GNU Linux-libre 5.10.153-gnu1
[releases.git] / drivers / usb / host / xhci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10
11 #include <linux/pci.h>
12 #include <linux/iopoll.h>
13 #include <linux/irq.h>
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/slab.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-mapping.h>
20
21 #include "xhci.h"
22 #include "xhci-trace.h"
23 #include "xhci-mtk.h"
24 #include "xhci-debugfs.h"
25 #include "xhci-dbgcap.h"
26
27 #define DRIVER_AUTHOR "Sarah Sharp"
28 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
29
30 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
31
32 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
33 static int link_quirk;
34 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
35 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
36
37 static unsigned long long quirks;
38 module_param(quirks, ullong, S_IRUGO);
39 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
40
41 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
42 {
43         struct xhci_segment *seg = ring->first_seg;
44
45         if (!td || !td->start_seg)
46                 return false;
47         do {
48                 if (seg == td->start_seg)
49                         return true;
50                 seg = seg->next;
51         } while (seg && seg != ring->first_seg);
52
53         return false;
54 }
55
56 /*
57  * xhci_handshake - spin reading hc until handshake completes or fails
58  * @ptr: address of hc register to be read
59  * @mask: bits to look at in result of read
60  * @done: value of those bits when handshake succeeds
61  * @usec: timeout in microseconds
62  *
63  * Returns negative errno, or zero on success
64  *
65  * Success happens when the "mask" bits have the specified value (hardware
66  * handshake done).  There are two failure modes:  "usec" have passed (major
67  * hardware flakeout), or the register reads as all-ones (hardware removed).
68  */
69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us)
70 {
71         u32     result;
72         int     ret;
73
74         ret = readl_poll_timeout_atomic(ptr, result,
75                                         (result & mask) == done ||
76                                         result == U32_MAX,
77                                         1, timeout_us);
78         if (result == U32_MAX)          /* card removed */
79                 return -ENODEV;
80
81         return ret;
82 }
83
84 /*
85  * Disable interrupts and begin the xHCI halting process.
86  */
87 void xhci_quiesce(struct xhci_hcd *xhci)
88 {
89         u32 halted;
90         u32 cmd;
91         u32 mask;
92
93         mask = ~(XHCI_IRQS);
94         halted = readl(&xhci->op_regs->status) & STS_HALT;
95         if (!halted)
96                 mask &= ~CMD_RUN;
97
98         cmd = readl(&xhci->op_regs->command);
99         cmd &= mask;
100         writel(cmd, &xhci->op_regs->command);
101 }
102
103 /*
104  * Force HC into halt state.
105  *
106  * Disable any IRQs and clear the run/stop bit.
107  * HC will complete any current and actively pipelined transactions, and
108  * should halt within 16 ms of the run/stop bit being cleared.
109  * Read HC Halted bit in the status register to see when the HC is finished.
110  */
111 int xhci_halt(struct xhci_hcd *xhci)
112 {
113         int ret;
114         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
115         xhci_quiesce(xhci);
116
117         ret = xhci_handshake(&xhci->op_regs->status,
118                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
119         if (ret) {
120                 xhci_warn(xhci, "Host halt failed, %d\n", ret);
121                 return ret;
122         }
123         xhci->xhc_state |= XHCI_STATE_HALTED;
124         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
125         return ret;
126 }
127
128 /*
129  * Set the run bit and wait for the host to be running.
130  */
131 int xhci_start(struct xhci_hcd *xhci)
132 {
133         u32 temp;
134         int ret;
135
136         temp = readl(&xhci->op_regs->command);
137         temp |= (CMD_RUN);
138         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
139                         temp);
140         writel(temp, &xhci->op_regs->command);
141
142         /*
143          * Wait for the HCHalted Status bit to be 0 to indicate the host is
144          * running.
145          */
146         ret = xhci_handshake(&xhci->op_regs->status,
147                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
148         if (ret == -ETIMEDOUT)
149                 xhci_err(xhci, "Host took too long to start, "
150                                 "waited %u microseconds.\n",
151                                 XHCI_MAX_HALT_USEC);
152         if (!ret) {
153                 /* clear state flags. Including dying, halted or removing */
154                 xhci->xhc_state = 0;
155                 xhci->run_graceperiod = jiffies + msecs_to_jiffies(500);
156         }
157
158         return ret;
159 }
160
161 /*
162  * Reset a halted HC.
163  *
164  * This resets pipelines, timers, counters, state machines, etc.
165  * Transactions will be terminated immediately, and operational registers
166  * will be set to their defaults.
167  */
168 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us)
169 {
170         u32 command;
171         u32 state;
172         int ret;
173
174         state = readl(&xhci->op_regs->status);
175
176         if (state == ~(u32)0) {
177                 xhci_warn(xhci, "Host not accessible, reset failed.\n");
178                 return -ENODEV;
179         }
180
181         if ((state & STS_HALT) == 0) {
182                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
183                 return 0;
184         }
185
186         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
187         command = readl(&xhci->op_regs->command);
188         command |= CMD_RESET;
189         writel(command, &xhci->op_regs->command);
190
191         /* Existing Intel xHCI controllers require a delay of 1 mS,
192          * after setting the CMD_RESET bit, and before accessing any
193          * HC registers. This allows the HC to complete the
194          * reset operation and be ready for HC register access.
195          * Without this delay, the subsequent HC register access,
196          * may result in a system hang very rarely.
197          */
198         if (xhci->quirks & XHCI_INTEL_HOST)
199                 udelay(1000);
200
201         ret = xhci_handshake(&xhci->op_regs->command, CMD_RESET, 0, timeout_us);
202         if (ret)
203                 return ret;
204
205         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
206                 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
207
208         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
209                          "Wait for controller to be ready for doorbell rings");
210         /*
211          * xHCI cannot write to any doorbells or operational registers other
212          * than status until the "Controller Not Ready" flag is cleared.
213          */
214         ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us);
215
216         xhci->usb2_rhub.bus_state.port_c_suspend = 0;
217         xhci->usb2_rhub.bus_state.suspended_ports = 0;
218         xhci->usb2_rhub.bus_state.resuming_ports = 0;
219         xhci->usb3_rhub.bus_state.port_c_suspend = 0;
220         xhci->usb3_rhub.bus_state.suspended_ports = 0;
221         xhci->usb3_rhub.bus_state.resuming_ports = 0;
222
223         return ret;
224 }
225
226 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
227 {
228         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
229         int err, i;
230         u64 val;
231         u32 intrs;
232
233         /*
234          * Some Renesas controllers get into a weird state if they are
235          * reset while programmed with 64bit addresses (they will preserve
236          * the top half of the address in internal, non visible
237          * registers). You end up with half the address coming from the
238          * kernel, and the other half coming from the firmware. Also,
239          * changing the programming leads to extra accesses even if the
240          * controller is supposed to be halted. The controller ends up with
241          * a fatal fault, and is then ripe for being properly reset.
242          *
243          * Special care is taken to only apply this if the device is behind
244          * an iommu. Doing anything when there is no iommu is definitely
245          * unsafe...
246          */
247         if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
248                 return;
249
250         xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
251
252         /* Clear HSEIE so that faults do not get signaled */
253         val = readl(&xhci->op_regs->command);
254         val &= ~CMD_HSEIE;
255         writel(val, &xhci->op_regs->command);
256
257         /* Clear HSE (aka FATAL) */
258         val = readl(&xhci->op_regs->status);
259         val |= STS_FATAL;
260         writel(val, &xhci->op_regs->status);
261
262         /* Now zero the registers, and brace for impact */
263         val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
264         if (upper_32_bits(val))
265                 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
266         val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
267         if (upper_32_bits(val))
268                 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
269
270         intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
271                       ARRAY_SIZE(xhci->run_regs->ir_set));
272
273         for (i = 0; i < intrs; i++) {
274                 struct xhci_intr_reg __iomem *ir;
275
276                 ir = &xhci->run_regs->ir_set[i];
277                 val = xhci_read_64(xhci, &ir->erst_base);
278                 if (upper_32_bits(val))
279                         xhci_write_64(xhci, 0, &ir->erst_base);
280                 val= xhci_read_64(xhci, &ir->erst_dequeue);
281                 if (upper_32_bits(val))
282                         xhci_write_64(xhci, 0, &ir->erst_dequeue);
283         }
284
285         /* Wait for the fault to appear. It will be cleared on reset */
286         err = xhci_handshake(&xhci->op_regs->status,
287                              STS_FATAL, STS_FATAL,
288                              XHCI_MAX_HALT_USEC);
289         if (!err)
290                 xhci_info(xhci, "Fault detected\n");
291 }
292
293 #ifdef CONFIG_USB_PCI
294 /*
295  * Set up MSI
296  */
297 static int xhci_setup_msi(struct xhci_hcd *xhci)
298 {
299         int ret;
300         /*
301          * TODO:Check with MSI Soc for sysdev
302          */
303         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
304
305         ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
306         if (ret < 0) {
307                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
308                                 "failed to allocate MSI entry");
309                 return ret;
310         }
311
312         ret = request_irq(pdev->irq, xhci_msi_irq,
313                                 0, "xhci_hcd", xhci_to_hcd(xhci));
314         if (ret) {
315                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
316                                 "disable MSI interrupt");
317                 pci_free_irq_vectors(pdev);
318         }
319
320         return ret;
321 }
322
323 /*
324  * Set up MSI-X
325  */
326 static int xhci_setup_msix(struct xhci_hcd *xhci)
327 {
328         int i, ret = 0;
329         struct usb_hcd *hcd = xhci_to_hcd(xhci);
330         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
331
332         /*
333          * calculate number of msi-x vectors supported.
334          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
335          *   with max number of interrupters based on the xhci HCSPARAMS1.
336          * - num_online_cpus: maximum msi-x vectors per CPUs core.
337          *   Add additional 1 vector to ensure always available interrupt.
338          */
339         xhci->msix_count = min(num_online_cpus() + 1,
340                                 HCS_MAX_INTRS(xhci->hcs_params1));
341
342         ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
343                         PCI_IRQ_MSIX);
344         if (ret < 0) {
345                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
346                                 "Failed to enable MSI-X");
347                 return ret;
348         }
349
350         for (i = 0; i < xhci->msix_count; i++) {
351                 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
352                                 "xhci_hcd", xhci_to_hcd(xhci));
353                 if (ret)
354                         goto disable_msix;
355         }
356
357         hcd->msix_enabled = 1;
358         return ret;
359
360 disable_msix:
361         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
362         while (--i >= 0)
363                 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
364         pci_free_irq_vectors(pdev);
365         return ret;
366 }
367
368 /* Free any IRQs and disable MSI-X */
369 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
370 {
371         struct usb_hcd *hcd = xhci_to_hcd(xhci);
372         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
373
374         if (xhci->quirks & XHCI_PLAT)
375                 return;
376
377         /* return if using legacy interrupt */
378         if (hcd->irq > 0)
379                 return;
380
381         if (hcd->msix_enabled) {
382                 int i;
383
384                 for (i = 0; i < xhci->msix_count; i++)
385                         free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
386         } else {
387                 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
388         }
389
390         pci_free_irq_vectors(pdev);
391         hcd->msix_enabled = 0;
392 }
393
394 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
395 {
396         struct usb_hcd *hcd = xhci_to_hcd(xhci);
397
398         if (hcd->msix_enabled) {
399                 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
400                 int i;
401
402                 for (i = 0; i < xhci->msix_count; i++)
403                         synchronize_irq(pci_irq_vector(pdev, i));
404         }
405 }
406
407 static int xhci_try_enable_msi(struct usb_hcd *hcd)
408 {
409         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
410         struct pci_dev  *pdev;
411         int ret;
412
413         /* The xhci platform device has set up IRQs through usb_add_hcd. */
414         if (xhci->quirks & XHCI_PLAT)
415                 return 0;
416
417         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
418         /*
419          * Some Fresco Logic host controllers advertise MSI, but fail to
420          * generate interrupts.  Don't even try to enable MSI.
421          */
422         if (xhci->quirks & XHCI_BROKEN_MSI)
423                 goto legacy_irq;
424
425         /* unregister the legacy interrupt */
426         if (hcd->irq)
427                 free_irq(hcd->irq, hcd);
428         hcd->irq = 0;
429
430         ret = xhci_setup_msix(xhci);
431         if (ret)
432                 /* fall back to msi*/
433                 ret = xhci_setup_msi(xhci);
434
435         if (!ret) {
436                 hcd->msi_enabled = 1;
437                 return 0;
438         }
439
440         if (!pdev->irq) {
441                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
442                 return -EINVAL;
443         }
444
445  legacy_irq:
446         if (!strlen(hcd->irq_descr))
447                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
448                          hcd->driver->description, hcd->self.busnum);
449
450         /* fall back to legacy interrupt*/
451         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
452                         hcd->irq_descr, hcd);
453         if (ret) {
454                 xhci_err(xhci, "request interrupt %d failed\n",
455                                 pdev->irq);
456                 return ret;
457         }
458         hcd->irq = pdev->irq;
459         return 0;
460 }
461
462 #else
463
464 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
465 {
466         return 0;
467 }
468
469 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
470 {
471 }
472
473 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
474 {
475 }
476
477 #endif
478
479 static void compliance_mode_recovery(struct timer_list *t)
480 {
481         struct xhci_hcd *xhci;
482         struct usb_hcd *hcd;
483         struct xhci_hub *rhub;
484         u32 temp;
485         int i;
486
487         xhci = from_timer(xhci, t, comp_mode_recovery_timer);
488         rhub = &xhci->usb3_rhub;
489
490         for (i = 0; i < rhub->num_ports; i++) {
491                 temp = readl(rhub->ports[i]->addr);
492                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
493                         /*
494                          * Compliance Mode Detected. Letting USB Core
495                          * handle the Warm Reset
496                          */
497                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
498                                         "Compliance mode detected->port %d",
499                                         i + 1);
500                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
501                                         "Attempting compliance mode recovery");
502                         hcd = xhci->shared_hcd;
503
504                         if (hcd->state == HC_STATE_SUSPENDED)
505                                 usb_hcd_resume_root_hub(hcd);
506
507                         usb_hcd_poll_rh_status(hcd);
508                 }
509         }
510
511         if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
512                 mod_timer(&xhci->comp_mode_recovery_timer,
513                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
514 }
515
516 /*
517  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
518  * that causes ports behind that hardware to enter compliance mode sometimes.
519  * The quirk creates a timer that polls every 2 seconds the link state of
520  * each host controller's port and recovers it by issuing a Warm reset
521  * if Compliance mode is detected, otherwise the port will become "dead" (no
522  * device connections or disconnections will be detected anymore). Becasue no
523  * status event is generated when entering compliance mode (per xhci spec),
524  * this quirk is needed on systems that have the failing hardware installed.
525  */
526 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
527 {
528         xhci->port_status_u0 = 0;
529         timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
530                     0);
531         xhci->comp_mode_recovery_timer.expires = jiffies +
532                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
533
534         add_timer(&xhci->comp_mode_recovery_timer);
535         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
536                         "Compliance mode recovery timer initialized");
537 }
538
539 /*
540  * This function identifies the systems that have installed the SN65LVPE502CP
541  * USB3.0 re-driver and that need the Compliance Mode Quirk.
542  * Systems:
543  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
544  */
545 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
546 {
547         const char *dmi_product_name, *dmi_sys_vendor;
548
549         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
550         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
551         if (!dmi_product_name || !dmi_sys_vendor)
552                 return false;
553
554         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
555                 return false;
556
557         if (strstr(dmi_product_name, "Z420") ||
558                         strstr(dmi_product_name, "Z620") ||
559                         strstr(dmi_product_name, "Z820") ||
560                         strstr(dmi_product_name, "Z1 Workstation"))
561                 return true;
562
563         return false;
564 }
565
566 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
567 {
568         return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
569 }
570
571
572 /*
573  * Initialize memory for HCD and xHC (one-time init).
574  *
575  * Program the PAGESIZE register, initialize the device context array, create
576  * device contexts (?), set up a command ring segment (or two?), create event
577  * ring (one for now).
578  */
579 static int xhci_init(struct usb_hcd *hcd)
580 {
581         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
582         int retval = 0;
583
584         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
585         spin_lock_init(&xhci->lock);
586         if (xhci->hci_version == 0x95 && link_quirk) {
587                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
588                                 "QUIRK: Not clearing Link TRB chain bits.");
589                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
590         } else {
591                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
592                                 "xHCI doesn't need link TRB QUIRK");
593         }
594         retval = xhci_mem_init(xhci, GFP_KERNEL);
595         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
596
597         /* Initializing Compliance Mode Recovery Data If Needed */
598         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
599                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
600                 compliance_mode_recovery_timer_init(xhci);
601         }
602
603         return retval;
604 }
605
606 /*-------------------------------------------------------------------------*/
607
608
609 static int xhci_run_finished(struct xhci_hcd *xhci)
610 {
611         if (xhci_start(xhci)) {
612                 xhci_halt(xhci);
613                 return -ENODEV;
614         }
615         xhci->shared_hcd->state = HC_STATE_RUNNING;
616         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
617
618         if (xhci->quirks & XHCI_NEC_HOST)
619                 xhci_ring_cmd_db(xhci);
620
621         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
622                         "Finished xhci_run for USB3 roothub");
623         return 0;
624 }
625
626 /*
627  * Start the HC after it was halted.
628  *
629  * This function is called by the USB core when the HC driver is added.
630  * Its opposite is xhci_stop().
631  *
632  * xhci_init() must be called once before this function can be called.
633  * Reset the HC, enable device slot contexts, program DCBAAP, and
634  * set command ring pointer and event ring pointer.
635  *
636  * Setup MSI-X vectors and enable interrupts.
637  */
638 int xhci_run(struct usb_hcd *hcd)
639 {
640         u32 temp;
641         u64 temp_64;
642         int ret;
643         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
644
645         /* Start the xHCI host controller running only after the USB 2.0 roothub
646          * is setup.
647          */
648
649         hcd->uses_new_polling = 1;
650         if (!usb_hcd_is_primary_hcd(hcd))
651                 return xhci_run_finished(xhci);
652
653         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
654
655         ret = xhci_try_enable_msi(hcd);
656         if (ret)
657                 return ret;
658
659         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
660         temp_64 &= ~ERST_PTR_MASK;
661         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
662                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
663
664         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
665                         "// Set the interrupt modulation register");
666         temp = readl(&xhci->ir_set->irq_control);
667         temp &= ~ER_IRQ_INTERVAL_MASK;
668         temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
669         writel(temp, &xhci->ir_set->irq_control);
670
671         /* Set the HCD state before we enable the irqs */
672         temp = readl(&xhci->op_regs->command);
673         temp |= (CMD_EIE);
674         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
675                         "// Enable interrupts, cmd = 0x%x.", temp);
676         writel(temp, &xhci->op_regs->command);
677
678         temp = readl(&xhci->ir_set->irq_pending);
679         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
680                         "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
681                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
682         writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
683
684         if (xhci->quirks & XHCI_NEC_HOST) {
685                 struct xhci_command *command;
686
687                 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
688                 if (!command)
689                         return -ENOMEM;
690
691                 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
692                                 TRB_TYPE(TRB_NEC_GET_FW));
693                 if (ret)
694                         xhci_free_command(xhci, command);
695         }
696         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
697                         "Finished xhci_run for USB2 roothub");
698
699         xhci_dbc_init(xhci);
700
701         xhci_debugfs_init(xhci);
702
703         return 0;
704 }
705 EXPORT_SYMBOL_GPL(xhci_run);
706
707 /*
708  * Stop xHCI driver.
709  *
710  * This function is called by the USB core when the HC driver is removed.
711  * Its opposite is xhci_run().
712  *
713  * Disable device contexts, disable IRQs, and quiesce the HC.
714  * Reset the HC, finish any completed transactions, and cleanup memory.
715  */
716 static void xhci_stop(struct usb_hcd *hcd)
717 {
718         u32 temp;
719         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
720
721         mutex_lock(&xhci->mutex);
722
723         /* Only halt host and free memory after both hcds are removed */
724         if (!usb_hcd_is_primary_hcd(hcd)) {
725                 mutex_unlock(&xhci->mutex);
726                 return;
727         }
728
729         xhci_dbc_exit(xhci);
730
731         spin_lock_irq(&xhci->lock);
732         xhci->xhc_state |= XHCI_STATE_HALTED;
733         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
734         xhci_halt(xhci);
735         xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
736         spin_unlock_irq(&xhci->lock);
737
738         xhci_cleanup_msix(xhci);
739
740         /* Deleting Compliance Mode Recovery Timer */
741         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
742                         (!(xhci_all_ports_seen_u0(xhci)))) {
743                 del_timer_sync(&xhci->comp_mode_recovery_timer);
744                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
745                                 "%s: compliance mode recovery timer deleted",
746                                 __func__);
747         }
748
749         if (xhci->quirks & XHCI_AMD_PLL_FIX)
750                 usb_amd_dev_put();
751
752         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
753                         "// Disabling event ring interrupts");
754         temp = readl(&xhci->op_regs->status);
755         writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
756         temp = readl(&xhci->ir_set->irq_pending);
757         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
758
759         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
760         xhci_mem_cleanup(xhci);
761         xhci_debugfs_exit(xhci);
762         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
763                         "xhci_stop completed - status = %x",
764                         readl(&xhci->op_regs->status));
765         mutex_unlock(&xhci->mutex);
766 }
767
768 /*
769  * Shutdown HC (not bus-specific)
770  *
771  * This is called when the machine is rebooting or halting.  We assume that the
772  * machine will be powered off, and the HC's internal state will be reset.
