GNU Linux-libre 4.9.317-gnu1
[releases.git] / drivers / usb / host / xhci.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/iopoll.h>
25 #include <linux/irq.h>
26 #include <linux/log2.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/slab.h>
30 #include <linux/dmi.h>
31 #include <linux/dma-mapping.h>
32
33 #include "xhci.h"
34 #include "xhci-trace.h"
35 #include "xhci-mtk.h"
36
37 #define DRIVER_AUTHOR "Sarah Sharp"
38 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
39
40 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
41
42 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
43 static int link_quirk;
44 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
45 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
46
47 static unsigned int quirks;
48 module_param(quirks, uint, S_IRUGO);
49 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
50
51 /*
52  * xhci_handshake - spin reading hc until handshake completes or fails
53  * @ptr: address of hc register to be read
54  * @mask: bits to look at in result of read
55  * @done: value of those bits when handshake succeeds
56  * @usec: timeout in microseconds
57  *
58  * Returns negative errno, or zero on success
59  *
60  * Success happens when the "mask" bits have the specified value (hardware
61  * handshake done).  There are two failure modes:  "usec" have passed (major
62  * hardware flakeout), or the register reads as all-ones (hardware removed).
63  */
64 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
65 {
66         u32     result;
67         int     ret;
68
69         ret = readl_poll_timeout_atomic(ptr, result,
70                                         (result & mask) == done ||
71                                         result == U32_MAX,
72                                         1, usec);
73         if (result == U32_MAX)          /* card removed */
74                 return -ENODEV;
75
76         return ret;
77 }
78
79 /*
80  * Disable interrupts and begin the xHCI halting process.
81  */
82 void xhci_quiesce(struct xhci_hcd *xhci)
83 {
84         u32 halted;
85         u32 cmd;
86         u32 mask;
87
88         mask = ~(XHCI_IRQS);
89         halted = readl(&xhci->op_regs->status) & STS_HALT;
90         if (!halted)
91                 mask &= ~CMD_RUN;
92
93         cmd = readl(&xhci->op_regs->command);
94         cmd &= mask;
95         writel(cmd, &xhci->op_regs->command);
96 }
97
98 /*
99  * Force HC into halt state.
100  *
101  * Disable any IRQs and clear the run/stop bit.
102  * HC will complete any current and actively pipelined transactions, and
103  * should halt within 16 ms of the run/stop bit being cleared.
104  * Read HC Halted bit in the status register to see when the HC is finished.
105  */
106 int xhci_halt(struct xhci_hcd *xhci)
107 {
108         int ret;
109         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
110         xhci_quiesce(xhci);
111
112         ret = xhci_handshake(&xhci->op_regs->status,
113                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
114         if (!ret) {
115                 xhci->xhc_state |= XHCI_STATE_HALTED;
116                 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
117         } else
118                 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
119                                 XHCI_MAX_HALT_USEC);
120         return ret;
121 }
122
123 /*
124  * Set the run bit and wait for the host to be running.
125  */
126 static int xhci_start(struct xhci_hcd *xhci)
127 {
128         u32 temp;
129         int ret;
130
131         temp = readl(&xhci->op_regs->command);
132         temp |= (CMD_RUN);
133         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
134                         temp);
135         writel(temp, &xhci->op_regs->command);
136
137         /*
138          * Wait for the HCHalted Status bit to be 0 to indicate the host is
139          * running.
140          */
141         ret = xhci_handshake(&xhci->op_regs->status,
142                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
143         if (ret == -ETIMEDOUT)
144                 xhci_err(xhci, "Host took too long to start, "
145                                 "waited %u microseconds.\n",
146                                 XHCI_MAX_HALT_USEC);
147         if (!ret)
148                 /* clear state flags. Including dying, halted or removing */
149                 xhci->xhc_state = 0;
150
151         return ret;
152 }
153
154 /*
155  * Reset a halted HC.
156  *
157  * This resets pipelines, timers, counters, state machines, etc.
158  * Transactions will be terminated immediately, and operational registers
159  * will be set to their defaults.
160  */
161 int xhci_reset(struct xhci_hcd *xhci)
162 {
163         u32 command;
164         u32 state;
165         int ret, i;
166
167         state = readl(&xhci->op_regs->status);
168         if ((state & STS_HALT) == 0) {
169                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
170                 return 0;
171         }
172
173         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
174         command = readl(&xhci->op_regs->command);
175         command |= CMD_RESET;
176         writel(command, &xhci->op_regs->command);
177
178         /* Existing Intel xHCI controllers require a delay of 1 mS,
179          * after setting the CMD_RESET bit, and before accessing any
180          * HC registers. This allows the HC to complete the
181          * reset operation and be ready for HC register access.
182          * Without this delay, the subsequent HC register access,
183          * may result in a system hang very rarely.
184          */
185         if (xhci->quirks & XHCI_INTEL_HOST)
186                 udelay(1000);
187
188         ret = xhci_handshake(&xhci->op_regs->command,
189                         CMD_RESET, 0, 10 * 1000 * 1000);
190         if (ret)
191                 return ret;
192
193         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
194                 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
195
196         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
197                          "Wait for controller to be ready for doorbell rings");
198         /*
199          * xHCI cannot write to any doorbells or operational registers other
200          * than status until the "Controller Not Ready" flag is cleared.
201          */
202         ret = xhci_handshake(&xhci->op_regs->status,
203                         STS_CNR, 0, 10 * 1000 * 1000);
204
205         for (i = 0; i < 2; ++i) {
206                 xhci->bus_state[i].port_c_suspend = 0;
207                 xhci->bus_state[i].suspended_ports = 0;
208                 xhci->bus_state[i].resuming_ports = 0;
209         }
210
211         return ret;
212 }
213
214 #ifdef CONFIG_PCI
215 static int xhci_free_msi(struct xhci_hcd *xhci)
216 {
217         int i;
218
219         if (!xhci->msix_entries)
220                 return -EINVAL;
221
222         for (i = 0; i < xhci->msix_count; i++)
223                 if (xhci->msix_entries[i].vector)
224                         free_irq(xhci->msix_entries[i].vector,
225                                         xhci_to_hcd(xhci));
226         return 0;
227 }
228
229 /*
230  * Set up MSI
231  */
232 static int xhci_setup_msi(struct xhci_hcd *xhci)
233 {
234         int ret;
235         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
236
237         ret = pci_enable_msi(pdev);
238         if (ret) {
239                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
240                                 "failed to allocate MSI entry");
241                 return ret;
242         }
243
244         ret = request_irq(pdev->irq, xhci_msi_irq,
245                                 0, "xhci_hcd", xhci_to_hcd(xhci));
246         if (ret) {
247                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
248                                 "disable MSI interrupt");
249                 pci_disable_msi(pdev);
250         }
251
252         return ret;
253 }
254
255 /*
256  * Free IRQs
257  * free all IRQs request
258  */
259 static void xhci_free_irq(struct xhci_hcd *xhci)
260 {
261         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
262         int ret;
263
264         /* return if using legacy interrupt */
265         if (xhci_to_hcd(xhci)->irq > 0)
266                 return;
267
268         ret = xhci_free_msi(xhci);
269         if (!ret)
270                 return;
271         if (pdev->irq > 0)
272                 free_irq(pdev->irq, xhci_to_hcd(xhci));
273
274         return;
275 }
276
277 /*
278  * Set up MSI-X
279  */
280 static int xhci_setup_msix(struct xhci_hcd *xhci)
281 {
282         int i, ret = 0;
283         struct usb_hcd *hcd = xhci_to_hcd(xhci);
284         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
285
286         /*
287          * calculate number of msi-x vectors supported.
288          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
289          *   with max number of interrupters based on the xhci HCSPARAMS1.
290          * - num_online_cpus: maximum msi-x vectors per CPUs core.
291          *   Add additional 1 vector to ensure always available interrupt.
292          */
293         xhci->msix_count = min(num_online_cpus() + 1,
294                                 HCS_MAX_INTRS(xhci->hcs_params1));
295
296         xhci->msix_entries =
297                 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
298                                 GFP_KERNEL);
299         if (!xhci->msix_entries)
300                 return -ENOMEM;
301
302         for (i = 0; i < xhci->msix_count; i++) {
303                 xhci->msix_entries[i].entry = i;
304                 xhci->msix_entries[i].vector = 0;
305         }
306
307         ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count);
308         if (ret) {
309                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
310                                 "Failed to enable MSI-X");
311                 goto free_entries;
312         }
313
314         for (i = 0; i < xhci->msix_count; i++) {
315                 ret = request_irq(xhci->msix_entries[i].vector,
316                                 xhci_msi_irq,
317                                 0, "xhci_hcd", xhci_to_hcd(xhci));
318                 if (ret)
319                         goto disable_msix;
320         }
321
322         hcd->msix_enabled = 1;
323         return ret;
324
325 disable_msix:
326         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
327         xhci_free_irq(xhci);
328         pci_disable_msix(pdev);
329 free_entries:
330         kfree(xhci->msix_entries);
331         xhci->msix_entries = NULL;
332         return ret;
333 }
334
335 /* Free any IRQs and disable MSI-X */
336 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
337 {
338         struct usb_hcd *hcd = xhci_to_hcd(xhci);
339         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
340
341         if (xhci->quirks & XHCI_PLAT)
342                 return;
343
344         xhci_free_irq(xhci);
345
346         if (xhci->msix_entries) {
347                 pci_disable_msix(pdev);
348                 kfree(xhci->msix_entries);
349                 xhci->msix_entries = NULL;
350         } else {
351                 pci_disable_msi(pdev);
352         }
353
354         hcd->msix_enabled = 0;
355         return;
356 }
357
358 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
359 {
360         int i;
361
362         if (xhci->msix_entries) {
363                 for (i = 0; i < xhci->msix_count; i++)
364                         synchronize_irq(xhci->msix_entries[i].vector);
365         }
366 }
367
368 static int xhci_try_enable_msi(struct usb_hcd *hcd)
369 {
370         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
371         struct pci_dev  *pdev;
372         int ret;
373
374         /* The xhci platform device has set up IRQs through usb_add_hcd. */
375         if (xhci->quirks & XHCI_PLAT)
376                 return 0;
377
378         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
379         /*
380          * Some Fresco Logic host controllers advertise MSI, but fail to
381          * generate interrupts.  Don't even try to enable MSI.
382          */
383         if (xhci->quirks & XHCI_BROKEN_MSI)
384                 goto legacy_irq;
385
386         /* unregister the legacy interrupt */
387         if (hcd->irq)
388                 free_irq(hcd->irq, hcd);
389         hcd->irq = 0;
390
391         ret = xhci_setup_msix(xhci);
392         if (ret)
393                 /* fall back to msi*/
394                 ret = xhci_setup_msi(xhci);
395
396         if (!ret)
397                 /* hcd->irq is 0, we have MSI */
398                 return 0;
399
400         if (!pdev->irq) {
401                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
402                 return -EINVAL;
403         }
404
405  legacy_irq:
406         if (!strlen(hcd->irq_descr))
407                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
408                          hcd->driver->description, hcd->self.busnum);
409
410         /* fall back to legacy interrupt*/
411         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
412                         hcd->irq_descr, hcd);
413         if (ret) {
414                 xhci_err(xhci, "request interrupt %d failed\n",
415                                 pdev->irq);
416                 return ret;
417         }
418         hcd->irq = pdev->irq;
419         return 0;
420 }
421
422 #else
423
424 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
425 {
426         return 0;
427 }
428
429 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
430 {
431 }
432
433 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
434 {
435 }
436
437 #endif
438
439 static void compliance_mode_recovery(unsigned long arg)
440 {
441         struct xhci_hcd *xhci;
442         struct usb_hcd *hcd;
443         u32 temp;
444         int i;
445
446         xhci = (struct xhci_hcd *)arg;
447
448         for (i = 0; i < xhci->num_usb3_ports; i++) {
449                 temp = readl(xhci->usb3_ports[i]);
450                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
451                         /*
452                          * Compliance Mode Detected. Letting USB Core
453                          * handle the Warm Reset
454                          */
455                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
456                                         "Compliance mode detected->port %d",
457                                         i + 1);
458                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
459                                         "Attempting compliance mode recovery");
460                         hcd = xhci->shared_hcd;
461
462                         if (hcd->state == HC_STATE_SUSPENDED)
463                                 usb_hcd_resume_root_hub(hcd);
464
465                         usb_hcd_poll_rh_status(hcd);
466                 }
467         }
468
469         if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
470                 mod_timer(&xhci->comp_mode_recovery_timer,
471                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
472 }
473
474 /*
475  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
476  * that causes ports behind that hardware to enter compliance mode sometimes.
477  * The quirk creates a timer that polls every 2 seconds the link state of
478  * each host controller's port and recovers it by issuing a Warm reset
479  * if Compliance mode is detected, otherwise the port will become "dead" (no
480  * device connections or disconnections will be detected anymore). Becasue no
481  * status event is generated when entering compliance mode (per xhci spec),
482  * this quirk is needed on systems that have the failing hardware installed.
483  */
484 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
485 {
486         xhci->port_status_u0 = 0;
487         setup_timer(&xhci->comp_mode_recovery_timer,
488                     compliance_mode_recovery, (unsigned long)xhci);
489         xhci->comp_mode_recovery_timer.expires = jiffies +
490                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
491
492         add_timer(&xhci->comp_mode_recovery_timer);
493         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
494                         "Compliance mode recovery timer initialized");
495 }
496
497 /*
498  * This function identifies the systems that have installed the SN65LVPE502CP
499  * USB3.0 re-driver and that need the Compliance Mode Quirk.
500  * Systems:
501  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
502  */
503 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
504 {
505         const char *dmi_product_name, *dmi_sys_vendor;
506
507         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
508         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
509         if (!dmi_product_name || !dmi_sys_vendor)
510                 return false;
511
512         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
513                 return false;
514
515         if (strstr(dmi_product_name, "Z420") ||
516                         strstr(dmi_product_name, "Z620") ||
517                         strstr(dmi_product_name, "Z820") ||
518                         strstr(dmi_product_name, "Z1 Workstation"))
519                 return true;
520
521         return false;
522 }
523
524 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
525 {
526         return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
527 }
528
529
530 /*
531  * Initialize memory for HCD and xHC (one-time init).
532  *
533  * Program the PAGESIZE register, initialize the device context array, create
534  * device contexts (?), set up a command ring segment (or two?), create event
535  * ring (one for now).
536  */
537 int xhci_init(struct usb_hcd *hcd)
538 {
539         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
540         int retval = 0;
541
542         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
543         spin_lock_init(&xhci->lock);
544         if (xhci->hci_version == 0x95 && link_quirk) {
545                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
546                                 "QUIRK: Not clearing Link TRB chain bits.");
547                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
548         } else {
549                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
550                                 "xHCI doesn't need link TRB QUIRK");
551         }
552         retval = xhci_mem_init(xhci, GFP_KERNEL);
553         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
554
555         /* Initializing Compliance Mode Recovery Data If Needed */
556         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
557                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
558                 compliance_mode_recovery_timer_init(xhci);
559         }
560
561         return retval;
562 }
563
564 /*-------------------------------------------------------------------------*/
565
566
567 static int xhci_run_finished(struct xhci_hcd *xhci)
568 {
569         if (xhci_start(xhci)) {
570                 xhci_halt(xhci);
571                 return -ENODEV;
572         }
573         xhci->shared_hcd->state = HC_STATE_RUNNING;
574         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
575
576         if (xhci->quirks & XHCI_NEC_HOST)
577                 xhci_ring_cmd_db(xhci);
578
579         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
580                         "Finished xhci_run for USB3 roothub");
581         return 0;
582 }
583
584 /*
585  * Start the HC after it was halted.
586  *
587  * This function is called by the USB core when the HC driver is added.
588  * Its opposite is xhci_stop().
589  *
590  * xhci_init() must be called once before this function can be called.
591  * Reset the HC, enable device slot contexts, program DCBAAP, and
592  * set command ring pointer and event ring pointer.
593  *
594  * Setup MSI-X vectors and enable interrupts.
595  */
596 int xhci_run(struct usb_hcd *hcd)
597 {
598         u32 temp;
599         u64 temp_64;
600         int ret;
601         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
602
603         /* Start the xHCI host controller running only after the USB 2.0 roothub
604          * is setup.
605          */
606
607         hcd->uses_new_polling = 1;
608         if (!usb_hcd_is_primary_hcd(hcd))
609                 return xhci_run_finished(xhci);
610
611         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
612
613         ret = xhci_try_enable_msi(hcd);
614         if (ret)
615                 return ret;
616
617         xhci_dbg(xhci, "Command ring memory map follows:\n");
618         xhci_debug_ring(xhci, xhci->cmd_ring);
619         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
620         xhci_dbg_cmd_ptrs(xhci);
621
622         xhci_dbg(xhci, "ERST memory map follows:\n");
623         xhci_dbg_erst(xhci, &xhci->erst);
624         xhci_dbg(xhci, "Event ring:\n");
625         xhci_debug_ring(xhci, xhci->event_ring);
626         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
627         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
628         temp_64 &= ~ERST_PTR_MASK;
629         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
630                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
631
632         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
633                         "// Set the interrupt modulation register");
634         temp = readl(&xhci->ir_set->irq_control);
635         temp &= ~ER_IRQ_INTERVAL_MASK;
636         /*
637          * the increment interval is 8 times as much as that defined
638          * in xHCI spec on MTK's controller
639          */
640         temp |= (u32) ((xhci->quirks & XHCI_MTK_HOST) ? 20 : 160);
641         writel(temp, &xhci->ir_set->irq_control);
642
643         /* Set the HCD state before we enable the irqs */
644         temp = readl(&xhci->op_regs->command);
645         temp |= (CMD_EIE);
646         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
647                         "// Enable interrupts, cmd = 0x%x.", temp);
648         writel(temp, &xhci->op_regs->command);
649
650         temp = readl(&xhci->ir_set->irq_pending);
651         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
652                         "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
653                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
654         writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
655         xhci_print_ir_set(xhci, 0);
656
657         if (xhci->quirks & XHCI_NEC_HOST) {
658                 struct xhci_command *command;
659                 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
660                 if (!command)
661                         return -ENOMEM;
662                 xhci_queue_vendor_command(xhci, command, 0, 0, 0,
663                                 TRB_TYPE(TRB_NEC_GET_FW));
664         }
665         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
666                         "Finished xhci_run for USB2 roothub");
667         return 0;
668 }
669 EXPORT_SYMBOL_GPL(xhci_run);
670
671 /*
672  * Stop xHCI driver.
673  *
674  * This function is called by the USB core when the HC driver is removed.
675  * Its opposite is xhci_run().
676  *
677  * Disable device contexts, disable IRQs, and quiesce the HC.
678  * Reset the HC, finish any completed transactions, and cleanup memory.
679  */
680 void xhci_stop(struct usb_hcd *hcd)
681 {
682         u32 temp;
683         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
684
685         mutex_lock(&xhci->mutex);
686
687         if (!(xhci->xhc_state & XHCI_STATE_HALTED)) {
688                 spin_lock_irq(&xhci->lock);
689
690                 xhci->xhc_state |= XHCI_STATE_HALTED;
691                 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
692                 xhci_halt(xhci);
693                 xhci_reset(xhci);
694
695                 spin_unlock_irq(&xhci->lock);
696         }
697
698         if (!usb_hcd_is_primary_hcd(hcd)) {
699                 mutex_unlock(&xhci->mutex);
700                 return;
701         }
702
703         xhci_cleanup_msix(xhci);
704
705         /* Deleting Compliance Mode Recovery Timer */
706         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
707                         (!(xhci_all_ports_seen_u0(xhci)))) {
708                 del_timer_sync(&xhci->comp_mode_recovery_timer);
709                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
710                                 "%s: compliance mode recovery timer deleted",
711                                 __func__);
712         }
713
714         if (xhci->quirks & XHCI_AMD_PLL_FIX)
715                 usb_amd_dev_put();
716
717         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
718                         "// Disabling event ring interrupts");
719         temp = readl(&xhci->op_regs->status);
720         writel(temp & ~STS_EINT, &xhci->op_regs->status);
721         temp = readl(&xhci->ir_set->irq_pending);
722         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
723         xhci_print_ir_set(xhci, 0);
724
725         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
726         xhci_mem_cleanup(xhci);
727         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
728                         "xhci_stop completed - status = %x",
729                         readl(&xhci->op_regs->status));
730         mutex_unlock(&xhci->mutex);
731 }
732
733 /*
734  * Shutdown HC (not bus-specific)
735  *
736  * This is called when the machine is rebooting or halting.  We assume that the
737  * machine will be powered off, and the HC's internal state will be reset.
