GNU Linux-libre 5.10.217-gnu1
[releases.git] / drivers / usb / host / xhci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10
11 #include <linux/pci.h>
12 #include <linux/iommu.h>
13 #include <linux/iopoll.h>
14 #include <linux/irq.h>
15 #include <linux/log2.h>
16 #include <linux/module.h>
17 #include <linux/moduleparam.h>
18 #include <linux/slab.h>
19 #include <linux/dmi.h>
20 #include <linux/dma-mapping.h>
21
22 #include "xhci.h"
23 #include "xhci-trace.h"
24 #include "xhci-mtk.h"
25 #include "xhci-debugfs.h"
26 #include "xhci-dbgcap.h"
27
28 #define DRIVER_AUTHOR "Sarah Sharp"
29 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
30
31 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
32
33 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
34 static int link_quirk;
35 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
36 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
37
38 static unsigned long long quirks;
39 module_param(quirks, ullong, S_IRUGO);
40 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
41
42 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
43 {
44         struct xhci_segment *seg = ring->first_seg;
45
46         if (!td || !td->start_seg)
47                 return false;
48         do {
49                 if (seg == td->start_seg)
50                         return true;
51                 seg = seg->next;
52         } while (seg && seg != ring->first_seg);
53
54         return false;
55 }
56
57 /*
58  * xhci_handshake - spin reading hc until handshake completes or fails
59  * @ptr: address of hc register to be read
60  * @mask: bits to look at in result of read
61  * @done: value of those bits when handshake succeeds
62  * @usec: timeout in microseconds
63  *
64  * Returns negative errno, or zero on success
65  *
66  * Success happens when the "mask" bits have the specified value (hardware
67  * handshake done).  There are two failure modes:  "usec" have passed (major
68  * hardware flakeout), or the register reads as all-ones (hardware removed).
69  */
70 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us)
71 {
72         u32     result;
73         int     ret;
74
75         ret = readl_poll_timeout_atomic(ptr, result,
76                                         (result & mask) == done ||
77                                         result == U32_MAX,
78                                         1, timeout_us);
79         if (result == U32_MAX)          /* card removed */
80                 return -ENODEV;
81
82         return ret;
83 }
84
85 /*
86  * Disable interrupts and begin the xHCI halting process.
87  */
88 void xhci_quiesce(struct xhci_hcd *xhci)
89 {
90         u32 halted;
91         u32 cmd;
92         u32 mask;
93
94         mask = ~(XHCI_IRQS);
95         halted = readl(&xhci->op_regs->status) & STS_HALT;
96         if (!halted)
97                 mask &= ~CMD_RUN;
98
99         cmd = readl(&xhci->op_regs->command);
100         cmd &= mask;
101         writel(cmd, &xhci->op_regs->command);
102 }
103
104 /*
105  * Force HC into halt state.
106  *
107  * Disable any IRQs and clear the run/stop bit.
108  * HC will complete any current and actively pipelined transactions, and
109  * should halt within 16 ms of the run/stop bit being cleared.
110  * Read HC Halted bit in the status register to see when the HC is finished.
111  */
112 int xhci_halt(struct xhci_hcd *xhci)
113 {
114         int ret;
115         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
116         xhci_quiesce(xhci);
117
118         ret = xhci_handshake(&xhci->op_regs->status,
119                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
120         if (ret) {
121                 xhci_warn(xhci, "Host halt failed, %d\n", ret);
122                 return ret;
123         }
124         xhci->xhc_state |= XHCI_STATE_HALTED;
125         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
126         return ret;
127 }
128
129 /*
130  * Set the run bit and wait for the host to be running.
131  */
132 int xhci_start(struct xhci_hcd *xhci)
133 {
134         u32 temp;
135         int ret;
136
137         temp = readl(&xhci->op_regs->command);
138         temp |= (CMD_RUN);
139         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
140                         temp);
141         writel(temp, &xhci->op_regs->command);
142
143         /*
144          * Wait for the HCHalted Status bit to be 0 to indicate the host is
145          * running.