773  * Don't bother to free memory.
774  *
775  * This will only ever be called with the main usb_hcd (the USB3 roothub).
776  */
777 void xhci_shutdown(struct usb_hcd *hcd)
778 {
779         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
780
781         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
782                 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
783
784         /* Don't poll the roothubs after shutdown. */
785         xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
786                         __func__, hcd->self.busnum);
787         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
788         del_timer_sync(&hcd->rh_timer);
789
790         if (xhci->shared_hcd) {
791                 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
792                 del_timer_sync(&xhci->shared_hcd->rh_timer);
793         }
794
795         spin_lock_irq(&xhci->lock);
796         xhci_halt(xhci);
797
798         /*
799          * Workaround for spurious wakeps at shutdown with HSW, and for boot
800          * firmware delay in ADL-P PCH if port are left in U3 at shutdown
801          */
802         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP ||
803             xhci->quirks & XHCI_RESET_TO_DEFAULT)
804                 xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
805
806         spin_unlock_irq(&xhci->lock);
807
808         xhci_cleanup_msix(xhci);
809
810         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
811                         "xhci_shutdown completed - status = %x",
812                         readl(&xhci->op_regs->status));
813 }
814 EXPORT_SYMBOL_GPL(xhci_shutdown);
815
816 #ifdef CONFIG_PM
817 static void xhci_save_registers(struct xhci_hcd *xhci)
818 {
819         xhci->s3.command = readl(&xhci->op_regs->command);
820         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
821         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
822         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
823         xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
824         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
825         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
826         xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
827         xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
828 }
829
830 static void xhci_restore_registers(struct xhci_hcd *xhci)
831 {
832         writel(xhci->s3.command, &xhci->op_regs->command);
833         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
834         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
835         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
836         writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
837         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
838         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
839         writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
840         writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
841 }
842
843 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
844 {
845         u64     val_64;
846
847         /* step 2: initialize command ring buffer */
848         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
849         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
850                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
851                                       xhci->cmd_ring->dequeue) &
852                  (u64) ~CMD_RING_RSVD_BITS) |
853                 xhci->cmd_ring->cycle_state;
854         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
855                         "// Setting command ring address to 0x%llx",
856                         (long unsigned long) val_64);
857         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
858 }
859
860 /*
861  * The whole command ring must be cleared to zero when we suspend the host.
862  *
863  * The host doesn't save the command ring pointer in the suspend well, so we
864  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
865  * aligned, because of the reserved bits in the command ring dequeue pointer
866  * register.  Therefore, we can't just set the dequeue pointer back in the
867  * middle of the ring (TRBs are 16-byte aligned).
868  */
869 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
870 {
871         struct xhci_ring *ring;
872         struct xhci_segment *seg;
873
874         ring = xhci->cmd_ring;
875         seg = ring->deq_seg;
876         do {
877                 memset(seg->trbs, 0,
878                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
879                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
880                         cpu_to_le32(~TRB_CYCLE);
881                 seg = seg->next;
882         } while (seg != ring->deq_seg);
883
884         /* Reset the software enqueue and dequeue pointers */
885         ring->deq_seg = ring->first_seg;
886         ring->dequeue = ring->first_seg->trbs;
887         ring->enq_seg = ring->deq_seg;
888         ring->enqueue = ring->dequeue;
889
890         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
891         /*
892          * Ring is now zeroed, so the HW should look for change of ownership
893          * when the cycle bit is set to 1.
894          */
895         ring->cycle_state = 1;
896
897         /*
898          * Reset the hardware dequeue pointer.
899          * Yes, this will need to be re-written after resume, but we're paranoid
900          * and want to make sure the hardware doesn't access bogus memory
901          * because, say, the BIOS or an SMI started the host without changing
902          * the command ring pointers.
903          */
904         xhci_set_cmd_ring_deq(xhci);
905 }
906
907 /*
908  * Disable port wake bits if do_wakeup is not set.
909  *
910  * Also clear a possible internal port wake state left hanging for ports that
911  * detected termination but never successfully enumerated (trained to 0U).
912  * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
913  * at enumeration clears this wake, force one here as well for unconnected ports
914  */
915
916 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
917                                        struct xhci_hub *rhub,
918                                        bool do_wakeup)
919 {
920         unsigned long flags;
921         u32 t1, t2, portsc;
922         int i;
923
924         spin_lock_irqsave(&xhci->lock, flags);
925
926         for (i = 0; i < rhub->num_ports; i++) {
927                 portsc = readl(rhub->ports[i]->addr);
928                 t1 = xhci_port_state_to_neutral(portsc);
929                 t2 = t1;
930
931                 /* clear wake bits if do_wake is not set */
932                 if (!do_wakeup)
933                         t2 &= ~PORT_WAKE_BITS;
934
935                 /* Don't touch csc bit if connected or connect change is set */
936                 if (!(portsc & (PORT_CSC | PORT_CONNECT)))
937                         t2 |= PORT_CSC;
938
939                 if (t1 != t2) {
940                         writel(t2, rhub->ports[i]->addr);
941                         xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
942                                  rhub->hcd->self.busnum, i + 1, portsc, t2);
943                 }
944         }
945         spin_unlock_irqrestore(&xhci->lock, flags);
946 }
947
948 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
949 {
950         struct xhci_port        **ports;
951         int                     port_index;
952         u32                     status;
953         u32                     portsc;
954
955         status = readl(&xhci->op_regs->status);
956         if (status & STS_EINT)
957                 return true;
958         /*
959          * Checking STS_EINT is not enough as there is a lag between a change
960          * bit being set and the Port Status Change Event that it generated
961          * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
962          */
963
964         port_index = xhci->usb2_rhub.num_ports;
965         ports = xhci->usb2_rhub.ports;
966         while (port_index--) {
967                 portsc = readl(ports[port_index]->addr);
968                 if (portsc & PORT_CHANGE_MASK ||
969                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
970                         return true;
971         }
972         port_index = xhci->usb3_rhub.num_ports;
973         ports = xhci->usb3_rhub.ports;
974         while (port_index--) {
975                 portsc = readl(ports[port_index]->addr);
976                 if (portsc & PORT_CHANGE_MASK ||
977                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
978                         return true;
979         }
980         return false;
981 }
982
983 /*
984  * Stop HC (not bus-specific)
985  *
986  * This is called when the machine transition into S3/S4 mode.
987  *
988  */
989 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
990 {
991         int                     rc = 0;
992         unsigned int            delay = XHCI_MAX_HALT_USEC * 2;
993         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
994         u32                     command;
995         u32                     res;
996
997         if (!hcd->state)
998                 return 0;
999
1000         if (hcd->state != HC_STATE_SUSPENDED ||
1001                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
1002                 return -EINVAL;
1003
1004         /* Clear root port wake on bits if wakeup not allowed. */
1005         xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
1006         xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
1007
1008         if (!HCD_HW_ACCESSIBLE(hcd))
1009                 return 0;
1010
1011         xhci_dbc_suspend(xhci);
1012
1013         /* Don't poll the roothubs on bus suspend. */
1014         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
1015         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1016         del_timer_sync(&hcd->rh_timer);
1017         clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1018         del_timer_sync(&xhci->shared_hcd->rh_timer);
1019
1020         if (xhci->quirks & XHCI_SUSPEND_DELAY)
1021                 usleep_range(1000, 1500);
1022
1023         spin_lock_irq(&xhci->lock);
1024         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1025         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1026         /* step 1: stop endpoint */
1027         /* skipped assuming that port suspend has done */
1028
1029         /* step 2: clear Run/Stop bit */
1030         command = readl(&xhci->op_regs->command);
1031         command &= ~CMD_RUN;
1032         writel(command, &xhci->op_regs->command);
1033
1034         /* Some chips from Fresco Logic need an extraordinary delay */
1035         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1036
1037         if (xhci_handshake(&xhci->op_regs->status,
1038                       STS_HALT, STS_HALT, delay)) {
1039                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1040                 spin_unlock_irq(&xhci->lock);
1041                 return -ETIMEDOUT;
1042         }
1043         xhci_clear_command_ring(xhci);
1044
1045         /* step 3: save registers */
1046         xhci_save_registers(xhci);
1047
1048         /* step 4: set CSS flag */
1049         command = readl(&xhci->op_regs->command);
1050         command |= CMD_CSS;
1051         writel(command, &xhci->op_regs->command);
1052         xhci->broken_suspend = 0;
1053         if (xhci_handshake(&xhci->op_regs->status,
1054                                 STS_SAVE, 0, 20 * 1000)) {
1055         /*
1056          * AMD SNPS xHC 3.0 occasionally does not clear the
1057          * SSS bit of USBSTS and when driver tries to poll
1058          * to see if the xHC clears BIT(8) which never happens
1059          * and driver assumes that controller is not responding
1060          * and times out. To workaround this, its good to check
1061          * if SRE and HCE bits are not set (as per xhci
1062          * Section 5.4.2) and bypass the timeout.
1063          */
1064                 res = readl(&xhci->op_regs->status);
1065                 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1066                     (((res & STS_SRE) == 0) &&
1067                                 ((res & STS_HCE) == 0))) {
1068                         xhci->broken_suspend = 1;
1069                 } else {
1070                         xhci_warn(xhci, "WARN: xHC save state timeout\n");
1071                         spin_unlock_irq(&xhci->lock);
1072                         return -ETIMEDOUT;
1073                 }
1074         }
1075         spin_unlock_irq(&xhci->lock);
1076
1077         /*
1078          * Deleting Compliance Mode Recovery Timer because the xHCI Host
1079          * is about to be suspended.
1080          */
1081         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1082                         (!(xhci_all_ports_seen_u0(xhci)))) {
1083                 del_timer_sync(&xhci->comp_mode_recovery_timer);
1084                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1085                                 "%s: compliance mode recovery timer deleted",
1086                                 __func__);
1087         }
1088
1089         /* step 5: remove core well power */
1090         /* synchronize irq when using MSI-X */
1091         xhci_msix_sync_irqs(xhci);
1092
1093         return rc;
1094 }
1095 EXPORT_SYMBOL_GPL(xhci_suspend);
1096
1097 /*
1098  * start xHC (not bus-specific)
1099  *
1100  * This is called when the machine transition from S3/S4 mode.
1101  *
1102  */
1103 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1104 {
1105         u32                     command, temp = 0;
1106         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
1107         struct usb_hcd          *secondary_hcd;
1108         int                     retval = 0;
1109         bool                    comp_timer_running = false;
1110         bool                    pending_portevent = false;
1111         bool                    reinit_xhc = false;
1112
1113         if (!hcd->state)
1114                 return 0;
1115
1116         /* Wait a bit if either of the roothubs need to settle from the
1117          * transition into bus suspend.
1118          */
1119
1120         if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1121             time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1122                 msleep(100);
1123
1124         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1125         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1126
1127         spin_lock_irq(&xhci->lock);
1128
1129         if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
1130                 reinit_xhc = true;
1131
1132         if (!reinit_xhc) {
1133                 /*
1134                  * Some controllers might lose power during suspend, so wait
1135                  * for controller not ready bit to clear, just as in xHC init.
1136                  */
1137                 retval = xhci_handshake(&xhci->op_regs->status,
1138                                         STS_CNR, 0, 10 * 1000 * 1000);
1139                 if (retval) {
1140                         xhci_warn(xhci, "Controller not ready at resume %d\n",
1141                                   retval);
1142                         spin_unlock_irq(&xhci->lock);
1143                         return retval;
1144                 }
1145                 /* step 1: restore register */
1146                 xhci_restore_registers(xhci);
1147                 /* step 2: initialize command ring buffer */
1148                 xhci_set_cmd_ring_deq(xhci);
1149                 /* step 3: restore state and start state*/
1150                 /* step 3: set CRS flag */
1151                 command = readl(&xhci->op_regs->command);
1152                 command |= CMD_CRS;
1153                 writel(command, &xhci->op_regs->command);
1154                 /*
1155                  * Some controllers take up to 55+ ms to complete the controller
1156                  * restore so setting the timeout to 100ms. Xhci specification
1157                  * doesn't mention any timeout value.
1158                  */
1159                 if (xhci_handshake(&xhci->op_regs->status,
1160                               STS_RESTORE, 0, 100 * 1000)) {
1161                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1162                         spin_unlock_irq(&xhci->lock);
1163                         return -ETIMEDOUT;
1164                 }
1165         }
1166
1167         temp = readl(&xhci->op_regs->status);
1168
1169         /* re-initialize the HC on Restore Error, or Host Controller Error */
1170         if (temp & (STS_SRE | STS_HCE)) {
1171                 reinit_xhc = true;
1172                 if (!xhci->broken_suspend)
1173                         xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1174         }
1175
1176         if (reinit_xhc) {
1177                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1178                                 !(xhci_all_ports_seen_u0(xhci))) {
1179                         del_timer_sync(&xhci->comp_mode_recovery_timer);
1180                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1181                                 "Compliance Mode Recovery Timer deleted!");
1182                 }
1183
1184                 /* Let the USB core know _both_ roothubs lost power. */
1185                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1186                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1187
1188                 xhci_dbg(xhci, "Stop HCD\n");
1189                 xhci_halt(xhci);
1190                 xhci_zero_64b_regs(xhci);
1191                 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
1192                 spin_unlock_irq(&xhci->lock);
1193                 if (retval)
1194                         return retval;
1195                 xhci_cleanup_msix(xhci);
1196
1197                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1198                 temp = readl(&xhci->op_regs->status);
1199                 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1200                 temp = readl(&xhci->ir_set->irq_pending);
1201                 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1202
1203                 xhci_dbg(xhci, "cleaning up memory\n");
1204                 xhci_mem_cleanup(xhci);
1205                 xhci_debugfs_exit(xhci);
1206                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1207                             readl(&xhci->op_regs->status));
1208
1209                 /* USB core calls the PCI reinit and start functions twice:
1210                  * first with the primary HCD, and then with the secondary HCD.
1211                  * If we don't do the same, the host will never be started.
1212                  */
1213                 if (!usb_hcd_is_primary_hcd(hcd))
1214                         secondary_hcd = hcd;
1215                 else
1216                         secondary_hcd = xhci->shared_hcd;
1217
1218                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1219                 retval = xhci_init(hcd->primary_hcd);
1220                 if (retval)
1221                         return retval;
1222                 comp_timer_running = true;
1223
1224                 xhci_dbg(xhci, "Start the primary HCD\n");
1225                 retval = xhci_run(hcd->primary_hcd);
1226                 if (!retval) {
1227                         xhci_dbg(xhci, "Start the secondary HCD\n");
1228                         retval = xhci_run(secondary_hcd);
1229                 }
1230                 hcd->state = HC_STATE_SUSPENDED;
1231                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1232                 goto done;
1233         }
1234
1235         /* step 4: set Run/Stop bit */
1236         command = readl(&xhci->op_regs->command);
1237         command |= CMD_RUN;
1238         writel(command, &xhci->op_regs->command);
1239         xhci_handshake(&xhci->op_regs->status, STS_HALT,
1240                   0, 250 * 1000);
1241
1242         /* step 5: walk topology and initialize portsc,
1243          * portpmsc and portli
1244          */
1245         /* this is done in bus_resume */
1246
1247         /* step 6: restart each of the previously
1248          * Running endpoints by ringing their doorbells
1249          */
1250
1251         spin_unlock_irq(&xhci->lock);
1252
1253         xhci_dbc_resume(xhci);
1254
1255  done:
1256         if (retval == 0) {
1257                 /*
1258                  * Resume roothubs only if there are pending events.
1259                  * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1260                  * the first wake signalling failed, give it that chance.
1261                  */
1262                 pending_portevent = xhci_pending_portevent(xhci);
1263                 if (!pending_portevent) {
1264                         msleep(120);
1265                         pending_portevent = xhci_pending_portevent(xhci);
1266                 }
1267
1268                 if (pending_portevent) {
1269                         usb_hcd_resume_root_hub(xhci->shared_hcd);
1270                         usb_hcd_resume_root_hub(hcd);
1271                 }
1272         }
1273         /*
1274          * If system is subject to the Quirk, Compliance Mode Timer needs to
1275          * be re-initialized Always after a system resume. Ports are subject
1276          * to suffer the Compliance Mode issue again. It doesn't matter if
1277          * ports have entered previously to U0 before system's suspension.
1278          */
1279         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1280                 compliance_mode_recovery_timer_init(xhci);
1281
1282         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1283                 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1284
1285         /* Re-enable port polling. */
1286         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1287         set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1288         usb_hcd_poll_rh_status(xhci->shared_hcd);
1289         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1290         usb_hcd_poll_rh_status(hcd);
1291
1292         return retval;
1293 }
1294 EXPORT_SYMBOL_GPL(xhci_resume);
1295 #endif  /* CONFIG_PM */
1296
1297 /*-------------------------------------------------------------------------*/
1298
1299 /*
1300  * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1301  * we'll copy the actual data into the TRB address register. This is limited to
1302  * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1303  * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1304  */
1305 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1306                                 gfp_t mem_flags)
1307 {
1308         if (xhci_urb_suitable_for_idt(urb))
1309                 return 0;
1310
1311         return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1312 }
1313
1314 /*
1315  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1316  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1317  * value to right shift 1 for the bitmask.
1318  *
1319  * Index  = (epnum * 2) + direction - 1,
1320  * where direction = 0 for OUT, 1 for IN.
1321  * For control endpoints, the IN index is used (OUT index is unused), so
1322  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1323  */
1324 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1325 {
1326         unsigned int index;
1327         if (usb_endpoint_xfer_control(desc))
1328                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1329         else
1330                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1331                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1332         return index;
1333 }
1334
1335 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1336  * address from the XHCI endpoint index.
1337  */
1338 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1339 {
1340         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1341         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1342         return direction | number;
1343 }
1344
1345 /* Find the flag for this endpoint (for use in the control context).  Use the
1346  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1347  * bit 1, etc.
1348  */
1349 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1350 {
1351         return 1 << (xhci_get_endpoint_index(desc) + 1);
1352 }
1353
1354 /* Find the flag for this endpoint (for use in the control context).  Use the
1355  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1356  * bit 1, etc.
1357  */
1358 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1359 {
1360         return 1 << (ep_index + 1);
1361 }
1362
1363 /* Compute the last valid endpoint context index.  Basically, this is the
1364  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1365  * we find the most significant bit set in the added contexts flags.
1366  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1367  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1368  */
1369 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1370 {
1371         return fls(added_ctxs) - 1;
1372 }
1373
1374 /* Returns 1 if the arguments are OK;
1375  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1376  */
1377 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1378                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1379                 const char *func) {
1380         struct xhci_hcd *xhci;
1381         struct xhci_virt_device *virt_dev;
1382
1383         if (!hcd || (check_ep && !ep) || !udev) {
1384                 pr_debug("xHCI %s called with invalid args\n", func);
1385                 return -EINVAL;
1386         }
1387         if (!udev->parent) {
1388                 pr_debug("xHCI %s called for root hub\n", func);
1389                 return 0;
1390         }
1391
1392         xhci = hcd_to_xhci(hcd);
1393         if (check_virt_dev) {
1394                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1395                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1396                                         func);
1397                         return -EINVAL;
1398                 }
1399
1400                 virt_dev = xhci->devs[udev->slot_id];
1401                 if (virt_dev->udev != udev) {
1402                         xhci_dbg(xhci, "xHCI %s called with udev and "
1403                                           "virt_dev does not match\n", func);
1404                         return -EINVAL;
1405                 }
1406         }
1407
1408         if (xhci->xhc_state & XHCI_STATE_HALTED)
1409                 return -ENODEV;
1410
1411         return 1;
1412 }
1413
1414 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1415                 struct usb_device *udev, struct xhci_command *command,
1416                 bool ctx_change, bool must_succeed);
1417
1418 /*
1419  * Full speed devices may have a max packet size greater than 8 bytes, but the
1420  * USB core doesn't know that until it reads the first 8 bytes of the
1421  * descriptor.  If the usb_device's max packet size changes after that point,
1422  * we need to issue an evaluate context command and wait on it.
1423  */
1424 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1425                 unsigned int ep_index, struct urb *urb, gfp_t mem_flags)
1426 {
1427         struct xhci_container_ctx *out_ctx;
1428         struct xhci_input_control_ctx *ctrl_ctx;
1429         struct xhci_ep_ctx *ep_ctx;
1430         struct xhci_command *command;
1431         int max_packet_size;
1432         int hw_max_packet_size;
1433         int ret = 0;
1434
1435         out_ctx = xhci->devs[slot_id]->out_ctx;
1436         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1437         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1438         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1439         if (hw_max_packet_size != max_packet_size) {
1440                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1441                                 "Max Packet Size for ep 0 changed.");
1442                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1443                                 "Max packet size in usb_device = %d",
1444                                 max_packet_size);
1445                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1446                                 "Max packet size in xHCI HW = %d",
1447                                 hw_max_packet_size);
1448                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1449                                 "Issuing evaluate context command.");
1450
1451                 /* Set up the input context flags for the command */
1452                 /* FIXME: This won't work if a non-default control endpoint
1453                  * changes max packet sizes.