738  * Don't bother to free memory.
739  *
740  * This will only ever be called with the main usb_hcd (the USB3 roothub).
741  */
742 void xhci_shutdown(struct usb_hcd *hcd)
743 {
744         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
745
746         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
747                 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
748
749         /* Don't poll the roothubs after shutdown. */
750         xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
751                         __func__, hcd->self.busnum);
752         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
753         del_timer_sync(&hcd->rh_timer);
754
755         if (xhci->shared_hcd) {
756                 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
757                 del_timer_sync(&xhci->shared_hcd->rh_timer);
758         }
759
760         spin_lock_irq(&xhci->lock);
761         xhci_halt(xhci);
762         /* Workaround for spurious wakeups at shutdown with HSW */
763         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
764                 xhci_reset(xhci);
765         spin_unlock_irq(&xhci->lock);
766
767         xhci_cleanup_msix(xhci);
768
769         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
770                         "xhci_shutdown completed - status = %x",
771                         readl(&xhci->op_regs->status));
772 }
773 EXPORT_SYMBOL_GPL(xhci_shutdown);
774
775 #ifdef CONFIG_PM
776 static void xhci_save_registers(struct xhci_hcd *xhci)
777 {
778         xhci->s3.command = readl(&xhci->op_regs->command);
779         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
780         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
781         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
782         xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
783         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
784         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
785         xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
786         xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
787 }
788
789 static void xhci_restore_registers(struct xhci_hcd *xhci)
790 {
791         writel(xhci->s3.command, &xhci->op_regs->command);
792         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
793         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
794         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
795         writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
796         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
797         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
798         writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
799         writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
800 }
801
802 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
803 {
804         u64     val_64;
805
806         /* step 2: initialize command ring buffer */
807         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
808         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
809                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
810                                       xhci->cmd_ring->dequeue) &
811                  (u64) ~CMD_RING_RSVD_BITS) |
812                 xhci->cmd_ring->cycle_state;
813         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
814                         "// Setting command ring address to 0x%llx",
815                         (long unsigned long) val_64);
816         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
817 }
818
819 /*
820  * The whole command ring must be cleared to zero when we suspend the host.
821  *
822  * The host doesn't save the command ring pointer in the suspend well, so we
823  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
824  * aligned, because of the reserved bits in the command ring dequeue pointer
825  * register.  Therefore, we can't just set the dequeue pointer back in the
826  * middle of the ring (TRBs are 16-byte aligned).
827  */
828 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
829 {
830         struct xhci_ring *ring;
831         struct xhci_segment *seg;
832
833         ring = xhci->cmd_ring;
834         seg = ring->deq_seg;
835         do {
836                 memset(seg->trbs, 0,
837                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
838                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
839                         cpu_to_le32(~TRB_CYCLE);
840                 seg = seg->next;
841         } while (seg != ring->deq_seg);
842
843         /* Reset the software enqueue and dequeue pointers */
844         ring->deq_seg = ring->first_seg;
845         ring->dequeue = ring->first_seg->trbs;
846         ring->enq_seg = ring->deq_seg;
847         ring->enqueue = ring->dequeue;
848
849         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
850         /*
851          * Ring is now zeroed, so the HW should look for change of ownership
852          * when the cycle bit is set to 1.
853          */
854         ring->cycle_state = 1;
855
856         /*
857          * Reset the hardware dequeue pointer.
858          * Yes, this will need to be re-written after resume, but we're paranoid
859          * and want to make sure the hardware doesn't access bogus memory
860          * because, say, the BIOS or an SMI started the host without changing
861          * the command ring pointers.
862          */
863         xhci_set_cmd_ring_deq(xhci);
864 }
865
866 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
867 {
868         int port_index;
869         __le32 __iomem **port_array;
870         unsigned long flags;
871         u32 t1, t2;
872
873         spin_lock_irqsave(&xhci->lock, flags);
874
875         /* disble usb3 ports Wake bits*/
876         port_index = xhci->num_usb3_ports;
877         port_array = xhci->usb3_ports;
878         while (port_index--) {
879                 t1 = readl(port_array[port_index]);
880                 t1 = xhci_port_state_to_neutral(t1);
881                 t2 = t1 & ~PORT_WAKE_BITS;
882                 if (t1 != t2)
883                         writel(t2, port_array[port_index]);
884         }
885
886         /* disble usb2 ports Wake bits*/
887         port_index = xhci->num_usb2_ports;
888         port_array = xhci->usb2_ports;
889         while (port_index--) {
890                 t1 = readl(port_array[port_index]);
891                 t1 = xhci_port_state_to_neutral(t1);
892                 t2 = t1 & ~PORT_WAKE_BITS;
893                 if (t1 != t2)
894                         writel(t2, port_array[port_index]);
895         }
896
897         spin_unlock_irqrestore(&xhci->lock, flags);
898 }
899
900 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
901 {
902         __le32 __iomem          **port_array;
903         int                     port_index;
904         u32                     status;
905         u32                     portsc;
906
907         status = readl(&xhci->op_regs->status);
908         if (status & STS_EINT)
909                 return true;
910         /*
911          * Checking STS_EINT is not enough as there is a lag between a change
912          * bit being set and the Port Status Change Event that it generated
913          * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
914          */
915
916         port_index = xhci->num_usb2_ports;
917         port_array = xhci->usb2_ports;
918         while (port_index--) {
919                 portsc = readl(port_array[port_index]);
920                 if (portsc & PORT_CHANGE_MASK ||
921                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
922                         return true;
923         }
924         port_index = xhci->num_usb3_ports;
925         port_array = xhci->usb3_ports;
926         while (port_index--) {
927                 portsc = readl(port_array[port_index]);
928                 if (portsc & PORT_CHANGE_MASK ||
929                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
930                         return true;
931         }
932         return false;
933 }
934
935 /*
936  * Stop HC (not bus-specific)
937  *
938  * This is called when the machine transition into S3/S4 mode.
939  *
940  */
941 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
942 {
943         int                     rc = 0;
944         unsigned int            delay = XHCI_MAX_HALT_USEC * 2;
945         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
946         u32                     command;
947
948         if (!hcd->state)
949                 return 0;
950
951         if (hcd->state != HC_STATE_SUSPENDED ||
952                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
953                 return -EINVAL;
954
955         /* Clear root port wake on bits if wakeup not allowed. */
956         if (!do_wakeup)
957                 xhci_disable_port_wake_on_bits(xhci);
958
959         /* Don't poll the roothubs on bus suspend. */
960         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
961         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
962         del_timer_sync(&hcd->rh_timer);
963         clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
964         del_timer_sync(&xhci->shared_hcd->rh_timer);
965
966         spin_lock_irq(&xhci->lock);
967         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
968         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
969         /* step 1: stop endpoint */
970         /* skipped assuming that port suspend has done */
971
972         /* step 2: clear Run/Stop bit */
973         command = readl(&xhci->op_regs->command);
974         command &= ~CMD_RUN;
975         writel(command, &xhci->op_regs->command);
976
977         /* Some chips from Fresco Logic need an extraordinary delay */
978         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
979
980         if (xhci_handshake(&xhci->op_regs->status,
981                       STS_HALT, STS_HALT, delay)) {
982                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
983                 spin_unlock_irq(&xhci->lock);
984                 return -ETIMEDOUT;
985         }
986         xhci_clear_command_ring(xhci);
987
988         /* step 3: save registers */
989         xhci_save_registers(xhci);
990
991         /* step 4: set CSS flag */
992         command = readl(&xhci->op_regs->command);
993         command |= CMD_CSS;
994         writel(command, &xhci->op_regs->command);
995         if (xhci_handshake(&xhci->op_regs->status,
996                                 STS_SAVE, 0, 20 * 1000)) {
997                 xhci_warn(xhci, "WARN: xHC save state timeout\n");
998                 spin_unlock_irq(&xhci->lock);
999                 return -ETIMEDOUT;
1000         }
1001         spin_unlock_irq(&xhci->lock);
1002
1003         /*
1004          * Deleting Compliance Mode Recovery Timer because the xHCI Host
1005          * is about to be suspended.
1006          */
1007         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1008                         (!(xhci_all_ports_seen_u0(xhci)))) {
1009                 del_timer_sync(&xhci->comp_mode_recovery_timer);
1010                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1011                                 "%s: compliance mode recovery timer deleted",
1012                                 __func__);
1013         }
1014
1015         /* step 5: remove core well power */
1016         /* synchronize irq when using MSI-X */
1017         xhci_msix_sync_irqs(xhci);
1018
1019         return rc;
1020 }
1021 EXPORT_SYMBOL_GPL(xhci_suspend);
1022
1023 /*
1024  * start xHC (not bus-specific)
1025  *
1026  * This is called when the machine transition from S3/S4 mode.
1027  *
1028  */
1029 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1030 {
1031         u32                     command, temp = 0;
1032         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
1033         struct usb_hcd          *secondary_hcd;
1034         int                     retval = 0;
1035         bool                    comp_timer_running = false;
1036         bool                    pending_portevent = false;
1037
1038         if (!hcd->state)
1039                 return 0;
1040
1041         /* Wait a bit if either of the roothubs need to settle from the
1042          * transition into bus suspend.
1043          */
1044         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
1045                         time_before(jiffies,
1046                                 xhci->bus_state[1].next_statechange))
1047                 msleep(100);
1048
1049         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1050         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1051
1052         spin_lock_irq(&xhci->lock);
1053         if (xhci->quirks & XHCI_RESET_ON_RESUME)
1054                 hibernated = true;
1055
1056         if (!hibernated) {
1057                 /*
1058                  * Some controllers might lose power during suspend, so wait
1059                  * for controller not ready bit to clear, just as in xHC init.
1060                  */
1061                 retval = xhci_handshake(&xhci->op_regs->status,
1062                                         STS_CNR, 0, 10 * 1000 * 1000);
1063                 if (retval) {
1064                         xhci_warn(xhci, "Controller not ready at resume %d\n",
1065                                   retval);
1066                         spin_unlock_irq(&xhci->lock);
1067                         return retval;
1068                 }
1069                 /* step 1: restore register */
1070                 xhci_restore_registers(xhci);
1071                 /* step 2: initialize command ring buffer */
1072                 xhci_set_cmd_ring_deq(xhci);
1073                 /* step 3: restore state and start state*/
1074                 /* step 3: set CRS flag */
1075                 command = readl(&xhci->op_regs->command);
1076                 command |= CMD_CRS;
1077                 writel(command, &xhci->op_regs->command);
1078                 /*
1079                  * Some controllers take up to 55+ ms to complete the controller
1080                  * restore so setting the timeout to 100ms. Xhci specification
1081                  * doesn't mention any timeout value.
1082                  */
1083                 if (xhci_handshake(&xhci->op_regs->status,
1084                               STS_RESTORE, 0, 100 * 1000)) {
1085                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1086                         spin_unlock_irq(&xhci->lock);
1087                         return -ETIMEDOUT;
1088                 }
1089                 temp = readl(&xhci->op_regs->status);
1090         }
1091
1092         /* If restore operation fails, re-initialize the HC during resume */
1093         if ((temp & STS_SRE) || hibernated) {
1094
1095                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1096                                 !(xhci_all_ports_seen_u0(xhci))) {
1097                         del_timer_sync(&xhci->comp_mode_recovery_timer);
1098                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1099                                 "Compliance Mode Recovery Timer deleted!");
1100                 }
1101
1102                 /* Let the USB core know _both_ roothubs lost power. */
1103                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1104                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1105
1106                 xhci_dbg(xhci, "Stop HCD\n");
1107                 xhci_halt(xhci);
1108                 xhci_reset(xhci);
1109                 spin_unlock_irq(&xhci->lock);
1110                 xhci_cleanup_msix(xhci);
1111
1112                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1113                 temp = readl(&xhci->op_regs->status);
1114                 writel(temp & ~STS_EINT, &xhci->op_regs->status);
1115                 temp = readl(&xhci->ir_set->irq_pending);
1116                 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1117                 xhci_print_ir_set(xhci, 0);
1118
1119                 xhci_dbg(xhci, "cleaning up memory\n");
1120                 xhci_mem_cleanup(xhci);
1121                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1122                             readl(&xhci->op_regs->status));
1123
1124                 /* USB core calls the PCI reinit and start functions twice:
1125                  * first with the primary HCD, and then with the secondary HCD.
1126                  * If we don't do the same, the host will never be started.
1127                  */
1128                 if (!usb_hcd_is_primary_hcd(hcd))
1129                         secondary_hcd = hcd;
1130                 else
1131                         secondary_hcd = xhci->shared_hcd;
1132
1133                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1134                 retval = xhci_init(hcd->primary_hcd);
1135                 if (retval)
1136                         return retval;
1137                 comp_timer_running = true;
1138
1139                 xhci_dbg(xhci, "Start the primary HCD\n");
1140                 retval = xhci_run(hcd->primary_hcd);
1141                 if (!retval) {
1142                         xhci_dbg(xhci, "Start the secondary HCD\n");
1143                         retval = xhci_run(secondary_hcd);
1144                 }
1145                 hcd->state = HC_STATE_SUSPENDED;
1146                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1147                 goto done;
1148         }
1149
1150         /* step 4: set Run/Stop bit */
1151         command = readl(&xhci->op_regs->command);
1152         command |= CMD_RUN;
1153         writel(command, &xhci->op_regs->command);
1154         xhci_handshake(&xhci->op_regs->status, STS_HALT,
1155                   0, 250 * 1000);
1156
1157         /* step 5: walk topology and initialize portsc,
1158          * portpmsc and portli
1159          */
1160         /* this is done in bus_resume */
1161
1162         /* step 6: restart each of the previously
1163          * Running endpoints by ringing their doorbells
1164          */
1165
1166         spin_unlock_irq(&xhci->lock);
1167
1168  done:
1169         if (retval == 0) {
1170                 /*
1171                  * Resume roothubs only if there are pending events.
1172                  * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1173                  * the first wake signalling failed, give it that chance.
1174                  */
1175                 pending_portevent = xhci_pending_portevent(xhci);
1176                 if (!pending_portevent) {
1177                         msleep(120);
1178                         pending_portevent = xhci_pending_portevent(xhci);
1179                 }
1180
1181                 if (pending_portevent) {
1182                         usb_hcd_resume_root_hub(xhci->shared_hcd);
1183                         usb_hcd_resume_root_hub(hcd);
1184                 }
1185         }
1186         /*
1187          * If system is subject to the Quirk, Compliance Mode Timer needs to
1188          * be re-initialized Always after a system resume. Ports are subject
1189          * to suffer the Compliance Mode issue again. It doesn't matter if
1190          * ports have entered previously to U0 before system's suspension.
1191          */
1192         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1193                 compliance_mode_recovery_timer_init(xhci);
1194
1195         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1196                 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1197
1198         /* Re-enable port polling. */
1199         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1200         set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1201         usb_hcd_poll_rh_status(xhci->shared_hcd);
1202         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1203         usb_hcd_poll_rh_status(hcd);
1204
1205         return retval;
1206 }
1207 EXPORT_SYMBOL_GPL(xhci_resume);
1208 #endif  /* CONFIG_PM */
1209
1210 /*-------------------------------------------------------------------------*/
1211
1212 /**
1213  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1214  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1215  * value to right shift 1 for the bitmask.
1216  *
1217  * Index  = (epnum * 2) + direction - 1,
1218  * where direction = 0 for OUT, 1 for IN.
1219  * For control endpoints, the IN index is used (OUT index is unused), so
1220  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1221  */
1222 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1223 {
1224         unsigned int index;
1225         if (usb_endpoint_xfer_control(desc))
1226                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1227         else
1228                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1229                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1230         return index;
1231 }
1232
1233 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1234  * address from the XHCI endpoint index.
1235  */
1236 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1237 {
1238         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1239         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1240         return direction | number;
1241 }
1242
1243 /* Find the flag for this endpoint (for use in the control context).  Use the
1244  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1245  * bit 1, etc.
1246  */
1247 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1248 {
1249         return 1 << (xhci_get_endpoint_index(desc) + 1);
1250 }
1251
1252 /* Find the flag for this endpoint (for use in the control context).  Use the
1253  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1254  * bit 1, etc.
1255  */
1256 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1257 {
1258         return 1 << (ep_index + 1);
1259 }
1260
1261 /* Compute the last valid endpoint context index.  Basically, this is the
1262  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1263  * we find the most significant bit set in the added contexts flags.
1264  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1265  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1266  */
1267 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1268 {
1269         return fls(added_ctxs) - 1;
1270 }
1271
1272 /* Returns 1 if the arguments are OK;
1273  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1274  */
1275 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1276                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1277                 const char *func) {
1278         struct xhci_hcd *xhci;
1279         struct xhci_virt_device *virt_dev;
1280
1281         if (!hcd || (check_ep && !ep) || !udev) {
1282                 pr_debug("xHCI %s called with invalid args\n", func);
1283                 return -EINVAL;
1284         }
1285         if (!udev->parent) {
1286                 pr_debug("xHCI %s called for root hub\n", func);
1287                 return 0;
1288         }
1289
1290         xhci = hcd_to_xhci(hcd);
1291         if (check_virt_dev) {
1292                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1293                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1294                                         func);
1295                         return -EINVAL;
1296                 }
1297
1298                 virt_dev = xhci->devs[udev->slot_id];
1299                 if (virt_dev->udev != udev) {
1300                         xhci_dbg(xhci, "xHCI %s called with udev and "
1301                                           "virt_dev does not match\n", func);
1302                         return -EINVAL;
1303                 }
1304         }
1305
1306         if (xhci->xhc_state & XHCI_STATE_HALTED)
1307                 return -ENODEV;
1308
1309         return 1;
1310 }
1311
1312 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1313                 struct usb_device *udev, struct xhci_command *command,
1314                 bool ctx_change, bool must_succeed);
1315
1316 /*
1317  * Full speed devices may have a max packet size greater than 8 bytes, but the
1318  * USB core doesn't know that until it reads the first 8 bytes of the
1319  * descriptor.  If the usb_device's max packet size changes after that point,
1320  * we need to issue an evaluate context command and wait on it.
1321  */
1322 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1323                 unsigned int ep_index, struct urb *urb, gfp_t mem_flags)
1324 {
1325         struct xhci_container_ctx *out_ctx;
1326         struct xhci_input_control_ctx *ctrl_ctx;
1327         struct xhci_ep_ctx *ep_ctx;
1328         struct xhci_command *command;
1329         int max_packet_size;
1330         int hw_max_packet_size;
1331         int ret = 0;
1332
1333         out_ctx = xhci->devs[slot_id]->out_ctx;
1334         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1335         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1336         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1337         if (hw_max_packet_size != max_packet_size) {
1338                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1339                                 "Max Packet Size for ep 0 changed.");
1340                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1341                                 "Max packet size in usb_device = %d",
1342                                 max_packet_size);
1343                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1344                                 "Max packet size in xHCI HW = %d",
1345                                 hw_max_packet_size);
1346                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1347                                 "Issuing evaluate context command.");
1348
1349                 /* Set up the input context flags for the command */
1350                 /* FIXME: This won't work if a non-default control endpoint
1351                  * changes max packet sizes.