146          */
147         ret = xhci_handshake(&xhci->op_regs->status,
148                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
149         if (ret == -ETIMEDOUT)
150                 xhci_err(xhci, "Host took too long to start, "
151                                 "waited %u microseconds.\n",
152                                 XHCI_MAX_HALT_USEC);
153         if (!ret) {
154                 /* clear state flags. Including dying, halted or removing */
155                 xhci->xhc_state = 0;
156                 xhci->run_graceperiod = jiffies + msecs_to_jiffies(500);
157         }
158
159         return ret;
160 }
161
162 /*
163  * Reset a halted HC.
164  *
165  * This resets pipelines, timers, counters, state machines, etc.
166  * Transactions will be terminated immediately, and operational registers
167  * will be set to their defaults.
168  */
169 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us)
170 {
171         u32 command;
172         u32 state;
173         int ret;
174
175         state = readl(&xhci->op_regs->status);
176
177         if (state == ~(u32)0) {
178                 xhci_warn(xhci, "Host not accessible, reset failed.\n");
179                 return -ENODEV;
180         }
181
182         if ((state & STS_HALT) == 0) {
183                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
184                 return 0;
185         }
186
187         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
188         command = readl(&xhci->op_regs->command);
189         command |= CMD_RESET;
190         writel(command, &xhci->op_regs->command);
191
192         /* Existing Intel xHCI controllers require a delay of 1 mS,
193          * after setting the CMD_RESET bit, and before accessing any
194          * HC registers. This allows the HC to complete the
195          * reset operation and be ready for HC register access.
196          * Without this delay, the subsequent HC register access,
197          * may result in a system hang very rarely.
198          */
199         if (xhci->quirks & XHCI_INTEL_HOST)
200                 udelay(1000);
201
202         ret = xhci_handshake(&xhci->op_regs->command, CMD_RESET, 0, timeout_us);
203         if (ret)
204                 return ret;
205
206         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
207                 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
208
209         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
210                          "Wait for controller to be ready for doorbell rings");
211         /*
212          * xHCI cannot write to any doorbells or operational registers other
213          * than status until the "Controller Not Ready" flag is cleared.
214          */
215         ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us);
216
217         xhci->usb2_rhub.bus_state.port_c_suspend = 0;
218         xhci->usb2_rhub.bus_state.suspended_ports = 0;
219         xhci->usb2_rhub.bus_state.resuming_ports = 0;
220         xhci->usb3_rhub.bus_state.port_c_suspend = 0;
221         xhci->usb3_rhub.bus_state.suspended_ports = 0;
222         xhci->usb3_rhub.bus_state.resuming_ports = 0;
223
224         return ret;
225 }
226
227 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
228 {
229         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
230         struct iommu_domain *domain;
231         int err, i;
232         u64 val;
233         u32 intrs;
234
235         /*
236          * Some Renesas controllers get into a weird state if they are
237          * reset while programmed with 64bit addresses (they will preserve
238          * the top half of the address in internal, non visible
239          * registers). You end up with half the address coming from the
240          * kernel, and the other half coming from the firmware. Also,
241          * changing the programming leads to extra accesses even if the
242          * controller is supposed to be halted. The controller ends up with
243          * a fatal fault, and is then ripe for being properly reset.
244          *
245          * Special care is taken to only apply this if the device is behind
246          * an iommu. Doing anything when there is no iommu is definitely
247          * unsafe...
