GNU Linux-libre 4.19.281-gnu1
[releases.git] / drivers / usb / wusbcore / crypto.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Ultra Wide Band
4  * AES-128 CCM Encryption
5  *
6  * Copyright (C) 2007 Intel Corporation
7  * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
8  *
9  * We don't do any encryption here; we use the Linux Kernel's AES-128
10  * crypto modules to construct keys and payload blocks in a way
11  * defined by WUSB1.0[6]. Check the erratas, as typos are are patched
12  * there.
13  *
14  * Thanks a zillion to John Keys for his help and clarifications over
15  * the designed-by-a-committee text.
16  *
17  * So the idea is that there is this basic Pseudo-Random-Function
18  * defined in WUSB1.0[6.5] which is the core of everything. It works
19  * by tweaking some blocks, AES crypting them and then xoring
20  * something else with them (this seems to be called CBC(AES) -- can
21  * you tell I know jack about crypto?). So we just funnel it into the
22  * Linux Crypto API.
23  *
24  * We leave a crypto test module so we can verify that vectors match,
25  * every now and then.
26  *
27  * Block size: 16 bytes -- AES seems to do things in 'block sizes'. I
28  *             am learning a lot...
29  *
30  *             Conveniently, some data structures that need to be
31  *             funneled through AES are...16 bytes in size!
32  */
33
34 #include <crypto/skcipher.h>
35 #include <linux/crypto.h>
36 #include <linux/module.h>
37 #include <linux/err.h>
38 #include <linux/uwb.h>
39 #include <linux/slab.h>
40 #include <linux/usb/wusb.h>
41 #include <linux/scatterlist.h>
42
43 static int debug_crypto_verify;
44
45 module_param(debug_crypto_verify, int, 0);
46 MODULE_PARM_DESC(debug_crypto_verify, "verify the key generation algorithms");
47
48 static void wusb_key_dump(const void *buf, size_t len)
49 {
50         print_hex_dump(KERN_ERR, "  ", DUMP_PREFIX_OFFSET, 16, 1,
51                        buf, len, 0);
52 }
53
54 /*
55  * Block of data, as understood by AES-CCM
56  *
57  * The code assumes this structure is nothing but a 16 byte array
58  * (packed in a struct to avoid common mess ups that I usually do with
59  * arrays and enforcing type checking).
60  */
61 struct aes_ccm_block {
62         u8 data[16];
63 } __attribute__((packed));
64
65 /*
66  * Counter-mode Blocks (WUSB1.0[6.4])
67  *
68  * According to CCM (or so it seems), for the purpose of calculating
69  * the MIC, the message is broken in N counter-mode blocks, B0, B1,
70  * ... BN.
71  *
72  * B0 contains flags, the CCM nonce and l(m).
73  *
74  * B1 contains l(a), the MAC header, the encryption offset and padding.
75  *
76  * If EO is nonzero, additional blocks are built from payload bytes
77  * until EO is exhausted (FIXME: padding to 16 bytes, I guess). The
78  * padding is not xmitted.
79  */
80
81 /* WUSB1.0[T6.4] */
82 struct aes_ccm_b0 {
83         u8 flags;       /* 0x59, per CCM spec */
84         struct aes_ccm_nonce ccm_nonce;
85         __be16 lm;
86 } __attribute__((packed));
87
88 /* WUSB1.0[T6.5] */
89 struct aes_ccm_b1 {
90         __be16 la;
91         u8 mac_header[10];
92         __le16 eo;
93         u8 security_reserved;   /* This is always zero */
94         u8 padding;             /* 0 */
95 } __attribute__((packed));
96
97 /*
98  * Encryption Blocks (WUSB1.0[6.4.4])
99  *
100  * CCM uses Ax blocks to generate a keystream with which the MIC and
101  * the message's payload are encoded. A0 always encrypts/decrypts the
102  * MIC. Ax (x>0) are used for the successive payload blocks.