1352                  */
1353
1354                 command = xhci_alloc_command(xhci, false, true, mem_flags);
1355                 if (!command)
1356                         return -ENOMEM;
1357
1358                 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1359                 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1360                 if (!ctrl_ctx) {
1361                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1362                                         __func__);
1363                         ret = -ENOMEM;
1364                         goto command_cleanup;
1365                 }
1366                 /* Set up the modified control endpoint 0 */
1367                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1368                                 xhci->devs[slot_id]->out_ctx, ep_index);
1369
1370                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1371                 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1372                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1373                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1374
1375                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1376                 ctrl_ctx->drop_flags = 0;
1377
1378                 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1379                 xhci_dbg_ctx(xhci, command->in_ctx, ep_index);
1380                 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1381                 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1382
1383                 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1384                                 true, false);
1385
1386                 /* Clean up the input context for later use by bandwidth
1387                  * functions.
1388                  */
1389                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1390 command_cleanup:
1391                 kfree(command->completion);
1392                 kfree(command);
1393         }
1394         return ret;
1395 }
1396
1397 /*
1398  * non-error returns are a promise to giveback() the urb later
1399  * we drop ownership so next owner (or urb unlink) can get it
1400  */
1401 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1402 {
1403         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1404         struct xhci_td *buffer;
1405         unsigned long flags;
1406         int ret = 0;
1407         unsigned int slot_id, ep_index;
1408         struct urb_priv *urb_priv;
1409         int size, i;
1410
1411         if (!urb)
1412                 return -EINVAL;
1413         ret = xhci_check_args(hcd, urb->dev, urb->ep,
1414                                         true, true, __func__);
1415         if (ret <= 0)
1416                 return ret ? ret : -EINVAL;
1417
1418         slot_id = urb->dev->slot_id;
1419         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1420
1421         if (!HCD_HW_ACCESSIBLE(hcd)) {
1422                 if (!in_interrupt())
1423                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1424                 ret = -ESHUTDOWN;
1425                 goto exit;
1426         }
1427
1428         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1429                 size = urb->number_of_packets;
1430         else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1431             urb->transfer_buffer_length > 0 &&
1432             urb->transfer_flags & URB_ZERO_PACKET &&
1433             !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1434                 size = 2;
1435         else
1436                 size = 1;
1437
1438         urb_priv = kzalloc(sizeof(struct urb_priv) +
1439                                   size * sizeof(struct xhci_td *), mem_flags);
1440         if (!urb_priv)
1441                 return -ENOMEM;
1442
1443         buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1444         if (!buffer) {
1445                 kfree(urb_priv);
1446                 return -ENOMEM;
1447         }
1448
1449         for (i = 0; i < size; i++) {
1450                 urb_priv->td[i] = buffer;
1451                 buffer++;
1452         }
1453
1454         urb_priv->length = size;
1455         urb_priv->td_cnt = 0;
1456         urb->hcpriv = urb_priv;
1457
1458         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1459                 /* Check to see if the max packet size for the default control
1460                  * endpoint changed during FS device enumeration
1461                  */
1462                 if (urb->dev->speed == USB_SPEED_FULL) {
1463                         ret = xhci_check_maxpacket(xhci, slot_id,
1464                                         ep_index, urb, mem_flags);
1465                         if (ret < 0) {
1466                                 xhci_urb_free_priv(urb_priv);
1467                                 urb->hcpriv = NULL;
1468                                 return ret;
1469                         }
1470                 }
1471
1472                 /* We have a spinlock and interrupts disabled, so we must pass
1473                  * atomic context to this function, which may allocate memory.
1474                  */
1475                 spin_lock_irqsave(&xhci->lock, flags);
1476                 if (xhci->xhc_state & XHCI_STATE_DYING)
1477                         goto dying;
1478                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1479                                 slot_id, ep_index);
1480                 if (ret)
1481                         goto free_priv;
1482                 spin_unlock_irqrestore(&xhci->lock, flags);
1483         } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1484                 spin_lock_irqsave(&xhci->lock, flags);
1485                 if (xhci->xhc_state & XHCI_STATE_DYING)
1486                         goto dying;
1487                 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1488                                 EP_GETTING_STREAMS) {
1489                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1490                                         "is transitioning to using streams.\n");
1491                         ret = -EINVAL;
1492                 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1493                                 EP_GETTING_NO_STREAMS) {
1494                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1495                                         "is transitioning to "
1496                                         "not having streams.\n");
1497                         ret = -EINVAL;
1498                 } else {
1499                         ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1500                                         slot_id, ep_index);
1501                 }
1502                 if (ret)
1503                         goto free_priv;
1504                 spin_unlock_irqrestore(&xhci->lock, flags);
1505         } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1506                 spin_lock_irqsave(&xhci->lock, flags);
1507                 if (xhci->xhc_state & XHCI_STATE_DYING)
1508                         goto dying;
1509                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1510                                 slot_id, ep_index);
1511                 if (ret)
1512                         goto free_priv;
1513                 spin_unlock_irqrestore(&xhci->lock, flags);
1514         } else {
1515                 spin_lock_irqsave(&xhci->lock, flags);
1516                 if (xhci->xhc_state & XHCI_STATE_DYING)
1517                         goto dying;
1518                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1519                                 slot_id, ep_index);
1520                 if (ret)
1521                         goto free_priv;
1522                 spin_unlock_irqrestore(&xhci->lock, flags);
1523         }
1524 exit:
1525         return ret;
1526 dying:
1527         xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1528                         "non-responsive xHCI host.\n",
1529                         urb->ep->desc.bEndpointAddress, urb);
1530         ret = -ESHUTDOWN;
1531 free_priv:
1532         xhci_urb_free_priv(urb_priv);
1533         urb->hcpriv = NULL;
1534         spin_unlock_irqrestore(&xhci->lock, flags);
1535         return ret;
1536 }
1537
1538 /*
1539  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1540  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1541  * should pick up where it left off in the TD, unless a Set Transfer Ring
1542  * Dequeue Pointer is issued.
1543  *
1544  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1545  * the ring.  Since the ring is a contiguous structure, they can't be physically
1546  * removed.  Instead, there are two options:
1547  *
1548  *  1) If the HC is in the middle of processing the URB to be canceled, we
1549  *     simply move the ring's dequeue pointer past those TRBs using the Set
1550  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1551  *     when drivers timeout on the last submitted URB and attempt to cancel.
1552  *
1553  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1554  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1555  *     HC will need to invalidate the any TRBs it has cached after the stop
1556  *     endpoint command, as noted in the xHCI 0.95 errata.
1557  *
1558  *  3) The TD may have completed by the time the Stop Endpoint Command
1559  *     completes, so software needs to handle that case too.
1560  *
1561  * This function should protect against the TD enqueueing code ringing the
1562  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1563  * It also needs to account for multiple cancellations on happening at the same
1564  * time for the same endpoint.
1565  *
1566  * Note that this function can be called in any context, or so says
1567  * usb_hcd_unlink_urb()
1568  */
1569 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1570 {
1571         unsigned long flags;
1572         int ret, i;
1573         u32 temp;
1574         struct xhci_hcd *xhci;
1575         struct urb_priv *urb_priv;
1576         struct xhci_td *td;
1577         unsigned int ep_index;
1578         struct xhci_ring *ep_ring;
1579         struct xhci_virt_ep *ep;
1580         struct xhci_command *command;
1581
1582         xhci = hcd_to_xhci(hcd);
1583         spin_lock_irqsave(&xhci->lock, flags);
1584         /* Make sure the URB hasn't completed or been unlinked already */
1585         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1586         if (ret || !urb->hcpriv)
1587                 goto done;
1588         temp = readl(&xhci->op_regs->status);
1589         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1590                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1591                                 "HW died, freeing TD.");
1592                 urb_priv = urb->hcpriv;
1593                 for (i = urb_priv->td_cnt;
1594                      i < urb_priv->length && xhci->devs[urb->dev->slot_id];
1595                      i++) {
1596                         td = urb_priv->td[i];
1597                         if (!list_empty(&td->td_list))
1598                                 list_del_init(&td->td_list);
1599                         if (!list_empty(&td->cancelled_td_list))
1600                                 list_del_init(&td->cancelled_td_list);
1601                 }
1602
1603                 usb_hcd_unlink_urb_from_ep(hcd, urb);
1604                 spin_unlock_irqrestore(&xhci->lock, flags);
1605                 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1606                 xhci_urb_free_priv(urb_priv);
1607                 return ret;
1608         }
1609
1610         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1611         ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1612         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1613         if (!ep_ring) {
1614                 ret = -EINVAL;
1615                 goto done;
1616         }
1617
1618         urb_priv = urb->hcpriv;
1619         i = urb_priv->td_cnt;
1620         if (i < urb_priv->length)
1621                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1622                                 "Cancel URB %p, dev %s, ep 0x%x, "
1623                                 "starting at offset 0x%llx",
1624                                 urb, urb->dev->devpath,
1625                                 urb->ep->desc.bEndpointAddress,
1626                                 (unsigned long long) xhci_trb_virt_to_dma(
1627                                         urb_priv->td[i]->start_seg,
1628                                         urb_priv->td[i]->first_trb));
1629
1630         for (; i < urb_priv->length; i++) {
1631                 td = urb_priv->td[i];
1632                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1633         }
1634
1635         /* Queue a stop endpoint command, but only if this is
1636          * the first cancellation to be handled.
1637          */
1638         if (!(ep->ep_state & EP_HALT_PENDING)) {
1639                 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1640                 if (!command) {
1641                         ret = -ENOMEM;
1642                         goto done;
1643                 }
1644                 ep->ep_state |= EP_HALT_PENDING;
1645                 ep->stop_cmds_pending++;
1646                 ep->stop_cmd_timer.expires = jiffies +
1647                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1648                 add_timer(&ep->stop_cmd_timer);
1649                 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1650                                          ep_index, 0);
1651                 xhci_ring_cmd_db(xhci);
1652         }
1653 done:
1654         spin_unlock_irqrestore(&xhci->lock, flags);
1655         return ret;
1656 }
1657
1658 /* Drop an endpoint from a new bandwidth configuration for this device.
1659  * Only one call to this function is allowed per endpoint before
1660  * check_bandwidth() or reset_bandwidth() must be called.
1661  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1662  * add the endpoint to the schedule with possibly new parameters denoted by a
1663  * different endpoint descriptor in usb_host_endpoint.
1664  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1665  * not allowed.
1666  *
1667  * The USB core will not allow URBs to be queued to an endpoint that is being
1668  * disabled, so there's no need for mutual exclusion to protect
1669  * the xhci->devs[slot_id] structure.
1670  */
1671 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1672                 struct usb_host_endpoint *ep)
1673 {
1674         struct xhci_hcd *xhci;
1675         struct xhci_container_ctx *in_ctx, *out_ctx;
1676         struct xhci_input_control_ctx *ctrl_ctx;
1677         unsigned int ep_index;
1678         struct xhci_ep_ctx *ep_ctx;
1679         u32 drop_flag;
1680         u32 new_add_flags, new_drop_flags;
1681         int ret;
1682
1683         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1684         if (ret <= 0)
1685                 return ret;
1686         xhci = hcd_to_xhci(hcd);
1687         if (xhci->xhc_state & XHCI_STATE_DYING)
1688                 return -ENODEV;
1689
1690         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1691         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1692         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1693                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1694                                 __func__, drop_flag);
1695                 return 0;
1696         }
1697
1698         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1699         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1700         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1701         if (!ctrl_ctx) {
1702                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1703                                 __func__);
1704                 return 0;
1705         }
1706
1707         ep_index = xhci_get_endpoint_index(&ep->desc);
1708         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1709         /* If the HC already knows the endpoint is disabled,
1710          * or the HCD has noted it is disabled, ignore this request
1711          */
1712         if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1713              cpu_to_le32(EP_STATE_DISABLED)) ||
1714             le32_to_cpu(ctrl_ctx->drop_flags) &
1715             xhci_get_endpoint_flag(&ep->desc)) {
1716                 /* Do not warn when called after a usb_device_reset */
1717                 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1718                         xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1719                                   __func__, ep);
1720                 return 0;
1721         }
1722
1723         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1724         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1725
1726         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1727         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1728
1729         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1730
1731         if (xhci->quirks & XHCI_MTK_HOST)
1732                 xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1733
1734         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1735                         (unsigned int) ep->desc.bEndpointAddress,
1736                         udev->slot_id,
1737                         (unsigned int) new_drop_flags,
1738                         (unsigned int) new_add_flags);
1739         return 0;
1740 }
1741
1742 /* Add an endpoint to a new possible bandwidth configuration for this device.
1743  * Only one call to this function is allowed per endpoint before
1744  * check_bandwidth() or reset_bandwidth() must be called.
1745  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1746  * add the endpoint to the schedule with possibly new parameters denoted by a
1747  * different endpoint descriptor in usb_host_endpoint.
1748  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1749  * not allowed.
1750  *
1751  * The USB core will not allow URBs to be queued to an endpoint until the
1752  * configuration or alt setting is installed in the device, so there's no need
1753  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1754  */
1755 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1756                 struct usb_host_endpoint *ep)
1757 {
1758         struct xhci_hcd *xhci;
1759         struct xhci_container_ctx *in_ctx;
1760         unsigned int ep_index;
1761         struct xhci_input_control_ctx *ctrl_ctx;
1762         u32 added_ctxs;
1763         u32 new_add_flags, new_drop_flags;
1764         struct xhci_virt_device *virt_dev;
1765         int ret = 0;
1766
1767         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1768         if (ret <= 0) {
1769                 /* So we won't queue a reset ep command for a root hub */
1770                 ep->hcpriv = NULL;
1771                 return ret;
1772         }
1773         xhci = hcd_to_xhci(hcd);
1774         if (xhci->xhc_state & XHCI_STATE_DYING)
1775                 return -ENODEV;
1776
1777         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1778         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1779                 /* FIXME when we have to issue an evaluate endpoint command to
1780                  * deal with ep0 max packet size changing once we get the
1781                  * descriptors
1782                  */
1783                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1784                                 __func__, added_ctxs);
1785                 return 0;
1786         }
1787
1788         virt_dev = xhci->devs[udev->slot_id];
1789         in_ctx = virt_dev->in_ctx;
1790         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1791         if (!ctrl_ctx) {
1792                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1793                                 __func__);
1794                 return 0;
1795         }
1796
1797         ep_index = xhci_get_endpoint_index(&ep->desc);
1798         /* If this endpoint is already in use, and the upper layers are trying
1799          * to add it again without dropping it, reject the addition.
1800          */
1801         if (virt_dev->eps[ep_index].ring &&
1802                         !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1803                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1804                                 "without dropping it.\n",
1805                                 (unsigned int) ep->desc.bEndpointAddress);
1806                 return -EINVAL;
1807         }
1808
1809         /* If the HCD has already noted the endpoint is enabled,
1810          * ignore this request.
1811          */
1812         if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1813                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1814                                 __func__, ep);
1815                 return 0;
1816         }
1817
1818         /*
1819          * Configuration and alternate setting changes must be done in
1820          * process context, not interrupt context (or so documenation
1821          * for usb_set_interface() and usb_set_configuration() claim).
1822          */
1823         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1824                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1825                                 __func__, ep->desc.bEndpointAddress);
1826                 return -ENOMEM;
1827         }
1828
1829         if (xhci->quirks & XHCI_MTK_HOST) {
1830                 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1831                 if (ret < 0) {
1832                         xhci_free_or_cache_endpoint_ring(xhci,
1833                                 virt_dev, ep_index);
1834                         return ret;
1835                 }
1836         }
1837
1838         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1839         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1840
1841         /* If xhci_endpoint_disable() was called for this endpoint, but the
1842          * xHC hasn't been notified yet through the check_bandwidth() call,
1843          * this re-adds a new state for the endpoint from the new endpoint
1844          * descriptors.  We must drop and re-add this endpoint, so we leave the
1845          * drop flags alone.
1846          */
1847         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1848
1849         /* Store the usb_device pointer for later use */
1850         ep->hcpriv = udev;
1851
1852         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1853                         (unsigned int) ep->desc.bEndpointAddress,
1854                         udev->slot_id,
1855                         (unsigned int) new_drop_flags,
1856                         (unsigned int) new_add_flags);
1857         return 0;
1858 }
1859
1860 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1861 {
1862         struct xhci_input_control_ctx *ctrl_ctx;
1863         struct xhci_ep_ctx *ep_ctx;
1864         struct xhci_slot_ctx *slot_ctx;
1865         int i;
1866
1867         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1868         if (!ctrl_ctx) {
1869                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1870                                 __func__);
1871                 return;
1872         }
1873
1874         /* When a device's add flag and drop flag are zero, any subsequent
1875          * configure endpoint command will leave that endpoint's state
1876          * untouched.  Make sure we don't leave any old state in the input
1877          * endpoint contexts.
1878          */
1879         ctrl_ctx->drop_flags = 0;
1880         ctrl_ctx->add_flags = 0;
1881         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1882         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1883         /* Endpoint 0 is always valid */
1884         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1885         for (i = 1; i < 31; ++i) {
1886                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1887                 ep_ctx->ep_info = 0;
1888                 ep_ctx->ep_info2 = 0;
1889                 ep_ctx->deq = 0;
1890                 ep_ctx->tx_info = 0;
1891         }
1892 }
1893
1894 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1895                 struct usb_device *udev, u32 *cmd_status)
1896 {
1897         int ret;
1898
1899         switch (*cmd_status) {
1900         case COMP_CMD_ABORT:
1901         case COMP_CMD_STOP:
1902                 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1903                 ret = -ETIME;
1904                 break;
1905         case COMP_ENOMEM:
1906                 dev_warn(&udev->dev,
1907                          "Not enough host controller resources for new device state.\n");
1908                 ret = -ENOMEM;
1909                 /* FIXME: can we allocate more resources for the HC? */
1910                 break;
1911         case COMP_BW_ERR:
1912         case COMP_2ND_BW_ERR:
1913                 dev_warn(&udev->dev,
1914                          "Not enough bandwidth for new device state.\n");
1915                 ret = -ENOSPC;
1916                 /* FIXME: can we go back to the old state? */
1917                 break;
1918         case COMP_TRB_ERR:
1919                 /* the HCD set up something wrong */
1920                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1921                                 "add flag = 1, "
1922                                 "and endpoint is not disabled.\n");
1923                 ret = -EINVAL;
1924                 break;
1925         case COMP_DEV_ERR:
1926                 dev_warn(&udev->dev,
1927                          "ERROR: Incompatible device for endpoint configure command.\n");
1928                 ret = -ENODEV;
1929                 break;
1930         case COMP_SUCCESS:
1931                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1932                                 "Successful Endpoint Configure command");
1933                 ret = 0;
1934                 break;
1935         default:
1936                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1937                                 *cmd_status);
1938                 ret = -EINVAL;
1939                 break;
1940         }
1941         return ret;
1942 }
1943
1944 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1945                 struct usb_device *udev, u32 *cmd_status)
1946 {
1947         int ret;
1948         struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1949
1950         switch (*cmd_status) {
1951         case COMP_CMD_ABORT:
1952         case COMP_CMD_STOP:
1953                 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1954                 ret = -ETIME;
1955                 break;
1956         case COMP_EINVAL:
1957                 dev_warn(&udev->dev,
1958                          "WARN: xHCI driver setup invalid evaluate context command.\n");
1959                 ret = -EINVAL;
1960                 break;
1961         case COMP_EBADSLT:
1962                 dev_warn(&udev->dev,
1963                         "WARN: slot not enabled for evaluate context command.\n");
1964                 ret = -EINVAL;
1965                 break;
1966         case COMP_CTX_STATE:
1967                 dev_warn(&udev->dev,
1968                         "WARN: invalid context state for evaluate context command.\n");
1969                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1970                 ret = -EINVAL;
1971                 break;
1972         case COMP_DEV_ERR:
1973                 dev_warn(&udev->dev,
1974                         "ERROR: Incompatible device for evaluate context command.\n");
1975                 ret = -ENODEV;
1976                 break;
1977         case COMP_MEL_ERR:
1978                 /* Max Exit Latency too large error */
1979                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1980                 ret = -EINVAL;
1981                 break;
1982         case COMP_SUCCESS:
1983                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1984                                 "Successful evaluate context command");
1985                 ret = 0;
1986                 break;
1987         default:
1988                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1989                         *cmd_status);
1990                 ret = -EINVAL;
1991                 break;
1992         }
1993         return ret;
1994 }
1995
1996 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1997                 struct xhci_input_control_ctx *ctrl_ctx)
1998 {
1999         u32 valid_add_flags;
2000         u32 valid_drop_flags;
2001
2002         /* Ignore the slot flag (bit 0), and the default control endpoint flag
2003          * (bit 1).  The default control endpoint is added during the Address
2004          * Device command and is never removed until the slot is disabled.