248          */
249         domain = iommu_get_domain_for_dev(dev);
250         if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !domain ||
251             domain->type == IOMMU_DOMAIN_IDENTITY)
252                 return;
253
254         xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
255
256         /* Clear HSEIE so that faults do not get signaled */
257         val = readl(&xhci->op_regs->command);
258         val &= ~CMD_HSEIE;
259         writel(val, &xhci->op_regs->command);
260
261         /* Clear HSE (aka FATAL) */
262         val = readl(&xhci->op_regs->status);
263         val |= STS_FATAL;
264         writel(val, &xhci->op_regs->status);
265
266         /* Now zero the registers, and brace for impact */
267         val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
268         if (upper_32_bits(val))
269                 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
270         val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
271         if (upper_32_bits(val))
272                 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
273
274         intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
275                       ARRAY_SIZE(xhci->run_regs->ir_set));
276
277         for (i = 0; i < intrs; i++) {
278                 struct xhci_intr_reg __iomem *ir;
279
280                 ir = &xhci->run_regs->ir_set[i];
281                 val = xhci_read_64(xhci, &ir->erst_base);
282                 if (upper_32_bits(val))
283                         xhci_write_64(xhci, 0, &ir->erst_base);
284                 val= xhci_read_64(xhci, &ir->erst_dequeue);
285                 if (upper_32_bits(val))
286                         xhci_write_64(xhci, 0, &ir->erst_dequeue);
287         }
288
289         /* Wait for the fault to appear. It will be cleared on reset */
290         err = xhci_handshake(&xhci->op_regs->status,
291                              STS_FATAL, STS_FATAL,
292                              XHCI_MAX_HALT_USEC);
293         if (!err)
294                 xhci_info(xhci, "Fault detected\n");
295 }
296
297 #ifdef CONFIG_USB_PCI
298 /*
299  * Set up MSI
300  */
301 static int xhci_setup_msi(struct xhci_hcd *xhci)
302 {
303         int ret;
304         /*
305          * TODO:Check with MSI Soc for sysdev
306          */
307         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
308
309         ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
310         if (ret < 0) {
311                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
312                                 "failed to allocate MSI entry");
313                 return ret;
314         }
315
316         ret = request_irq(pdev->irq, xhci_msi_irq,
317                                 0, "xhci_hcd", xhci_to_hcd(xhci));
318         if (ret) {
319                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
320                                 "disable MSI interrupt");
321                 pci_free_irq_vectors(pdev);
322         }
323
324         return ret;
325 }
326
327 /*
328  * Set up MSI-X
329  */
330 static int xhci_setup_msix(struct xhci_hcd *xhci)
331 {
332         int i, ret = 0;
333         struct usb_hcd *hcd = xhci_to_hcd(xhci);
334         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
335
336         /*
337          * calculate number of msi-x vectors supported.
338          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
339          *   with max number of interrupters based on the xhci HCSPARAMS1.
340          * - num_online_cpus: maximum msi-x vectors per CPUs core.
341          *   Add additional 1 vector to ensure always available interrupt.
342          */
343         xhci->msix_count = min(num_online_cpus() + 1,
344                                 HCS_MAX_INTRS(xhci->hcs_params1));
345
346         ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
347                         PCI_IRQ_MSIX);
348         if (ret < 0) {
349                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
350                                 "Failed to enable MSI-X");
351                 return ret;
352         }
353
354         for (i = 0; i < xhci->msix_count; i++) {
355                 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
356                                 "xhci_hcd", xhci_to_hcd(xhci));
357                 if (ret)
358                         goto disable_msix;
359         }
360
361         hcd->msix_enabled = 1;
362         return ret;
363
364 disable_msix:
365         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
366         while (--i >= 0)
367                 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
368         pci_free_irq_vectors(pdev);
369         return ret;
370 }
371
372 /* Free any IRQs and disable MSI-X */
373 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
374 {
375         struct usb_hcd *hcd = xhci_to_hcd(xhci);
376         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
377
378         if (xhci->quirks & XHCI_PLAT)
379                 return;
380
381         /* return if using legacy interrupt */
382         if (hcd->irq > 0)
383                 return;
384
385         if (hcd->msix_enabled) {
386                 int i;
387
388                 for (i = 0; i < xhci->msix_count; i++)
389                         free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
390         } else {
391                 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
392         }
393
394         pci_free_irq_vectors(pdev);
395         hcd->msix_enabled = 0;
396 }
397
398 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
399 {
400         struct usb_hcd *hcd = xhci_to_hcd(xhci);
401
402         if (hcd->msix_enabled) {
403                 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
404                 int i;
405
406                 for (i = 0; i < xhci->msix_count; i++)
407                         synchronize_irq(pci_irq_vector(pdev, i));
408         }
409 }
410
411 static int xhci_try_enable_msi(struct usb_hcd *hcd)
412 {
413         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
414         struct pci_dev  *pdev;
415         int ret;
416
417         /* The xhci platform device has set up IRQs through usb_add_hcd. */
418         if (xhci->quirks & XHCI_PLAT)
419                 return 0;
420
421         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
422         /*
423          * Some Fresco Logic host controllers advertise MSI, but fail to
424          * generate interrupts.  Don't even try to enable MSI.
