GNU Linux-libre 4.9.333-gnu1
[releases.git] / drivers / usb / host / xhci.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/iopoll.h>
25 #include <linux/irq.h>
26 #include <linux/log2.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/slab.h>
30 #include <linux/dmi.h>
31 #include <linux/dma-mapping.h>
32
33 #include "xhci.h"
34 #include "xhci-trace.h"
35 #include "xhci-mtk.h"
36
37 #define DRIVER_AUTHOR "Sarah Sharp"
38 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
39
40 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
41
42 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
43 static int link_quirk;
44 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
45 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
46
47 static unsigned int quirks;
48 module_param(quirks, uint, S_IRUGO);
49 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
50
51 /*
52  * xhci_handshake - spin reading hc until handshake completes or fails
53  * @ptr: address of hc register to be read
54  * @mask: bits to look at in result of read
55  * @done: value of those bits when handshake succeeds
56  * @usec: timeout in microseconds
57  *
58  * Returns negative errno, or zero on success
59  *
60  * Success happens when the "mask" bits have the specified value (hardware
61  * handshake done).  There are two failure modes:  "usec" have passed (major
62  * hardware flakeout), or the register reads as all-ones (hardware removed).
63  */
64 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
65 {
66         u32     result;
67         int     ret;
68
69         ret = readl_poll_timeout_atomic(ptr, result,
70                                         (result & mask) == done ||
71                                         result == U32_MAX,
72                                         1, usec);
73         if (result == U32_MAX)          /* card removed */
74                 return -ENODEV;
75
76         return ret;
77 }
78
79 /*
80  * Disable interrupts and begin the xHCI halting process.
81  */
82 void xhci_quiesce(struct xhci_hcd *xhci)
83 {
84         u32 halted;
85         u32 cmd;
86         u32 mask;
87
88         mask = ~(XHCI_IRQS);
89         halted = readl(&xhci->op_regs->status) & STS_HALT;
90         if (!halted)
91                 mask &= ~CMD_RUN;
92
93         cmd = readl(&xhci->op_regs->command);
94         cmd &= mask;
95         writel(cmd, &xhci->op_regs->command);
96 }
97
98 /*
99  * Force HC into halt state.
100  *
101  * Disable any IRQs and clear the run/stop bit.
102  * HC will complete any current and actively pipelined transactions, and
103  * should halt within 16 ms of the run/stop bit being cleared.
104  * Read HC Halted bit in the status register to see when the HC is finished.
105  */
106 int xhci_halt(struct xhci_hcd *xhci)
107 {
108         int ret;
109         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
110         xhci_quiesce(xhci);
111
112         ret = xhci_handshake(&xhci->op_regs->status,
113                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
114         if (!ret) {
115                 xhci->xhc_state |= XHCI_STATE_HALTED;
116                 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
117         } else
118                 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
119                                 XHCI_MAX_HALT_USEC);
120         return ret;
121 }
122
123 /*
124  * Set the run bit and wait for the host to be running.
125  */
126 static int xhci_start(struct xhci_hcd *xhci)
127 {
128         u32 temp;
129         int ret;
130
131         temp = readl(&xhci->op_regs->command);
132         temp |= (CMD_RUN);
133         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
134                         temp);
135         writel(temp, &xhci->op_regs->command);
136
137         /*
138          * Wait for the HCHalted Status bit to be 0 to indicate the host is
139          * running.
140          */
141         ret = xhci_handshake(&xhci->op_regs->status,
142                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
143         if (ret == -ETIMEDOUT)
144                 xhci_err(xhci, "Host took too long to start, "
145                                 "waited %u microseconds.\n",
146                                 XHCI_MAX_HALT_USEC);
147         if (!ret) {
148                 /* clear state flags. Including dying, halted or removing */
149                 xhci->xhc_state = 0;
150                 xhci->run_graceperiod = jiffies + msecs_to_jiffies(500);
151         }
152
153         return ret;
154 }
155
156 /*
157  * Reset a halted HC.
158  *
159  * This resets pipelines, timers, counters, state machines, etc.
160  * Transactions will be terminated immediately, and operational registers
161  * will be set to their defaults.
162  */
163 int xhci_reset(struct xhci_hcd *xhci)
164 {
165         u32 command;
166         u32 state;
167         int ret, i;
168
169         state = readl(&xhci->op_regs->status);
170         if ((state & STS_HALT) == 0) {
171                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
172                 return 0;
173         }
174
175         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
176         command = readl(&xhci->op_regs->command);
177         command |= CMD_RESET;
178         writel(command, &xhci->op_regs->command);
179
180         /* Existing Intel xHCI controllers require a delay of 1 mS,
181          * after setting the CMD_RESET bit, and before accessing any
182          * HC registers. This allows the HC to complete the
183          * reset operation and be ready for HC register access.
184          * Without this delay, the subsequent HC register access,
185          * may result in a system hang very rarely.
186          */
187         if (xhci->quirks & XHCI_INTEL_HOST)
188                 udelay(1000);
189
190         ret = xhci_handshake(&xhci->op_regs->command,
191                         CMD_RESET, 0, 10 * 1000 * 1000);
192         if (ret)
193                 return ret;
194
195         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
196                 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
197
198         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
199                          "Wait for controller to be ready for doorbell rings");
200         /*
201          * xHCI cannot write to any doorbells or operational registers other
202          * than status until the "Controller Not Ready" flag is cleared.
203          */
204         ret = xhci_handshake(&xhci->op_regs->status,
205                         STS_CNR, 0, 10 * 1000 * 1000);
206
207         for (i = 0; i < 2; ++i) {
208                 xhci->bus_state[i].port_c_suspend = 0;
209                 xhci->bus_state[i].suspended_ports = 0;
210                 xhci->bus_state[i].resuming_ports = 0;
211         }
212
213         return ret;
214 }
215
216 #ifdef CONFIG_PCI
217 static int xhci_free_msi(struct xhci_hcd *xhci)
218 {
219         int i;
220
221         if (!xhci->msix_entries)
222                 return -EINVAL;
223
224         for (i = 0; i < xhci->msix_count; i++)
225                 if (xhci->msix_entries[i].vector)
226                         free_irq(xhci->msix_entries[i].vector,
227                                         xhci_to_hcd(xhci));
228         return 0;
229 }
230
231 /*
232  * Set up MSI
233  */
234 static int xhci_setup_msi(struct xhci_hcd *xhci)
235 {
236         int ret;
237         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
238
239         ret = pci_enable_msi(pdev);
240         if (ret) {
241                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
242                                 "failed to allocate MSI entry");
243                 return ret;
244         }
245
246         ret = request_irq(pdev->irq, xhci_msi_irq,
247                                 0, "xhci_hcd", xhci_to_hcd(xhci));
248         if (ret) {
249                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
250                                 "disable MSI interrupt");
251                 pci_disable_msi(pdev);
252         }
253
254         return ret;
255 }
256
257 /*
258  * Free IRQs
259  * free all IRQs request
260  */
261 static void xhci_free_irq(struct xhci_hcd *xhci)
262 {
263         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
264         int ret;
265
266         /* return if using legacy interrupt */
267         if (xhci_to_hcd(xhci)->irq > 0)
268                 return;
269
270         ret = xhci_free_msi(xhci);
271         if (!ret)
272                 return;
273         if (pdev->irq > 0)
274                 free_irq(pdev->irq, xhci_to_hcd(xhci));
275
276         return;
277 }
278
279 /*
280  * Set up MSI-X
281  */
282 static int xhci_setup_msix(struct xhci_hcd *xhci)
283 {
284         int i, ret = 0;
285         struct usb_hcd *hcd = xhci_to_hcd(xhci);
286         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
287
288         /*
289          * calculate number of msi-x vectors supported.
290          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
291          *   with max number of interrupters based on the xhci HCSPARAMS1.
292          * - num_online_cpus: maximum msi-x vectors per CPUs core.
293          *   Add additional 1 vector to ensure always available interrupt.
294          */
295         xhci->msix_count = min(num_online_cpus() + 1,
296                                 HCS_MAX_INTRS(xhci->hcs_params1));
297
298         xhci->msix_entries =
299                 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
300                                 GFP_KERNEL);
301         if (!xhci->msix_entries)
302                 return -ENOMEM;
303
304         for (i = 0; i < xhci->msix_count; i++) {
305                 xhci->msix_entries[i].entry = i;
306                 xhci->msix_entries[i].vector = 0;
307         }
308
309         ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count);
310         if (ret) {
311                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
312                                 "Failed to enable MSI-X");
313                 goto free_entries;
314         }
315
316         for (i = 0; i < xhci->msix_count; i++) {
317                 ret = request_irq(xhci->msix_entries[i].vector,
318                                 xhci_msi_irq,
319                                 0, "xhci_hcd", xhci_to_hcd(xhci));
320                 if (ret)
321                         goto disable_msix;
322         }
323
324         hcd->msix_enabled = 1;
325         return ret;
326
327 disable_msix:
328         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
329         xhci_free_irq(xhci);
330         pci_disable_msix(pdev);
331 free_entries:
332         kfree(xhci->msix_entries);
333         xhci->msix_entries = NULL;
334         return ret;
335 }
336
337 /* Free any IRQs and disable MSI-X */
338 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
339 {
340         struct usb_hcd *hcd = xhci_to_hcd(xhci);
341         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
342
343         if (xhci->quirks & XHCI_PLAT)
344                 return;
345
346         xhci_free_irq(xhci);
347
348         if (xhci->msix_entries) {
349                 pci_disable_msix(pdev);
350                 kfree(xhci->msix_entries);
351                 xhci->msix_entries = NULL;
352         } else {
353                 pci_disable_msi(pdev);
354         }
355
356         hcd->msix_enabled = 0;
357         return;
358 }
359
360 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
361 {
362         int i;
363
364         if (xhci->msix_entries) {
365                 for (i = 0; i < xhci->msix_count; i++)
366                         synchronize_irq(xhci->msix_entries[i].vector);
367         }
368 }
369
370 static int xhci_try_enable_msi(struct usb_hcd *hcd)
371 {
372         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
373         struct pci_dev  *pdev;
374         int ret;
375
376         /* The xhci platform device has set up IRQs through usb_add_hcd. */
377         if (xhci->quirks & XHCI_PLAT)
378                 return 0;
379
380         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
381         /*
382          * Some Fresco Logic host controllers advertise MSI, but fail to
383          * generate interrupts.  Don't even try to enable MSI.
384          */
385         if (xhci->quirks & XHCI_BROKEN_MSI)
386                 goto legacy_irq;
387
388         /* unregister the legacy interrupt */
389         if (hcd->irq)
390                 free_irq(hcd->irq, hcd);
391         hcd->irq = 0;
392
393         ret = xhci_setup_msix(xhci);
394         if (ret)
395                 /* fall back to msi*/
396                 ret = xhci_setup_msi(xhci);
397
398         if (!ret)
399                 /* hcd->irq is 0, we have MSI */
400                 return 0;
401
402         if (!pdev->irq) {
403                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
404                 return -EINVAL;
405         }
406
407  legacy_irq:
408         if (!strlen(hcd->irq_descr))
409                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
410                          hcd->driver->description, hcd->self.busnum);
411
412         /* fall back to legacy interrupt*/
413         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
414                         hcd->irq_descr, hcd);
415         if (ret) {
416                 xhci_err(xhci, "request interrupt %d failed\n",
417                                 pdev->irq);
418                 return ret;
419         }
420         hcd->irq = pdev->irq;
421         return 0;
422 }
423
424 #else
425
426 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
427 {
428         return 0;
429 }
430
431 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
432 {
433 }
434
435 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
436 {
437 }
438
439 #endif
440
441 static void compliance_mode_recovery(unsigned long arg)
442 {
443         struct xhci_hcd *xhci;
444         struct usb_hcd *hcd;
445         u32 temp;
446         int i;
447
448         xhci = (struct xhci_hcd *)arg;
449
450         for (i = 0; i < xhci->num_usb3_ports; i++) {
451                 temp = readl(xhci->usb3_ports[i]);
452                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
453                         /*
454                          * Compliance Mode Detected. Letting USB Core
455                          * handle the Warm Reset
456                          */
457                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
458                                         "Compliance mode detected->port %d",
459                                         i + 1);
460                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
461                                         "Attempting compliance mode recovery");
462                         hcd = xhci->shared_hcd;
463
464                         if (hcd->state == HC_STATE_SUSPENDED)
465                                 usb_hcd_resume_root_hub(hcd);
466
467                         usb_hcd_poll_rh_status(hcd);
468                 }
469         }
470
471         if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
472                 mod_timer(&xhci->comp_mode_recovery_timer,
473                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
474 }
475
476 /*
477  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
478  * that causes ports behind that hardware to enter compliance mode sometimes.
479  * The quirk creates a timer that polls every 2 seconds the link state of
480  * each host controller's port and recovers it by issuing a Warm reset
481  * if Compliance mode is detected, otherwise the port will become "dead" (no
482  * device connections or disconnections will be detected anymore). Becasue no
483  * status event is generated when entering compliance mode (per xhci spec),
484  * this quirk is needed on systems that have the failing hardware installed.
485  */
486 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
487 {
488         xhci->port_status_u0 = 0;
489         setup_timer(&xhci->comp_mode_recovery_timer,
490                     compliance_mode_recovery, (unsigned long)xhci);
491         xhci->comp_mode_recovery_timer.expires = jiffies +
492                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
493
494         add_timer(&xhci->comp_mode_recovery_timer);
495         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
496                         "Compliance mode recovery timer initialized");
497 }
498
499 /*
500  * This function identifies the systems that have installed the SN65LVPE502CP
501  * USB3.0 re-driver and that need the Compliance Mode Quirk.
502  * Systems:
503  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
504  */
505 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
506 {
507         const char *dmi_product_name, *dmi_sys_vendor;
508
509         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
510         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
511         if (!dmi_product_name || !dmi_sys_vendor)
512                 return false;
513
514         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
515                 return false;
516
517         if (strstr(dmi_product_name, "Z420") ||
518                         strstr(dmi_product_name, "Z620") ||
519                         strstr(dmi_product_name, "Z820") ||
520                         strstr(dmi_product_name, "Z1 Workstation"))
521                 return true;
522
523         return false;
524 }
525
526 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
527 {
528         return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
529 }
530
531
532 /*
533  * Initialize memory for HCD and xHC (one-time init).
534  *
535  * Program the PAGESIZE register, initialize the device context array, create
536  * device contexts (?), set up a command ring segment (or two?), create event
537  * ring (one for now).
538  */
539 int xhci_init(struct usb_hcd *hcd)
540 {
541         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
542         int retval = 0;
543
544         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
545         spin_lock_init(&xhci->lock);
546         if (xhci->hci_version == 0x95 && link_quirk) {
547                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
548                                 "QUIRK: Not clearing Link TRB chain bits.");
549                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
550         } else {
551                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
552                                 "xHCI doesn't need link TRB QUIRK");
553         }
554         retval = xhci_mem_init(xhci, GFP_KERNEL);
555         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
556
557         /* Initializing Compliance Mode Recovery Data If Needed */
558         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
559                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
560                 compliance_mode_recovery_timer_init(xhci);
561         }
562
563         return retval;
564 }
565
566 /*-------------------------------------------------------------------------*/
567
568
569 static int xhci_run_finished(struct xhci_hcd *xhci)
570 {
571         if (xhci_start(xhci)) {
572                 xhci_halt(xhci);
573                 return -ENODEV;
574         }
575         xhci->shared_hcd->state = HC_STATE_RUNNING;
576         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
577
578         if (xhci->quirks & XHCI_NEC_HOST)
579                 xhci_ring_cmd_db(xhci);
580
581         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
582                         "Finished xhci_run for USB3 roothub");
583         return 0;
584 }
585
586 /*
587  * Start the HC after it was halted.
588  *
589  * This function is called by the USB core when the HC driver is added.
590  * Its opposite is xhci_stop().
591  *
592  * xhci_init() must be called once before this function can be called.
593  * Reset the HC, enable device slot contexts, program DCBAAP, and
594  * set command ring pointer and event ring pointer.
595  *
596  * Setup MSI-X vectors and enable interrupts.
597  */
598 int xhci_run(struct usb_hcd *hcd)
599 {
600         u32 temp;
601         u64 temp_64;
602         int ret;
603         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
604
605         /* Start the xHCI host controller running only after the USB 2.0 roothub
606          * is setup.
607          */
608
609         hcd->uses_new_polling = 1;
610         if (!usb_hcd_is_primary_hcd(hcd))
611                 return xhci_run_finished(xhci);
612
613         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
614
615         ret = xhci_try_enable_msi(hcd);
616         if (ret)
617                 return ret;
618
619         xhci_dbg(xhci, "Command ring memory map follows:\n");
620         xhci_debug_ring(xhci, xhci->cmd_ring);
621         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
622         xhci_dbg_cmd_ptrs(xhci);
623
624         xhci_dbg(xhci, "ERST memory map follows:\n");
625         xhci_dbg_erst(xhci, &xhci->erst);
626         xhci_dbg(xhci, "Event ring:\n");
627         xhci_debug_ring(xhci, xhci->event_ring);
628         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
629         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
630         temp_64 &= ~ERST_PTR_MASK;
631         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
632                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
633
634         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
635                         "// Set the interrupt modulation register");
636         temp = readl(&xhci->ir_set->irq_control);
637         temp &= ~ER_IRQ_INTERVAL_MASK;
638         /*
639          * the increment interval is 8 times as much as that defined
640          * in xHCI spec on MTK's controller
641          */
642         temp |= (u32) ((xhci->quirks & XHCI_MTK_HOST) ? 20 : 160);
643         writel(temp, &xhci->ir_set->irq_control);
644
645         /* Set the HCD state before we enable the irqs */
646         temp = readl(&xhci->op_regs->command);
647         temp |= (CMD_EIE);
648         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
649                         "// Enable interrupts, cmd = 0x%x.", temp);
650         writel(temp, &xhci->op_regs->command);
651
652         temp = readl(&xhci->ir_set->irq_pending);
653         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
654                         "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
655                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
656         writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
657         xhci_print_ir_set(xhci, 0);
658
659         if (xhci->quirks & XHCI_NEC_HOST) {
660                 struct xhci_command *command;
661                 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
662                 if (!command)
663                         return -ENOMEM;
664                 xhci_queue_vendor_command(xhci, command, 0, 0, 0,
665                                 TRB_TYPE(TRB_NEC_GET_FW));
666         }
667         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
668                         "Finished xhci_run for USB2 roothub");
669         return 0;
670 }
671 EXPORT_SYMBOL_GPL(xhci_run);
672
673 /*
674  * Stop xHCI driver.
675  *
676  * This function is called by the USB core when the HC driver is removed.
677  * Its opposite is xhci_run().
678  *
679  * Disable device contexts, disable IRQs, and quiesce the HC.
680  * Reset the HC, finish any completed transactions, and cleanup memory.
681  */
682 void xhci_stop(struct usb_hcd *hcd)
683 {
684         u32 temp;
685         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
686
687         mutex_lock(&xhci->mutex);
688
689         if (!(xhci->xhc_state & XHCI_STATE_HALTED)) {
690                 spin_lock_irq(&xhci->lock);
691
692                 xhci->xhc_state |= XHCI_STATE_HALTED;
693                 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
694                 xhci_halt(xhci);
695                 xhci_reset(xhci);
696
697                 spin_unlock_irq(&xhci->lock);
698         }
699
700         if (!usb_hcd_is_primary_hcd(hcd)) {
701                 mutex_unlock(&xhci->mutex);
702                 return;
703         }
704
705         xhci_cleanup_msix(xhci);
706
707         /* Deleting Compliance Mode Recovery Timer */
708         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
709                         (!(xhci_all_ports_seen_u0(xhci)))) {
710                 del_timer_sync(&xhci->comp_mode_recovery_timer);
711                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
712                                 "%s: compliance mode recovery timer deleted",
713                                 __func__);
714         }
715
716         if (xhci->quirks & XHCI_AMD_PLL_FIX)
717                 usb_amd_dev_put();
718
719         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
720                         "// Disabling event ring interrupts");
721         temp = readl(&xhci->op_regs->status);
722         writel(temp & ~STS_EINT, &xhci->op_regs->status);
723         temp = readl(&xhci->ir_set->irq_pending);
724         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
725         xhci_print_ir_set(xhci, 0);
726
727         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
728         xhci_mem_cleanup(xhci);
729         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
730                         "xhci_stop completed - status = %x",
731                         readl(&xhci->op_regs->status));
732         mutex_unlock(&xhci->mutex);
733 }
734
735 /*
736  * Shutdown HC (not bus-specific)
737  *
738  * This is called when the machine is rebooting or halting.  We assume that the
739  * machine will be powered off, and the HC's internal state will be reset.