2005          */
2006         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2007         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2008
2009         /* Use hweight32 to count the number of ones in the add flags, or
2010          * number of endpoints added.  Don't count endpoints that are changed
2011          * (both added and dropped).
2012          */
2013         return hweight32(valid_add_flags) -
2014                 hweight32(valid_add_flags & valid_drop_flags);
2015 }
2016
2017 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2018                 struct xhci_input_control_ctx *ctrl_ctx)
2019 {
2020         u32 valid_add_flags;
2021         u32 valid_drop_flags;
2022
2023         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2024         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2025
2026         return hweight32(valid_drop_flags) -
2027                 hweight32(valid_add_flags & valid_drop_flags);
2028 }
2029
2030 /*
2031  * We need to reserve the new number of endpoints before the configure endpoint
2032  * command completes.  We can't subtract the dropped endpoints from the number
2033  * of active endpoints until the command completes because we can oversubscribe
2034  * the host in this case:
2035  *
2036  *  - the first configure endpoint command drops more endpoints than it adds
2037  *  - a second configure endpoint command that adds more endpoints is queued
2038  *  - the first configure endpoint command fails, so the config is unchanged
2039  *  - the second command may succeed, even though there isn't enough resources
2040  *
2041  * Must be called with xhci->lock held.
2042  */
2043 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2044                 struct xhci_input_control_ctx *ctrl_ctx)
2045 {
2046         u32 added_eps;
2047
2048         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2049         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2050                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2051                                 "Not enough ep ctxs: "
2052                                 "%u active, need to add %u, limit is %u.",
2053                                 xhci->num_active_eps, added_eps,
2054                                 xhci->limit_active_eps);
2055                 return -ENOMEM;
2056         }
2057         xhci->num_active_eps += added_eps;
2058         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2059                         "Adding %u ep ctxs, %u now active.", added_eps,
2060                         xhci->num_active_eps);
2061         return 0;
2062 }
2063
2064 /*
2065  * The configure endpoint was failed by the xHC for some other reason, so we
2066  * need to revert the resources that failed configuration would have used.
2067  *
2068  * Must be called with xhci->lock held.
2069  */
2070 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2071                 struct xhci_input_control_ctx *ctrl_ctx)
2072 {
2073         u32 num_failed_eps;
2074
2075         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2076         xhci->num_active_eps -= num_failed_eps;
2077         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2078                         "Removing %u failed ep ctxs, %u now active.",
2079                         num_failed_eps,
2080                         xhci->num_active_eps);
2081 }
2082
2083 /*
2084  * Now that the command has completed, clean up the active endpoint count by
2085  * subtracting out the endpoints that were dropped (but not changed).
2086  *
2087  * Must be called with xhci->lock held.
2088  */
2089 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2090                 struct xhci_input_control_ctx *ctrl_ctx)
2091 {
2092         u32 num_dropped_eps;
2093
2094         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2095         xhci->num_active_eps -= num_dropped_eps;
2096         if (num_dropped_eps)
2097                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2098                                 "Removing %u dropped ep ctxs, %u now active.",
2099                                 num_dropped_eps,
2100                                 xhci->num_active_eps);
2101 }
2102
2103 static unsigned int xhci_get_block_size(struct usb_device *udev)
2104 {
2105         switch (udev->speed) {
2106         case USB_SPEED_LOW:
2107         case USB_SPEED_FULL:
2108                 return FS_BLOCK;
2109         case USB_SPEED_HIGH:
2110                 return HS_BLOCK;
2111         case USB_SPEED_SUPER:
2112         case USB_SPEED_SUPER_PLUS:
2113                 return SS_BLOCK;
2114         case USB_SPEED_UNKNOWN:
2115         case USB_SPEED_WIRELESS:
2116         default:
2117                 /* Should never happen */
2118                 return 1;
2119         }
2120 }
2121
2122 static unsigned int
2123 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2124 {
2125         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2126                 return LS_OVERHEAD;
2127         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2128                 return FS_OVERHEAD;
2129         return HS_OVERHEAD;
2130 }
2131
2132 /* If we are changing a LS/FS device under a HS hub,
2133  * make sure (if we are activating a new TT) that the HS bus has enough
2134  * bandwidth for this new TT.
2135  */
2136 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2137                 struct xhci_virt_device *virt_dev,
2138                 int old_active_eps)
2139 {
2140         struct xhci_interval_bw_table *bw_table;
2141         struct xhci_tt_bw_info *tt_info;
2142
2143         /* Find the bandwidth table for the root port this TT is attached to. */
2144         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2145         tt_info = virt_dev->tt_info;
2146         /* If this TT already had active endpoints, the bandwidth for this TT
2147          * has already been added.  Removing all periodic endpoints (and thus
2148          * making the TT enactive) will only decrease the bandwidth used.
2149          */
2150         if (old_active_eps)
2151                 return 0;
2152         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2153                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2154                         return -ENOMEM;
2155                 return 0;
2156         }
2157         /* Not sure why we would have no new active endpoints...
2158          *
2159          * Maybe because of an Evaluate Context change for a hub update or a
2160          * control endpoint 0 max packet size change?
2161          * FIXME: skip the bandwidth calculation in that case.
2162          */
2163         return 0;
2164 }
2165
2166 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2167                 struct xhci_virt_device *virt_dev)
2168 {
2169         unsigned int bw_reserved;
2170
2171         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2172         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2173                 return -ENOMEM;
2174
2175         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2176         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2177                 return -ENOMEM;
2178
2179         return 0;
2180 }
2181
2182 /*
2183  * This algorithm is a very conservative estimate of the worst-case scheduling
2184  * scenario for any one interval.  The hardware dynamically schedules the
2185  * packets, so we can't tell which microframe could be the limiting factor in
2186  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2187  *
2188  * Obviously, we can't solve an NP complete problem to find the minimum worst
2189  * case scenario.  Instead, we come up with an estimate that is no less than
2190  * the worst case bandwidth used for any one microframe, but may be an
2191  * over-estimate.
2192  *
2193  * We walk the requirements for each endpoint by interval, starting with the
2194  * smallest interval, and place packets in the schedule where there is only one
2195  * possible way to schedule packets for that interval.  In order to simplify
2196  * this algorithm, we record the largest max packet size for each interval, and
2197  * assume all packets will be that size.
2198  *
2199  * For interval 0, we obviously must schedule all packets for each interval.
2200  * The bandwidth for interval 0 is just the amount of data to be transmitted
2201  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2202  * the number of packets).
2203  *
2204  * For interval 1, we have two possible microframes to schedule those packets
2205  * in.  For this algorithm, if we can schedule the same number of packets for
2206  * each possible scheduling opportunity (each microframe), we will do so.  The
2207  * remaining number of packets will be saved to be transmitted in the gaps in
2208  * the next interval's scheduling sequence.
2209  *
2210  * As we move those remaining packets to be scheduled with interval 2 packets,
2211  * we have to double the number of remaining packets to transmit.  This is
2212  * because the intervals are actually powers of 2, and we would be transmitting
2213  * the previous interval's packets twice in this interval.  We also have to be
2214  * sure that when we look at the largest max packet size for this interval, we
2215  * also look at the largest max packet size for the remaining packets and take
2216  * the greater of the two.
2217  *
2218  * The algorithm continues to evenly distribute packets in each scheduling
2219  * opportunity, and push the remaining packets out, until we get to the last
2220  * interval.  Then those packets and their associated overhead are just added
2221  * to the bandwidth used.
2222  */
2223 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2224                 struct xhci_virt_device *virt_dev,
2225                 int old_active_eps)
2226 {
2227         unsigned int bw_reserved;
2228         unsigned int max_bandwidth;
2229         unsigned int bw_used;
2230         unsigned int block_size;
2231         struct xhci_interval_bw_table *bw_table;
2232         unsigned int packet_size = 0;
2233         unsigned int overhead = 0;
2234         unsigned int packets_transmitted = 0;
2235         unsigned int packets_remaining = 0;
2236         unsigned int i;
2237
2238         if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2239                 return xhci_check_ss_bw(xhci, virt_dev);
2240
2241         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2242                 max_bandwidth = HS_BW_LIMIT;
2243                 /* Convert percent of bus BW reserved to blocks reserved */
2244                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2245         } else {
2246                 max_bandwidth = FS_BW_LIMIT;
2247                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2248         }
2249
2250         bw_table = virt_dev->bw_table;
2251         /* We need to translate the max packet size and max ESIT payloads into
2252          * the units the hardware uses.
2253          */
2254         block_size = xhci_get_block_size(virt_dev->udev);
2255
2256         /* If we are manipulating a LS/FS device under a HS hub, double check
2257          * that the HS bus has enough bandwidth if we are activing a new TT.
2258          */
2259         if (virt_dev->tt_info) {
2260                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2261                                 "Recalculating BW for rootport %u",
2262                                 virt_dev->real_port);
2263                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2264                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2265                                         "newly activated TT.\n");
2266                         return -ENOMEM;
2267                 }
2268                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2269                                 "Recalculating BW for TT slot %u port %u",
2270                                 virt_dev->tt_info->slot_id,
2271                                 virt_dev->tt_info->ttport);
2272         } else {
2273                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2274                                 "Recalculating BW for rootport %u",
2275                                 virt_dev->real_port);
2276         }
2277
2278         /* Add in how much bandwidth will be used for interval zero, or the
2279          * rounded max ESIT payload + number of packets * largest overhead.
2280          */
2281         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2282                 bw_table->interval_bw[0].num_packets *
2283                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2284
2285         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2286                 unsigned int bw_added;
2287                 unsigned int largest_mps;
2288                 unsigned int interval_overhead;
2289
2290                 /*
2291                  * How many packets could we transmit in this interval?
2292                  * If packets didn't fit in the previous interval, we will need
2293                  * to transmit that many packets twice within this interval.
2294                  */
2295                 packets_remaining = 2 * packets_remaining +
2296                         bw_table->interval_bw[i].num_packets;
2297
2298                 /* Find the largest max packet size of this or the previous
2299                  * interval.
2300                  */
2301                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2302                         largest_mps = 0;
2303                 else {
2304                         struct xhci_virt_ep *virt_ep;
2305                         struct list_head *ep_entry;
2306
2307                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2308                         virt_ep = list_entry(ep_entry,
2309                                         struct xhci_virt_ep, bw_endpoint_list);
2310                         /* Convert to blocks, rounding up */
2311                         largest_mps = DIV_ROUND_UP(
2312                                         virt_ep->bw_info.max_packet_size,
2313                                         block_size);
2314                 }
2315                 if (largest_mps > packet_size)
2316                         packet_size = largest_mps;
2317
2318                 /* Use the larger overhead of this or the previous interval. */
2319                 interval_overhead = xhci_get_largest_overhead(
2320                                 &bw_table->interval_bw[i]);
2321                 if (interval_overhead > overhead)
2322                         overhead = interval_overhead;
2323
2324                 /* How many packets can we evenly distribute across
2325                  * (1 << (i + 1)) possible scheduling opportunities?
2326                  */
2327                 packets_transmitted = packets_remaining >> (i + 1);
2328
2329                 /* Add in the bandwidth used for those scheduled packets */
2330                 bw_added = packets_transmitted * (overhead + packet_size);
2331
2332                 /* How many packets do we have remaining to transmit? */
2333                 packets_remaining = packets_remaining % (1 << (i + 1));
2334
2335                 /* What largest max packet size should those packets have? */
2336                 /* If we've transmitted all packets, don't carry over the
2337                  * largest packet size.
2338                  */
2339                 if (packets_remaining == 0) {
2340                         packet_size = 0;
2341                         overhead = 0;
2342                 } else if (packets_transmitted > 0) {
2343                         /* Otherwise if we do have remaining packets, and we've
2344                          * scheduled some packets in this interval, take the
2345                          * largest max packet size from endpoints with this
2346                          * interval.
2347                          */
2348                         packet_size = largest_mps;
2349                         overhead = interval_overhead;
2350                 }
2351                 /* Otherwise carry over packet_size and overhead from the last
2352                  * time we had a remainder.
2353                  */
2354                 bw_used += bw_added;
2355                 if (bw_used > max_bandwidth) {
2356                         xhci_warn(xhci, "Not enough bandwidth. "
2357                                         "Proposed: %u, Max: %u\n",
2358                                 bw_used, max_bandwidth);
2359                         return -ENOMEM;
2360                 }
2361         }
2362         /*
2363          * Ok, we know we have some packets left over after even-handedly
2364          * scheduling interval 15.  We don't know which microframes they will
2365          * fit into, so we over-schedule and say they will be scheduled every
2366          * microframe.
2367          */
2368         if (packets_remaining > 0)
2369                 bw_used += overhead + packet_size;
2370
2371         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2372                 unsigned int port_index = virt_dev->real_port - 1;
2373
2374                 /* OK, we're manipulating a HS device attached to a
2375                  * root port bandwidth domain.  Include the number of active TTs
2376                  * in the bandwidth used.
2377                  */
2378                 bw_used += TT_HS_OVERHEAD *
2379                         xhci->rh_bw[port_index].num_active_tts;
2380         }
2381
2382         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2383                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2384                 "Available: %u " "percent",
2385                 bw_used, max_bandwidth, bw_reserved,
2386                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2387                 max_bandwidth);
2388
2389         bw_used += bw_reserved;
2390         if (bw_used > max_bandwidth) {
2391                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2392                                 bw_used, max_bandwidth);
2393                 return -ENOMEM;
2394         }
2395
2396         bw_table->bw_used = bw_used;
2397         return 0;
2398 }
2399
2400 static bool xhci_is_async_ep(unsigned int ep_type)
2401 {
2402         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2403                                         ep_type != ISOC_IN_EP &&
2404                                         ep_type != INT_IN_EP);
2405 }
2406
2407 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2408 {
2409         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2410 }
2411
2412 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2413 {
2414         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2415
2416         if (ep_bw->ep_interval == 0)
2417                 return SS_OVERHEAD_BURST +
2418                         (ep_bw->mult * ep_bw->num_packets *
2419                                         (SS_OVERHEAD + mps));
2420         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2421                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2422                                 1 << ep_bw->ep_interval);
2423
2424 }
2425
2426 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2427                 struct xhci_bw_info *ep_bw,
2428                 struct xhci_interval_bw_table *bw_table,
2429                 struct usb_device *udev,
2430                 struct xhci_virt_ep *virt_ep,
2431                 struct xhci_tt_bw_info *tt_info)
2432 {
2433         struct xhci_interval_bw *interval_bw;
2434         int normalized_interval;
2435
2436         if (xhci_is_async_ep(ep_bw->type))
2437                 return;
2438
2439         if (udev->speed >= USB_SPEED_SUPER) {
2440                 if (xhci_is_sync_in_ep(ep_bw->type))
2441                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2442                                 xhci_get_ss_bw_consumed(ep_bw);
2443                 else
2444                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2445                                 xhci_get_ss_bw_consumed(ep_bw);
2446                 return;
2447         }
2448
2449         /* SuperSpeed endpoints never get added to intervals in the table, so
2450          * this check is only valid for HS/FS/LS devices.
2451          */
2452         if (list_empty(&virt_ep->bw_endpoint_list))
2453                 return;
2454         /* For LS/FS devices, we need to translate the interval expressed in
2455          * microframes to frames.
2456          */
2457         if (udev->speed == USB_SPEED_HIGH)
2458                 normalized_interval = ep_bw->ep_interval;
2459         else
2460                 normalized_interval = ep_bw->ep_interval - 3;
2461
2462         if (normalized_interval == 0)
2463                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2464         interval_bw = &bw_table->interval_bw[normalized_interval];
2465         interval_bw->num_packets -= ep_bw->num_packets;
2466         switch (udev->speed) {
2467         case USB_SPEED_LOW:
2468                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2469                 break;
2470         case USB_SPEED_FULL:
2471                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2472                 break;
2473         case USB_SPEED_HIGH:
2474                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2475                 break;
2476         case USB_SPEED_SUPER:
2477         case USB_SPEED_SUPER_PLUS:
2478         case USB_SPEED_UNKNOWN:
2479         case USB_SPEED_WIRELESS:
2480                 /* Should never happen because only LS/FS/HS endpoints will get
2481                  * added to the endpoint list.
2482                  */
2483                 return;
2484         }
2485         if (tt_info)
2486                 tt_info->active_eps -= 1;
2487         list_del_init(&virt_ep->bw_endpoint_list);
2488 }
2489
2490 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2491                 struct xhci_bw_info *ep_bw,
2492                 struct xhci_interval_bw_table *bw_table,
2493                 struct usb_device *udev,
2494                 struct xhci_virt_ep *virt_ep,
2495                 struct xhci_tt_bw_info *tt_info)
2496 {
2497         struct xhci_interval_bw *interval_bw;
2498         struct xhci_virt_ep *smaller_ep;
2499         int normalized_interval;
2500
2501         if (xhci_is_async_ep(ep_bw->type))
2502                 return;
2503
2504         if (udev->speed == USB_SPEED_SUPER) {
2505                 if (xhci_is_sync_in_ep(ep_bw->type))
2506                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2507                                 xhci_get_ss_bw_consumed(ep_bw);
2508                 else
2509                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2510                                 xhci_get_ss_bw_consumed(ep_bw);
2511                 return;
2512         }
2513
2514         /* For LS/FS devices, we need to translate the interval expressed in
2515          * microframes to frames.
2516          */
2517         if (udev->speed == USB_SPEED_HIGH)
2518                 normalized_interval = ep_bw->ep_interval;
2519         else
2520                 normalized_interval = ep_bw->ep_interval - 3;
2521
2522         if (normalized_interval == 0)
2523                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2524         interval_bw = &bw_table->interval_bw[normalized_interval];
2525         interval_bw->num_packets += ep_bw->num_packets;
2526         switch (udev->speed) {
2527         case USB_SPEED_LOW:
2528                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2529                 break;
2530         case USB_SPEED_FULL:
2531                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2532                 break;
2533         case USB_SPEED_HIGH:
2534                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2535                 break;
2536         case USB_SPEED_SUPER:
2537         case USB_SPEED_SUPER_PLUS:
2538         case USB_SPEED_UNKNOWN:
2539         case USB_SPEED_WIRELESS:
2540                 /* Should never happen because only LS/FS/HS endpoints will get
2541                  * added to the endpoint list.
2542                  */
2543                 return;
2544         }
2545
2546         if (tt_info)
2547                 tt_info->active_eps += 1;
2548         /* Insert the endpoint into the list, largest max packet size first. */
2549         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2550                         bw_endpoint_list) {
2551                 if (ep_bw->max_packet_size >=
2552                                 smaller_ep->bw_info.max_packet_size) {
2553                         /* Add the new ep before the smaller endpoint */
2554                         list_add_tail(&virt_ep->bw_endpoint_list,
2555                                         &smaller_ep->bw_endpoint_list);
2556                         return;
2557                 }
2558         }
2559         /* Add the new endpoint at the end of the list. */
2560         list_add_tail(&virt_ep->bw_endpoint_list,
2561                         &interval_bw->endpoints);
2562 }
2563
2564 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2565                 struct xhci_virt_device *virt_dev,
2566                 int old_active_eps)
2567 {
2568         struct xhci_root_port_bw_info *rh_bw_info;
2569         if (!virt_dev->tt_info)
2570                 return;
2571
2572         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2573         if (old_active_eps == 0 &&
2574                                 virt_dev->tt_info->active_eps != 0) {
2575                 rh_bw_info->num_active_tts += 1;
2576                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2577         } else if (old_active_eps != 0 &&
2578                                 virt_dev->tt_info->active_eps == 0) {
2579                 rh_bw_info->num_active_tts -= 1;
2580                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2581         }
2582 }
2583
2584 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2585                 struct xhci_virt_device *virt_dev,
2586                 struct xhci_container_ctx *in_ctx)
2587 {
2588         struct xhci_bw_info ep_bw_info[31];
2589         int i;
2590         struct xhci_input_control_ctx *ctrl_ctx;
2591         int old_active_eps = 0;
2592
2593         if (virt_dev->tt_info)
2594                 old_active_eps = virt_dev->tt_info->active_eps;
2595
2596         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2597         if (!ctrl_ctx) {
2598                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2599                                 __func__);
2600                 return -ENOMEM;
2601         }
2602
2603         for (i = 0; i < 31; i++) {
2604                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2605                         continue;
2606
2607                 /* Make a copy of the BW info in case we need to revert this */
2608                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2609                                 sizeof(ep_bw_info[i]));
2610                 /* Drop the endpoint from the interval table if the endpoint is
2611                  * being dropped or changed.
