GNU Linux-libre 4.14.254-gnu1
[releases.git] / drivers / usb / host / xhci.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/iopoll.h>
25 #include <linux/irq.h>
26 #include <linux/log2.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/slab.h>
30 #include <linux/dmi.h>
31 #include <linux/dma-mapping.h>
32
33 #include "xhci.h"
34 #include "xhci-trace.h"
35 #include "xhci-mtk.h"
36
37 #define DRIVER_AUTHOR "Sarah Sharp"
38 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
39
40 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
41
42 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
43 static int link_quirk;
44 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
45 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
46
47 static unsigned long long quirks;
48 module_param(quirks, ullong, S_IRUGO);
49 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
50
51 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
52 {
53         struct xhci_segment *seg = ring->first_seg;
54
55         if (!td || !td->start_seg)
56                 return false;
57         do {
58                 if (seg == td->start_seg)
59                         return true;
60                 seg = seg->next;
61         } while (seg && seg != ring->first_seg);
62
63         return false;
64 }
65
66 /*
67  * xhci_handshake - spin reading hc until handshake completes or fails
68  * @ptr: address of hc register to be read
69  * @mask: bits to look at in result of read
70  * @done: value of those bits when handshake succeeds
71  * @usec: timeout in microseconds
72  *
73  * Returns negative errno, or zero on success
74  *
75  * Success happens when the "mask" bits have the specified value (hardware
76  * handshake done).  There are two failure modes:  "usec" have passed (major
77  * hardware flakeout), or the register reads as all-ones (hardware removed).
78  */
79 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
80 {
81         u32     result;
82         int     ret;
83
84         ret = readl_poll_timeout_atomic(ptr, result,
85                                         (result & mask) == done ||
86                                         result == U32_MAX,
87                                         1, usec);
88         if (result == U32_MAX)          /* card removed */
89                 return -ENODEV;
90
91         return ret;
92 }
93
94 /*
95  * Disable interrupts and begin the xHCI halting process.
96  */
97 void xhci_quiesce(struct xhci_hcd *xhci)
98 {
99         u32 halted;
100         u32 cmd;
101         u32 mask;
102
103         mask = ~(XHCI_IRQS);
104         halted = readl(&xhci->op_regs->status) & STS_HALT;
105         if (!halted)
106                 mask &= ~CMD_RUN;
107
108         cmd = readl(&xhci->op_regs->command);
109         cmd &= mask;
110         writel(cmd, &xhci->op_regs->command);
111 }
112
113 /*
114  * Force HC into halt state.
115  *
116  * Disable any IRQs and clear the run/stop bit.
117  * HC will complete any current and actively pipelined transactions, and
118  * should halt within 16 ms of the run/stop bit being cleared.
119  * Read HC Halted bit in the status register to see when the HC is finished.
120  */
121 int xhci_halt(struct xhci_hcd *xhci)
122 {
123         int ret;
124         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
125         xhci_quiesce(xhci);
126
127         ret = xhci_handshake(&xhci->op_regs->status,
128                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
129         if (ret) {
130                 xhci_warn(xhci, "Host halt failed, %d\n", ret);
131                 return ret;
132         }
133         xhci->xhc_state |= XHCI_STATE_HALTED;
134         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
135         return ret;
136 }
137
138 /*
139  * Set the run bit and wait for the host to be running.
140  */
141 int xhci_start(struct xhci_hcd *xhci)
142 {
143         u32 temp;
144         int ret;
145
146         temp = readl(&xhci->op_regs->command);
147         temp |= (CMD_RUN);
148         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
149                         temp);
150         writel(temp, &xhci->op_regs->command);
151
152         /*
153          * Wait for the HCHalted Status bit to be 0 to indicate the host is
154          * running.
155          */
156         ret = xhci_handshake(&xhci->op_regs->status,
157                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
158         if (ret == -ETIMEDOUT)
159                 xhci_err(xhci, "Host took too long to start, "
160                                 "waited %u microseconds.\n",
161                                 XHCI_MAX_HALT_USEC);
162         if (!ret)
163                 /* clear state flags. Including dying, halted or removing */
164                 xhci->xhc_state = 0;
165
166         return ret;
167 }
168
169 /*
170  * Reset a halted HC.
171  *
172  * This resets pipelines, timers, counters, state machines, etc.
173  * Transactions will be terminated immediately, and operational registers
174  * will be set to their defaults.
175  */
176 int xhci_reset(struct xhci_hcd *xhci)
177 {
178         u32 command;
179         u32 state;
180         int ret, i;
181
182         state = readl(&xhci->op_regs->status);
183
184         if (state == ~(u32)0) {
185                 xhci_warn(xhci, "Host not accessible, reset failed.\n");
186                 return -ENODEV;
187         }
188
189         if ((state & STS_HALT) == 0) {
190                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
191                 return 0;
192         }
193
194         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
195         command = readl(&xhci->op_regs->command);
196         command |= CMD_RESET;
197         writel(command, &xhci->op_regs->command);
198
199         /* Existing Intel xHCI controllers require a delay of 1 mS,
200          * after setting the CMD_RESET bit, and before accessing any
201          * HC registers. This allows the HC to complete the
202          * reset operation and be ready for HC register access.
203          * Without this delay, the subsequent HC register access,
204          * may result in a system hang very rarely.
205          */
206         if (xhci->quirks & XHCI_INTEL_HOST)
207                 udelay(1000);
208
209         ret = xhci_handshake(&xhci->op_regs->command,
210                         CMD_RESET, 0, 10 * 1000 * 1000);
211         if (ret)
212                 return ret;
213
214         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
215                 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
216
217         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
218                          "Wait for controller to be ready for doorbell rings");
219         /*
220          * xHCI cannot write to any doorbells or operational registers other
221          * than status until the "Controller Not Ready" flag is cleared.
222          */
223         ret = xhci_handshake(&xhci->op_regs->status,
224                         STS_CNR, 0, 10 * 1000 * 1000);
225
226         for (i = 0; i < 2; i++) {
227                 xhci->bus_state[i].port_c_suspend = 0;
228                 xhci->bus_state[i].suspended_ports = 0;
229                 xhci->bus_state[i].resuming_ports = 0;
230         }
231
232         return ret;
233 }
234
235
236 #ifdef CONFIG_USB_PCI
237 /*
238  * Set up MSI
239  */
240 static int xhci_setup_msi(struct xhci_hcd *xhci)
241 {
242         int ret;
243         /*
244          * TODO:Check with MSI Soc for sysdev
245          */
246         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
247
248         ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
249         if (ret < 0) {
250                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
251                                 "failed to allocate MSI entry");
252                 return ret;
253         }
254
255         ret = request_irq(pdev->irq, xhci_msi_irq,
256                                 0, "xhci_hcd", xhci_to_hcd(xhci));
257         if (ret) {
258                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
259                                 "disable MSI interrupt");
260                 pci_free_irq_vectors(pdev);
261         }
262
263         return ret;
264 }
265
266 /*
267  * Set up MSI-X
268  */
269 static int xhci_setup_msix(struct xhci_hcd *xhci)
270 {
271         int i, ret = 0;
272         struct usb_hcd *hcd = xhci_to_hcd(xhci);
273         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
274
275         /*
276          * calculate number of msi-x vectors supported.
277          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
278          *   with max number of interrupters based on the xhci HCSPARAMS1.
279          * - num_online_cpus: maximum msi-x vectors per CPUs core.
280          *   Add additional 1 vector to ensure always available interrupt.
281          */
282         xhci->msix_count = min(num_online_cpus() + 1,
283                                 HCS_MAX_INTRS(xhci->hcs_params1));
284
285         ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
286                         PCI_IRQ_MSIX);
287         if (ret < 0) {
288                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
289                                 "Failed to enable MSI-X");
290                 return ret;
291         }
292
293         for (i = 0; i < xhci->msix_count; i++) {
294                 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
295                                 "xhci_hcd", xhci_to_hcd(xhci));
296                 if (ret)
297                         goto disable_msix;
298         }
299
300         hcd->msix_enabled = 1;
301         return ret;
302
303 disable_msix:
304         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
305         while (--i >= 0)
306                 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
307         pci_free_irq_vectors(pdev);
308         return ret;
309 }
310
311 /* Free any IRQs and disable MSI-X */
312 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
313 {
314         struct usb_hcd *hcd = xhci_to_hcd(xhci);
315         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
316
317         if (xhci->quirks & XHCI_PLAT)
318                 return;
319
320         /* return if using legacy interrupt */
321         if (hcd->irq > 0)
322                 return;
323
324         if (hcd->msix_enabled) {
325                 int i;
326
327                 for (i = 0; i < xhci->msix_count; i++)
328                         free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
329         } else {
330                 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
331         }
332
333         pci_free_irq_vectors(pdev);
334         hcd->msix_enabled = 0;
335 }
336
337 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
338 {
339         struct usb_hcd *hcd = xhci_to_hcd(xhci);
340
341         if (hcd->msix_enabled) {
342                 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
343                 int i;
344
345                 for (i = 0; i < xhci->msix_count; i++)
346                         synchronize_irq(pci_irq_vector(pdev, i));
347         }
348 }
349
350 static int xhci_try_enable_msi(struct usb_hcd *hcd)
351 {
352         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
353         struct pci_dev  *pdev;
354         int ret;
355
356         /* The xhci platform device has set up IRQs through usb_add_hcd. */
357         if (xhci->quirks & XHCI_PLAT)
358                 return 0;
359
360         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
361         /*
362          * Some Fresco Logic host controllers advertise MSI, but fail to
363          * generate interrupts.  Don't even try to enable MSI.
364          */
365         if (xhci->quirks & XHCI_BROKEN_MSI)
366                 goto legacy_irq;
367
368         /* unregister the legacy interrupt */
369         if (hcd->irq)
370                 free_irq(hcd->irq, hcd);
371         hcd->irq = 0;
372
373         ret = xhci_setup_msix(xhci);
374         if (ret)
375                 /* fall back to msi*/
376                 ret = xhci_setup_msi(xhci);
377
378         if (!ret) {
379                 hcd->msi_enabled = 1;
380                 return 0;
381         }
382
383         if (!pdev->irq) {
384                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
385                 return -EINVAL;
386         }
387
388  legacy_irq:
389         if (!strlen(hcd->irq_descr))
390                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
391                          hcd->driver->description, hcd->self.busnum);
392
393         /* fall back to legacy interrupt*/
394         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
395                         hcd->irq_descr, hcd);
396         if (ret) {
397                 xhci_err(xhci, "request interrupt %d failed\n",
398                                 pdev->irq);
399                 return ret;
400         }
401         hcd->irq = pdev->irq;
402         return 0;
403 }
404
405 #else
406
407 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
408 {
409         return 0;
410 }
411
412 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
413 {
414 }
415
416 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
417 {
418 }
419
420 #endif
421
422 static void compliance_mode_recovery(unsigned long arg)
423 {
424         struct xhci_hcd *xhci;
425         struct usb_hcd *hcd;
426         u32 temp;
427         int i;
428
429         xhci = (struct xhci_hcd *)arg;
430
431         for (i = 0; i < xhci->num_usb3_ports; i++) {
432                 temp = readl(xhci->usb3_ports[i]);
433                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
434                         /*
435                          * Compliance Mode Detected. Letting USB Core
436                          * handle the Warm Reset
437                          */
438                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
439                                         "Compliance mode detected->port %d",
440                                         i + 1);
441                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
442                                         "Attempting compliance mode recovery");
443                         hcd = xhci->shared_hcd;
444
445                         if (hcd->state == HC_STATE_SUSPENDED)
446                                 usb_hcd_resume_root_hub(hcd);
447
448                         usb_hcd_poll_rh_status(hcd);
449                 }
450         }
451
452         if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
453                 mod_timer(&xhci->comp_mode_recovery_timer,
454                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
455 }
456
457 /*
458  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
459  * that causes ports behind that hardware to enter compliance mode sometimes.
460  * The quirk creates a timer that polls every 2 seconds the link state of
461  * each host controller's port and recovers it by issuing a Warm reset
462  * if Compliance mode is detected, otherwise the port will become "dead" (no
463  * device connections or disconnections will be detected anymore). Becasue no
464  * status event is generated when entering compliance mode (per xhci spec),
465  * this quirk is needed on systems that have the failing hardware installed.
466  */
467 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
468 {
469         xhci->port_status_u0 = 0;
470         setup_timer(&xhci->comp_mode_recovery_timer,
471                     compliance_mode_recovery, (unsigned long)xhci);
472         xhci->comp_mode_recovery_timer.expires = jiffies +
473                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
474
475         add_timer(&xhci->comp_mode_recovery_timer);
476         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
477                         "Compliance mode recovery timer initialized");
478 }
479
480 /*
481  * This function identifies the systems that have installed the SN65LVPE502CP
482  * USB3.0 re-driver and that need the Compliance Mode Quirk.
483  * Systems:
484  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
485  */
486 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
487 {
488         const char *dmi_product_name, *dmi_sys_vendor;
489
490         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
491         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
492         if (!dmi_product_name || !dmi_sys_vendor)
493                 return false;
494
495         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
496                 return false;
497
498         if (strstr(dmi_product_name, "Z420") ||
499                         strstr(dmi_product_name, "Z620") ||
500                         strstr(dmi_product_name, "Z820") ||
501                         strstr(dmi_product_name, "Z1 Workstation"))
502                 return true;
503
504         return false;
505 }
506
507 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
508 {
509         return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
510 }
511
512
513 /*
514  * Initialize memory for HCD and xHC (one-time init).
515  *
516  * Program the PAGESIZE register, initialize the device context array, create
517  * device contexts (?), set up a command ring segment (or two?), create event
518  * ring (one for now).
519  */
520 static int xhci_init(struct usb_hcd *hcd)
521 {
522         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
523         int retval = 0;
524
525         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
526         spin_lock_init(&xhci->lock);
527         if (xhci->hci_version == 0x95 && link_quirk) {
528                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
529                                 "QUIRK: Not clearing Link TRB chain bits.");
530                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
531         } else {
532                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
533                                 "xHCI doesn't need link TRB QUIRK");
534         }
535         retval = xhci_mem_init(xhci, GFP_KERNEL);
536         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
537
538         /* Initializing Compliance Mode Recovery Data If Needed */
539         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
540                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
541                 compliance_mode_recovery_timer_init(xhci);
542         }
543
544         return retval;
545 }
546
547 /*-------------------------------------------------------------------------*/
548
549
550 static int xhci_run_finished(struct xhci_hcd *xhci)
551 {
552         if (xhci_start(xhci)) {
553                 xhci_halt(xhci);
554                 return -ENODEV;
555         }
556         xhci->shared_hcd->state = HC_STATE_RUNNING;
557         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
558
559         if (xhci->quirks & XHCI_NEC_HOST)
560                 xhci_ring_cmd_db(xhci);
561
562         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
563                         "Finished xhci_run for USB3 roothub");
564         return 0;
565 }
566
567 /*
568  * Start the HC after it was halted.
569  *
570  * This function is called by the USB core when the HC driver is added.
571  * Its opposite is xhci_stop().
572  *
573  * xhci_init() must be called once before this function can be called.
574  * Reset the HC, enable device slot contexts, program DCBAAP, and
575  * set command ring pointer and event ring pointer.
576  *
577  * Setup MSI-X vectors and enable interrupts.
578  */
579 int xhci_run(struct usb_hcd *hcd)
580 {
581         u32 temp;
582         u64 temp_64;
583         int ret;
584         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
585
586         /* Start the xHCI host controller running only after the USB 2.0 roothub
587          * is setup.
588          */
589
590         hcd->uses_new_polling = 1;
591         if (!usb_hcd_is_primary_hcd(hcd))
592                 return xhci_run_finished(xhci);
593
594         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
595
596         ret = xhci_try_enable_msi(hcd);
597         if (ret)
598                 return ret;
599
600         xhci_dbg_cmd_ptrs(xhci);
601
602         xhci_dbg(xhci, "ERST memory map follows:\n");
603         xhci_dbg_erst(xhci, &xhci->erst);
604         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
605         temp_64 &= ~ERST_PTR_MASK;
606         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
607                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
608
609         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
610                         "// Set the interrupt modulation register");
611         temp = readl(&xhci->ir_set->irq_control);
612         temp &= ~ER_IRQ_INTERVAL_MASK;
613         /*
614          * the increment interval is 8 times as much as that defined
615          * in xHCI spec on MTK's controller
616          */
617         temp |= (u32) ((xhci->quirks & XHCI_MTK_HOST) ? 20 : 160);
618         writel(temp, &xhci->ir_set->irq_control);
619
620         /* Set the HCD state before we enable the irqs */
621         temp = readl(&xhci->op_regs->command);
622         temp |= (CMD_EIE);
623         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
624                         "// Enable interrupts, cmd = 0x%x.", temp);
625         writel(temp, &xhci->op_regs->command);
626
627         temp = readl(&xhci->ir_set->irq_pending);
628         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
629                         "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
630                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
631         writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
632         xhci_print_ir_set(xhci, 0);
633
634         if (xhci->quirks & XHCI_NEC_HOST) {
635                 struct xhci_command *command;
636
637                 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
638                 if (!command)
639                         return -ENOMEM;
640
641                 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
642                                 TRB_TYPE(TRB_NEC_GET_FW));
643                 if (ret)
644                         xhci_free_command(xhci, command);
645         }
646         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
647                         "Finished xhci_run for USB2 roothub");
648         return 0;
649 }
650 EXPORT_SYMBOL_GPL(xhci_run);
651
652 /*
653  * Stop xHCI driver.
654  *
655  * This function is called by the USB core when the HC driver is removed.
656  * Its opposite is xhci_run().
657  *
658  * Disable device contexts, disable IRQs, and quiesce the HC.
659  * Reset the HC, finish any completed transactions, and cleanup memory.
660  */
661 static void xhci_stop(struct usb_hcd *hcd)
662 {
663         u32 temp;
664         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
665
666         mutex_lock(&xhci->mutex);
667
668         /* Only halt host and free memory after both hcds are removed */
669         if (!usb_hcd_is_primary_hcd(hcd)) {
670                 mutex_unlock(&xhci->mutex);
671                 return;
672         }
673
674         spin_lock_irq(&xhci->lock);
675         xhci->xhc_state |= XHCI_STATE_HALTED;
676         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
677         xhci_halt(xhci);
678         xhci_reset(xhci);
679         spin_unlock_irq(&xhci->lock);
680
681         xhci_cleanup_msix(xhci);
682
683         /* Deleting Compliance Mode Recovery Timer */
684         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
685                         (!(xhci_all_ports_seen_u0(xhci)))) {
686                 del_timer_sync(&xhci->comp_mode_recovery_timer);
687                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
688                                 "%s: compliance mode recovery timer deleted",
689                                 __func__);
690         }
691
692         if (xhci->quirks & XHCI_AMD_PLL_FIX)
693                 usb_amd_dev_put();
694
695         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
696                         "// Disabling event ring interrupts");
697         temp = readl(&xhci->op_regs->status);
698         writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
699         temp = readl(&xhci->ir_set->irq_pending);
700         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
701         xhci_print_ir_set(xhci, 0);
702
703         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
704         xhci_mem_cleanup(xhci);
705         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
706                         "xhci_stop completed - status = %x",
707                         readl(&xhci->op_regs->status));
708         mutex_unlock(&xhci->mutex);
709 }
710
711 /*
712  * Shutdown HC (not bus-specific)
713  *
714  * This is called when the machine is rebooting or halting.  We assume that the
715  * machine will be powered off, and the HC's internal state will be reset.
716  * Don't bother to free memory.
717  *
718  * This will only ever be called with the main usb_hcd (the USB3 roothub).