1454                  */
1455
1456                 command = xhci_alloc_command(xhci, true, mem_flags);
1457                 if (!command)
1458                         return -ENOMEM;
1459
1460                 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1461                 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1462                 if (!ctrl_ctx) {
1463                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1464                                         __func__);
1465                         ret = -ENOMEM;
1466                         goto command_cleanup;
1467                 }
1468                 /* Set up the modified control endpoint 0 */
1469                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1470                                 xhci->devs[slot_id]->out_ctx, ep_index);
1471
1472                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1473                 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1474                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1475                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1476
1477                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1478                 ctrl_ctx->drop_flags = 0;
1479
1480                 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1481                                 true, false);
1482
1483                 /* Clean up the input context for later use by bandwidth
1484                  * functions.
1485                  */
1486                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1487 command_cleanup:
1488                 kfree(command->completion);
1489                 kfree(command);
1490         }
1491         return ret;
1492 }
1493
1494 /*
1495  * non-error returns are a promise to giveback() the urb later
1496  * we drop ownership so next owner (or urb unlink) can get it
1497  */
1498 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1499 {
1500         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1501         unsigned long flags;
1502         int ret = 0;
1503         unsigned int slot_id, ep_index;
1504         unsigned int *ep_state;
1505         struct urb_priv *urb_priv;
1506         int num_tds;
1507
1508         if (!urb)
1509                 return -EINVAL;
1510         ret = xhci_check_args(hcd, urb->dev, urb->ep,
1511                                         true, true, __func__);
1512         if (ret <= 0)
1513                 return ret ? ret : -EINVAL;
1514
1515         slot_id = urb->dev->slot_id;
1516         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1517         ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1518
1519         if (!HCD_HW_ACCESSIBLE(hcd)) {
1520                 if (!in_interrupt())
1521                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1522                 return -ESHUTDOWN;
1523         }
1524         if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1525                 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1526                 return -ENODEV;
1527         }
1528
1529         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1530                 num_tds = urb->number_of_packets;
1531         else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1532             urb->transfer_buffer_length > 0 &&
1533             urb->transfer_flags & URB_ZERO_PACKET &&
1534             !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1535                 num_tds = 2;
1536         else
1537                 num_tds = 1;
1538
1539         urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1540         if (!urb_priv)
1541                 return -ENOMEM;
1542
1543         urb_priv->num_tds = num_tds;
1544         urb_priv->num_tds_done = 0;
1545         urb->hcpriv = urb_priv;
1546
1547         trace_xhci_urb_enqueue(urb);
1548
1549         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1550                 /* Check to see if the max packet size for the default control
1551                  * endpoint changed during FS device enumeration
1552                  */
1553                 if (urb->dev->speed == USB_SPEED_FULL) {
1554                         ret = xhci_check_maxpacket(xhci, slot_id,
1555                                         ep_index, urb, mem_flags);
1556                         if (ret < 0) {
1557                                 xhci_urb_free_priv(urb_priv);
1558                                 urb->hcpriv = NULL;
1559                                 return ret;
1560                         }
1561                 }
1562         }
1563
1564         spin_lock_irqsave(&xhci->lock, flags);
1565
1566         if (xhci->xhc_state & XHCI_STATE_DYING) {
1567                 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1568                          urb->ep->desc.bEndpointAddress, urb);
1569                 ret = -ESHUTDOWN;
1570                 goto free_priv;
1571         }
1572         if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1573                 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1574                           *ep_state);
1575                 ret = -EINVAL;
1576                 goto free_priv;
1577         }
1578         if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1579                 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1580                 ret = -EINVAL;
1581                 goto free_priv;
1582         }
1583
1584         switch (usb_endpoint_type(&urb->ep->desc)) {
1585
1586         case USB_ENDPOINT_XFER_CONTROL:
1587                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1588                                          slot_id, ep_index);
1589                 break;
1590         case USB_ENDPOINT_XFER_BULK:
1591                 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1592                                          slot_id, ep_index);
1593                 break;
1594         case USB_ENDPOINT_XFER_INT:
1595                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1596                                 slot_id, ep_index);
1597                 break;
1598         case USB_ENDPOINT_XFER_ISOC:
1599                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1600                                 slot_id, ep_index);
1601         }
1602
1603         if (ret) {
1604 free_priv:
1605                 xhci_urb_free_priv(urb_priv);
1606                 urb->hcpriv = NULL;
1607         }
1608         spin_unlock_irqrestore(&xhci->lock, flags);
1609         return ret;
1610 }
1611
1612 /*
1613  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1614  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1615  * should pick up where it left off in the TD, unless a Set Transfer Ring
1616  * Dequeue Pointer is issued.
1617  *
1618  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1619  * the ring.  Since the ring is a contiguous structure, they can't be physically
1620  * removed.  Instead, there are two options:
1621  *
1622  *  1) If the HC is in the middle of processing the URB to be canceled, we
1623  *     simply move the ring's dequeue pointer past those TRBs using the Set
1624  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1625  *     when drivers timeout on the last submitted URB and attempt to cancel.
1626  *
1627  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1628  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1629  *     HC will need to invalidate the any TRBs it has cached after the stop
1630  *     endpoint command, as noted in the xHCI 0.95 errata.
1631  *
1632  *  3) The TD may have completed by the time the Stop Endpoint Command
1633  *     completes, so software needs to handle that case too.
1634  *
1635  * This function should protect against the TD enqueueing code ringing the
1636  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1637  * It also needs to account for multiple cancellations on happening at the same
1638  * time for the same endpoint.
1639  *
1640  * Note that this function can be called in any context, or so says
1641  * usb_hcd_unlink_urb()
1642  */
1643 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1644 {
1645         unsigned long flags;
1646         int ret, i;
1647         u32 temp;
1648         struct xhci_hcd *xhci;
1649         struct urb_priv *urb_priv;
1650         struct xhci_td *td;
1651         unsigned int ep_index;
1652         struct xhci_ring *ep_ring;
1653         struct xhci_virt_ep *ep;
1654         struct xhci_command *command;
1655         struct xhci_virt_device *vdev;
1656
1657         xhci = hcd_to_xhci(hcd);
1658         spin_lock_irqsave(&xhci->lock, flags);
1659
1660         trace_xhci_urb_dequeue(urb);
1661
1662         /* Make sure the URB hasn't completed or been unlinked already */
1663         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1664         if (ret)
1665                 goto done;
1666
1667         /* give back URB now if we can't queue it for cancel */
1668         vdev = xhci->devs[urb->dev->slot_id];
1669         urb_priv = urb->hcpriv;
1670         if (!vdev || !urb_priv)
1671                 goto err_giveback;
1672
1673         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1674         ep = &vdev->eps[ep_index];
1675         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1676         if (!ep || !ep_ring)
1677                 goto err_giveback;
1678
1679         /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1680         temp = readl(&xhci->op_regs->status);
1681         if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1682                 xhci_hc_died(xhci);
1683                 goto done;
1684         }
1685
1686         /*
1687          * check ring is not re-allocated since URB was enqueued. If it is, then
1688          * make sure none of the ring related pointers in this URB private data
1689          * are touched, such as td_list, otherwise we overwrite freed data
1690          */
1691         if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1692                 xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1693                 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1694                         td = &urb_priv->td[i];
1695                         if (!list_empty(&td->cancelled_td_list))
1696                                 list_del_init(&td->cancelled_td_list);
1697                 }
1698                 goto err_giveback;
1699         }
1700
1701         if (xhci->xhc_state & XHCI_STATE_HALTED) {
1702                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1703                                 "HC halted, freeing TD manually.");
1704                 for (i = urb_priv->num_tds_done;
1705                      i < urb_priv->num_tds;
1706                      i++) {
1707                         td = &urb_priv->td[i];
1708                         if (!list_empty(&td->td_list))
1709                                 list_del_init(&td->td_list);
1710                         if (!list_empty(&td->cancelled_td_list))
1711                                 list_del_init(&td->cancelled_td_list);
1712                 }
1713                 goto err_giveback;
1714         }
1715
1716         i = urb_priv->num_tds_done;
1717         if (i < urb_priv->num_tds)
1718                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1719                                 "Cancel URB %p, dev %s, ep 0x%x, "
1720                                 "starting at offset 0x%llx",
1721                                 urb, urb->dev->devpath,
1722                                 urb->ep->desc.bEndpointAddress,
1723                                 (unsigned long long) xhci_trb_virt_to_dma(
1724                                         urb_priv->td[i].start_seg,
1725                                         urb_priv->td[i].first_trb));
1726
1727         for (; i < urb_priv->num_tds; i++) {
1728                 td = &urb_priv->td[i];
1729                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1730         }
1731
1732         /* Queue a stop endpoint command, but only if this is
1733          * the first cancellation to be handled.
1734          */
1735         if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1736                 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1737                 if (!command) {
1738                         ret = -ENOMEM;
1739                         goto done;
1740                 }
1741                 ep->ep_state |= EP_STOP_CMD_PENDING;
1742                 ep->stop_cmd_timer.expires = jiffies +
1743                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1744                 add_timer(&ep->stop_cmd_timer);
1745                 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1746                                          ep_index, 0);
1747                 xhci_ring_cmd_db(xhci);
1748         }
1749 done:
1750         spin_unlock_irqrestore(&xhci->lock, flags);
1751         return ret;
1752
1753 err_giveback:
1754         if (urb_priv)
1755                 xhci_urb_free_priv(urb_priv);
1756         usb_hcd_unlink_urb_from_ep(hcd, urb);
1757         spin_unlock_irqrestore(&xhci->lock, flags);
1758         usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1759         return ret;
1760 }
1761
1762 /* Drop an endpoint from a new bandwidth configuration for this device.
1763  * Only one call to this function is allowed per endpoint before
1764  * check_bandwidth() or reset_bandwidth() must be called.
1765  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1766  * add the endpoint to the schedule with possibly new parameters denoted by a
1767  * different endpoint descriptor in usb_host_endpoint.
1768  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1769  * not allowed.
1770  *
1771  * The USB core will not allow URBs to be queued to an endpoint that is being
1772  * disabled, so there's no need for mutual exclusion to protect
1773  * the xhci->devs[slot_id] structure.
1774  */
1775 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1776                 struct usb_host_endpoint *ep)
1777 {
1778         struct xhci_hcd *xhci;
1779         struct xhci_container_ctx *in_ctx, *out_ctx;
1780         struct xhci_input_control_ctx *ctrl_ctx;
1781         unsigned int ep_index;
1782         struct xhci_ep_ctx *ep_ctx;
1783         u32 drop_flag;
1784         u32 new_add_flags, new_drop_flags;
1785         int ret;
1786
1787         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1788         if (ret <= 0)
1789                 return ret;
1790         xhci = hcd_to_xhci(hcd);
1791         if (xhci->xhc_state & XHCI_STATE_DYING)
1792                 return -ENODEV;
1793
1794         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1795         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1796         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1797                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1798                                 __func__, drop_flag);
1799                 return 0;
1800         }
1801
1802         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1803         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1804         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1805         if (!ctrl_ctx) {
1806                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1807                                 __func__);
1808                 return 0;
1809         }
1810
1811         ep_index = xhci_get_endpoint_index(&ep->desc);
1812         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1813         /* If the HC already knows the endpoint is disabled,
1814          * or the HCD has noted it is disabled, ignore this request
1815          */
1816         if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1817             le32_to_cpu(ctrl_ctx->drop_flags) &
1818             xhci_get_endpoint_flag(&ep->desc)) {
1819                 /* Do not warn when called after a usb_device_reset */
1820                 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1821                         xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1822                                   __func__, ep);
1823                 return 0;
1824         }
1825
1826         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1827         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1828
1829         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1830         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1831
1832         xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1833
1834         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1835
1836         if (xhci->quirks & XHCI_MTK_HOST)
1837                 xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1838
1839         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1840                         (unsigned int) ep->desc.bEndpointAddress,
1841                         udev->slot_id,
1842                         (unsigned int) new_drop_flags,
1843                         (unsigned int) new_add_flags);
1844         return 0;
1845 }
1846
1847 /* Add an endpoint to a new possible bandwidth configuration for this device.
1848  * Only one call to this function is allowed per endpoint before
1849  * check_bandwidth() or reset_bandwidth() must be called.
1850  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1851  * add the endpoint to the schedule with possibly new parameters denoted by a
1852  * different endpoint descriptor in usb_host_endpoint.
1853  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1854  * not allowed.
1855  *
1856  * The USB core will not allow URBs to be queued to an endpoint until the
1857  * configuration or alt setting is installed in the device, so there's no need
1858  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1859  */
1860 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1861                 struct usb_host_endpoint *ep)
1862 {
1863         struct xhci_hcd *xhci;
1864         struct xhci_container_ctx *in_ctx;
1865         unsigned int ep_index;
1866         struct xhci_input_control_ctx *ctrl_ctx;
1867         struct xhci_ep_ctx *ep_ctx;
1868         u32 added_ctxs;
1869         u32 new_add_flags, new_drop_flags;
1870         struct xhci_virt_device *virt_dev;
1871         int ret = 0;
1872
1873         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1874         if (ret <= 0) {
1875                 /* So we won't queue a reset ep command for a root hub */
1876                 ep->hcpriv = NULL;
1877                 return ret;
1878         }
1879         xhci = hcd_to_xhci(hcd);
1880         if (xhci->xhc_state & XHCI_STATE_DYING)
1881                 return -ENODEV;
1882
1883         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1884         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1885                 /* FIXME when we have to issue an evaluate endpoint command to
1886                  * deal with ep0 max packet size changing once we get the
1887                  * descriptors
1888                  */
1889                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1890                                 __func__, added_ctxs);
1891                 return 0;
1892         }
1893
1894         virt_dev = xhci->devs[udev->slot_id];
1895         in_ctx = virt_dev->in_ctx;
1896         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1897         if (!ctrl_ctx) {
1898                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1899                                 __func__);
1900                 return 0;
1901         }
1902
1903         ep_index = xhci_get_endpoint_index(&ep->desc);
1904         /* If this endpoint is already in use, and the upper layers are trying
1905          * to add it again without dropping it, reject the addition.
1906          */
1907         if (virt_dev->eps[ep_index].ring &&
1908                         !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1909                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1910                                 "without dropping it.\n",
1911                                 (unsigned int) ep->desc.bEndpointAddress);
1912                 return -EINVAL;
1913         }
1914
1915         /* If the HCD has already noted the endpoint is enabled,
1916          * ignore this request.
1917          */
1918         if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1919                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1920                                 __func__, ep);
1921                 return 0;
1922         }
1923
1924         /*
1925          * Configuration and alternate setting changes must be done in
1926          * process context, not interrupt context (or so documenation
1927          * for usb_set_interface() and usb_set_configuration() claim).
1928          */
1929         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1930                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1931                                 __func__, ep->desc.bEndpointAddress);
1932                 return -ENOMEM;
1933         }
1934
1935         if (xhci->quirks & XHCI_MTK_HOST) {
1936                 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1937                 if (ret < 0) {
1938                         xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring);
1939                         virt_dev->eps[ep_index].new_ring = NULL;
1940                         return ret;
1941                 }
1942         }
1943
1944         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1945         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1946
1947         /* If xhci_endpoint_disable() was called for this endpoint, but the
1948          * xHC hasn't been notified yet through the check_bandwidth() call,
1949          * this re-adds a new state for the endpoint from the new endpoint
1950          * descriptors.  We must drop and re-add this endpoint, so we leave the
1951          * drop flags alone.
1952          */
1953         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1954
1955         /* Store the usb_device pointer for later use */
1956         ep->hcpriv = udev;
1957
1958         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1959         trace_xhci_add_endpoint(ep_ctx);
1960
1961         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1962                         (unsigned int) ep->desc.bEndpointAddress,
1963                         udev->slot_id,
1964                         (unsigned int) new_drop_flags,
1965                         (unsigned int) new_add_flags);
1966         return 0;
1967 }
1968
1969 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1970 {
1971         struct xhci_input_control_ctx *ctrl_ctx;
1972         struct xhci_ep_ctx *ep_ctx;
1973         struct xhci_slot_ctx *slot_ctx;
1974         int i;
1975
1976         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1977         if (!ctrl_ctx) {
1978                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1979                                 __func__);
1980                 return;
1981         }
1982
1983         /* When a device's add flag and drop flag are zero, any subsequent
1984          * configure endpoint command will leave that endpoint's state
1985          * untouched.  Make sure we don't leave any old state in the input
1986          * endpoint contexts.
1987          */
1988         ctrl_ctx->drop_flags = 0;
1989         ctrl_ctx->add_flags = 0;
1990         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1991         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1992         /* Endpoint 0 is always valid */
1993         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1994         for (i = 1; i < 31; i++) {
1995                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1996                 ep_ctx->ep_info = 0;
1997                 ep_ctx->ep_info2 = 0;
1998                 ep_ctx->deq = 0;
1999                 ep_ctx->tx_info = 0;
2000         }
2001 }
2002
2003 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2004                 struct usb_device *udev, u32 *cmd_status)
2005 {
2006         int ret;
2007
2008         switch (*cmd_status) {
2009         case COMP_COMMAND_ABORTED:
2010         case COMP_COMMAND_RING_STOPPED:
2011                 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2012                 ret = -ETIME;
2013                 break;
2014         case COMP_RESOURCE_ERROR:
2015                 dev_warn(&udev->dev,
2016                          "Not enough host controller resources for new device state.\n");
2017                 ret = -ENOMEM;
2018                 /* FIXME: can we allocate more resources for the HC? */
2019                 break;
2020         case COMP_BANDWIDTH_ERROR:
2021         case COMP_SECONDARY_BANDWIDTH_ERROR:
2022                 dev_warn(&udev->dev,
2023                          "Not enough bandwidth for new device state.\n");
2024                 ret = -ENOSPC;
2025                 /* FIXME: can we go back to the old state? */
2026                 break;
2027         case COMP_TRB_ERROR:
2028                 /* the HCD set up something wrong */
2029                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2030                                 "add flag = 1, "
2031                                 "and endpoint is not disabled.\n");
2032                 ret = -EINVAL;
2033                 break;
2034         case COMP_INCOMPATIBLE_DEVICE_ERROR:
2035                 dev_warn(&udev->dev,
2036                          "ERROR: Incompatible device for endpoint configure command.\n");
2037                 ret = -ENODEV;
2038                 break;
2039         case COMP_SUCCESS:
2040                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2041                                 "Successful Endpoint Configure command");
2042                 ret = 0;
2043                 break;
2044         default:
2045                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2046                                 *cmd_status);
2047                 ret = -EINVAL;
2048                 break;
2049         }
2050         return ret;
2051 }
2052
2053 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2054                 struct usb_device *udev, u32 *cmd_status)
2055 {
2056         int ret;
2057
2058         switch (*cmd_status) {
2059         case COMP_COMMAND_ABORTED:
2060         case COMP_COMMAND_RING_STOPPED:
2061                 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2062                 ret = -ETIME;
2063                 break;
2064         case COMP_PARAMETER_ERROR:
2065                 dev_warn(&udev->dev,
2066                          "WARN: xHCI driver setup invalid evaluate context command.\n");
2067                 ret = -EINVAL;
2068                 break;
2069         case COMP_SLOT_NOT_ENABLED_ERROR:
2070                 dev_warn(&udev->dev,
2071                         "WARN: slot not enabled for evaluate context command.\n");
2072                 ret = -EINVAL;
2073                 break;
2074         case COMP_CONTEXT_STATE_ERROR:
2075                 dev_warn(&udev->dev,
2076                         "WARN: invalid context state for evaluate context command.\n");
2077                 ret = -EINVAL;
2078                 break;
2079         case COMP_INCOMPATIBLE_DEVICE_ERROR:
2080                 dev_warn(&udev->dev,
2081                         "ERROR: Incompatible device for evaluate context command.\n");
2082                 ret = -ENODEV;
2083                 break;
2084         case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2085                 /* Max Exit Latency too large error */
2086                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2087                 ret = -EINVAL;
2088                 break;
2089         case COMP_SUCCESS:
2090                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2091                                 "Successful evaluate context command");
2092                 ret = 0;
2093                 break;
2094         default:
2095                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2096                         *cmd_status);
2097                 ret = -EINVAL;
2098                 break;
2099         }
2100         return ret;
2101 }
2102
2103 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2104                 struct xhci_input_control_ctx *ctrl_ctx)
2105 {
2106         u32 valid_add_flags;
2107         u32 valid_drop_flags;
2108
2109         /* Ignore the slot flag (bit 0), and the default control endpoint flag
2110          * (bit 1).  The default control endpoint is added during the Address
2111          * Device command and is never removed until the slot is disabled.
2112          */
2113         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2114         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2115
2116         /* Use hweight32 to count the number of ones in the add flags, or
2117          * number of endpoints added.  Don't count endpoints that are changed
2118          * (both added and dropped).
2119          */
2120         return hweight32(valid_add_flags) -
2121                 hweight32(valid_add_flags & valid_drop_flags);
2122 }
2123
2124 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2125                 struct xhci_input_control_ctx *ctrl_ctx)
2126 {
2127         u32 valid_add_flags;
2128         u32 valid_drop_flags;
2129
2130         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2131         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2132
2133         return hweight32(valid_drop_flags) -
2134                 hweight32(valid_add_flags & valid_drop_flags);
2135 }
2136
2137 /*
2138  * We need to reserve the new number of endpoints before the configure endpoint
2139  * command completes.  We can't subtract the dropped endpoints from the number
2140  * of active endpoints until the command completes because we can oversubscribe
2141  * the host in this case:
2142  *
2143  *  - the first configure endpoint command drops more endpoints than it adds
2144  *  - a second configure endpoint command that adds more endpoints is queued
2145  *  - the first configure endpoint command fails, so the config is unchanged
2146  *  - the second command may succeed, even though there isn't enough resources
2147  *
2148  * Must be called with xhci->lock held.