2612                  */
2613                 if (EP_IS_DROPPED(ctrl_ctx, i))
2614                         xhci_drop_ep_from_interval_table(xhci,
2615                                         &virt_dev->eps[i].bw_info,
2616                                         virt_dev->bw_table,
2617                                         virt_dev->udev,
2618                                         &virt_dev->eps[i],
2619                                         virt_dev->tt_info);
2620         }
2621         /* Overwrite the information stored in the endpoints' bw_info */
2622         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2623         for (i = 0; i < 31; i++) {
2624                 /* Add any changed or added endpoints to the interval table */
2625                 if (EP_IS_ADDED(ctrl_ctx, i))
2626                         xhci_add_ep_to_interval_table(xhci,
2627                                         &virt_dev->eps[i].bw_info,
2628                                         virt_dev->bw_table,
2629                                         virt_dev->udev,
2630                                         &virt_dev->eps[i],
2631                                         virt_dev->tt_info);
2632         }
2633
2634         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2635                 /* Ok, this fits in the bandwidth we have.
2636                  * Update the number of active TTs.
2637                  */
2638                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2639                 return 0;
2640         }
2641
2642         /* We don't have enough bandwidth for this, revert the stored info. */
2643         for (i = 0; i < 31; i++) {
2644                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2645                         continue;
2646
2647                 /* Drop the new copies of any added or changed endpoints from
2648                  * the interval table.
2649                  */
2650                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2651                         xhci_drop_ep_from_interval_table(xhci,
2652                                         &virt_dev->eps[i].bw_info,
2653                                         virt_dev->bw_table,
2654                                         virt_dev->udev,
2655                                         &virt_dev->eps[i],
2656                                         virt_dev->tt_info);
2657                 }
2658                 /* Revert the endpoint back to its old information */
2659                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2660                                 sizeof(ep_bw_info[i]));
2661                 /* Add any changed or dropped endpoints back into the table */
2662                 if (EP_IS_DROPPED(ctrl_ctx, i))
2663                         xhci_add_ep_to_interval_table(xhci,
2664                                         &virt_dev->eps[i].bw_info,
2665                                         virt_dev->bw_table,
2666                                         virt_dev->udev,
2667                                         &virt_dev->eps[i],
2668                                         virt_dev->tt_info);
2669         }
2670         return -ENOMEM;
2671 }
2672
2673
2674 /* Issue a configure endpoint command or evaluate context command
2675  * and wait for it to finish.
2676  */
2677 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2678                 struct usb_device *udev,
2679                 struct xhci_command *command,
2680                 bool ctx_change, bool must_succeed)
2681 {
2682         int ret;
2683         unsigned long flags;
2684         struct xhci_input_control_ctx *ctrl_ctx;
2685         struct xhci_virt_device *virt_dev;
2686
2687         if (!command)
2688                 return -EINVAL;
2689
2690         spin_lock_irqsave(&xhci->lock, flags);
2691         virt_dev = xhci->devs[udev->slot_id];
2692
2693         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2694         if (!ctrl_ctx) {
2695                 spin_unlock_irqrestore(&xhci->lock, flags);
2696                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2697                                 __func__);
2698                 return -ENOMEM;
2699         }
2700
2701         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2702                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2703                 spin_unlock_irqrestore(&xhci->lock, flags);
2704                 xhci_warn(xhci, "Not enough host resources, "
2705                                 "active endpoint contexts = %u\n",
2706                                 xhci->num_active_eps);
2707                 return -ENOMEM;
2708         }
2709         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2710             xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2711                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2712                         xhci_free_host_resources(xhci, ctrl_ctx);
2713                 spin_unlock_irqrestore(&xhci->lock, flags);
2714                 xhci_warn(xhci, "Not enough bandwidth\n");
2715                 return -ENOMEM;
2716         }
2717
2718         if (!ctx_change)
2719                 ret = xhci_queue_configure_endpoint(xhci, command,
2720                                 command->in_ctx->dma,
2721                                 udev->slot_id, must_succeed);
2722         else
2723                 ret = xhci_queue_evaluate_context(xhci, command,
2724                                 command->in_ctx->dma,
2725                                 udev->slot_id, must_succeed);
2726         if (ret < 0) {
2727                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2728                         xhci_free_host_resources(xhci, ctrl_ctx);
2729                 spin_unlock_irqrestore(&xhci->lock, flags);
2730                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2731                                 "FIXME allocate a new ring segment");
2732                 return -ENOMEM;
2733         }
2734         xhci_ring_cmd_db(xhci);
2735         spin_unlock_irqrestore(&xhci->lock, flags);
2736
2737         /* Wait for the configure endpoint command to complete */
2738         wait_for_completion(command->completion);
2739
2740         if (!ctx_change)
2741                 ret = xhci_configure_endpoint_result(xhci, udev,
2742                                                      &command->status);
2743         else
2744                 ret = xhci_evaluate_context_result(xhci, udev,
2745                                                    &command->status);
2746
2747         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2748                 spin_lock_irqsave(&xhci->lock, flags);
2749                 /* If the command failed, remove the reserved resources.
2750                  * Otherwise, clean up the estimate to include dropped eps.
2751                  */
2752                 if (ret)
2753                         xhci_free_host_resources(xhci, ctrl_ctx);
2754                 else
2755                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2756                 spin_unlock_irqrestore(&xhci->lock, flags);
2757         }
2758         return ret;
2759 }
2760
2761 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2762         struct xhci_virt_device *vdev, int i)
2763 {
2764         struct xhci_virt_ep *ep = &vdev->eps[i];
2765
2766         if (ep->ep_state & EP_HAS_STREAMS) {
2767                 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2768                                 xhci_get_endpoint_address(i));
2769                 xhci_free_stream_info(xhci, ep->stream_info);
2770                 ep->stream_info = NULL;
2771                 ep->ep_state &= ~EP_HAS_STREAMS;
2772         }
2773 }
2774
2775 /* Called after one or more calls to xhci_add_endpoint() or
2776  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2777  * to call xhci_reset_bandwidth().
2778  *
2779  * Since we are in the middle of changing either configuration or
2780  * installing a new alt setting, the USB core won't allow URBs to be
2781  * enqueued for any endpoint on the old config or interface.  Nothing
2782  * else should be touching the xhci->devs[slot_id] structure, so we
2783  * don't need to take the xhci->lock for manipulating that.
2784  */
2785 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2786 {
2787         int i;
2788         int ret = 0;
2789         struct xhci_hcd *xhci;
2790         struct xhci_virt_device *virt_dev;
2791         struct xhci_input_control_ctx *ctrl_ctx;
2792         struct xhci_slot_ctx *slot_ctx;
2793         struct xhci_command *command;
2794
2795         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2796         if (ret <= 0)
2797                 return ret;
2798         xhci = hcd_to_xhci(hcd);
2799         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2800                 (xhci->xhc_state & XHCI_STATE_REMOVING))
2801                 return -ENODEV;
2802
2803         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2804         virt_dev = xhci->devs[udev->slot_id];
2805
2806         command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2807         if (!command)
2808                 return -ENOMEM;
2809
2810         command->in_ctx = virt_dev->in_ctx;
2811
2812         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2813         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2814         if (!ctrl_ctx) {
2815                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2816                                 __func__);
2817                 ret = -ENOMEM;
2818                 goto command_cleanup;
2819         }
2820         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2821         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2822         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2823
2824         /* Don't issue the command if there's no endpoints to update. */
2825         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2826             ctrl_ctx->drop_flags == 0) {
2827                 ret = 0;
2828                 goto command_cleanup;
2829         }
2830         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2831         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2832         for (i = 31; i >= 1; i--) {
2833                 __le32 le32 = cpu_to_le32(BIT(i));
2834
2835                 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2836                     || (ctrl_ctx->add_flags & le32) || i == 1) {
2837                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2838                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2839                         break;
2840                 }
2841         }
2842         xhci_dbg(xhci, "New Input Control Context:\n");
2843         xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2844                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2845
2846         ret = xhci_configure_endpoint(xhci, udev, command,
2847                         false, false);
2848         if (ret)
2849                 /* Callee should call reset_bandwidth() */
2850                 goto command_cleanup;
2851
2852         xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2853         xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2854                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2855
2856         /* Free any rings that were dropped, but not changed. */
2857         for (i = 1; i < 31; ++i) {
2858                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2859                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2860                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2861                         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2862                 }
2863         }
2864         xhci_zero_in_ctx(xhci, virt_dev);
2865         /*
2866          * Install any rings for completely new endpoints or changed endpoints,
2867          * and free or cache any old rings from changed endpoints.
2868          */
2869         for (i = 1; i < 31; ++i) {
2870                 if (!virt_dev->eps[i].new_ring)
2871                         continue;
2872                 /* Only cache or free the old ring if it exists.
2873                  * It may not if this is the first add of an endpoint.
2874                  */
2875                 if (virt_dev->eps[i].ring) {
2876                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2877                 }
2878                 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2879                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2880                 virt_dev->eps[i].new_ring = NULL;
2881         }
2882 command_cleanup:
2883         kfree(command->completion);
2884         kfree(command);
2885
2886         return ret;
2887 }
2888
2889 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2890 {
2891         struct xhci_hcd *xhci;
2892         struct xhci_virt_device *virt_dev;
2893         int i, ret;
2894
2895         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2896         if (ret <= 0)
2897                 return;
2898         xhci = hcd_to_xhci(hcd);
2899
2900         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2901         virt_dev = xhci->devs[udev->slot_id];
2902         /* Free any rings allocated for added endpoints */
2903         for (i = 0; i < 31; ++i) {
2904                 if (virt_dev->eps[i].new_ring) {
2905                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2906                         virt_dev->eps[i].new_ring = NULL;
2907                 }
2908         }
2909         xhci_zero_in_ctx(xhci, virt_dev);
2910 }
2911
2912 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2913                 struct xhci_container_ctx *in_ctx,
2914                 struct xhci_container_ctx *out_ctx,
2915                 struct xhci_input_control_ctx *ctrl_ctx,
2916                 u32 add_flags, u32 drop_flags)
2917 {
2918         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2919         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2920         xhci_slot_copy(xhci, in_ctx, out_ctx);
2921         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2922
2923         xhci_dbg(xhci, "Input Context:\n");
2924         xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2925 }
2926
2927 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2928                 unsigned int slot_id, unsigned int ep_index,
2929                 struct xhci_dequeue_state *deq_state)
2930 {
2931         struct xhci_input_control_ctx *ctrl_ctx;
2932         struct xhci_container_ctx *in_ctx;
2933         struct xhci_ep_ctx *ep_ctx;
2934         u32 added_ctxs;
2935         dma_addr_t addr;
2936
2937         in_ctx = xhci->devs[slot_id]->in_ctx;
2938         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2939         if (!ctrl_ctx) {
2940                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2941                                 __func__);
2942                 return;
2943         }
2944
2945         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2946                         xhci->devs[slot_id]->out_ctx, ep_index);
2947         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2948         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2949                         deq_state->new_deq_ptr);
2950         if (addr == 0) {
2951                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2952                                 "reset ep command\n");
2953                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2954                                 deq_state->new_deq_seg,
2955                                 deq_state->new_deq_ptr);
2956                 return;
2957         }
2958         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2959
2960         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2961         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2962                         xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2963                         added_ctxs, added_ctxs);
2964 }
2965
2966 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2967                         unsigned int ep_index, struct xhci_td *td)
2968 {
2969         struct xhci_dequeue_state deq_state;
2970         struct xhci_virt_ep *ep;
2971         struct usb_device *udev = td->urb->dev;
2972
2973         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2974                         "Cleaning up stalled endpoint ring");
2975         ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2976         /* We need to move the HW's dequeue pointer past this TD,
2977          * or it will attempt to resend it on the next doorbell ring.
2978          */
2979         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2980                         ep_index, ep->stopped_stream, td, &deq_state);
2981
2982         if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2983                 return;
2984
2985         /* HW with the reset endpoint quirk will use the saved dequeue state to
2986          * issue a configure endpoint command later.
2987          */
2988         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2989                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2990                                 "Queueing new dequeue state");
2991                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2992                                 ep_index, ep->stopped_stream, &deq_state);
2993         } else {
2994                 /* Better hope no one uses the input context between now and the
2995                  * reset endpoint completion!
2996                  * XXX: No idea how this hardware will react when stream rings
2997                  * are enabled.
2998                  */
2999                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3000                                 "Setting up input context for "
3001                                 "configure endpoint command");
3002                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
3003                                 ep_index, &deq_state);
3004         }
3005 }
3006
3007 /* Called when clearing halted device. The core should have sent the control
3008  * message to clear the device halt condition. The host side of the halt should
3009  * already be cleared with a reset endpoint command issued when the STALL tx
3010  * event was received.
3011  *
3012  * Context: in_interrupt
3013  */
3014
3015 void xhci_endpoint_reset(struct usb_hcd *hcd,
3016                 struct usb_host_endpoint *ep)
3017 {
3018         struct xhci_hcd *xhci;
3019
3020         xhci = hcd_to_xhci(hcd);
3021
3022         /*
3023          * We might need to implement the config ep cmd in xhci 4.8.1 note:
3024          * The Reset Endpoint Command may only be issued to endpoints in the
3025          * Halted state. If software wishes reset the Data Toggle or Sequence
3026          * Number of an endpoint that isn't in the Halted state, then software
3027          * may issue a Configure Endpoint Command with the Drop and Add bits set
3028          * for the target endpoint. that is in the Stopped state.
3029          */
3030
3031         /* For now just print debug to follow the situation */
3032         xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
3033                  ep->desc.bEndpointAddress);
3034 }
3035
3036 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3037                 struct usb_device *udev, struct usb_host_endpoint *ep,
3038                 unsigned int slot_id)
3039 {
3040         int ret;
3041         unsigned int ep_index;
3042         unsigned int ep_state;
3043
3044         if (!ep)
3045                 return -EINVAL;
3046         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3047         if (ret <= 0)
3048                 return ret ? ret : -EINVAL;
3049         if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3050                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3051                                 " descriptor for ep 0x%x does not support streams\n",
3052                                 ep->desc.bEndpointAddress);
3053                 return -EINVAL;
3054         }
3055
3056         ep_index = xhci_get_endpoint_index(&ep->desc);
3057         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3058         if (ep_state & EP_HAS_STREAMS ||
3059                         ep_state & EP_GETTING_STREAMS) {
3060                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3061                                 "already has streams set up.\n",
3062                                 ep->desc.bEndpointAddress);
3063                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3064                                 "dynamic stream context array reallocation.\n");
3065                 return -EINVAL;
3066         }
3067         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3068                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3069                                 "endpoint 0x%x; URBs are pending.\n",
3070                                 ep->desc.bEndpointAddress);
3071                 return -EINVAL;
3072         }
3073         return 0;
3074 }
3075
3076 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3077                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3078 {
3079         unsigned int max_streams;
3080
3081         /* The stream context array size must be a power of two */
3082         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3083         /*
3084          * Find out how many primary stream array entries the host controller
3085          * supports.  Later we may use secondary stream arrays (similar to 2nd
3086          * level page entries), but that's an optional feature for xHCI host
3087          * controllers. xHCs must support at least 4 stream IDs.
3088          */
3089         max_streams = HCC_MAX_PSA(xhci->hcc_params);
3090         if (*num_stream_ctxs > max_streams) {
3091                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3092                                 max_streams);
3093                 *num_stream_ctxs = max_streams;
3094                 *num_streams = max_streams;
3095         }
3096 }
3097
3098 /* Returns an error code if one of the endpoint already has streams.
3099  * This does not change any data structures, it only checks and gathers
3100  * information.
3101  */
3102 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3103                 struct usb_device *udev,
3104                 struct usb_host_endpoint **eps, unsigned int num_eps,
3105                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3106 {
3107         unsigned int max_streams;
3108         unsigned int endpoint_flag;
3109         int i;
3110         int ret;
3111
3112         for (i = 0; i < num_eps; i++) {
3113                 ret = xhci_check_streams_endpoint(xhci, udev,
3114                                 eps[i], udev->slot_id);
3115                 if (ret < 0)
3116                         return ret;
3117
3118                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3119                 if (max_streams < (*num_streams - 1)) {
3120                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3121                                         eps[i]->desc.bEndpointAddress,
3122                                         max_streams);
3123                         *num_streams = max_streams+1;
3124                 }
3125
3126                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3127                 if (*changed_ep_bitmask & endpoint_flag)
3128                         return -EINVAL;
3129                 *changed_ep_bitmask |= endpoint_flag;
3130         }
3131         return 0;
3132 }
3133
3134 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3135                 struct usb_device *udev,
3136                 struct usb_host_endpoint **eps, unsigned int num_eps)
3137 {
3138         u32 changed_ep_bitmask = 0;
3139         unsigned int slot_id;
3140         unsigned int ep_index;
3141         unsigned int ep_state;
3142         int i;
3143
3144         slot_id = udev->slot_id;
3145         if (!xhci->devs[slot_id])
3146                 return 0;
3147
3148         for (i = 0; i < num_eps; i++) {
3149                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3150                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3151                 /* Are streams already being freed for the endpoint? */
3152                 if (ep_state & EP_GETTING_NO_STREAMS) {
3153                         xhci_warn(xhci, "WARN Can't disable streams for "
3154                                         "endpoint 0x%x, "
3155                                         "streams are being disabled already\n",
3156                                         eps[i]->desc.bEndpointAddress);
3157                         return 0;
3158                 }
3159                 /* Are there actually any streams to free? */
3160                 if (!(ep_state & EP_HAS_STREAMS) &&
3161                                 !(ep_state & EP_GETTING_STREAMS)) {
3162                         xhci_warn(xhci, "WARN Can't disable streams for "
3163                                         "endpoint 0x%x, "
3164                                         "streams are already disabled!\n",
3165                                         eps[i]->desc.bEndpointAddress);
3166                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3167                                         "with non-streams endpoint\n");
3168                         return 0;
3169                 }
3170                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3171         }
3172         return changed_ep_bitmask;
3173 }
3174
3175 /*
3176  * The USB device drivers use this function (through the HCD interface in USB
3177  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3178  * coordinate mass storage command queueing across multiple endpoints (basically
3179  * a stream ID == a task ID).
3180  *
3181  * Setting up streams involves allocating the same size stream context array
3182  * for each endpoint and issuing a configure endpoint command for all endpoints.
3183  *
3184  * Don't allow the call to succeed if one endpoint only supports one stream
3185  * (which means it doesn't support streams at all).
3186  *
3187  * Drivers may get less stream IDs than they asked for, if the host controller
3188  * hardware or endpoints claim they can't support the number of requested
3189  * stream IDs.
3190  */
3191 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3192                 struct usb_host_endpoint **eps, unsigned int num_eps,
3193                 unsigned int num_streams, gfp_t mem_flags)
3194 {
3195         int i, ret;
3196         struct xhci_hcd *xhci;
3197         struct xhci_virt_device *vdev;
3198         struct xhci_command *config_cmd;
3199         struct xhci_input_control_ctx *ctrl_ctx;
3200         unsigned int ep_index;
3201         unsigned int num_stream_ctxs;
3202         unsigned int max_packet;
3203         unsigned long flags;
3204         u32 changed_ep_bitmask = 0;
3205
3206         if (!eps)
3207                 return -EINVAL;
3208
3209         /* Add one to the number of streams requested to account for
3210          * stream 0 that is reserved for xHCI usage.