719  */
720 void xhci_shutdown(struct usb_hcd *hcd)
721 {
722         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
723
724         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
725                 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
726
727         spin_lock_irq(&xhci->lock);
728         xhci_halt(xhci);
729         /* Workaround for spurious wakeups at shutdown with HSW */
730         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
731                 xhci_reset(xhci);
732         spin_unlock_irq(&xhci->lock);
733
734         xhci_cleanup_msix(xhci);
735
736         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
737                         "xhci_shutdown completed - status = %x",
738                         readl(&xhci->op_regs->status));
739 }
740 EXPORT_SYMBOL_GPL(xhci_shutdown);
741
742 #ifdef CONFIG_PM
743 static void xhci_save_registers(struct xhci_hcd *xhci)
744 {
745         xhci->s3.command = readl(&xhci->op_regs->command);
746         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
747         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
748         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
749         xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
750         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
751         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
752         xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
753         xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
754 }
755
756 static void xhci_restore_registers(struct xhci_hcd *xhci)
757 {
758         writel(xhci->s3.command, &xhci->op_regs->command);
759         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
760         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
761         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
762         writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
763         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
764         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
765         writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
766         writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
767 }
768
769 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
770 {
771         u64     val_64;
772
773         /* step 2: initialize command ring buffer */
774         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
775         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
776                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
777                                       xhci->cmd_ring->dequeue) &
778                  (u64) ~CMD_RING_RSVD_BITS) |
779                 xhci->cmd_ring->cycle_state;
780         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
781                         "// Setting command ring address to 0x%llx",
782                         (long unsigned long) val_64);
783         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
784 }
785
786 /*
787  * The whole command ring must be cleared to zero when we suspend the host.
788  *
789  * The host doesn't save the command ring pointer in the suspend well, so we
790  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
791  * aligned, because of the reserved bits in the command ring dequeue pointer
792  * register.  Therefore, we can't just set the dequeue pointer back in the
793  * middle of the ring (TRBs are 16-byte aligned).
794  */
795 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
796 {
797         struct xhci_ring *ring;
798         struct xhci_segment *seg;
799
800         ring = xhci->cmd_ring;
801         seg = ring->deq_seg;
802         do {
803                 memset(seg->trbs, 0,
804                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
805                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
806                         cpu_to_le32(~TRB_CYCLE);
807                 seg = seg->next;
808         } while (seg != ring->deq_seg);
809
810         /* Reset the software enqueue and dequeue pointers */
811         ring->deq_seg = ring->first_seg;
812         ring->dequeue = ring->first_seg->trbs;
813         ring->enq_seg = ring->deq_seg;
814         ring->enqueue = ring->dequeue;
815
816         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
817         /*
818          * Ring is now zeroed, so the HW should look for change of ownership
819          * when the cycle bit is set to 1.
820          */
821         ring->cycle_state = 1;
822
823         /*
824          * Reset the hardware dequeue pointer.
825          * Yes, this will need to be re-written after resume, but we're paranoid
826          * and want to make sure the hardware doesn't access bogus memory
827          * because, say, the BIOS or an SMI started the host without changing
828          * the command ring pointers.
829          */
830         xhci_set_cmd_ring_deq(xhci);
831 }
832
833 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
834 {
835         int port_index;
836         __le32 __iomem **port_array;
837         unsigned long flags;
838         u32 t1, t2;
839
840         spin_lock_irqsave(&xhci->lock, flags);
841
842         /* disable usb3 ports Wake bits */
843         port_index = xhci->num_usb3_ports;
844         port_array = xhci->usb3_ports;
845         while (port_index--) {
846                 t1 = readl(port_array[port_index]);
847                 t1 = xhci_port_state_to_neutral(t1);
848                 t2 = t1 & ~PORT_WAKE_BITS;
849                 if (t1 != t2)
850                         writel(t2, port_array[port_index]);
851         }
852
853         /* disable usb2 ports Wake bits */
854         port_index = xhci->num_usb2_ports;
855         port_array = xhci->usb2_ports;
856         while (port_index--) {
857                 t1 = readl(port_array[port_index]);
858                 t1 = xhci_port_state_to_neutral(t1);
859                 t2 = t1 & ~PORT_WAKE_BITS;
860                 if (t1 != t2)
861                         writel(t2, port_array[port_index]);
862         }
863
864         spin_unlock_irqrestore(&xhci->lock, flags);
865 }
866
867 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
868 {
869         __le32 __iomem          **port_array;
870         int                     port_index;
871         u32                     status;
872         u32                     portsc;
873
874         status = readl(&xhci->op_regs->status);
875         if (status & STS_EINT)
876                 return true;
877         /*
878          * Checking STS_EINT is not enough as there is a lag between a change
879          * bit being set and the Port Status Change Event that it generated
880          * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
881          */
882
883         port_index = xhci->num_usb2_ports;
884         port_array = xhci->usb2_ports;
885         while (port_index--) {
886                 portsc = readl(port_array[port_index]);
887                 if (portsc & PORT_CHANGE_MASK ||
888                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
889                         return true;
890         }
891         port_index = xhci->num_usb3_ports;
892         port_array = xhci->usb3_ports;
893         while (port_index--) {
894                 portsc = readl(port_array[port_index]);
895                 if (portsc & PORT_CHANGE_MASK ||
896                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
897                         return true;
898         }
899         return false;
900 }
901
902 /*
903  * Stop HC (not bus-specific)
904  *
905  * This is called when the machine transition into S3/S4 mode.
906  *
907  */
908 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
909 {
910         int                     rc = 0;
911         unsigned int            delay = XHCI_MAX_HALT_USEC * 2;
912         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
913         u32                     command;
914         u32                     res;
915
916         if (!hcd->state)
917                 return 0;
918
919         if (hcd->state != HC_STATE_SUSPENDED ||
920                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
921                 return -EINVAL;
922
923         /* Clear root port wake on bits if wakeup not allowed. */
924         if (!do_wakeup)
925                 xhci_disable_port_wake_on_bits(xhci);
926
927         /* Don't poll the roothubs on bus suspend. */
928         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
929         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
930         del_timer_sync(&hcd->rh_timer);
931         clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
932         del_timer_sync(&xhci->shared_hcd->rh_timer);
933
934         if (xhci->quirks & XHCI_SUSPEND_DELAY)
935                 usleep_range(1000, 1500);
936
937         spin_lock_irq(&xhci->lock);
938         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
939         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
940         /* step 1: stop endpoint */
941         /* skipped assuming that port suspend has done */
942
943         /* step 2: clear Run/Stop bit */
944         command = readl(&xhci->op_regs->command);
945         command &= ~CMD_RUN;
946         writel(command, &xhci->op_regs->command);
947
948         /* Some chips from Fresco Logic need an extraordinary delay */
949         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
950
951         if (xhci_handshake(&xhci->op_regs->status,
952                       STS_HALT, STS_HALT, delay)) {
953                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
954                 spin_unlock_irq(&xhci->lock);
955                 return -ETIMEDOUT;
956         }
957         xhci_clear_command_ring(xhci);
958
959         /* step 3: save registers */
960         xhci_save_registers(xhci);
961
962         /* step 4: set CSS flag */
963         command = readl(&xhci->op_regs->command);
964         command |= CMD_CSS;
965         writel(command, &xhci->op_regs->command);
966         xhci->broken_suspend = 0;
967         if (xhci_handshake(&xhci->op_regs->status,
968                                 STS_SAVE, 0, 20 * 1000)) {
969         /*
970          * AMD SNPS xHC 3.0 occasionally does not clear the
971          * SSS bit of USBSTS and when driver tries to poll
972          * to see if the xHC clears BIT(8) which never happens
973          * and driver assumes that controller is not responding
974          * and times out. To workaround this, its good to check
975          * if SRE and HCE bits are not set (as per xhci
976          * Section 5.4.2) and bypass the timeout.
977          */
978                 res = readl(&xhci->op_regs->status);
979                 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
980                     (((res & STS_SRE) == 0) &&
981                                 ((res & STS_HCE) == 0))) {
982                         xhci->broken_suspend = 1;
983                 } else {
984                         xhci_warn(xhci, "WARN: xHC save state timeout\n");
985                         spin_unlock_irq(&xhci->lock);
986                         return -ETIMEDOUT;
987                 }
988         }
989         spin_unlock_irq(&xhci->lock);
990
991         /*
992          * Deleting Compliance Mode Recovery Timer because the xHCI Host
993          * is about to be suspended.
994          */
995         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
996                         (!(xhci_all_ports_seen_u0(xhci)))) {
997                 del_timer_sync(&xhci->comp_mode_recovery_timer);
998                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
999                                 "%s: compliance mode recovery timer deleted",
1000                                 __func__);
1001         }
1002
1003         /* step 5: remove core well power */
1004         /* synchronize irq when using MSI-X */
1005         xhci_msix_sync_irqs(xhci);
1006
1007         return rc;
1008 }
1009 EXPORT_SYMBOL_GPL(xhci_suspend);
1010
1011 /*
1012  * start xHC (not bus-specific)
1013  *
1014  * This is called when the machine transition from S3/S4 mode.
1015  *
1016  */
1017 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1018 {
1019         u32                     command, temp = 0;
1020         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
1021         struct usb_hcd          *secondary_hcd;
1022         int                     retval = 0;
1023         bool                    comp_timer_running = false;
1024         bool                    pending_portevent = false;
1025
1026         if (!hcd->state)
1027                 return 0;
1028
1029         /* Wait a bit if either of the roothubs need to settle from the
1030          * transition into bus suspend.
1031          */
1032         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
1033                         time_before(jiffies,
1034                                 xhci->bus_state[1].next_statechange))
1035                 msleep(100);
1036
1037         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1038         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1039
1040         spin_lock_irq(&xhci->lock);
1041         if ((xhci->quirks & XHCI_RESET_ON_RESUME) || xhci->broken_suspend)
1042                 hibernated = true;
1043
1044         if (!hibernated) {
1045                 /*
1046                  * Some controllers might lose power during suspend, so wait
1047                  * for controller not ready bit to clear, just as in xHC init.
1048                  */
1049                 retval = xhci_handshake(&xhci->op_regs->status,
1050                                         STS_CNR, 0, 10 * 1000 * 1000);
1051                 if (retval) {
1052                         xhci_warn(xhci, "Controller not ready at resume %d\n",
1053                                   retval);
1054                         spin_unlock_irq(&xhci->lock);
1055                         return retval;
1056                 }
1057                 /* step 1: restore register */
1058                 xhci_restore_registers(xhci);
1059                 /* step 2: initialize command ring buffer */
1060                 xhci_set_cmd_ring_deq(xhci);
1061                 /* step 3: restore state and start state*/
1062                 /* step 3: set CRS flag */
1063                 command = readl(&xhci->op_regs->command);
1064                 command |= CMD_CRS;
1065                 writel(command, &xhci->op_regs->command);
1066                 /*
1067                  * Some controllers take up to 55+ ms to complete the controller
1068                  * restore so setting the timeout to 100ms. Xhci specification
1069                  * doesn't mention any timeout value.
1070                  */
1071                 if (xhci_handshake(&xhci->op_regs->status,
1072                               STS_RESTORE, 0, 100 * 1000)) {
1073                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1074                         spin_unlock_irq(&xhci->lock);
1075                         return -ETIMEDOUT;
1076                 }
1077                 temp = readl(&xhci->op_regs->status);
1078         }
1079
1080         /* If restore operation fails, re-initialize the HC during resume */
1081         if ((temp & STS_SRE) || hibernated) {
1082
1083                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1084                                 !(xhci_all_ports_seen_u0(xhci))) {
1085                         del_timer_sync(&xhci->comp_mode_recovery_timer);
1086                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1087                                 "Compliance Mode Recovery Timer deleted!");
1088                 }
1089
1090                 /* Let the USB core know _both_ roothubs lost power. */
1091                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1092                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1093
1094                 xhci_dbg(xhci, "Stop HCD\n");
1095                 xhci_halt(xhci);
1096                 xhci_reset(xhci);
1097                 spin_unlock_irq(&xhci->lock);
1098                 xhci_cleanup_msix(xhci);
1099
1100                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1101                 temp = readl(&xhci->op_regs->status);
1102                 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1103                 temp = readl(&xhci->ir_set->irq_pending);
1104                 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1105                 xhci_print_ir_set(xhci, 0);
1106
1107                 xhci_dbg(xhci, "cleaning up memory\n");
1108                 xhci_mem_cleanup(xhci);
1109                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1110                             readl(&xhci->op_regs->status));
1111
1112                 /* USB core calls the PCI reinit and start functions twice:
1113                  * first with the primary HCD, and then with the secondary HCD.
1114                  * If we don't do the same, the host will never be started.
1115                  */
1116                 if (!usb_hcd_is_primary_hcd(hcd))
1117                         secondary_hcd = hcd;
1118                 else
1119                         secondary_hcd = xhci->shared_hcd;
1120
1121                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1122                 retval = xhci_init(hcd->primary_hcd);
1123                 if (retval)
1124                         return retval;
1125                 comp_timer_running = true;
1126
1127                 xhci_dbg(xhci, "Start the primary HCD\n");
1128                 retval = xhci_run(hcd->primary_hcd);
1129                 if (!retval) {
1130                         xhci_dbg(xhci, "Start the secondary HCD\n");
1131                         retval = xhci_run(secondary_hcd);
1132                 }
1133                 hcd->state = HC_STATE_SUSPENDED;
1134                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1135                 goto done;
1136         }
1137
1138         /* step 4: set Run/Stop bit */
1139         command = readl(&xhci->op_regs->command);
1140         command |= CMD_RUN;
1141         writel(command, &xhci->op_regs->command);
1142         xhci_handshake(&xhci->op_regs->status, STS_HALT,
1143                   0, 250 * 1000);
1144
1145         /* step 5: walk topology and initialize portsc,
1146          * portpmsc and portli
1147          */
1148         /* this is done in bus_resume */
1149
1150         /* step 6: restart each of the previously
1151          * Running endpoints by ringing their doorbells
1152          */
1153
1154         spin_unlock_irq(&xhci->lock);
1155
1156  done:
1157         if (retval == 0) {
1158                 /*
1159                  * Resume roothubs only if there are pending events.
1160                  * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1161                  * the first wake signalling failed, give it that chance.
1162                  */
1163                 pending_portevent = xhci_pending_portevent(xhci);
1164                 if (!pending_portevent) {
1165                         msleep(120);
1166                         pending_portevent = xhci_pending_portevent(xhci);
1167                 }
1168
1169                 if (pending_portevent) {
1170                         usb_hcd_resume_root_hub(xhci->shared_hcd);
1171                         usb_hcd_resume_root_hub(hcd);
1172                 }
1173         }
1174         /*
1175          * If system is subject to the Quirk, Compliance Mode Timer needs to
1176          * be re-initialized Always after a system resume. Ports are subject
1177          * to suffer the Compliance Mode issue again. It doesn't matter if
1178          * ports have entered previously to U0 before system's suspension.
1179          */
1180         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1181                 compliance_mode_recovery_timer_init(xhci);
1182
1183         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1184                 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1185
1186         /* Re-enable port polling. */
1187         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1188         set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1189         usb_hcd_poll_rh_status(xhci->shared_hcd);
1190         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1191         usb_hcd_poll_rh_status(hcd);
1192
1193         return retval;
1194 }
1195 EXPORT_SYMBOL_GPL(xhci_resume);
1196 #endif  /* CONFIG_PM */
1197
1198 /*-------------------------------------------------------------------------*/
1199
1200 /**
1201  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1202  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1203  * value to right shift 1 for the bitmask.
1204  *
1205  * Index  = (epnum * 2) + direction - 1,
1206  * where direction = 0 for OUT, 1 for IN.
1207  * For control endpoints, the IN index is used (OUT index is unused), so
1208  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1209  */
1210 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1211 {
1212         unsigned int index;
1213         if (usb_endpoint_xfer_control(desc))
1214                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1215         else
1216                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1217                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1218         return index;
1219 }
1220
1221 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1222  * address from the XHCI endpoint index.
1223  */
1224 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1225 {
1226         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1227         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1228         return direction | number;
1229 }
1230
1231 /* Find the flag for this endpoint (for use in the control context).  Use the
1232  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1233  * bit 1, etc.
1234  */
1235 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1236 {
1237         return 1 << (xhci_get_endpoint_index(desc) + 1);
1238 }
1239
1240 /* Find the flag for this endpoint (for use in the control context).  Use the
1241  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1242  * bit 1, etc.
1243  */
1244 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1245 {
1246         return 1 << (ep_index + 1);
1247 }
1248
1249 /* Compute the last valid endpoint context index.  Basically, this is the
1250  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1251  * we find the most significant bit set in the added contexts flags.
1252  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1253  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1254  */
1255 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1256 {
1257         return fls(added_ctxs) - 1;
1258 }
1259
1260 /* Returns 1 if the arguments are OK;
1261  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1262  */
1263 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1264                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1265                 const char *func) {
1266         struct xhci_hcd *xhci;
1267         struct xhci_virt_device *virt_dev;
1268
1269         if (!hcd || (check_ep && !ep) || !udev) {
1270                 pr_debug("xHCI %s called with invalid args\n", func);
1271                 return -EINVAL;
1272         }
1273         if (!udev->parent) {
1274                 pr_debug("xHCI %s called for root hub\n", func);
1275                 return 0;
1276         }
1277
1278         xhci = hcd_to_xhci(hcd);
1279         if (check_virt_dev) {
1280                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1281                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1282                                         func);
1283                         return -EINVAL;
1284                 }
1285
1286                 virt_dev = xhci->devs[udev->slot_id];
1287                 if (virt_dev->udev != udev) {
1288                         xhci_dbg(xhci, "xHCI %s called with udev and "
1289                                           "virt_dev does not match\n", func);
1290                         return -EINVAL;
1291                 }
1292         }
1293
1294         if (xhci->xhc_state & XHCI_STATE_HALTED)
1295                 return -ENODEV;
1296
1297         return 1;
1298 }
1299
1300 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1301                 struct usb_device *udev, struct xhci_command *command,
1302                 bool ctx_change, bool must_succeed);
1303
1304 /*
1305  * Full speed devices may have a max packet size greater than 8 bytes, but the
1306  * USB core doesn't know that until it reads the first 8 bytes of the
1307  * descriptor.  If the usb_device's max packet size changes after that point,
1308  * we need to issue an evaluate context command and wait on it.
1309  */
1310 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1311                 unsigned int ep_index, struct urb *urb, gfp_t mem_flags)
1312 {
1313         struct xhci_container_ctx *out_ctx;
1314         struct xhci_input_control_ctx *ctrl_ctx;
1315         struct xhci_ep_ctx *ep_ctx;
1316         struct xhci_command *command;
1317         int max_packet_size;
1318         int hw_max_packet_size;
1319         int ret = 0;
1320
1321         out_ctx = xhci->devs[slot_id]->out_ctx;
1322         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1323         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1324         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1325         if (hw_max_packet_size != max_packet_size) {
1326                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1327                                 "Max Packet Size for ep 0 changed.");
1328                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1329                                 "Max packet size in usb_device = %d",
1330                                 max_packet_size);
1331                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1332                                 "Max packet size in xHCI HW = %d",
1333                                 hw_max_packet_size);
1334                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1335                                 "Issuing evaluate context command.");
1336
1337                 /* Set up the input context flags for the command */
1338                 /* FIXME: This won't work if a non-default control endpoint
1339                  * changes max packet sizes.
1340                  */
1341
1342                 command = xhci_alloc_command(xhci, false, true, mem_flags);
1343                 if (!command)
1344                         return -ENOMEM;
1345
1346                 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1347                 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1348                 if (!ctrl_ctx) {
1349                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1350                                         __func__);
1351                         ret = -ENOMEM;
1352                         goto command_cleanup;
1353                 }
1354                 /* Set up the modified control endpoint 0 */
1355                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1356                                 xhci->devs[slot_id]->out_ctx, ep_index);
1357
1358                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1359                 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1360                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1361                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1362
1363                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1364                 ctrl_ctx->drop_flags = 0;
1365
1366                 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1367                                 true, false);
1368
1369                 /* Clean up the input context for later use by bandwidth
1370                  * functions.