103  *
104  * The x is the counter, and is increased for each block.
105  */
106 struct aes_ccm_a {
107         u8 flags;       /* 0x01, per CCM spec */
108         struct aes_ccm_nonce ccm_nonce;
109         __be16 counter; /* Value of x */
110 } __attribute__((packed));
111
112 static void bytewise_xor(void *_bo, const void *_bi1, const void *_bi2,
113                          size_t size)
114 {
115         u8 *bo = _bo;
116         const u8 *bi1 = _bi1, *bi2 = _bi2;
117         size_t itr;
118         for (itr = 0; itr < size; itr++)
119                 bo[itr] = bi1[itr] ^ bi2[itr];
120 }
121
122 /* Scratch space for MAC calculations. */
123 struct wusb_mac_scratch {
124         struct aes_ccm_b0 b0;
125         struct aes_ccm_b1 b1;
126         struct aes_ccm_a ax;
127 };
128
129 /*
130  * CC-MAC function WUSB1.0[6.5]
131  *
132  * Take a data string and produce the encrypted CBC Counter-mode MIC
133  *
134  * Note the names for most function arguments are made to (more or
135  * less) match those used in the pseudo-function definition given in
136  * WUSB1.0[6.5].
137  *
138  * @tfm_cbc: CBC(AES) blkcipher handle (initialized)
139  *
140  * @tfm_aes: AES cipher handle (initialized)
141  *
142  * @mic: buffer for placing the computed MIC (Message Integrity
143  *       Code). This is exactly 8 bytes, and we expect the buffer to
144  *       be at least eight bytes in length.
145  *
146  * @key: 128 bit symmetric key
147  *
148  * @n: CCM nonce
149  *
150  * @a: ASCII string, 14 bytes long (I guess zero padded if needed;
151  *     we use exactly 14 bytes).
152  *
153  * @b: data stream to be processed; cannot be a global or const local
154  *     (will confuse the scatterlists)
155  *
156  * @blen: size of b...
157  *
158  * Still not very clear how this is done, but looks like this: we
159  * create block B0 (as WUSB1.0[6.5] says), then we AES-crypt it with
160  * @key. We bytewise xor B0 with B1 (1) and AES-crypt that. Then we
161  * take the payload and divide it in blocks (16 bytes), xor them with
162  * the previous crypto result (16 bytes) and crypt it, repeat the next
163  * block with the output of the previous one, rinse wash (I guess this
164  * is what AES CBC mode means...but I truly have no idea). So we use
165  * the CBC(AES) blkcipher, that does precisely that. The IV (Initial
166  * Vector) is 16 bytes and is set to zero, so
167  *
168  * See rfc3610. Linux crypto has a CBC implementation, but the
169  * documentation is scarce, to say the least, and the example code is
170  * so intricated that is difficult to understand how things work. Most
171  * of this is guess work -- bite me.
172  *
173  * (1) Created as 6.5 says, again, using as l(a) 'Blen + 14', and
174  *     using the 14 bytes of @a to fill up
175  *     b1.{mac_header,e0,security_reserved,padding}.
176  *
177  * NOTE: The definition of l(a) in WUSB1.0[6.5] vs the definition of
178  *       l(m) is orthogonal, they bear no relationship, so it is not
179  *       in conflict with the parameter's relation that
180  *       WUSB1.0[6.4.2]) defines.
181  *
182  * NOTE: WUSB1.0[A.1]: Host Nonce is missing a nibble? (1e); fixed in
183  *       first errata released on 2005/07.
184  *
185  * NOTE: we need to clean IV to zero at each invocation to make sure
186  *       we start with a fresh empty Initial Vector, so that the CBC
187  *       works ok.
188  *
189  * NOTE: blen is not aligned to a block size, we'll pad zeros, that's
190  *       what sg[4] is for. Maybe there is a smarter way to do this.