2149  */
2150 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2151                 struct xhci_input_control_ctx *ctrl_ctx)
2152 {
2153         u32 added_eps;
2154
2155         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2156         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2157                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2158                                 "Not enough ep ctxs: "
2159                                 "%u active, need to add %u, limit is %u.",
2160                                 xhci->num_active_eps, added_eps,
2161                                 xhci->limit_active_eps);
2162                 return -ENOMEM;
2163         }
2164         xhci->num_active_eps += added_eps;
2165         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2166                         "Adding %u ep ctxs, %u now active.", added_eps,
2167                         xhci->num_active_eps);
2168         return 0;
2169 }
2170
2171 /*
2172  * The configure endpoint was failed by the xHC for some other reason, so we
2173  * need to revert the resources that failed configuration would have used.
2174  *
2175  * Must be called with xhci->lock held.
2176  */
2177 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2178                 struct xhci_input_control_ctx *ctrl_ctx)
2179 {
2180         u32 num_failed_eps;
2181
2182         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2183         xhci->num_active_eps -= num_failed_eps;
2184         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2185                         "Removing %u failed ep ctxs, %u now active.",
2186                         num_failed_eps,
2187                         xhci->num_active_eps);
2188 }
2189
2190 /*
2191  * Now that the command has completed, clean up the active endpoint count by
2192  * subtracting out the endpoints that were dropped (but not changed).
2193  *
2194  * Must be called with xhci->lock held.
2195  */
2196 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2197                 struct xhci_input_control_ctx *ctrl_ctx)
2198 {
2199         u32 num_dropped_eps;
2200
2201         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2202         xhci->num_active_eps -= num_dropped_eps;
2203         if (num_dropped_eps)
2204                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2205                                 "Removing %u dropped ep ctxs, %u now active.",
2206                                 num_dropped_eps,
2207                                 xhci->num_active_eps);
2208 }
2209
2210 static unsigned int xhci_get_block_size(struct usb_device *udev)
2211 {
2212         switch (udev->speed) {
2213         case USB_SPEED_LOW:
2214         case USB_SPEED_FULL:
2215                 return FS_BLOCK;
2216         case USB_SPEED_HIGH:
2217                 return HS_BLOCK;
2218         case USB_SPEED_SUPER:
2219         case USB_SPEED_SUPER_PLUS:
2220                 return SS_BLOCK;
2221         case USB_SPEED_UNKNOWN:
2222         case USB_SPEED_WIRELESS:
2223         default:
2224                 /* Should never happen */
2225                 return 1;
2226         }
2227 }
2228
2229 static unsigned int
2230 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2231 {
2232         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2233                 return LS_OVERHEAD;
2234         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2235                 return FS_OVERHEAD;
2236         return HS_OVERHEAD;
2237 }
2238
2239 /* If we are changing a LS/FS device under a HS hub,
2240  * make sure (if we are activating a new TT) that the HS bus has enough
2241  * bandwidth for this new TT.
2242  */
2243 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2244                 struct xhci_virt_device *virt_dev,
2245                 int old_active_eps)
2246 {
2247         struct xhci_interval_bw_table *bw_table;
2248         struct xhci_tt_bw_info *tt_info;
2249
2250         /* Find the bandwidth table for the root port this TT is attached to. */
2251         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2252         tt_info = virt_dev->tt_info;
2253         /* If this TT already had active endpoints, the bandwidth for this TT
2254          * has already been added.  Removing all periodic endpoints (and thus
2255          * making the TT enactive) will only decrease the bandwidth used.
2256          */
2257         if (old_active_eps)
2258                 return 0;
2259         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2260                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2261                         return -ENOMEM;
2262                 return 0;
2263         }
2264         /* Not sure why we would have no new active endpoints...
2265          *
2266          * Maybe because of an Evaluate Context change for a hub update or a
2267          * control endpoint 0 max packet size change?
2268          * FIXME: skip the bandwidth calculation in that case.
2269          */
2270         return 0;
2271 }
2272
2273 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2274                 struct xhci_virt_device *virt_dev)
2275 {
2276         unsigned int bw_reserved;
2277
2278         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2279         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2280                 return -ENOMEM;
2281
2282         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2283         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2284                 return -ENOMEM;
2285
2286         return 0;
2287 }
2288
2289 /*
2290  * This algorithm is a very conservative estimate of the worst-case scheduling
2291  * scenario for any one interval.  The hardware dynamically schedules the
2292  * packets, so we can't tell which microframe could be the limiting factor in
2293  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2294  *
2295  * Obviously, we can't solve an NP complete problem to find the minimum worst
2296  * case scenario.  Instead, we come up with an estimate that is no less than
2297  * the worst case bandwidth used for any one microframe, but may be an
2298  * over-estimate.
2299  *
2300  * We walk the requirements for each endpoint by interval, starting with the
2301  * smallest interval, and place packets in the schedule where there is only one
2302  * possible way to schedule packets for that interval.  In order to simplify
2303  * this algorithm, we record the largest max packet size for each interval, and
2304  * assume all packets will be that size.
2305  *
2306  * For interval 0, we obviously must schedule all packets for each interval.
2307  * The bandwidth for interval 0 is just the amount of data to be transmitted
2308  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2309  * the number of packets).
2310  *
2311  * For interval 1, we have two possible microframes to schedule those packets
2312  * in.  For this algorithm, if we can schedule the same number of packets for
2313  * each possible scheduling opportunity (each microframe), we will do so.  The
2314  * remaining number of packets will be saved to be transmitted in the gaps in
2315  * the next interval's scheduling sequence.
2316  *
2317  * As we move those remaining packets to be scheduled with interval 2 packets,
2318  * we have to double the number of remaining packets to transmit.  This is
2319  * because the intervals are actually powers of 2, and we would be transmitting
2320  * the previous interval's packets twice in this interval.  We also have to be
2321  * sure that when we look at the largest max packet size for this interval, we
2322  * also look at the largest max packet size for the remaining packets and take
2323  * the greater of the two.
2324  *
2325  * The algorithm continues to evenly distribute packets in each scheduling
2326  * opportunity, and push the remaining packets out, until we get to the last
2327  * interval.  Then those packets and their associated overhead are just added
2328  * to the bandwidth used.
2329  */
2330 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2331                 struct xhci_virt_device *virt_dev,
2332                 int old_active_eps)
2333 {
2334         unsigned int bw_reserved;
2335         unsigned int max_bandwidth;
2336         unsigned int bw_used;
2337         unsigned int block_size;
2338         struct xhci_interval_bw_table *bw_table;
2339         unsigned int packet_size = 0;
2340         unsigned int overhead = 0;
2341         unsigned int packets_transmitted = 0;
2342         unsigned int packets_remaining = 0;
2343         unsigned int i;
2344
2345         if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2346                 return xhci_check_ss_bw(xhci, virt_dev);
2347
2348         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2349                 max_bandwidth = HS_BW_LIMIT;
2350                 /* Convert percent of bus BW reserved to blocks reserved */
2351                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2352         } else {
2353                 max_bandwidth = FS_BW_LIMIT;
2354                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2355         }
2356
2357         bw_table = virt_dev->bw_table;
2358         /* We need to translate the max packet size and max ESIT payloads into
2359          * the units the hardware uses.
2360          */
2361         block_size = xhci_get_block_size(virt_dev->udev);
2362
2363         /* If we are manipulating a LS/FS device under a HS hub, double check
2364          * that the HS bus has enough bandwidth if we are activing a new TT.
2365          */
2366         if (virt_dev->tt_info) {
2367                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2368                                 "Recalculating BW for rootport %u",
2369                                 virt_dev->real_port);
2370                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2371                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2372                                         "newly activated TT.\n");
2373                         return -ENOMEM;
2374                 }
2375                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2376                                 "Recalculating BW for TT slot %u port %u",
2377                                 virt_dev->tt_info->slot_id,
2378                                 virt_dev->tt_info->ttport);
2379         } else {
2380                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2381                                 "Recalculating BW for rootport %u",
2382                                 virt_dev->real_port);
2383         }
2384
2385         /* Add in how much bandwidth will be used for interval zero, or the
2386          * rounded max ESIT payload + number of packets * largest overhead.
2387          */
2388         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2389                 bw_table->interval_bw[0].num_packets *
2390                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2391
2392         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2393                 unsigned int bw_added;
2394                 unsigned int largest_mps;
2395                 unsigned int interval_overhead;
2396
2397                 /*
2398                  * How many packets could we transmit in this interval?
2399                  * If packets didn't fit in the previous interval, we will need
2400                  * to transmit that many packets twice within this interval.
2401                  */
2402                 packets_remaining = 2 * packets_remaining +
2403                         bw_table->interval_bw[i].num_packets;
2404
2405                 /* Find the largest max packet size of this or the previous
2406                  * interval.
2407                  */
2408                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2409                         largest_mps = 0;
2410                 else {
2411                         struct xhci_virt_ep *virt_ep;
2412                         struct list_head *ep_entry;
2413
2414                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2415                         virt_ep = list_entry(ep_entry,
2416                                         struct xhci_virt_ep, bw_endpoint_list);
2417                         /* Convert to blocks, rounding up */
2418                         largest_mps = DIV_ROUND_UP(
2419                                         virt_ep->bw_info.max_packet_size,
2420                                         block_size);
2421                 }
2422                 if (largest_mps > packet_size)
2423                         packet_size = largest_mps;
2424
2425                 /* Use the larger overhead of this or the previous interval. */
2426                 interval_overhead = xhci_get_largest_overhead(
2427                                 &bw_table->interval_bw[i]);
2428                 if (interval_overhead > overhead)
2429                         overhead = interval_overhead;
2430
2431                 /* How many packets can we evenly distribute across
2432                  * (1 << (i + 1)) possible scheduling opportunities?
2433                  */
2434                 packets_transmitted = packets_remaining >> (i + 1);
2435
2436                 /* Add in the bandwidth used for those scheduled packets */
2437                 bw_added = packets_transmitted * (overhead + packet_size);
2438
2439                 /* How many packets do we have remaining to transmit? */
2440                 packets_remaining = packets_remaining % (1 << (i + 1));
2441
2442                 /* What largest max packet size should those packets have? */
2443                 /* If we've transmitted all packets, don't carry over the
2444                  * largest packet size.
2445                  */
2446                 if (packets_remaining == 0) {
2447                         packet_size = 0;
2448                         overhead = 0;
2449                 } else if (packets_transmitted > 0) {
2450                         /* Otherwise if we do have remaining packets, and we've
2451                          * scheduled some packets in this interval, take the
2452                          * largest max packet size from endpoints with this
2453                          * interval.
2454                          */
2455                         packet_size = largest_mps;
2456                         overhead = interval_overhead;
2457                 }
2458                 /* Otherwise carry over packet_size and overhead from the last
2459                  * time we had a remainder.
2460                  */
2461                 bw_used += bw_added;
2462                 if (bw_used > max_bandwidth) {
2463                         xhci_warn(xhci, "Not enough bandwidth. "
2464                                         "Proposed: %u, Max: %u\n",
2465                                 bw_used, max_bandwidth);
2466                         return -ENOMEM;
2467                 }
2468         }
2469         /*
2470          * Ok, we know we have some packets left over after even-handedly
2471          * scheduling interval 15.  We don't know which microframes they will
2472          * fit into, so we over-schedule and say they will be scheduled every
2473          * microframe.
2474          */
2475         if (packets_remaining > 0)
2476                 bw_used += overhead + packet_size;
2477
2478         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2479                 unsigned int port_index = virt_dev->real_port - 1;
2480
2481                 /* OK, we're manipulating a HS device attached to a
2482                  * root port bandwidth domain.  Include the number of active TTs
2483                  * in the bandwidth used.
2484                  */
2485                 bw_used += TT_HS_OVERHEAD *
2486                         xhci->rh_bw[port_index].num_active_tts;
2487         }
2488
2489         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2490                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2491                 "Available: %u " "percent",
2492                 bw_used, max_bandwidth, bw_reserved,
2493                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2494                 max_bandwidth);
2495
2496         bw_used += bw_reserved;
2497         if (bw_used > max_bandwidth) {
2498                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2499                                 bw_used, max_bandwidth);
2500                 return -ENOMEM;
2501         }
2502
2503         bw_table->bw_used = bw_used;
2504         return 0;
2505 }
2506
2507 static bool xhci_is_async_ep(unsigned int ep_type)
2508 {
2509         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2510                                         ep_type != ISOC_IN_EP &&
2511                                         ep_type != INT_IN_EP);
2512 }
2513
2514 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2515 {
2516         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2517 }
2518
2519 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2520 {
2521         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2522
2523         if (ep_bw->ep_interval == 0)
2524                 return SS_OVERHEAD_BURST +
2525                         (ep_bw->mult * ep_bw->num_packets *
2526                                         (SS_OVERHEAD + mps));
2527         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2528                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2529                                 1 << ep_bw->ep_interval);
2530
2531 }
2532
2533 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2534                 struct xhci_bw_info *ep_bw,
2535                 struct xhci_interval_bw_table *bw_table,
2536                 struct usb_device *udev,
2537                 struct xhci_virt_ep *virt_ep,
2538                 struct xhci_tt_bw_info *tt_info)
2539 {
2540         struct xhci_interval_bw *interval_bw;
2541         int normalized_interval;
2542
2543         if (xhci_is_async_ep(ep_bw->type))
2544                 return;
2545
2546         if (udev->speed >= USB_SPEED_SUPER) {
2547                 if (xhci_is_sync_in_ep(ep_bw->type))
2548                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2549                                 xhci_get_ss_bw_consumed(ep_bw);
2550                 else
2551                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2552                                 xhci_get_ss_bw_consumed(ep_bw);
2553                 return;
2554         }
2555
2556         /* SuperSpeed endpoints never get added to intervals in the table, so
2557          * this check is only valid for HS/FS/LS devices.
2558          */
2559         if (list_empty(&virt_ep->bw_endpoint_list))
2560                 return;
2561         /* For LS/FS devices, we need to translate the interval expressed in
2562          * microframes to frames.
2563          */
2564         if (udev->speed == USB_SPEED_HIGH)
2565                 normalized_interval = ep_bw->ep_interval;
2566         else
2567                 normalized_interval = ep_bw->ep_interval - 3;
2568
2569         if (normalized_interval == 0)
2570                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2571         interval_bw = &bw_table->interval_bw[normalized_interval];
2572         interval_bw->num_packets -= ep_bw->num_packets;
2573         switch (udev->speed) {
2574         case USB_SPEED_LOW:
2575                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2576                 break;
2577         case USB_SPEED_FULL:
2578                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2579                 break;
2580         case USB_SPEED_HIGH:
2581                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2582                 break;
2583         case USB_SPEED_SUPER:
2584         case USB_SPEED_SUPER_PLUS:
2585         case USB_SPEED_UNKNOWN:
2586         case USB_SPEED_WIRELESS:
2587                 /* Should never happen because only LS/FS/HS endpoints will get
2588                  * added to the endpoint list.
2589                  */
2590                 return;
2591         }
2592         if (tt_info)
2593                 tt_info->active_eps -= 1;
2594         list_del_init(&virt_ep->bw_endpoint_list);
2595 }
2596
2597 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2598                 struct xhci_bw_info *ep_bw,
2599                 struct xhci_interval_bw_table *bw_table,
2600                 struct usb_device *udev,
2601                 struct xhci_virt_ep *virt_ep,
2602                 struct xhci_tt_bw_info *tt_info)
2603 {
2604         struct xhci_interval_bw *interval_bw;
2605         struct xhci_virt_ep *smaller_ep;
2606         int normalized_interval;
2607
2608         if (xhci_is_async_ep(ep_bw->type))
2609                 return;
2610
2611         if (udev->speed == USB_SPEED_SUPER) {
2612                 if (xhci_is_sync_in_ep(ep_bw->type))
2613                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2614                                 xhci_get_ss_bw_consumed(ep_bw);
2615                 else
2616                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2617                                 xhci_get_ss_bw_consumed(ep_bw);
2618                 return;
2619         }
2620
2621         /* For LS/FS devices, we need to translate the interval expressed in
2622          * microframes to frames.
2623          */
2624         if (udev->speed == USB_SPEED_HIGH)
2625                 normalized_interval = ep_bw->ep_interval;
2626         else
2627                 normalized_interval = ep_bw->ep_interval - 3;
2628
2629         if (normalized_interval == 0)
2630                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2631         interval_bw = &bw_table->interval_bw[normalized_interval];
2632         interval_bw->num_packets += ep_bw->num_packets;
2633         switch (udev->speed) {
2634         case USB_SPEED_LOW:
2635                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2636                 break;
2637         case USB_SPEED_FULL:
2638                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2639                 break;
2640         case USB_SPEED_HIGH:
2641                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2642                 break;
2643         case USB_SPEED_SUPER:
2644         case USB_SPEED_SUPER_PLUS:
2645         case USB_SPEED_UNKNOWN:
2646         case USB_SPEED_WIRELESS:
2647                 /* Should never happen because only LS/FS/HS endpoints will get
2648                  * added to the endpoint list.
2649                  */
2650                 return;
2651         }
2652
2653         if (tt_info)
2654                 tt_info->active_eps += 1;
2655         /* Insert the endpoint into the list, largest max packet size first. */
2656         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2657                         bw_endpoint_list) {
2658                 if (ep_bw->max_packet_size >=
2659                                 smaller_ep->bw_info.max_packet_size) {
2660                         /* Add the new ep before the smaller endpoint */
2661                         list_add_tail(&virt_ep->bw_endpoint_list,
2662                                         &smaller_ep->bw_endpoint_list);
2663                         return;
2664                 }
2665         }
2666         /* Add the new endpoint at the end of the list. */
2667         list_add_tail(&virt_ep->bw_endpoint_list,
2668                         &interval_bw->endpoints);
2669 }
2670
2671 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2672                 struct xhci_virt_device *virt_dev,
2673                 int old_active_eps)
2674 {
2675         struct xhci_root_port_bw_info *rh_bw_info;
2676         if (!virt_dev->tt_info)
2677                 return;
2678
2679         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2680         if (old_active_eps == 0 &&
2681                                 virt_dev->tt_info->active_eps != 0) {
2682                 rh_bw_info->num_active_tts += 1;
2683                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2684         } else if (old_active_eps != 0 &&
2685                                 virt_dev->tt_info->active_eps == 0) {
2686                 rh_bw_info->num_active_tts -= 1;
2687                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2688         }
2689 }
2690
2691 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2692                 struct xhci_virt_device *virt_dev,
2693                 struct xhci_container_ctx *in_ctx)
2694 {
2695         struct xhci_bw_info ep_bw_info[31];
2696         int i;
2697         struct xhci_input_control_ctx *ctrl_ctx;
2698         int old_active_eps = 0;
2699
2700         if (virt_dev->tt_info)
2701                 old_active_eps = virt_dev->tt_info->active_eps;
2702
2703         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2704         if (!ctrl_ctx) {
2705                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2706                                 __func__);
2707                 return -ENOMEM;
2708         }
2709
2710         for (i = 0; i < 31; i++) {
2711                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2712                         continue;
2713
2714                 /* Make a copy of the BW info in case we need to revert this */
2715                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2716                                 sizeof(ep_bw_info[i]));
2717                 /* Drop the endpoint from the interval table if the endpoint is
2718                  * being dropped or changed.
2719                  */
2720                 if (EP_IS_DROPPED(ctrl_ctx, i))
2721                         xhci_drop_ep_from_interval_table(xhci,
2722                                         &virt_dev->eps[i].bw_info,
2723                                         virt_dev->bw_table,
2724                                         virt_dev->udev,
2725                                         &virt_dev->eps[i],
2726                                         virt_dev->tt_info);
2727         }
2728         /* Overwrite the information stored in the endpoints' bw_info */
2729         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2730         for (i = 0; i < 31; i++) {
2731                 /* Add any changed or added endpoints to the interval table */
2732                 if (EP_IS_ADDED(ctrl_ctx, i))
2733                         xhci_add_ep_to_interval_table(xhci,
2734                                         &virt_dev->eps[i].bw_info,
2735                                         virt_dev->bw_table,
2736                                         virt_dev->udev,
2737                                         &virt_dev->eps[i],
2738                                         virt_dev->tt_info);
2739         }
2740
2741         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2742                 /* Ok, this fits in the bandwidth we have.
2743                  * Update the number of active TTs.
2744                  */
2745                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2746                 return 0;
2747         }
2748
2749         /* We don't have enough bandwidth for this, revert the stored info. */
2750         for (i = 0; i < 31; i++) {
2751                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2752                         continue;
2753
2754                 /* Drop the new copies of any added or changed endpoints from
2755                  * the interval table.
2756                  */
2757                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2758                         xhci_drop_ep_from_interval_table(xhci,
2759                                         &virt_dev->eps[i].bw_info,
2760                                         virt_dev->bw_table,
2761                                         virt_dev->udev,
2762                                         &virt_dev->eps[i],
2763                                         virt_dev->tt_info);
2764                 }
2765                 /* Revert the endpoint back to its old information */
2766                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2767                                 sizeof(ep_bw_info[i]));
2768                 /* Add any changed or dropped endpoints back into the table */
2769                 if (EP_IS_DROPPED(ctrl_ctx, i))
2770                         xhci_add_ep_to_interval_table(xhci,
2771                                         &virt_dev->eps[i].bw_info,
2772                                         virt_dev->bw_table,
2773                                         virt_dev->udev,
2774                                         &virt_dev->eps[i],
2775                                         virt_dev->tt_info);
2776         }
2777         return -ENOMEM;
2778 }
2779
2780
2781 /* Issue a configure endpoint command or evaluate context command
2782  * and wait for it to finish.