1371                  */
1372                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1373 command_cleanup:
1374                 kfree(command->completion);
1375                 kfree(command);
1376         }
1377         return ret;
1378 }
1379
1380 /*
1381  * non-error returns are a promise to giveback() the urb later
1382  * we drop ownership so next owner (or urb unlink) can get it
1383  */
1384 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1385 {
1386         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1387         unsigned long flags;
1388         int ret = 0;
1389         unsigned int slot_id, ep_index, ep_state;
1390         struct urb_priv *urb_priv;
1391         int num_tds;
1392
1393         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1394                                         true, true, __func__) <= 0)
1395                 return -EINVAL;
1396
1397         slot_id = urb->dev->slot_id;
1398         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1399
1400         if (!HCD_HW_ACCESSIBLE(hcd)) {
1401                 if (!in_interrupt())
1402                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1403                 return -ESHUTDOWN;
1404         }
1405
1406         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1407                 num_tds = urb->number_of_packets;
1408         else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1409             urb->transfer_buffer_length > 0 &&
1410             urb->transfer_flags & URB_ZERO_PACKET &&
1411             !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1412                 num_tds = 2;
1413         else
1414                 num_tds = 1;
1415
1416         urb_priv = kzalloc(sizeof(struct urb_priv) +
1417                            num_tds * sizeof(struct xhci_td), mem_flags);
1418         if (!urb_priv)
1419                 return -ENOMEM;
1420
1421         urb_priv->num_tds = num_tds;
1422         urb_priv->num_tds_done = 0;
1423         urb->hcpriv = urb_priv;
1424
1425         trace_xhci_urb_enqueue(urb);
1426
1427         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1428                 /* Check to see if the max packet size for the default control
1429                  * endpoint changed during FS device enumeration
1430                  */
1431                 if (urb->dev->speed == USB_SPEED_FULL) {
1432                         ret = xhci_check_maxpacket(xhci, slot_id,
1433                                         ep_index, urb, mem_flags);
1434                         if (ret < 0) {
1435                                 xhci_urb_free_priv(urb_priv);
1436                                 urb->hcpriv = NULL;
1437                                 return ret;
1438                         }
1439                 }
1440         }
1441
1442         spin_lock_irqsave(&xhci->lock, flags);
1443
1444         if (xhci->xhc_state & XHCI_STATE_DYING) {
1445                 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1446                          urb->ep->desc.bEndpointAddress, urb);
1447                 ret = -ESHUTDOWN;
1448                 goto free_priv;
1449         }
1450
1451         switch (usb_endpoint_type(&urb->ep->desc)) {
1452
1453         case USB_ENDPOINT_XFER_CONTROL:
1454                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1455                                          slot_id, ep_index);
1456                 break;
1457         case USB_ENDPOINT_XFER_BULK:
1458                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
1459                 if (ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1460                         xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1461                                   ep_state);
1462                         ret = -EINVAL;
1463                         break;
1464                 }
1465                 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1466                                          slot_id, ep_index);
1467                 break;
1468
1469
1470         case USB_ENDPOINT_XFER_INT:
1471                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1472                                 slot_id, ep_index);
1473                 break;
1474
1475         case USB_ENDPOINT_XFER_ISOC:
1476                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1477                                 slot_id, ep_index);
1478         }
1479
1480         if (ret) {
1481 free_priv:
1482                 xhci_urb_free_priv(urb_priv);
1483                 urb->hcpriv = NULL;
1484         }
1485         spin_unlock_irqrestore(&xhci->lock, flags);
1486         return ret;
1487 }
1488
1489 /*
1490  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1491  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1492  * should pick up where it left off in the TD, unless a Set Transfer Ring
1493  * Dequeue Pointer is issued.
1494  *
1495  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1496  * the ring.  Since the ring is a contiguous structure, they can't be physically
1497  * removed.  Instead, there are two options:
1498  *
1499  *  1) If the HC is in the middle of processing the URB to be canceled, we
1500  *     simply move the ring's dequeue pointer past those TRBs using the Set
1501  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1502  *     when drivers timeout on the last submitted URB and attempt to cancel.
1503  *
1504  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1505  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1506  *     HC will need to invalidate the any TRBs it has cached after the stop
1507  *     endpoint command, as noted in the xHCI 0.95 errata.
1508  *
1509  *  3) The TD may have completed by the time the Stop Endpoint Command
1510  *     completes, so software needs to handle that case too.
1511  *
1512  * This function should protect against the TD enqueueing code ringing the
1513  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1514  * It also needs to account for multiple cancellations on happening at the same
1515  * time for the same endpoint.
1516  *
1517  * Note that this function can be called in any context, or so says
1518  * usb_hcd_unlink_urb()
1519  */
1520 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1521 {
1522         unsigned long flags;
1523         int ret, i;
1524         u32 temp;
1525         struct xhci_hcd *xhci;
1526         struct urb_priv *urb_priv;
1527         struct xhci_td *td;
1528         unsigned int ep_index;
1529         struct xhci_ring *ep_ring;
1530         struct xhci_virt_ep *ep;
1531         struct xhci_command *command;
1532         struct xhci_virt_device *vdev;
1533
1534         xhci = hcd_to_xhci(hcd);
1535         spin_lock_irqsave(&xhci->lock, flags);
1536
1537         trace_xhci_urb_dequeue(urb);
1538
1539         /* Make sure the URB hasn't completed or been unlinked already */
1540         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1541         if (ret)
1542                 goto done;
1543
1544         /* give back URB now if we can't queue it for cancel */
1545         vdev = xhci->devs[urb->dev->slot_id];
1546         urb_priv = urb->hcpriv;
1547         if (!vdev || !urb_priv)
1548                 goto err_giveback;
1549
1550         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1551         ep = &vdev->eps[ep_index];
1552         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1553         if (!ep || !ep_ring)
1554                 goto err_giveback;
1555
1556         /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1557         temp = readl(&xhci->op_regs->status);
1558         if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1559                 xhci_hc_died(xhci);
1560                 goto done;
1561         }
1562
1563         /*
1564          * check ring is not re-allocated since URB was enqueued. If it is, then
1565          * make sure none of the ring related pointers in this URB private data
1566          * are touched, such as td_list, otherwise we overwrite freed data
1567          */
1568         if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1569                 xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1570                 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1571                         td = &urb_priv->td[i];
1572                         if (!list_empty(&td->cancelled_td_list))
1573                                 list_del_init(&td->cancelled_td_list);
1574                 }
1575                 goto err_giveback;
1576         }
1577
1578         if (xhci->xhc_state & XHCI_STATE_HALTED) {
1579                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1580                                 "HC halted, freeing TD manually.");
1581                 for (i = urb_priv->num_tds_done;
1582                      i < urb_priv->num_tds;
1583                      i++) {
1584                         td = &urb_priv->td[i];
1585                         if (!list_empty(&td->td_list))
1586                                 list_del_init(&td->td_list);
1587                         if (!list_empty(&td->cancelled_td_list))
1588                                 list_del_init(&td->cancelled_td_list);
1589                 }
1590                 goto err_giveback;
1591         }
1592
1593         i = urb_priv->num_tds_done;
1594         if (i < urb_priv->num_tds)
1595                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1596                                 "Cancel URB %p, dev %s, ep 0x%x, "
1597                                 "starting at offset 0x%llx",
1598                                 urb, urb->dev->devpath,
1599                                 urb->ep->desc.bEndpointAddress,
1600                                 (unsigned long long) xhci_trb_virt_to_dma(
1601                                         urb_priv->td[i].start_seg,
1602                                         urb_priv->td[i].first_trb));
1603
1604         for (; i < urb_priv->num_tds; i++) {
1605                 td = &urb_priv->td[i];
1606                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1607         }
1608
1609         /* Queue a stop endpoint command, but only if this is
1610          * the first cancellation to be handled.
1611          */
1612         if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1613                 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1614                 if (!command) {
1615                         ret = -ENOMEM;
1616                         goto done;
1617                 }
1618                 ep->ep_state |= EP_STOP_CMD_PENDING;
1619                 ep->stop_cmd_timer.expires = jiffies +
1620                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1621                 add_timer(&ep->stop_cmd_timer);
1622                 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1623                                          ep_index, 0);
1624                 xhci_ring_cmd_db(xhci);
1625         }
1626 done:
1627         spin_unlock_irqrestore(&xhci->lock, flags);
1628         return ret;
1629
1630 err_giveback:
1631         if (urb_priv)
1632                 xhci_urb_free_priv(urb_priv);
1633         usb_hcd_unlink_urb_from_ep(hcd, urb);
1634         spin_unlock_irqrestore(&xhci->lock, flags);
1635         usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1636         return ret;
1637 }
1638
1639 /* Drop an endpoint from a new bandwidth configuration for this device.
1640  * Only one call to this function is allowed per endpoint before
1641  * check_bandwidth() or reset_bandwidth() must be called.
1642  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1643  * add the endpoint to the schedule with possibly new parameters denoted by a
1644  * different endpoint descriptor in usb_host_endpoint.
1645  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1646  * not allowed.
1647  *
1648  * The USB core will not allow URBs to be queued to an endpoint that is being
1649  * disabled, so there's no need for mutual exclusion to protect
1650  * the xhci->devs[slot_id] structure.
1651  */
1652 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1653                 struct usb_host_endpoint *ep)
1654 {
1655         struct xhci_hcd *xhci;
1656         struct xhci_container_ctx *in_ctx, *out_ctx;
1657         struct xhci_input_control_ctx *ctrl_ctx;
1658         unsigned int ep_index;
1659         struct xhci_ep_ctx *ep_ctx;
1660         u32 drop_flag;
1661         u32 new_add_flags, new_drop_flags;
1662         int ret;
1663
1664         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1665         if (ret <= 0)
1666                 return ret;
1667         xhci = hcd_to_xhci(hcd);
1668         if (xhci->xhc_state & XHCI_STATE_DYING)
1669                 return -ENODEV;
1670
1671         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1672         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1673         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1674                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1675                                 __func__, drop_flag);
1676                 return 0;
1677         }
1678
1679         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1680         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1681         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1682         if (!ctrl_ctx) {
1683                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1684                                 __func__);
1685                 return 0;
1686         }
1687
1688         ep_index = xhci_get_endpoint_index(&ep->desc);
1689         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1690         /* If the HC already knows the endpoint is disabled,
1691          * or the HCD has noted it is disabled, ignore this request
1692          */
1693         if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1694             le32_to_cpu(ctrl_ctx->drop_flags) &
1695             xhci_get_endpoint_flag(&ep->desc)) {
1696                 /* Do not warn when called after a usb_device_reset */
1697                 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1698                         xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1699                                   __func__, ep);
1700                 return 0;
1701         }
1702
1703         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1704         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1705
1706         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1707         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1708
1709         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1710
1711         if (xhci->quirks & XHCI_MTK_HOST)
1712                 xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1713
1714         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1715                         (unsigned int) ep->desc.bEndpointAddress,
1716                         udev->slot_id,
1717                         (unsigned int) new_drop_flags,
1718                         (unsigned int) new_add_flags);
1719         return 0;
1720 }
1721
1722 /* Add an endpoint to a new possible bandwidth configuration for this device.
1723  * Only one call to this function is allowed per endpoint before
1724  * check_bandwidth() or reset_bandwidth() must be called.
1725  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1726  * add the endpoint to the schedule with possibly new parameters denoted by a
1727  * different endpoint descriptor in usb_host_endpoint.
1728  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1729  * not allowed.
1730  *
1731  * The USB core will not allow URBs to be queued to an endpoint until the
1732  * configuration or alt setting is installed in the device, so there's no need
1733  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1734  */
1735 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1736                 struct usb_host_endpoint *ep)
1737 {
1738         struct xhci_hcd *xhci;
1739         struct xhci_container_ctx *in_ctx;
1740         unsigned int ep_index;
1741         struct xhci_input_control_ctx *ctrl_ctx;
1742         u32 added_ctxs;
1743         u32 new_add_flags, new_drop_flags;
1744         struct xhci_virt_device *virt_dev;
1745         int ret = 0;
1746
1747         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1748         if (ret <= 0) {
1749                 /* So we won't queue a reset ep command for a root hub */
1750                 ep->hcpriv = NULL;
1751                 return ret;
1752         }
1753         xhci = hcd_to_xhci(hcd);
1754         if (xhci->xhc_state & XHCI_STATE_DYING)
1755                 return -ENODEV;
1756
1757         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1758         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1759                 /* FIXME when we have to issue an evaluate endpoint command to
1760                  * deal with ep0 max packet size changing once we get the
1761                  * descriptors
1762                  */
1763                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1764                                 __func__, added_ctxs);
1765                 return 0;
1766         }
1767
1768         virt_dev = xhci->devs[udev->slot_id];
1769         in_ctx = virt_dev->in_ctx;
1770         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1771         if (!ctrl_ctx) {
1772                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1773                                 __func__);
1774                 return 0;
1775         }
1776
1777         ep_index = xhci_get_endpoint_index(&ep->desc);
1778         /* If this endpoint is already in use, and the upper layers are trying
1779          * to add it again without dropping it, reject the addition.
1780          */
1781         if (virt_dev->eps[ep_index].ring &&
1782                         !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1783                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1784                                 "without dropping it.\n",
1785                                 (unsigned int) ep->desc.bEndpointAddress);
1786                 return -EINVAL;
1787         }
1788
1789         /* If the HCD has already noted the endpoint is enabled,
1790          * ignore this request.
1791          */
1792         if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1793                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1794                                 __func__, ep);
1795                 return 0;
1796         }
1797
1798         /*
1799          * Configuration and alternate setting changes must be done in
1800          * process context, not interrupt context (or so documenation
1801          * for usb_set_interface() and usb_set_configuration() claim).
1802          */
1803         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1804                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1805                                 __func__, ep->desc.bEndpointAddress);
1806                 return -ENOMEM;
1807         }
1808
1809         if (xhci->quirks & XHCI_MTK_HOST) {
1810                 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1811                 if (ret < 0) {
1812                         xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring);
1813                         virt_dev->eps[ep_index].new_ring = NULL;
1814                         return ret;
1815                 }
1816         }
1817
1818         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1819         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1820
1821         /* If xhci_endpoint_disable() was called for this endpoint, but the
1822          * xHC hasn't been notified yet through the check_bandwidth() call,
1823          * this re-adds a new state for the endpoint from the new endpoint
1824          * descriptors.  We must drop and re-add this endpoint, so we leave the
1825          * drop flags alone.
1826          */
1827         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1828
1829         /* Store the usb_device pointer for later use */
1830         ep->hcpriv = udev;
1831
1832         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1833                         (unsigned int) ep->desc.bEndpointAddress,
1834                         udev->slot_id,
1835                         (unsigned int) new_drop_flags,
1836                         (unsigned int) new_add_flags);
1837         return 0;
1838 }
1839
1840 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1841 {
1842         struct xhci_input_control_ctx *ctrl_ctx;
1843         struct xhci_ep_ctx *ep_ctx;
1844         struct xhci_slot_ctx *slot_ctx;
1845         int i;
1846
1847         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1848         if (!ctrl_ctx) {
1849                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1850                                 __func__);
1851                 return;
1852         }
1853
1854         /* When a device's add flag and drop flag are zero, any subsequent
1855          * configure endpoint command will leave that endpoint's state
1856          * untouched.  Make sure we don't leave any old state in the input
1857          * endpoint contexts.
1858          */
1859         ctrl_ctx->drop_flags = 0;
1860         ctrl_ctx->add_flags = 0;
1861         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1862         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1863         /* Endpoint 0 is always valid */
1864         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1865         for (i = 1; i < 31; i++) {
1866                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1867                 ep_ctx->ep_info = 0;
1868                 ep_ctx->ep_info2 = 0;
1869                 ep_ctx->deq = 0;
1870                 ep_ctx->tx_info = 0;
1871         }
1872 }
1873
1874 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1875                 struct usb_device *udev, u32 *cmd_status)
1876 {
1877         int ret;
1878
1879         switch (*cmd_status) {
1880         case COMP_COMMAND_ABORTED:
1881         case COMP_COMMAND_RING_STOPPED:
1882                 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1883                 ret = -ETIME;
1884                 break;
1885         case COMP_RESOURCE_ERROR:
1886                 dev_warn(&udev->dev,
1887                          "Not enough host controller resources for new device state.\n");
1888                 ret = -ENOMEM;
1889                 /* FIXME: can we allocate more resources for the HC? */
1890                 break;
1891         case COMP_BANDWIDTH_ERROR:
1892         case COMP_SECONDARY_BANDWIDTH_ERROR:
1893                 dev_warn(&udev->dev,
1894                          "Not enough bandwidth for new device state.\n");
1895                 ret = -ENOSPC;
1896                 /* FIXME: can we go back to the old state? */
1897                 break;
1898         case COMP_TRB_ERROR:
1899                 /* the HCD set up something wrong */
1900                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1901                                 "add flag = 1, "
1902                                 "and endpoint is not disabled.\n");
1903                 ret = -EINVAL;
1904                 break;
1905         case COMP_INCOMPATIBLE_DEVICE_ERROR:
1906                 dev_warn(&udev->dev,
1907                          "ERROR: Incompatible device for endpoint configure command.\n");
1908                 ret = -ENODEV;
1909                 break;
1910         case COMP_SUCCESS:
1911                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1912                                 "Successful Endpoint Configure command");
1913                 ret = 0;
1914                 break;
1915         default:
1916                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1917                                 *cmd_status);
1918                 ret = -EINVAL;
1919                 break;
1920         }
1921         return ret;
1922 }
1923
1924 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1925                 struct usb_device *udev, u32 *cmd_status)
1926 {
1927         int ret;
1928
1929         switch (*cmd_status) {
1930         case COMP_COMMAND_ABORTED:
1931         case COMP_COMMAND_RING_STOPPED:
1932                 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1933                 ret = -ETIME;
1934                 break;
1935         case COMP_PARAMETER_ERROR:
1936                 dev_warn(&udev->dev,
1937                          "WARN: xHCI driver setup invalid evaluate context command.\n");
1938                 ret = -EINVAL;
1939                 break;
1940         case COMP_SLOT_NOT_ENABLED_ERROR:
1941                 dev_warn(&udev->dev,
1942                         "WARN: slot not enabled for evaluate context command.\n");
1943                 ret = -EINVAL;
1944                 break;
1945         case COMP_CONTEXT_STATE_ERROR:
1946                 dev_warn(&udev->dev,
1947                         "WARN: invalid context state for evaluate context command.\n");
1948                 ret = -EINVAL;
1949                 break;
1950         case COMP_INCOMPATIBLE_DEVICE_ERROR:
1951                 dev_warn(&udev->dev,
1952                         "ERROR: Incompatible device for evaluate context command.\n");
1953                 ret = -ENODEV;
1954                 break;
1955         case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
1956                 /* Max Exit Latency too large error */
1957                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1958                 ret = -EINVAL;
1959                 break;
1960         case COMP_SUCCESS:
1961                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1962                                 "Successful evaluate context command");
1963                 ret = 0;
1964                 break;
1965         default:
1966                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1967                         *cmd_status);
1968                 ret = -EINVAL;
1969                 break;
1970         }
1971         return ret;
1972 }
1973
1974 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1975                 struct xhci_input_control_ctx *ctrl_ctx)
1976 {
1977         u32 valid_add_flags;
1978         u32 valid_drop_flags;
1979
1980         /* Ignore the slot flag (bit 0), and the default control endpoint flag
1981          * (bit 1).  The default control endpoint is added during the Address
1982          * Device command and is never removed until the slot is disabled.
1983          */
1984         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1985         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1986
1987         /* Use hweight32 to count the number of ones in the add flags, or
1988          * number of endpoints added.  Don't count endpoints that are changed
1989          * (both added and dropped).