740  * Don't bother to free memory.
741  *
742  * This will only ever be called with the main usb_hcd (the USB3 roothub).
743  */
744 void xhci_shutdown(struct usb_hcd *hcd)
745 {
746         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
747
748         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
749                 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
750
751         /* Don't poll the roothubs after shutdown. */
752         xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
753                         __func__, hcd->self.busnum);
754         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
755         del_timer_sync(&hcd->rh_timer);
756
757         if (xhci->shared_hcd) {
758                 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
759                 del_timer_sync(&xhci->shared_hcd->rh_timer);
760         }
761
762         spin_lock_irq(&xhci->lock);
763         xhci_halt(xhci);
764         /* Workaround for spurious wakeups at shutdown with HSW */
765         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
766                 xhci_reset(xhci);
767         spin_unlock_irq(&xhci->lock);
768
769         xhci_cleanup_msix(xhci);
770
771         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
772                         "xhci_shutdown completed - status = %x",
773                         readl(&xhci->op_regs->status));
774 }
775 EXPORT_SYMBOL_GPL(xhci_shutdown);
776
777 #ifdef CONFIG_PM
778 static void xhci_save_registers(struct xhci_hcd *xhci)
779 {
780         xhci->s3.command = readl(&xhci->op_regs->command);
781         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
782         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
783         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
784         xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
785         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
786         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
787         xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
788         xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
789 }
790
791 static void xhci_restore_registers(struct xhci_hcd *xhci)
792 {
793         writel(xhci->s3.command, &xhci->op_regs->command);
794         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
795         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
796         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
797         writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
798         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
799         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
800         writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
801         writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
802 }
803
804 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
805 {
806         u64     val_64;
807
808         /* step 2: initialize command ring buffer */
809         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
810         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
811                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
812                                       xhci->cmd_ring->dequeue) &
813                  (u64) ~CMD_RING_RSVD_BITS) |
814                 xhci->cmd_ring->cycle_state;
815         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
816                         "// Setting command ring address to 0x%llx",
817                         (long unsigned long) val_64);
818         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
819 }
820
821 /*
822  * The whole command ring must be cleared to zero when we suspend the host.
823  *
824  * The host doesn't save the command ring pointer in the suspend well, so we
825  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
826  * aligned, because of the reserved bits in the command ring dequeue pointer
827  * register.  Therefore, we can't just set the dequeue pointer back in the
828  * middle of the ring (TRBs are 16-byte aligned).
829  */
830 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
831 {
832         struct xhci_ring *ring;
833         struct xhci_segment *seg;
834
835         ring = xhci->cmd_ring;
836         seg = ring->deq_seg;
837         do {
838                 memset(seg->trbs, 0,
839                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
840                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
841                         cpu_to_le32(~TRB_CYCLE);
842                 seg = seg->next;
843         } while (seg != ring->deq_seg);
844
845         /* Reset the software enqueue and dequeue pointers */
846         ring->deq_seg = ring->first_seg;
847         ring->dequeue = ring->first_seg->trbs;
848         ring->enq_seg = ring->deq_seg;
849         ring->enqueue = ring->dequeue;
850
851         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
852         /*
853          * Ring is now zeroed, so the HW should look for change of ownership
854          * when the cycle bit is set to 1.
855          */
856         ring->cycle_state = 1;
857
858         /*
859          * Reset the hardware dequeue pointer.
860          * Yes, this will need to be re-written after resume, but we're paranoid
861          * and want to make sure the hardware doesn't access bogus memory
862          * because, say, the BIOS or an SMI started the host without changing
863          * the command ring pointers.
864          */
865         xhci_set_cmd_ring_deq(xhci);
866 }
867
868 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
869 {
870         int port_index;
871         __le32 __iomem **port_array;
872         unsigned long flags;
873         u32 t1, t2;
874
875         spin_lock_irqsave(&xhci->lock, flags);
876
877         /* disble usb3 ports Wake bits*/
878         port_index = xhci->num_usb3_ports;
879         port_array = xhci->usb3_ports;
880         while (port_index--) {
881                 t1 = readl(port_array[port_index]);
882                 t1 = xhci_port_state_to_neutral(t1);
883                 t2 = t1 & ~PORT_WAKE_BITS;
884                 if (t1 != t2)
885                         writel(t2, port_array[port_index]);
886         }
887
888         /* disble usb2 ports Wake bits*/
889         port_index = xhci->num_usb2_ports;
890         port_array = xhci->usb2_ports;
891         while (port_index--) {
892                 t1 = readl(port_array[port_index]);
893                 t1 = xhci_port_state_to_neutral(t1);
894                 t2 = t1 & ~PORT_WAKE_BITS;
895                 if (t1 != t2)
896                         writel(t2, port_array[port_index]);
897         }
898
899         spin_unlock_irqrestore(&xhci->lock, flags);
900 }
901
902 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
903 {
904         __le32 __iomem          **port_array;
905         int                     port_index;
906         u32                     status;
907         u32                     portsc;
908
909         status = readl(&xhci->op_regs->status);
910         if (status & STS_EINT)
911                 return true;
912         /*
913          * Checking STS_EINT is not enough as there is a lag between a change
914          * bit being set and the Port Status Change Event that it generated
915          * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
916          */
917
918         port_index = xhci->num_usb2_ports;
919         port_array = xhci->usb2_ports;
920         while (port_index--) {
921                 portsc = readl(port_array[port_index]);
922                 if (portsc & PORT_CHANGE_MASK ||
923                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
924                         return true;
925         }
926         port_index = xhci->num_usb3_ports;
927         port_array = xhci->usb3_ports;
928         while (port_index--) {
929                 portsc = readl(port_array[port_index]);
930                 if (portsc & PORT_CHANGE_MASK ||
931                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
932                         return true;
933         }
934         return false;
935 }
936
937 /*
938  * Stop HC (not bus-specific)
939  *
940  * This is called when the machine transition into S3/S4 mode.
941  *
942  */
943 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
944 {
945         int                     rc = 0;
946         unsigned int            delay = XHCI_MAX_HALT_USEC * 2;
947         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
948         u32                     command;
949
950         if (!hcd->state)
951                 return 0;
952
953         if (hcd->state != HC_STATE_SUSPENDED ||
954                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
955                 return -EINVAL;
956
957         /* Clear root port wake on bits if wakeup not allowed. */
958         if (!do_wakeup)
959                 xhci_disable_port_wake_on_bits(xhci);
960
961         /* Don't poll the roothubs on bus suspend. */
962         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
963         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
964         del_timer_sync(&hcd->rh_timer);
965         clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
966         del_timer_sync(&xhci->shared_hcd->rh_timer);
967
968         spin_lock_irq(&xhci->lock);
969         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
970         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
971         /* step 1: stop endpoint */
972         /* skipped assuming that port suspend has done */
973
974         /* step 2: clear Run/Stop bit */
975         command = readl(&xhci->op_regs->command);
976         command &= ~CMD_RUN;
977         writel(command, &xhci->op_regs->command);
978
979         /* Some chips from Fresco Logic need an extraordinary delay */
980         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
981
982         if (xhci_handshake(&xhci->op_regs->status,
983                       STS_HALT, STS_HALT, delay)) {
984                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
985                 spin_unlock_irq(&xhci->lock);
986                 return -ETIMEDOUT;
987         }
988         xhci_clear_command_ring(xhci);
989
990         /* step 3: save registers */
991         xhci_save_registers(xhci);
992
993         /* step 4: set CSS flag */
994         command = readl(&xhci->op_regs->command);
995         command |= CMD_CSS;
996         writel(command, &xhci->op_regs->command);
997         if (xhci_handshake(&xhci->op_regs->status,
998                                 STS_SAVE, 0, 20 * 1000)) {
999                 xhci_warn(xhci, "WARN: xHC save state timeout\n");
1000                 spin_unlock_irq(&xhci->lock);
1001                 return -ETIMEDOUT;
1002         }
1003         spin_unlock_irq(&xhci->lock);
1004
1005         /*
1006          * Deleting Compliance Mode Recovery Timer because the xHCI Host
1007          * is about to be suspended.
1008          */
1009         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1010                         (!(xhci_all_ports_seen_u0(xhci)))) {
1011                 del_timer_sync(&xhci->comp_mode_recovery_timer);
1012                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1013                                 "%s: compliance mode recovery timer deleted",
1014                                 __func__);
1015         }
1016
1017         /* step 5: remove core well power */
1018         /* synchronize irq when using MSI-X */
1019         xhci_msix_sync_irqs(xhci);
1020
1021         return rc;
1022 }
1023 EXPORT_SYMBOL_GPL(xhci_suspend);
1024
1025 /*
1026  * start xHC (not bus-specific)
1027  *
1028  * This is called when the machine transition from S3/S4 mode.
1029  *
1030  */
1031 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1032 {
1033         u32                     command, temp = 0;
1034         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
1035         struct usb_hcd          *secondary_hcd;
1036         int                     retval = 0;
1037         bool                    comp_timer_running = false;
1038         bool                    pending_portevent = false;
1039
1040         if (!hcd->state)
1041                 return 0;
1042
1043         /* Wait a bit if either of the roothubs need to settle from the
1044          * transition into bus suspend.
1045          */
1046         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
1047                         time_before(jiffies,
1048                                 xhci->bus_state[1].next_statechange))
1049                 msleep(100);
1050
1051         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1052         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1053
1054         spin_lock_irq(&xhci->lock);
1055         if (xhci->quirks & XHCI_RESET_ON_RESUME)
1056                 hibernated = true;
1057
1058         if (!hibernated) {
1059                 /*
1060                  * Some controllers might lose power during suspend, so wait
1061                  * for controller not ready bit to clear, just as in xHC init.
1062                  */
1063                 retval = xhci_handshake(&xhci->op_regs->status,
1064                                         STS_CNR, 0, 10 * 1000 * 1000);
1065                 if (retval) {
1066                         xhci_warn(xhci, "Controller not ready at resume %d\n",
1067                                   retval);
1068                         spin_unlock_irq(&xhci->lock);
1069                         return retval;
1070                 }
1071                 /* step 1: restore register */
1072                 xhci_restore_registers(xhci);
1073                 /* step 2: initialize command ring buffer */
1074                 xhci_set_cmd_ring_deq(xhci);
1075                 /* step 3: restore state and start state*/
1076                 /* step 3: set CRS flag */
1077                 command = readl(&xhci->op_regs->command);
1078                 command |= CMD_CRS;
1079                 writel(command, &xhci->op_regs->command);
1080                 /*
1081                  * Some controllers take up to 55+ ms to complete the controller
1082                  * restore so setting the timeout to 100ms. Xhci specification
1083                  * doesn't mention any timeout value.
1084                  */
1085                 if (xhci_handshake(&xhci->op_regs->status,
1086                               STS_RESTORE, 0, 100 * 1000)) {
1087                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1088                         spin_unlock_irq(&xhci->lock);
1089                         return -ETIMEDOUT;
1090                 }
1091                 temp = readl(&xhci->op_regs->status);
1092         }
1093
1094         /* If restore operation fails, re-initialize the HC during resume */
1095         if ((temp & STS_SRE) || hibernated) {
1096
1097                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1098                                 !(xhci_all_ports_seen_u0(xhci))) {
1099                         del_timer_sync(&xhci->comp_mode_recovery_timer);
1100                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1101                                 "Compliance Mode Recovery Timer deleted!");
1102                 }
1103
1104                 /* Let the USB core know _both_ roothubs lost power. */
1105                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1106                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1107
1108                 xhci_dbg(xhci, "Stop HCD\n");
1109                 xhci_halt(xhci);
1110                 xhci_reset(xhci);
1111                 spin_unlock_irq(&xhci->lock);
1112                 xhci_cleanup_msix(xhci);
1113
1114                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1115                 temp = readl(&xhci->op_regs->status);
1116                 writel(temp & ~STS_EINT, &xhci->op_regs->status);
1117                 temp = readl(&xhci->ir_set->irq_pending);
1118                 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1119                 xhci_print_ir_set(xhci, 0);
1120
1121                 xhci_dbg(xhci, "cleaning up memory\n");
1122                 xhci_mem_cleanup(xhci);
1123                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1124                             readl(&xhci->op_regs->status));
1125
1126                 /* USB core calls the PCI reinit and start functions twice:
1127                  * first with the primary HCD, and then with the secondary HCD.
1128                  * If we don't do the same, the host will never be started.
1129                  */
1130                 if (!usb_hcd_is_primary_hcd(hcd))
1131                         secondary_hcd = hcd;
1132                 else
1133                         secondary_hcd = xhci->shared_hcd;
1134
1135                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1136                 retval = xhci_init(hcd->primary_hcd);
1137                 if (retval)
1138                         return retval;
1139                 comp_timer_running = true;
1140
1141                 xhci_dbg(xhci, "Start the primary HCD\n");
1142                 retval = xhci_run(hcd->primary_hcd);
1143                 if (!retval) {
1144                         xhci_dbg(xhci, "Start the secondary HCD\n");
1145                         retval = xhci_run(secondary_hcd);
1146                 }
1147                 hcd->state = HC_STATE_SUSPENDED;
1148                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1149                 goto done;
1150         }
1151
1152         /* step 4: set Run/Stop bit */
1153         command = readl(&xhci->op_regs->command);
1154         command |= CMD_RUN;
1155         writel(command, &xhci->op_regs->command);
1156         xhci_handshake(&xhci->op_regs->status, STS_HALT,
1157                   0, 250 * 1000);
1158
1159         /* step 5: walk topology and initialize portsc,
1160          * portpmsc and portli
1161          */
1162         /* this is done in bus_resume */
1163
1164         /* step 6: restart each of the previously
1165          * Running endpoints by ringing their doorbells
1166          */
1167
1168         spin_unlock_irq(&xhci->lock);
1169
1170  done:
1171         if (retval == 0) {
1172                 /*
1173                  * Resume roothubs only if there are pending events.
1174                  * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1175                  * the first wake signalling failed, give it that chance.
1176                  */
1177                 pending_portevent = xhci_pending_portevent(xhci);
1178                 if (!pending_portevent) {
1179                         msleep(120);
1180                         pending_portevent = xhci_pending_portevent(xhci);
1181                 }
1182
1183                 if (pending_portevent) {
1184                         usb_hcd_resume_root_hub(xhci->shared_hcd);
1185                         usb_hcd_resume_root_hub(hcd);
1186                 }
1187         }
1188         /*
1189          * If system is subject to the Quirk, Compliance Mode Timer needs to
1190          * be re-initialized Always after a system resume. Ports are subject
1191          * to suffer the Compliance Mode issue again. It doesn't matter if
1192          * ports have entered previously to U0 before system's suspension.
1193          */
1194         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1195                 compliance_mode_recovery_timer_init(xhci);
1196
1197         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1198                 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1199
1200         /* Re-enable port polling. */
1201         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1202         set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1203         usb_hcd_poll_rh_status(xhci->shared_hcd);
1204         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1205         usb_hcd_poll_rh_status(hcd);
1206
1207         return retval;
1208 }
1209 EXPORT_SYMBOL_GPL(xhci_resume);
1210 #endif  /* CONFIG_PM */
1211
1212 /*-------------------------------------------------------------------------*/
1213
1214 /**
1215  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1216  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1217  * value to right shift 1 for the bitmask.
1218  *
1219  * Index  = (epnum * 2) + direction - 1,
1220  * where direction = 0 for OUT, 1 for IN.
1221  * For control endpoints, the IN index is used (OUT index is unused), so
1222  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1223  */
1224 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1225 {
1226         unsigned int index;
1227         if (usb_endpoint_xfer_control(desc))
1228                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1229         else
1230                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1231                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1232         return index;
1233 }
1234
1235 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1236  * address from the XHCI endpoint index.
1237  */
1238 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1239 {
1240         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1241         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1242         return direction | number;
1243 }
1244
1245 /* Find the flag for this endpoint (for use in the control context).  Use the
1246  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1247  * bit 1, etc.
1248  */
1249 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1250 {
1251         return 1 << (xhci_get_endpoint_index(desc) + 1);
1252 }
1253
1254 /* Find the flag for this endpoint (for use in the control context).  Use the
1255  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1256  * bit 1, etc.
1257  */
1258 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1259 {
1260         return 1 << (ep_index + 1);
1261 }
1262
1263 /* Compute the last valid endpoint context index.  Basically, this is the
1264  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1265  * we find the most significant bit set in the added contexts flags.
1266  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1267  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1268  */
1269 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1270 {
1271         return fls(added_ctxs) - 1;
1272 }
1273
1274 /* Returns 1 if the arguments are OK;
1275  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1276  */
1277 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1278                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1279                 const char *func) {
1280         struct xhci_hcd *xhci;
1281         struct xhci_virt_device *virt_dev;
1282
1283         if (!hcd || (check_ep && !ep) || !udev) {
1284                 pr_debug("xHCI %s called with invalid args\n", func);
1285                 return -EINVAL;
1286         }
1287         if (!udev->parent) {
1288                 pr_debug("xHCI %s called for root hub\n", func);
1289                 return 0;
1290         }
1291
1292         xhci = hcd_to_xhci(hcd);
1293         if (check_virt_dev) {
1294                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1295                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1296                                         func);
1297                         return -EINVAL;
1298                 }
1299
1300                 virt_dev = xhci->devs[udev->slot_id];
1301                 if (virt_dev->udev != udev) {
1302                         xhci_dbg(xhci, "xHCI %s called with udev and "
1303                                           "virt_dev does not match\n", func);
1304                         return -EINVAL;
1305                 }
1306         }
1307
1308         if (xhci->xhc_state & XHCI_STATE_HALTED)
1309                 return -ENODEV;
1310
1311         return 1;
1312 }
1313
1314 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1315                 struct usb_device *udev, struct xhci_command *command,
1316                 bool ctx_change, bool must_succeed);
1317
1318 /*
1319  * Full speed devices may have a max packet size greater than 8 bytes, but the
1320  * USB core doesn't know that until it reads the first 8 bytes of the
1321  * descriptor.  If the usb_device's max packet size changes after that point,
1322  * we need to issue an evaluate context command and wait on it.
1323  */
1324 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1325                 unsigned int ep_index, struct urb *urb, gfp_t mem_flags)
1326 {
1327         struct xhci_container_ctx *out_ctx;
1328         struct xhci_input_control_ctx *ctrl_ctx;
1329         struct xhci_ep_ctx *ep_ctx;
1330         struct xhci_command *command;
1331         int max_packet_size;
1332         int hw_max_packet_size;
1333         int ret = 0;
1334
1335         out_ctx = xhci->devs[slot_id]->out_ctx;
1336         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1337         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1338         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1339         if (hw_max_packet_size != max_packet_size) {
1340                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1341                                 "Max Packet Size for ep 0 changed.");
1342                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1343                                 "Max packet size in usb_device = %d",
1344                                 max_packet_size);
1345                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1346                                 "Max packet size in xHCI HW = %d",
1347                                 hw_max_packet_size);
1348                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1349                                 "Issuing evaluate context command.");
1350
1351                 /* Set up the input context flags for the command */
1352                 /* FIXME: This won't work if a non-default control endpoint
1353                  * changes max packet sizes.