2783  */
2784 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2785                 struct usb_device *udev,
2786                 struct xhci_command *command,
2787                 bool ctx_change, bool must_succeed)
2788 {
2789         int ret;
2790         unsigned long flags;
2791         struct xhci_input_control_ctx *ctrl_ctx;
2792         struct xhci_virt_device *virt_dev;
2793         struct xhci_slot_ctx *slot_ctx;
2794
2795         if (!command)
2796                 return -EINVAL;
2797
2798         spin_lock_irqsave(&xhci->lock, flags);
2799
2800         if (xhci->xhc_state & XHCI_STATE_DYING) {
2801                 spin_unlock_irqrestore(&xhci->lock, flags);
2802                 return -ESHUTDOWN;
2803         }
2804
2805         virt_dev = xhci->devs[udev->slot_id];
2806
2807         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2808         if (!ctrl_ctx) {
2809                 spin_unlock_irqrestore(&xhci->lock, flags);
2810                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2811                                 __func__);
2812                 return -ENOMEM;
2813         }
2814
2815         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2816                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2817                 spin_unlock_irqrestore(&xhci->lock, flags);
2818                 xhci_warn(xhci, "Not enough host resources, "
2819                                 "active endpoint contexts = %u\n",
2820                                 xhci->num_active_eps);
2821                 return -ENOMEM;
2822         }
2823         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2824             xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2825                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2826                         xhci_free_host_resources(xhci, ctrl_ctx);
2827                 spin_unlock_irqrestore(&xhci->lock, flags);
2828                 xhci_warn(xhci, "Not enough bandwidth\n");
2829                 return -ENOMEM;
2830         }
2831
2832         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2833
2834         trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2835         trace_xhci_configure_endpoint(slot_ctx);
2836
2837         if (!ctx_change)
2838                 ret = xhci_queue_configure_endpoint(xhci, command,
2839                                 command->in_ctx->dma,
2840                                 udev->slot_id, must_succeed);
2841         else
2842                 ret = xhci_queue_evaluate_context(xhci, command,
2843                                 command->in_ctx->dma,
2844                                 udev->slot_id, must_succeed);
2845         if (ret < 0) {
2846                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2847                         xhci_free_host_resources(xhci, ctrl_ctx);
2848                 spin_unlock_irqrestore(&xhci->lock, flags);
2849                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2850                                 "FIXME allocate a new ring segment");
2851                 return -ENOMEM;
2852         }
2853         xhci_ring_cmd_db(xhci);
2854         spin_unlock_irqrestore(&xhci->lock, flags);
2855
2856         /* Wait for the configure endpoint command to complete */
2857         wait_for_completion(command->completion);
2858
2859         if (!ctx_change)
2860                 ret = xhci_configure_endpoint_result(xhci, udev,
2861                                                      &command->status);
2862         else
2863                 ret = xhci_evaluate_context_result(xhci, udev,
2864                                                    &command->status);
2865
2866         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2867                 spin_lock_irqsave(&xhci->lock, flags);
2868                 /* If the command failed, remove the reserved resources.
2869                  * Otherwise, clean up the estimate to include dropped eps.
2870                  */
2871                 if (ret)
2872                         xhci_free_host_resources(xhci, ctrl_ctx);
2873                 else
2874                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2875                 spin_unlock_irqrestore(&xhci->lock, flags);
2876         }
2877         return ret;
2878 }
2879
2880 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2881         struct xhci_virt_device *vdev, int i)
2882 {
2883         struct xhci_virt_ep *ep = &vdev->eps[i];
2884
2885         if (ep->ep_state & EP_HAS_STREAMS) {
2886                 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2887                                 xhci_get_endpoint_address(i));
2888                 xhci_free_stream_info(xhci, ep->stream_info);
2889                 ep->stream_info = NULL;
2890                 ep->ep_state &= ~EP_HAS_STREAMS;
2891         }
2892 }
2893
2894 /* Called after one or more calls to xhci_add_endpoint() or
2895  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2896  * to call xhci_reset_bandwidth().
2897  *
2898  * Since we are in the middle of changing either configuration or
2899  * installing a new alt setting, the USB core won't allow URBs to be
2900  * enqueued for any endpoint on the old config or interface.  Nothing
2901  * else should be touching the xhci->devs[slot_id] structure, so we
2902  * don't need to take the xhci->lock for manipulating that.
2903  */
2904 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2905 {
2906         int i;
2907         int ret = 0;
2908         struct xhci_hcd *xhci;
2909         struct xhci_virt_device *virt_dev;
2910         struct xhci_input_control_ctx *ctrl_ctx;
2911         struct xhci_slot_ctx *slot_ctx;
2912         struct xhci_command *command;
2913
2914         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2915         if (ret <= 0)
2916                 return ret;
2917         xhci = hcd_to_xhci(hcd);
2918         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2919                 (xhci->xhc_state & XHCI_STATE_REMOVING))
2920                 return -ENODEV;
2921
2922         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2923         virt_dev = xhci->devs[udev->slot_id];
2924
2925         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2926         if (!command)
2927                 return -ENOMEM;
2928
2929         command->in_ctx = virt_dev->in_ctx;
2930
2931         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2932         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2933         if (!ctrl_ctx) {
2934                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2935                                 __func__);
2936                 ret = -ENOMEM;
2937                 goto command_cleanup;
2938         }
2939         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2940         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2941         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2942
2943         /* Don't issue the command if there's no endpoints to update. */
2944         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2945             ctrl_ctx->drop_flags == 0) {
2946                 ret = 0;
2947                 goto command_cleanup;
2948         }
2949         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2950         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2951         for (i = 31; i >= 1; i--) {
2952                 __le32 le32 = cpu_to_le32(BIT(i));
2953
2954                 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2955                     || (ctrl_ctx->add_flags & le32) || i == 1) {
2956                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2957                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2958                         break;
2959                 }
2960         }
2961
2962         ret = xhci_configure_endpoint(xhci, udev, command,
2963                         false, false);
2964         if (ret)
2965                 /* Callee should call reset_bandwidth() */
2966                 goto command_cleanup;
2967
2968         /* Free any rings that were dropped, but not changed. */
2969         for (i = 1; i < 31; i++) {
2970                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2971                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2972                         xhci_free_endpoint_ring(xhci, virt_dev, i);
2973                         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2974                 }
2975         }
2976         xhci_zero_in_ctx(xhci, virt_dev);
2977         /*
2978          * Install any rings for completely new endpoints or changed endpoints,
2979          * and free any old rings from changed endpoints.
2980          */
2981         for (i = 1; i < 31; i++) {
2982                 if (!virt_dev->eps[i].new_ring)
2983                         continue;
2984                 /* Only free the old ring if it exists.
2985                  * It may not if this is the first add of an endpoint.
2986                  */
2987                 if (virt_dev->eps[i].ring) {
2988                         xhci_free_endpoint_ring(xhci, virt_dev, i);
2989                 }
2990                 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2991                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2992                 virt_dev->eps[i].new_ring = NULL;
2993                 xhci_debugfs_create_endpoint(xhci, virt_dev, i);
2994         }
2995 command_cleanup:
2996         kfree(command->completion);
2997         kfree(command);
2998
2999         return ret;
3000 }
3001
3002 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3003 {
3004         struct xhci_hcd *xhci;
3005         struct xhci_virt_device *virt_dev;
3006         int i, ret;
3007
3008         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3009         if (ret <= 0)
3010                 return;
3011         xhci = hcd_to_xhci(hcd);
3012
3013         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3014         virt_dev = xhci->devs[udev->slot_id];
3015         /* Free any rings allocated for added endpoints */
3016         for (i = 0; i < 31; i++) {
3017                 if (virt_dev->eps[i].new_ring) {
3018                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3019                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3020                         virt_dev->eps[i].new_ring = NULL;
3021                 }
3022         }
3023         xhci_zero_in_ctx(xhci, virt_dev);
3024 }
3025
3026 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3027                 struct xhci_container_ctx *in_ctx,
3028                 struct xhci_container_ctx *out_ctx,
3029                 struct xhci_input_control_ctx *ctrl_ctx,
3030                 u32 add_flags, u32 drop_flags)
3031 {
3032         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3033         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3034         xhci_slot_copy(xhci, in_ctx, out_ctx);
3035         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3036 }
3037
3038 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
3039                 unsigned int slot_id, unsigned int ep_index,
3040                 struct xhci_dequeue_state *deq_state)
3041 {
3042         struct xhci_input_control_ctx *ctrl_ctx;
3043         struct xhci_container_ctx *in_ctx;
3044         struct xhci_ep_ctx *ep_ctx;
3045         u32 added_ctxs;
3046         dma_addr_t addr;
3047
3048         in_ctx = xhci->devs[slot_id]->in_ctx;
3049         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
3050         if (!ctrl_ctx) {
3051                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3052                                 __func__);
3053                 return;
3054         }
3055
3056         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
3057                         xhci->devs[slot_id]->out_ctx, ep_index);
3058         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
3059         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
3060                         deq_state->new_deq_ptr);
3061         if (addr == 0) {
3062                 xhci_warn(xhci, "WARN Cannot submit config ep after "
3063                                 "reset ep command\n");
3064                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
3065                                 deq_state->new_deq_seg,
3066                                 deq_state->new_deq_ptr);
3067                 return;
3068         }
3069         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
3070
3071         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
3072         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
3073                         xhci->devs[slot_id]->out_ctx, ctrl_ctx,
3074                         added_ctxs, added_ctxs);
3075 }
3076
3077 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int slot_id,
3078                                unsigned int ep_index, unsigned int stream_id,
3079                                struct xhci_td *td)
3080 {
3081         struct xhci_dequeue_state deq_state;
3082
3083         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
3084                         "Cleaning up stalled endpoint ring");
3085         /* We need to move the HW's dequeue pointer past this TD,
3086          * or it will attempt to resend it on the next doorbell ring.
3087          */
3088         xhci_find_new_dequeue_state(xhci, slot_id, ep_index, stream_id, td,
3089                                     &deq_state);
3090
3091         if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
3092                 return;
3093
3094         /* HW with the reset endpoint quirk will use the saved dequeue state to
3095          * issue a configure endpoint command later.
3096          */
3097         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
3098                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
3099                                 "Queueing new dequeue state");
3100                 xhci_queue_new_dequeue_state(xhci, slot_id,
3101                                 ep_index, &deq_state);
3102         } else {
3103                 /* Better hope no one uses the input context between now and the
3104                  * reset endpoint completion!
3105                  * XXX: No idea how this hardware will react when stream rings
3106                  * are enabled.
3107                  */
3108                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3109                                 "Setting up input context for "
3110                                 "configure endpoint command");
3111                 xhci_setup_input_ctx_for_quirk(xhci, slot_id,
3112                                 ep_index, &deq_state);
3113         }
3114 }
3115
3116 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3117                                   struct usb_host_endpoint *host_ep)
3118 {
3119         struct xhci_hcd         *xhci;
3120         struct xhci_virt_device *vdev;
3121         struct xhci_virt_ep     *ep;
3122         struct usb_device       *udev;
3123         unsigned long           flags;
3124         unsigned int            ep_index;
3125
3126         xhci = hcd_to_xhci(hcd);
3127 rescan:
3128         spin_lock_irqsave(&xhci->lock, flags);
3129
3130         udev = (struct usb_device *)host_ep->hcpriv;
3131         if (!udev || !udev->slot_id)
3132                 goto done;
3133
3134         vdev = xhci->devs[udev->slot_id];
3135         if (!vdev)
3136                 goto done;
3137
3138         ep_index = xhci_get_endpoint_index(&host_ep->desc);
3139         ep = &vdev->eps[ep_index];
3140         if (!ep)
3141                 goto done;
3142
3143         /* wait for hub_tt_work to finish clearing hub TT */
3144         if (ep->ep_state & EP_CLEARING_TT) {
3145                 spin_unlock_irqrestore(&xhci->lock, flags);
3146                 schedule_timeout_uninterruptible(1);
3147                 goto rescan;
3148         }
3149
3150         if (ep->ep_state)
3151                 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3152                          ep->ep_state);
3153 done:
3154         host_ep->hcpriv = NULL;
3155         spin_unlock_irqrestore(&xhci->lock, flags);
3156 }
3157
3158 /*
3159  * Called after usb core issues a clear halt control message.
3160  * The host side of the halt should already be cleared by a reset endpoint
3161  * command issued when the STALL event was received.
3162  *
3163  * The reset endpoint command may only be issued to endpoints in the halted
3164  * state. For software that wishes to reset the data toggle or sequence number
3165  * of an endpoint that isn't in the halted state this function will issue a
3166  * configure endpoint command with the Drop and Add bits set for the target
3167  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3168  */
3169
3170 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3171                 struct usb_host_endpoint *host_ep)
3172 {
3173         struct xhci_hcd *xhci;
3174         struct usb_device *udev;
3175         struct xhci_virt_device *vdev;
3176         struct xhci_virt_ep *ep;
3177         struct xhci_input_control_ctx *ctrl_ctx;
3178         struct xhci_command *stop_cmd, *cfg_cmd;
3179         unsigned int ep_index;
3180         unsigned long flags;
3181         u32 ep_flag;
3182         int err;
3183
3184         xhci = hcd_to_xhci(hcd);
3185         if (!host_ep->hcpriv)
3186                 return;
3187         udev = (struct usb_device *) host_ep->hcpriv;
3188         vdev = xhci->devs[udev->slot_id];
3189
3190         /*
3191          * vdev may be lost due to xHC restore error and re-initialization
3192          * during S3/S4 resume. A new vdev will be allocated later by
3193          * xhci_discover_or_reset_device()
3194          */
3195         if (!udev->slot_id || !vdev)
3196                 return;
3197         ep_index = xhci_get_endpoint_index(&host_ep->desc);
3198         ep = &vdev->eps[ep_index];
3199         if (!ep)
3200                 return;
3201
3202         /* Bail out if toggle is already being cleared by a endpoint reset */
3203         spin_lock_irqsave(&xhci->lock, flags);
3204         if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3205                 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3206                 spin_unlock_irqrestore(&xhci->lock, flags);
3207                 return;
3208         }
3209         spin_unlock_irqrestore(&xhci->lock, flags);
3210         /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3211         if (usb_endpoint_xfer_control(&host_ep->desc) ||
3212             usb_endpoint_xfer_isoc(&host_ep->desc))
3213                 return;
3214
3215         ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3216
3217         if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3218                 return;
3219
3220         stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3221         if (!stop_cmd)
3222                 return;
3223
3224         cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3225         if (!cfg_cmd)
3226                 goto cleanup;
3227
3228         spin_lock_irqsave(&xhci->lock, flags);
3229
3230         /* block queuing new trbs and ringing ep doorbell */
3231         ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3232
3233         /*
3234          * Make sure endpoint ring is empty before resetting the toggle/seq.
3235          * Driver is required to synchronously cancel all transfer request.
3236          * Stop the endpoint to force xHC to update the output context
3237          */
3238
3239         if (!list_empty(&ep->ring->td_list)) {
3240                 dev_err(&udev->dev, "EP not empty, refuse reset\n");
3241                 spin_unlock_irqrestore(&xhci->lock, flags);
3242                 xhci_free_command(xhci, cfg_cmd);
3243                 goto cleanup;
3244         }
3245
3246         err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3247                                         ep_index, 0);
3248         if (err < 0) {
3249                 spin_unlock_irqrestore(&xhci->lock, flags);
3250                 xhci_free_command(xhci, cfg_cmd);
3251                 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3252                                 __func__, err);
3253                 goto cleanup;
3254         }
3255
3256         xhci_ring_cmd_db(xhci);
3257         spin_unlock_irqrestore(&xhci->lock, flags);
3258
3259         wait_for_completion(stop_cmd->completion);
3260
3261         spin_lock_irqsave(&xhci->lock, flags);
3262
3263         /* config ep command clears toggle if add and drop ep flags are set */
3264         ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3265         if (!ctrl_ctx) {
3266                 spin_unlock_irqrestore(&xhci->lock, flags);
3267                 xhci_free_command(xhci, cfg_cmd);
3268                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3269                                 __func__);
3270                 goto cleanup;
3271         }
3272
3273         xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3274                                            ctrl_ctx, ep_flag, ep_flag);
3275         xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3276
3277         err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3278                                       udev->slot_id, false);
3279         if (err < 0) {
3280                 spin_unlock_irqrestore(&xhci->lock, flags);
3281                 xhci_free_command(xhci, cfg_cmd);
3282                 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3283                                 __func__, err);
3284                 goto cleanup;
3285         }
3286
3287         xhci_ring_cmd_db(xhci);
3288         spin_unlock_irqrestore(&xhci->lock, flags);
3289
3290         wait_for_completion(cfg_cmd->completion);
3291
3292         xhci_free_command(xhci, cfg_cmd);
3293 cleanup:
3294         xhci_free_command(xhci, stop_cmd);
3295         spin_lock_irqsave(&xhci->lock, flags);
3296         if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3297                 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3298         spin_unlock_irqrestore(&xhci->lock, flags);
3299 }
3300
3301 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3302                 struct usb_device *udev, struct usb_host_endpoint *ep,
3303                 unsigned int slot_id)
3304 {
3305         int ret;
3306         unsigned int ep_index;
3307         unsigned int ep_state;
3308
3309         if (!ep)
3310                 return -EINVAL;
3311         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3312         if (ret <= 0)
3313                 return ret ? ret : -EINVAL;
3314         if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3315                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3316                                 " descriptor for ep 0x%x does not support streams\n",
3317                                 ep->desc.bEndpointAddress);
3318                 return -EINVAL;
3319         }
3320
3321         ep_index = xhci_get_endpoint_index(&ep->desc);
3322         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3323         if (ep_state & EP_HAS_STREAMS ||
3324                         ep_state & EP_GETTING_STREAMS) {
3325                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3326                                 "already has streams set up.\n",
3327                                 ep->desc.bEndpointAddress);
3328                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3329                                 "dynamic stream context array reallocation.\n");
3330                 return -EINVAL;
3331         }
3332         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3333                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3334                                 "endpoint 0x%x; URBs are pending.\n",
3335                                 ep->desc.bEndpointAddress);
3336                 return -EINVAL;
3337         }
3338         return 0;
3339 }
3340
3341 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3342                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3343 {
3344         unsigned int max_streams;
3345
3346         /* The stream context array size must be a power of two */
3347         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3348         /*
3349          * Find out how many primary stream array entries the host controller
3350          * supports.  Later we may use secondary stream arrays (similar to 2nd
3351          * level page entries), but that's an optional feature for xHCI host
3352          * controllers. xHCs must support at least 4 stream IDs.
3353          */
3354         max_streams = HCC_MAX_PSA(xhci->hcc_params);
3355         if (*num_stream_ctxs > max_streams) {
3356                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3357                                 max_streams);
3358                 *num_stream_ctxs = max_streams;
3359                 *num_streams = max_streams;
3360         }
3361 }
3362
3363 /* Returns an error code if one of the endpoint already has streams.
3364  * This does not change any data structures, it only checks and gathers
3365  * information.
3366  */
3367 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3368                 struct usb_device *udev,
3369                 struct usb_host_endpoint **eps, unsigned int num_eps,
3370                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3371 {
3372         unsigned int max_streams;
3373         unsigned int endpoint_flag;
3374         int i;
3375         int ret;
3376
3377         for (i = 0; i < num_eps; i++) {
3378                 ret = xhci_check_streams_endpoint(xhci, udev,
3379                                 eps[i], udev->slot_id);
3380                 if (ret < 0)
3381                         return ret;
3382
3383                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3384                 if (max_streams < (*num_streams - 1)) {
3385                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3386                                         eps[i]->desc.bEndpointAddress,
3387                                         max_streams);
3388                         *num_streams = max_streams+1;
3389                 }
3390
3391                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3392                 if (*changed_ep_bitmask & endpoint_flag)
3393                         return -EINVAL;
3394                 *changed_ep_bitmask |= endpoint_flag;
3395         }
3396         return 0;
3397 }
3398
3399 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3400                 struct usb_device *udev,
3401                 struct usb_host_endpoint **eps, unsigned int num_eps)
3402 {
3403         u32 changed_ep_bitmask = 0;
3404         unsigned int slot_id;
3405         unsigned int ep_index;
3406         unsigned int ep_state;
3407         int i;
3408
3409         slot_id = udev->slot_id;
3410         if (!xhci->devs[slot_id])
3411                 return 0;
3412
3413         for (i = 0; i < num_eps; i++) {
3414                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3415                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3416                 /* Are streams already being freed for the endpoint? */
3417                 if (ep_state & EP_GETTING_NO_STREAMS) {
3418                         xhci_warn(xhci, "WARN Can't disable streams for "
3419                                         "endpoint 0x%x, "
3420                                         "streams are being disabled already\n",
3421                                         eps[i]->desc.bEndpointAddress);
3422                         return 0;
3423                 }
3424                 /* Are there actually any streams to free? */
3425                 if (!(ep_state & EP_HAS_STREAMS) &&
3426                                 !(ep_state & EP_GETTING_STREAMS)) {
3427                         xhci_warn(xhci, "WARN Can't disable streams for "
3428                                         "endpoint 0x%x, "
3429                                         "streams are already disabled!\n",
3430                                         eps[i]->desc.bEndpointAddress);
3431                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3432                                         "with non-streams endpoint\n");
3433                         return 0;
3434                 }
3435                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3436         }
3437         return changed_ep_bitmask;
3438 }
3439
3440 /*
3441  * The USB device drivers use this function (through the HCD interface in USB
3442  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3443  * coordinate mass storage command queueing across multiple endpoints (basically
3444  * a stream ID == a task ID).