3211          */
3212         num_streams += 1;
3213         xhci = hcd_to_xhci(hcd);
3214         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3215                         num_streams);
3216
3217         /* MaxPSASize value 0 (2 streams) means streams are not supported */
3218         if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3219                         HCC_MAX_PSA(xhci->hcc_params) < 4) {
3220                 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3221                 return -ENOSYS;
3222         }
3223
3224         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3225         if (!config_cmd) {
3226                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3227                 return -ENOMEM;
3228         }
3229         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3230         if (!ctrl_ctx) {
3231                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3232                                 __func__);
3233                 xhci_free_command(xhci, config_cmd);
3234                 return -ENOMEM;
3235         }
3236
3237         /* Check to make sure all endpoints are not already configured for
3238          * streams.  While we're at it, find the maximum number of streams that
3239          * all the endpoints will support and check for duplicate endpoints.
3240          */
3241         spin_lock_irqsave(&xhci->lock, flags);
3242         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3243                         num_eps, &num_streams, &changed_ep_bitmask);
3244         if (ret < 0) {
3245                 xhci_free_command(xhci, config_cmd);
3246                 spin_unlock_irqrestore(&xhci->lock, flags);
3247                 return ret;
3248         }
3249         if (num_streams <= 1) {
3250                 xhci_warn(xhci, "WARN: endpoints can't handle "
3251                                 "more than one stream.\n");
3252                 xhci_free_command(xhci, config_cmd);
3253                 spin_unlock_irqrestore(&xhci->lock, flags);
3254                 return -EINVAL;
3255         }
3256         vdev = xhci->devs[udev->slot_id];
3257         /* Mark each endpoint as being in transition, so
3258          * xhci_urb_enqueue() will reject all URBs.
3259          */
3260         for (i = 0; i < num_eps; i++) {
3261                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3262                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3263         }
3264         spin_unlock_irqrestore(&xhci->lock, flags);
3265
3266         /* Setup internal data structures and allocate HW data structures for
3267          * streams (but don't install the HW structures in the input context
3268          * until we're sure all memory allocation succeeded).
3269          */
3270         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3271         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3272                         num_stream_ctxs, num_streams);
3273
3274         for (i = 0; i < num_eps; i++) {
3275                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3276                 max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&eps[i]->desc));
3277                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3278                                 num_stream_ctxs,
3279                                 num_streams,
3280                                 max_packet, mem_flags);
3281                 if (!vdev->eps[ep_index].stream_info)
3282                         goto cleanup;
3283                 /* Set maxPstreams in endpoint context and update deq ptr to
3284                  * point to stream context array. FIXME
3285                  */
3286         }
3287
3288         /* Set up the input context for a configure endpoint command. */
3289         for (i = 0; i < num_eps; i++) {
3290                 struct xhci_ep_ctx *ep_ctx;
3291
3292                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3293                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3294
3295                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3296                                 vdev->out_ctx, ep_index);
3297                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3298                                 vdev->eps[ep_index].stream_info);
3299         }
3300         /* Tell the HW to drop its old copy of the endpoint context info
3301          * and add the updated copy from the input context.
3302          */
3303         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3304                         vdev->out_ctx, ctrl_ctx,
3305                         changed_ep_bitmask, changed_ep_bitmask);
3306
3307         /* Issue and wait for the configure endpoint command */
3308         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3309                         false, false);
3310
3311         /* xHC rejected the configure endpoint command for some reason, so we
3312          * leave the old ring intact and free our internal streams data
3313          * structure.
3314          */
3315         if (ret < 0)
3316                 goto cleanup;
3317
3318         spin_lock_irqsave(&xhci->lock, flags);
3319         for (i = 0; i < num_eps; i++) {
3320                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3321                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3322                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3323                          udev->slot_id, ep_index);
3324                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3325         }
3326         xhci_free_command(xhci, config_cmd);
3327         spin_unlock_irqrestore(&xhci->lock, flags);
3328
3329         /* Subtract 1 for stream 0, which drivers can't use */
3330         return num_streams - 1;
3331
3332 cleanup:
3333         /* If it didn't work, free the streams! */
3334         for (i = 0; i < num_eps; i++) {
3335                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3336                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3337                 vdev->eps[ep_index].stream_info = NULL;
3338                 /* FIXME Unset maxPstreams in endpoint context and
3339                  * update deq ptr to point to normal string ring.
3340                  */
3341                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3342                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3343                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3344         }
3345         xhci_free_command(xhci, config_cmd);
3346         return -ENOMEM;
3347 }
3348
3349 /* Transition the endpoint from using streams to being a "normal" endpoint
3350  * without streams.
3351  *
3352  * Modify the endpoint context state, submit a configure endpoint command,
3353  * and free all endpoint rings for streams if that completes successfully.
3354  */
3355 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3356                 struct usb_host_endpoint **eps, unsigned int num_eps,
3357                 gfp_t mem_flags)
3358 {
3359         int i, ret;
3360         struct xhci_hcd *xhci;
3361         struct xhci_virt_device *vdev;
3362         struct xhci_command *command;
3363         struct xhci_input_control_ctx *ctrl_ctx;
3364         unsigned int ep_index;
3365         unsigned long flags;
3366         u32 changed_ep_bitmask;
3367
3368         xhci = hcd_to_xhci(hcd);
3369         vdev = xhci->devs[udev->slot_id];
3370
3371         /* Set up a configure endpoint command to remove the streams rings */
3372         spin_lock_irqsave(&xhci->lock, flags);
3373         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3374                         udev, eps, num_eps);
3375         if (changed_ep_bitmask == 0) {
3376                 spin_unlock_irqrestore(&xhci->lock, flags);
3377                 return -EINVAL;
3378         }
3379
3380         /* Use the xhci_command structure from the first endpoint.  We may have
3381          * allocated too many, but the driver may call xhci_free_streams() for
3382          * each endpoint it grouped into one call to xhci_alloc_streams().
3383          */
3384         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3385         command = vdev->eps[ep_index].stream_info->free_streams_command;
3386         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3387         if (!ctrl_ctx) {
3388                 spin_unlock_irqrestore(&xhci->lock, flags);
3389                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3390                                 __func__);
3391                 return -EINVAL;
3392         }
3393
3394         for (i = 0; i < num_eps; i++) {
3395                 struct xhci_ep_ctx *ep_ctx;
3396
3397                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3398                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3399                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3400                         EP_GETTING_NO_STREAMS;
3401
3402                 xhci_endpoint_copy(xhci, command->in_ctx,
3403                                 vdev->out_ctx, ep_index);
3404                 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3405                                 &vdev->eps[ep_index]);
3406         }
3407         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3408                         vdev->out_ctx, ctrl_ctx,
3409                         changed_ep_bitmask, changed_ep_bitmask);
3410         spin_unlock_irqrestore(&xhci->lock, flags);
3411
3412         /* Issue and wait for the configure endpoint command,
3413          * which must succeed.
3414          */
3415         ret = xhci_configure_endpoint(xhci, udev, command,
3416                         false, true);
3417
3418         /* xHC rejected the configure endpoint command for some reason, so we
3419          * leave the streams rings intact.
3420          */
3421         if (ret < 0)
3422                 return ret;
3423
3424         spin_lock_irqsave(&xhci->lock, flags);
3425         for (i = 0; i < num_eps; i++) {
3426                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3427                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3428                 vdev->eps[ep_index].stream_info = NULL;
3429                 /* FIXME Unset maxPstreams in endpoint context and
3430                  * update deq ptr to point to normal string ring.
3431                  */
3432                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3433                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3434         }
3435         spin_unlock_irqrestore(&xhci->lock, flags);
3436
3437         return 0;
3438 }
3439
3440 /*
3441  * Deletes endpoint resources for endpoints that were active before a Reset
3442  * Device command, or a Disable Slot command.  The Reset Device command leaves
3443  * the control endpoint intact, whereas the Disable Slot command deletes it.
3444  *
3445  * Must be called with xhci->lock held.
3446  */
3447 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3448         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3449 {
3450         int i;
3451         unsigned int num_dropped_eps = 0;
3452         unsigned int drop_flags = 0;
3453
3454         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3455                 if (virt_dev->eps[i].ring) {
3456                         drop_flags |= 1 << i;
3457                         num_dropped_eps++;
3458                 }
3459         }
3460         xhci->num_active_eps -= num_dropped_eps;
3461         if (num_dropped_eps)
3462                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3463                                 "Dropped %u ep ctxs, flags = 0x%x, "
3464                                 "%u now active.",
3465                                 num_dropped_eps, drop_flags,
3466                                 xhci->num_active_eps);
3467 }
3468
3469 /*
3470  * This submits a Reset Device Command, which will set the device state to 0,
3471  * set the device address to 0, and disable all the endpoints except the default
3472  * control endpoint.  The USB core should come back and call
3473  * xhci_address_device(), and then re-set up the configuration.  If this is
3474  * called because of a usb_reset_and_verify_device(), then the old alternate
3475  * settings will be re-installed through the normal bandwidth allocation
3476  * functions.
3477  *
3478  * Wait for the Reset Device command to finish.  Remove all structures
3479  * associated with the endpoints that were disabled.  Clear the input device
3480  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3481  *
3482  * If the virt_dev to be reset does not exist or does not match the udev,
3483  * it means the device is lost, possibly due to the xHC restore error and
3484  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3485  * re-allocate the device.
3486  */
3487 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3488 {
3489         int ret, i;
3490         unsigned long flags;
3491         struct xhci_hcd *xhci;
3492         unsigned int slot_id;
3493         struct xhci_virt_device *virt_dev;
3494         struct xhci_command *reset_device_cmd;
3495         int last_freed_endpoint;
3496         struct xhci_slot_ctx *slot_ctx;
3497         int old_active_eps = 0;
3498
3499         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3500         if (ret <= 0)
3501                 return ret;
3502         xhci = hcd_to_xhci(hcd);
3503         slot_id = udev->slot_id;
3504         virt_dev = xhci->devs[slot_id];
3505         if (!virt_dev) {
3506                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3507                                 "not exist. Re-allocate the device\n", slot_id);
3508                 ret = xhci_alloc_dev(hcd, udev);
3509                 if (ret == 1)
3510                         return 0;
3511                 else
3512                         return -EINVAL;
3513         }
3514
3515         if (virt_dev->tt_info)
3516                 old_active_eps = virt_dev->tt_info->active_eps;
3517
3518         if (virt_dev->udev != udev) {
3519                 /* If the virt_dev and the udev does not match, this virt_dev
3520                  * may belong to another udev.
3521                  * Re-allocate the device.
3522                  */
3523                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3524                                 "not match the udev. Re-allocate the device\n",
3525                                 slot_id);
3526                 ret = xhci_alloc_dev(hcd, udev);
3527                 if (ret == 1)
3528                         return 0;
3529                 else
3530                         return -EINVAL;
3531         }
3532
3533         /* If device is not setup, there is no point in resetting it */
3534         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3535         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3536                                                 SLOT_STATE_DISABLED)
3537                 return 0;
3538
3539         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3540         /* Allocate the command structure that holds the struct completion.
3541          * Assume we're in process context, since the normal device reset
3542          * process has to wait for the device anyway.  Storage devices are
3543          * reset as part of error handling, so use GFP_NOIO instead of
3544          * GFP_KERNEL.
3545          */
3546         reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3547         if (!reset_device_cmd) {
3548                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3549                 return -ENOMEM;
3550         }
3551
3552         /* Attempt to submit the Reset Device command to the command ring */
3553         spin_lock_irqsave(&xhci->lock, flags);
3554
3555         ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3556         if (ret) {
3557                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3558                 spin_unlock_irqrestore(&xhci->lock, flags);
3559                 goto command_cleanup;
3560         }
3561         xhci_ring_cmd_db(xhci);
3562         spin_unlock_irqrestore(&xhci->lock, flags);
3563
3564         /* Wait for the Reset Device command to finish */
3565         wait_for_completion(reset_device_cmd->completion);
3566
3567         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3568          * unless we tried to reset a slot ID that wasn't enabled,
3569          * or the device wasn't in the addressed or configured state.
3570          */
3571         ret = reset_device_cmd->status;
3572         switch (ret) {
3573         case COMP_CMD_ABORT:
3574         case COMP_CMD_STOP:
3575                 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3576                 ret = -ETIME;
3577                 goto command_cleanup;
3578         case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3579         case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3580                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3581                                 slot_id,
3582                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3583                 xhci_dbg(xhci, "Not freeing device rings.\n");
3584                 /* Don't treat this as an error.  May change my mind later. */
3585                 ret = 0;
3586                 goto command_cleanup;
3587         case COMP_SUCCESS:
3588                 xhci_dbg(xhci, "Successful reset device command.\n");
3589                 break;
3590         default:
3591                 if (xhci_is_vendor_info_code(xhci, ret))
3592                         break;
3593                 xhci_warn(xhci, "Unknown completion code %u for "
3594                                 "reset device command.\n", ret);
3595                 ret = -EINVAL;
3596                 goto command_cleanup;
3597         }
3598
3599         /* Free up host controller endpoint resources */
3600         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3601                 spin_lock_irqsave(&xhci->lock, flags);
3602                 /* Don't delete the default control endpoint resources */
3603                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3604                 spin_unlock_irqrestore(&xhci->lock, flags);
3605         }
3606
3607         /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3608         last_freed_endpoint = 1;
3609         for (i = 1; i < 31; ++i) {
3610                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3611
3612                 if (ep->ep_state & EP_HAS_STREAMS) {
3613                         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3614                                         xhci_get_endpoint_address(i));
3615                         xhci_free_stream_info(xhci, ep->stream_info);
3616                         ep->stream_info = NULL;
3617                         ep->ep_state &= ~EP_HAS_STREAMS;
3618                 }
3619
3620                 if (ep->ring) {
3621                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3622                         last_freed_endpoint = i;
3623                 }
3624                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3625                         xhci_drop_ep_from_interval_table(xhci,
3626                                         &virt_dev->eps[i].bw_info,
3627                                         virt_dev->bw_table,
3628                                         udev,
3629                                         &virt_dev->eps[i],
3630                                         virt_dev->tt_info);
3631                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3632         }
3633         /* If necessary, update the number of active TTs on this root port */
3634         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3635
3636         xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3637         xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3638         ret = 0;
3639
3640 command_cleanup:
3641         xhci_free_command(xhci, reset_device_cmd);
3642         return ret;
3643 }
3644
3645 /*
3646  * At this point, the struct usb_device is about to go away, the device has
3647  * disconnected, and all traffic has been stopped and the endpoints have been
3648  * disabled.  Free any HC data structures associated with that device.
3649  */
3650 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3651 {
3652         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3653         struct xhci_virt_device *virt_dev;
3654         unsigned long flags;
3655         u32 state;
3656         int i, ret;
3657         struct xhci_command *command;
3658
3659         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3660         if (!command)
3661                 return;
3662
3663 #ifndef CONFIG_USB_DEFAULT_PERSIST
3664         /*
3665          * We called pm_runtime_get_noresume when the device was attached.
3666          * Decrement the counter here to allow controller to runtime suspend
3667          * if no devices remain.
3668          */
3669         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3670                 pm_runtime_put_noidle(hcd->self.controller);
3671 #endif
3672
3673         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3674         /* If the host is halted due to driver unload, we still need to free the
3675          * device.
3676          */
3677         if (ret <= 0 && ret != -ENODEV) {
3678                 kfree(command);
3679                 return;
3680         }
3681
3682         virt_dev = xhci->devs[udev->slot_id];
3683
3684         /* Stop any wayward timer functions (which may grab the lock) */
3685         for (i = 0; i < 31; ++i) {
3686                 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3687                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3688         }
3689
3690         spin_lock_irqsave(&xhci->lock, flags);
3691
3692         virt_dev->udev = NULL;
3693
3694         /* Don't disable the slot if the host controller is dead. */
3695         state = readl(&xhci->op_regs->status);
3696         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3697                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3698                 xhci_free_virt_device(xhci, udev->slot_id);
3699                 spin_unlock_irqrestore(&xhci->lock, flags);
3700                 kfree(command);
3701                 return;
3702         }
3703
3704         if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3705                                     udev->slot_id)) {
3706                 spin_unlock_irqrestore(&xhci->lock, flags);
3707                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3708                 return;
3709         }
3710         xhci_ring_cmd_db(xhci);
3711         spin_unlock_irqrestore(&xhci->lock, flags);
3712
3713         /*
3714          * Event command completion handler will free any data structures
3715          * associated with the slot.  XXX Can free sleep?
3716          */
3717 }
3718
3719 /*
3720  * Checks if we have enough host controller resources for the default control
3721  * endpoint.
3722  *
3723  * Must be called with xhci->lock held.
3724  */
3725 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3726 {
3727         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3728                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3729                                 "Not enough ep ctxs: "
3730                                 "%u active, need to add 1, limit is %u.",
3731                                 xhci->num_active_eps, xhci->limit_active_eps);
3732                 return -ENOMEM;
3733         }
3734         xhci->num_active_eps += 1;
3735         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3736                         "Adding 1 ep ctx, %u now active.",
3737                         xhci->num_active_eps);
3738         return 0;
3739 }
3740
3741
3742 /*
3743  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3744  * timed out, or allocating memory failed.  Returns 1 on success.
3745  */
3746 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3747 {
3748         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3749         unsigned long flags;
3750         int ret, slot_id;
3751         struct xhci_command *command;
3752
3753         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3754         if (!command)
3755                 return 0;
3756
3757         /* xhci->slot_id and xhci->addr_dev are not thread-safe */
3758         mutex_lock(&xhci->mutex);
3759         spin_lock_irqsave(&xhci->lock, flags);
3760         command->completion = &xhci->addr_dev;
3761         ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3762         if (ret) {
3763                 spin_unlock_irqrestore(&xhci->lock, flags);
3764                 mutex_unlock(&xhci->mutex);
3765                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3766                 kfree(command);
3767                 return 0;
3768         }
3769         xhci_ring_cmd_db(xhci);
3770         spin_unlock_irqrestore(&xhci->lock, flags);
3771
3772         wait_for_completion(command->completion);
3773         slot_id = xhci->slot_id;
3774         mutex_unlock(&xhci->mutex);
3775
3776         if (!slot_id || command->status != COMP_SUCCESS) {
3777                 xhci_err(xhci, "Error while assigning device slot ID\n");
3778                 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3779                                 HCS_MAX_SLOTS(
3780                                         readl(&xhci->cap_regs->hcs_params1)));
3781                 kfree(command);
3782                 return 0;
3783         }
3784
3785         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3786                 spin_lock_irqsave(&xhci->lock, flags);
3787                 ret = xhci_reserve_host_control_ep_resources(xhci);
3788                 if (ret) {
3789                         spin_unlock_irqrestore(&xhci->lock, flags);
3790                         xhci_warn(xhci, "Not enough host resources, "
3791                                         "active endpoint contexts = %u\n",
3792                                         xhci->num_active_eps);
3793                         goto disable_slot;
3794                 }
3795                 spin_unlock_irqrestore(&xhci->lock, flags);
3796         }
3797         /* Use GFP_NOIO, since this function can be called from
3798          * xhci_discover_or_reset_device(), which may be called as part of
3799          * mass storage driver error handling.
3800          */
3801         if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3802                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3803                 goto disable_slot;
3804         }
3805         udev->slot_id = slot_id;
3806
3807 #ifndef CONFIG_USB_DEFAULT_PERSIST
3808         /*
3809          * If resetting upon resume, we can't put the controller into runtime
3810          * suspend if there is a device attached.