1990          */
1991         return hweight32(valid_add_flags) -
1992                 hweight32(valid_add_flags & valid_drop_flags);
1993 }
1994
1995 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1996                 struct xhci_input_control_ctx *ctrl_ctx)
1997 {
1998         u32 valid_add_flags;
1999         u32 valid_drop_flags;
2000
2001         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2002         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2003
2004         return hweight32(valid_drop_flags) -
2005                 hweight32(valid_add_flags & valid_drop_flags);
2006 }
2007
2008 /*
2009  * We need to reserve the new number of endpoints before the configure endpoint
2010  * command completes.  We can't subtract the dropped endpoints from the number
2011  * of active endpoints until the command completes because we can oversubscribe
2012  * the host in this case:
2013  *
2014  *  - the first configure endpoint command drops more endpoints than it adds
2015  *  - a second configure endpoint command that adds more endpoints is queued
2016  *  - the first configure endpoint command fails, so the config is unchanged
2017  *  - the second command may succeed, even though there isn't enough resources
2018  *
2019  * Must be called with xhci->lock held.
2020  */
2021 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2022                 struct xhci_input_control_ctx *ctrl_ctx)
2023 {
2024         u32 added_eps;
2025
2026         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2027         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2028                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2029                                 "Not enough ep ctxs: "
2030                                 "%u active, need to add %u, limit is %u.",
2031                                 xhci->num_active_eps, added_eps,
2032                                 xhci->limit_active_eps);
2033                 return -ENOMEM;
2034         }
2035         xhci->num_active_eps += added_eps;
2036         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2037                         "Adding %u ep ctxs, %u now active.", added_eps,
2038                         xhci->num_active_eps);
2039         return 0;
2040 }
2041
2042 /*
2043  * The configure endpoint was failed by the xHC for some other reason, so we
2044  * need to revert the resources that failed configuration would have used.
2045  *
2046  * Must be called with xhci->lock held.
2047  */
2048 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2049                 struct xhci_input_control_ctx *ctrl_ctx)
2050 {
2051         u32 num_failed_eps;
2052
2053         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2054         xhci->num_active_eps -= num_failed_eps;
2055         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2056                         "Removing %u failed ep ctxs, %u now active.",
2057                         num_failed_eps,
2058                         xhci->num_active_eps);
2059 }
2060
2061 /*
2062  * Now that the command has completed, clean up the active endpoint count by
2063  * subtracting out the endpoints that were dropped (but not changed).
2064  *
2065  * Must be called with xhci->lock held.
2066  */
2067 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2068                 struct xhci_input_control_ctx *ctrl_ctx)
2069 {
2070         u32 num_dropped_eps;
2071
2072         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2073         xhci->num_active_eps -= num_dropped_eps;
2074         if (num_dropped_eps)
2075                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2076                                 "Removing %u dropped ep ctxs, %u now active.",
2077                                 num_dropped_eps,
2078                                 xhci->num_active_eps);
2079 }
2080
2081 static unsigned int xhci_get_block_size(struct usb_device *udev)
2082 {
2083         switch (udev->speed) {
2084         case USB_SPEED_LOW:
2085         case USB_SPEED_FULL:
2086                 return FS_BLOCK;
2087         case USB_SPEED_HIGH:
2088                 return HS_BLOCK;
2089         case USB_SPEED_SUPER:
2090         case USB_SPEED_SUPER_PLUS:
2091                 return SS_BLOCK;
2092         case USB_SPEED_UNKNOWN:
2093         case USB_SPEED_WIRELESS:
2094         default:
2095                 /* Should never happen */
2096                 return 1;
2097         }
2098 }
2099
2100 static unsigned int
2101 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2102 {
2103         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2104                 return LS_OVERHEAD;
2105         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2106                 return FS_OVERHEAD;
2107         return HS_OVERHEAD;
2108 }
2109
2110 /* If we are changing a LS/FS device under a HS hub,
2111  * make sure (if we are activating a new TT) that the HS bus has enough
2112  * bandwidth for this new TT.
2113  */
2114 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2115                 struct xhci_virt_device *virt_dev,
2116                 int old_active_eps)
2117 {
2118         struct xhci_interval_bw_table *bw_table;
2119         struct xhci_tt_bw_info *tt_info;
2120
2121         /* Find the bandwidth table for the root port this TT is attached to. */
2122         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2123         tt_info = virt_dev->tt_info;
2124         /* If this TT already had active endpoints, the bandwidth for this TT
2125          * has already been added.  Removing all periodic endpoints (and thus
2126          * making the TT enactive) will only decrease the bandwidth used.
2127          */
2128         if (old_active_eps)
2129                 return 0;
2130         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2131                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2132                         return -ENOMEM;
2133                 return 0;
2134         }
2135         /* Not sure why we would have no new active endpoints...
2136          *
2137          * Maybe because of an Evaluate Context change for a hub update or a
2138          * control endpoint 0 max packet size change?
2139          * FIXME: skip the bandwidth calculation in that case.
2140          */
2141         return 0;
2142 }
2143
2144 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2145                 struct xhci_virt_device *virt_dev)
2146 {
2147         unsigned int bw_reserved;
2148
2149         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2150         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2151                 return -ENOMEM;
2152
2153         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2154         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2155                 return -ENOMEM;
2156
2157         return 0;
2158 }
2159
2160 /*
2161  * This algorithm is a very conservative estimate of the worst-case scheduling
2162  * scenario for any one interval.  The hardware dynamically schedules the
2163  * packets, so we can't tell which microframe could be the limiting factor in
2164  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2165  *
2166  * Obviously, we can't solve an NP complete problem to find the minimum worst
2167  * case scenario.  Instead, we come up with an estimate that is no less than
2168  * the worst case bandwidth used for any one microframe, but may be an
2169  * over-estimate.
2170  *
2171  * We walk the requirements for each endpoint by interval, starting with the
2172  * smallest interval, and place packets in the schedule where there is only one
2173  * possible way to schedule packets for that interval.  In order to simplify
2174  * this algorithm, we record the largest max packet size for each interval, and
2175  * assume all packets will be that size.
2176  *
2177  * For interval 0, we obviously must schedule all packets for each interval.
2178  * The bandwidth for interval 0 is just the amount of data to be transmitted
2179  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2180  * the number of packets).
2181  *
2182  * For interval 1, we have two possible microframes to schedule those packets
2183  * in.  For this algorithm, if we can schedule the same number of packets for
2184  * each possible scheduling opportunity (each microframe), we will do so.  The
2185  * remaining number of packets will be saved to be transmitted in the gaps in
2186  * the next interval's scheduling sequence.
2187  *
2188  * As we move those remaining packets to be scheduled with interval 2 packets,
2189  * we have to double the number of remaining packets to transmit.  This is
2190  * because the intervals are actually powers of 2, and we would be transmitting
2191  * the previous interval's packets twice in this interval.  We also have to be
2192  * sure that when we look at the largest max packet size for this interval, we
2193  * also look at the largest max packet size for the remaining packets and take
2194  * the greater of the two.
2195  *
2196  * The algorithm continues to evenly distribute packets in each scheduling
2197  * opportunity, and push the remaining packets out, until we get to the last
2198  * interval.  Then those packets and their associated overhead are just added
2199  * to the bandwidth used.
2200  */
2201 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2202                 struct xhci_virt_device *virt_dev,
2203                 int old_active_eps)
2204 {
2205         unsigned int bw_reserved;
2206         unsigned int max_bandwidth;
2207         unsigned int bw_used;
2208         unsigned int block_size;
2209         struct xhci_interval_bw_table *bw_table;
2210         unsigned int packet_size = 0;
2211         unsigned int overhead = 0;
2212         unsigned int packets_transmitted = 0;
2213         unsigned int packets_remaining = 0;
2214         unsigned int i;
2215
2216         if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2217                 return xhci_check_ss_bw(xhci, virt_dev);
2218
2219         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2220                 max_bandwidth = HS_BW_LIMIT;
2221                 /* Convert percent of bus BW reserved to blocks reserved */
2222                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2223         } else {
2224                 max_bandwidth = FS_BW_LIMIT;
2225                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2226         }
2227
2228         bw_table = virt_dev->bw_table;
2229         /* We need to translate the max packet size and max ESIT payloads into
2230          * the units the hardware uses.
2231          */
2232         block_size = xhci_get_block_size(virt_dev->udev);
2233
2234         /* If we are manipulating a LS/FS device under a HS hub, double check
2235          * that the HS bus has enough bandwidth if we are activing a new TT.
2236          */
2237         if (virt_dev->tt_info) {
2238                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2239                                 "Recalculating BW for rootport %u",
2240                                 virt_dev->real_port);
2241                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2242                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2243                                         "newly activated TT.\n");
2244                         return -ENOMEM;
2245                 }
2246                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2247                                 "Recalculating BW for TT slot %u port %u",
2248                                 virt_dev->tt_info->slot_id,
2249                                 virt_dev->tt_info->ttport);
2250         } else {
2251                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2252                                 "Recalculating BW for rootport %u",
2253                                 virt_dev->real_port);
2254         }
2255
2256         /* Add in how much bandwidth will be used for interval zero, or the
2257          * rounded max ESIT payload + number of packets * largest overhead.
2258          */
2259         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2260                 bw_table->interval_bw[0].num_packets *
2261                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2262
2263         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2264                 unsigned int bw_added;
2265                 unsigned int largest_mps;
2266                 unsigned int interval_overhead;
2267
2268                 /*
2269                  * How many packets could we transmit in this interval?
2270                  * If packets didn't fit in the previous interval, we will need
2271                  * to transmit that many packets twice within this interval.
2272                  */
2273                 packets_remaining = 2 * packets_remaining +
2274                         bw_table->interval_bw[i].num_packets;
2275
2276                 /* Find the largest max packet size of this or the previous
2277                  * interval.
2278                  */
2279                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2280                         largest_mps = 0;
2281                 else {
2282                         struct xhci_virt_ep *virt_ep;
2283                         struct list_head *ep_entry;
2284
2285                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2286                         virt_ep = list_entry(ep_entry,
2287                                         struct xhci_virt_ep, bw_endpoint_list);
2288                         /* Convert to blocks, rounding up */
2289                         largest_mps = DIV_ROUND_UP(
2290                                         virt_ep->bw_info.max_packet_size,
2291                                         block_size);
2292                 }
2293                 if (largest_mps > packet_size)
2294                         packet_size = largest_mps;
2295
2296                 /* Use the larger overhead of this or the previous interval. */
2297                 interval_overhead = xhci_get_largest_overhead(
2298                                 &bw_table->interval_bw[i]);
2299                 if (interval_overhead > overhead)
2300                         overhead = interval_overhead;
2301
2302                 /* How many packets can we evenly distribute across
2303                  * (1 << (i + 1)) possible scheduling opportunities?
2304                  */
2305                 packets_transmitted = packets_remaining >> (i + 1);
2306
2307                 /* Add in the bandwidth used for those scheduled packets */
2308                 bw_added = packets_transmitted * (overhead + packet_size);
2309
2310                 /* How many packets do we have remaining to transmit? */
2311                 packets_remaining = packets_remaining % (1 << (i + 1));
2312
2313                 /* What largest max packet size should those packets have? */
2314                 /* If we've transmitted all packets, don't carry over the
2315                  * largest packet size.
2316                  */
2317                 if (packets_remaining == 0) {
2318                         packet_size = 0;
2319                         overhead = 0;
2320                 } else if (packets_transmitted > 0) {
2321                         /* Otherwise if we do have remaining packets, and we've
2322                          * scheduled some packets in this interval, take the
2323                          * largest max packet size from endpoints with this
2324                          * interval.
2325                          */
2326                         packet_size = largest_mps;
2327                         overhead = interval_overhead;
2328                 }
2329                 /* Otherwise carry over packet_size and overhead from the last
2330                  * time we had a remainder.
2331                  */
2332                 bw_used += bw_added;
2333                 if (bw_used > max_bandwidth) {
2334                         xhci_warn(xhci, "Not enough bandwidth. "
2335                                         "Proposed: %u, Max: %u\n",
2336                                 bw_used, max_bandwidth);
2337                         return -ENOMEM;
2338                 }
2339         }
2340         /*
2341          * Ok, we know we have some packets left over after even-handedly
2342          * scheduling interval 15.  We don't know which microframes they will
2343          * fit into, so we over-schedule and say they will be scheduled every
2344          * microframe.
2345          */
2346         if (packets_remaining > 0)
2347                 bw_used += overhead + packet_size;
2348
2349         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2350                 unsigned int port_index = virt_dev->real_port - 1;
2351
2352                 /* OK, we're manipulating a HS device attached to a
2353                  * root port bandwidth domain.  Include the number of active TTs
2354                  * in the bandwidth used.
2355                  */
2356                 bw_used += TT_HS_OVERHEAD *
2357                         xhci->rh_bw[port_index].num_active_tts;
2358         }
2359
2360         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2361                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2362                 "Available: %u " "percent",
2363                 bw_used, max_bandwidth, bw_reserved,
2364                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2365                 max_bandwidth);
2366
2367         bw_used += bw_reserved;
2368         if (bw_used > max_bandwidth) {
2369                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2370                                 bw_used, max_bandwidth);
2371                 return -ENOMEM;
2372         }
2373
2374         bw_table->bw_used = bw_used;
2375         return 0;
2376 }
2377
2378 static bool xhci_is_async_ep(unsigned int ep_type)
2379 {
2380         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2381                                         ep_type != ISOC_IN_EP &&
2382                                         ep_type != INT_IN_EP);
2383 }
2384
2385 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2386 {
2387         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2388 }
2389
2390 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2391 {
2392         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2393
2394         if (ep_bw->ep_interval == 0)
2395                 return SS_OVERHEAD_BURST +
2396                         (ep_bw->mult * ep_bw->num_packets *
2397                                         (SS_OVERHEAD + mps));
2398         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2399                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2400                                 1 << ep_bw->ep_interval);
2401
2402 }
2403
2404 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2405                 struct xhci_bw_info *ep_bw,
2406                 struct xhci_interval_bw_table *bw_table,
2407                 struct usb_device *udev,
2408                 struct xhci_virt_ep *virt_ep,
2409                 struct xhci_tt_bw_info *tt_info)
2410 {
2411         struct xhci_interval_bw *interval_bw;
2412         int normalized_interval;
2413
2414         if (xhci_is_async_ep(ep_bw->type))
2415                 return;
2416
2417         if (udev->speed >= USB_SPEED_SUPER) {
2418                 if (xhci_is_sync_in_ep(ep_bw->type))
2419                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2420                                 xhci_get_ss_bw_consumed(ep_bw);
2421                 else
2422                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2423                                 xhci_get_ss_bw_consumed(ep_bw);
2424                 return;
2425         }
2426
2427         /* SuperSpeed endpoints never get added to intervals in the table, so
2428          * this check is only valid for HS/FS/LS devices.
2429          */
2430         if (list_empty(&virt_ep->bw_endpoint_list))
2431                 return;
2432         /* For LS/FS devices, we need to translate the interval expressed in
2433          * microframes to frames.
2434          */
2435         if (udev->speed == USB_SPEED_HIGH)
2436                 normalized_interval = ep_bw->ep_interval;
2437         else
2438                 normalized_interval = ep_bw->ep_interval - 3;
2439
2440         if (normalized_interval == 0)
2441                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2442         interval_bw = &bw_table->interval_bw[normalized_interval];
2443         interval_bw->num_packets -= ep_bw->num_packets;
2444         switch (udev->speed) {
2445         case USB_SPEED_LOW:
2446                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2447                 break;
2448         case USB_SPEED_FULL:
2449                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2450                 break;
2451         case USB_SPEED_HIGH:
2452                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2453                 break;
2454         case USB_SPEED_SUPER:
2455         case USB_SPEED_SUPER_PLUS:
2456         case USB_SPEED_UNKNOWN:
2457         case USB_SPEED_WIRELESS:
2458                 /* Should never happen because only LS/FS/HS endpoints will get
2459                  * added to the endpoint list.
2460                  */
2461                 return;
2462         }
2463         if (tt_info)
2464                 tt_info->active_eps -= 1;
2465         list_del_init(&virt_ep->bw_endpoint_list);
2466 }
2467
2468 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2469                 struct xhci_bw_info *ep_bw,
2470                 struct xhci_interval_bw_table *bw_table,
2471                 struct usb_device *udev,
2472                 struct xhci_virt_ep *virt_ep,
2473                 struct xhci_tt_bw_info *tt_info)
2474 {
2475         struct xhci_interval_bw *interval_bw;
2476         struct xhci_virt_ep *smaller_ep;
2477         int normalized_interval;
2478
2479         if (xhci_is_async_ep(ep_bw->type))
2480                 return;
2481
2482         if (udev->speed == USB_SPEED_SUPER) {
2483                 if (xhci_is_sync_in_ep(ep_bw->type))
2484                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2485                                 xhci_get_ss_bw_consumed(ep_bw);
2486                 else
2487                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2488                                 xhci_get_ss_bw_consumed(ep_bw);
2489                 return;
2490         }
2491
2492         /* For LS/FS devices, we need to translate the interval expressed in
2493          * microframes to frames.
2494          */
2495         if (udev->speed == USB_SPEED_HIGH)
2496                 normalized_interval = ep_bw->ep_interval;
2497         else
2498                 normalized_interval = ep_bw->ep_interval - 3;
2499
2500         if (normalized_interval == 0)
2501                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2502         interval_bw = &bw_table->interval_bw[normalized_interval];
2503         interval_bw->num_packets += ep_bw->num_packets;
2504         switch (udev->speed) {
2505         case USB_SPEED_LOW:
2506                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2507                 break;
2508         case USB_SPEED_FULL:
2509                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2510                 break;
2511         case USB_SPEED_HIGH:
2512                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2513                 break;
2514         case USB_SPEED_SUPER:
2515         case USB_SPEED_SUPER_PLUS:
2516         case USB_SPEED_UNKNOWN:
2517         case USB_SPEED_WIRELESS:
2518                 /* Should never happen because only LS/FS/HS endpoints will get
2519                  * added to the endpoint list.
2520                  */
2521                 return;
2522         }
2523
2524         if (tt_info)
2525                 tt_info->active_eps += 1;
2526         /* Insert the endpoint into the list, largest max packet size first. */
2527         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2528                         bw_endpoint_list) {
2529                 if (ep_bw->max_packet_size >=
2530                                 smaller_ep->bw_info.max_packet_size) {
2531                         /* Add the new ep before the smaller endpoint */
2532                         list_add_tail(&virt_ep->bw_endpoint_list,
2533                                         &smaller_ep->bw_endpoint_list);
2534                         return;
2535                 }
2536         }
2537         /* Add the new endpoint at the end of the list. */
2538         list_add_tail(&virt_ep->bw_endpoint_list,
2539                         &interval_bw->endpoints);
2540 }
2541
2542 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2543                 struct xhci_virt_device *virt_dev,
2544                 int old_active_eps)
2545 {
2546         struct xhci_root_port_bw_info *rh_bw_info;
2547         if (!virt_dev->tt_info)
2548                 return;
2549
2550         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2551         if (old_active_eps == 0 &&
2552                                 virt_dev->tt_info->active_eps != 0) {
2553                 rh_bw_info->num_active_tts += 1;
2554                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2555         } else if (old_active_eps != 0 &&
2556                                 virt_dev->tt_info->active_eps == 0) {
2557                 rh_bw_info->num_active_tts -= 1;
2558                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2559         }
2560 }
2561
2562 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2563                 struct xhci_virt_device *virt_dev,
2564                 struct xhci_container_ctx *in_ctx)
2565 {
2566         struct xhci_bw_info ep_bw_info[31];
2567         int i;
2568         struct xhci_input_control_ctx *ctrl_ctx;
2569         int old_active_eps = 0;
2570
2571         if (virt_dev->tt_info)
2572                 old_active_eps = virt_dev->tt_info->active_eps;
2573
2574         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2575         if (!ctrl_ctx) {
2576                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2577                                 __func__);
2578                 return -ENOMEM;
2579         }
2580
2581         for (i = 0; i < 31; i++) {
2582                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2583                         continue;
2584
2585                 /* Make a copy of the BW info in case we need to revert this */
2586                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2587                                 sizeof(ep_bw_info[i]));
2588                 /* Drop the endpoint from the interval table if the endpoint is
2589                  * being dropped or changed.