425          */
426         if (xhci->quirks & XHCI_BROKEN_MSI)
427                 goto legacy_irq;
428
429         /* unregister the legacy interrupt */
430         if (hcd->irq)
431                 free_irq(hcd->irq, hcd);
432         hcd->irq = 0;
433
434         ret = xhci_setup_msix(xhci);
435         if (ret)
436                 /* fall back to msi*/
437                 ret = xhci_setup_msi(xhci);
438
439         if (!ret) {
440                 hcd->msi_enabled = 1;
441                 return 0;
442         }
443
444         if (!pdev->irq) {
445                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
446                 return -EINVAL;
447         }
448
449  legacy_irq:
450         if (!strlen(hcd->irq_descr))
451                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
452                          hcd->driver->description, hcd->self.busnum);
453
454         /* fall back to legacy interrupt*/
455         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
456                         hcd->irq_descr, hcd);
457         if (ret) {
458                 xhci_err(xhci, "request interrupt %d failed\n",
459                                 pdev->irq);
460                 return ret;
461         }
462         hcd->irq = pdev->irq;
463         return 0;
464 }
465
466 #else
467
468 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
469 {
470         return 0;
471 }
472
473 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
474 {
475 }
476
477 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
478 {
479 }
480
481 #endif
482
483 static void compliance_mode_recovery(struct timer_list *t)
484 {
485         struct xhci_hcd *xhci;
486         struct usb_hcd *hcd;
487         struct xhci_hub *rhub;
488         u32 temp;
489         int i;
490
491         xhci = from_timer(xhci, t, comp_mode_recovery_timer);
492         rhub = &xhci->usb3_rhub;
493
494         for (i = 0; i < rhub->num_ports; i++) {
495                 temp = readl(rhub->ports[i]->addr);
496                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
497                         /*
498                          * Compliance Mode Detected. Letting USB Core
499                          * handle the Warm Reset
500                          */
501                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
502                                         "Compliance mode detected->port %d",
503                                         i + 1);
504                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
505                                         "Attempting compliance mode recovery");
506                         hcd = xhci->shared_hcd;
507
508                         if (hcd->state == HC_STATE_SUSPENDED)
509                                 usb_hcd_resume_root_hub(hcd);
510
511                         usb_hcd_poll_rh_status(hcd);
512                 }
513         }
514
515         if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
516                 mod_timer(&xhci->comp_mode_recovery_timer,
517                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
518 }
519
520 /*
521  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
522  * that causes ports behind that hardware to enter compliance mode sometimes.
523  * The quirk creates a timer that polls every 2 seconds the link state of
524  * each host controller's port and recovers it by issuing a Warm reset
525  * if Compliance mode is detected, otherwise the port will become "dead" (no
526  * device connections or disconnections will be detected anymore). Becasue no
527  * status event is generated when entering compliance mode (per xhci spec),
528  * this quirk is needed on systems that have the failing hardware installed.
529  */
530 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
531 {
532         xhci->port_status_u0 = 0;
533         timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
534                     0);
535         xhci->comp_mode_recovery_timer.expires = jiffies +
536                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
537
538         add_timer(&xhci->comp_mode_recovery_timer);
539         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
540                         "Compliance mode recovery timer initialized");
541 }
542
543 /*
544  * This function identifies the systems that have installed the SN65LVPE502CP
545  * USB3.0 re-driver and that need the Compliance Mode Quirk.
546  * Systems:
547  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
548  */
549 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
550 {
551         const char *dmi_product_name, *dmi_sys_vendor;
552
553         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
554         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
555         if (!dmi_product_name || !dmi_sys_vendor)
556                 return false;
557
558         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
559                 return false;
560
561         if (strstr(dmi_product_name, "Z420") ||
562                         strstr(dmi_product_name, "Z620") ||
563                         strstr(dmi_product_name, "Z820") ||
564                         strstr(dmi_product_name, "Z1 Workstation"))
565                 return true;
566
567         return false;
568 }
569
570 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
571 {
572         return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
573 }
574
575
576 /*
577  * Initialize memory for HCD and xHC (one-time init).
578  *
579  * Program the PAGESIZE register, initialize the device context array, create
580  * device contexts (?), set up a command ring segment (or two?), create event
581  * ring (one for now).