3445  *
3446  * Setting up streams involves allocating the same size stream context array
3447  * for each endpoint and issuing a configure endpoint command for all endpoints.
3448  *
3449  * Don't allow the call to succeed if one endpoint only supports one stream
3450  * (which means it doesn't support streams at all).
3451  *
3452  * Drivers may get less stream IDs than they asked for, if the host controller
3453  * hardware or endpoints claim they can't support the number of requested
3454  * stream IDs.
3455  */
3456 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3457                 struct usb_host_endpoint **eps, unsigned int num_eps,
3458                 unsigned int num_streams, gfp_t mem_flags)
3459 {
3460         int i, ret;
3461         struct xhci_hcd *xhci;
3462         struct xhci_virt_device *vdev;
3463         struct xhci_command *config_cmd;
3464         struct xhci_input_control_ctx *ctrl_ctx;
3465         unsigned int ep_index;
3466         unsigned int num_stream_ctxs;
3467         unsigned int max_packet;
3468         unsigned long flags;
3469         u32 changed_ep_bitmask = 0;
3470
3471         if (!eps)
3472                 return -EINVAL;
3473
3474         /* Add one to the number of streams requested to account for
3475          * stream 0 that is reserved for xHCI usage.
3476          */
3477         num_streams += 1;
3478         xhci = hcd_to_xhci(hcd);
3479         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3480                         num_streams);
3481
3482         /* MaxPSASize value 0 (2 streams) means streams are not supported */
3483         if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3484                         HCC_MAX_PSA(xhci->hcc_params) < 4) {
3485                 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3486                 return -ENOSYS;
3487         }
3488
3489         config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3490         if (!config_cmd)
3491                 return -ENOMEM;
3492
3493         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3494         if (!ctrl_ctx) {
3495                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3496                                 __func__);
3497                 xhci_free_command(xhci, config_cmd);
3498                 return -ENOMEM;
3499         }
3500
3501         /* Check to make sure all endpoints are not already configured for
3502          * streams.  While we're at it, find the maximum number of streams that
3503          * all the endpoints will support and check for duplicate endpoints.
3504          */
3505         spin_lock_irqsave(&xhci->lock, flags);
3506         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3507                         num_eps, &num_streams, &changed_ep_bitmask);
3508         if (ret < 0) {
3509                 xhci_free_command(xhci, config_cmd);
3510                 spin_unlock_irqrestore(&xhci->lock, flags);
3511                 return ret;
3512         }
3513         if (num_streams <= 1) {
3514                 xhci_warn(xhci, "WARN: endpoints can't handle "
3515                                 "more than one stream.\n");
3516                 xhci_free_command(xhci, config_cmd);
3517                 spin_unlock_irqrestore(&xhci->lock, flags);
3518                 return -EINVAL;
3519         }
3520         vdev = xhci->devs[udev->slot_id];
3521         /* Mark each endpoint as being in transition, so
3522          * xhci_urb_enqueue() will reject all URBs.
3523          */
3524         for (i = 0; i < num_eps; i++) {
3525                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3526                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3527         }
3528         spin_unlock_irqrestore(&xhci->lock, flags);
3529
3530         /* Setup internal data structures and allocate HW data structures for
3531          * streams (but don't install the HW structures in the input context
3532          * until we're sure all memory allocation succeeded).
3533          */
3534         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3535         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3536                         num_stream_ctxs, num_streams);
3537
3538         for (i = 0; i < num_eps; i++) {
3539                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3540                 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3541                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3542                                 num_stream_ctxs,
3543                                 num_streams,
3544                                 max_packet, mem_flags);
3545                 if (!vdev->eps[ep_index].stream_info)
3546                         goto cleanup;
3547                 /* Set maxPstreams in endpoint context and update deq ptr to
3548                  * point to stream context array. FIXME
3549                  */
3550         }
3551
3552         /* Set up the input context for a configure endpoint command. */
3553         for (i = 0; i < num_eps; i++) {
3554                 struct xhci_ep_ctx *ep_ctx;
3555
3556                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3557                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3558
3559                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3560                                 vdev->out_ctx, ep_index);
3561                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3562                                 vdev->eps[ep_index].stream_info);
3563         }
3564         /* Tell the HW to drop its old copy of the endpoint context info
3565          * and add the updated copy from the input context.
3566          */
3567         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3568                         vdev->out_ctx, ctrl_ctx,
3569                         changed_ep_bitmask, changed_ep_bitmask);
3570
3571         /* Issue and wait for the configure endpoint command */
3572         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3573                         false, false);
3574
3575         /* xHC rejected the configure endpoint command for some reason, so we
3576          * leave the old ring intact and free our internal streams data
3577          * structure.
3578          */
3579         if (ret < 0)
3580                 goto cleanup;
3581
3582         spin_lock_irqsave(&xhci->lock, flags);
3583         for (i = 0; i < num_eps; i++) {
3584                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3585                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3586                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3587                          udev->slot_id, ep_index);
3588                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3589         }
3590         xhci_free_command(xhci, config_cmd);
3591         spin_unlock_irqrestore(&xhci->lock, flags);
3592
3593         for (i = 0; i < num_eps; i++) {
3594                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3595                 xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3596         }
3597         /* Subtract 1 for stream 0, which drivers can't use */
3598         return num_streams - 1;
3599
3600 cleanup:
3601         /* If it didn't work, free the streams! */
3602         for (i = 0; i < num_eps; i++) {
3603                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3604                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3605                 vdev->eps[ep_index].stream_info = NULL;
3606                 /* FIXME Unset maxPstreams in endpoint context and
3607                  * update deq ptr to point to normal string ring.
3608                  */
3609                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3610                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3611                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3612         }
3613         xhci_free_command(xhci, config_cmd);
3614         return -ENOMEM;
3615 }
3616
3617 /* Transition the endpoint from using streams to being a "normal" endpoint
3618  * without streams.
3619  *
3620  * Modify the endpoint context state, submit a configure endpoint command,
3621  * and free all endpoint rings for streams if that completes successfully.
3622  */
3623 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3624                 struct usb_host_endpoint **eps, unsigned int num_eps,
3625                 gfp_t mem_flags)
3626 {
3627         int i, ret;
3628         struct xhci_hcd *xhci;
3629         struct xhci_virt_device *vdev;
3630         struct xhci_command *command;
3631         struct xhci_input_control_ctx *ctrl_ctx;
3632         unsigned int ep_index;
3633         unsigned long flags;
3634         u32 changed_ep_bitmask;
3635
3636         xhci = hcd_to_xhci(hcd);
3637         vdev = xhci->devs[udev->slot_id];
3638
3639         /* Set up a configure endpoint command to remove the streams rings */
3640         spin_lock_irqsave(&xhci->lock, flags);
3641         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3642                         udev, eps, num_eps);
3643         if (changed_ep_bitmask == 0) {
3644                 spin_unlock_irqrestore(&xhci->lock, flags);
3645                 return -EINVAL;
3646         }
3647
3648         /* Use the xhci_command structure from the first endpoint.  We may have
3649          * allocated too many, but the driver may call xhci_free_streams() for
3650          * each endpoint it grouped into one call to xhci_alloc_streams().
3651          */
3652         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3653         command = vdev->eps[ep_index].stream_info->free_streams_command;
3654         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3655         if (!ctrl_ctx) {
3656                 spin_unlock_irqrestore(&xhci->lock, flags);
3657                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3658                                 __func__);
3659                 return -EINVAL;
3660         }
3661
3662         for (i = 0; i < num_eps; i++) {
3663                 struct xhci_ep_ctx *ep_ctx;
3664
3665                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3666                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3667                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3668                         EP_GETTING_NO_STREAMS;
3669
3670                 xhci_endpoint_copy(xhci, command->in_ctx,
3671                                 vdev->out_ctx, ep_index);
3672                 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3673                                 &vdev->eps[ep_index]);
3674         }
3675         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3676                         vdev->out_ctx, ctrl_ctx,
3677                         changed_ep_bitmask, changed_ep_bitmask);
3678         spin_unlock_irqrestore(&xhci->lock, flags);
3679
3680         /* Issue and wait for the configure endpoint command,
3681          * which must succeed.
3682          */
3683         ret = xhci_configure_endpoint(xhci, udev, command,
3684                         false, true);
3685
3686         /* xHC rejected the configure endpoint command for some reason, so we
3687          * leave the streams rings intact.
3688          */
3689         if (ret < 0)
3690                 return ret;
3691
3692         spin_lock_irqsave(&xhci->lock, flags);
3693         for (i = 0; i < num_eps; i++) {
3694                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3695                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3696                 vdev->eps[ep_index].stream_info = NULL;
3697                 /* FIXME Unset maxPstreams in endpoint context and
3698                  * update deq ptr to point to normal string ring.
3699                  */
3700                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3701                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3702         }
3703         spin_unlock_irqrestore(&xhci->lock, flags);
3704
3705         return 0;
3706 }
3707
3708 /*
3709  * Deletes endpoint resources for endpoints that were active before a Reset
3710  * Device command, or a Disable Slot command.  The Reset Device command leaves
3711  * the control endpoint intact, whereas the Disable Slot command deletes it.
3712  *
3713  * Must be called with xhci->lock held.
3714  */
3715 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3716         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3717 {
3718         int i;
3719         unsigned int num_dropped_eps = 0;
3720         unsigned int drop_flags = 0;
3721
3722         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3723                 if (virt_dev->eps[i].ring) {
3724                         drop_flags |= 1 << i;
3725                         num_dropped_eps++;
3726                 }
3727         }
3728         xhci->num_active_eps -= num_dropped_eps;
3729         if (num_dropped_eps)
3730                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3731                                 "Dropped %u ep ctxs, flags = 0x%x, "
3732                                 "%u now active.",
3733                                 num_dropped_eps, drop_flags,
3734                                 xhci->num_active_eps);
3735 }
3736
3737 /*
3738  * This submits a Reset Device Command, which will set the device state to 0,
3739  * set the device address to 0, and disable all the endpoints except the default
3740  * control endpoint.  The USB core should come back and call
3741  * xhci_address_device(), and then re-set up the configuration.  If this is
3742  * called because of a usb_reset_and_verify_device(), then the old alternate
3743  * settings will be re-installed through the normal bandwidth allocation
3744  * functions.
3745  *
3746  * Wait for the Reset Device command to finish.  Remove all structures
3747  * associated with the endpoints that were disabled.  Clear the input device
3748  * structure? Reset the control endpoint 0 max packet size?
3749  *
3750  * If the virt_dev to be reset does not exist or does not match the udev,
3751  * it means the device is lost, possibly due to the xHC restore error and
3752  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3753  * re-allocate the device.
3754  */
3755 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3756                 struct usb_device *udev)
3757 {
3758         int ret, i;
3759         unsigned long flags;
3760         struct xhci_hcd *xhci;
3761         unsigned int slot_id;
3762         struct xhci_virt_device *virt_dev;
3763         struct xhci_command *reset_device_cmd;
3764         struct xhci_slot_ctx *slot_ctx;
3765         int old_active_eps = 0;
3766
3767         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3768         if (ret <= 0)
3769                 return ret;
3770         xhci = hcd_to_xhci(hcd);
3771         slot_id = udev->slot_id;
3772         virt_dev = xhci->devs[slot_id];
3773         if (!virt_dev) {
3774                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3775                                 "not exist. Re-allocate the device\n", slot_id);
3776                 ret = xhci_alloc_dev(hcd, udev);
3777                 if (ret == 1)
3778                         return 0;
3779                 else
3780                         return -EINVAL;
3781         }
3782
3783         if (virt_dev->tt_info)
3784                 old_active_eps = virt_dev->tt_info->active_eps;
3785
3786         if (virt_dev->udev != udev) {
3787                 /* If the virt_dev and the udev does not match, this virt_dev
3788                  * may belong to another udev.
3789                  * Re-allocate the device.
3790                  */
3791                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3792                                 "not match the udev. Re-allocate the device\n",
3793                                 slot_id);
3794                 ret = xhci_alloc_dev(hcd, udev);
3795                 if (ret == 1)
3796                         return 0;
3797                 else
3798                         return -EINVAL;
3799         }
3800
3801         /* If device is not setup, there is no point in resetting it */
3802         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3803         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3804                                                 SLOT_STATE_DISABLED)
3805                 return 0;
3806
3807         trace_xhci_discover_or_reset_device(slot_ctx);
3808
3809         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3810         /* Allocate the command structure that holds the struct completion.
3811          * Assume we're in process context, since the normal device reset
3812          * process has to wait for the device anyway.  Storage devices are
3813          * reset as part of error handling, so use GFP_NOIO instead of
3814          * GFP_KERNEL.
3815          */
3816         reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3817         if (!reset_device_cmd) {
3818                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3819                 return -ENOMEM;
3820         }
3821
3822         /* Attempt to submit the Reset Device command to the command ring */
3823         spin_lock_irqsave(&xhci->lock, flags);
3824
3825         ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3826         if (ret) {
3827                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3828                 spin_unlock_irqrestore(&xhci->lock, flags);
3829                 goto command_cleanup;
3830         }
3831         xhci_ring_cmd_db(xhci);
3832         spin_unlock_irqrestore(&xhci->lock, flags);
3833
3834         /* Wait for the Reset Device command to finish */
3835         wait_for_completion(reset_device_cmd->completion);
3836
3837         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3838          * unless we tried to reset a slot ID that wasn't enabled,
3839          * or the device wasn't in the addressed or configured state.
3840          */
3841         ret = reset_device_cmd->status;
3842         switch (ret) {
3843         case COMP_COMMAND_ABORTED:
3844         case COMP_COMMAND_RING_STOPPED:
3845                 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3846                 ret = -ETIME;
3847                 goto command_cleanup;
3848         case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3849         case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3850                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3851                                 slot_id,
3852                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3853                 xhci_dbg(xhci, "Not freeing device rings.\n");
3854                 /* Don't treat this as an error.  May change my mind later. */
3855                 ret = 0;
3856                 goto command_cleanup;
3857         case COMP_SUCCESS:
3858                 xhci_dbg(xhci, "Successful reset device command.\n");
3859                 break;
3860         default:
3861                 if (xhci_is_vendor_info_code(xhci, ret))
3862                         break;
3863                 xhci_warn(xhci, "Unknown completion code %u for "
3864                                 "reset device command.\n", ret);
3865                 ret = -EINVAL;
3866                 goto command_cleanup;
3867         }
3868
3869         /* Free up host controller endpoint resources */
3870         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3871                 spin_lock_irqsave(&xhci->lock, flags);
3872                 /* Don't delete the default control endpoint resources */
3873                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3874                 spin_unlock_irqrestore(&xhci->lock, flags);
3875         }
3876
3877         /* Everything but endpoint 0 is disabled, so free the rings. */
3878         for (i = 1; i < 31; i++) {
3879                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3880
3881                 if (ep->ep_state & EP_HAS_STREAMS) {
3882                         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3883                                         xhci_get_endpoint_address(i));
3884                         xhci_free_stream_info(xhci, ep->stream_info);
3885                         ep->stream_info = NULL;
3886                         ep->ep_state &= ~EP_HAS_STREAMS;
3887                 }
3888
3889                 if (ep->ring) {
3890                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3891                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3892                 }
3893                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3894                         xhci_drop_ep_from_interval_table(xhci,
3895                                         &virt_dev->eps[i].bw_info,
3896                                         virt_dev->bw_table,
3897                                         udev,
3898                                         &virt_dev->eps[i],
3899                                         virt_dev->tt_info);
3900                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3901         }
3902         /* If necessary, update the number of active TTs on this root port */
3903         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3904         virt_dev->flags = 0;
3905         ret = 0;
3906
3907 command_cleanup:
3908         xhci_free_command(xhci, reset_device_cmd);
3909         return ret;
3910 }
3911
3912 /*
3913  * At this point, the struct usb_device is about to go away, the device has
3914  * disconnected, and all traffic has been stopped and the endpoints have been
3915  * disabled.  Free any HC data structures associated with that device.
3916  */
3917 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3918 {
3919         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3920         struct xhci_virt_device *virt_dev;
3921         struct xhci_slot_ctx *slot_ctx;
3922         int i, ret;
3923
3924         /*
3925          * We called pm_runtime_get_noresume when the device was attached.
3926          * Decrement the counter here to allow controller to runtime suspend
3927          * if no devices remain.
3928          */
3929         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3930                 pm_runtime_put_noidle(hcd->self.controller);
3931
3932         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3933         /* If the host is halted due to driver unload, we still need to free the
3934          * device.
3935          */
3936         if (ret <= 0 && ret != -ENODEV)
3937                 return;
3938
3939         virt_dev = xhci->devs[udev->slot_id];
3940         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3941         trace_xhci_free_dev(slot_ctx);
3942
3943         /* Stop any wayward timer functions (which may grab the lock) */
3944         for (i = 0; i < 31; i++) {
3945                 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3946                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3947         }
3948         virt_dev->udev = NULL;
3949         xhci_disable_slot(xhci, udev->slot_id);
3950         xhci_free_virt_device(xhci, udev->slot_id);
3951 }
3952
3953 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3954 {
3955         struct xhci_command *command;
3956         unsigned long flags;
3957         u32 state;
3958         int ret = 0;
3959
3960         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3961         if (!command)
3962                 return -ENOMEM;
3963
3964         xhci_debugfs_remove_slot(xhci, slot_id);
3965
3966         spin_lock_irqsave(&xhci->lock, flags);
3967         /* Don't disable the slot if the host controller is dead. */
3968         state = readl(&xhci->op_regs->status);
3969         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3970                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3971                 spin_unlock_irqrestore(&xhci->lock, flags);
3972                 kfree(command);
3973                 return -ENODEV;
3974         }
3975
3976         ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3977                                 slot_id);
3978         if (ret) {
3979                 spin_unlock_irqrestore(&xhci->lock, flags);
3980                 kfree(command);
3981                 return ret;
3982         }
3983         xhci_ring_cmd_db(xhci);
3984         spin_unlock_irqrestore(&xhci->lock, flags);
3985
3986         wait_for_completion(command->completion);
3987
3988         if (command->status != COMP_SUCCESS)
3989                 xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
3990                           slot_id, command->status);
3991
3992         xhci_free_command(xhci, command);
3993
3994         return ret;
3995 }
3996
3997 /*
3998  * Checks if we have enough host controller resources for the default control
3999  * endpoint.
4000  *
4001  * Must be called with xhci->lock held.
4002  */
4003 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
4004 {
4005         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
4006                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4007                                 "Not enough ep ctxs: "
4008                                 "%u active, need to add 1, limit is %u.",
4009                                 xhci->num_active_eps, xhci->limit_active_eps);
4010                 return -ENOMEM;
4011         }
4012         xhci->num_active_eps += 1;
4013         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4014                         "Adding 1 ep ctx, %u now active.",
4015                         xhci->num_active_eps);
4016         return 0;
4017 }
4018
4019
4020 /*
4021  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
4022  * timed out, or allocating memory failed.  Returns 1 on success.
4023  */
4024 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
4025 {
4026         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4027         struct xhci_virt_device *vdev;
4028         struct xhci_slot_ctx *slot_ctx;
4029         unsigned long flags;
4030         int ret, slot_id;
4031         struct xhci_command *command;
4032
4033         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4034         if (!command)
4035                 return 0;
4036
4037         spin_lock_irqsave(&xhci->lock, flags);
4038         ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
4039         if (ret) {
4040                 spin_unlock_irqrestore(&xhci->lock, flags);
4041                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
4042                 xhci_free_command(xhci, command);
4043                 return 0;
4044         }
4045         xhci_ring_cmd_db(xhci);
4046         spin_unlock_irqrestore(&xhci->lock, flags);
4047
4048         wait_for_completion(command->completion);
4049         slot_id = command->slot_id;
4050
4051         if (!slot_id || command->status != COMP_SUCCESS) {
4052                 xhci_err(xhci, "Error while assigning device slot ID\n");
4053                 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4054                                 HCS_MAX_SLOTS(
4055                                         readl(&xhci->cap_regs->hcs_params1)));
4056                 xhci_free_command(xhci, command);
4057                 return 0;
4058         }
4059
4060         xhci_free_command(xhci, command);
4061
4062         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4063                 spin_lock_irqsave(&xhci->lock, flags);
4064                 ret = xhci_reserve_host_control_ep_resources(xhci);
4065                 if (ret) {
4066                         spin_unlock_irqrestore(&xhci->lock, flags);
4067                         xhci_warn(xhci, "Not enough host resources, "
4068                                         "active endpoint contexts = %u\n",
4069                                         xhci->num_active_eps);
4070                         goto disable_slot;
4071                 }
4072                 spin_unlock_irqrestore(&xhci->lock, flags);
4073         }
4074         /* Use GFP_NOIO, since this function can be called from
4075          * xhci_discover_or_reset_device(), which may be called as part of
4076          * mass storage driver error handling.