2590                  */
2591                 if (EP_IS_DROPPED(ctrl_ctx, i))
2592                         xhci_drop_ep_from_interval_table(xhci,
2593                                         &virt_dev->eps[i].bw_info,
2594                                         virt_dev->bw_table,
2595                                         virt_dev->udev,
2596                                         &virt_dev->eps[i],
2597                                         virt_dev->tt_info);
2598         }
2599         /* Overwrite the information stored in the endpoints' bw_info */
2600         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2601         for (i = 0; i < 31; i++) {
2602                 /* Add any changed or added endpoints to the interval table */
2603                 if (EP_IS_ADDED(ctrl_ctx, i))
2604                         xhci_add_ep_to_interval_table(xhci,
2605                                         &virt_dev->eps[i].bw_info,
2606                                         virt_dev->bw_table,
2607                                         virt_dev->udev,
2608                                         &virt_dev->eps[i],
2609                                         virt_dev->tt_info);
2610         }
2611
2612         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2613                 /* Ok, this fits in the bandwidth we have.
2614                  * Update the number of active TTs.
2615                  */
2616                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2617                 return 0;
2618         }
2619
2620         /* We don't have enough bandwidth for this, revert the stored info. */
2621         for (i = 0; i < 31; i++) {
2622                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2623                         continue;
2624
2625                 /* Drop the new copies of any added or changed endpoints from
2626                  * the interval table.
2627                  */
2628                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2629                         xhci_drop_ep_from_interval_table(xhci,
2630                                         &virt_dev->eps[i].bw_info,
2631                                         virt_dev->bw_table,
2632                                         virt_dev->udev,
2633                                         &virt_dev->eps[i],
2634                                         virt_dev->tt_info);
2635                 }
2636                 /* Revert the endpoint back to its old information */
2637                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2638                                 sizeof(ep_bw_info[i]));
2639                 /* Add any changed or dropped endpoints back into the table */
2640                 if (EP_IS_DROPPED(ctrl_ctx, i))
2641                         xhci_add_ep_to_interval_table(xhci,
2642                                         &virt_dev->eps[i].bw_info,
2643                                         virt_dev->bw_table,
2644                                         virt_dev->udev,
2645                                         &virt_dev->eps[i],
2646                                         virt_dev->tt_info);
2647         }
2648         return -ENOMEM;
2649 }
2650
2651
2652 /* Issue a configure endpoint command or evaluate context command
2653  * and wait for it to finish.
2654  */
2655 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2656                 struct usb_device *udev,
2657                 struct xhci_command *command,
2658                 bool ctx_change, bool must_succeed)
2659 {
2660         int ret;
2661         unsigned long flags;
2662         struct xhci_input_control_ctx *ctrl_ctx;
2663         struct xhci_virt_device *virt_dev;
2664
2665         if (!command)
2666                 return -EINVAL;
2667
2668         spin_lock_irqsave(&xhci->lock, flags);
2669
2670         if (xhci->xhc_state & XHCI_STATE_DYING) {
2671                 spin_unlock_irqrestore(&xhci->lock, flags);
2672                 return -ESHUTDOWN;
2673         }
2674
2675         virt_dev = xhci->devs[udev->slot_id];
2676
2677         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2678         if (!ctrl_ctx) {
2679                 spin_unlock_irqrestore(&xhci->lock, flags);
2680                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2681                                 __func__);
2682                 return -ENOMEM;
2683         }
2684
2685         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2686                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2687                 spin_unlock_irqrestore(&xhci->lock, flags);
2688                 xhci_warn(xhci, "Not enough host resources, "
2689                                 "active endpoint contexts = %u\n",
2690                                 xhci->num_active_eps);
2691                 return -ENOMEM;
2692         }
2693         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2694             xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2695                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2696                         xhci_free_host_resources(xhci, ctrl_ctx);
2697                 spin_unlock_irqrestore(&xhci->lock, flags);
2698                 xhci_warn(xhci, "Not enough bandwidth\n");
2699                 return -ENOMEM;
2700         }
2701
2702         if (!ctx_change)
2703                 ret = xhci_queue_configure_endpoint(xhci, command,
2704                                 command->in_ctx->dma,
2705                                 udev->slot_id, must_succeed);
2706         else
2707                 ret = xhci_queue_evaluate_context(xhci, command,
2708                                 command->in_ctx->dma,
2709                                 udev->slot_id, must_succeed);
2710         if (ret < 0) {
2711                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2712                         xhci_free_host_resources(xhci, ctrl_ctx);
2713                 spin_unlock_irqrestore(&xhci->lock, flags);
2714                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2715                                 "FIXME allocate a new ring segment");
2716                 return -ENOMEM;
2717         }
2718         xhci_ring_cmd_db(xhci);
2719         spin_unlock_irqrestore(&xhci->lock, flags);
2720
2721         /* Wait for the configure endpoint command to complete */
2722         wait_for_completion(command->completion);
2723
2724         if (!ctx_change)
2725                 ret = xhci_configure_endpoint_result(xhci, udev,
2726                                                      &command->status);
2727         else
2728                 ret = xhci_evaluate_context_result(xhci, udev,
2729                                                    &command->status);
2730
2731         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2732                 spin_lock_irqsave(&xhci->lock, flags);
2733                 /* If the command failed, remove the reserved resources.
2734                  * Otherwise, clean up the estimate to include dropped eps.
2735                  */
2736                 if (ret)
2737                         xhci_free_host_resources(xhci, ctrl_ctx);
2738                 else
2739                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2740                 spin_unlock_irqrestore(&xhci->lock, flags);
2741         }
2742         return ret;
2743 }
2744
2745 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2746         struct xhci_virt_device *vdev, int i)
2747 {
2748         struct xhci_virt_ep *ep = &vdev->eps[i];
2749
2750         if (ep->ep_state & EP_HAS_STREAMS) {
2751                 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2752                                 xhci_get_endpoint_address(i));
2753                 xhci_free_stream_info(xhci, ep->stream_info);
2754                 ep->stream_info = NULL;
2755                 ep->ep_state &= ~EP_HAS_STREAMS;
2756         }
2757 }
2758
2759 /* Called after one or more calls to xhci_add_endpoint() or
2760  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2761  * to call xhci_reset_bandwidth().
2762  *
2763  * Since we are in the middle of changing either configuration or
2764  * installing a new alt setting, the USB core won't allow URBs to be
2765  * enqueued for any endpoint on the old config or interface.  Nothing
2766  * else should be touching the xhci->devs[slot_id] structure, so we
2767  * don't need to take the xhci->lock for manipulating that.
2768  */
2769 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2770 {
2771         int i;
2772         int ret = 0;
2773         struct xhci_hcd *xhci;
2774         struct xhci_virt_device *virt_dev;
2775         struct xhci_input_control_ctx *ctrl_ctx;
2776         struct xhci_slot_ctx *slot_ctx;
2777         struct xhci_command *command;
2778
2779         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2780         if (ret <= 0)
2781                 return ret;
2782         xhci = hcd_to_xhci(hcd);
2783         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2784                 (xhci->xhc_state & XHCI_STATE_REMOVING))
2785                 return -ENODEV;
2786
2787         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2788         virt_dev = xhci->devs[udev->slot_id];
2789
2790         command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2791         if (!command)
2792                 return -ENOMEM;
2793
2794         command->in_ctx = virt_dev->in_ctx;
2795
2796         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2797         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2798         if (!ctrl_ctx) {
2799                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2800                                 __func__);
2801                 ret = -ENOMEM;
2802                 goto command_cleanup;
2803         }
2804         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2805         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2806         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2807
2808         /* Don't issue the command if there's no endpoints to update. */
2809         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2810             ctrl_ctx->drop_flags == 0) {
2811                 ret = 0;
2812                 goto command_cleanup;
2813         }
2814         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2815         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2816         for (i = 31; i >= 1; i--) {
2817                 __le32 le32 = cpu_to_le32(BIT(i));
2818
2819                 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2820                     || (ctrl_ctx->add_flags & le32) || i == 1) {
2821                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2822                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2823                         break;
2824                 }
2825         }
2826
2827         ret = xhci_configure_endpoint(xhci, udev, command,
2828                         false, false);
2829         if (ret)
2830                 /* Callee should call reset_bandwidth() */
2831                 goto command_cleanup;
2832
2833         /* Free any rings that were dropped, but not changed. */
2834         for (i = 1; i < 31; i++) {
2835                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2836                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2837                         xhci_free_endpoint_ring(xhci, virt_dev, i);
2838                         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2839                 }
2840         }
2841         xhci_zero_in_ctx(xhci, virt_dev);
2842         /*
2843          * Install any rings for completely new endpoints or changed endpoints,
2844          * and free any old rings from changed endpoints.
2845          */
2846         for (i = 1; i < 31; i++) {
2847                 if (!virt_dev->eps[i].new_ring)
2848                         continue;
2849                 /* Only free the old ring if it exists.
2850                  * It may not if this is the first add of an endpoint.
2851                  */
2852                 if (virt_dev->eps[i].ring) {
2853                         xhci_free_endpoint_ring(xhci, virt_dev, i);
2854                 }
2855                 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2856                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2857                 virt_dev->eps[i].new_ring = NULL;
2858         }
2859 command_cleanup:
2860         kfree(command->completion);
2861         kfree(command);
2862
2863         return ret;
2864 }
2865
2866 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2867 {
2868         struct xhci_hcd *xhci;
2869         struct xhci_virt_device *virt_dev;
2870         int i, ret;
2871
2872         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2873         if (ret <= 0)
2874                 return;
2875         xhci = hcd_to_xhci(hcd);
2876
2877         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2878         virt_dev = xhci->devs[udev->slot_id];
2879         /* Free any rings allocated for added endpoints */
2880         for (i = 0; i < 31; i++) {
2881                 if (virt_dev->eps[i].new_ring) {
2882                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2883                         virt_dev->eps[i].new_ring = NULL;
2884                 }
2885         }
2886         xhci_zero_in_ctx(xhci, virt_dev);
2887 }
2888
2889 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2890                 struct xhci_container_ctx *in_ctx,
2891                 struct xhci_container_ctx *out_ctx,
2892                 struct xhci_input_control_ctx *ctrl_ctx,
2893                 u32 add_flags, u32 drop_flags)
2894 {
2895         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2896         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2897         xhci_slot_copy(xhci, in_ctx, out_ctx);
2898         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2899 }
2900
2901 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2902                 unsigned int slot_id, unsigned int ep_index,
2903                 struct xhci_dequeue_state *deq_state)
2904 {
2905         struct xhci_input_control_ctx *ctrl_ctx;
2906         struct xhci_container_ctx *in_ctx;
2907         struct xhci_ep_ctx *ep_ctx;
2908         u32 added_ctxs;
2909         dma_addr_t addr;
2910
2911         in_ctx = xhci->devs[slot_id]->in_ctx;
2912         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2913         if (!ctrl_ctx) {
2914                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2915                                 __func__);
2916                 return;
2917         }
2918
2919         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2920                         xhci->devs[slot_id]->out_ctx, ep_index);
2921         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2922         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2923                         deq_state->new_deq_ptr);
2924         if (addr == 0) {
2925                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2926                                 "reset ep command\n");
2927                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2928                                 deq_state->new_deq_seg,
2929                                 deq_state->new_deq_ptr);
2930                 return;
2931         }
2932         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2933
2934         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2935         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2936                         xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2937                         added_ctxs, added_ctxs);
2938 }
2939
2940 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int ep_index,
2941                                unsigned int stream_id, struct xhci_td *td)
2942 {
2943         struct xhci_dequeue_state deq_state;
2944         struct xhci_virt_ep *ep;
2945         struct usb_device *udev = td->urb->dev;
2946
2947         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2948                         "Cleaning up stalled endpoint ring");
2949         ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2950         /* We need to move the HW's dequeue pointer past this TD,
2951          * or it will attempt to resend it on the next doorbell ring.
2952          */
2953         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2954                         ep_index, stream_id, td, &deq_state);
2955
2956         if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2957                 return;
2958
2959         /* HW with the reset endpoint quirk will use the saved dequeue state to
2960          * issue a configure endpoint command later.
2961          */
2962         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2963                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2964                                 "Queueing new dequeue state");
2965                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2966                                 ep_index, &deq_state);
2967         } else {
2968                 /* Better hope no one uses the input context between now and the
2969                  * reset endpoint completion!
2970                  * XXX: No idea how this hardware will react when stream rings
2971                  * are enabled.
2972                  */
2973                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2974                                 "Setting up input context for "
2975                                 "configure endpoint command");
2976                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2977                                 ep_index, &deq_state);
2978         }
2979 }
2980
2981 /* Called when clearing halted device. The core should have sent the control
2982  * message to clear the device halt condition. The host side of the halt should
2983  * already be cleared with a reset endpoint command issued when the STALL tx
2984  * event was received.
2985  *
2986  * Context: in_interrupt
2987  */
2988
2989 static void xhci_endpoint_reset(struct usb_hcd *hcd,
2990                 struct usb_host_endpoint *ep)
2991 {
2992         struct xhci_hcd *xhci;
2993
2994         xhci = hcd_to_xhci(hcd);
2995
2996         /*
2997          * We might need to implement the config ep cmd in xhci 4.8.1 note:
2998          * The Reset Endpoint Command may only be issued to endpoints in the
2999          * Halted state. If software wishes reset the Data Toggle or Sequence
3000          * Number of an endpoint that isn't in the Halted state, then software
3001          * may issue a Configure Endpoint Command with the Drop and Add bits set
3002          * for the target endpoint. that is in the Stopped state.
3003          */
3004
3005         /* For now just print debug to follow the situation */
3006         xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
3007                  ep->desc.bEndpointAddress);
3008 }
3009
3010 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3011                 struct usb_device *udev, struct usb_host_endpoint *ep,
3012                 unsigned int slot_id)
3013 {
3014         int ret;
3015         unsigned int ep_index;
3016         unsigned int ep_state;
3017
3018         if (!ep)
3019                 return -EINVAL;
3020         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3021         if (ret <= 0)
3022                 return -EINVAL;
3023         if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3024                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3025                                 " descriptor for ep 0x%x does not support streams\n",
3026                                 ep->desc.bEndpointAddress);
3027                 return -EINVAL;
3028         }
3029
3030         ep_index = xhci_get_endpoint_index(&ep->desc);
3031         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3032         if (ep_state & EP_HAS_STREAMS ||
3033                         ep_state & EP_GETTING_STREAMS) {
3034                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3035                                 "already has streams set up.\n",
3036                                 ep->desc.bEndpointAddress);
3037                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3038                                 "dynamic stream context array reallocation.\n");
3039                 return -EINVAL;
3040         }
3041         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3042                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3043                                 "endpoint 0x%x; URBs are pending.\n",
3044                                 ep->desc.bEndpointAddress);
3045                 return -EINVAL;
3046         }
3047         return 0;
3048 }
3049
3050 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3051                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3052 {
3053         unsigned int max_streams;
3054
3055         /* The stream context array size must be a power of two */
3056         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3057         /*
3058          * Find out how many primary stream array entries the host controller
3059          * supports.  Later we may use secondary stream arrays (similar to 2nd
3060          * level page entries), but that's an optional feature for xHCI host
3061          * controllers. xHCs must support at least 4 stream IDs.
3062          */
3063         max_streams = HCC_MAX_PSA(xhci->hcc_params);
3064         if (*num_stream_ctxs > max_streams) {
3065                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3066                                 max_streams);
3067                 *num_stream_ctxs = max_streams;
3068                 *num_streams = max_streams;
3069         }
3070 }
3071
3072 /* Returns an error code if one of the endpoint already has streams.
3073  * This does not change any data structures, it only checks and gathers
3074  * information.
3075  */
3076 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3077                 struct usb_device *udev,
3078                 struct usb_host_endpoint **eps, unsigned int num_eps,
3079                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3080 {
3081         unsigned int max_streams;
3082         unsigned int endpoint_flag;
3083         int i;
3084         int ret;
3085
3086         for (i = 0; i < num_eps; i++) {
3087                 ret = xhci_check_streams_endpoint(xhci, udev,
3088                                 eps[i], udev->slot_id);
3089                 if (ret < 0)
3090                         return ret;
3091
3092                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3093                 if (max_streams < (*num_streams - 1)) {
3094                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3095                                         eps[i]->desc.bEndpointAddress,
3096                                         max_streams);
3097                         *num_streams = max_streams+1;
3098                 }
3099
3100                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3101                 if (*changed_ep_bitmask & endpoint_flag)
3102                         return -EINVAL;
3103                 *changed_ep_bitmask |= endpoint_flag;
3104         }
3105         return 0;
3106 }
3107
3108 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3109                 struct usb_device *udev,
3110                 struct usb_host_endpoint **eps, unsigned int num_eps)
3111 {
3112         u32 changed_ep_bitmask = 0;
3113         unsigned int slot_id;
3114         unsigned int ep_index;
3115         unsigned int ep_state;
3116         int i;
3117
3118         slot_id = udev->slot_id;
3119         if (!xhci->devs[slot_id])
3120                 return 0;
3121
3122         for (i = 0; i < num_eps; i++) {
3123                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3124                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3125                 /* Are streams already being freed for the endpoint? */
3126                 if (ep_state & EP_GETTING_NO_STREAMS) {
3127                         xhci_warn(xhci, "WARN Can't disable streams for "
3128                                         "endpoint 0x%x, "
3129                                         "streams are being disabled already\n",
3130                                         eps[i]->desc.bEndpointAddress);
3131                         return 0;
3132                 }
3133                 /* Are there actually any streams to free? */
3134                 if (!(ep_state & EP_HAS_STREAMS) &&
3135                                 !(ep_state & EP_GETTING_STREAMS)) {
3136                         xhci_warn(xhci, "WARN Can't disable streams for "
3137                                         "endpoint 0x%x, "
3138                                         "streams are already disabled!\n",
3139                                         eps[i]->desc.bEndpointAddress);
3140                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3141                                         "with non-streams endpoint\n");
3142                         return 0;
3143                 }
3144                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3145         }
3146         return changed_ep_bitmask;
3147 }
3148
3149 /*
3150  * The USB device drivers use this function (through the HCD interface in USB
3151  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3152  * coordinate mass storage command queueing across multiple endpoints (basically
3153  * a stream ID == a task ID).
3154  *
3155  * Setting up streams involves allocating the same size stream context array
3156  * for each endpoint and issuing a configure endpoint command for all endpoints.
3157  *
3158  * Don't allow the call to succeed if one endpoint only supports one stream
3159  * (which means it doesn't support streams at all).
3160  *
3161  * Drivers may get less stream IDs than they asked for, if the host controller
3162  * hardware or endpoints claim they can't support the number of requested
3163  * stream IDs.
3164  */
3165 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3166                 struct usb_host_endpoint **eps, unsigned int num_eps,
3167                 unsigned int num_streams, gfp_t mem_flags)
3168 {
3169         int i, ret;
3170         struct xhci_hcd *xhci;
3171         struct xhci_virt_device *vdev;
3172         struct xhci_command *config_cmd;
3173         struct xhci_input_control_ctx *ctrl_ctx;
3174         unsigned int ep_index;
3175         unsigned int num_stream_ctxs;
3176         unsigned int max_packet;
3177         unsigned long flags;
3178         u32 changed_ep_bitmask = 0;
3179
3180         if (!eps)
3181                 return -EINVAL;
3182
3183         /* Add one to the number of streams requested to account for
3184          * stream 0 that is reserved for xHCI usage.
3185          */
3186         num_streams += 1;
3187         xhci = hcd_to_xhci(hcd);
3188         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3189                         num_streams);
3190
3191         /* MaxPSASize value 0 (2 streams) means streams are not supported */
3192         if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3193                         HCC_MAX_PSA(xhci->hcc_params) < 4) {
3194                 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3195                 return -ENOSYS;
3196         }
3197
3198         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3199         if (!config_cmd)
3200                 return -ENOMEM;
3201
3202         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3203         if (!ctrl_ctx) {
3204                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3205                                 __func__);
3206                 xhci_free_command(xhci, config_cmd);
3207                 return -ENOMEM;
3208         }
3209
3210         /* Check to make sure all endpoints are not already configured for
3211          * streams.  While we're at it, find the maximum number of streams that
3212          * all the endpoints will support and check for duplicate endpoints.