191  */
192 static int wusb_ccm_mac(struct crypto_skcipher *tfm_cbc,
193                         struct crypto_cipher *tfm_aes,
194                         struct wusb_mac_scratch *scratch,
195                         void *mic,
196                         const struct aes_ccm_nonce *n,
197                         const struct aes_ccm_label *a, const void *b,
198                         size_t blen)
199 {
200         int result = 0;
201         SKCIPHER_REQUEST_ON_STACK(req, tfm_cbc);
202         struct scatterlist sg[4], sg_dst;
203         void *dst_buf;
204         size_t dst_size;
205         u8 *iv;
206         size_t zero_padding;
207
208         /*
209          * These checks should be compile time optimized out
210          * ensure @a fills b1's mac_header and following fields
211          */
212         WARN_ON(sizeof(*a) != sizeof(scratch->b1) - sizeof(scratch->b1.la));
213         WARN_ON(sizeof(scratch->b0) != sizeof(struct aes_ccm_block));
214         WARN_ON(sizeof(scratch->b1) != sizeof(struct aes_ccm_block));
215         WARN_ON(sizeof(scratch->ax) != sizeof(struct aes_ccm_block));
216
217         result = -ENOMEM;
218         zero_padding = blen % sizeof(struct aes_ccm_block);
219         if (zero_padding)
220                 zero_padding = sizeof(struct aes_ccm_block) - zero_padding;
221         dst_size = blen + sizeof(scratch->b0) + sizeof(scratch->b1) +
222                 zero_padding;
223         dst_buf = kzalloc(dst_size, GFP_KERNEL);
224         if (!dst_buf)
225                 goto error_dst_buf;
226
227         iv = kzalloc(crypto_skcipher_ivsize(tfm_cbc), GFP_KERNEL);
228         if (!iv)
229                 goto error_iv;
230
231         /* Setup B0 */
232         scratch->b0.flags = 0x59;       /* Format B0 */
233         scratch->b0.ccm_nonce = *n;
234         scratch->b0.lm = cpu_to_be16(0);        /* WUSB1.0[6.5] sez l(m) is 0 */
235
236         /* Setup B1
237          *
238          * The WUSB spec is anything but clear! WUSB1.0[6.5]
239          * says that to initialize B1 from A with 'l(a) = blen +
240          * 14'--after clarification, it means to use A's contents
241          * for MAC Header, EO, sec reserved and padding.
242          */
243         scratch->b1.la = cpu_to_be16(blen + 14);
244         memcpy(&scratch->b1.mac_header, a, sizeof(*a));
245
246         sg_init_table(sg, ARRAY_SIZE(sg));
247         sg_set_buf(&sg[0], &scratch->b0, sizeof(scratch->b0));
248         sg_set_buf(&sg[1], &scratch->b1, sizeof(scratch->b1));
249         sg_set_buf(&sg[2], b, blen);
250         /* 0 if well behaved :) */
251         sg_set_page(&sg[3], ZERO_PAGE(0), zero_padding, 0);
252         sg_init_one(&sg_dst, dst_buf, dst_size);
253
254         skcipher_request_set_tfm(req, tfm_cbc);
255         skcipher_request_set_callback(req, 0, NULL, NULL);
256         skcipher_request_set_crypt(req, sg, &sg_dst, dst_size, iv);
257         result = crypto_skcipher_encrypt(req);
258         skcipher_request_zero(req);
259         if (result < 0) {
260                 printk(KERN_ERR "E: can't compute CBC-MAC tag (MIC): %d\n",
261                        result);
262                 goto error_cbc_crypt;
263         }
264
265         /* Now we crypt the MIC Tag (*iv) with Ax -- values per WUSB1.0[6.5]
266          * The procedure is to AES crypt the A0 block and XOR the MIC
267          * Tag against it; we only do the first 8 bytes and place it
268          * directly in the destination buffer.
