FAULT_SIGBUS;
6263                         if (ext4_walk_page_buffers(handle, page_buffers(page),
6264                                         0, len, NULL, do_journal_get_write_access))
6265                                 goto out_error;
6266                         if (ext4_walk_page_buffers(handle, page_buffers(page),
6267                                         0, len, NULL, write_end_fn))
6268                                 goto out_error;
6269                         if (ext4_jbd2_inode_add_write(handle, inode,
6270                                                       page_offset(page), len))
6271                                 goto out_error;
6272                         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6273                 } else {
6274                         unlock_page(page);
6275                 }
6276         }
6277         ext4_journal_stop(handle);
6278         if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6279                 goto retry_alloc;
6280 out_ret:
6281         ret = block_page_mkwrite_return(err);
6282 out:
6283         up_read(&EXT4_I(inode)->i_mmap_sem);
6284         sb_end_pagefault(inode->i_sb);
6285         return ret;
6286 out_error:
6287         unlock_page(page);
6288         ext4_journal_stop(handle);
6289         goto out;
6290 }
6291
6292 vm_fault_t ext4_filemap_fault(struct vm_fault *vmf)
6293 {
6294         struct inode *inode = file_inode(vmf->vma->vm_file);
6295         vm_fault_t ret;
6296
6297         down_read(&EXT4_I(inode)->i_mmap_sem);
6298         ret = filemap_fault(vmf);
6299         up_read(&EXT4_I(inode)->i_mmap_sem);
6300
6301         return ret;
6302 }