3213          */
3214         spin_lock_irqsave(&xhci->lock, flags);
3215         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3216                         num_eps, &num_streams, &changed_ep_bitmask);
3217         if (ret < 0) {
3218                 xhci_free_command(xhci, config_cmd);
3219                 spin_unlock_irqrestore(&xhci->lock, flags);
3220                 return ret;
3221         }
3222         if (num_streams <= 1) {
3223                 xhci_warn(xhci, "WARN: endpoints can't handle "
3224                                 "more than one stream.\n");
3225                 xhci_free_command(xhci, config_cmd);
3226                 spin_unlock_irqrestore(&xhci->lock, flags);
3227                 return -EINVAL;
3228         }
3229         vdev = xhci->devs[udev->slot_id];
3230         /* Mark each endpoint as being in transition, so
3231          * xhci_urb_enqueue() will reject all URBs.
3232          */
3233         for (i = 0; i < num_eps; i++) {
3234                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3235                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3236         }
3237         spin_unlock_irqrestore(&xhci->lock, flags);
3238
3239         /* Setup internal data structures and allocate HW data structures for
3240          * streams (but don't install the HW structures in the input context
3241          * until we're sure all memory allocation succeeded).
3242          */
3243         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3244         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3245                         num_stream_ctxs, num_streams);
3246
3247         for (i = 0; i < num_eps; i++) {
3248                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3249                 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3250                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3251                                 num_stream_ctxs,
3252                                 num_streams,
3253                                 max_packet, mem_flags);
3254                 if (!vdev->eps[ep_index].stream_info)
3255                         goto cleanup;
3256                 /* Set maxPstreams in endpoint context and update deq ptr to
3257                  * point to stream context array. FIXME
3258                  */
3259         }
3260
3261         /* Set up the input context for a configure endpoint command. */
3262         for (i = 0; i < num_eps; i++) {
3263                 struct xhci_ep_ctx *ep_ctx;
3264
3265                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3266                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3267
3268                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3269                                 vdev->out_ctx, ep_index);
3270                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3271                                 vdev->eps[ep_index].stream_info);
3272         }
3273         /* Tell the HW to drop its old copy of the endpoint context info
3274          * and add the updated copy from the input context.
3275          */
3276         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3277                         vdev->out_ctx, ctrl_ctx,
3278                         changed_ep_bitmask, changed_ep_bitmask);
3279
3280         /* Issue and wait for the configure endpoint command */
3281         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3282                         false, false);
3283
3284         /* xHC rejected the configure endpoint command for some reason, so we
3285          * leave the old ring intact and free our internal streams data
3286          * structure.
3287          */
3288         if (ret < 0)
3289                 goto cleanup;
3290
3291         spin_lock_irqsave(&xhci->lock, flags);
3292         for (i = 0; i < num_eps; i++) {
3293                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3294                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3295                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3296                          udev->slot_id, ep_index);
3297                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3298         }
3299         xhci_free_command(xhci, config_cmd);
3300         spin_unlock_irqrestore(&xhci->lock, flags);
3301
3302         /* Subtract 1 for stream 0, which drivers can't use */
3303         return num_streams - 1;
3304
3305 cleanup:
3306         /* If it didn't work, free the streams! */
3307         for (i = 0; i < num_eps; i++) {
3308                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3309                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3310                 vdev->eps[ep_index].stream_info = NULL;
3311                 /* FIXME Unset maxPstreams in endpoint context and
3312                  * update deq ptr to point to normal string ring.
3313                  */
3314                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3315                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3316                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3317         }
3318         xhci_free_command(xhci, config_cmd);
3319         return -ENOMEM;
3320 }
3321
3322 /* Transition the endpoint from using streams to being a "normal" endpoint
3323  * without streams.
3324  *
3325  * Modify the endpoint context state, submit a configure endpoint command,
3326  * and free all endpoint rings for streams if that completes successfully.
3327  */
3328 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3329                 struct usb_host_endpoint **eps, unsigned int num_eps,
3330                 gfp_t mem_flags)
3331 {
3332         int i, ret;
3333         struct xhci_hcd *xhci;
3334         struct xhci_virt_device *vdev;
3335         struct xhci_command *command;
3336         struct xhci_input_control_ctx *ctrl_ctx;
3337         unsigned int ep_index;
3338         unsigned long flags;
3339         u32 changed_ep_bitmask;
3340
3341         xhci = hcd_to_xhci(hcd);
3342         vdev = xhci->devs[udev->slot_id];
3343
3344         /* Set up a configure endpoint command to remove the streams rings */
3345         spin_lock_irqsave(&xhci->lock, flags);
3346         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3347                         udev, eps, num_eps);
3348         if (changed_ep_bitmask == 0) {
3349                 spin_unlock_irqrestore(&xhci->lock, flags);
3350                 return -EINVAL;
3351         }
3352
3353         /* Use the xhci_command structure from the first endpoint.  We may have
3354          * allocated too many, but the driver may call xhci_free_streams() for
3355          * each endpoint it grouped into one call to xhci_alloc_streams().
3356          */
3357         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3358         command = vdev->eps[ep_index].stream_info->free_streams_command;
3359         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3360         if (!ctrl_ctx) {
3361                 spin_unlock_irqrestore(&xhci->lock, flags);
3362                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3363                                 __func__);
3364                 return -EINVAL;
3365         }
3366
3367         for (i = 0; i < num_eps; i++) {
3368                 struct xhci_ep_ctx *ep_ctx;
3369
3370                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3371                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3372                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3373                         EP_GETTING_NO_STREAMS;
3374
3375                 xhci_endpoint_copy(xhci, command->in_ctx,
3376                                 vdev->out_ctx, ep_index);
3377                 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3378                                 &vdev->eps[ep_index]);
3379         }
3380         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3381                         vdev->out_ctx, ctrl_ctx,
3382                         changed_ep_bitmask, changed_ep_bitmask);
3383         spin_unlock_irqrestore(&xhci->lock, flags);
3384
3385         /* Issue and wait for the configure endpoint command,
3386          * which must succeed.
3387          */
3388         ret = xhci_configure_endpoint(xhci, udev, command,
3389                         false, true);
3390
3391         /* xHC rejected the configure endpoint command for some reason, so we
3392          * leave the streams rings intact.
3393          */
3394         if (ret < 0)
3395                 return ret;
3396
3397         spin_lock_irqsave(&xhci->lock, flags);
3398         for (i = 0; i < num_eps; i++) {
3399                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3400                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3401                 vdev->eps[ep_index].stream_info = NULL;
3402                 /* FIXME Unset maxPstreams in endpoint context and
3403                  * update deq ptr to point to normal string ring.
3404                  */
3405                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3406                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3407         }
3408         spin_unlock_irqrestore(&xhci->lock, flags);
3409
3410         return 0;
3411 }
3412
3413 /*
3414  * Deletes endpoint resources for endpoints that were active before a Reset
3415  * Device command, or a Disable Slot command.  The Reset Device command leaves
3416  * the control endpoint intact, whereas the Disable Slot command deletes it.
3417  *
3418  * Must be called with xhci->lock held.
3419  */
3420 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3421         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3422 {
3423         int i;
3424         unsigned int num_dropped_eps = 0;
3425         unsigned int drop_flags = 0;
3426
3427         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3428                 if (virt_dev->eps[i].ring) {
3429                         drop_flags |= 1 << i;
3430                         num_dropped_eps++;
3431                 }
3432         }
3433         xhci->num_active_eps -= num_dropped_eps;
3434         if (num_dropped_eps)
3435                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3436                                 "Dropped %u ep ctxs, flags = 0x%x, "
3437                                 "%u now active.",
3438                                 num_dropped_eps, drop_flags,
3439                                 xhci->num_active_eps);
3440 }
3441
3442 /*
3443  * This submits a Reset Device Command, which will set the device state to 0,
3444  * set the device address to 0, and disable all the endpoints except the default
3445  * control endpoint.  The USB core should come back and call
3446  * xhci_address_device(), and then re-set up the configuration.  If this is
3447  * called because of a usb_reset_and_verify_device(), then the old alternate
3448  * settings will be re-installed through the normal bandwidth allocation
3449  * functions.
3450  *
3451  * Wait for the Reset Device command to finish.  Remove all structures
3452  * associated with the endpoints that were disabled.  Clear the input device
3453  * structure? Reset the control endpoint 0 max packet size?
3454  *
3455  * If the virt_dev to be reset does not exist or does not match the udev,
3456  * it means the device is lost, possibly due to the xHC restore error and
3457  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3458  * re-allocate the device.
3459  */
3460 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3461                 struct usb_device *udev)
3462 {
3463         int ret, i;
3464         unsigned long flags;
3465         struct xhci_hcd *xhci;
3466         unsigned int slot_id;
3467         struct xhci_virt_device *virt_dev;
3468         struct xhci_command *reset_device_cmd;
3469         int last_freed_endpoint;
3470         struct xhci_slot_ctx *slot_ctx;
3471         int old_active_eps = 0;
3472
3473         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3474         if (ret <= 0)
3475                 return ret;
3476         xhci = hcd_to_xhci(hcd);
3477         slot_id = udev->slot_id;
3478         virt_dev = xhci->devs[slot_id];
3479         if (!virt_dev) {
3480                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3481                                 "not exist. Re-allocate the device\n", slot_id);
3482                 ret = xhci_alloc_dev(hcd, udev);
3483                 if (ret == 1)
3484                         return 0;
3485                 else
3486                         return -EINVAL;
3487         }
3488
3489         if (virt_dev->tt_info)
3490                 old_active_eps = virt_dev->tt_info->active_eps;
3491
3492         if (virt_dev->udev != udev) {
3493                 /* If the virt_dev and the udev does not match, this virt_dev
3494                  * may belong to another udev.
3495                  * Re-allocate the device.
3496                  */
3497                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3498                                 "not match the udev. Re-allocate the device\n",
3499                                 slot_id);
3500                 ret = xhci_alloc_dev(hcd, udev);
3501                 if (ret == 1)
3502                         return 0;
3503                 else
3504                         return -EINVAL;
3505         }
3506
3507         /* If device is not setup, there is no point in resetting it */
3508         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3509         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3510                                                 SLOT_STATE_DISABLED)
3511                 return 0;
3512
3513         trace_xhci_discover_or_reset_device(slot_ctx);
3514
3515         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3516         /* Allocate the command structure that holds the struct completion.
3517          * Assume we're in process context, since the normal device reset
3518          * process has to wait for the device anyway.  Storage devices are
3519          * reset as part of error handling, so use GFP_NOIO instead of
3520          * GFP_KERNEL.
3521          */
3522         reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3523         if (!reset_device_cmd) {
3524                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3525                 return -ENOMEM;
3526         }
3527
3528         /* Attempt to submit the Reset Device command to the command ring */
3529         spin_lock_irqsave(&xhci->lock, flags);
3530
3531         ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3532         if (ret) {
3533                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3534                 spin_unlock_irqrestore(&xhci->lock, flags);
3535                 goto command_cleanup;
3536         }
3537         xhci_ring_cmd_db(xhci);
3538         spin_unlock_irqrestore(&xhci->lock, flags);
3539
3540         /* Wait for the Reset Device command to finish */
3541         wait_for_completion(reset_device_cmd->completion);
3542
3543         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3544          * unless we tried to reset a slot ID that wasn't enabled,
3545          * or the device wasn't in the addressed or configured state.
3546          */
3547         ret = reset_device_cmd->status;
3548         switch (ret) {
3549         case COMP_COMMAND_ABORTED:
3550         case COMP_COMMAND_RING_STOPPED:
3551                 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3552                 ret = -ETIME;
3553                 goto command_cleanup;
3554         case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3555         case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3556                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3557                                 slot_id,
3558                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3559                 xhci_dbg(xhci, "Not freeing device rings.\n");
3560                 /* Don't treat this as an error.  May change my mind later. */
3561                 ret = 0;
3562                 goto command_cleanup;
3563         case COMP_SUCCESS:
3564                 xhci_dbg(xhci, "Successful reset device command.\n");
3565                 break;
3566         default:
3567                 if (xhci_is_vendor_info_code(xhci, ret))
3568                         break;
3569                 xhci_warn(xhci, "Unknown completion code %u for "
3570                                 "reset device command.\n", ret);
3571                 ret = -EINVAL;
3572                 goto command_cleanup;
3573         }
3574
3575         /* Free up host controller endpoint resources */
3576         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3577                 spin_lock_irqsave(&xhci->lock, flags);
3578                 /* Don't delete the default control endpoint resources */
3579                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3580                 spin_unlock_irqrestore(&xhci->lock, flags);
3581         }
3582
3583         /* Everything but endpoint 0 is disabled, so free the rings. */
3584         last_freed_endpoint = 1;
3585         for (i = 1; i < 31; i++) {
3586                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3587
3588                 if (ep->ep_state & EP_HAS_STREAMS) {
3589                         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3590                                         xhci_get_endpoint_address(i));
3591                         xhci_free_stream_info(xhci, ep->stream_info);
3592                         ep->stream_info = NULL;
3593                         ep->ep_state &= ~EP_HAS_STREAMS;
3594                 }
3595
3596                 if (ep->ring) {
3597                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3598                         last_freed_endpoint = i;
3599                 }
3600                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3601                         xhci_drop_ep_from_interval_table(xhci,
3602                                         &virt_dev->eps[i].bw_info,
3603                                         virt_dev->bw_table,
3604                                         udev,
3605                                         &virt_dev->eps[i],
3606                                         virt_dev->tt_info);
3607                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3608         }
3609         /* If necessary, update the number of active TTs on this root port */
3610         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3611         ret = 0;
3612
3613 command_cleanup:
3614         xhci_free_command(xhci, reset_device_cmd);
3615         return ret;
3616 }
3617
3618 /*
3619  * At this point, the struct usb_device is about to go away, the device has
3620  * disconnected, and all traffic has been stopped and the endpoints have been
3621  * disabled.  Free any HC data structures associated with that device.
3622  */
3623 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3624 {
3625         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3626         struct xhci_virt_device *virt_dev;
3627         struct xhci_slot_ctx *slot_ctx;
3628         int i, ret;
3629
3630 #ifndef CONFIG_USB_DEFAULT_PERSIST
3631         /*
3632          * We called pm_runtime_get_noresume when the device was attached.
3633          * Decrement the counter here to allow controller to runtime suspend
3634          * if no devices remain.
3635          */
3636         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3637                 pm_runtime_put_noidle(hcd->self.controller);
3638 #endif
3639
3640         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3641         /* If the host is halted due to driver unload, we still need to free the
3642          * device.
3643          */
3644         if (ret <= 0 && ret != -ENODEV)
3645                 return;
3646
3647         virt_dev = xhci->devs[udev->slot_id];
3648         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3649         trace_xhci_free_dev(slot_ctx);
3650
3651         /* Stop any wayward timer functions (which may grab the lock) */
3652         for (i = 0; i < 31; i++) {
3653                 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3654                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3655         }
3656
3657         virt_dev->udev = NULL;
3658         xhci_disable_slot(xhci, udev->slot_id);
3659         /*
3660          * Event command completion handler will free any data structures
3661          * associated with the slot.  XXX Can free sleep?
3662          */
3663 }
3664
3665 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3666 {
3667         struct xhci_command *command;
3668         unsigned long flags;
3669         u32 state;
3670         int ret = 0;
3671
3672         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3673         if (!command)
3674                 return -ENOMEM;
3675
3676         spin_lock_irqsave(&xhci->lock, flags);
3677         /* Don't disable the slot if the host controller is dead. */
3678         state = readl(&xhci->op_regs->status);
3679         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3680                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3681                 spin_unlock_irqrestore(&xhci->lock, flags);
3682                 kfree(command);
3683                 return -ENODEV;
3684         }
3685
3686         ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3687                                 slot_id);
3688         if (ret) {
3689                 spin_unlock_irqrestore(&xhci->lock, flags);
3690                 kfree(command);
3691                 return ret;
3692         }
3693         xhci_ring_cmd_db(xhci);
3694         spin_unlock_irqrestore(&xhci->lock, flags);
3695         return ret;
3696 }
3697
3698 /*
3699  * Checks if we have enough host controller resources for the default control
3700  * endpoint.
3701  *
3702  * Must be called with xhci->lock held.
3703  */
3704 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3705 {
3706         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3707                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3708                                 "Not enough ep ctxs: "
3709                                 "%u active, need to add 1, limit is %u.",
3710                                 xhci->num_active_eps, xhci->limit_active_eps);
3711                 return -ENOMEM;
3712         }
3713         xhci->num_active_eps += 1;
3714         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3715                         "Adding 1 ep ctx, %u now active.",
3716                         xhci->num_active_eps);
3717         return 0;
3718 }
3719
3720
3721 /*
3722  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3723  * timed out, or allocating memory failed.  Returns 1 on success.
3724  */
3725 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3726 {
3727         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3728         struct xhci_virt_device *vdev;
3729         struct xhci_slot_ctx *slot_ctx;
3730         unsigned long flags;
3731         int ret, slot_id;
3732         struct xhci_command *command;
3733
3734         command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
3735         if (!command)
3736                 return 0;
3737
3738         /* xhci->slot_id and xhci->addr_dev are not thread-safe */
3739         mutex_lock(&xhci->mutex);
3740         spin_lock_irqsave(&xhci->lock, flags);
3741         ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3742         if (ret) {
3743                 spin_unlock_irqrestore(&xhci->lock, flags);
3744                 mutex_unlock(&xhci->mutex);
3745                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3746                 xhci_free_command(xhci, command);
3747                 return 0;
3748         }
3749         xhci_ring_cmd_db(xhci);
3750         spin_unlock_irqrestore(&xhci->lock, flags);
3751
3752         wait_for_completion(command->completion);
3753         slot_id = command->slot_id;
3754         mutex_unlock(&xhci->mutex);
3755
3756         if (!slot_id || command->status != COMP_SUCCESS) {
3757                 xhci_err(xhci, "Error while assigning device slot ID\n");
3758                 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3759                                 HCS_MAX_SLOTS(
3760                                         readl(&xhci->cap_regs->hcs_params1)));
3761                 xhci_free_command(xhci, command);
3762                 return 0;
3763         }
3764
3765         xhci_free_command(xhci, command);
3766
3767         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3768                 spin_lock_irqsave(&xhci->lock, flags);
3769                 ret = xhci_reserve_host_control_ep_resources(xhci);
3770                 if (ret) {
3771                         spin_unlock_irqrestore(&xhci->lock, flags);
3772                         xhci_warn(xhci, "Not enough host resources, "
3773                                         "active endpoint contexts = %u\n",
3774                                         xhci->num_active_eps);
3775                         goto disable_slot;
3776                 }
3777                 spin_unlock_irqrestore(&xhci->lock, flags);
3778         }
3779         /* Use GFP_NOIO, since this function can be called from
3780          * xhci_discover_or_reset_device(), which may be called as part of
3781          * mass storage driver error handling.
3782          */
3783         if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3784                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3785                 goto disable_slot;
3786         }
3787         vdev = xhci->devs[slot_id];
3788         slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
3789         trace_xhci_alloc_dev(slot_ctx);
3790
3791         udev->slot_id = slot_id;
3792
3793 #ifndef CONFIG_USB_DEFAULT_PERSIST
3794         /*
3795          * If resetting upon resume, we can't put the controller into runtime
3796          * suspend if there is a device attached.
3797          */
3798         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3799                 pm_runtime_get_noresume(hcd->self.controller);
3800 #endif
3801
3802         /* Is this a LS or FS device under a HS hub? */
3803         /* Hub or peripherial? */
3804         return 1;
3805
3806 disable_slot:
3807         return xhci_disable_slot(xhci, udev->slot_id);
3808 }
3809
3810 /*
3811  * Issue an Address Device command and optionally send a corresponding
3812  * SetAddress request to the device.