4077          */
4078         if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4079                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4080                 goto disable_slot;
4081         }
4082         vdev = xhci->devs[slot_id];
4083         slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4084         trace_xhci_alloc_dev(slot_ctx);
4085
4086         udev->slot_id = slot_id;
4087
4088         xhci_debugfs_create_slot(xhci, slot_id);
4089
4090         /*
4091          * If resetting upon resume, we can't put the controller into runtime
4092          * suspend if there is a device attached.
4093          */
4094         if (xhci->quirks & XHCI_RESET_ON_RESUME)
4095                 pm_runtime_get_noresume(hcd->self.controller);
4096
4097         /* Is this a LS or FS device under a HS hub? */
4098         /* Hub or peripherial? */
4099         return 1;
4100
4101 disable_slot:
4102         xhci_disable_slot(xhci, udev->slot_id);
4103         xhci_free_virt_device(xhci, udev->slot_id);
4104
4105         return 0;
4106 }
4107
4108 /*
4109  * Issue an Address Device command and optionally send a corresponding
4110  * SetAddress request to the device.
4111  */
4112 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4113                              enum xhci_setup_dev setup)
4114 {
4115         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4116         unsigned long flags;
4117         struct xhci_virt_device *virt_dev;
4118         int ret = 0;
4119         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4120         struct xhci_slot_ctx *slot_ctx;
4121         struct xhci_input_control_ctx *ctrl_ctx;
4122         u64 temp_64;
4123         struct xhci_command *command = NULL;
4124
4125         mutex_lock(&xhci->mutex);
4126
4127         if (xhci->xhc_state) {  /* dying, removing or halted */
4128                 ret = -ESHUTDOWN;
4129                 goto out;
4130         }
4131
4132         if (!udev->slot_id) {
4133                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4134                                 "Bad Slot ID %d", udev->slot_id);
4135                 ret = -EINVAL;
4136                 goto out;
4137         }
4138
4139         virt_dev = xhci->devs[udev->slot_id];
4140
4141         if (WARN_ON(!virt_dev)) {
4142                 /*
4143                  * In plug/unplug torture test with an NEC controller,
4144                  * a zero-dereference was observed once due to virt_dev = 0.
4145                  * Print useful debug rather than crash if it is observed again!
4146                  */
4147                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4148                         udev->slot_id);
4149                 ret = -EINVAL;
4150                 goto out;
4151         }
4152         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4153         trace_xhci_setup_device_slot(slot_ctx);
4154
4155         if (setup == SETUP_CONTEXT_ONLY) {
4156                 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4157                     SLOT_STATE_DEFAULT) {
4158                         xhci_dbg(xhci, "Slot already in default state\n");
4159                         goto out;
4160                 }
4161         }
4162
4163         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4164         if (!command) {
4165                 ret = -ENOMEM;
4166                 goto out;
4167         }
4168
4169         command->in_ctx = virt_dev->in_ctx;
4170
4171         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4172         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4173         if (!ctrl_ctx) {
4174                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4175                                 __func__);
4176                 ret = -EINVAL;
4177                 goto out;
4178         }
4179         /*
4180          * If this is the first Set Address since device plug-in or
4181          * virt_device realloaction after a resume with an xHCI power loss,
4182          * then set up the slot context.
4183          */
4184         if (!slot_ctx->dev_info)
4185                 xhci_setup_addressable_virt_dev(xhci, udev);
4186         /* Otherwise, update the control endpoint ring enqueue pointer. */
4187         else
4188                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4189         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4190         ctrl_ctx->drop_flags = 0;
4191
4192         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4193                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4194
4195         trace_xhci_address_ctrl_ctx(ctrl_ctx);
4196         spin_lock_irqsave(&xhci->lock, flags);
4197         trace_xhci_setup_device(virt_dev);
4198         ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4199                                         udev->slot_id, setup);
4200         if (ret) {
4201                 spin_unlock_irqrestore(&xhci->lock, flags);
4202                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4203                                 "FIXME: allocate a command ring segment");
4204                 goto out;
4205         }
4206         xhci_ring_cmd_db(xhci);
4207         spin_unlock_irqrestore(&xhci->lock, flags);
4208
4209         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4210         wait_for_completion(command->completion);
4211
4212         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
4213          * the SetAddress() "recovery interval" required by USB and aborting the
4214          * command on a timeout.
4215          */
4216         switch (command->status) {
4217         case COMP_COMMAND_ABORTED:
4218         case COMP_COMMAND_RING_STOPPED:
4219                 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4220                 ret = -ETIME;
4221                 break;
4222         case COMP_CONTEXT_STATE_ERROR:
4223         case COMP_SLOT_NOT_ENABLED_ERROR:
4224                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4225                          act, udev->slot_id);
4226                 ret = -EINVAL;
4227                 break;
4228         case COMP_USB_TRANSACTION_ERROR:
4229                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4230
4231                 mutex_unlock(&xhci->mutex);
4232                 ret = xhci_disable_slot(xhci, udev->slot_id);
4233                 xhci_free_virt_device(xhci, udev->slot_id);
4234                 if (!ret)
4235                         xhci_alloc_dev(hcd, udev);
4236                 kfree(command->completion);
4237                 kfree(command);
4238                 return -EPROTO;
4239         case COMP_INCOMPATIBLE_DEVICE_ERROR:
4240                 dev_warn(&udev->dev,
4241                          "ERROR: Incompatible device for setup %s command\n", act);
4242                 ret = -ENODEV;
4243                 break;
4244         case COMP_SUCCESS:
4245                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4246                                "Successful setup %s command", act);
4247                 break;
4248         default:
4249                 xhci_err(xhci,
4250                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
4251                          act, command->status);
4252                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4253                 ret = -EINVAL;
4254                 break;
4255         }
4256         if (ret)
4257                 goto out;
4258         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4259         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4260                         "Op regs DCBAA ptr = %#016llx", temp_64);
4261         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4262                 "Slot ID %d dcbaa entry @%p = %#016llx",
4263                 udev->slot_id,
4264                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4265                 (unsigned long long)
4266                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4267         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4268                         "Output Context DMA address = %#08llx",
4269                         (unsigned long long)virt_dev->out_ctx->dma);
4270         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4271                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4272         /*
4273          * USB core uses address 1 for the roothubs, so we add one to the
4274          * address given back to us by the HC.
4275          */
4276         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4277                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4278         /* Zero the input context control for later use */
4279         ctrl_ctx->add_flags = 0;
4280         ctrl_ctx->drop_flags = 0;
4281         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4282         udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4283
4284         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4285                        "Internal device address = %d",
4286                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4287 out:
4288         mutex_unlock(&xhci->mutex);
4289         if (command) {
4290                 kfree(command->completion);
4291                 kfree(command);
4292         }
4293         return ret;
4294 }
4295
4296 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4297 {
4298         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4299 }
4300
4301 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4302 {
4303         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4304 }
4305
4306 /*
4307  * Transfer the port index into real index in the HW port status
4308  * registers. Caculate offset between the port's PORTSC register
4309  * and port status base. Divide the number of per port register
4310  * to get the real index. The raw port number bases 1.
4311  */
4312 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4313 {
4314         struct xhci_hub *rhub;
4315
4316         rhub = xhci_get_rhub(hcd);
4317         return rhub->ports[port1 - 1]->hw_portnum + 1;
4318 }
4319
4320 /*
4321  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4322  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4323  */
4324 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4325                         struct usb_device *udev, u16 max_exit_latency)
4326 {
4327         struct xhci_virt_device *virt_dev;
4328         struct xhci_command *command;
4329         struct xhci_input_control_ctx *ctrl_ctx;
4330         struct xhci_slot_ctx *slot_ctx;
4331         unsigned long flags;
4332         int ret;
4333
4334         spin_lock_irqsave(&xhci->lock, flags);
4335
4336         virt_dev = xhci->devs[udev->slot_id];
4337
4338         /*
4339          * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4340          * xHC was re-initialized. Exit latency will be set later after
4341          * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4342          */
4343
4344         if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4345                 spin_unlock_irqrestore(&xhci->lock, flags);
4346                 return 0;
4347         }
4348
4349         /* Attempt to issue an Evaluate Context command to change the MEL. */
4350         command = xhci->lpm_command;
4351         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4352         if (!ctrl_ctx) {
4353                 spin_unlock_irqrestore(&xhci->lock, flags);
4354                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4355                                 __func__);
4356                 return -ENOMEM;
4357         }
4358
4359         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4360         spin_unlock_irqrestore(&xhci->lock, flags);
4361
4362         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4363         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4364         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4365         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4366         slot_ctx->dev_state = 0;
4367
4368         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4369                         "Set up evaluate context for LPM MEL change.");
4370
4371         /* Issue and wait for the evaluate context command. */
4372         ret = xhci_configure_endpoint(xhci, udev, command,
4373                         true, true);
4374
4375         if (!ret) {
4376                 spin_lock_irqsave(&xhci->lock, flags);
4377                 virt_dev->current_mel = max_exit_latency;
4378                 spin_unlock_irqrestore(&xhci->lock, flags);
4379         }
4380         return ret;
4381 }
4382
4383 #ifdef CONFIG_PM
4384
4385 /* BESL to HIRD Encoding array for USB2 LPM */
4386 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4387         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4388
4389 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4390 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4391                                         struct usb_device *udev)
4392 {
4393         int u2del, besl, besl_host;
4394         int besl_device = 0;
4395         u32 field;
4396
4397         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4398         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4399
4400         if (field & USB_BESL_SUPPORT) {
4401                 for (besl_host = 0; besl_host < 16; besl_host++) {
4402                         if (xhci_besl_encoding[besl_host] >= u2del)
4403                                 break;
4404                 }
4405                 /* Use baseline BESL value as default */
4406                 if (field & USB_BESL_BASELINE_VALID)
4407                         besl_device = USB_GET_BESL_BASELINE(field);
4408                 else if (field & USB_BESL_DEEP_VALID)
4409                         besl_device = USB_GET_BESL_DEEP(field);
4410         } else {
4411                 if (u2del <= 50)
4412                         besl_host = 0;
4413                 else
4414                         besl_host = (u2del - 51) / 75 + 1;
4415         }
4416
4417         besl = besl_host + besl_device;
4418         if (besl > 15)
4419                 besl = 15;
4420
4421         return besl;
4422 }
4423
4424 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4425 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4426 {
4427         u32 field;
4428         int l1;
4429         int besld = 0;
4430         int hirdm = 0;
4431
4432         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4433
4434         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4435         l1 = udev->l1_params.timeout / 256;
4436
4437         /* device has preferred BESLD */
4438         if (field & USB_BESL_DEEP_VALID) {
4439                 besld = USB_GET_BESL_DEEP(field);
4440                 hirdm = 1;
4441         }
4442
4443         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4444 }
4445
4446 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4447                         struct usb_device *udev, int enable)
4448 {
4449         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4450         struct xhci_port **ports;
4451         __le32 __iomem  *pm_addr, *hlpm_addr;
4452         u32             pm_val, hlpm_val, field;
4453         unsigned int    port_num;
4454         unsigned long   flags;
4455         int             hird, exit_latency;
4456         int             ret;
4457
4458         if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4459                 return -EPERM;
4460
4461         if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4462                         !udev->lpm_capable)
4463                 return -EPERM;
4464
4465         if (!udev->parent || udev->parent->parent ||
4466                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4467                 return -EPERM;
4468
4469         if (udev->usb2_hw_lpm_capable != 1)
4470                 return -EPERM;
4471
4472         spin_lock_irqsave(&xhci->lock, flags);
4473
4474         ports = xhci->usb2_rhub.ports;
4475         port_num = udev->portnum - 1;
4476         pm_addr = ports[port_num]->addr + PORTPMSC;
4477         pm_val = readl(pm_addr);
4478         hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4479
4480         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4481                         enable ? "enable" : "disable", port_num + 1);
4482
4483         if (enable) {
4484                 /* Host supports BESL timeout instead of HIRD */
4485                 if (udev->usb2_hw_lpm_besl_capable) {
4486                         /* if device doesn't have a preferred BESL value use a
4487                          * default one which works with mixed HIRD and BESL
4488                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4489                          */
4490                         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4491                         if ((field & USB_BESL_SUPPORT) &&
4492                             (field & USB_BESL_BASELINE_VALID))
4493                                 hird = USB_GET_BESL_BASELINE(field);
4494                         else
4495                                 hird = udev->l1_params.besl;
4496
4497                         exit_latency = xhci_besl_encoding[hird];
4498                         spin_unlock_irqrestore(&xhci->lock, flags);
4499
4500                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4501                          * input context for link powermanagement evaluate
4502                          * context commands. It is protected by hcd->bandwidth
4503                          * mutex and is shared by all devices. We need to set
4504                          * the max ext latency in USB 2 BESL LPM as well, so
4505                          * use the same mutex and xhci_change_max_exit_latency()
4506                          */
4507                         mutex_lock(hcd->bandwidth_mutex);
4508                         ret = xhci_change_max_exit_latency(xhci, udev,
4509                                                            exit_latency);
4510                         mutex_unlock(hcd->bandwidth_mutex);
4511
4512                         if (ret < 0)
4513                                 return ret;
4514                         spin_lock_irqsave(&xhci->lock, flags);
4515
4516                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4517                         writel(hlpm_val, hlpm_addr);
4518                         /* flush write */
4519                         readl(hlpm_addr);
4520                 } else {
4521                         hird = xhci_calculate_hird_besl(xhci, udev);
4522                 }
4523
4524                 pm_val &= ~PORT_HIRD_MASK;
4525                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4526                 writel(pm_val, pm_addr);
4527                 pm_val = readl(pm_addr);
4528                 pm_val |= PORT_HLE;
4529                 writel(pm_val, pm_addr);
4530                 /* flush write */
4531                 readl(pm_addr);
4532         } else {
4533                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4534                 writel(pm_val, pm_addr);
4535                 /* flush write */
4536                 readl(pm_addr);
4537                 if (udev->usb2_hw_lpm_besl_capable) {
4538                         spin_unlock_irqrestore(&xhci->lock, flags);
4539                         mutex_lock(hcd->bandwidth_mutex);
4540                         xhci_change_max_exit_latency(xhci, udev, 0);
4541                         mutex_unlock(hcd->bandwidth_mutex);
4542                         readl_poll_timeout(ports[port_num]->addr, pm_val,
4543                                            (pm_val & PORT_PLS_MASK) == XDEV_U0,
4544                                            100, 10000);
4545                         return 0;
4546                 }
4547         }
4548
4549         spin_unlock_irqrestore(&xhci->lock, flags);
4550         return 0;
4551 }
4552
4553 /* check if a usb2 port supports a given extened capability protocol
4554  * only USB2 ports extended protocol capability values are cached.
4555  * Return 1 if capability is supported
4556  */
4557 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4558                                            unsigned capability)
4559 {
4560         u32 port_offset, port_count;
4561         int i;
4562
4563         for (i = 0; i < xhci->num_ext_caps; i++) {
4564                 if (xhci->ext_caps[i] & capability) {
4565                         /* port offsets starts at 1 */
4566                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4567                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4568                         if (port >= port_offset &&
4569                             port < port_offset + port_count)
4570                                 return 1;
4571                 }
4572         }
4573         return 0;
4574 }
4575
4576 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4577 {
4578         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4579         int             portnum = udev->portnum - 1;
4580
4581         if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4582                 return 0;
4583
4584         /* we only support lpm for non-hub device connected to root hub yet */
4585         if (!udev->parent || udev->parent->parent ||
4586                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4587                 return 0;
4588
4589         if (xhci->hw_lpm_support == 1 &&
4590                         xhci_check_usb2_port_capability(
4591                                 xhci, portnum, XHCI_HLC)) {
4592                 udev->usb2_hw_lpm_capable = 1;
4593                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4594                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4595                 if (xhci_check_usb2_port_capability(xhci, portnum,
4596                                         XHCI_BLC))
4597                         udev->usb2_hw_lpm_besl_capable = 1;
4598         }
4599
4600         return 0;
4601 }
4602
4603 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4604
4605 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4606 static unsigned long long xhci_service_interval_to_ns(
4607                 struct usb_endpoint_descriptor *desc)
4608 {
4609         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4610 }
4611
4612 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4613                 enum usb3_link_state state)
4614 {
4615         unsigned long long sel;
4616         unsigned long long pel;
4617         unsigned int max_sel_pel;
4618         char *state_name;
4619
4620         switch (state) {
4621         case USB3_LPM_U1:
4622                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4623                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4624                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4625                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4626                 state_name = "U1";
4627                 break;
4628         case USB3_LPM_U2:
4629                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4630                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4631                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4632                 state_name = "U2";
4633                 break;
4634         default:
4635                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4636                                 __func__);
4637                 return USB3_LPM_DISABLED;
4638         }
4639
4640         if (sel <= max_sel_pel && pel <= max_sel_pel)
4641                 return USB3_LPM_DEVICE_INITIATED;
4642
4643         if (sel > max_sel_pel)
4644                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4645                                 "due to long SEL %llu ms\n",
4646                                 state_name, sel);
4647         else
4648                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4649                                 "due to long PEL %llu ms\n",
4650                                 state_name, pel);
4651         return USB3_LPM_DISABLED;
4652 }
4653
4654 /* The U1 timeout should be the maximum of the following values:
4655  *  - For control endpoints, U1 system exit latency (SEL) * 3
4656  *  - For bulk endpoints, U1 SEL * 5
4657  *  - For interrupt endpoints:
4658  *    - Notification EPs, U1 SEL * 3
4659  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4660  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4661  */
4662 static unsigned long long xhci_calculate_intel_u1_timeout(
4663                 struct usb_device *udev,
4664                 struct usb_endpoint_descriptor *desc)
4665 {
4666         unsigned long long timeout_ns;
4667         int ep_type;
4668         int intr_type;
4669
4670         ep_type = usb_endpoint_type(desc);
4671         switch (ep_type) {
4672         case USB_ENDPOINT_XFER_CONTROL:
4673                 timeout_ns = udev->u1_params.sel * 3;
4674                 break;
4675         case USB_ENDPOINT_XFER_BULK:
4676                 timeout_ns = udev->u1_params.sel * 5;
4677                 break;
4678         case USB_ENDPOINT_XFER_INT:
4679                 intr_type = usb_endpoint_interrupt_type(desc);
4680                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4681                         timeout_ns = udev->u1_params.sel * 3;
4682                         break;
4683                 }
4684                 /* Otherwise the calculation is the same as isoc eps */
4685                 fallthrough;
4686         case USB_ENDPOINT_XFER_ISOC:
4687                 timeout_ns = xhci_service_interval_to_ns(desc);
4688                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4689                 if (timeout_ns < udev->u1_params.sel * 2)
4690                         timeout_ns = udev->u1_params.sel * 2;
4691                 break;
4692         default:
4693                 return 0;
4694         }
4695
4696         return timeout_ns;
4697 }
4698
4699 /* Returns the hub-encoded U1 timeout value. */
4700 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4701                 struct usb_device *udev,
4702                 struct usb_endpoint_descriptor *desc)
4703 {
4704         unsigned long long timeout_ns;
4705
4706         /* Prevent U1 if service interval is shorter than U1 exit latency */
4707         if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4708                 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4709                         dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4710                         return USB3_LPM_DISABLED;
4711                 }
4712         }
4713
4714         if (xhci->quirks & XHCI_INTEL_HOST)
4715                 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4716         else
4717                 timeout_ns = udev->u1_params.sel;
4718
4719         /* The U1 timeout is encoded in 1us intervals.
4720          * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4721          */
4722         if (timeout_ns == USB3_LPM_DISABLED)
4723                 timeout_ns = 1;
4724         else
4725                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4726
4727         /* If the necessary timeout value is bigger than what we can set in the
4728          * USB 3.0 hub, we have to disable hub-initiated U1.
4729          */
4730         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4731                 return timeout_ns;
4732         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4733                         "due to long timeout %llu ms\n", timeout_ns);
4734         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4735 }
4736
4737 /* The U2 timeout should be the maximum of:
4738  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4739  *  - largest bInterval of any active periodic endpoint (to avoid going
4740  *    into lower power link states between intervals).
4741  *  - the U2 Exit Latency of the device
4742  */
4743 static unsigned long long xhci_calculate_intel_u2_timeout(
4744                 struct usb_device *udev,
4745                 struct usb_endpoint_descriptor *desc)
4746 {
4747         unsigned long long timeout_ns;
4748         unsigned long long u2_del_ns;
4749
4750         timeout_ns = 10 * 1000 * 1000;
4751
4752         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4753                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4754                 timeout_ns = xhci_service_interval_to_ns(desc);
4755
4756         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4757         if (u2_del_ns > timeout_ns)
4758                 timeout_ns = u2_del_ns;
4759
4760         return timeout_ns;
4761 }
4762
4763 /* Returns the hub-encoded U2 timeout value. */
4764 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4765                 struct usb_device *udev,
4766                 struct usb_endpoint_descriptor *desc)
4767 {
4768         unsigned long long timeout_ns;
4769
4770         /* Prevent U2 if service interval is shorter than U2 exit latency */
4771         if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4772                 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4773                         dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4774                         return USB3_LPM_DISABLED;
4775                 }
4776         }
4777
4778         if (xhci->quirks & XHCI_INTEL_HOST)
4779                 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4780         else
4781                 timeout_ns = udev->u2_params.sel;
4782
4783         /* The U2 timeout is encoded in 256us intervals */
4784         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4785         /* If the necessary timeout value is bigger than what we can set in the
4786          * USB 3.0 hub, we have to disable hub-initiated U2.