269          *
270          * POS Crypto API: size is assumed to be AES's block size.
271          * Thanks for documenting it -- tip taken from airo.c
272          */
273         scratch->ax.flags = 0x01;               /* as per WUSB 1.0 spec */
274         scratch->ax.ccm_nonce = *n;
275         scratch->ax.counter = 0;
276         crypto_cipher_encrypt_one(tfm_aes, (void *)&scratch->ax,
277                                   (void *)&scratch->ax);
278         bytewise_xor(mic, &scratch->ax, iv, 8);
279         result = 8;
280 error_cbc_crypt:
281         kfree(iv);
282 error_iv:
283         kfree(dst_buf);
284 error_dst_buf:
285         return result;
286 }
287
288 /*
289  * WUSB Pseudo Random Function (WUSB1.0[6.5])
290  *
291  * @b: buffer to the source data; cannot be a global or const local
292  *     (will confuse the scatterlists)
293  */
294 ssize_t wusb_prf(void *out, size_t out_size,
295                  const u8 key[16], const struct aes_ccm_nonce *_n,
296                  const struct aes_ccm_label *a,
297                  const void *b, size_t blen, size_t len)
298 {
299         ssize_t result, bytes = 0, bitr;
300         struct aes_ccm_nonce n = *_n;
301         struct crypto_skcipher *tfm_cbc;
302         struct crypto_cipher *tfm_aes;
303         struct wusb_mac_scratch *scratch;
304         u64 sfn = 0;
305         __le64 sfn_le;
306
307         tfm_cbc = crypto_alloc_skcipher("cbc(aes)", 0, CRYPTO_ALG_ASYNC);
308         if (IS_ERR(tfm_cbc)) {
309                 result = PTR_ERR(tfm_cbc);
310                 printk(KERN_ERR "E: can't load CBC(AES): %d\n", (int)result);
311                 goto error_alloc_cbc;
312         }
313         result = crypto_skcipher_setkey(tfm_cbc, key, 16);
314         if (result < 0) {
315                 printk(KERN_ERR "E: can't set CBC key: %d\n", (int)result);
316                 goto error_setkey_cbc;
317         }
318
319         tfm_aes = crypto_alloc_cipher("aes", 0, CRYPTO_ALG_ASYNC);
320         if (IS_ERR(tfm_aes)) {
321                 result = PTR_ERR(tfm_aes);
322                 printk(KERN_ERR "E: can't load AES: %d\n", (int)result);
323                 goto error_alloc_aes;
324         }
325         result = crypto_cipher_setkey(tfm_aes, key, 16);
326         if (result < 0) {
327                 printk(KERN_ERR "E: can't set AES key: %d\n", (int)result);
328                 goto error_setkey_aes;
329         }
330         scratch = kmalloc(sizeof(*scratch), GFP_KERNEL);
331         if (!scratch) {
332                 result = -ENOMEM;
333                 goto error_alloc_scratch;
334         }
335
336         for (bitr = 0; bitr < (len + 63) / 64; bitr++) {
337                 sfn_le = cpu_to_le64(sfn++);
338                 memcpy(&n.sfn, &sfn_le, sizeof(n.sfn)); /* n.sfn++... */
339                 result = wusb_ccm_mac(tfm_cbc, tfm_aes, scratch, out + bytes,
340                                       &n, a, b, blen);
341                 if (result < 0)
342                         goto error_ccm_mac;
343                 bytes += result;
344         }
345         result = bytes;
346
347         kfree(scratch);
348 error_alloc_scratch:
349 error_ccm_mac:
350 error_setkey_aes:
351         crypto_free_cipher(tfm_aes);
352 error_alloc_aes:
353 error_setkey_cbc:
354         crypto_free_skcipher(tfm_cbc);
355 error_alloc_cbc:
356         return result;
357 }
358
359 /* WUSB1.0[A.2] test vectors */
360 static const u8 stv_hsmic_key[16] = {
361         0x4b, 0x79, 0xa3, 0xcf, 0xe5, 0x53, 0x23, 0x9d,
362         0xd7, 0xc1, 0x6d, 0x1c, 0x2d, 0xab, 0x6d, 0x3f
363 };
364
365 static const struct aes_ccm_nonce stv_hsmic_n = {
366         .sfn = { 0 },
367         .tkid = { 0x76, 0x98, 0x01,  },
368         .dest_addr = { .data = { 0xbe, 0x00 } },
369                 .src_addr = { .data = { 0x76, 0x98 } },
370 };
371
372 /*
373  * Out-of-band MIC Generation verification code
374  *
375  */
376 static int wusb_oob_mic_verify(void)
377 {
378         int result;
379         u8 mic[8];
380         /* WUSB1.0[A.2] test vectors
381          *
382          * Need to keep it in the local stack as GCC 4.1.3something
383          * messes up and generates noise.