3813  */
3814 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3815                              enum xhci_setup_dev setup)
3816 {
3817         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3818         unsigned long flags;
3819         struct xhci_virt_device *virt_dev;
3820         int ret = 0;
3821         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3822         struct xhci_slot_ctx *slot_ctx;
3823         struct xhci_input_control_ctx *ctrl_ctx;
3824         u64 temp_64;
3825         struct xhci_command *command = NULL;
3826
3827         mutex_lock(&xhci->mutex);
3828
3829         if (xhci->xhc_state) {  /* dying, removing or halted */
3830                 ret = -ESHUTDOWN;
3831                 goto out;
3832         }
3833
3834         if (!udev->slot_id) {
3835                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3836                                 "Bad Slot ID %d", udev->slot_id);
3837                 ret = -EINVAL;
3838                 goto out;
3839         }
3840
3841         virt_dev = xhci->devs[udev->slot_id];
3842
3843         if (WARN_ON(!virt_dev)) {
3844                 /*
3845                  * In plug/unplug torture test with an NEC controller,
3846                  * a zero-dereference was observed once due to virt_dev = 0.
3847                  * Print useful debug rather than crash if it is observed again!
3848                  */
3849                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3850                         udev->slot_id);
3851                 ret = -EINVAL;
3852                 goto out;
3853         }
3854         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3855         trace_xhci_setup_device_slot(slot_ctx);
3856
3857         if (setup == SETUP_CONTEXT_ONLY) {
3858                 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3859                     SLOT_STATE_DEFAULT) {
3860                         xhci_dbg(xhci, "Slot already in default state\n");
3861                         goto out;
3862                 }
3863         }
3864
3865         command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
3866         if (!command) {
3867                 ret = -ENOMEM;
3868                 goto out;
3869         }
3870
3871         command->in_ctx = virt_dev->in_ctx;
3872
3873         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3874         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3875         if (!ctrl_ctx) {
3876                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3877                                 __func__);
3878                 ret = -EINVAL;
3879                 goto out;
3880         }
3881         /*
3882          * If this is the first Set Address since device plug-in or
3883          * virt_device realloaction after a resume with an xHCI power loss,
3884          * then set up the slot context.
3885          */
3886         if (!slot_ctx->dev_info)
3887                 xhci_setup_addressable_virt_dev(xhci, udev);
3888         /* Otherwise, update the control endpoint ring enqueue pointer. */
3889         else
3890                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3891         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3892         ctrl_ctx->drop_flags = 0;
3893
3894         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3895                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3896
3897         spin_lock_irqsave(&xhci->lock, flags);
3898         trace_xhci_setup_device(virt_dev);
3899         ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3900                                         udev->slot_id, setup);
3901         if (ret) {
3902                 spin_unlock_irqrestore(&xhci->lock, flags);
3903                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3904                                 "FIXME: allocate a command ring segment");
3905                 goto out;
3906         }
3907         xhci_ring_cmd_db(xhci);
3908         spin_unlock_irqrestore(&xhci->lock, flags);
3909
3910         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3911         wait_for_completion(command->completion);
3912
3913         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3914          * the SetAddress() "recovery interval" required by USB and aborting the
3915          * command on a timeout.
3916          */
3917         switch (command->status) {
3918         case COMP_COMMAND_ABORTED:
3919         case COMP_COMMAND_RING_STOPPED:
3920                 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3921                 ret = -ETIME;
3922                 break;
3923         case COMP_CONTEXT_STATE_ERROR:
3924         case COMP_SLOT_NOT_ENABLED_ERROR:
3925                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3926                          act, udev->slot_id);
3927                 ret = -EINVAL;
3928                 break;
3929         case COMP_USB_TRANSACTION_ERROR:
3930                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3931                 ret = -EPROTO;
3932                 break;
3933         case COMP_INCOMPATIBLE_DEVICE_ERROR:
3934                 dev_warn(&udev->dev,
3935                          "ERROR: Incompatible device for setup %s command\n", act);
3936                 ret = -ENODEV;
3937                 break;
3938         case COMP_SUCCESS:
3939                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3940                                "Successful setup %s command", act);
3941                 break;
3942         default:
3943                 xhci_err(xhci,
3944                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
3945                          act, command->status);
3946                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3947                 ret = -EINVAL;
3948                 break;
3949         }
3950         if (ret)
3951                 goto out;
3952         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3953         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3954                         "Op regs DCBAA ptr = %#016llx", temp_64);
3955         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3956                 "Slot ID %d dcbaa entry @%p = %#016llx",
3957                 udev->slot_id,
3958                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3959                 (unsigned long long)
3960                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3961         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3962                         "Output Context DMA address = %#08llx",
3963                         (unsigned long long)virt_dev->out_ctx->dma);
3964         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3965                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3966         /*
3967          * USB core uses address 1 for the roothubs, so we add one to the
3968          * address given back to us by the HC.
3969          */
3970         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3971                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3972         /* Zero the input context control for later use */
3973         ctrl_ctx->add_flags = 0;
3974         ctrl_ctx->drop_flags = 0;
3975
3976         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3977                        "Internal device address = %d",
3978                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3979 out:
3980         mutex_unlock(&xhci->mutex);
3981         if (command) {
3982                 kfree(command->completion);
3983                 kfree(command);
3984         }
3985         return ret;
3986 }
3987
3988 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3989 {
3990         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3991 }
3992
3993 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3994 {
3995         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3996 }
3997
3998 /*
3999  * Transfer the port index into real index in the HW port status
4000  * registers. Caculate offset between the port's PORTSC register
4001  * and port status base. Divide the number of per port register
4002  * to get the real index. The raw port number bases 1.
4003  */
4004 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4005 {
4006         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4007         __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
4008         __le32 __iomem *addr;
4009         int raw_port;
4010
4011         if (hcd->speed < HCD_USB3)
4012                 addr = xhci->usb2_ports[port1 - 1];
4013         else
4014                 addr = xhci->usb3_ports[port1 - 1];
4015
4016         raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
4017         return raw_port;
4018 }
4019
4020 /*
4021  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4022  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4023  */
4024 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4025                         struct usb_device *udev, u16 max_exit_latency)
4026 {
4027         struct xhci_virt_device *virt_dev;
4028         struct xhci_command *command;
4029         struct xhci_input_control_ctx *ctrl_ctx;
4030         struct xhci_slot_ctx *slot_ctx;
4031         unsigned long flags;
4032         int ret;
4033
4034         spin_lock_irqsave(&xhci->lock, flags);
4035
4036         virt_dev = xhci->devs[udev->slot_id];
4037
4038         /*
4039          * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4040          * xHC was re-initialized. Exit latency will be set later after
4041          * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4042          */
4043
4044         if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4045                 spin_unlock_irqrestore(&xhci->lock, flags);
4046                 return 0;
4047         }
4048
4049         /* Attempt to issue an Evaluate Context command to change the MEL. */
4050         command = xhci->lpm_command;
4051         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4052         if (!ctrl_ctx) {
4053                 spin_unlock_irqrestore(&xhci->lock, flags);
4054                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4055                                 __func__);
4056                 return -ENOMEM;
4057         }
4058
4059         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4060         spin_unlock_irqrestore(&xhci->lock, flags);
4061
4062         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4063         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4064         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4065         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4066         slot_ctx->dev_state = 0;
4067
4068         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4069                         "Set up evaluate context for LPM MEL change.");
4070
4071         /* Issue and wait for the evaluate context command. */
4072         ret = xhci_configure_endpoint(xhci, udev, command,
4073                         true, true);
4074
4075         if (!ret) {
4076                 spin_lock_irqsave(&xhci->lock, flags);
4077                 virt_dev->current_mel = max_exit_latency;
4078                 spin_unlock_irqrestore(&xhci->lock, flags);
4079         }
4080         return ret;
4081 }
4082
4083 #ifdef CONFIG_PM
4084
4085 /* BESL to HIRD Encoding array for USB2 LPM */
4086 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4087         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4088
4089 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4090 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4091                                         struct usb_device *udev)
4092 {
4093         int u2del, besl, besl_host;
4094         int besl_device = 0;
4095         u32 field;
4096
4097         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4098         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4099
4100         if (field & USB_BESL_SUPPORT) {
4101                 for (besl_host = 0; besl_host < 16; besl_host++) {
4102                         if (xhci_besl_encoding[besl_host] >= u2del)
4103                                 break;
4104                 }
4105                 /* Use baseline BESL value as default */
4106                 if (field & USB_BESL_BASELINE_VALID)
4107                         besl_device = USB_GET_BESL_BASELINE(field);
4108                 else if (field & USB_BESL_DEEP_VALID)
4109                         besl_device = USB_GET_BESL_DEEP(field);
4110         } else {
4111                 if (u2del <= 50)
4112                         besl_host = 0;
4113                 else
4114                         besl_host = (u2del - 51) / 75 + 1;
4115         }
4116
4117         besl = besl_host + besl_device;
4118         if (besl > 15)
4119                 besl = 15;
4120
4121         return besl;
4122 }
4123
4124 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4125 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4126 {
4127         u32 field;
4128         int l1;
4129         int besld = 0;
4130         int hirdm = 0;
4131
4132         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4133
4134         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4135         l1 = udev->l1_params.timeout / 256;
4136
4137         /* device has preferred BESLD */
4138         if (field & USB_BESL_DEEP_VALID) {
4139                 besld = USB_GET_BESL_DEEP(field);
4140                 hirdm = 1;
4141         }
4142
4143         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4144 }
4145
4146 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4147                         struct usb_device *udev, int enable)
4148 {
4149         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4150         __le32 __iomem  **port_array;
4151         __le32 __iomem  *pm_addr, *hlpm_addr;
4152         u32             pm_val, hlpm_val, field;
4153         unsigned int    port_num;
4154         unsigned long   flags;
4155         int             hird, exit_latency;
4156         int             ret;
4157
4158         if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4159                         !udev->lpm_capable)
4160                 return -EPERM;
4161
4162         if (!udev->parent || udev->parent->parent ||
4163                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4164                 return -EPERM;
4165
4166         if (udev->usb2_hw_lpm_capable != 1)
4167                 return -EPERM;
4168
4169         spin_lock_irqsave(&xhci->lock, flags);
4170
4171         port_array = xhci->usb2_ports;
4172         port_num = udev->portnum - 1;
4173         pm_addr = port_array[port_num] + PORTPMSC;
4174         pm_val = readl(pm_addr);
4175         hlpm_addr = port_array[port_num] + PORTHLPMC;
4176
4177         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4178                         enable ? "enable" : "disable", port_num + 1);
4179
4180         if (enable) {
4181                 /* Host supports BESL timeout instead of HIRD */
4182                 if (udev->usb2_hw_lpm_besl_capable) {
4183                         /* if device doesn't have a preferred BESL value use a
4184                          * default one which works with mixed HIRD and BESL
4185                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4186                          */
4187                         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4188                         if ((field & USB_BESL_SUPPORT) &&
4189                             (field & USB_BESL_BASELINE_VALID))
4190                                 hird = USB_GET_BESL_BASELINE(field);
4191                         else
4192                                 hird = udev->l1_params.besl;
4193
4194                         exit_latency = xhci_besl_encoding[hird];
4195                         spin_unlock_irqrestore(&xhci->lock, flags);
4196
4197                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4198                          * input context for link powermanagement evaluate
4199                          * context commands. It is protected by hcd->bandwidth
4200                          * mutex and is shared by all devices. We need to set
4201                          * the max ext latency in USB 2 BESL LPM as well, so
4202                          * use the same mutex and xhci_change_max_exit_latency()
4203                          */
4204                         mutex_lock(hcd->bandwidth_mutex);
4205                         ret = xhci_change_max_exit_latency(xhci, udev,
4206                                                            exit_latency);
4207                         mutex_unlock(hcd->bandwidth_mutex);
4208
4209                         if (ret < 0)
4210                                 return ret;
4211                         spin_lock_irqsave(&xhci->lock, flags);
4212
4213                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4214                         writel(hlpm_val, hlpm_addr);
4215                         /* flush write */
4216                         readl(hlpm_addr);
4217                 } else {
4218                         hird = xhci_calculate_hird_besl(xhci, udev);
4219                 }
4220
4221                 pm_val &= ~PORT_HIRD_MASK;
4222                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4223                 writel(pm_val, pm_addr);
4224                 pm_val = readl(pm_addr);
4225                 pm_val |= PORT_HLE;
4226                 writel(pm_val, pm_addr);
4227                 /* flush write */
4228                 readl(pm_addr);
4229         } else {
4230                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4231                 writel(pm_val, pm_addr);
4232                 /* flush write */
4233                 readl(pm_addr);
4234                 if (udev->usb2_hw_lpm_besl_capable) {
4235                         spin_unlock_irqrestore(&xhci->lock, flags);
4236                         mutex_lock(hcd->bandwidth_mutex);
4237                         xhci_change_max_exit_latency(xhci, udev, 0);
4238                         mutex_unlock(hcd->bandwidth_mutex);
4239                         readl_poll_timeout(port_array[port_num], pm_val,
4240                                            (pm_val & PORT_PLS_MASK) == XDEV_U0,
4241                                            100, 10000);
4242                         return 0;
4243                 }
4244         }
4245
4246         spin_unlock_irqrestore(&xhci->lock, flags);
4247         return 0;
4248 }
4249
4250 /* check if a usb2 port supports a given extened capability protocol
4251  * only USB2 ports extended protocol capability values are cached.
4252  * Return 1 if capability is supported
4253  */
4254 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4255                                            unsigned capability)
4256 {
4257         u32 port_offset, port_count;
4258         int i;
4259
4260         for (i = 0; i < xhci->num_ext_caps; i++) {
4261                 if (xhci->ext_caps[i] & capability) {
4262                         /* port offsets starts at 1 */
4263                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4264                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4265                         if (port >= port_offset &&
4266                             port < port_offset + port_count)
4267                                 return 1;
4268                 }
4269         }
4270         return 0;
4271 }
4272
4273 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4274 {
4275         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4276         int             portnum = udev->portnum - 1;
4277
4278         if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4279                         !udev->lpm_capable)
4280                 return 0;
4281
4282         /* we only support lpm for non-hub device connected to root hub yet */
4283         if (!udev->parent || udev->parent->parent ||
4284                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4285                 return 0;
4286
4287         if (xhci->hw_lpm_support == 1 &&
4288                         xhci_check_usb2_port_capability(
4289                                 xhci, portnum, XHCI_HLC)) {
4290                 udev->usb2_hw_lpm_capable = 1;
4291                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4292                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4293                 if (xhci_check_usb2_port_capability(xhci, portnum,
4294                                         XHCI_BLC))
4295                         udev->usb2_hw_lpm_besl_capable = 1;
4296         }
4297
4298         return 0;
4299 }
4300
4301 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4302
4303 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4304 static unsigned long long xhci_service_interval_to_ns(
4305                 struct usb_endpoint_descriptor *desc)
4306 {
4307         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4308 }
4309
4310 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4311                 enum usb3_link_state state)
4312 {
4313         unsigned long long sel;
4314         unsigned long long pel;
4315         unsigned int max_sel_pel;
4316         char *state_name;
4317
4318         switch (state) {
4319         case USB3_LPM_U1:
4320                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4321                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4322                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4323                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4324                 state_name = "U1";
4325                 break;
4326         case USB3_LPM_U2:
4327                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4328                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4329                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4330                 state_name = "U2";
4331                 break;
4332         default:
4333                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4334                                 __func__);
4335                 return USB3_LPM_DISABLED;
4336         }
4337
4338         if (sel <= max_sel_pel && pel <= max_sel_pel)
4339                 return USB3_LPM_DEVICE_INITIATED;
4340
4341         if (sel > max_sel_pel)
4342                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4343                                 "due to long SEL %llu ms\n",
4344                                 state_name, sel);
4345         else
4346                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4347                                 "due to long PEL %llu ms\n",
4348                                 state_name, pel);
4349         return USB3_LPM_DISABLED;
4350 }
4351
4352 /* The U1 timeout should be the maximum of the following values:
4353  *  - For control endpoints, U1 system exit latency (SEL) * 3
4354  *  - For bulk endpoints, U1 SEL * 5
4355  *  - For interrupt endpoints:
4356  *    - Notification EPs, U1 SEL * 3
4357  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4358  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4359  */
4360 static unsigned long long xhci_calculate_intel_u1_timeout(
4361                 struct usb_device *udev,
4362                 struct usb_endpoint_descriptor *desc)
4363 {
4364         unsigned long long timeout_ns;
4365         int ep_type;
4366         int intr_type;
4367
4368         ep_type = usb_endpoint_type(desc);
4369         switch (ep_type) {
4370         case USB_ENDPOINT_XFER_CONTROL:
4371                 timeout_ns = udev->u1_params.sel * 3;
4372                 break;
4373         case USB_ENDPOINT_XFER_BULK:
4374                 timeout_ns = udev->u1_params.sel * 5;
4375                 break;
4376         case USB_ENDPOINT_XFER_INT:
4377                 intr_type = usb_endpoint_interrupt_type(desc);
4378                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4379                         timeout_ns = udev->u1_params.sel * 3;
4380                         break;
4381                 }
4382                 /* Otherwise the calculation is the same as isoc eps */
4383         case USB_ENDPOINT_XFER_ISOC:
4384                 timeout_ns = xhci_service_interval_to_ns(desc);
4385                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4386                 if (timeout_ns < udev->u1_params.sel * 2)
4387                         timeout_ns = udev->u1_params.sel * 2;
4388                 break;
4389         default:
4390                 return 0;
4391         }
4392
4393         return timeout_ns;
4394 }
4395
4396 /* Returns the hub-encoded U1 timeout value. */
4397 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4398                 struct usb_device *udev,
4399                 struct usb_endpoint_descriptor *desc)
4400 {
4401         unsigned long long timeout_ns;
4402
4403         /* Prevent U1 if service interval is shorter than U1 exit latency */
4404         if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4405                 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4406                         dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4407                         return USB3_LPM_DISABLED;
4408                 }
4409         }
4410
4411         if (xhci->quirks & XHCI_INTEL_HOST)
4412                 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4413         else
4414                 timeout_ns = udev->u1_params.sel;
4415
4416         /* The U1 timeout is encoded in 1us intervals.
4417          * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4418          */
4419         if (timeout_ns == USB3_LPM_DISABLED)
4420                 timeout_ns = 1;
4421         else
4422                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4423
4424         /* If the necessary timeout value is bigger than what we can set in the
4425          * USB 3.0 hub, we have to disable hub-initiated U1.
4426          */
4427         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4428                 return timeout_ns;
4429         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4430                         "due to long timeout %llu ms\n", timeout_ns);
4431         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4432 }
4433
4434 /* The U2 timeout should be the maximum of:
4435  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4436  *  - largest bInterval of any active periodic endpoint (to avoid going
4437  *    into lower power link states between intervals).
4438  *  - the U2 Exit Latency of the device
4439  */
4440 static unsigned long long xhci_calculate_intel_u2_timeout(
4441                 struct usb_device *udev,
4442                 struct usb_endpoint_descriptor *desc)
4443 {
4444         unsigned long long timeout_ns;
4445         unsigned long long u2_del_ns;
4446
4447         timeout_ns = 10 * 1000 * 1000;
4448
4449         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4450                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4451                 timeout_ns = xhci_service_interval_to_ns(desc);
4452
4453         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4454         if (u2_del_ns > timeout_ns)
4455                 timeout_ns = u2_del_ns;
4456
4457         return timeout_ns;
4458 }
4459
4460 /* Returns the hub-encoded U2 timeout value. */
4461 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4462                 struct usb_device *udev,
4463                 struct usb_endpoint_descriptor *desc)
4464 {
4465         unsigned long long timeout_ns;
4466
4467         /* Prevent U2 if service interval is shorter than U2 exit latency */
4468         if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4469                 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4470                         dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4471                         return USB3_LPM_DISABLED;
4472                 }
4473         }
4474
4475         if (xhci->quirks & XHCI_INTEL_HOST)
4476                 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4477         else
4478                 timeout_ns = udev->u2_params.sel;
4479
4480         /* The U2 timeout is encoded in 256us intervals */
4481         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4482         /* If the necessary timeout value is bigger than what we can set in the
4483          * USB 3.0 hub, we have to disable hub-initiated U2.