4787          */
4788         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4789                 return timeout_ns;
4790         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4791                         "due to long timeout %llu ms\n", timeout_ns);
4792         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4793 }
4794
4795 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4796                 struct usb_device *udev,
4797                 struct usb_endpoint_descriptor *desc,
4798                 enum usb3_link_state state,
4799                 u16 *timeout)
4800 {
4801         if (state == USB3_LPM_U1)
4802                 return xhci_calculate_u1_timeout(xhci, udev, desc);
4803         else if (state == USB3_LPM_U2)
4804                 return xhci_calculate_u2_timeout(xhci, udev, desc);
4805
4806         return USB3_LPM_DISABLED;
4807 }
4808
4809 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4810                 struct usb_device *udev,
4811                 struct usb_endpoint_descriptor *desc,
4812                 enum usb3_link_state state,
4813                 u16 *timeout)
4814 {
4815         u16 alt_timeout;
4816
4817         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4818                 desc, state, timeout);
4819
4820         /* If we found we can't enable hub-initiated LPM, and
4821          * the U1 or U2 exit latency was too high to allow
4822          * device-initiated LPM as well, then we will disable LPM
4823          * for this device, so stop searching any further.
4824          */
4825         if (alt_timeout == USB3_LPM_DISABLED) {
4826                 *timeout = alt_timeout;
4827                 return -E2BIG;
4828         }
4829         if (alt_timeout > *timeout)
4830                 *timeout = alt_timeout;
4831         return 0;
4832 }
4833
4834 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4835                 struct usb_device *udev,
4836                 struct usb_host_interface *alt,
4837                 enum usb3_link_state state,
4838                 u16 *timeout)
4839 {
4840         int j;
4841
4842         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4843                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4844                                         &alt->endpoint[j].desc, state, timeout))
4845                         return -E2BIG;
4846                 continue;
4847         }
4848         return 0;
4849 }
4850
4851 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4852                 enum usb3_link_state state)
4853 {
4854         struct usb_device *parent;
4855         unsigned int num_hubs;
4856
4857         if (state == USB3_LPM_U2)
4858                 return 0;
4859
4860         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4861         for (parent = udev->parent, num_hubs = 0; parent->parent;
4862                         parent = parent->parent)
4863                 num_hubs++;
4864
4865         if (num_hubs < 2)
4866                 return 0;
4867
4868         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4869                         " below second-tier hub.\n");
4870         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4871                         "to decrease power consumption.\n");
4872         return -E2BIG;
4873 }
4874
4875 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4876                 struct usb_device *udev,
4877                 enum usb3_link_state state)
4878 {
4879         if (xhci->quirks & XHCI_INTEL_HOST)
4880                 return xhci_check_intel_tier_policy(udev, state);
4881         else
4882                 return 0;
4883 }
4884
4885 /* Returns the U1 or U2 timeout that should be enabled.
4886  * If the tier check or timeout setting functions return with a non-zero exit
4887  * code, that means the timeout value has been finalized and we shouldn't look
4888  * at any more endpoints.
4889  */
4890 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4891                         struct usb_device *udev, enum usb3_link_state state)
4892 {
4893         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4894         struct usb_host_config *config;
4895         char *state_name;
4896         int i;
4897         u16 timeout = USB3_LPM_DISABLED;
4898
4899         if (state == USB3_LPM_U1)
4900                 state_name = "U1";
4901         else if (state == USB3_LPM_U2)
4902                 state_name = "U2";
4903         else {
4904                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4905                                 state);
4906                 return timeout;
4907         }
4908
4909         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4910                 return timeout;
4911
4912         /* Gather some information about the currently installed configuration
4913          * and alternate interface settings.
4914          */
4915         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4916                         state, &timeout))
4917                 return timeout;
4918
4919         config = udev->actconfig;
4920         if (!config)
4921                 return timeout;
4922
4923         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4924                 struct usb_driver *driver;
4925                 struct usb_interface *intf = config->interface[i];
4926
4927                 if (!intf)
4928                         continue;
4929
4930                 /* Check if any currently bound drivers want hub-initiated LPM
4931                  * disabled.
4932                  */
4933                 if (intf->dev.driver) {
4934                         driver = to_usb_driver(intf->dev.driver);
4935                         if (driver && driver->disable_hub_initiated_lpm) {
4936                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4937                                         state_name, driver->name);
4938                                 timeout = xhci_get_timeout_no_hub_lpm(udev,
4939                                                                       state);
4940                                 if (timeout == USB3_LPM_DISABLED)
4941                                         return timeout;
4942                         }
4943                 }
4944
4945                 /* Not sure how this could happen... */
4946                 if (!intf->cur_altsetting)
4947                         continue;
4948
4949                 if (xhci_update_timeout_for_interface(xhci, udev,
4950                                         intf->cur_altsetting,
4951                                         state, &timeout))
4952                         return timeout;
4953         }
4954         return timeout;
4955 }
4956
4957 static int calculate_max_exit_latency(struct usb_device *udev,
4958                 enum usb3_link_state state_changed,
4959                 u16 hub_encoded_timeout)
4960 {
4961         unsigned long long u1_mel_us = 0;
4962         unsigned long long u2_mel_us = 0;
4963         unsigned long long mel_us = 0;
4964         bool disabling_u1;
4965         bool disabling_u2;
4966         bool enabling_u1;
4967         bool enabling_u2;
4968
4969         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4970                         hub_encoded_timeout == USB3_LPM_DISABLED);
4971         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4972                         hub_encoded_timeout == USB3_LPM_DISABLED);
4973
4974         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4975                         hub_encoded_timeout != USB3_LPM_DISABLED);
4976         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4977                         hub_encoded_timeout != USB3_LPM_DISABLED);
4978
4979         /* If U1 was already enabled and we're not disabling it,
4980          * or we're going to enable U1, account for the U1 max exit latency.
4981          */
4982         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4983                         enabling_u1)
4984                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4985         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4986                         enabling_u2)
4987                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4988
4989         if (u1_mel_us > u2_mel_us)
4990                 mel_us = u1_mel_us;
4991         else
4992                 mel_us = u2_mel_us;
4993         /* xHCI host controller max exit latency field is only 16 bits wide. */
4994         if (mel_us > MAX_EXIT) {
4995                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4996                                 "is too big.\n", mel_us);
4997                 return -E2BIG;
4998         }
4999         return mel_us;
5000 }
5001
5002 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
5003 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5004                         struct usb_device *udev, enum usb3_link_state state)
5005 {
5006         struct xhci_hcd *xhci;
5007         u16 hub_encoded_timeout;
5008         int mel;
5009         int ret;
5010
5011         xhci = hcd_to_xhci(hcd);
5012         /* The LPM timeout values are pretty host-controller specific, so don't
5013          * enable hub-initiated timeouts unless the vendor has provided
5014          * information about their timeout algorithm.
5015          */
5016         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5017                         !xhci->devs[udev->slot_id])
5018                 return USB3_LPM_DISABLED;
5019
5020         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
5021         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
5022         if (mel < 0) {
5023                 /* Max Exit Latency is too big, disable LPM. */
5024                 hub_encoded_timeout = USB3_LPM_DISABLED;
5025                 mel = 0;
5026         }
5027
5028         ret = xhci_change_max_exit_latency(xhci, udev, mel);
5029         if (ret)
5030                 return ret;
5031         return hub_encoded_timeout;
5032 }
5033
5034 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5035                         struct usb_device *udev, enum usb3_link_state state)
5036 {
5037         struct xhci_hcd *xhci;
5038         u16 mel;
5039
5040         xhci = hcd_to_xhci(hcd);
5041         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5042                         !xhci->devs[udev->slot_id])
5043                 return 0;
5044
5045         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5046         return xhci_change_max_exit_latency(xhci, udev, mel);
5047 }
5048 #else /* CONFIG_PM */
5049
5050 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5051                                 struct usb_device *udev, int enable)
5052 {
5053         return 0;
5054 }
5055
5056 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5057 {
5058         return 0;
5059 }
5060
5061 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5062                         struct usb_device *udev, enum usb3_link_state state)
5063 {
5064         return USB3_LPM_DISABLED;
5065 }
5066
5067 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5068                         struct usb_device *udev, enum usb3_link_state state)
5069 {
5070         return 0;
5071 }
5072 #endif  /* CONFIG_PM */
5073
5074 /*-------------------------------------------------------------------------*/
5075
5076 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5077  * internal data structures for the device.
5078  */
5079 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5080                         struct usb_tt *tt, gfp_t mem_flags)
5081 {
5082         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5083         struct xhci_virt_device *vdev;
5084         struct xhci_command *config_cmd;
5085         struct xhci_input_control_ctx *ctrl_ctx;
5086         struct xhci_slot_ctx *slot_ctx;
5087         unsigned long flags;
5088         unsigned think_time;
5089         int ret;
5090
5091         /* Ignore root hubs */
5092         if (!hdev->parent)
5093                 return 0;
5094
5095         vdev = xhci->devs[hdev->slot_id];
5096         if (!vdev) {
5097                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5098                 return -EINVAL;
5099         }
5100
5101         config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5102         if (!config_cmd)
5103                 return -ENOMEM;
5104
5105         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5106         if (!ctrl_ctx) {
5107                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5108                                 __func__);
5109                 xhci_free_command(xhci, config_cmd);
5110                 return -ENOMEM;
5111         }
5112
5113         spin_lock_irqsave(&xhci->lock, flags);
5114         if (hdev->speed == USB_SPEED_HIGH &&
5115                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5116                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5117                 xhci_free_command(xhci, config_cmd);
5118                 spin_unlock_irqrestore(&xhci->lock, flags);
5119                 return -ENOMEM;
5120         }
5121
5122         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5123         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5124         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5125         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5126         /*
5127          * refer to section 6.2.2: MTT should be 0 for full speed hub,
5128          * but it may be already set to 1 when setup an xHCI virtual
5129          * device, so clear it anyway.
5130          */
5131         if (tt->multi)
5132                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5133         else if (hdev->speed == USB_SPEED_FULL)
5134                 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5135
5136         if (xhci->hci_version > 0x95) {
5137                 xhci_dbg(xhci, "xHCI version %x needs hub "
5138                                 "TT think time and number of ports\n",
5139                                 (unsigned int) xhci->hci_version);
5140                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5141                 /* Set TT think time - convert from ns to FS bit times.
5142                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
5143                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
5144                  *
5145                  * xHCI 1.0: this field shall be 0 if the device is not a
5146                  * High-spped hub.
5147                  */
5148                 think_time = tt->think_time;
5149                 if (think_time != 0)
5150                         think_time = (think_time / 666) - 1;
5151                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5152                         slot_ctx->tt_info |=
5153                                 cpu_to_le32(TT_THINK_TIME(think_time));
5154         } else {
5155                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5156                                 "TT think time or number of ports\n",
5157                                 (unsigned int) xhci->hci_version);
5158         }
5159         slot_ctx->dev_state = 0;
5160         spin_unlock_irqrestore(&xhci->lock, flags);
5161
5162         xhci_dbg(xhci, "Set up %s for hub device.\n",
5163                         (xhci->hci_version > 0x95) ?
5164                         "configure endpoint" : "evaluate context");
5165
5166         /* Issue and wait for the configure endpoint or
5167          * evaluate context command.
5168          */
5169         if (xhci->hci_version > 0x95)
5170                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5171                                 false, false);
5172         else
5173                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5174                                 true, false);
5175
5176         xhci_free_command(xhci, config_cmd);
5177         return ret;
5178 }
5179
5180 static int xhci_get_frame(struct usb_hcd *hcd)
5181 {
5182         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5183         /* EHCI mods by the periodic size.  Why? */
5184         return readl(&xhci->run_regs->microframe_index) >> 3;
5185 }
5186
5187 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5188 {
5189         struct xhci_hcd         *xhci;
5190         /*
5191          * TODO: Check with DWC3 clients for sysdev according to
5192          * quirks
5193          */
5194         struct device           *dev = hcd->self.sysdev;
5195         unsigned int            minor_rev;
5196         int                     retval;
5197
5198         /* Accept arbitrarily long scatter-gather lists */
5199         hcd->self.sg_tablesize = ~0;
5200
5201         /* support to build packet from discontinuous buffers */
5202         hcd->self.no_sg_constraint = 1;
5203
5204         /* XHCI controllers don't stop the ep queue on short packets :| */
5205         hcd->self.no_stop_on_short = 1;
5206
5207         xhci = hcd_to_xhci(hcd);
5208
5209         if (usb_hcd_is_primary_hcd(hcd)) {
5210                 xhci->main_hcd = hcd;
5211                 xhci->usb2_rhub.hcd = hcd;
5212                 /* Mark the first roothub as being USB 2.0.
5213                  * The xHCI driver will register the USB 3.0 roothub.
5214                  */
5215                 hcd->speed = HCD_USB2;
5216                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
5217                 /*
5218                  * USB 2.0 roothub under xHCI has an integrated TT,
5219                  * (rate matching hub) as opposed to having an OHCI/UHCI
5220                  * companion controller.
5221                  */
5222                 hcd->has_tt = 1;
5223         } else {
5224                 /*
5225                  * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5226                  * should return 0x31 for sbrn, or that the minor revision
5227                  * is a two digit BCD containig minor and sub-minor numbers.
5228                  * This was later clarified in xHCI 1.2.
5229                  *
5230                  * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5231                  * minor revision set to 0x1 instead of 0x10.
5232                  */
5233                 if (xhci->usb3_rhub.min_rev == 0x1)
5234                         minor_rev = 1;
5235                 else
5236                         minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5237
5238                 switch (minor_rev) {
5239                 case 2:
5240                         hcd->speed = HCD_USB32;
5241                         hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5242                         hcd->self.root_hub->rx_lanes = 2;
5243                         hcd->self.root_hub->tx_lanes = 2;
5244                         break;
5245                 case 1:
5246                         hcd->speed = HCD_USB31;
5247                         hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5248                         break;
5249                 }
5250                 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5251                           minor_rev,
5252                           minor_rev ? "Enhanced " : "");
5253
5254                 xhci->usb3_rhub.hcd = hcd;
5255                 /* xHCI private pointer was set in xhci_pci_probe for the second
5256                  * registered roothub.
5257                  */
5258                 return 0;
5259         }
5260
5261         mutex_init(&xhci->mutex);
5262         xhci->cap_regs = hcd->regs;
5263         xhci->op_regs = hcd->regs +
5264                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5265         xhci->run_regs = hcd->regs +
5266                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5267         /* Cache read-only capability registers */
5268         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5269         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5270         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5271         xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
5272         xhci->hci_version = HC_VERSION(xhci->hcc_params);
5273         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5274         if (xhci->hci_version > 0x100)
5275                 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5276
5277         xhci->quirks |= quirks;
5278
5279         get_quirks(dev, xhci);
5280
5281         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
5282          * success event after a short transfer. This quirk will ignore such
5283          * spurious event.
5284          */
5285         if (xhci->hci_version > 0x96)
5286                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5287
5288         /* Make sure the HC is halted. */
5289         retval = xhci_halt(xhci);
5290         if (retval)
5291                 return retval;
5292
5293         xhci_zero_64b_regs(xhci);
5294
5295         xhci_dbg(xhci, "Resetting HCD\n");
5296         /* Reset the internal HC memory state and registers. */
5297         retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
5298         if (retval)
5299                 return retval;
5300         xhci_dbg(xhci, "Reset complete\n");
5301
5302         /*
5303          * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5304          * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5305          * address memory pointers actually. So, this driver clears the AC64
5306          * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5307          * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5308          */
5309         if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5310                 xhci->hcc_params &= ~BIT(0);
5311
5312         /* Set dma_mask and coherent_dma_mask to 64-bits,
5313          * if xHC supports 64-bit addressing */
5314         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5315                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5316                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5317                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5318         } else {
5319                 /*
5320                  * This is to avoid error in cases where a 32-bit USB
5321                  * controller is used on a 64-bit capable system.
5322                  */
5323                 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5324                 if (retval)
5325                         return retval;
5326                 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5327                 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5328         }
5329
5330         xhci_dbg(xhci, "Calling HCD init\n");
5331         /* Initialize HCD and host controller data structures. */
5332         retval = xhci_init(hcd);
5333         if (retval)
5334                 return retval;
5335         xhci_dbg(xhci, "Called HCD init\n");
5336
5337         xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5338                   xhci->hcc_params, xhci->hci_version, xhci->quirks);
5339
5340         return 0;
5341 }
5342 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5343
5344 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5345                 struct usb_host_endpoint *ep)
5346 {
5347         struct xhci_hcd *xhci;
5348         struct usb_device *udev;
5349         unsigned int slot_id;
5350         unsigned int ep_index;
5351         unsigned long flags;
5352
5353         xhci = hcd_to_xhci(hcd);
5354
5355         spin_lock_irqsave(&xhci->lock, flags);
5356         udev = (struct usb_device *)ep->hcpriv;
5357         slot_id = udev->slot_id;
5358         ep_index = xhci_get_endpoint_index(&ep->desc);
5359
5360         xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5361         xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5362         spin_unlock_irqrestore(&xhci->lock, flags);
5363 }
5364
5365 static const struct hc_driver xhci_hc_driver = {
5366         .description =          "xhci-hcd",
5367         .product_desc =         "xHCI Host Controller",
5368         .hcd_priv_size =        sizeof(struct xhci_hcd),
5369
5370         /*
5371          * generic hardware linkage
5372          */
5373         .irq =                  xhci_irq,
5374         .flags =                HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5375                                 HCD_BH,
5376
5377         /*
5378          * basic lifecycle operations
5379          */
5380         .reset =                NULL, /* set in xhci_init_driver() */
5381         .start =                xhci_run,
5382         .stop =                 xhci_stop,
5383         .shutdown =             xhci_shutdown,
5384
5385         /*
5386          * managing i/o requests and associated device resources
5387          */
5388         .map_urb_for_dma =      xhci_map_urb_for_dma,
5389         .urb_enqueue =          xhci_urb_enqueue,
5390         .urb_dequeue =          xhci_urb_dequeue,
5391         .alloc_dev =            xhci_alloc_dev,
5392         .free_dev =             xhci_free_dev,
5393         .alloc_streams =        xhci_alloc_streams,
5394         .free_streams =         xhci_free_streams,
5395         .add_endpoint =         xhci_add_endpoint,
5396         .drop_endpoint =        xhci_drop_endpoint,
5397         .endpoint_disable =     xhci_endpoint_disable,
5398         .endpoint_reset =       xhci_endpoint_reset,
5399         .check_bandwidth =      xhci_check_bandwidth,
5400         .reset_bandwidth =      xhci_reset_bandwidth,
5401         .address_device =       xhci_address_device,
5402         .enable_device =        xhci_enable_device,
5403         .update_hub_device =    xhci_update_hub_device,
5404         .reset_device =         xhci_discover_or_reset_device,
5405
5406         /*
5407          * scheduling support
5408          */
5409         .get_frame_number =     xhci_get_frame,
5410
5411         /*
5412          * root hub support
5413          */
5414         .hub_control =          xhci_hub_control,
5415         .hub_status_data =      xhci_hub_status_data,
5416         .bus_suspend =          xhci_bus_suspend,
5417         .bus_resume =           xhci_bus_resume,
5418         .get_resuming_ports =   xhci_get_resuming_ports,
5419
5420         /*
5421          * call back when device connected and addressed
5422          */
5423         .update_device =        xhci_update_device,
5424         .set_usb2_hw_lpm =      xhci_set_usb2_hardware_lpm,
5425         .enable_usb3_lpm_timeout =      xhci_enable_usb3_lpm_timeout,
5426         .disable_usb3_lpm_timeout =     xhci_disable_usb3_lpm_timeout,
5427         .find_raw_port_number = xhci_find_raw_port_number,
5428         .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5429 };
5430
5431 void xhci_init_driver(struct hc_driver *drv,
5432                       const struct xhci_driver_overrides *over)
5433 {
5434         BUG_ON(!over);
5435
5436         /* Copy the generic table to drv then apply the overrides */
5437         *drv = xhci_hc_driver;
5438
5439         if (over) {
5440                 drv->hcd_priv_size += over->extra_priv_size;
5441                 if (over->reset)
5442                         drv->reset = over->reset;
5443                 if (over->start)
5444                         drv->start = over->start;
5445                 if (over->check_bandwidth)
5446                         drv->check_bandwidth = over->check_bandwidth;
5447                 if (over->reset_bandwidth)
5448                         drv->reset_bandwidth = over->reset_bandwidth;
5449         }
5450 }
5451 EXPORT_SYMBOL_GPL(xhci_init_driver);
5452
5453 MODULE_DESCRIPTION(DRIVER_DESC);
5454 MODULE_AUTHOR(DRIVER_AUTHOR);
5455 MODULE_LICENSE("GPL");
5456
5457 static int __init xhci_hcd_init(void)
5458 {
5459         /*
5460          * Check the compiler generated sizes of structures that must be laid
5461          * out in specific ways for hardware access.
5462          */
5463         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5464         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5465         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5466         /* xhci_device_control has eight fields, and also
5467          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5468          */
5469         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5470         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5471         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5472         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5473         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5474         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5475         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5476
5477         if (usb_disabled())
5478                 return -ENODEV;
5479
5480         xhci_debugfs_create_root();
5481
5482         return 0;
5483 }
5484
5485 /*
5486  * If an init function is provided, an exit function must also be provided
5487  * to allow module unload.
5488  */
5489 static void __exit xhci_hcd_fini(void)
5490 {
5491         xhci_debugfs_remove_root();
5492 }
5493
5494 module_init(xhci_hcd_init);
5495 module_exit(xhci_hcd_fini);