384          */
385         struct usb_handshake stv_hsmic_hs = {
386                 .bMessageNumber = 2,
387                 .bStatus        = 00,
388                 .tTKID          = { 0x76, 0x98, 0x01 },
389                 .bReserved      = 00,
390                 .CDID           = { 0x30, 0x31, 0x32, 0x33, 0x34, 0x35,
391                                     0x36, 0x37, 0x38, 0x39, 0x3a, 0x3b,
392                                     0x3c, 0x3d, 0x3e, 0x3f },
393                 .nonce          = { 0x20, 0x21, 0x22, 0x23, 0x24, 0x25,
394                                     0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b,
395                                     0x2c, 0x2d, 0x2e, 0x2f },
396                 .MIC            = { 0x75, 0x6a, 0x97, 0x51, 0x0c, 0x8c,
397                                     0x14, 0x7b },
398         };
399         size_t hs_size;
400
401         result = wusb_oob_mic(mic, stv_hsmic_key, &stv_hsmic_n, &stv_hsmic_hs);
402         if (result < 0)
403                 printk(KERN_ERR "E: WUSB OOB MIC test: failed: %d\n", result);
404         else if (memcmp(stv_hsmic_hs.MIC, mic, sizeof(mic))) {
405                 printk(KERN_ERR "E: OOB MIC test: "
406                        "mismatch between MIC result and WUSB1.0[A2]\n");
407                 hs_size = sizeof(stv_hsmic_hs) - sizeof(stv_hsmic_hs.MIC);
408                 printk(KERN_ERR "E: Handshake2 in: (%zu bytes)\n", hs_size);
409                 wusb_key_dump(&stv_hsmic_hs, hs_size);
410                 printk(KERN_ERR "E: CCM Nonce in: (%zu bytes)\n",
411                        sizeof(stv_hsmic_n));
412                 wusb_key_dump(&stv_hsmic_n, sizeof(stv_hsmic_n));
413                 printk(KERN_ERR "E: MIC out:\n");
414                 wusb_key_dump(mic, sizeof(mic));
415                 printk(KERN_ERR "E: MIC out (from WUSB1.0[A.2]):\n");
416                 wusb_key_dump(stv_hsmic_hs.MIC, sizeof(stv_hsmic_hs.MIC));
417                 result = -EINVAL;
418         } else
419                 result = 0;
420         return result;
421 }
422
423 /*
424  * Test vectors for Key derivation
425  *
426  * These come from WUSB1.0[6.5.1], the vectors in WUSB1.0[A.1]
427  * (errata corrected in 2005/07).