1354                  */
1355
1356                 command = xhci_alloc_command(xhci, false, true, mem_flags);
1357                 if (!command)
1358                         return -ENOMEM;
1359
1360                 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1361                 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1362                 if (!ctrl_ctx) {
1363                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1364                                         __func__);
1365                         ret = -ENOMEM;
1366                         goto command_cleanup;
1367                 }
1368                 /* Set up the modified control endpoint 0 */
1369                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1370                                 xhci->devs[slot_id]->out_ctx, ep_index);
1371
1372                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1373                 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1374                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1375                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1376
1377                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1378                 ctrl_ctx->drop_flags = 0;
1379
1380                 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1381                 xhci_dbg_ctx(xhci, command->in_ctx, ep_index);
1382                 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1383                 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1384
1385                 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1386                                 true, false);
1387
1388                 /* Clean up the input context for later use by bandwidth
1389                  * functions.
1390                  */
1391                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1392 command_cleanup:
1393                 kfree(command->completion);
1394                 kfree(command);
1395         }
1396         return ret;
1397 }
1398
1399 /*
1400  * non-error returns are a promise to giveback() the urb later
1401  * we drop ownership so next owner (or urb unlink) can get it
1402  */
1403 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1404 {
1405         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1406         struct xhci_td *buffer;
1407         unsigned long flags;
1408         int ret = 0;
1409         unsigned int slot_id, ep_index;
1410         struct urb_priv *urb_priv;
1411         int size, i;
1412
1413         if (!urb)
1414                 return -EINVAL;
1415         ret = xhci_check_args(hcd, urb->dev, urb->ep,
1416                                         true, true, __func__);
1417         if (ret <= 0)
1418                 return ret ? ret : -EINVAL;
1419
1420         slot_id = urb->dev->slot_id;
1421         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1422
1423         if (!HCD_HW_ACCESSIBLE(hcd)) {
1424                 if (!in_interrupt())
1425                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1426                 ret = -ESHUTDOWN;
1427                 goto exit;
1428         }
1429
1430         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1431                 size = urb->number_of_packets;
1432         else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1433             urb->transfer_buffer_length > 0 &&
1434             urb->transfer_flags & URB_ZERO_PACKET &&
1435             !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1436                 size = 2;
1437         else
1438                 size = 1;
1439
1440         urb_priv = kzalloc(sizeof(struct urb_priv) +
1441                                   size * sizeof(struct xhci_td *), mem_flags);
1442         if (!urb_priv)
1443                 return -ENOMEM;
1444
1445         buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1446         if (!buffer) {
1447                 kfree(urb_priv);
1448                 return -ENOMEM;
1449         }
1450
1451         for (i = 0; i < size; i++) {
1452                 urb_priv->td[i] = buffer;
1453                 buffer++;
1454         }
1455
1456         urb_priv->length = size;
1457         urb_priv->td_cnt = 0;
1458         urb->hcpriv = urb_priv;
1459
1460         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1461                 /* Check to see if the max packet size for the default control
1462                  * endpoint changed during FS device enumeration
1463                  */
1464                 if (urb->dev->speed == USB_SPEED_FULL) {
1465                         ret = xhci_check_maxpacket(xhci, slot_id,
1466                                         ep_index, urb, mem_flags);
1467                         if (ret < 0) {
1468                                 xhci_urb_free_priv(urb_priv);
1469                                 urb->hcpriv = NULL;
1470                                 return ret;
1471                         }
1472                 }
1473
1474                 /* We have a spinlock and interrupts disabled, so we must pass
1475                  * atomic context to this function, which may allocate memory.
1476                  */
1477                 spin_lock_irqsave(&xhci->lock, flags);
1478                 if (xhci->xhc_state & XHCI_STATE_DYING)
1479                         goto dying;
1480                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1481                                 slot_id, ep_index);
1482                 if (ret)
1483                         goto free_priv;
1484                 spin_unlock_irqrestore(&xhci->lock, flags);
1485         } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1486                 spin_lock_irqsave(&xhci->lock, flags);
1487                 if (xhci->xhc_state & XHCI_STATE_DYING)
1488                         goto dying;
1489                 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1490                                 EP_GETTING_STREAMS) {
1491                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1492                                         "is transitioning to using streams.\n");
1493                         ret = -EINVAL;
1494                 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1495                                 EP_GETTING_NO_STREAMS) {
1496                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1497                                         "is transitioning to "
1498                                         "not having streams.\n");
1499                         ret = -EINVAL;
1500                 } else {
1501                         ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1502                                         slot_id, ep_index);
1503                 }
1504                 if (ret)
1505                         goto free_priv;
1506                 spin_unlock_irqrestore(&xhci->lock, flags);
1507         } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1508                 spin_lock_irqsave(&xhci->lock, flags);
1509                 if (xhci->xhc_state & XHCI_STATE_DYING)
1510                         goto dying;
1511                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1512                                 slot_id, ep_index);
1513                 if (ret)
1514                         goto free_priv;
1515                 spin_unlock_irqrestore(&xhci->lock, flags);
1516         } else {
1517                 spin_lock_irqsave(&xhci->lock, flags);
1518                 if (xhci->xhc_state & XHCI_STATE_DYING)
1519                         goto dying;
1520                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1521                                 slot_id, ep_index);
1522                 if (ret)
1523                         goto free_priv;
1524                 spin_unlock_irqrestore(&xhci->lock, flags);
1525         }
1526 exit:
1527         return ret;
1528 dying:
1529         xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1530                         "non-responsive xHCI host.\n",
1531                         urb->ep->desc.bEndpointAddress, urb);
1532         ret = -ESHUTDOWN;
1533 free_priv:
1534         xhci_urb_free_priv(urb_priv);
1535         urb->hcpriv = NULL;
1536         spin_unlock_irqrestore(&xhci->lock, flags);
1537         return ret;
1538 }
1539
1540 /*
1541  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1542  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1543  * should pick up where it left off in the TD, unless a Set Transfer Ring
1544  * Dequeue Pointer is issued.
1545  *
1546  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1547  * the ring.  Since the ring is a contiguous structure, they can't be physically
1548  * removed.  Instead, there are two options:
1549  *
1550  *  1) If the HC is in the middle of processing the URB to be canceled, we
1551  *     simply move the ring's dequeue pointer past those TRBs using the Set
1552  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1553  *     when drivers timeout on the last submitted URB and attempt to cancel.
1554  *
1555  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1556  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1557  *     HC will need to invalidate the any TRBs it has cached after the stop
1558  *     endpoint command, as noted in the xHCI 0.95 errata.
1559  *
1560  *  3) The TD may have completed by the time the Stop Endpoint Command
1561  *     completes, so software needs to handle that case too.
1562  *
1563  * This function should protect against the TD enqueueing code ringing the
1564  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1565  * It also needs to account for multiple cancellations on happening at the same
1566  * time for the same endpoint.
1567  *
1568  * Note that this function can be called in any context, or so says
1569  * usb_hcd_unlink_urb()
1570  */
1571 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1572 {
1573         unsigned long flags;
1574         int ret, i;
1575         u32 temp;
1576         struct xhci_hcd *xhci;
1577         struct urb_priv *urb_priv;
1578         struct xhci_td *td;
1579         unsigned int ep_index;
1580         struct xhci_ring *ep_ring;
1581         struct xhci_virt_ep *ep;
1582         struct xhci_command *command;
1583
1584         xhci = hcd_to_xhci(hcd);
1585         spin_lock_irqsave(&xhci->lock, flags);
1586         /* Make sure the URB hasn't completed or been unlinked already */
1587         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1588         if (ret || !urb->hcpriv)
1589                 goto done;
1590         temp = readl(&xhci->op_regs->status);
1591         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1592                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1593                                 "HW died, freeing TD.");
1594                 urb_priv = urb->hcpriv;
1595                 for (i = urb_priv->td_cnt;
1596                      i < urb_priv->length && xhci->devs[urb->dev->slot_id];
1597                      i++) {
1598                         td = urb_priv->td[i];
1599                         if (!list_empty(&td->td_list))
1600                                 list_del_init(&td->td_list);
1601                         if (!list_empty(&td->cancelled_td_list))
1602                                 list_del_init(&td->cancelled_td_list);
1603                 }
1604
1605                 usb_hcd_unlink_urb_from_ep(hcd, urb);
1606                 spin_unlock_irqrestore(&xhci->lock, flags);
1607                 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1608                 xhci_urb_free_priv(urb_priv);
1609                 return ret;
1610         }
1611
1612         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1613         ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1614         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1615         if (!ep_ring) {
1616                 ret = -EINVAL;
1617                 goto done;
1618         }
1619
1620         urb_priv = urb->hcpriv;
1621         i = urb_priv->td_cnt;
1622         if (i < urb_priv->length)
1623                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1624                                 "Cancel URB %p, dev %s, ep 0x%x, "
1625                                 "starting at offset 0x%llx",
1626                                 urb, urb->dev->devpath,
1627                                 urb->ep->desc.bEndpointAddress,
1628                                 (unsigned long long) xhci_trb_virt_to_dma(
1629                                         urb_priv->td[i]->start_seg,
1630                                         urb_priv->td[i]->first_trb));
1631
1632         for (; i < urb_priv->length; i++) {
1633                 td = urb_priv->td[i];
1634                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1635         }
1636
1637         /* Queue a stop endpoint command, but only if this is
1638          * the first cancellation to be handled.
1639          */
1640         if (!(ep->ep_state & EP_HALT_PENDING)) {
1641                 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1642                 if (!command) {
1643                         ret = -ENOMEM;
1644                         goto done;
1645                 }
1646                 ep->ep_state |= EP_HALT_PENDING;
1647                 ep->stop_cmds_pending++;
1648                 ep->stop_cmd_timer.expires = jiffies +
1649                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1650                 add_timer(&ep->stop_cmd_timer);
1651                 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1652                                          ep_index, 0);
1653                 xhci_ring_cmd_db(xhci);
1654         }
1655 done:
1656         spin_unlock_irqrestore(&xhci->lock, flags);
1657         return ret;
1658 }
1659
1660 /* Drop an endpoint from a new bandwidth configuration for this device.
1661  * Only one call to this function is allowed per endpoint before
1662  * check_bandwidth() or reset_bandwidth() must be called.
1663  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1664  * add the endpoint to the schedule with possibly new parameters denoted by a
1665  * different endpoint descriptor in usb_host_endpoint.
1666  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1667  * not allowed.
1668  *
1669  * The USB core will not allow URBs to be queued to an endpoint that is being
1670  * disabled, so there's no need for mutual exclusion to protect
1671  * the xhci->devs[slot_id] structure.
1672  */
1673 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1674                 struct usb_host_endpoint *ep)
1675 {
1676         struct xhci_hcd *xhci;
1677         struct xhci_container_ctx *in_ctx, *out_ctx;
1678         struct xhci_input_control_ctx *ctrl_ctx;
1679         unsigned int ep_index;
1680         struct xhci_ep_ctx *ep_ctx;
1681         u32 drop_flag;
1682         u32 new_add_flags, new_drop_flags;
1683         int ret;
1684
1685         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1686         if (ret <= 0)
1687                 return ret;
1688         xhci = hcd_to_xhci(hcd);
1689         if (xhci->xhc_state & XHCI_STATE_DYING)
1690                 return -ENODEV;
1691
1692         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1693         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1694         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1695                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1696                                 __func__, drop_flag);
1697                 return 0;
1698         }
1699
1700         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1701         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1702         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1703         if (!ctrl_ctx) {
1704                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1705                                 __func__);
1706                 return 0;
1707         }
1708
1709         ep_index = xhci_get_endpoint_index(&ep->desc);
1710         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1711         /* If the HC already knows the endpoint is disabled,
1712          * or the HCD has noted it is disabled, ignore this request
1713          */
1714         if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1715              cpu_to_le32(EP_STATE_DISABLED)) ||
1716             le32_to_cpu(ctrl_ctx->drop_flags) &
1717             xhci_get_endpoint_flag(&ep->desc)) {
1718                 /* Do not warn when called after a usb_device_reset */
1719                 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1720                         xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1721                                   __func__, ep);
1722                 return 0;
1723         }
1724
1725         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1726         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1727
1728         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1729         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1730
1731         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1732
1733         if (xhci->quirks & XHCI_MTK_HOST)
1734                 xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1735
1736         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1737                         (unsigned int) ep->desc.bEndpointAddress,
1738                         udev->slot_id,
1739                         (unsigned int) new_drop_flags,
1740                         (unsigned int) new_add_flags);
1741         return 0;
1742 }
1743
1744 /* Add an endpoint to a new possible bandwidth configuration for this device.
1745  * Only one call to this function is allowed per endpoint before
1746  * check_bandwidth() or reset_bandwidth() must be called.
1747  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1748  * add the endpoint to the schedule with possibly new parameters denoted by a
1749  * different endpoint descriptor in usb_host_endpoint.
1750  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1751  * not allowed.
1752  *
1753  * The USB core will not allow URBs to be queued to an endpoint until the
1754  * configuration or alt setting is installed in the device, so there's no need
1755  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1756  */
1757 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1758                 struct usb_host_endpoint *ep)
1759 {
1760         struct xhci_hcd *xhci;
1761         struct xhci_container_ctx *in_ctx;
1762         unsigned int ep_index;
1763         struct xhci_input_control_ctx *ctrl_ctx;
1764         u32 added_ctxs;
1765         u32 new_add_flags, new_drop_flags;
1766         struct xhci_virt_device *virt_dev;
1767         int ret = 0;
1768
1769         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1770         if (ret <= 0) {
1771                 /* So we won't queue a reset ep command for a root hub */
1772                 ep->hcpriv = NULL;
1773                 return ret;
1774         }
1775         xhci = hcd_to_xhci(hcd);
1776         if (xhci->xhc_state & XHCI_STATE_DYING)
1777                 return -ENODEV;
1778
1779         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1780         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1781                 /* FIXME when we have to issue an evaluate endpoint command to
1782                  * deal with ep0 max packet size changing once we get the
1783                  * descriptors
1784                  */
1785                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1786                                 __func__, added_ctxs);
1787                 return 0;
1788         }
1789
1790         virt_dev = xhci->devs[udev->slot_id];
1791         in_ctx = virt_dev->in_ctx;
1792         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1793         if (!ctrl_ctx) {
1794                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1795                                 __func__);
1796                 return 0;
1797         }
1798
1799         ep_index = xhci_get_endpoint_index(&ep->desc);
1800         /* If this endpoint is already in use, and the upper layers are trying
1801          * to add it again without dropping it, reject the addition.
1802          */
1803         if (virt_dev->eps[ep_index].ring &&
1804                         !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1805                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1806                                 "without dropping it.\n",
1807                                 (unsigned int) ep->desc.bEndpointAddress);
1808                 return -EINVAL;
1809         }
1810
1811         /* If the HCD has already noted the endpoint is enabled,
1812          * ignore this request.
1813          */
1814         if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1815                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1816                                 __func__, ep);
1817                 return 0;
1818         }
1819
1820         /*
1821          * Configuration and alternate setting changes must be done in
1822          * process context, not interrupt context (or so documenation
1823          * for usb_set_interface() and usb_set_configuration() claim).
1824          */
1825         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1826                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1827                                 __func__, ep->desc.bEndpointAddress);
1828                 return -ENOMEM;
1829         }
1830
1831         if (xhci->quirks & XHCI_MTK_HOST) {
1832                 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1833                 if (ret < 0) {
1834                         xhci_free_or_cache_endpoint_ring(xhci,
1835                                 virt_dev, ep_index);
1836                         return ret;
1837                 }
1838         }
1839
1840         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1841         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1842
1843         /* If xhci_endpoint_disable() was called for this endpoint, but the
1844          * xHC hasn't been notified yet through the check_bandwidth() call,
1845          * this re-adds a new state for the endpoint from the new endpoint
1846          * descriptors.  We must drop and re-add this endpoint, so we leave the
1847          * drop flags alone.
1848          */
1849         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1850
1851         /* Store the usb_device pointer for later use */
1852         ep->hcpriv = udev;
1853
1854         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1855                         (unsigned int) ep->desc.bEndpointAddress,
1856                         udev->slot_id,
1857                         (unsigned int) new_drop_flags,
1858                         (unsigned int) new_add_flags);
1859         return 0;
1860 }
1861
1862 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1863 {
1864         struct xhci_input_control_ctx *ctrl_ctx;
1865         struct xhci_ep_ctx *ep_ctx;
1866         struct xhci_slot_ctx *slot_ctx;
1867         int i;
1868
1869         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1870         if (!ctrl_ctx) {
1871                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1872                                 __func__);
1873                 return;
1874         }
1875
1876         /* When a device's add flag and drop flag are zero, any subsequent
1877          * configure endpoint command will leave that endpoint's state
1878          * untouched.  Make sure we don't leave any old state in the input
1879          * endpoint contexts.
1880          */
1881         ctrl_ctx->drop_flags = 0;
1882         ctrl_ctx->add_flags = 0;
1883         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1884         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1885         /* Endpoint 0 is always valid */
1886         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1887         for (i = 1; i < 31; ++i) {
1888                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1889                 ep_ctx->ep_info = 0;
1890                 ep_ctx->ep_info2 = 0;
1891                 ep_ctx->deq = 0;
1892                 ep_ctx->tx_info = 0;
1893         }
1894 }
1895
1896 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1897                 struct usb_device *udev, u32 *cmd_status)
1898 {
1899         int ret;
1900
1901         switch (*cmd_status) {
1902         case COMP_CMD_ABORT:
1903         case COMP_CMD_STOP:
1904                 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1905                 ret = -ETIME;
1906                 break;
1907         case COMP_ENOMEM:
1908                 dev_warn(&udev->dev,
1909                          "Not enough host controller resources for new device state.\n");
1910                 ret = -ENOMEM;
1911                 /* FIXME: can we allocate more resources for the HC? */
1912                 break;
1913         case COMP_BW_ERR:
1914         case COMP_2ND_BW_ERR:
1915                 dev_warn(&udev->dev,
1916                          "Not enough bandwidth for new device state.\n");
1917                 ret = -ENOSPC;
1918                 /* FIXME: can we go back to the old state? */
1919                 break;
1920         case COMP_TRB_ERR:
1921                 /* the HCD set up something wrong */
1922                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1923                                 "add flag = 1, "
1924                                 "and endpoint is not disabled.\n");
1925                 ret = -EINVAL;
1926                 break;
1927         case COMP_DEV_ERR:
1928                 dev_warn(&udev->dev,
1929                          "ERROR: Incompatible device for endpoint configure command.\n");
1930                 ret = -ENODEV;
1931                 break;
1932         case COMP_SUCCESS:
1933                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1934                                 "Successful Endpoint Configure command");
1935                 ret = 0;
1936                 break;
1937         default:
1938                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1939                                 *cmd_status);
1940                 ret = -EINVAL;
1941                 break;
1942         }
1943         return ret;
1944 }
1945
1946 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1947                 struct usb_device *udev, u32 *cmd_status)
1948 {
1949         int ret;
1950         struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1951
1952         switch (*cmd_status) {
1953         case COMP_CMD_ABORT:
1954         case COMP_CMD_STOP:
1955                 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1956                 ret = -ETIME;
1957                 break;
1958         case COMP_EINVAL:
1959                 dev_warn(&udev->dev,
1960                          "WARN: xHCI driver setup invalid evaluate context command.\n");
1961                 ret = -EINVAL;
1962                 break;
1963         case COMP_EBADSLT:
1964                 dev_warn(&udev->dev,
1965                         "WARN: slot not enabled for evaluate context command.\n");
1966                 ret = -EINVAL;
1967                 break;
1968         case COMP_CTX_STATE:
1969                 dev_warn(&udev->dev,
1970                         "WARN: invalid context state for evaluate context command.\n");
1971                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1972                 ret = -EINVAL;
1973                 break;
1974         case COMP_DEV_ERR:
1975                 dev_warn(&udev->dev,
1976                         "ERROR: Incompatible device for evaluate context command.\n");
1977                 ret = -ENODEV;
1978                 break;
1979         case COMP_MEL_ERR:
1980                 /* Max Exit Latency too large error */
1981                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1982                 ret = -EINVAL;
1983                 break;
1984         case COMP_SUCCESS:
1985                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1986                                 "Successful evaluate context command");
1987                 ret = 0;
1988                 break;
1989         default:
1990                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1991                         *cmd_status);
1992                 ret = -EINVAL;
1993                 break;
1994         }
1995         return ret;
1996 }
1997
1998 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1999                 struct xhci_input_control_ctx *ctrl_ctx)
2000 {
2001         u32 valid_add_flags;
2002         u32 valid_drop_flags;
2003
2004         /* Ignore the slot flag (bit 0), and the default control endpoint flag
2005          * (bit 1).  The default control endpoint is added during the Address
2006          * Device command and is never removed until the slot is disabled.