3811          */
3812         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3813                 pm_runtime_get_noresume(hcd->self.controller);
3814 #endif
3815
3816
3817         kfree(command);
3818         /* Is this a LS or FS device under a HS hub? */
3819         /* Hub or peripherial? */
3820         return 1;
3821
3822 disable_slot:
3823         /* Disable slot, if we can do it without mem alloc */
3824         spin_lock_irqsave(&xhci->lock, flags);
3825         command->completion = NULL;
3826         command->status = 0;
3827         if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3828                                      udev->slot_id))
3829                 xhci_ring_cmd_db(xhci);
3830         spin_unlock_irqrestore(&xhci->lock, flags);
3831         return 0;
3832 }
3833
3834 /*
3835  * Issue an Address Device command and optionally send a corresponding
3836  * SetAddress request to the device.
3837  */
3838 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3839                              enum xhci_setup_dev setup)
3840 {
3841         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3842         unsigned long flags;
3843         struct xhci_virt_device *virt_dev;
3844         int ret = 0;
3845         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3846         struct xhci_slot_ctx *slot_ctx;
3847         struct xhci_input_control_ctx *ctrl_ctx;
3848         u64 temp_64;
3849         struct xhci_command *command = NULL;
3850
3851         mutex_lock(&xhci->mutex);
3852
3853         if (xhci->xhc_state) {  /* dying, removing or halted */
3854                 ret = -ESHUTDOWN;
3855                 goto out;
3856         }
3857
3858         if (!udev->slot_id) {
3859                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3860                                 "Bad Slot ID %d", udev->slot_id);
3861                 ret = -EINVAL;
3862                 goto out;
3863         }
3864
3865         virt_dev = xhci->devs[udev->slot_id];
3866
3867         if (WARN_ON(!virt_dev)) {
3868                 /*
3869                  * In plug/unplug torture test with an NEC controller,
3870                  * a zero-dereference was observed once due to virt_dev = 0.
3871                  * Print useful debug rather than crash if it is observed again!
3872                  */
3873                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3874                         udev->slot_id);
3875                 ret = -EINVAL;
3876                 goto out;
3877         }
3878
3879         if (setup == SETUP_CONTEXT_ONLY) {
3880                 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3881                 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3882                     SLOT_STATE_DEFAULT) {
3883                         xhci_dbg(xhci, "Slot already in default state\n");
3884                         goto out;
3885                 }
3886         }
3887
3888         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3889         if (!command) {
3890                 ret = -ENOMEM;
3891                 goto out;
3892         }
3893
3894         command->in_ctx = virt_dev->in_ctx;
3895         command->completion = &xhci->addr_dev;
3896
3897         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3898         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3899         if (!ctrl_ctx) {
3900                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3901                                 __func__);
3902                 ret = -EINVAL;
3903                 goto out;
3904         }
3905         /*
3906          * If this is the first Set Address since device plug-in or
3907          * virt_device realloaction after a resume with an xHCI power loss,
3908          * then set up the slot context.
3909          */
3910         if (!slot_ctx->dev_info)
3911                 xhci_setup_addressable_virt_dev(xhci, udev);
3912         /* Otherwise, update the control endpoint ring enqueue pointer. */
3913         else
3914                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3915         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3916         ctrl_ctx->drop_flags = 0;
3917
3918         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3919         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3920         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3921                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3922
3923         spin_lock_irqsave(&xhci->lock, flags);
3924         ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3925                                         udev->slot_id, setup);
3926         if (ret) {
3927                 spin_unlock_irqrestore(&xhci->lock, flags);
3928                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3929                                 "FIXME: allocate a command ring segment");
3930                 goto out;
3931         }
3932         xhci_ring_cmd_db(xhci);
3933         spin_unlock_irqrestore(&xhci->lock, flags);
3934
3935         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3936         wait_for_completion(command->completion);
3937
3938         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3939          * the SetAddress() "recovery interval" required by USB and aborting the
3940          * command on a timeout.
3941          */
3942         switch (command->status) {
3943         case COMP_CMD_ABORT:
3944         case COMP_CMD_STOP:
3945                 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3946                 ret = -ETIME;
3947                 break;
3948         case COMP_CTX_STATE:
3949         case COMP_EBADSLT:
3950                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3951                          act, udev->slot_id);
3952                 ret = -EINVAL;
3953                 break;
3954         case COMP_TX_ERR:
3955                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3956                 ret = -EPROTO;
3957                 break;
3958         case COMP_DEV_ERR:
3959                 dev_warn(&udev->dev,
3960                          "ERROR: Incompatible device for setup %s command\n", act);
3961                 ret = -ENODEV;
3962                 break;
3963         case COMP_SUCCESS:
3964                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3965                                "Successful setup %s command", act);
3966                 break;
3967         default:
3968                 xhci_err(xhci,
3969                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
3970                          act, command->status);
3971                 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3972                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3973                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3974                 ret = -EINVAL;
3975                 break;
3976         }
3977         if (ret)
3978                 goto out;
3979         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3980         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3981                         "Op regs DCBAA ptr = %#016llx", temp_64);
3982         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3983                 "Slot ID %d dcbaa entry @%p = %#016llx",
3984                 udev->slot_id,
3985                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3986                 (unsigned long long)
3987                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3988         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3989                         "Output Context DMA address = %#08llx",
3990                         (unsigned long long)virt_dev->out_ctx->dma);
3991         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3992         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3993         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3994                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3995         xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3996         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3997         /*
3998          * USB core uses address 1 for the roothubs, so we add one to the
3999          * address given back to us by the HC.
4000          */
4001         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4002         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4003                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4004         /* Zero the input context control for later use */
4005         ctrl_ctx->add_flags = 0;
4006         ctrl_ctx->drop_flags = 0;
4007
4008         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4009                        "Internal device address = %d",
4010                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4011 out:
4012         mutex_unlock(&xhci->mutex);
4013         kfree(command);
4014         return ret;
4015 }
4016
4017 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4018 {
4019         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4020 }
4021
4022 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4023 {
4024         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4025 }
4026
4027 /*
4028  * Transfer the port index into real index in the HW port status
4029  * registers. Caculate offset between the port's PORTSC register
4030  * and port status base. Divide the number of per port register
4031  * to get the real index. The raw port number bases 1.
4032  */
4033 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4034 {
4035         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4036         __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
4037         __le32 __iomem *addr;
4038         int raw_port;
4039
4040         if (hcd->speed < HCD_USB3)
4041                 addr = xhci->usb2_ports[port1 - 1];
4042         else
4043                 addr = xhci->usb3_ports[port1 - 1];
4044
4045         raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
4046         return raw_port;
4047 }
4048
4049 /*
4050  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4051  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4052  */
4053 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4054                         struct usb_device *udev, u16 max_exit_latency)
4055 {
4056         struct xhci_virt_device *virt_dev;
4057         struct xhci_command *command;
4058         struct xhci_input_control_ctx *ctrl_ctx;
4059         struct xhci_slot_ctx *slot_ctx;
4060         unsigned long flags;
4061         int ret;
4062
4063         spin_lock_irqsave(&xhci->lock, flags);
4064
4065         virt_dev = xhci->devs[udev->slot_id];
4066
4067         /*
4068          * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4069          * xHC was re-initialized. Exit latency will be set later after
4070          * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4071          */
4072
4073         if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4074                 spin_unlock_irqrestore(&xhci->lock, flags);
4075                 return 0;
4076         }
4077
4078         /* Attempt to issue an Evaluate Context command to change the MEL. */
4079         command = xhci->lpm_command;
4080         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4081         if (!ctrl_ctx) {
4082                 spin_unlock_irqrestore(&xhci->lock, flags);
4083                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4084                                 __func__);
4085                 return -ENOMEM;
4086         }
4087
4088         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4089         spin_unlock_irqrestore(&xhci->lock, flags);
4090
4091         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4092         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4093         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4094         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4095         slot_ctx->dev_state = 0;
4096
4097         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4098                         "Set up evaluate context for LPM MEL change.");
4099         xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4100         xhci_dbg_ctx(xhci, command->in_ctx, 0);
4101
4102         /* Issue and wait for the evaluate context command. */
4103         ret = xhci_configure_endpoint(xhci, udev, command,
4104                         true, true);
4105         xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4106         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4107
4108         if (!ret) {
4109                 spin_lock_irqsave(&xhci->lock, flags);
4110                 virt_dev->current_mel = max_exit_latency;
4111                 spin_unlock_irqrestore(&xhci->lock, flags);
4112         }
4113         return ret;
4114 }
4115
4116 #ifdef CONFIG_PM
4117
4118 /* BESL to HIRD Encoding array for USB2 LPM */
4119 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4120         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4121
4122 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4123 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4124                                         struct usb_device *udev)
4125 {
4126         int u2del, besl, besl_host;
4127         int besl_device = 0;
4128         u32 field;
4129
4130         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4131         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4132
4133         if (field & USB_BESL_SUPPORT) {
4134                 for (besl_host = 0; besl_host < 16; besl_host++) {
4135                         if (xhci_besl_encoding[besl_host] >= u2del)
4136                                 break;
4137                 }
4138                 /* Use baseline BESL value as default */
4139                 if (field & USB_BESL_BASELINE_VALID)
4140                         besl_device = USB_GET_BESL_BASELINE(field);
4141                 else if (field & USB_BESL_DEEP_VALID)
4142                         besl_device = USB_GET_BESL_DEEP(field);
4143         } else {
4144                 if (u2del <= 50)
4145                         besl_host = 0;
4146                 else
4147                         besl_host = (u2del - 51) / 75 + 1;
4148         }
4149
4150         besl = besl_host + besl_device;
4151         if (besl > 15)
4152                 besl = 15;
4153
4154         return besl;
4155 }
4156
4157 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4158 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4159 {
4160         u32 field;
4161         int l1;
4162         int besld = 0;
4163         int hirdm = 0;
4164
4165         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4166
4167         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4168         l1 = udev->l1_params.timeout / 256;
4169
4170         /* device has preferred BESLD */
4171         if (field & USB_BESL_DEEP_VALID) {
4172                 besld = USB_GET_BESL_DEEP(field);
4173                 hirdm = 1;
4174         }
4175
4176         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4177 }
4178
4179 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4180                         struct usb_device *udev, int enable)
4181 {
4182         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4183         __le32 __iomem  **port_array;
4184         __le32 __iomem  *pm_addr, *hlpm_addr;
4185         u32             pm_val, hlpm_val, field;
4186         unsigned int    port_num;
4187         unsigned long   flags;
4188         int             hird, exit_latency;
4189         int             ret;
4190
4191         if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4192                         !udev->lpm_capable)
4193                 return -EPERM;
4194
4195         if (!udev->parent || udev->parent->parent ||
4196                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4197                 return -EPERM;
4198
4199         if (udev->usb2_hw_lpm_capable != 1)
4200                 return -EPERM;
4201
4202         spin_lock_irqsave(&xhci->lock, flags);
4203
4204         port_array = xhci->usb2_ports;
4205         port_num = udev->portnum - 1;
4206         pm_addr = port_array[port_num] + PORTPMSC;
4207         pm_val = readl(pm_addr);
4208         hlpm_addr = port_array[port_num] + PORTHLPMC;
4209
4210         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4211                         enable ? "enable" : "disable", port_num + 1);
4212
4213         if (enable) {
4214                 /* Host supports BESL timeout instead of HIRD */
4215                 if (udev->usb2_hw_lpm_besl_capable) {
4216                         /* if device doesn't have a preferred BESL value use a
4217                          * default one which works with mixed HIRD and BESL
4218                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4219                          */
4220                         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4221                         if ((field & USB_BESL_SUPPORT) &&
4222                             (field & USB_BESL_BASELINE_VALID))
4223                                 hird = USB_GET_BESL_BASELINE(field);
4224                         else
4225                                 hird = udev->l1_params.besl;
4226
4227                         exit_latency = xhci_besl_encoding[hird];
4228                         spin_unlock_irqrestore(&xhci->lock, flags);
4229
4230                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4231                          * input context for link powermanagement evaluate
4232                          * context commands. It is protected by hcd->bandwidth
4233                          * mutex and is shared by all devices. We need to set
4234                          * the max ext latency in USB 2 BESL LPM as well, so
4235                          * use the same mutex and xhci_change_max_exit_latency()
4236                          */
4237                         mutex_lock(hcd->bandwidth_mutex);
4238                         ret = xhci_change_max_exit_latency(xhci, udev,
4239                                                            exit_latency);
4240                         mutex_unlock(hcd->bandwidth_mutex);
4241
4242                         if (ret < 0)
4243                                 return ret;
4244                         spin_lock_irqsave(&xhci->lock, flags);
4245
4246                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4247                         writel(hlpm_val, hlpm_addr);
4248                         /* flush write */
4249                         readl(hlpm_addr);
4250                 } else {
4251                         hird = xhci_calculate_hird_besl(xhci, udev);
4252                 }
4253
4254                 pm_val &= ~PORT_HIRD_MASK;
4255                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4256                 writel(pm_val, pm_addr);
4257                 pm_val = readl(pm_addr);
4258                 pm_val |= PORT_HLE;
4259                 writel(pm_val, pm_addr);
4260                 /* flush write */
4261                 readl(pm_addr);
4262         } else {
4263                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4264                 writel(pm_val, pm_addr);
4265                 /* flush write */
4266                 readl(pm_addr);
4267                 if (udev->usb2_hw_lpm_besl_capable) {
4268                         spin_unlock_irqrestore(&xhci->lock, flags);
4269                         mutex_lock(hcd->bandwidth_mutex);
4270                         xhci_change_max_exit_latency(xhci, udev, 0);
4271                         mutex_unlock(hcd->bandwidth_mutex);
4272                         readl_poll_timeout(port_array[port_num], pm_val,
4273                                            (pm_val & PORT_PLS_MASK) == XDEV_U0,
4274                                            100, 10000);
4275                         return 0;
4276                 }
4277         }
4278
4279         spin_unlock_irqrestore(&xhci->lock, flags);
4280         return 0;
4281 }
4282
4283 /* check if a usb2 port supports a given extened capability protocol
4284  * only USB2 ports extended protocol capability values are cached.
4285  * Return 1 if capability is supported
4286  */
4287 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4288                                            unsigned capability)
4289 {
4290         u32 port_offset, port_count;
4291         int i;
4292
4293         for (i = 0; i < xhci->num_ext_caps; i++) {
4294                 if (xhci->ext_caps[i] & capability) {
4295                         /* port offsets starts at 1 */
4296                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4297                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4298                         if (port >= port_offset &&
4299                             port < port_offset + port_count)
4300                                 return 1;
4301                 }
4302         }
4303         return 0;
4304 }
4305
4306 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4307 {
4308         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4309         int             portnum = udev->portnum - 1;
4310
4311         if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4312                         !udev->lpm_capable)
4313                 return 0;
4314
4315         /* we only support lpm for non-hub device connected to root hub yet */
4316         if (!udev->parent || udev->parent->parent ||
4317                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4318                 return 0;
4319
4320         if (xhci->hw_lpm_support == 1 &&
4321                         xhci_check_usb2_port_capability(
4322                                 xhci, portnum, XHCI_HLC)) {
4323                 udev->usb2_hw_lpm_capable = 1;
4324                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4325                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4326                 if (xhci_check_usb2_port_capability(xhci, portnum,
4327                                         XHCI_BLC))
4328                         udev->usb2_hw_lpm_besl_capable = 1;
4329         }
4330
4331         return 0;
4332 }
4333
4334 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4335
4336 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4337 static unsigned long long xhci_service_interval_to_ns(
4338                 struct usb_endpoint_descriptor *desc)
4339 {
4340         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4341 }
4342
4343 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4344                 enum usb3_link_state state)
4345 {
4346         unsigned long long sel;
4347         unsigned long long pel;
4348         unsigned int max_sel_pel;
4349         char *state_name;
4350
4351         switch (state) {
4352         case USB3_LPM_U1:
4353                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4354                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4355                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4356                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4357                 state_name = "U1";
4358                 break;
4359         case USB3_LPM_U2:
4360                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4361                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4362                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4363                 state_name = "U2";
4364                 break;
4365         default:
4366                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4367                                 __func__);
4368                 return USB3_LPM_DISABLED;
4369         }
4370
4371         if (sel <= max_sel_pel && pel <= max_sel_pel)
4372                 return USB3_LPM_DEVICE_INITIATED;
4373
4374         if (sel > max_sel_pel)
4375                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4376                                 "due to long SEL %llu ms\n",
4377                                 state_name, sel);
4378         else
4379                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4380                                 "due to long PEL %llu ms\n",
4381                                 state_name, pel);
4382         return USB3_LPM_DISABLED;
4383 }
4384
4385 /* The U1 timeout should be the maximum of the following values:
4386  *  - For control endpoints, U1 system exit latency (SEL) * 3
4387  *  - For bulk endpoints, U1 SEL * 5
4388  *  - For interrupt endpoints:
4389  *    - Notification EPs, U1 SEL * 3
4390  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4391  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4392  */
4393 static unsigned long long xhci_calculate_intel_u1_timeout(
4394                 struct usb_device *udev,
4395                 struct usb_endpoint_descriptor *desc)
4396 {
4397         unsigned long long timeout_ns;
4398         int ep_type;
4399         int intr_type;
4400
4401         ep_type = usb_endpoint_type(desc);
4402         switch (ep_type) {
4403         case USB_ENDPOINT_XFER_CONTROL:
4404                 timeout_ns = udev->u1_params.sel * 3;
4405                 break;
4406         case USB_ENDPOINT_XFER_BULK:
4407                 timeout_ns = udev->u1_params.sel * 5;
4408                 break;
4409         case USB_ENDPOINT_XFER_INT:
4410                 intr_type = usb_endpoint_interrupt_type(desc);
4411                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4412                         timeout_ns = udev->u1_params.sel * 3;
4413                         break;
4414                 }
4415                 /* Otherwise the calculation is the same as isoc eps */
4416         case USB_ENDPOINT_XFER_ISOC:
4417                 timeout_ns = xhci_service_interval_to_ns(desc);
4418                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4419                 if (timeout_ns < udev->u1_params.sel * 2)
4420                         timeout_ns = udev->u1_params.sel * 2;
4421                 break;
4422         default:
4423                 return 0;
4424         }
4425
4426         return timeout_ns;
4427 }
4428
4429 /* Returns the hub-encoded U1 timeout value. */
4430 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4431                 struct usb_device *udev,
4432                 struct usb_endpoint_descriptor *desc)
4433 {
4434         unsigned long long timeout_ns;
4435
4436         /* Prevent U1 if service interval is shorter than U1 exit latency */
4437         if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4438                 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4439                         dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4440                         return USB3_LPM_DISABLED;
4441                 }
4442         }
4443
4444         if (xhci->quirks & XHCI_INTEL_HOST)
4445                 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4446         else
4447                 timeout_ns = udev->u1_params.sel;
4448
4449         /* The U1 timeout is encoded in 1us intervals.
4450          * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4451          */
4452         if (timeout_ns == USB3_LPM_DISABLED)
4453                 timeout_ns = 1;
4454         else
4455                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4456
4457         /* If the necessary timeout value is bigger than what we can set in the
4458          * USB 3.0 hub, we have to disable hub-initiated U1.
4459          */
4460         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4461                 return timeout_ns;
4462         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4463                         "due to long timeout %llu ms\n", timeout_ns);
4464         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4465 }
4466
4467 /* The U2 timeout should be the maximum of:
4468  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4469  *  - largest bInterval of any active periodic endpoint (to avoid going
4470  *    into lower power link states between intervals).
4471  *  - the U2 Exit Latency of the device
4472  */
4473 static unsigned long long xhci_calculate_intel_u2_timeout(
4474                 struct usb_device *udev,
4475                 struct usb_endpoint_descriptor *desc)
4476 {
4477         unsigned long long timeout_ns;
4478         unsigned long long u2_del_ns;
4479
4480         timeout_ns = 10 * 1000 * 1000;
4481
4482         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4483                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4484                 timeout_ns = xhci_service_interval_to_ns(desc);
4485
4486         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4487         if (u2_del_ns > timeout_ns)
4488                 timeout_ns = u2_del_ns;
4489
4490         return timeout_ns;
4491 }
4492
4493 /* Returns the hub-encoded U2 timeout value. */
4494 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4495                 struct usb_device *udev,
4496                 struct usb_endpoint_descriptor *desc)
4497 {
4498         unsigned long long timeout_ns;
4499
4500         /* Prevent U2 if service interval is shorter than U2 exit latency */
4501         if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4502                 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4503                         dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4504                         return USB3_LPM_DISABLED;
4505                 }
4506         }
4507
4508         if (xhci->quirks & XHCI_INTEL_HOST)
4509                 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4510         else
4511                 timeout_ns = udev->u2_params.sel;
4512
4513         /* The U2 timeout is encoded in 256us intervals */
4514         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4515         /* If the necessary timeout value is bigger than what we can set in the
4516          * USB 3.0 hub, we have to disable hub-initiated U2.