4484          */
4485         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4486                 return timeout_ns;
4487         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4488                         "due to long timeout %llu ms\n", timeout_ns);
4489         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4490 }
4491
4492 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4493                 struct usb_device *udev,
4494                 struct usb_endpoint_descriptor *desc,
4495                 enum usb3_link_state state,
4496                 u16 *timeout)
4497 {
4498         if (state == USB3_LPM_U1)
4499                 return xhci_calculate_u1_timeout(xhci, udev, desc);
4500         else if (state == USB3_LPM_U2)
4501                 return xhci_calculate_u2_timeout(xhci, udev, desc);
4502
4503         return USB3_LPM_DISABLED;
4504 }
4505
4506 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4507                 struct usb_device *udev,
4508                 struct usb_endpoint_descriptor *desc,
4509                 enum usb3_link_state state,
4510                 u16 *timeout)
4511 {
4512         u16 alt_timeout;
4513
4514         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4515                 desc, state, timeout);
4516
4517         /* If we found we can't enable hub-initiated LPM, and
4518          * the U1 or U2 exit latency was too high to allow
4519          * device-initiated LPM as well, then we will disable LPM
4520          * for this device, so stop searching any further.
4521          */
4522         if (alt_timeout == USB3_LPM_DISABLED) {
4523                 *timeout = alt_timeout;
4524                 return -E2BIG;
4525         }
4526         if (alt_timeout > *timeout)
4527                 *timeout = alt_timeout;
4528         return 0;
4529 }
4530
4531 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4532                 struct usb_device *udev,
4533                 struct usb_host_interface *alt,
4534                 enum usb3_link_state state,
4535                 u16 *timeout)
4536 {
4537         int j;
4538
4539         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4540                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4541                                         &alt->endpoint[j].desc, state, timeout))
4542                         return -E2BIG;
4543                 continue;
4544         }
4545         return 0;
4546 }
4547
4548 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4549                 enum usb3_link_state state)
4550 {
4551         struct usb_device *parent;
4552         unsigned int num_hubs;
4553
4554         if (state == USB3_LPM_U2)
4555                 return 0;
4556
4557         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4558         for (parent = udev->parent, num_hubs = 0; parent->parent;
4559                         parent = parent->parent)
4560                 num_hubs++;
4561
4562         if (num_hubs < 2)
4563                 return 0;
4564
4565         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4566                         " below second-tier hub.\n");
4567         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4568                         "to decrease power consumption.\n");
4569         return -E2BIG;
4570 }
4571
4572 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4573                 struct usb_device *udev,
4574                 enum usb3_link_state state)
4575 {
4576         if (xhci->quirks & XHCI_INTEL_HOST)
4577                 return xhci_check_intel_tier_policy(udev, state);
4578         else
4579                 return 0;
4580 }
4581
4582 /* Returns the U1 or U2 timeout that should be enabled.
4583  * If the tier check or timeout setting functions return with a non-zero exit
4584  * code, that means the timeout value has been finalized and we shouldn't look
4585  * at any more endpoints.
4586  */
4587 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4588                         struct usb_device *udev, enum usb3_link_state state)
4589 {
4590         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4591         struct usb_host_config *config;
4592         char *state_name;
4593         int i;
4594         u16 timeout = USB3_LPM_DISABLED;
4595
4596         if (state == USB3_LPM_U1)
4597                 state_name = "U1";
4598         else if (state == USB3_LPM_U2)
4599                 state_name = "U2";
4600         else {
4601                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4602                                 state);
4603                 return timeout;
4604         }
4605
4606         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4607                 return timeout;
4608
4609         /* Gather some information about the currently installed configuration
4610          * and alternate interface settings.
4611          */
4612         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4613                         state, &timeout))
4614                 return timeout;
4615
4616         config = udev->actconfig;
4617         if (!config)
4618                 return timeout;
4619
4620         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4621                 struct usb_driver *driver;
4622                 struct usb_interface *intf = config->interface[i];
4623
4624                 if (!intf)
4625                         continue;
4626
4627                 /* Check if any currently bound drivers want hub-initiated LPM
4628                  * disabled.
4629                  */
4630                 if (intf->dev.driver) {
4631                         driver = to_usb_driver(intf->dev.driver);
4632                         if (driver && driver->disable_hub_initiated_lpm) {
4633                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4634                                         state_name, driver->name);
4635                                 timeout = xhci_get_timeout_no_hub_lpm(udev,
4636                                                                       state);
4637                                 if (timeout == USB3_LPM_DISABLED)
4638                                         return timeout;
4639                         }
4640                 }
4641
4642                 /* Not sure how this could happen... */
4643                 if (!intf->cur_altsetting)
4644                         continue;
4645
4646                 if (xhci_update_timeout_for_interface(xhci, udev,
4647                                         intf->cur_altsetting,
4648                                         state, &timeout))
4649                         return timeout;
4650         }
4651         return timeout;
4652 }
4653
4654 static int calculate_max_exit_latency(struct usb_device *udev,
4655                 enum usb3_link_state state_changed,
4656                 u16 hub_encoded_timeout)
4657 {
4658         unsigned long long u1_mel_us = 0;
4659         unsigned long long u2_mel_us = 0;
4660         unsigned long long mel_us = 0;
4661         bool disabling_u1;
4662         bool disabling_u2;
4663         bool enabling_u1;
4664         bool enabling_u2;
4665
4666         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4667                         hub_encoded_timeout == USB3_LPM_DISABLED);
4668         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4669                         hub_encoded_timeout == USB3_LPM_DISABLED);
4670
4671         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4672                         hub_encoded_timeout != USB3_LPM_DISABLED);
4673         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4674                         hub_encoded_timeout != USB3_LPM_DISABLED);
4675
4676         /* If U1 was already enabled and we're not disabling it,
4677          * or we're going to enable U1, account for the U1 max exit latency.
4678          */
4679         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4680                         enabling_u1)
4681                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4682         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4683                         enabling_u2)
4684                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4685
4686         if (u1_mel_us > u2_mel_us)
4687                 mel_us = u1_mel_us;
4688         else
4689                 mel_us = u2_mel_us;
4690         /* xHCI host controller max exit latency field is only 16 bits wide. */
4691         if (mel_us > MAX_EXIT) {
4692                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4693                                 "is too big.\n", mel_us);
4694                 return -E2BIG;
4695         }
4696         return mel_us;
4697 }
4698
4699 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4700 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4701                         struct usb_device *udev, enum usb3_link_state state)
4702 {
4703         struct xhci_hcd *xhci;
4704         u16 hub_encoded_timeout;
4705         int mel;
4706         int ret;
4707
4708         xhci = hcd_to_xhci(hcd);
4709         /* The LPM timeout values are pretty host-controller specific, so don't
4710          * enable hub-initiated timeouts unless the vendor has provided
4711          * information about their timeout algorithm.
4712          */
4713         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4714                         !xhci->devs[udev->slot_id])
4715                 return USB3_LPM_DISABLED;
4716
4717         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4718         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4719         if (mel < 0) {
4720                 /* Max Exit Latency is too big, disable LPM. */
4721                 hub_encoded_timeout = USB3_LPM_DISABLED;
4722                 mel = 0;
4723         }
4724
4725         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4726         if (ret)
4727                 return ret;
4728         return hub_encoded_timeout;
4729 }
4730
4731 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4732                         struct usb_device *udev, enum usb3_link_state state)
4733 {
4734         struct xhci_hcd *xhci;
4735         u16 mel;
4736
4737         xhci = hcd_to_xhci(hcd);
4738         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4739                         !xhci->devs[udev->slot_id])
4740                 return 0;
4741
4742         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4743         return xhci_change_max_exit_latency(xhci, udev, mel);
4744 }
4745 #else /* CONFIG_PM */
4746
4747 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4748                                 struct usb_device *udev, int enable)
4749 {
4750         return 0;
4751 }
4752
4753 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4754 {
4755         return 0;
4756 }
4757
4758 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4759                         struct usb_device *udev, enum usb3_link_state state)
4760 {
4761         return USB3_LPM_DISABLED;
4762 }
4763
4764 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4765                         struct usb_device *udev, enum usb3_link_state state)
4766 {
4767         return 0;
4768 }
4769 #endif  /* CONFIG_PM */
4770
4771 /*-------------------------------------------------------------------------*/
4772
4773 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4774  * internal data structures for the device.
4775  */
4776 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4777                         struct usb_tt *tt, gfp_t mem_flags)
4778 {
4779         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4780         struct xhci_virt_device *vdev;
4781         struct xhci_command *config_cmd;
4782         struct xhci_input_control_ctx *ctrl_ctx;
4783         struct xhci_slot_ctx *slot_ctx;
4784         unsigned long flags;
4785         unsigned think_time;
4786         int ret;
4787
4788         /* Ignore root hubs */
4789         if (!hdev->parent)
4790                 return 0;
4791
4792         vdev = xhci->devs[hdev->slot_id];
4793         if (!vdev) {
4794                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4795                 return -EINVAL;
4796         }
4797
4798         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4799         if (!config_cmd)
4800                 return -ENOMEM;
4801
4802         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4803         if (!ctrl_ctx) {
4804                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4805                                 __func__);
4806                 xhci_free_command(xhci, config_cmd);
4807                 return -ENOMEM;
4808         }
4809
4810         spin_lock_irqsave(&xhci->lock, flags);
4811         if (hdev->speed == USB_SPEED_HIGH &&
4812                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4813                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4814                 xhci_free_command(xhci, config_cmd);
4815                 spin_unlock_irqrestore(&xhci->lock, flags);
4816                 return -ENOMEM;
4817         }
4818
4819         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4820         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4821         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4822         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4823         /*
4824          * refer to section 6.2.2: MTT should be 0 for full speed hub,
4825          * but it may be already set to 1 when setup an xHCI virtual
4826          * device, so clear it anyway.
4827          */
4828         if (tt->multi)
4829                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4830         else if (hdev->speed == USB_SPEED_FULL)
4831                 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4832
4833         if (xhci->hci_version > 0x95) {
4834                 xhci_dbg(xhci, "xHCI version %x needs hub "
4835                                 "TT think time and number of ports\n",
4836                                 (unsigned int) xhci->hci_version);
4837                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4838                 /* Set TT think time - convert from ns to FS bit times.
4839                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
4840                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
4841                  *
4842                  * xHCI 1.0: this field shall be 0 if the device is not a
4843                  * High-spped hub.
4844                  */
4845                 think_time = tt->think_time;
4846                 if (think_time != 0)
4847                         think_time = (think_time / 666) - 1;
4848                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4849                         slot_ctx->tt_info |=
4850                                 cpu_to_le32(TT_THINK_TIME(think_time));
4851         } else {
4852                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4853                                 "TT think time or number of ports\n",
4854                                 (unsigned int) xhci->hci_version);
4855         }
4856         slot_ctx->dev_state = 0;
4857         spin_unlock_irqrestore(&xhci->lock, flags);
4858
4859         xhci_dbg(xhci, "Set up %s for hub device.\n",
4860                         (xhci->hci_version > 0x95) ?
4861                         "configure endpoint" : "evaluate context");
4862
4863         /* Issue and wait for the configure endpoint or
4864          * evaluate context command.
4865          */
4866         if (xhci->hci_version > 0x95)
4867                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4868                                 false, false);
4869         else
4870                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4871                                 true, false);
4872
4873         xhci_free_command(xhci, config_cmd);
4874         return ret;
4875 }
4876
4877 static int xhci_get_frame(struct usb_hcd *hcd)
4878 {
4879         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4880         /* EHCI mods by the periodic size.  Why? */
4881         return readl(&xhci->run_regs->microframe_index) >> 3;
4882 }
4883
4884 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4885 {
4886         struct xhci_hcd         *xhci;
4887         /*
4888          * TODO: Check with DWC3 clients for sysdev according to
4889          * quirks
4890          */
4891         struct device           *dev = hcd->self.sysdev;
4892         unsigned int            minor_rev;
4893         int                     retval;
4894
4895         /* Accept arbitrarily long scatter-gather lists */
4896         hcd->self.sg_tablesize = ~0;
4897
4898         /* support to build packet from discontinuous buffers */
4899         hcd->self.no_sg_constraint = 1;
4900
4901         /* XHCI controllers don't stop the ep queue on short packets :| */
4902         hcd->self.no_stop_on_short = 1;
4903
4904         xhci = hcd_to_xhci(hcd);
4905
4906         if (usb_hcd_is_primary_hcd(hcd)) {
4907                 xhci->main_hcd = hcd;
4908                 /* Mark the first roothub as being USB 2.0.
4909                  * The xHCI driver will register the USB 3.0 roothub.
4910                  */
4911                 hcd->speed = HCD_USB2;
4912                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4913                 /*
4914                  * USB 2.0 roothub under xHCI has an integrated TT,
4915                  * (rate matching hub) as opposed to having an OHCI/UHCI
4916                  * companion controller.
4917                  */
4918                 hcd->has_tt = 1;
4919         } else {
4920                 /*
4921                  * Some 3.1 hosts return sbrn 0x30, use xhci supported protocol
4922                  * minor revision instead of sbrn
4923                  */
4924                 minor_rev = xhci->usb3_rhub.min_rev;
4925                 if (minor_rev) {
4926                         hcd->speed = HCD_USB31;
4927                         hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
4928                 }
4929                 xhci_info(xhci, "Host supports USB 3.%x %s SuperSpeed\n",
4930                           minor_rev,
4931                           minor_rev ? "Enhanced" : "");
4932
4933                 /* xHCI private pointer was set in xhci_pci_probe for the second
4934                  * registered roothub.
4935                  */
4936                 return 0;
4937         }
4938
4939         mutex_init(&xhci->mutex);
4940         xhci->cap_regs = hcd->regs;
4941         xhci->op_regs = hcd->regs +
4942                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4943         xhci->run_regs = hcd->regs +
4944                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4945         /* Cache read-only capability registers */
4946         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4947         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4948         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4949         xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4950         xhci->hci_version = HC_VERSION(xhci->hcc_params);
4951         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4952         if (xhci->hci_version > 0x100)
4953                 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4954         xhci_print_registers(xhci);
4955
4956         xhci->quirks |= quirks;
4957
4958         get_quirks(dev, xhci);
4959
4960         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4961          * success event after a short transfer. This quirk will ignore such
4962          * spurious event.
4963          */
4964         if (xhci->hci_version > 0x96)
4965                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4966
4967         /* Make sure the HC is halted. */
4968         retval = xhci_halt(xhci);
4969         if (retval)
4970                 return retval;
4971
4972         xhci_dbg(xhci, "Resetting HCD\n");
4973         /* Reset the internal HC memory state and registers. */
4974         retval = xhci_reset(xhci);
4975         if (retval)
4976                 return retval;
4977         xhci_dbg(xhci, "Reset complete\n");
4978
4979         /*
4980          * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
4981          * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
4982          * address memory pointers actually. So, this driver clears the AC64
4983          * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
4984          * DMA_BIT_MASK(32)) in this xhci_gen_setup().
4985          */
4986         if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
4987                 xhci->hcc_params &= ~BIT(0);
4988
4989         /* Set dma_mask and coherent_dma_mask to 64-bits,
4990          * if xHC supports 64-bit addressing */
4991         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4992                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
4993                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4994                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4995         } else {
4996                 /*
4997                  * This is to avoid error in cases where a 32-bit USB
4998                  * controller is used on a 64-bit capable system.
4999                  */
5000                 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5001                 if (retval)
5002                         return retval;
5003                 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5004                 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5005         }
5006
5007         xhci_dbg(xhci, "Calling HCD init\n");
5008         /* Initialize HCD and host controller data structures. */
5009         retval = xhci_init(hcd);
5010         if (retval)
5011                 return retval;
5012         xhci_dbg(xhci, "Called HCD init\n");
5013
5014         xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5015                   xhci->hcc_params, xhci->hci_version, xhci->quirks);
5016
5017         return 0;
5018 }
5019 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5020
5021 static const struct hc_driver xhci_hc_driver = {
5022         .description =          "xhci-hcd",
5023         .product_desc =         "xHCI Host Controller",
5024         .hcd_priv_size =        sizeof(struct xhci_hcd),
5025
5026         /*
5027          * generic hardware linkage
5028          */
5029         .irq =                  xhci_irq,
5030         .flags =                HCD_MEMORY | HCD_USB3 | HCD_SHARED,
5031
5032         /*
5033          * basic lifecycle operations
5034          */
5035         .reset =                NULL, /* set in xhci_init_driver() */
5036         .start =                xhci_run,
5037         .stop =                 xhci_stop,
5038         .shutdown =             xhci_shutdown,
5039
5040         /*
5041          * managing i/o requests and associated device resources
5042          */
5043         .urb_enqueue =          xhci_urb_enqueue,
5044         .urb_dequeue =          xhci_urb_dequeue,
5045         .alloc_dev =            xhci_alloc_dev,
5046         .free_dev =             xhci_free_dev,
5047         .alloc_streams =        xhci_alloc_streams,
5048         .free_streams =         xhci_free_streams,
5049         .add_endpoint =         xhci_add_endpoint,
5050         .drop_endpoint =        xhci_drop_endpoint,
5051         .endpoint_reset =       xhci_endpoint_reset,
5052         .check_bandwidth =      xhci_check_bandwidth,
5053         .reset_bandwidth =      xhci_reset_bandwidth,
5054         .address_device =       xhci_address_device,
5055         .enable_device =        xhci_enable_device,
5056         .update_hub_device =    xhci_update_hub_device,
5057         .reset_device =         xhci_discover_or_reset_device,
5058
5059         /*
5060          * scheduling support
5061          */
5062         .get_frame_number =     xhci_get_frame,
5063
5064         /*
5065          * root hub support
5066          */
5067         .hub_control =          xhci_hub_control,
5068         .hub_status_data =      xhci_hub_status_data,
5069         .bus_suspend =          xhci_bus_suspend,
5070         .bus_resume =           xhci_bus_resume,
5071
5072         /*
5073          * call back when device connected and addressed
5074          */
5075         .update_device =        xhci_update_device,
5076         .set_usb2_hw_lpm =      xhci_set_usb2_hardware_lpm,
5077         .enable_usb3_lpm_timeout =      xhci_enable_usb3_lpm_timeout,
5078         .disable_usb3_lpm_timeout =     xhci_disable_usb3_lpm_timeout,
5079         .find_raw_port_number = xhci_find_raw_port_number,
5080 };
5081
5082 void xhci_init_driver(struct hc_driver *drv,
5083                       const struct xhci_driver_overrides *over)
5084 {
5085         BUG_ON(!over);
5086
5087         /* Copy the generic table to drv then apply the overrides */
5088         *drv = xhci_hc_driver;
5089
5090         if (over) {
5091                 drv->hcd_priv_size += over->extra_priv_size;
5092                 if (over->reset)
5093                         drv->reset = over->reset;
5094                 if (over->start)
5095                         drv->start = over->start;
5096         }
5097 }
5098 EXPORT_SYMBOL_GPL(xhci_init_driver);
5099
5100 MODULE_DESCRIPTION(DRIVER_DESC);
5101 MODULE_AUTHOR(DRIVER_AUTHOR);
5102 MODULE_LICENSE("GPL");
5103
5104 static int __init xhci_hcd_init(void)
5105 {
5106         /*
5107          * Check the compiler generated sizes of structures that must be laid
5108          * out in specific ways for hardware access.
5109          */
5110         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5111         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5112         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5113         /* xhci_device_control has eight fields, and also
5114          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5115          */
5116         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5117         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5118         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5119         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5120         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5121         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5122         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5123
5124         if (usb_disabled())
5125                 return -ENODEV;
5126
5127         return 0;
5128 }
5129
5130 /*
5131  * If an init function is provided, an exit function must also be provided
5132  * to allow module unload.
5133  */
5134 static void __exit xhci_hcd_fini(void) { }
5135
5136 module_init(xhci_hcd_init);
5137 module_exit(xhci_hcd_fini);