2007          */
2008         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2009         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2010
2011         /* Use hweight32 to count the number of ones in the add flags, or
2012          * number of endpoints added.  Don't count endpoints that are changed
2013          * (both added and dropped).
2014          */
2015         return hweight32(valid_add_flags) -
2016                 hweight32(valid_add_flags & valid_drop_flags);
2017 }
2018
2019 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2020                 struct xhci_input_control_ctx *ctrl_ctx)
2021 {
2022         u32 valid_add_flags;
2023         u32 valid_drop_flags;
2024
2025         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2026         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2027
2028         return hweight32(valid_drop_flags) -
2029                 hweight32(valid_add_flags & valid_drop_flags);
2030 }
2031
2032 /*
2033  * We need to reserve the new number of endpoints before the configure endpoint
2034  * command completes.  We can't subtract the dropped endpoints from the number
2035  * of active endpoints until the command completes because we can oversubscribe
2036  * the host in this case:
2037  *
2038  *  - the first configure endpoint command drops more endpoints than it adds
2039  *  - a second configure endpoint command that adds more endpoints is queued
2040  *  - the first configure endpoint command fails, so the config is unchanged
2041  *  - the second command may succeed, even though there isn't enough resources
2042  *
2043  * Must be called with xhci->lock held.
2044  */
2045 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2046                 struct xhci_input_control_ctx *ctrl_ctx)
2047 {
2048         u32 added_eps;
2049
2050         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2051         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2052                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2053                                 "Not enough ep ctxs: "
2054                                 "%u active, need to add %u, limit is %u.",
2055                                 xhci->num_active_eps, added_eps,
2056                                 xhci->limit_active_eps);
2057                 return -ENOMEM;
2058         }
2059         xhci->num_active_eps += added_eps;
2060         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2061                         "Adding %u ep ctxs, %u now active.", added_eps,
2062                         xhci->num_active_eps);
2063         return 0;
2064 }
2065
2066 /*
2067  * The configure endpoint was failed by the xHC for some other reason, so we
2068  * need to revert the resources that failed configuration would have used.
2069  *
2070  * Must be called with xhci->lock held.
2071  */
2072 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2073                 struct xhci_input_control_ctx *ctrl_ctx)
2074 {
2075         u32 num_failed_eps;
2076
2077         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2078         xhci->num_active_eps -= num_failed_eps;
2079         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2080                         "Removing %u failed ep ctxs, %u now active.",
2081                         num_failed_eps,
2082                         xhci->num_active_eps);
2083 }
2084
2085 /*
2086  * Now that the command has completed, clean up the active endpoint count by
2087  * subtracting out the endpoints that were dropped (but not changed).
2088  *
2089  * Must be called with xhci->lock held.
2090  */
2091 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2092                 struct xhci_input_control_ctx *ctrl_ctx)
2093 {
2094         u32 num_dropped_eps;
2095
2096         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2097         xhci->num_active_eps -= num_dropped_eps;
2098         if (num_dropped_eps)
2099                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2100                                 "Removing %u dropped ep ctxs, %u now active.",
2101                                 num_dropped_eps,
2102                                 xhci->num_active_eps);
2103 }
2104
2105 static unsigned int xhci_get_block_size(struct usb_device *udev)
2106 {
2107         switch (udev->speed) {
2108         case USB_SPEED_LOW:
2109         case USB_SPEED_FULL:
2110                 return FS_BLOCK;
2111         case USB_SPEED_HIGH:
2112                 return HS_BLOCK;
2113         case USB_SPEED_SUPER:
2114         case USB_SPEED_SUPER_PLUS:
2115                 return SS_BLOCK;
2116         case USB_SPEED_UNKNOWN:
2117         case USB_SPEED_WIRELESS:
2118         default:
2119                 /* Should never happen */
2120                 return 1;
2121         }
2122 }
2123
2124 static unsigned int
2125 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2126 {
2127         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2128                 return LS_OVERHEAD;
2129         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2130                 return FS_OVERHEAD;
2131         return HS_OVERHEAD;
2132 }
2133
2134 /* If we are changing a LS/FS device under a HS hub,
2135  * make sure (if we are activating a new TT) that the HS bus has enough
2136  * bandwidth for this new TT.
2137  */
2138 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2139                 struct xhci_virt_device *virt_dev,
2140                 int old_active_eps)
2141 {
2142         struct xhci_interval_bw_table *bw_table;
2143         struct xhci_tt_bw_info *tt_info;
2144
2145         /* Find the bandwidth table for the root port this TT is attached to. */
2146         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2147         tt_info = virt_dev->tt_info;
2148         /* If this TT already had active endpoints, the bandwidth for this TT
2149          * has already been added.  Removing all periodic endpoints (and thus
2150          * making the TT enactive) will only decrease the bandwidth used.
2151          */
2152         if (old_active_eps)
2153                 return 0;
2154         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2155                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2156                         return -ENOMEM;
2157                 return 0;
2158         }
2159         /* Not sure why we would have no new active endpoints...
2160          *
2161          * Maybe because of an Evaluate Context change for a hub update or a
2162          * control endpoint 0 max packet size change?
2163          * FIXME: skip the bandwidth calculation in that case.
2164          */
2165         return 0;
2166 }
2167
2168 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2169                 struct xhci_virt_device *virt_dev)
2170 {
2171         unsigned int bw_reserved;
2172
2173         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2174         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2175                 return -ENOMEM;
2176
2177         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2178         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2179                 return -ENOMEM;
2180
2181         return 0;
2182 }
2183
2184 /*
2185  * This algorithm is a very conservative estimate of the worst-case scheduling
2186  * scenario for any one interval.  The hardware dynamically schedules the
2187  * packets, so we can't tell which microframe could be the limiting factor in
2188  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2189  *
2190  * Obviously, we can't solve an NP complete problem to find the minimum worst
2191  * case scenario.  Instead, we come up with an estimate that is no less than
2192  * the worst case bandwidth used for any one microframe, but may be an
2193  * over-estimate.
2194  *
2195  * We walk the requirements for each endpoint by interval, starting with the
2196  * smallest interval, and place packets in the schedule where there is only one
2197  * possible way to schedule packets for that interval.  In order to simplify
2198  * this algorithm, we record the largest max packet size for each interval, and
2199  * assume all packets will be that size.
2200  *
2201  * For interval 0, we obviously must schedule all packets for each interval.
2202  * The bandwidth for interval 0 is just the amount of data to be transmitted
2203  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2204  * the number of packets).
2205  *
2206  * For interval 1, we have two possible microframes to schedule those packets
2207  * in.  For this algorithm, if we can schedule the same number of packets for
2208  * each possible scheduling opportunity (each microframe), we will do so.  The
2209  * remaining number of packets will be saved to be transmitted in the gaps in
2210  * the next interval's scheduling sequence.
2211  *
2212  * As we move those remaining packets to be scheduled with interval 2 packets,
2213  * we have to double the number of remaining packets to transmit.  This is
2214  * because the intervals are actually powers of 2, and we would be transmitting
2215  * the previous interval's packets twice in this interval.  We also have to be
2216  * sure that when we look at the largest max packet size for this interval, we
2217  * also look at the largest max packet size for the remaining packets and take
2218  * the greater of the two.
2219  *
2220  * The algorithm continues to evenly distribute packets in each scheduling
2221  * opportunity, and push the remaining packets out, until we get to the last
2222  * interval.  Then those packets and their associated overhead are just added
2223  * to the bandwidth used.
2224  */
2225 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2226                 struct xhci_virt_device *virt_dev,
2227                 int old_active_eps)
2228 {
2229         unsigned int bw_reserved;
2230         unsigned int max_bandwidth;
2231         unsigned int bw_used;
2232         unsigned int block_size;
2233         struct xhci_interval_bw_table *bw_table;
2234         unsigned int packet_size = 0;
2235         unsigned int overhead = 0;
2236         unsigned int packets_transmitted = 0;
2237         unsigned int packets_remaining = 0;
2238         unsigned int i;
2239
2240         if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2241                 return xhci_check_ss_bw(xhci, virt_dev);
2242
2243         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2244                 max_bandwidth = HS_BW_LIMIT;
2245                 /* Convert percent of bus BW reserved to blocks reserved */
2246                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2247         } else {
2248                 max_bandwidth = FS_BW_LIMIT;
2249                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2250         }
2251
2252         bw_table = virt_dev->bw_table;
2253         /* We need to translate the max packet size and max ESIT payloads into
2254          * the units the hardware uses.
2255          */
2256         block_size = xhci_get_block_size(virt_dev->udev);
2257
2258         /* If we are manipulating a LS/FS device under a HS hub, double check
2259          * that the HS bus has enough bandwidth if we are activing a new TT.
2260          */
2261         if (virt_dev->tt_info) {
2262                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2263                                 "Recalculating BW for rootport %u",
2264                                 virt_dev->real_port);
2265                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2266                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2267                                         "newly activated TT.\n");
2268                         return -ENOMEM;
2269                 }
2270                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2271                                 "Recalculating BW for TT slot %u port %u",
2272                                 virt_dev->tt_info->slot_id,
2273                                 virt_dev->tt_info->ttport);
2274         } else {
2275                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2276                                 "Recalculating BW for rootport %u",
2277                                 virt_dev->real_port);
2278         }
2279
2280         /* Add in how much bandwidth will be used for interval zero, or the
2281          * rounded max ESIT payload + number of packets * largest overhead.
2282          */
2283         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2284                 bw_table->interval_bw[0].num_packets *
2285                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2286
2287         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2288                 unsigned int bw_added;
2289                 unsigned int largest_mps;
2290                 unsigned int interval_overhead;
2291
2292                 /*
2293                  * How many packets could we transmit in this interval?
2294                  * If packets didn't fit in the previous interval, we will need
2295                  * to transmit that many packets twice within this interval.
2296                  */
2297                 packets_remaining = 2 * packets_remaining +
2298                         bw_table->interval_bw[i].num_packets;
2299
2300                 /* Find the largest max packet size of this or the previous
2301                  * interval.
2302                  */
2303                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2304                         largest_mps = 0;
2305                 else {
2306                         struct xhci_virt_ep *virt_ep;
2307                         struct list_head *ep_entry;
2308
2309                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2310                         virt_ep = list_entry(ep_entry,
2311                                         struct xhci_virt_ep, bw_endpoint_list);
2312                         /* Convert to blocks, rounding up */
2313                         largest_mps = DIV_ROUND_UP(
2314                                         virt_ep->bw_info.max_packet_size,
2315                                         block_size);
2316                 }
2317                 if (largest_mps > packet_size)
2318                         packet_size = largest_mps;
2319
2320                 /* Use the larger overhead of this or the previous interval. */
2321                 interval_overhead = xhci_get_largest_overhead(
2322                                 &bw_table->interval_bw[i]);
2323                 if (interval_overhead > overhead)
2324                         overhead = interval_overhead;
2325
2326                 /* How many packets can we evenly distribute across
2327                  * (1 << (i + 1)) possible scheduling opportunities?
2328                  */
2329                 packets_transmitted = packets_remaining >> (i + 1);
2330
2331                 /* Add in the bandwidth used for those scheduled packets */
2332                 bw_added = packets_transmitted * (overhead + packet_size);
2333
2334                 /* How many packets do we have remaining to transmit? */
2335                 packets_remaining = packets_remaining % (1 << (i + 1));
2336
2337                 /* What largest max packet size should those packets have? */
2338                 /* If we've transmitted all packets, don't carry over the
2339                  * largest packet size.
2340                  */
2341                 if (packets_remaining == 0) {
2342                         packet_size = 0;
2343                         overhead = 0;
2344                 } else if (packets_transmitted > 0) {
2345                         /* Otherwise if we do have remaining packets, and we've
2346                          * scheduled some packets in this interval, take the
2347                          * largest max packet size from endpoints with this
2348                          * interval.
2349                          */
2350                         packet_size = largest_mps;
2351                         overhead = interval_overhead;
2352                 }
2353                 /* Otherwise carry over packet_size and overhead from the last
2354                  * time we had a remainder.
2355                  */
2356                 bw_used += bw_added;
2357                 if (bw_used > max_bandwidth) {
2358                         xhci_warn(xhci, "Not enough bandwidth. "
2359                                         "Proposed: %u, Max: %u\n",
2360                                 bw_used, max_bandwidth);
2361                         return -ENOMEM;
2362                 }
2363         }
2364         /*
2365          * Ok, we know we have some packets left over after even-handedly
2366          * scheduling interval 15.  We don't know which microframes they will
2367          * fit into, so we over-schedule and say they will be scheduled every
2368          * microframe.
2369          */
2370         if (packets_remaining > 0)
2371                 bw_used += overhead + packet_size;
2372
2373         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2374                 unsigned int port_index = virt_dev->real_port - 1;
2375
2376                 /* OK, we're manipulating a HS device attached to a
2377                  * root port bandwidth domain.  Include the number of active TTs
2378                  * in the bandwidth used.
2379                  */
2380                 bw_used += TT_HS_OVERHEAD *
2381                         xhci->rh_bw[port_index].num_active_tts;
2382         }
2383
2384         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2385                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2386                 "Available: %u " "percent",
2387                 bw_used, max_bandwidth, bw_reserved,
2388                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2389                 max_bandwidth);
2390
2391         bw_used += bw_reserved;
2392         if (bw_used > max_bandwidth) {
2393                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2394                                 bw_used, max_bandwidth);
2395                 return -ENOMEM;
2396         }
2397
2398         bw_table->bw_used = bw_used;
2399         return 0;
2400 }
2401
2402 static bool xhci_is_async_ep(unsigned int ep_type)
2403 {
2404         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2405                                         ep_type != ISOC_IN_EP &&
2406                                         ep_type != INT_IN_EP);
2407 }
2408
2409 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2410 {
2411         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2412 }
2413
2414 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2415 {
2416         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2417
2418         if (ep_bw->ep_interval == 0)
2419                 return SS_OVERHEAD_BURST +
2420                         (ep_bw->mult * ep_bw->num_packets *
2421                                         (SS_OVERHEAD + mps));
2422         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2423                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2424                                 1 << ep_bw->ep_interval);
2425
2426 }
2427
2428 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2429                 struct xhci_bw_info *ep_bw,
2430                 struct xhci_interval_bw_table *bw_table,
2431                 struct usb_device *udev,
2432                 struct xhci_virt_ep *virt_ep,
2433                 struct xhci_tt_bw_info *tt_info)
2434 {
2435         struct xhci_interval_bw *interval_bw;
2436         int normalized_interval;
2437
2438         if (xhci_is_async_ep(ep_bw->type))
2439                 return;
2440
2441         if (udev->speed >= USB_SPEED_SUPER) {
2442                 if (xhci_is_sync_in_ep(ep_bw->type))
2443                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2444                                 xhci_get_ss_bw_consumed(ep_bw);
2445                 else
2446                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2447                                 xhci_get_ss_bw_consumed(ep_bw);
2448                 return;
2449         }
2450
2451         /* SuperSpeed endpoints never get added to intervals in the table, so
2452          * this check is only valid for HS/FS/LS devices.
2453          */
2454         if (list_empty(&virt_ep->bw_endpoint_list))
2455                 return;
2456         /* For LS/FS devices, we need to translate the interval expressed in
2457          * microframes to frames.
2458          */
2459         if (udev->speed == USB_SPEED_HIGH)
2460                 normalized_interval = ep_bw->ep_interval;
2461         else
2462                 normalized_interval = ep_bw->ep_interval - 3;
2463
2464         if (normalized_interval == 0)
2465                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2466         interval_bw = &bw_table->interval_bw[normalized_interval];
2467         interval_bw->num_packets -= ep_bw->num_packets;
2468         switch (udev->speed) {
2469         case USB_SPEED_LOW:
2470                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2471                 break;
2472         case USB_SPEED_FULL:
2473                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2474                 break;
2475         case USB_SPEED_HIGH:
2476                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2477                 break;
2478         case USB_SPEED_SUPER:
2479         case USB_SPEED_SUPER_PLUS:
2480         case USB_SPEED_UNKNOWN:
2481         case USB_SPEED_WIRELESS:
2482                 /* Should never happen because only LS/FS/HS endpoints will get
2483                  * added to the endpoint list.
2484                  */
2485                 return;
2486         }
2487         if (tt_info)
2488                 tt_info->active_eps -= 1;
2489         list_del_init(&virt_ep->bw_endpoint_list);
2490 }
2491
2492 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2493                 struct xhci_bw_info *ep_bw,
2494                 struct xhci_interval_bw_table *bw_table,
2495                 struct usb_device *udev,
2496                 struct xhci_virt_ep *virt_ep,
2497                 struct xhci_tt_bw_info *tt_info)
2498 {
2499         struct xhci_interval_bw *interval_bw;
2500         struct xhci_virt_ep *smaller_ep;
2501         int normalized_interval;
2502
2503         if (xhci_is_async_ep(ep_bw->type))
2504                 return;
2505
2506         if (udev->speed == USB_SPEED_SUPER) {
2507                 if (xhci_is_sync_in_ep(ep_bw->type))
2508                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2509                                 xhci_get_ss_bw_consumed(ep_bw);
2510                 else
2511                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2512                                 xhci_get_ss_bw_consumed(ep_bw);
2513                 return;
2514         }
2515
2516         /* For LS/FS devices, we need to translate the interval expressed in
2517          * microframes to frames.
2518          */
2519         if (udev->speed == USB_SPEED_HIGH)
2520                 normalized_interval = ep_bw->ep_interval;
2521         else
2522                 normalized_interval = ep_bw->ep_interval - 3;
2523
2524         if (normalized_interval == 0)
2525                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2526         interval_bw = &bw_table->interval_bw[normalized_interval];
2527         interval_bw->num_packets += ep_bw->num_packets;
2528         switch (udev->speed) {
2529         case USB_SPEED_LOW:
2530                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2531                 break;
2532         case USB_SPEED_FULL:
2533                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2534                 break;
2535         case USB_SPEED_HIGH:
2536                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2537                 break;
2538         case USB_SPEED_SUPER:
2539         case USB_SPEED_SUPER_PLUS:
2540         case USB_SPEED_UNKNOWN:
2541         case USB_SPEED_WIRELESS:
2542                 /* Should never happen because only LS/FS/HS endpoints will get
2543                  * added to the endpoint list.
2544                  */
2545                 return;
2546         }
2547
2548         if (tt_info)
2549                 tt_info->active_eps += 1;
2550         /* Insert the endpoint into the list, largest max packet size first. */
2551         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2552                         bw_endpoint_list) {
2553                 if (ep_bw->max_packet_size >=
2554                                 smaller_ep->bw_info.max_packet_size) {
2555                         /* Add the new ep before the smaller endpoint */
2556                         list_add_tail(&virt_ep->bw_endpoint_list,
2557                                         &smaller_ep->bw_endpoint_list);
2558                         return;
2559                 }
2560         }
2561         /* Add the new endpoint at the end of the list. */
2562         list_add_tail(&virt_ep->bw_endpoint_list,
2563                         &interval_bw->endpoints);
2564 }
2565
2566 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2567                 struct xhci_virt_device *virt_dev,
2568                 int old_active_eps)
2569 {
2570         struct xhci_root_port_bw_info *rh_bw_info;
2571         if (!virt_dev->tt_info)
2572                 return;
2573
2574         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2575         if (old_active_eps == 0 &&
2576                                 virt_dev->tt_info->active_eps != 0) {
2577                 rh_bw_info->num_active_tts += 1;
2578                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2579         } else if (old_active_eps != 0 &&
2580                                 virt_dev->tt_info->active_eps == 0) {
2581                 rh_bw_info->num_active_tts -= 1;
2582                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2583         }
2584 }
2585
2586 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2587                 struct xhci_virt_device *virt_dev,
2588                 struct xhci_container_ctx *in_ctx)
2589 {
2590         struct xhci_bw_info ep_bw_info[31];
2591         int i;
2592         struct xhci_input_control_ctx *ctrl_ctx;
2593         int old_active_eps = 0;
2594
2595         if (virt_dev->tt_info)
2596                 old_active_eps = virt_dev->tt_info->active_eps;
2597
2598         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2599         if (!ctrl_ctx) {
2600                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2601                                 __func__);
2602                 return -ENOMEM;
2603         }
2604
2605         for (i = 0; i < 31; i++) {
2606                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2607                         continue;
2608
2609                 /* Make a copy of the BW info in case we need to revert this */
2610                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2611                                 sizeof(ep_bw_info[i]));
2612                 /* Drop the endpoint from the interval table if the endpoint is
2613                  * being dropped or changed.