4517          */
4518         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4519                 return timeout_ns;
4520         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4521                         "due to long timeout %llu ms\n", timeout_ns);
4522         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4523 }
4524
4525 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4526                 struct usb_device *udev,
4527                 struct usb_endpoint_descriptor *desc,
4528                 enum usb3_link_state state,
4529                 u16 *timeout)
4530 {
4531         if (state == USB3_LPM_U1)
4532                 return xhci_calculate_u1_timeout(xhci, udev, desc);
4533         else if (state == USB3_LPM_U2)
4534                 return xhci_calculate_u2_timeout(xhci, udev, desc);
4535
4536         return USB3_LPM_DISABLED;
4537 }
4538
4539 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4540                 struct usb_device *udev,
4541                 struct usb_endpoint_descriptor *desc,
4542                 enum usb3_link_state state,
4543                 u16 *timeout)
4544 {
4545         u16 alt_timeout;
4546
4547         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4548                 desc, state, timeout);
4549
4550         /* If we found we can't enable hub-initiated LPM, and
4551          * the U1 or U2 exit latency was too high to allow
4552          * device-initiated LPM as well, then we will disable LPM
4553          * for this device, so stop searching any further.
4554          */
4555         if (alt_timeout == USB3_LPM_DISABLED) {
4556                 *timeout = alt_timeout;
4557                 return -E2BIG;
4558         }
4559         if (alt_timeout > *timeout)
4560                 *timeout = alt_timeout;
4561         return 0;
4562 }
4563
4564 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4565                 struct usb_device *udev,
4566                 struct usb_host_interface *alt,
4567                 enum usb3_link_state state,
4568                 u16 *timeout)
4569 {
4570         int j;
4571
4572         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4573                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4574                                         &alt->endpoint[j].desc, state, timeout))
4575                         return -E2BIG;
4576                 continue;
4577         }
4578         return 0;
4579 }
4580
4581 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4582                 enum usb3_link_state state)
4583 {
4584         struct usb_device *parent;
4585         unsigned int num_hubs;
4586
4587         if (state == USB3_LPM_U2)
4588                 return 0;
4589
4590         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4591         for (parent = udev->parent, num_hubs = 0; parent->parent;
4592                         parent = parent->parent)
4593                 num_hubs++;
4594
4595         if (num_hubs < 2)
4596                 return 0;
4597
4598         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4599                         " below second-tier hub.\n");
4600         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4601                         "to decrease power consumption.\n");
4602         return -E2BIG;
4603 }
4604
4605 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4606                 struct usb_device *udev,
4607                 enum usb3_link_state state)
4608 {
4609         if (xhci->quirks & XHCI_INTEL_HOST)
4610                 return xhci_check_intel_tier_policy(udev, state);
4611         else
4612                 return 0;
4613 }
4614
4615 /* Returns the U1 or U2 timeout that should be enabled.
4616  * If the tier check or timeout setting functions return with a non-zero exit
4617  * code, that means the timeout value has been finalized and we shouldn't look
4618  * at any more endpoints.
4619  */
4620 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4621                         struct usb_device *udev, enum usb3_link_state state)
4622 {
4623         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4624         struct usb_host_config *config;
4625         char *state_name;
4626         int i;
4627         u16 timeout = USB3_LPM_DISABLED;
4628
4629         if (state == USB3_LPM_U1)
4630                 state_name = "U1";
4631         else if (state == USB3_LPM_U2)
4632                 state_name = "U2";
4633         else {
4634                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4635                                 state);
4636                 return timeout;
4637         }
4638
4639         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4640                 return timeout;
4641
4642         /* Gather some information about the currently installed configuration
4643          * and alternate interface settings.
4644          */
4645         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4646                         state, &timeout))
4647                 return timeout;
4648
4649         config = udev->actconfig;
4650         if (!config)
4651                 return timeout;
4652
4653         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4654                 struct usb_driver *driver;
4655                 struct usb_interface *intf = config->interface[i];
4656
4657                 if (!intf)
4658                         continue;
4659
4660                 /* Check if any currently bound drivers want hub-initiated LPM
4661                  * disabled.
4662                  */
4663                 if (intf->dev.driver) {
4664                         driver = to_usb_driver(intf->dev.driver);
4665                         if (driver && driver->disable_hub_initiated_lpm) {
4666                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4667                                         state_name, driver->name);
4668                                 timeout = xhci_get_timeout_no_hub_lpm(udev,
4669                                                                       state);
4670                                 if (timeout == USB3_LPM_DISABLED)
4671                                         return timeout;
4672                         }
4673                 }
4674
4675                 /* Not sure how this could happen... */
4676                 if (!intf->cur_altsetting)
4677                         continue;
4678
4679                 if (xhci_update_timeout_for_interface(xhci, udev,
4680                                         intf->cur_altsetting,
4681                                         state, &timeout))
4682                         return timeout;
4683         }
4684         return timeout;
4685 }
4686
4687 static int calculate_max_exit_latency(struct usb_device *udev,
4688                 enum usb3_link_state state_changed,
4689                 u16 hub_encoded_timeout)
4690 {
4691         unsigned long long u1_mel_us = 0;
4692         unsigned long long u2_mel_us = 0;
4693         unsigned long long mel_us = 0;
4694         bool disabling_u1;
4695         bool disabling_u2;
4696         bool enabling_u1;
4697         bool enabling_u2;
4698
4699         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4700                         hub_encoded_timeout == USB3_LPM_DISABLED);
4701         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4702                         hub_encoded_timeout == USB3_LPM_DISABLED);
4703
4704         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4705                         hub_encoded_timeout != USB3_LPM_DISABLED);
4706         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4707                         hub_encoded_timeout != USB3_LPM_DISABLED);
4708
4709         /* If U1 was already enabled and we're not disabling it,
4710          * or we're going to enable U1, account for the U1 max exit latency.
4711          */
4712         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4713                         enabling_u1)
4714                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4715         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4716                         enabling_u2)
4717                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4718
4719         if (u1_mel_us > u2_mel_us)
4720                 mel_us = u1_mel_us;
4721         else
4722                 mel_us = u2_mel_us;
4723         /* xHCI host controller max exit latency field is only 16 bits wide. */
4724         if (mel_us > MAX_EXIT) {
4725                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4726                                 "is too big.\n", mel_us);
4727                 return -E2BIG;
4728         }
4729         return mel_us;
4730 }
4731
4732 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4733 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4734                         struct usb_device *udev, enum usb3_link_state state)
4735 {
4736         struct xhci_hcd *xhci;
4737         u16 hub_encoded_timeout;
4738         int mel;
4739         int ret;
4740
4741         xhci = hcd_to_xhci(hcd);
4742         /* The LPM timeout values are pretty host-controller specific, so don't
4743          * enable hub-initiated timeouts unless the vendor has provided
4744          * information about their timeout algorithm.
4745          */
4746         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4747                         !xhci->devs[udev->slot_id])
4748                 return USB3_LPM_DISABLED;
4749
4750         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4751         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4752         if (mel < 0) {
4753                 /* Max Exit Latency is too big, disable LPM. */
4754                 hub_encoded_timeout = USB3_LPM_DISABLED;
4755                 mel = 0;
4756         }
4757
4758         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4759         if (ret)
4760                 return ret;
4761         return hub_encoded_timeout;
4762 }
4763
4764 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4765                         struct usb_device *udev, enum usb3_link_state state)
4766 {
4767         struct xhci_hcd *xhci;
4768         u16 mel;
4769
4770         xhci = hcd_to_xhci(hcd);
4771         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4772                         !xhci->devs[udev->slot_id])
4773                 return 0;
4774
4775         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4776         return xhci_change_max_exit_latency(xhci, udev, mel);
4777 }
4778 #else /* CONFIG_PM */
4779
4780 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4781                                 struct usb_device *udev, int enable)
4782 {
4783         return 0;
4784 }
4785
4786 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4787 {
4788         return 0;
4789 }
4790
4791 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4792                         struct usb_device *udev, enum usb3_link_state state)
4793 {
4794         return USB3_LPM_DISABLED;
4795 }
4796
4797 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4798                         struct usb_device *udev, enum usb3_link_state state)
4799 {
4800         return 0;
4801 }
4802 #endif  /* CONFIG_PM */
4803
4804 /*-------------------------------------------------------------------------*/
4805
4806 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4807  * internal data structures for the device.
4808  */
4809 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4810                         struct usb_tt *tt, gfp_t mem_flags)
4811 {
4812         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4813         struct xhci_virt_device *vdev;
4814         struct xhci_command *config_cmd;
4815         struct xhci_input_control_ctx *ctrl_ctx;
4816         struct xhci_slot_ctx *slot_ctx;
4817         unsigned long flags;
4818         unsigned think_time;
4819         int ret;
4820
4821         /* Ignore root hubs */
4822         if (!hdev->parent)
4823                 return 0;
4824
4825         vdev = xhci->devs[hdev->slot_id];
4826         if (!vdev) {
4827                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4828                 return -EINVAL;
4829         }
4830         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4831         if (!config_cmd) {
4832                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4833                 return -ENOMEM;
4834         }
4835         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4836         if (!ctrl_ctx) {
4837                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4838                                 __func__);
4839                 xhci_free_command(xhci, config_cmd);
4840                 return -ENOMEM;
4841         }
4842
4843         spin_lock_irqsave(&xhci->lock, flags);
4844         if (hdev->speed == USB_SPEED_HIGH &&
4845                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4846                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4847                 xhci_free_command(xhci, config_cmd);
4848                 spin_unlock_irqrestore(&xhci->lock, flags);
4849                 return -ENOMEM;
4850         }
4851
4852         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4853         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4854         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4855         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4856         /*
4857          * refer to section 6.2.2: MTT should be 0 for full speed hub,
4858          * but it may be already set to 1 when setup an xHCI virtual
4859          * device, so clear it anyway.
4860          */
4861         if (tt->multi)
4862                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4863         else if (hdev->speed == USB_SPEED_FULL)
4864                 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4865
4866         if (xhci->hci_version > 0x95) {
4867                 xhci_dbg(xhci, "xHCI version %x needs hub "
4868                                 "TT think time and number of ports\n",
4869                                 (unsigned int) xhci->hci_version);
4870                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4871                 /* Set TT think time - convert from ns to FS bit times.
4872                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
4873                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
4874                  *
4875                  * xHCI 1.0: this field shall be 0 if the device is not a
4876                  * High-spped hub.
4877                  */
4878                 think_time = tt->think_time;
4879                 if (think_time != 0)
4880                         think_time = (think_time / 666) - 1;
4881                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4882                         slot_ctx->tt_info |=
4883                                 cpu_to_le32(TT_THINK_TIME(think_time));
4884         } else {
4885                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4886                                 "TT think time or number of ports\n",
4887                                 (unsigned int) xhci->hci_version);
4888         }
4889         slot_ctx->dev_state = 0;
4890         spin_unlock_irqrestore(&xhci->lock, flags);
4891
4892         xhci_dbg(xhci, "Set up %s for hub device.\n",
4893                         (xhci->hci_version > 0x95) ?
4894                         "configure endpoint" : "evaluate context");
4895         xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4896         xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4897
4898         /* Issue and wait for the configure endpoint or
4899          * evaluate context command.
4900          */
4901         if (xhci->hci_version > 0x95)
4902                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4903                                 false, false);
4904         else
4905                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4906                                 true, false);
4907
4908         xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4909         xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4910
4911         xhci_free_command(xhci, config_cmd);
4912         return ret;
4913 }
4914
4915 int xhci_get_frame(struct usb_hcd *hcd)
4916 {
4917         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4918         /* EHCI mods by the periodic size.  Why? */
4919         return readl(&xhci->run_regs->microframe_index) >> 3;
4920 }
4921
4922 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4923 {
4924         struct xhci_hcd         *xhci;
4925         struct device           *dev = hcd->self.controller;
4926         int                     retval;
4927
4928         /* Accept arbitrarily long scatter-gather lists */
4929         hcd->self.sg_tablesize = ~0;
4930
4931         /* support to build packet from discontinuous buffers */
4932         hcd->self.no_sg_constraint = 1;
4933
4934         /* XHCI controllers don't stop the ep queue on short packets :| */
4935         hcd->self.no_stop_on_short = 1;
4936
4937         xhci = hcd_to_xhci(hcd);
4938
4939         if (usb_hcd_is_primary_hcd(hcd)) {
4940                 xhci->main_hcd = hcd;
4941                 /* Mark the first roothub as being USB 2.0.
4942                  * The xHCI driver will register the USB 3.0 roothub.
4943                  */
4944                 hcd->speed = HCD_USB2;
4945                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4946                 /*
4947                  * USB 2.0 roothub under xHCI has an integrated TT,
4948                  * (rate matching hub) as opposed to having an OHCI/UHCI
4949                  * companion controller.
4950                  */
4951                 hcd->has_tt = 1;
4952         } else {
4953                 /* Some 3.1 hosts return sbrn 0x30, can't rely on sbrn alone */
4954                 if (xhci->sbrn == 0x31 || xhci->usb3_rhub.min_rev >= 1) {
4955                         xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n");
4956                         hcd->speed = HCD_USB31;
4957                         hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
4958                 }
4959                 /* xHCI private pointer was set in xhci_pci_probe for the second
4960                  * registered roothub.
4961                  */
4962                 return 0;
4963         }
4964
4965         mutex_init(&xhci->mutex);
4966         xhci->cap_regs = hcd->regs;
4967         xhci->op_regs = hcd->regs +
4968                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4969         xhci->run_regs = hcd->regs +
4970                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4971         /* Cache read-only capability registers */
4972         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4973         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4974         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4975         xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4976         xhci->hci_version = HC_VERSION(xhci->hcc_params);
4977         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4978         if (xhci->hci_version > 0x100)
4979                 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4980         xhci_print_registers(xhci);
4981
4982         xhci->quirks |= quirks;
4983
4984         get_quirks(dev, xhci);
4985
4986         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4987          * success event after a short transfer. This quirk will ignore such
4988          * spurious event.
4989          */
4990         if (xhci->hci_version > 0x96)
4991                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4992
4993         /* Make sure the HC is halted. */
4994         retval = xhci_halt(xhci);
4995         if (retval)
4996                 return retval;
4997
4998         xhci_dbg(xhci, "Resetting HCD\n");
4999         /* Reset the internal HC memory state and registers. */
5000         retval = xhci_reset(xhci);
5001         if (retval)
5002                 return retval;
5003         xhci_dbg(xhci, "Reset complete\n");
5004
5005         /*
5006          * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5007          * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5008          * address memory pointers actually. So, this driver clears the AC64
5009          * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5010          * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5011          */
5012         if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5013                 xhci->hcc_params &= ~BIT(0);
5014
5015         /* Set dma_mask and coherent_dma_mask to 64-bits,
5016          * if xHC supports 64-bit addressing */
5017         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5018                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5019                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5020                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5021         } else {
5022                 /*
5023                  * This is to avoid error in cases where a 32-bit USB
5024                  * controller is used on a 64-bit capable system.
5025                  */
5026                 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5027                 if (retval)
5028                         return retval;
5029                 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5030                 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5031         }
5032
5033         xhci_dbg(xhci, "Calling HCD init\n");
5034         /* Initialize HCD and host controller data structures. */
5035         retval = xhci_init(hcd);
5036         if (retval)
5037                 return retval;
5038         xhci_dbg(xhci, "Called HCD init\n");
5039
5040         xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
5041                   xhci->hcc_params, xhci->hci_version, xhci->quirks);
5042
5043         return 0;
5044 }
5045 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5046
5047 static const struct hc_driver xhci_hc_driver = {
5048         .description =          "xhci-hcd",
5049         .product_desc =         "xHCI Host Controller",
5050         .hcd_priv_size =        sizeof(struct xhci_hcd),
5051
5052         /*
5053          * generic hardware linkage
5054          */
5055         .irq =                  xhci_irq,
5056         .flags =                HCD_MEMORY | HCD_USB3 | HCD_SHARED,
5057
5058         /*
5059          * basic lifecycle operations
5060          */
5061         .reset =                NULL, /* set in xhci_init_driver() */
5062         .start =                xhci_run,
5063         .stop =                 xhci_stop,
5064         .shutdown =             xhci_shutdown,
5065
5066         /*
5067          * managing i/o requests and associated device resources
5068          */
5069         .urb_enqueue =          xhci_urb_enqueue,
5070         .urb_dequeue =          xhci_urb_dequeue,
5071         .alloc_dev =            xhci_alloc_dev,
5072         .free_dev =             xhci_free_dev,
5073         .alloc_streams =        xhci_alloc_streams,
5074         .free_streams =         xhci_free_streams,
5075         .add_endpoint =         xhci_add_endpoint,
5076         .drop_endpoint =        xhci_drop_endpoint,
5077         .endpoint_reset =       xhci_endpoint_reset,
5078         .check_bandwidth =      xhci_check_bandwidth,
5079         .reset_bandwidth =      xhci_reset_bandwidth,
5080         .address_device =       xhci_address_device,
5081         .enable_device =        xhci_enable_device,
5082         .update_hub_device =    xhci_update_hub_device,
5083         .reset_device =         xhci_discover_or_reset_device,
5084
5085         /*
5086          * scheduling support
5087          */
5088         .get_frame_number =     xhci_get_frame,
5089
5090         /*
5091          * root hub support
5092          */
5093         .hub_control =          xhci_hub_control,
5094         .hub_status_data =      xhci_hub_status_data,
5095         .bus_suspend =          xhci_bus_suspend,
5096         .bus_resume =           xhci_bus_resume,
5097
5098         /*
5099          * call back when device connected and addressed
5100          */
5101         .update_device =        xhci_update_device,
5102         .set_usb2_hw_lpm =      xhci_set_usb2_hardware_lpm,
5103         .enable_usb3_lpm_timeout =      xhci_enable_usb3_lpm_timeout,
5104         .disable_usb3_lpm_timeout =     xhci_disable_usb3_lpm_timeout,
5105         .find_raw_port_number = xhci_find_raw_port_number,
5106 };
5107
5108 void xhci_init_driver(struct hc_driver *drv,
5109                       const struct xhci_driver_overrides *over)
5110 {
5111         BUG_ON(!over);
5112
5113         /* Copy the generic table to drv then apply the overrides */
5114         *drv = xhci_hc_driver;
5115
5116         if (over) {
5117                 drv->hcd_priv_size += over->extra_priv_size;
5118                 if (over->reset)
5119                         drv->reset = over->reset;
5120                 if (over->start)
5121                         drv->start = over->start;
5122         }
5123 }
5124 EXPORT_SYMBOL_GPL(xhci_init_driver);
5125
5126 MODULE_DESCRIPTION(DRIVER_DESC);
5127 MODULE_AUTHOR(DRIVER_AUTHOR);
5128 MODULE_LICENSE("GPL");
5129
5130 static int __init xhci_hcd_init(void)
5131 {
5132         /*
5133          * Check the compiler generated sizes of structures that must be laid
5134          * out in specific ways for hardware access.
5135          */
5136         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5137         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5138         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5139         /* xhci_device_control has eight fields, and also
5140          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5141          */
5142         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5143         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5144         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5145         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5146         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5147         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5148         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5149
5150         if (usb_disabled())
5151                 return -ENODEV;
5152
5153         return 0;
5154 }
5155
5156 /*
5157  * If an init function is provided, an exit function must also be provided
5158  * to allow module unload.
5159  */
5160 static void __exit xhci_hcd_fini(void) { }
5161
5162 module_init(xhci_hcd_init);
5163 module_exit(xhci_hcd_fini);