428  */
429 static const u8 stv_key_a1[16] __attribute__ ((__aligned__(4))) = {
430         0xf0, 0xe1, 0xd2, 0xc3, 0xb4, 0xa5, 0x96, 0x87,
431         0x78, 0x69, 0x5a, 0x4b, 0x3c, 0x2d, 0x1e, 0x0f
432 };
433
434 static const struct aes_ccm_nonce stv_keydvt_n_a1 = {
435         .sfn = { 0 },
436         .tkid = { 0x76, 0x98, 0x01,  },
437         .dest_addr = { .data = { 0xbe, 0x00 } },
438         .src_addr = { .data = { 0x76, 0x98 } },
439 };
440
441 static const struct wusb_keydvt_out stv_keydvt_out_a1 = {
442         .kck = {
443                 0x4b, 0x79, 0xa3, 0xcf, 0xe5, 0x53, 0x23, 0x9d,
444                 0xd7, 0xc1, 0x6d, 0x1c, 0x2d, 0xab, 0x6d, 0x3f
445         },
446         .ptk = {
447                 0xc8, 0x70, 0x62, 0x82, 0xb6, 0x7c, 0xe9, 0x06,
448                 0x7b, 0xc5, 0x25, 0x69, 0xf2, 0x36, 0x61, 0x2d
449         }
450 };
451
452 /*
453  * Performa a test to make sure we match the vectors defined in
454  * WUSB1.0[A.1](Errata2006/12)
455  */
456 static int wusb_key_derive_verify(void)
457 {
458         int result = 0;
459         struct wusb_keydvt_out keydvt_out;
460         /* These come from WUSB1.0[A.1] + 2006/12 errata
461          * NOTE: can't make this const or global -- somehow it seems
462          *       the scatterlists for crypto get confused and we get
463          *       bad data. There is no doc on this... */
464         struct wusb_keydvt_in stv_keydvt_in_a1 = {
465                 .hnonce = {
466                         0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
467                         0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f
468                 },
469                 .dnonce = {
470                         0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
471                         0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f
472                 }
473         };
474
475         result = wusb_key_derive(&keydvt_out, stv_key_a1, &stv_keydvt_n_a1,
476                                  &stv_keydvt_in_a1);
477         if (result < 0)
478                 printk(KERN_ERR "E: WUSB key derivation test: "
479                        "derivation failed: %d\n", result);
480         if (memcmp(&stv_keydvt_out_a1, &keydvt_out, sizeof(keydvt_out))) {
481                 printk(KERN_ERR "E: WUSB key derivation test: "
482                        "mismatch between key derivation result "
483                        "and WUSB1.0[A1] Errata 2006/12\n");
484                 printk(KERN_ERR "E: keydvt in: key\n");
485                 wusb_key_dump(stv_key_a1, sizeof(stv_key_a1));
486                 printk(KERN_ERR "E: keydvt in: nonce\n");
487                 wusb_key_dump(&stv_keydvt_n_a1, sizeof(stv_keydvt_n_a1));
488                 printk(KERN_ERR "E: keydvt in: hnonce & dnonce\n");
489                 wusb_key_dump(&stv_keydvt_in_a1, sizeof(stv_keydvt_in_a1));
490                 printk(KERN_ERR "E: keydvt out: KCK\n");
491                 wusb_key_dump(&keydvt_out.kck, sizeof(keydvt_out.kck));
492                 printk(KERN_ERR "E: keydvt out: PTK\n");
493                 wusb_key_dump(&keydvt_out.ptk, sizeof(keydvt_out.ptk));
494                 result = -EINVAL;
495         } else
496                 result = 0;
497         return result;
498 }
499
500 /*
501  * Initialize crypto system
502  *
503  * FIXME: we do nothing now, other than verifying. Later on we'll
504  * cache the encryption stuff, so that's why we have a separate init.
505  */
506 int wusb_crypto_init(void)
507 {
508         int result;
509
510         if (debug_crypto_verify) {
511                 result = wusb_key_derive_verify();
512                 if (result < 0)
513                         return result;
514                 return wusb_oob_mic_verify();
515         }
516         return 0;
517 }
518
519 void wusb_crypto_exit(void)
520 {
521         /* FIXME: free cached crypto transforms */
522 }