2614                  */
2615                 if (EP_IS_DROPPED(ctrl_ctx, i))
2616                         xhci_drop_ep_from_interval_table(xhci,
2617                                         &virt_dev->eps[i].bw_info,
2618                                         virt_dev->bw_table,
2619                                         virt_dev->udev,
2620                                         &virt_dev->eps[i],
2621                                         virt_dev->tt_info);
2622         }
2623         /* Overwrite the information stored in the endpoints' bw_info */
2624         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2625         for (i = 0; i < 31; i++) {
2626                 /* Add any changed or added endpoints to the interval table */
2627                 if (EP_IS_ADDED(ctrl_ctx, i))
2628                         xhci_add_ep_to_interval_table(xhci,
2629                                         &virt_dev->eps[i].bw_info,
2630                                         virt_dev->bw_table,
2631                                         virt_dev->udev,
2632                                         &virt_dev->eps[i],
2633                                         virt_dev->tt_info);
2634         }
2635
2636         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2637                 /* Ok, this fits in the bandwidth we have.
2638                  * Update the number of active TTs.
2639                  */
2640                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2641                 return 0;
2642         }
2643
2644         /* We don't have enough bandwidth for this, revert the stored info. */
2645         for (i = 0; i < 31; i++) {
2646                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2647                         continue;
2648
2649                 /* Drop the new copies of any added or changed endpoints from
2650                  * the interval table.
2651                  */
2652                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2653                         xhci_drop_ep_from_interval_table(xhci,
2654                                         &virt_dev->eps[i].bw_info,
2655                                         virt_dev->bw_table,
2656                                         virt_dev->udev,
2657                                         &virt_dev->eps[i],
2658                                         virt_dev->tt_info);
2659                 }
2660                 /* Revert the endpoint back to its old information */
2661                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2662                                 sizeof(ep_bw_info[i]));
2663                 /* Add any changed or dropped endpoints back into the table */
2664                 if (EP_IS_DROPPED(ctrl_ctx, i))
2665                         xhci_add_ep_to_interval_table(xhci,
2666                                         &virt_dev->eps[i].bw_info,
2667                                         virt_dev->bw_table,
2668                                         virt_dev->udev,
2669                                         &virt_dev->eps[i],
2670                                         virt_dev->tt_info);
2671         }
2672         return -ENOMEM;
2673 }
2674
2675
2676 /* Issue a configure endpoint command or evaluate context command
2677  * and wait for it to finish.
2678  */
2679 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2680                 struct usb_device *udev,
2681                 struct xhci_command *command,
2682                 bool ctx_change, bool must_succeed)
2683 {
2684         int ret;
2685         unsigned long flags;
2686         struct xhci_input_control_ctx *ctrl_ctx;
2687         struct xhci_virt_device *virt_dev;
2688
2689         if (!command)
2690                 return -EINVAL;
2691
2692         spin_lock_irqsave(&xhci->lock, flags);
2693         virt_dev = xhci->devs[udev->slot_id];
2694
2695         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2696         if (!ctrl_ctx) {
2697                 spin_unlock_irqrestore(&xhci->lock, flags);
2698                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2699                                 __func__);
2700                 return -ENOMEM;
2701         }
2702
2703         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2704                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2705                 spin_unlock_irqrestore(&xhci->lock, flags);
2706                 xhci_warn(xhci, "Not enough host resources, "
2707                                 "active endpoint contexts = %u\n",
2708                                 xhci->num_active_eps);
2709                 return -ENOMEM;
2710         }
2711         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2712             xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2713                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2714                         xhci_free_host_resources(xhci, ctrl_ctx);
2715                 spin_unlock_irqrestore(&xhci->lock, flags);
2716                 xhci_warn(xhci, "Not enough bandwidth\n");
2717                 return -ENOMEM;
2718         }
2719
2720         if (!ctx_change)
2721                 ret = xhci_queue_configure_endpoint(xhci, command,
2722                                 command->in_ctx->dma,
2723                                 udev->slot_id, must_succeed);
2724         else
2725                 ret = xhci_queue_evaluate_context(xhci, command,
2726                                 command->in_ctx->dma,
2727                                 udev->slot_id, must_succeed);
2728         if (ret < 0) {
2729                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2730                         xhci_free_host_resources(xhci, ctrl_ctx);
2731                 spin_unlock_irqrestore(&xhci->lock, flags);
2732                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2733                                 "FIXME allocate a new ring segment");
2734                 return -ENOMEM;
2735         }
2736         xhci_ring_cmd_db(xhci);
2737         spin_unlock_irqrestore(&xhci->lock, flags);
2738
2739         /* Wait for the configure endpoint command to complete */
2740         wait_for_completion(command->completion);
2741
2742         if (!ctx_change)
2743                 ret = xhci_configure_endpoint_result(xhci, udev,
2744                                                      &command->status);
2745         else
2746                 ret = xhci_evaluate_context_result(xhci, udev,
2747                                                    &command->status);
2748
2749         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2750                 spin_lock_irqsave(&xhci->lock, flags);
2751                 /* If the command failed, remove the reserved resources.
2752                  * Otherwise, clean up the estimate to include dropped eps.
2753                  */
2754                 if (ret)
2755                         xhci_free_host_resources(xhci, ctrl_ctx);
2756                 else
2757                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2758                 spin_unlock_irqrestore(&xhci->lock, flags);
2759         }
2760         return ret;
2761 }
2762
2763 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2764         struct xhci_virt_device *vdev, int i)
2765 {
2766         struct xhci_virt_ep *ep = &vdev->eps[i];
2767
2768         if (ep->ep_state & EP_HAS_STREAMS) {
2769                 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2770                                 xhci_get_endpoint_address(i));
2771                 xhci_free_stream_info(xhci, ep->stream_info);
2772                 ep->stream_info = NULL;
2773                 ep->ep_state &= ~EP_HAS_STREAMS;
2774         }
2775 }
2776
2777 /* Called after one or more calls to xhci_add_endpoint() or
2778  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2779  * to call xhci_reset_bandwidth().
2780  *
2781  * Since we are in the middle of changing either configuration or
2782  * installing a new alt setting, the USB core won't allow URBs to be
2783  * enqueued for any endpoint on the old config or interface.  Nothing
2784  * else should be touching the xhci->devs[slot_id] structure, so we
2785  * don't need to take the xhci->lock for manipulating that.
2786  */
2787 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2788 {
2789         int i;
2790         int ret = 0;
2791         struct xhci_hcd *xhci;
2792         struct xhci_virt_device *virt_dev;
2793         struct xhci_input_control_ctx *ctrl_ctx;
2794         struct xhci_slot_ctx *slot_ctx;
2795         struct xhci_command *command;
2796
2797         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2798         if (ret <= 0)
2799                 return ret;
2800         xhci = hcd_to_xhci(hcd);
2801         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2802                 (xhci->xhc_state & XHCI_STATE_REMOVING))
2803                 return -ENODEV;
2804
2805         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2806         virt_dev = xhci->devs[udev->slot_id];
2807
2808         command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2809         if (!command)
2810                 return -ENOMEM;
2811
2812         command->in_ctx = virt_dev->in_ctx;
2813
2814         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2815         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2816         if (!ctrl_ctx) {
2817                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2818                                 __func__);
2819                 ret = -ENOMEM;
2820                 goto command_cleanup;
2821         }
2822         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2823         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2824         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2825
2826         /* Don't issue the command if there's no endpoints to update. */
2827         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2828             ctrl_ctx->drop_flags == 0) {
2829                 ret = 0;
2830                 goto command_cleanup;
2831         }
2832         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2833         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2834         for (i = 31; i >= 1; i--) {
2835                 __le32 le32 = cpu_to_le32(BIT(i));
2836
2837                 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2838                     || (ctrl_ctx->add_flags & le32) || i == 1) {
2839                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2840                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2841                         break;
2842                 }
2843         }
2844         xhci_dbg(xhci, "New Input Control Context:\n");
2845         xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2846                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2847
2848         ret = xhci_configure_endpoint(xhci, udev, command,
2849                         false, false);
2850         if (ret)
2851                 /* Callee should call reset_bandwidth() */
2852                 goto command_cleanup;
2853
2854         xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2855         xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2856                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2857
2858         /* Free any rings that were dropped, but not changed. */
2859         for (i = 1; i < 31; ++i) {
2860                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2861                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2862                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2863                         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2864                 }
2865         }
2866         xhci_zero_in_ctx(xhci, virt_dev);
2867         /*
2868          * Install any rings for completely new endpoints or changed endpoints,
2869          * and free or cache any old rings from changed endpoints.
2870          */
2871         for (i = 1; i < 31; ++i) {
2872                 if (!virt_dev->eps[i].new_ring)
2873                         continue;
2874                 /* Only cache or free the old ring if it exists.
2875                  * It may not if this is the first add of an endpoint.
2876                  */
2877                 if (virt_dev->eps[i].ring) {
2878                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2879                 }
2880                 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2881                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2882                 virt_dev->eps[i].new_ring = NULL;
2883         }
2884 command_cleanup:
2885         kfree(command->completion);
2886         kfree(command);
2887
2888         return ret;
2889 }
2890
2891 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2892 {
2893         struct xhci_hcd *xhci;
2894         struct xhci_virt_device *virt_dev;
2895         int i, ret;
2896
2897         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2898         if (ret <= 0)
2899                 return;
2900         xhci = hcd_to_xhci(hcd);
2901
2902         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2903         virt_dev = xhci->devs[udev->slot_id];
2904         /* Free any rings allocated for added endpoints */
2905         for (i = 0; i < 31; ++i) {
2906                 if (virt_dev->eps[i].new_ring) {
2907                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2908                         virt_dev->eps[i].new_ring = NULL;
2909                 }
2910         }
2911         xhci_zero_in_ctx(xhci, virt_dev);
2912 }
2913
2914 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2915                 struct xhci_container_ctx *in_ctx,
2916                 struct xhci_container_ctx *out_ctx,
2917                 struct xhci_input_control_ctx *ctrl_ctx,
2918                 u32 add_flags, u32 drop_flags)
2919 {
2920         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2921         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2922         xhci_slot_copy(xhci, in_ctx, out_ctx);
2923         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2924
2925         xhci_dbg(xhci, "Input Context:\n");
2926         xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2927 }
2928
2929 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2930                 unsigned int slot_id, unsigned int ep_index,
2931                 struct xhci_dequeue_state *deq_state)
2932 {
2933         struct xhci_input_control_ctx *ctrl_ctx;
2934         struct xhci_container_ctx *in_ctx;
2935         struct xhci_ep_ctx *ep_ctx;
2936         u32 added_ctxs;
2937         dma_addr_t addr;
2938
2939         in_ctx = xhci->devs[slot_id]->in_ctx;
2940         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2941         if (!ctrl_ctx) {
2942                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2943                                 __func__);
2944                 return;
2945         }
2946
2947         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2948                         xhci->devs[slot_id]->out_ctx, ep_index);
2949         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2950         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2951                         deq_state->new_deq_ptr);
2952         if (addr == 0) {
2953                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2954                                 "reset ep command\n");
2955                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2956                                 deq_state->new_deq_seg,
2957                                 deq_state->new_deq_ptr);
2958                 return;
2959         }
2960         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2961
2962         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2963         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2964                         xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2965                         added_ctxs, added_ctxs);
2966 }
2967
2968 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2969                         unsigned int ep_index, struct xhci_td *td)
2970 {
2971         struct xhci_dequeue_state deq_state;
2972         struct xhci_virt_ep *ep;
2973         struct usb_device *udev = td->urb->dev;
2974
2975         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2976                         "Cleaning up stalled endpoint ring");
2977         ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2978         /* We need to move the HW's dequeue pointer past this TD,
2979          * or it will attempt to resend it on the next doorbell ring.
2980          */
2981         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2982                         ep_index, ep->stopped_stream, td, &deq_state);
2983
2984         if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2985                 return;
2986
2987         /* HW with the reset endpoint quirk will use the saved dequeue state to
2988          * issue a configure endpoint command later.
2989          */
2990         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2991                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2992                                 "Queueing new dequeue state");
2993                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2994                                 ep_index, ep->stopped_stream, &deq_state);
2995         } else {
2996                 /* Better hope no one uses the input context between now and the
2997                  * reset endpoint completion!
2998                  * XXX: No idea how this hardware will react when stream rings
2999                  * are enabled.
3000                  */
3001                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3002                                 "Setting up input context for "
3003                                 "configure endpoint command");
3004                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
3005                                 ep_index, &deq_state);
3006         }
3007 }
3008
3009 /* Called when clearing halted device. The core should have sent the control
3010  * message to clear the device halt condition. The host side of the halt should
3011  * already be cleared with a reset endpoint command issued when the STALL tx
3012  * event was received.
3013  *
3014  * Context: in_interrupt
3015  */
3016
3017 void xhci_endpoint_reset(struct usb_hcd *hcd,
3018                 struct usb_host_endpoint *ep)
3019 {
3020         struct xhci_hcd *xhci;
3021
3022         xhci = hcd_to_xhci(hcd);
3023
3024         /*
3025          * We might need to implement the config ep cmd in xhci 4.8.1 note:
3026          * The Reset Endpoint Command may only be issued to endpoints in the
3027          * Halted state. If software wishes reset the Data Toggle or Sequence
3028          * Number of an endpoint that isn't in the Halted state, then software
3029          * may issue a Configure Endpoint Command with the Drop and Add bits set
3030          * for the target endpoint. that is in the Stopped state.
3031          */
3032
3033         /* For now just print debug to follow the situation */
3034         xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
3035                  ep->desc.bEndpointAddress);
3036 }
3037
3038 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3039                 struct usb_device *udev, struct usb_host_endpoint *ep,
3040                 unsigned int slot_id)
3041 {
3042         int ret;
3043         unsigned int ep_index;
3044         unsigned int ep_state;
3045
3046         if (!ep)
3047                 return -EINVAL;
3048         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3049         if (ret <= 0)
3050                 return ret ? ret : -EINVAL;
3051         if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3052                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3053                                 " descriptor for ep 0x%x does not support streams\n",
3054                                 ep->desc.bEndpointAddress);
3055                 return -EINVAL;
3056         }
3057
3058         ep_index = xhci_get_endpoint_index(&ep->desc);
3059         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3060         if (ep_state & EP_HAS_STREAMS ||
3061                         ep_state & EP_GETTING_STREAMS) {
3062                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3063                                 "already has streams set up.\n",
3064                                 ep->desc.bEndpointAddress);
3065                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3066                                 "dynamic stream context array reallocation.\n");
3067                 return -EINVAL;
3068         }
3069         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3070                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3071                                 "endpoint 0x%x; URBs are pending.\n",
3072                                 ep->desc.bEndpointAddress);
3073                 return -EINVAL;
3074         }
3075         return 0;
3076 }
3077
3078 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3079                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3080 {
3081         unsigned int max_streams;
3082
3083         /* The stream context array size must be a power of two */
3084         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3085         /*
3086          * Find out how many primary stream array entries the host controller
3087          * supports.  Later we may use secondary stream arrays (similar to 2nd
3088          * level page entries), but that's an optional feature for xHCI host
3089          * controllers. xHCs must support at least 4 stream IDs.
3090          */
3091         max_streams = HCC_MAX_PSA(xhci->hcc_params);
3092         if (*num_stream_ctxs > max_streams) {
3093                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3094                                 max_streams);
3095                 *num_stream_ctxs = max_streams;
3096                 *num_streams = max_streams;
3097         }
3098 }
3099
3100 /* Returns an error code if one of the endpoint already has streams.
3101  * This does not change any data structures, it only checks and gathers
3102  * information.
3103  */
3104 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3105                 struct usb_device *udev,
3106                 struct usb_host_endpoint **eps, unsigned int num_eps,
3107                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3108 {
3109         unsigned int max_streams;
3110         unsigned int endpoint_flag;
3111         int i;
3112         int ret;
3113
3114         for (i = 0; i < num_eps; i++) {
3115                 ret = xhci_check_streams_endpoint(xhci, udev,
3116                                 eps[i], udev->slot_id);
3117                 if (ret < 0)
3118                         return ret;
3119
3120                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3121                 if (max_streams < (*num_streams - 1)) {
3122                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3123                                         eps[i]->desc.bEndpointAddress,
3124                                         max_streams);
3125                         *num_streams = max_streams+1;
3126                 }
3127
3128                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3129                 if (*changed_ep_bitmask & endpoint_flag)
3130                         return -EINVAL;
3131                 *changed_ep_bitmask |= endpoint_flag;
3132         }
3133         return 0;
3134 }
3135
3136 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3137                 struct usb_device *udev,
3138                 struct usb_host_endpoint **eps, unsigned int num_eps)
3139 {
3140         u32 changed_ep_bitmask = 0;
3141         unsigned int slot_id;
3142         unsigned int ep_index;
3143         unsigned int ep_state;
3144         int i;
3145
3146         slot_id = udev->slot_id;
3147         if (!xhci->devs[slot_id])
3148                 return 0;
3149
3150         for (i = 0; i < num_eps; i++) {
3151                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3152                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3153                 /* Are streams already being freed for the endpoint? */
3154                 if (ep_state & EP_GETTING_NO_STREAMS) {
3155                         xhci_warn(xhci, "WARN Can't disable streams for "
3156                                         "endpoint 0x%x, "
3157                                         "streams are being disabled already\n",
3158                                         eps[i]->desc.bEndpointAddress);
3159                         return 0;
3160                 }
3161                 /* Are there actually any streams to free? */
3162                 if (!(ep_state & EP_HAS_STREAMS) &&
3163                                 !(ep_state & EP_GETTING_STREAMS)) {
3164                         xhci_warn(xhci, "WARN Can't disable streams for "
3165                                         "endpoint 0x%x, "
3166                                         "streams are already disabled!\n",
3167                                         eps[i]->desc.bEndpointAddress);
3168                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3169                                         "with non-streams endpoint\n");
3170                         return 0;
3171                 }
3172                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3173         }
3174         return changed_ep_bitmask;
3175 }
3176
3177 /*
3178  * The USB device drivers use this function (through the HCD interface in USB
3179  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3180  * coordinate mass storage command queueing across multiple endpoints (basically
3181  * a stream ID == a task ID).
3182  *
3183  * Setting up streams involves allocating the same size stream context array
3184  * for each endpoint and issuing a configure endpoint command for all endpoints.
3185  *
3186  * Don't allow the call to succeed if one endpoint only supports one stream
3187  * (which means it doesn't support streams at all).
3188  *
3189  * Drivers may get less stream IDs than they asked for, if the host controller
3190  * hardware or endpoints claim they can't support the number of requested
3191  * stream IDs.
3192  */
3193 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3194                 struct usb_host_endpoint **eps, unsigned int num_eps,
3195                 unsigned int num_streams, gfp_t mem_flags)
3196 {
3197         int i, ret;
3198         struct xhci_hcd *xhci;
3199         struct xhci_virt_device *vdev;
3200         struct xhci_command *config_cmd;
3201         struct xhci_input_control_ctx *ctrl_ctx;
3202         unsigned int ep_index;
3203         unsigned int num_stream_ctxs;
3204         unsigned int max_packet;
3205         unsigned long flags;
3206         u32 changed_ep_bitmask = 0;
3207
3208         if (!eps)
3209                 return -EINVAL;
3210
3211         /* Add one to the number of streams requested to account for
3212          * stream 0 that is reserved for xHCI usage.
3213          */
3214         num_streams += 1;
3215         xhci = hcd_to_xhci(hcd);
3216         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3217                         num_streams);
3218
3219         /* MaxPSASize value 0 (2 streams) means streams are not supported */
3220         if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3221                         HCC_MAX_PSA(xhci->hcc_params) < 4) {
3222                 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3223                 return -ENOSYS;
3224         }
3225
3226         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3227         if (!config_cmd) {
3228                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3229                 return -ENOMEM;
3230         }
3231         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3232         if (!ctrl_ctx) {
3233                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3234                                 __func__);
3235                 xhci_free_command(xhci, config_cmd);
3236                 return -ENOMEM;
3237         }
3238
3239         /* Check to make sure all endpoints are not already configured for
3240          * streams.  While we're at it, find the maximum number of streams that
3241          * all the endpoints will support and check for duplicate endpoints.
3242          */
3243         spin_lock_irqsave(&xhci->lock, flags);
3244         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3245                         num_eps, &num_streams, &changed_ep_bitmask);
3246         if (ret < 0) {
3247                 xhci_free_command(xhci, config_cmd);
3248                 spin_unlock_irqrestore(&xhci->lock, flags);
3249                 return ret;
3250         }
3251         if (num_streams <= 1) {
3252                 xhci_warn(xhci, "WARN: endpoints can't handle "
3253                                 "more than one stream.\n");
3254                 xhci_free_command(xhci, config_cmd);
3255                 spin_unlock_irqrestore(&xhci->lock, flags);
3256                 return -EINVAL;
3257         }
3258         vdev = xhci->devs[udev->slot_id];
3259         /* Mark each endpoint as being in transition, so
3260          * xhci_urb_enqueue() will reject all URBs.
3261          */
3262         for (i = 0; i < num_eps; i++) {
3263                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3264                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3265         }
3266         spin_unlock_irqrestore(&xhci->lock, flags);
3267
3268         /* Setup internal data structures and allocate HW data structures for
3269          * streams (but don't install the HW structures in the input context
3270          * until we're sure all memory allocation succeeded).
3271          */
3272         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3273         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3274                         num_stream_ctxs, num_streams);
3275
3276         for (i = 0; i < num_eps; i++) {
3277                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3278                 max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&eps[i]->desc));
3279                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3280                                 num_stream_ctxs,
3281                                 num_streams,
3282                                 max_packet, mem_flags);
3283                 if (!vdev->eps[ep_index].stream_info)
3284                         goto cleanup;
3285                 /* Set maxPstreams in endpoint context and update deq ptr to
3286                  * point to stream context array. FIXME
3287                  */
3288         }
3289
3290         /* Set up the input context for a configure endpoint command. */
3291         for (i = 0; i < num_eps; i++) {
3292                 struct xhci_ep_ctx *ep_ctx;
3293
3294                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3295                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3296
3297                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3298                                 vdev->out_ctx, ep_index);
3299                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3300                                 vdev->eps[ep_index].stream_info);
3301         }
3302         /* Tell the HW to drop its old copy of the endpoint context info
3303          * and add the updated copy from the input context.
3304          */
3305         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3306                         vdev->out_ctx, ctrl_ctx,
3307                         changed_ep_bitmask, changed_ep_bitmask);
3308
3309         /* Issue and wait for the configure endpoint command */
3310         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3311                         false, false);
3312
3313         /* xHC rejected the configure endpoint command for some reason, so we
3314          * leave the old ring intact and free our internal streams data
3315          * structure.
3316          */
3317         if (ret < 0)
3318                 goto cleanup;
3319
3320         spin_lock_irqsave(&xhci->lock, flags);
3321         for (i = 0; i < num_eps; i++) {
3322                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3323                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3324                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3325                          udev->slot_id, ep_index);
3326                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3327         }
3328         xhci_free_command(xhci, config_cmd);
3329         spin_unlock_irqrestore(&xhci->lock, flags);
3330
3331         /* Subtract 1 for stream 0, which drivers can't use */
3332         return num_streams - 1;
3333
3334 cleanup:
3335         /* If it didn't work, free the streams! */
3336         for (i = 0; i < num_eps; i++) {
3337                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3338                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3339                 vdev->eps[ep_index].stream_info = NULL;
3340                 /* FIXME Unset maxPstreams in endpoint context and
3341                  * update deq ptr to point to normal string ring.
3342                  */
3343                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3344                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3345                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3346         }
3347         xhci_free_command(xhci, config_cmd);
3348         return -ENOMEM;
3349 }
3350
3351 /* Transition the endpoint from using streams to being a "normal" endpoint
3352  * without streams.
3353  *
3354  * Modify the endpoint context state, submit a configure endpoint command,
3355  * and free all endpoint rings for streams if that completes successfully.
3356  */
3357 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3358                 struct usb_host_endpoint **eps, unsigned int num_eps,
3359                 gfp_t mem_flags)
3360 {
3361         int i, ret;
3362         struct xhci_hcd *xhci;
3363         struct xhci_virt_device *vdev;
3364         struct xhci_command *command;
3365         struct xhci_input_control_ctx *ctrl_ctx;
3366         unsigned int ep_index;
3367         unsigned long flags;
3368         u32 changed_ep_bitmask;
3369
3370         xhci = hcd_to_xhci(hcd);
3371         vdev = xhci->devs[udev->slot_id];
3372
3373         /* Set up a configure endpoint command to remove the streams rings */
3374         spin_lock_irqsave(&xhci->lock, flags);
3375         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3376                         udev, eps, num_eps);
3377         if (changed_ep_bitmask == 0) {
3378                 spin_unlock_irqrestore(&xhci->lock, flags);
3379                 return -EINVAL;
3380         }
3381
3382         /* Use the xhci_command structure from the first endpoint.  We may have
3383          * allocated too many, but the driver may call xhci_free_streams() for
3384          * each endpoint it grouped into one call to xhci_alloc_streams().
3385          */
3386         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3387         command = vdev->eps[ep_index].stream_info->free_streams_command;
3388         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3389         if (!ctrl_ctx) {
3390                 spin_unlock_irqrestore(&xhci->lock, flags);
3391                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3392                                 __func__);
3393                 return -EINVAL;
3394         }
3395
3396         for (i = 0; i < num_eps; i++) {
3397                 struct xhci_ep_ctx *ep_ctx;
3398
3399                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3400                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3401                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3402                         EP_GETTING_NO_STREAMS;
3403
3404                 xhci_endpoint_copy(xhci, command->in_ctx,
3405                                 vdev->out_ctx, ep_index);
3406                 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3407                                 &vdev->eps[ep_index]);
3408         }
3409         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3410                         vdev->out_ctx, ctrl_ctx,
3411                         changed_ep_bitmask, changed_ep_bitmask);
3412         spin_unlock_irqrestore(&xhci->lock, flags);
3413
3414         /* Issue and wait for the configure endpoint command,
3415          * which must succeed.
3416          */
3417         ret = xhci_configure_endpoint(xhci, udev, command,
3418                         false, true);
3419
3420         /* xHC rejected the configure endpoint command for some reason, so we
3421          * leave the streams rings intact.
3422          */
3423         if (ret < 0)
3424                 return ret;
3425
3426         spin_lock_irqsave(&xhci->lock, flags);
3427         for (i = 0; i < num_eps; i++) {
3428                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3429                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3430                 vdev->eps[ep_index].stream_info = NULL;
3431                 /* FIXME Unset maxPstreams in endpoint context and
3432                  * update deq ptr to point to normal string ring.
3433                  */
3434                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3435                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3436         }
3437         spin_unlock_irqrestore(&xhci->lock, flags);
3438
3439         return 0;
3440 }
3441
3442 /*
3443  * Deletes endpoint resources for endpoints that were active before a Reset
3444  * Device command, or a Disable Slot command.  The Reset Device command leaves
3445  * the control endpoint intact, whereas the Disable Slot command deletes it.
3446  *
3447  * Must be called with xhci->lock held.
3448  */
3449 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3450         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3451 {
3452         int i;
3453         unsigned int num_dropped_eps = 0;
3454         unsigned int drop_flags = 0;
3455
3456         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3457                 if (virt_dev->eps[i].ring) {
3458                         drop_flags |= 1 << i;
3459                         num_dropped_eps++;
3460                 }
3461         }
3462         xhci->num_active_eps -= num_dropped_eps;
3463         if (num_dropped_eps)
3464                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3465                                 "Dropped %u ep ctxs, flags = 0x%x, "
3466                                 "%u now active.",
3467                                 num_dropped_eps, drop_flags,
3468                                 xhci->num_active_eps);
3469 }
3470
3471 /*
3472  * This submits a Reset Device Command, which will set the device state to 0,
3473  * set the device address to 0, and disable all the endpoints except the default
3474  * control endpoint.  The USB core should come back and call
3475  * xhci_address_device(), and then re-set up the configuration.  If this is
3476  * called because of a usb_reset_and_verify_device(), then the old alternate
3477  * settings will be re-installed through the normal bandwidth allocation
3478  * functions.
3479  *
3480  * Wait for the Reset Device command to finish.  Remove all structures
3481  * associated with the endpoints that were disabled.  Clear the input device
3482  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3483  *
3484  * If the virt_dev to be reset does not exist or does not match the udev,
3485  * it means the device is lost, possibly due to the xHC restore error and
3486  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3487  * re-allocate the device.
3488  */
3489 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3490 {
3491         int ret, i;
3492         unsigned long flags;
3493         struct xhci_hcd *xhci;
3494         unsigned int slot_id;
3495         struct xhci_virt_device *virt_dev;
3496         struct xhci_command *reset_device_cmd;
3497         int last_freed_endpoint;
3498         struct xhci_slot_ctx *slot_ctx;
3499         int old_active_eps = 0;
3500
3501         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3502         if (ret <= 0)
3503                 return ret;
3504         xhci = hcd_to_xhci(hcd);
3505         slot_id = udev->slot_id;
3506         virt_dev = xhci->devs[slot_id];
3507         if (!virt_dev) {
3508                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3509                                 "not exist. Re-allocate the device\n", slot_id);
3510                 ret = xhci_alloc_dev(hcd, udev);
3511                 if (ret == 1)
3512                         return 0;
3513                 else
3514                         return -EINVAL;
3515         }
3516
3517         if (virt_dev->tt_info)
3518                 old_active_eps = virt_dev->tt_info->active_eps;
3519
3520         if (virt_dev->udev != udev) {
3521                 /* If the virt_dev and the udev does not match, this virt_dev
3522                  * may belong to another udev.
3523                  * Re-allocate the device.
3524                  */
3525                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3526                                 "not match the udev. Re-allocate the device\n",
3527                                 slot_id);
3528                 ret = xhci_alloc_dev(hcd, udev);
3529                 if (ret == 1)
3530                         return 0;
3531                 else
3532                         return -EINVAL;
3533         }
3534
3535         /* If device is not setup, there is no point in resetting it */
3536         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3537         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3538                                                 SLOT_STATE_DISABLED)
3539                 return 0;
3540
3541         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3542         /* Allocate the command structure that holds the struct completion.
3543          * Assume we're in process context, since the normal device reset
3544          * process has to wait for the device anyway.  Storage devices are
3545          * reset as part of error handling, so use GFP_NOIO instead of
3546          * GFP_KERNEL.
3547          */
3548         reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3549         if (!reset_device_cmd) {
3550                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3551                 return -ENOMEM;
3552         }
3553
3554         /* Attempt to submit the Reset Device command to the command ring */
3555         spin_lock_irqsave(&xhci->lock, flags);
3556
3557         ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3558         if (ret) {
3559                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3560                 spin_unlock_irqrestore(&xhci->lock, flags);
3561                 goto command_cleanup;
3562         }
3563         xhci_ring_cmd_db(xhci);
3564         spin_unlock_irqrestore(&xhci->lock, flags);
3565
3566         /* Wait for the Reset Device command to finish */
3567         wait_for_completion(reset_device_cmd->completion);
3568
3569         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3570          * unless we tried to reset a slot ID that wasn't enabled,
3571          * or the device wasn't in the addressed or configured state.
3572          */
3573         ret = reset_device_cmd->status;
3574         switch (ret) {
3575         case COMP_CMD_ABORT:
3576         case COMP_CMD_STOP:
3577                 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3578                 ret = -ETIME;
3579                 goto command_cleanup;
3580         case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3581         case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3582                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3583                                 slot_id,
3584                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3585                 xhci_dbg(xhci, "Not freeing device rings.\n");
3586                 /* Don't treat this as an error.  May change my mind later. */
3587                 ret = 0;
3588                 goto command_cleanup;
3589         case COMP_SUCCESS:
3590                 xhci_dbg(xhci, "Successful reset device command.\n");
3591                 break;
3592         default:
3593                 if (xhci_is_vendor_info_code(xhci, ret))
3594                         break;
3595                 xhci_warn(xhci, "Unknown completion code %u for "
3596                                 "reset device command.\n", ret);
3597                 ret = -EINVAL;
3598                 goto command_cleanup;
3599         }
3600
3601         /* Free up host controller endpoint resources */
3602         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3603                 spin_lock_irqsave(&xhci->lock, flags);
3604                 /* Don't delete the default control endpoint resources */
3605                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3606                 spin_unlock_irqrestore(&xhci->lock, flags);
3607         }
3608
3609         /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3610         last_freed_endpoint = 1;
3611         for (i = 1; i < 31; ++i) {
3612                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3613
3614                 if (ep->ep_state & EP_HAS_STREAMS) {
3615                         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3616                                         xhci_get_endpoint_address(i));
3617                         xhci_free_stream_info(xhci, ep->stream_info);
3618                         ep->stream_info = NULL;
3619                         ep->ep_state &= ~EP_HAS_STREAMS;
3620                 }
3621
3622                 if (ep->ring) {
3623                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3624                         last_freed_endpoint = i;
3625                 }
3626                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3627                         xhci_drop_ep_from_interval_table(xhci,
3628                                         &virt_dev->eps[i].bw_info,
3629                                         virt_dev->bw_table,
3630                                         udev,
3631                                         &virt_dev->eps[i],
3632                                         virt_dev->tt_info);
3633                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3634         }
3635         /* If necessary, update the number of active TTs on this root port */
3636         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3637
3638         xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3639         xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3640         ret = 0;
3641
3642 command_cleanup:
3643         xhci_free_command(xhci, reset_device_cmd);
3644         return ret;
3645 }
3646
3647 /*
3648  * At this point, the struct usb_device is about to go away, the device has
3649  * disconnected, and all traffic has been stopped and the endpoints have been
3650  * disabled.  Free any HC data structures associated with that device.
3651  */
3652 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3653 {
3654         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3655         struct xhci_virt_device *virt_dev;
3656         unsigned long flags;
3657         u32 state;
3658         int i, ret;
3659         struct xhci_command *command;
3660
3661         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3662         if (!command)
3663                 return;
3664
3665 #ifndef CONFIG_USB_DEFAULT_PERSIST
3666         /*
3667          * We called pm_runtime_get_noresume when the device was attached.
3668          * Decrement the counter here to allow controller to runtime suspend
3669          * if no devices remain.
3670          */
3671         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3672                 pm_runtime_put_noidle(hcd->self.controller);
3673 #endif
3674
3675         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3676         /* If the host is halted due to driver unload, we still need to free the
3677          * device.
3678          */
3679         if (ret <= 0 && ret != -ENODEV) {
3680                 kfree(command);
3681                 return;
3682         }
3683
3684         virt_dev = xhci->devs[udev->slot_id];
3685
3686         /* Stop any wayward timer functions (which may grab the lock) */
3687         for (i = 0; i < 31; ++i) {
3688                 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3689                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3690         }
3691
3692         spin_lock_irqsave(&xhci->lock, flags);
3693
3694         virt_dev->udev = NULL;
3695
3696         /* Don't disable the slot if the host controller is dead. */
3697         state = readl(&xhci->op_regs->status);
3698         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3699                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3700                 xhci_free_virt_device(xhci, udev->slot_id);
3701                 spin_unlock_irqrestore(&xhci->lock, flags);
3702                 kfree(command);
3703                 return;
3704         }
3705
3706         if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3707                                     udev->slot_id)) {
3708                 spin_unlock_irqrestore(&xhci->lock, flags);
3709                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3710                 return;
3711         }
3712         xhci_ring_cmd_db(xhci);
3713         spin_unlock_irqrestore(&xhci->lock, flags);
3714
3715         /*
3716          * Event command completion handler will free any data structures
3717          * associated with the slot.  XXX Can free sleep?
3718          */
3719 }
3720
3721 /*
3722  * Checks if we have enough host controller resources for the default control
3723  * endpoint.
3724  *
3725  * Must be called with xhci->lock held.
3726  */
3727 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3728 {
3729         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3730                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3731                                 "Not enough ep ctxs: "
3732                                 "%u active, need to add 1, limit is %u.",
3733                                 xhci->num_active_eps, xhci->limit_active_eps);
3734                 return -ENOMEM;
3735         }
3736         xhci->num_active_eps += 1;
3737         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3738                         "Adding 1 ep ctx, %u now active.",
3739                         xhci->num_active_eps);
3740         return 0;
3741 }
3742
3743
3744 /*
3745  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3746  * timed out, or allocating memory failed.  Returns 1 on success.
3747  */
3748 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3749 {
3750         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3751         unsigned long flags;
3752         int ret, slot_id;
3753         struct xhci_command *command;
3754
3755         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3756         if (!command)
3757                 return 0;
3758
3759         /* xhci->slot_id and xhci->addr_dev are not thread-safe */
3760         mutex_lock(&xhci->mutex);
3761         spin_lock_irqsave(&xhci->lock, flags);
3762         command->completion = &xhci->addr_dev;
3763         ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3764         if (ret) {
3765                 spin_unlock_irqrestore(&xhci->lock, flags);
3766                 mutex_unlock(&xhci->mutex);
3767                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3768                 kfree(command);
3769                 return 0;
3770         }
3771         xhci_ring_cmd_db(xhci);
3772         spin_unlock_irqrestore(&xhci->lock, flags);
3773
3774         wait_for_completion(command->completion);
3775         slot_id = xhci->slot_id;
3776         mutex_unlock(&xhci->mutex);
3777
3778         if (!slot_id || command->status != COMP_SUCCESS) {
3779                 xhci_err(xhci, "Error while assigning device slot ID\n");
3780                 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3781                                 HCS_MAX_SLOTS(
3782                                         readl(&xhci->cap_regs->hcs_params1)));
3783                 kfree(command);
3784                 return 0;
3785         }
3786
3787         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3788                 spin_lock_irqsave(&xhci->lock, flags);
3789                 ret = xhci_reserve_host_control_ep_resources(xhci);
3790                 if (ret) {
3791                         spin_unlock_irqrestore(&xhci->lock, flags);
3792                         xhci_warn(xhci, "Not enough host resources, "
3793                                         "active endpoint contexts = %u\n",
3794                                         xhci->num_active_eps);
3795                         goto disable_slot;
3796                 }
3797                 spin_unlock_irqrestore(&xhci->lock, flags);
3798         }
3799         /* Use GFP_NOIO, since this function can be called from
3800          * xhci_discover_or_reset_device(), which may be called as part of
3801          * mass storage driver error handling.
3802          */
3803         if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3804                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3805                 goto disable_slot;
3806         }
3807         udev->slot_id = slot_id;
3808
3809 #ifndef CONFIG_USB_DEFAULT_PERSIST
3810         /*
3811          * If resetting upon resume, we can't put the controller into runtime
3812          * suspend if there is a device attached.
3813          */
3814         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3815                 pm_runtime_get_noresume(hcd->self.controller);
3816 #endif
3817
3818
3819         kfree(command);
3820         /* Is this a LS or FS device under a HS hub? */
3821         /* Hub or peripherial? */
3822         return 1;
3823
3824 disable_slot:
3825         /* Disable slot, if we can do it without mem alloc */
3826         spin_lock_irqsave(&xhci->lock, flags);
3827         command->completion = NULL;
3828         command->status = 0;
3829         if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3830                                      udev->slot_id))
3831                 xhci_ring_cmd_db(xhci);
3832         spin_unlock_irqrestore(&xhci->lock, flags);
3833         return 0;
3834 }
3835
3836 /*
3837  * Issue an Address Device command and optionally send a corresponding
3838  * SetAddress request to the device.
3839  */
3840 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3841                              enum xhci_setup_dev setup)
3842 {
3843         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3844         unsigned long flags;
3845         struct xhci_virt_device *virt_dev;
3846         int ret = 0;
3847         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3848         struct xhci_slot_ctx *slot_ctx;
3849         struct xhci_input_control_ctx *ctrl_ctx;
3850         u64 temp_64;
3851         struct xhci_command *command = NULL;
3852
3853         mutex_lock(&xhci->mutex);
3854
3855         if (xhci->xhc_state) {  /* dying, removing or halted */
3856                 ret = -ESHUTDOWN;
3857                 goto out;
3858         }
3859
3860         if (!udev->slot_id) {
3861                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3862                                 "Bad Slot ID %d", udev->slot_id);
3863                 ret = -EINVAL;
3864                 goto out;
3865         }
3866
3867         virt_dev = xhci->devs[udev->slot_id];
3868
3869         if (WARN_ON(!virt_dev)) {
3870                 /*
3871                  * In plug/unplug torture test with an NEC controller,
3872                  * a zero-dereference was observed once due to virt_dev = 0.
3873                  * Print useful debug rather than crash if it is observed again!
3874                  */
3875                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3876                         udev->slot_id);
3877                 ret = -EINVAL;
3878                 goto out;
3879         }
3880
3881         if (setup == SETUP_CONTEXT_ONLY) {
3882                 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3883                 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3884                     SLOT_STATE_DEFAULT) {
3885                         xhci_dbg(xhci, "Slot already in default state\n");
3886                         goto out;
3887                 }
3888         }
3889
3890         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3891         if (!command) {
3892                 ret = -ENOMEM;
3893                 goto out;
3894         }
3895
3896         command->in_ctx = virt_dev->in_ctx;
3897         command->completion = &xhci->addr_dev;
3898
3899         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3900         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3901         if (!ctrl_ctx) {
3902                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3903                                 __func__);
3904                 ret = -EINVAL;
3905                 goto out;
3906         }
3907         /*
3908          * If this is the first Set Address since device plug-in or
3909          * virt_device realloaction after a resume with an xHCI power loss,
3910          * then set up the slot context.
3911          */
3912         if (!slot_ctx->dev_info)
3913                 xhci_setup_addressable_virt_dev(xhci, udev);
3914         /* Otherwise, update the control endpoint ring enqueue pointer. */
3915         else
3916                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3917         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3918         ctrl_ctx->drop_flags = 0;
3919
3920         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3921         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3922         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3923                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3924
3925         spin_lock_irqsave(&xhci->lock, flags);
3926         ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3927                                         udev->slot_id, setup);
3928         if (ret) {
3929                 spin_unlock_irqrestore(&xhci->lock, flags);
3930                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3931                                 "FIXME: allocate a command ring segment");
3932                 goto out;
3933         }
3934         xhci_ring_cmd_db(xhci);
3935         spin_unlock_irqrestore(&xhci->lock, flags);
3936
3937         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3938         wait_for_completion(command->completion);
3939
3940         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3941          * the SetAddress() "recovery interval" required by USB and aborting the
3942          * command on a timeout.
3943          */
3944         switch (command->status) {
3945         case COMP_CMD_ABORT:
3946         case COMP_CMD_STOP:
3947                 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3948                 ret = -ETIME;
3949                 break;
3950         case COMP_CTX_STATE:
3951         case COMP_EBADSLT:
3952                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3953                          act, udev->slot_id);
3954                 ret = -EINVAL;
3955                 break;
3956         case COMP_TX_ERR:
3957                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3958                 ret = -EPROTO;
3959                 break;
3960         case COMP_DEV_ERR:
3961                 dev_warn(&udev->dev,
3962                          "ERROR: Incompatible device for setup %s command\n", act);
3963                 ret = -ENODEV;
3964                 break;
3965         case COMP_SUCCESS:
3966                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3967                                "Successful setup %s command", act);
3968                 break;
3969         default:
3970                 xhci_err(xhci,
3971                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
3972                          act, command->status);
3973                 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3974                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3975                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3976                 ret = -EINVAL;
3977                 break;
3978         }
3979         if (ret)
3980                 goto out;
3981         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3982         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3983                         "Op regs DCBAA ptr = %#016llx", temp_64);
3984         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3985                 "Slot ID %d dcbaa entry @%p = %#016llx",
3986                 udev->slot_id,
3987                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3988                 (unsigned long long)
3989                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3990         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3991                         "Output Context DMA address = %#08llx",
3992                         (unsigned long long)virt_dev->out_ctx->dma);
3993         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3994         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3995         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3996                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3997         xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3998         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3999         /*
4000          * USB core uses address 1 for the roothubs, so we add one to the
4001          * address given back to us by the HC.
4002          */
4003         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4004         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4005                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4006         /* Zero the input context control for later use */
4007         ctrl_ctx->add_flags = 0;
4008         ctrl_ctx->drop_flags = 0;
4009
4010         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4011                        "Internal device address = %d",
4012                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4013 out:
4014         mutex_unlock(&xhci->mutex);
4015         kfree(command);
4016         return ret;
4017 }
4018
4019 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4020 {
4021         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4022 }
4023
4024 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4025 {
4026         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4027 }
4028
4029 /*
4030  * Transfer the port index into real index in the HW port status
4031  * registers. Caculate offset between the port's PORTSC register
4032  * and port status base. Divide the number of per port register
4033  * to get the real index. The raw port number bases 1.
4034  */
4035 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4036 {
4037         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4038         __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
4039         __le32 __iomem *addr;
4040         int raw_port;
4041
4042         if (hcd->speed < HCD_USB3)
4043                 addr = xhci->usb2_ports[port1 - 1];
4044         else
4045                 addr = xhci->usb3_ports[port1 - 1];
4046
4047         raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
4048         return raw_port;
4049 }
4050
4051 /*
4052  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4053  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4054  */
4055 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4056                         struct usb_device *udev, u16 max_exit_latency)
4057 {
4058         struct xhci_virt_device *virt_dev;
4059         struct xhci_command *command;
4060         struct xhci_input_control_ctx *ctrl_ctx;
4061         struct xhci_slot_ctx *slot_ctx;
4062         unsigned long flags;
4063         int ret;
4064
4065         spin_lock_irqsave(&xhci->lock, flags);
4066
4067         virt_dev = xhci->devs[udev->slot_id];
4068
4069         /*
4070          * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4071          * xHC was re-initialized. Exit latency will be set later after
4072          * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4073          */
4074
4075         if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4076                 spin_unlock_irqrestore(&xhci->lock, flags);
4077                 return 0;
4078         }
4079
4080         /* Attempt to issue an Evaluate Context command to change the MEL. */
4081         command = xhci->lpm_command;
4082         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4083         if (!ctrl_ctx) {
4084                 spin_unlock_irqrestore(&xhci->lock, flags);
4085                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4086                                 __func__);
4087                 return -ENOMEM;
4088         }
4089
4090         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4091         spin_unlock_irqrestore(&xhci->lock, flags);
4092
4093         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4094         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4095         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4096         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4097         slot_ctx->dev_state = 0;
4098
4099         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4100                         "Set up evaluate context for LPM MEL change.");
4101         xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4102         xhci_dbg_ctx(xhci, command->in_ctx, 0);
4103
4104         /* Issue and wait for the evaluate context command. */
4105         ret = xhci_configure_endpoint(xhci, udev, command,
4106                         true, true);
4107         xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4108         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4109
4110         if (!ret) {
4111                 spin_lock_irqsave(&xhci->lock, flags);
4112                 virt_dev->current_mel = max_exit_latency;
4113                 spin_unlock_irqrestore(&xhci->lock, flags);
4114         }
4115         return ret;
4116 }
4117
4118 #ifdef CONFIG_PM
4119
4120 /* BESL to HIRD Encoding array for USB2 LPM */
4121 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4122         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4123
4124 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4125 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4126                                         struct usb_device *udev)
4127 {
4128         int u2del, besl, besl_host;
4129         int besl_device = 0;
4130         u32 field;
4131
4132         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4133         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4134
4135         if (field & USB_BESL_SUPPORT) {
4136                 for (besl_host = 0; besl_host < 16; besl_host++) {
4137                         if (xhci_besl_encoding[besl_host] >= u2del)
4138                                 break;
4139                 }
4140                 /* Use baseline BESL value as default */
4141                 if (field & USB_BESL_BASELINE_VALID)
4142                         besl_device = USB_GET_BESL_BASELINE(field);
4143                 else if (field & USB_BESL_DEEP_VALID)
4144                         besl_device = USB_GET_BESL_DEEP(field);
4145         } else {
4146                 if (u2del <= 50)
4147                         besl_host = 0;
4148                 else
4149                         besl_host = (u2del - 51) / 75 + 1;
4150         }
4151
4152         besl = besl_host + besl_device;
4153         if (besl > 15)
4154                 besl = 15;
4155
4156         return besl;
4157 }
4158
4159 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4160 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4161 {
4162         u32 field;
4163         int l1;
4164         int besld = 0;
4165         int hirdm = 0;
4166
4167         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4168
4169         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4170         l1 = udev->l1_params.timeout / 256;
4171
4172         /* device has preferred BESLD */
4173         if (field & USB_BESL_DEEP_VALID) {
4174                 besld = USB_GET_BESL_DEEP(field);
4175                 hirdm = 1;
4176         }
4177
4178         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4179 }
4180
4181 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4182                         struct usb_device *udev, int enable)
4183 {
4184         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4185         __le32 __iomem  **port_array;
4186         __le32 __iomem  *pm_addr, *hlpm_addr;
4187         u32             pm_val, hlpm_val, field;
4188         unsigned int    port_num;
4189         unsigned long   flags;
4190         int             hird, exit_latency;
4191         int             ret;
4192
4193         if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4194                         !udev->lpm_capable)
4195                 return -EPERM;
4196
4197         if (!udev->parent || udev->parent->parent ||
4198                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4199                 return -EPERM;
4200
4201         if (udev->usb2_hw_lpm_capable != 1)
4202                 return -EPERM;
4203
4204         spin_lock_irqsave(&xhci->lock, flags);
4205
4206         port_array = xhci->usb2_ports;
4207         port_num = udev->portnum - 1;
4208         pm_addr = port_array[port_num] + PORTPMSC;
4209         pm_val = readl(pm_addr);
4210         hlpm_addr = port_array[port_num] + PORTHLPMC;
4211
4212         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4213                         enable ? "enable" : "disable", port_num + 1);
4214
4215         if (enable) {
4216                 /* Host supports BESL timeout instead of HIRD */
4217                 if (udev->usb2_hw_lpm_besl_capable) {
4218                         /* if device doesn't have a preferred BESL value use a
4219                          * default one which works with mixed HIRD and BESL
4220                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4221                          */
4222                         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4223                         if ((field & USB_BESL_SUPPORT) &&
4224                             (field & USB_BESL_BASELINE_VALID))
4225                                 hird = USB_GET_BESL_BASELINE(field);
4226                         else
4227                                 hird = udev->l1_params.besl;
4228
4229                         exit_latency = xhci_besl_encoding[hird];
4230                         spin_unlock_irqrestore(&xhci->lock, flags);
4231
4232                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4233                          * input context for link powermanagement evaluate
4234                          * context commands. It is protected by hcd->bandwidth
4235                          * mutex and is shared by all devices. We need to set
4236                          * the max ext latency in USB 2 BESL LPM as well, so
4237                          * use the same mutex and xhci_change_max_exit_latency()
4238                          */
4239                         mutex_lock(hcd->bandwidth_mutex);
4240                         ret = xhci_change_max_exit_latency(xhci, udev,
4241                                                            exit_latency);
4242                         mutex_unlock(hcd->bandwidth_mutex);
4243
4244                         if (ret < 0)
4245                                 return ret;
4246                         spin_lock_irqsave(&xhci->lock, flags);
4247
4248                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4249                         writel(hlpm_val, hlpm_addr);
4250                         /* flush write */
4251                         readl(hlpm_addr);
4252                 } else {
4253                         hird = xhci_calculate_hird_besl(xhci, udev);
4254                 }
4255
4256                 pm_val &= ~PORT_HIRD_MASK;
4257                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4258                 writel(pm_val, pm_addr);
4259                 pm_val = readl(pm_addr);
4260                 pm_val |= PORT_HLE;
4261                 writel(pm_val, pm_addr);
4262                 /* flush write */
4263                 readl(pm_addr);
4264         } else {
4265                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4266                 writel(pm_val, pm_addr);
4267                 /* flush write */
4268                 readl(pm_addr);
4269                 if (udev->usb2_hw_lpm_besl_capable) {
4270                         spin_unlock_irqrestore(&xhci->lock, flags);
4271                         mutex_lock(hcd->bandwidth_mutex);
4272                         xhci_change_max_exit_latency(xhci, udev, 0);
4273                         mutex_unlock(hcd->bandwidth_mutex);
4274                         readl_poll_timeout(port_array[port_num], pm_val,
4275                                            (pm_val & PORT_PLS_MASK) == XDEV_U0,
4276                                            100, 10000);
4277                         return 0;
4278                 }
4279         }
4280
4281         spin_unlock_irqrestore(&xhci->lock, flags);
4282         return 0;
4283 }
4284
4285 /* check if a usb2 port supports a given extened capability protocol
4286  * only USB2 ports extended protocol capability values are cached.
4287  * Return 1 if capability is supported
4288  */
4289 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4290                                            unsigned capability)
4291 {
4292         u32 port_offset, port_count;
4293         int i;
4294
4295         for (i = 0; i < xhci->num_ext_caps; i++) {
4296                 if (xhci->ext_caps[i] & capability) {
4297                         /* port offsets starts at 1 */
4298                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4299                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4300                         if (port >= port_offset &&
4301                             port < port_offset + port_count)
4302                                 return 1;
4303                 }
4304         }
4305         return 0;
4306 }
4307
4308 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4309 {
4310         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4311         int             portnum = udev->portnum - 1;
4312
4313         if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4314                         !udev->lpm_capable)
4315                 return 0;
4316
4317         /* we only support lpm for non-hub device connected to root hub yet */
4318         if (!udev->parent || udev->parent->parent ||
4319                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4320                 return 0;
4321
4322         if (xhci->hw_lpm_support == 1 &&
4323                         xhci_check_usb2_port_capability(
4324                                 xhci, portnum, XHCI_HLC)) {
4325                 udev->usb2_hw_lpm_capable = 1;
4326                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4327                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4328                 if (xhci_check_usb2_port_capability(xhci, portnum,
4329                                         XHCI_BLC))
4330                         udev->usb2_hw_lpm_besl_capable = 1;
4331         }
4332
4333         return 0;
4334 }
4335
4336 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4337
4338 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4339 static unsigned long long xhci_service_interval_to_ns(
4340                 struct usb_endpoint_descriptor *desc)
4341 {
4342         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4343 }
4344
4345 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4346                 enum usb3_link_state state)
4347 {
4348         unsigned long long sel;
4349         unsigned long long pel;
4350         unsigned int max_sel_pel;
4351         char *state_name;
4352
4353         switch (state) {
4354         case USB3_LPM_U1:
4355                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4356                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4357                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4358                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4359                 state_name = "U1";
4360                 break;
4361         case USB3_LPM_U2:
4362                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4363                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4364                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4365                 state_name = "U2";
4366                 break;
4367         default:
4368                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4369                                 __func__);
4370                 return USB3_LPM_DISABLED;
4371         }
4372
4373         if (sel <= max_sel_pel && pel <= max_sel_pel)
4374                 return USB3_LPM_DEVICE_INITIATED;
4375
4376         if (sel > max_sel_pel)
4377                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4378                                 "due to long SEL %llu ms\n",
4379                                 state_name, sel);
4380         else
4381                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4382                                 "due to long PEL %llu ms\n",
4383                                 state_name, pel);
4384         return USB3_LPM_DISABLED;
4385 }
4386
4387 /* The U1 timeout should be the maximum of the following values:
4388  *  - For control endpoints, U1 system exit latency (SEL) * 3
4389  *  - For bulk endpoints, U1 SEL * 5
4390  *  - For interrupt endpoints:
4391  *    - Notification EPs, U1 SEL * 3
4392  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4393  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4394  */
4395 static unsigned long long xhci_calculate_intel_u1_timeout(
4396                 struct usb_device *udev,
4397                 struct usb_endpoint_descriptor *desc)
4398 {
4399         unsigned long long timeout_ns;
4400         int ep_type;
4401         int intr_type;
4402
4403         ep_type = usb_endpoint_type(desc);
4404         switch (ep_type) {
4405         case USB_ENDPOINT_XFER_CONTROL:
4406                 timeout_ns = udev->u1_params.sel * 3;
4407                 break;
4408         case USB_ENDPOINT_XFER_BULK:
4409                 timeout_ns = udev->u1_params.sel * 5;
4410                 break;
4411         case USB_ENDPOINT_XFER_INT:
4412                 intr_type = usb_endpoint_interrupt_type(desc);
4413                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4414                         timeout_ns = udev->u1_params.sel * 3;
4415                         break;
4416                 }
4417                 /* Otherwise the calculation is the same as isoc eps */
4418         case USB_ENDPOINT_XFER_ISOC:
4419                 timeout_ns = xhci_service_interval_to_ns(desc);
4420                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4421                 if (timeout_ns < udev->u1_params.sel * 2)
4422                         timeout_ns = udev->u1_params.sel * 2;
4423                 break;
4424         default:
4425                 return 0;
4426         }
4427
4428         return timeout_ns;
4429 }
4430
4431 /* Returns the hub-encoded U1 timeout value. */
4432 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4433                 struct usb_device *udev,
4434                 struct usb_endpoint_descriptor *desc)
4435 {
4436         unsigned long long timeout_ns;
4437
4438         /* Prevent U1 if service interval is shorter than U1 exit latency */
4439         if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4440                 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4441                         dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4442                         return USB3_LPM_DISABLED;
4443                 }
4444         }
4445
4446         if (xhci->quirks & XHCI_INTEL_HOST)
4447                 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4448         else
4449                 timeout_ns = udev->u1_params.sel;
4450
4451         /* The U1 timeout is encoded in 1us intervals.
4452          * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4453          */
4454         if (timeout_ns == USB3_LPM_DISABLED)
4455                 timeout_ns = 1;
4456         else
4457                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4458
4459         /* If the necessary timeout value is bigger than what we can set in the
4460          * USB 3.0 hub, we have to disable hub-initiated U1.
4461          */
4462         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4463                 return timeout_ns;
4464         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4465                         "due to long timeout %llu ms\n", timeout_ns);
4466         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4467 }
4468
4469 /* The U2 timeout should be the maximum of:
4470  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4471  *  - largest bInterval of any active periodic endpoint (to avoid going
4472  *    into lower power link states between intervals).
4473  *  - the U2 Exit Latency of the device
4474  */
4475 static unsigned long long xhci_calculate_intel_u2_timeout(
4476                 struct usb_device *udev,
4477                 struct usb_endpoint_descriptor *desc)
4478 {
4479         unsigned long long timeout_ns;
4480         unsigned long long u2_del_ns;
4481
4482         timeout_ns = 10 * 1000 * 1000;
4483
4484         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4485                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4486                 timeout_ns = xhci_service_interval_to_ns(desc);
4487
4488         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4489         if (u2_del_ns > timeout_ns)
4490                 timeout_ns = u2_del_ns;
4491
4492         return timeout_ns;
4493 }
4494
4495 /* Returns the hub-encoded U2 timeout value. */
4496 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4497                 struct usb_device *udev,
4498                 struct usb_endpoint_descriptor *desc)
4499 {
4500         unsigned long long timeout_ns;
4501
4502         /* Prevent U2 if service interval is shorter than U2 exit latency */
4503         if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4504                 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4505                         dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4506                         return USB3_LPM_DISABLED;
4507                 }
4508         }
4509
4510         if (xhci->quirks & XHCI_INTEL_HOST)
4511                 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4512         else
4513                 timeout_ns = udev->u2_params.sel;
4514
4515         /* The U2 timeout is encoded in 256us intervals */
4516         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4517         /* If the necessary timeout value is bigger than what we can set in the
4518          * USB 3.0 hub, we have to disable hub-initiated U2.
4519          */
4520         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4521                 return timeout_ns;
4522         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4523                         "due to long timeout %llu ms\n", timeout_ns);
4524         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4525 }
4526
4527 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4528                 struct usb_device *udev,
4529                 struct usb_endpoint_descriptor *desc,
4530                 enum usb3_link_state state,
4531                 u16 *timeout)
4532 {
4533         if (state == USB3_LPM_U1)
4534                 return xhci_calculate_u1_timeout(xhci, udev, desc);
4535         else if (state == USB3_LPM_U2)
4536                 return xhci_calculate_u2_timeout(xhci, udev, desc);
4537
4538         return USB3_LPM_DISABLED;
4539 }
4540
4541 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4542                 struct usb_device *udev,
4543                 struct usb_endpoint_descriptor *desc,
4544                 enum usb3_link_state state,
4545                 u16 *timeout)
4546 {
4547         u16 alt_timeout;
4548
4549         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4550                 desc, state, timeout);
4551
4552         /* If we found we can't enable hub-initiated LPM, and
4553          * the U1 or U2 exit latency was too high to allow
4554          * device-initiated LPM as well, then we will disable LPM
4555          * for this device, so stop searching any further.
4556          */
4557         if (alt_timeout == USB3_LPM_DISABLED) {
4558                 *timeout = alt_timeout;
4559                 return -E2BIG;
4560         }
4561         if (alt_timeout > *timeout)
4562                 *timeout = alt_timeout;
4563         return 0;
4564 }
4565
4566 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4567                 struct usb_device *udev,
4568                 struct usb_host_interface *alt,
4569                 enum usb3_link_state state,
4570                 u16 *timeout)
4571 {
4572         int j;
4573
4574         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4575                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4576                                         &alt->endpoint[j].desc, state, timeout))
4577                         return -E2BIG;
4578                 continue;
4579         }
4580         return 0;
4581 }
4582
4583 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4584                 enum usb3_link_state state)
4585 {
4586         struct usb_device *parent;
4587         unsigned int num_hubs;
4588
4589         if (state == USB3_LPM_U2)
4590                 return 0;
4591
4592         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4593         for (parent = udev->parent, num_hubs = 0; parent->parent;
4594                         parent = parent->parent)
4595                 num_hubs++;
4596
4597         if (num_hubs < 2)
4598                 return 0;
4599
4600         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4601                         " below second-tier hub.\n");
4602         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4603                         "to decrease power consumption.\n");
4604         return -E2BIG;
4605 }
4606
4607 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4608                 struct usb_device *udev,
4609                 enum usb3_link_state state)
4610 {
4611         if (xhci->quirks & XHCI_INTEL_HOST)
4612                 return xhci_check_intel_tier_policy(udev, state);
4613         else
4614                 return 0;
4615 }
4616
4617 /* Returns the U1 or U2 timeout that should be enabled.
4618  * If the tier check or timeout setting functions return with a non-zero exit
4619  * code, that means the timeout value has been finalized and we shouldn't look
4620  * at any more endpoints.
4621  */
4622 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4623                         struct usb_device *udev, enum usb3_link_state state)
4624 {
4625         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4626         struct usb_host_config *config;
4627         char *state_name;
4628         int i;
4629         u16 timeout = USB3_LPM_DISABLED;
4630
4631         if (state == USB3_LPM_U1)
4632                 state_name = "U1";
4633         else if (state == USB3_LPM_U2)
4634                 state_name = "U2";
4635         else {
4636                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4637                                 state);
4638                 return timeout;
4639         }
4640
4641         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4642                 return timeout;
4643
4644         /* Gather some information about the currently installed configuration
4645          * and alternate interface settings.
4646          */
4647         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4648                         state, &timeout))
4649                 return timeout;
4650
4651         config = udev->actconfig;
4652         if (!config)
4653                 return timeout;
4654
4655         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4656                 struct usb_driver *driver;
4657                 struct usb_interface *intf = config->interface[i];
4658
4659                 if (!intf)
4660                         continue;
4661
4662                 /* Check if any currently bound drivers want hub-initiated LPM
4663                  * disabled.
4664                  */
4665                 if (intf->dev.driver) {
4666                         driver = to_usb_driver(intf->dev.driver);
4667                         if (driver && driver->disable_hub_initiated_lpm) {
4668                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4669                                         state_name, driver->name);
4670                                 timeout = xhci_get_timeout_no_hub_lpm(udev,
4671                                                                       state);
4672                                 if (timeout == USB3_LPM_DISABLED)
4673                                         return timeout;
4674                         }
4675                 }
4676
4677                 /* Not sure how this could happen... */
4678                 if (!intf->cur_altsetting)
4679                         continue;
4680
4681                 if (xhci_update_timeout_for_interface(xhci, udev,
4682                                         intf->cur_altsetting,
4683                                         state, &timeout))
4684                         return timeout;
4685         }
4686         return timeout;
4687 }
4688
4689 static int calculate_max_exit_latency(struct usb_device *udev,
4690                 enum usb3_link_state state_changed,
4691                 u16 hub_encoded_timeout)
4692 {
4693         unsigned long long u1_mel_us = 0;
4694         unsigned long long u2_mel_us = 0;
4695         unsigned long long mel_us = 0;
4696         bool disabling_u1;
4697         bool disabling_u2;
4698         bool enabling_u1;
4699         bool enabling_u2;
4700
4701         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4702                         hub_encoded_timeout == USB3_LPM_DISABLED);
4703         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4704                         hub_encoded_timeout == USB3_LPM_DISABLED);
4705
4706         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4707                         hub_encoded_timeout != USB3_LPM_DISABLED);
4708         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4709                         hub_encoded_timeout != USB3_LPM_DISABLED);
4710
4711         /* If U1 was already enabled and we're not disabling it,
4712          * or we're going to enable U1, account for the U1 max exit latency.
4713          */
4714         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4715                         enabling_u1)
4716                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4717         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4718                         enabling_u2)
4719                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4720
4721         if (u1_mel_us > u2_mel_us)
4722                 mel_us = u1_mel_us;
4723         else
4724                 mel_us = u2_mel_us;
4725         /* xHCI host controller max exit latency field is only 16 bits wide. */
4726         if (mel_us > MAX_EXIT) {
4727                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4728                                 "is too big.\n", mel_us);
4729                 return -E2BIG;
4730         }
4731         return mel_us;
4732 }
4733
4734 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4735 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4736                         struct usb_device *udev, enum usb3_link_state state)
4737 {
4738         struct xhci_hcd *xhci;
4739         u16 hub_encoded_timeout;
4740         int mel;
4741         int ret;
4742
4743         xhci = hcd_to_xhci(hcd);
4744         /* The LPM timeout values are pretty host-controller specific, so don't
4745          * enable hub-initiated timeouts unless the vendor has provided
4746          * information about their timeout algorithm.
4747          */
4748         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4749                         !xhci->devs[udev->slot_id])
4750                 return USB3_LPM_DISABLED;
4751
4752         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4753         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4754         if (mel < 0) {
4755                 /* Max Exit Latency is too big, disable LPM. */
4756                 hub_encoded_timeout = USB3_LPM_DISABLED;
4757                 mel = 0;
4758         }
4759
4760         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4761         if (ret)
4762                 return ret;
4763         return hub_encoded_timeout;
4764 }
4765
4766 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4767                         struct usb_device *udev, enum usb3_link_state state)
4768 {
4769         struct xhci_hcd *xhci;
4770         u16 mel;
4771
4772         xhci = hcd_to_xhci(hcd);
4773         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4774                         !xhci->devs[udev->slot_id])
4775                 return 0;
4776
4777         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4778         return xhci_change_max_exit_latency(xhci, udev, mel);
4779 }
4780 #else /* CONFIG_PM */
4781
4782 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4783                                 struct usb_device *udev, int enable)
4784 {
4785         return 0;
4786 }
4787
4788 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4789 {
4790         return 0;
4791 }
4792
4793 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4794                         struct usb_device *udev, enum usb3_link_state state)
4795 {
4796         return USB3_LPM_DISABLED;
4797 }
4798
4799 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4800                         struct usb_device *udev, enum usb3_link_state state)
4801 {
4802         return 0;
4803 }
4804 #endif  /* CONFIG_PM */
4805
4806 /*-------------------------------------------------------------------------*/
4807
4808 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4809  * internal data structures for the device.
4810  */
4811 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4812                         struct usb_tt *tt, gfp_t mem_flags)
4813 {
4814         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4815         struct xhci_virt_device *vdev;
4816         struct xhci_command *config_cmd;
4817         struct xhci_input_control_ctx *ctrl_ctx;
4818         struct xhci_slot_ctx *slot_ctx;
4819         unsigned long flags;
4820         unsigned think_time;
4821         int ret;
4822
4823         /* Ignore root hubs */
4824         if (!hdev->parent)
4825                 return 0;
4826
4827         vdev = xhci->devs[hdev->slot_id];
4828         if (!vdev) {
4829                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4830                 return -EINVAL;
4831         }
4832         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4833         if (!config_cmd) {
4834                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4835                 return -ENOMEM;
4836         }
4837         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4838         if (!ctrl_ctx) {
4839                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4840                                 __func__);
4841                 xhci_free_command(xhci, config_cmd);
4842                 return -ENOMEM;
4843         }
4844
4845         spin_lock_irqsave(&xhci->lock, flags);
4846         if (hdev->speed == USB_SPEED_HIGH &&
4847                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4848                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4849                 xhci_free_command(xhci, config_cmd);
4850                 spin_unlock_irqrestore(&xhci->lock, flags);
4851                 return -ENOMEM;
4852         }
4853
4854         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4855         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4856         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4857         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4858         /*
4859          * refer to section 6.2.2: MTT should be 0 for full speed hub,
4860          * but it may be already set to 1 when setup an xHCI virtual
4861          * device, so clear it anyway.
4862          */
4863         if (tt->multi)
4864                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4865         else if (hdev->speed == USB_SPEED_FULL)
4866                 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4867
4868         if (xhci->hci_version > 0x95) {
4869                 xhci_dbg(xhci, "xHCI version %x needs hub "
4870                                 "TT think time and number of ports\n",
4871                                 (unsigned int) xhci->hci_version);
4872                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4873                 /* Set TT think time - convert from ns to FS bit times.
4874                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
4875                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
4876                  *
4877                  * xHCI 1.0: this field shall be 0 if the device is not a
4878                  * High-spped hub.
4879                  */
4880                 think_time = tt->think_time;
4881                 if (think_time != 0)
4882                         think_time = (think_time / 666) - 1;
4883                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4884                         slot_ctx->tt_info |=
4885                                 cpu_to_le32(TT_THINK_TIME(think_time));
4886         } else {
4887                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4888                                 "TT think time or number of ports\n",
4889                                 (unsigned int) xhci->hci_version);
4890         }
4891         slot_ctx->dev_state = 0;
4892         spin_unlock_irqrestore(&xhci->lock, flags);
4893
4894         xhci_dbg(xhci, "Set up %s for hub device.\n",
4895                         (xhci->hci_version > 0x95) ?
4896                         "configure endpoint" : "evaluate context");
4897         xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4898         xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4899
4900         /* Issue and wait for the configure endpoint or
4901          * evaluate context command.
4902          */
4903         if (xhci->hci_version > 0x95)
4904                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4905                                 false, false);
4906         else
4907                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4908                                 true, false);
4909
4910         xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4911         xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4912
4913         xhci_free_command(xhci, config_cmd);
4914         return ret;
4915 }
4916
4917 int xhci_get_frame(struct usb_hcd *hcd)
4918 {
4919         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4920         /* EHCI mods by the periodic size.  Why? */
4921         return readl(&xhci->run_regs->microframe_index) >> 3;
4922 }
4923
4924 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4925 {
4926         struct xhci_hcd         *xhci;
4927         struct device           *dev = hcd->self.controller;
4928         int                     retval;
4929
4930         /* Accept arbitrarily long scatter-gather lists */
4931         hcd->self.sg_tablesize = ~0;
4932
4933         /* support to build packet from discontinuous buffers */
4934         hcd->self.no_sg_constraint = 1;
4935
4936         /* XHCI controllers don't stop the ep queue on short packets :| */
4937         hcd->self.no_stop_on_short = 1;
4938
4939         xhci = hcd_to_xhci(hcd);
4940
4941         if (usb_hcd_is_primary_hcd(hcd)) {
4942                 xhci->main_hcd = hcd;
4943                 /* Mark the first roothub as being USB 2.0.
4944                  * The xHCI driver will register the USB 3.0 roothub.
4945                  */
4946                 hcd->speed = HCD_USB2;
4947                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4948                 /*
4949                  * USB 2.0 roothub under xHCI has an integrated TT,
4950                  * (rate matching hub) as opposed to having an OHCI/UHCI
4951                  * companion controller.
4952                  */
4953                 hcd->has_tt = 1;
4954         } else {
4955                 /* Some 3.1 hosts return sbrn 0x30, can't rely on sbrn alone */
4956                 if (xhci->sbrn == 0x31 || xhci->usb3_rhub.min_rev >= 1) {
4957                         xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n");
4958                         hcd->speed = HCD_USB31;
4959                         hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
4960                 }
4961                 /* xHCI private pointer was set in xhci_pci_probe for the second
4962                  * registered roothub.
4963                  */
4964                 return 0;
4965         }
4966
4967         mutex_init(&xhci->mutex);
4968         xhci->cap_regs = hcd->regs;
4969         xhci->op_regs = hcd->regs +
4970                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4971         xhci->run_regs = hcd->regs +
4972                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4973         /* Cache read-only capability registers */
4974         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4975         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4976         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4977         xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4978         xhci->hci_version = HC_VERSION(xhci->hcc_params);
4979         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4980         if (xhci->hci_version > 0x100)
4981                 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4982         xhci_print_registers(xhci);
4983
4984         xhci->quirks |= quirks;
4985
4986         get_quirks(dev, xhci);
4987
4988         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4989          * success event after a short transfer. This quirk will ignore such
4990          * spurious event.
4991          */
4992         if (xhci->hci_version > 0x96)
4993                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4994
4995         /* Make sure the HC is halted. */
4996         retval = xhci_halt(xhci);
4997         if (retval)
4998                 return retval;
4999
5000         xhci_dbg(xhci, "Resetting HCD\n");
5001         /* Reset the internal HC memory state and registers. */
5002         retval = xhci_reset(xhci);
5003         if (retval)
5004                 return retval;
5005         xhci_dbg(xhci, "Reset complete\n");
5006
5007         /*
5008          * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5009          * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5010          * address memory pointers actually. So, this driver clears the AC64
5011          * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5012          * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5013          */
5014         if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5015                 xhci->hcc_params &= ~BIT(0);
5016
5017         /* Set dma_mask and coherent_dma_mask to 64-bits,
5018          * if xHC supports 64-bit addressing */
5019         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5020                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5021                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5022                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5023         } else {
5024                 /*
5025                  * This is to avoid error in cases where a 32-bit USB
5026                  * controller is used on a 64-bit capable system.
5027                  */
5028                 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5029                 if (retval)
5030                         return retval;
5031                 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5032                 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5033         }
5034
5035         xhci_dbg(xhci, "Calling HCD init\n");
5036         /* Initialize HCD and host controller data structures. */
5037         retval = xhci_init(hcd);
5038         if (retval)
5039                 return retval;
5040         xhci_dbg(xhci, "Called HCD init\n");
5041
5042         xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
5043                   xhci->hcc_params, xhci->hci_version, xhci->quirks);
5044
5045         return 0;
5046 }
5047 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5048
5049 static const struct hc_driver xhci_hc_driver = {
5050         .description =          "xhci-hcd",
5051         .product_desc =         "xHCI Host Controller",
5052         .hcd_priv_size =        sizeof(struct xhci_hcd),
5053
5054         /*
5055          * generic hardware linkage
5056          */
5057         .irq =                  xhci_irq,
5058         .flags =                HCD_MEMORY | HCD_USB3 | HCD_SHARED,
5059
5060         /*
5061          * basic lifecycle operations
5062          */
5063         .reset =                NULL, /* set in xhci_init_driver() */
5064         .start =                xhci_run,
5065         .stop =                 xhci_stop,
5066         .shutdown =             xhci_shutdown,
5067
5068         /*
5069          * managing i/o requests and associated device resources
5070          */
5071         .urb_enqueue =          xhci_urb_enqueue,
5072         .urb_dequeue =          xhci_urb_dequeue,
5073         .alloc_dev =            xhci_alloc_dev,
5074         .free_dev =             xhci_free_dev,
5075         .alloc_streams =        xhci_alloc_streams,
5076         .free_streams =         xhci_free_streams,
5077         .add_endpoint =         xhci_add_endpoint,
5078         .drop_endpoint =        xhci_drop_endpoint,
5079         .endpoint_reset =       xhci_endpoint_reset,
5080         .check_bandwidth =      xhci_check_bandwidth,
5081         .reset_bandwidth =      xhci_reset_bandwidth,
5082         .address_device =       xhci_address_device,
5083         .enable_device =        xhci_enable_device,
5084         .update_hub_device =    xhci_update_hub_device,
5085         .reset_device =         xhci_discover_or_reset_device,
5086
5087         /*
5088          * scheduling support
5089          */
5090         .get_frame_number =     xhci_get_frame,
5091
5092         /*
5093          * root hub support
5094          */
5095         .hub_control =          xhci_hub_control,
5096         .hub_status_data =      xhci_hub_status_data,
5097         .bus_suspend =          xhci_bus_suspend,
5098         .bus_resume =           xhci_bus_resume,
5099
5100         /*
5101          * call back when device connected and addressed
5102          */
5103         .update_device =        xhci_update_device,
5104         .set_usb2_hw_lpm =      xhci_set_usb2_hardware_lpm,
5105         .enable_usb3_lpm_timeout =      xhci_enable_usb3_lpm_timeout,
5106         .disable_usb3_lpm_timeout =     xhci_disable_usb3_lpm_timeout,
5107         .find_raw_port_number = xhci_find_raw_port_number,
5108 };
5109
5110 void xhci_init_driver(struct hc_driver *drv,
5111                       const struct xhci_driver_overrides *over)
5112 {
5113         BUG_ON(!over);
5114
5115         /* Copy the generic table to drv then apply the overrides */
5116         *drv = xhci_hc_driver;
5117
5118         if (over) {
5119                 drv->hcd_priv_size += over->extra_priv_size;
5120                 if (over->reset)
5121                         drv->reset = over->reset;
5122                 if (over->start)
5123                         drv->start = over->start;
5124         }
5125 }
5126 EXPORT_SYMBOL_GPL(xhci_init_driver);
5127
5128 MODULE_DESCRIPTION(DRIVER_DESC);
5129 MODULE_AUTHOR(DRIVER_AUTHOR);
5130 MODULE_LICENSE("GPL");
5131
5132 static int __init xhci_hcd_init(void)
5133 {
5134         /*
5135          * Check the compiler generated sizes of structures that must be laid
5136          * out in specific ways for hardware access.
5137          */
5138         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5139         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5140         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5141         /* xhci_device_control has eight fields, and also
5142          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5143          */
5144         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5145         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5146         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5147         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5148         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5149         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5150         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5151
5152         if (usb_disabled())
5153                 return -ENODEV;
5154
5155         return 0;
5156 }
5157
5158 /*
5159  * If an init function is provided, an exit function must also be provided
5160  * to allow module unload.
5161  */
5162 static void __exit xhci_hcd_fini(void) { }
5163
5164 module_init(xhci_hcd_init);
5165 module_exit(xhci_hcd_fini);