582  */
583 static int xhci_init(struct usb_hcd *hcd)
584 {
585         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
586         int retval = 0;
587
588         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
589         spin_lock_init(&xhci->lock);
590         if (xhci->hci_version == 0x95 && link_quirk) {
591                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
592                                 "QUIRK: Not clearing Link TRB chain bits.");
593                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
594         } else {
595                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
596                                 "xHCI doesn't need link TRB QUIRK");
597         }
598         retval = xhci_mem_init(xhci, GFP_KERNEL);
599         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
600
601         /* Initializing Compliance Mode Recovery Data If Needed */
602         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
603                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
604                 compliance_mode_recovery_timer_init(xhci);
605         }
606
607         return retval;
608 }
609
610 /*-------------------------------------------------------------------------*/
611
612
613 static int xhci_run_finished(struct xhci_hcd *xhci)
614 {
615         if (xhci_start(xhci)) {
616                 xhci_halt(xhci);
617                 return -ENODEV;
618         }
619         xhci->shared_hcd->state = HC_STATE_RUNNING;
620         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
621
622         if (xhci->quirks & XHCI_NEC_HOST)
623                 xhci_ring_cmd_db(xhci);
624
625         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
626                         "Finished xhci_run for USB3 roothub");
627         return 0;
628 }
629
630 /*
631  * Start the HC after it was halted.
632  *
633  * This function is called by the USB core when the HC driver is added.
634  * Its opposite is xhci_stop().
635  *
636  * xhci_init() must be called once before this function can be called.
637  * Reset the HC, enable device slot contexts, program DCBAAP, and
638  * set command ring pointer and event ring pointer.
639  *
640  * Setup MSI-X vectors and enable interrupts.
641  */
642 int xhci_run(struct usb_hcd *hcd)
643 {
644         u32 temp;
645         u64 temp_64;
646         int ret;
647         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
648
649         /* Start the xHCI host controller running only after the USB 2.0 roothub
650          * is setup.
651          */
652
653         hcd->uses_new_polling = 1;
654         if (!usb_hcd_is_primary_hcd(hcd))
655                 return xhci_run_finished(xhci);
656
657         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
658
659         ret = xhci_try_enable_msi(hcd);
660         if (ret)
661                 return ret;
662
663         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
664         temp_64 &= ~ERST_PTR_MASK;
665         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
666                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
667
668         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
669                         "// Set the interrupt modulation register");
670         temp = readl(&xhci->ir_set->irq_control);
671         temp &= ~ER_IRQ_INTERVAL_MASK;
672         temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
673         writel(temp, &xhci->ir_set->irq_control);
674
675         /* Set the HCD state before we enable the irqs */
676         temp = readl(&xhci->op_regs->command);
677         temp |= (CMD_EIE);
678         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
679                         "// Enable interrupts, cmd = 0x%x.", temp);
680         writel(temp, &xhci->op_regs->command);
681
682         temp = readl(&xhci->ir_set->irq_pending);
683         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
684                         "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
685                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
686         writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
687
688         if (xhci->quirks & XHCI_NEC_HOST) {
689                 struct xhci_command *command;
690
691                 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
692                 if (!command)
693                         return -ENOMEM;
694
695                 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
696                                 TRB_TYPE(TRB_NEC_GET_FW));
697                 if (ret)
698                         xhci_free_command(xhci, command);
699         }
700         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
701                         "Finished xhci_run for USB2 roothub");
702
703         set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags);
704
705         xhci_dbc_init(xhci);
706
707         xhci_debugfs_init(xhci);
708
709         return 0;
710 }
711 EXPORT_SYMBOL_GPL(xhci_run);
712
713 /*
714  * Stop xHCI driver.
715  *
716  * This function is called by the USB core when the HC driver is removed.
717  * Its opposite is xhci_run().
718  *
719  * Disable device contexts, disable IRQs, and quiesce the HC.
720  * Reset the HC, finish any completed transactions, and cleanup memory.
721  */
722 static void xhci_stop(struct usb_hcd *hcd)
723 {
724         u32 temp;
725         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
726
727         mutex_lock(&xhci->mutex);
728
729         /* Only halt host and free memory after both hcds are removed */
730         if (!usb_hcd_is_primary_hcd(hcd)) {
731                 mutex_unlock(&xhci->mutex);
732                 return;
733         }
734
735         xhci_dbc_exit(xhci);
736
737         spin_lock_irq(&xhci->lock);
738         xhci->xhc_state |= XHCI_STATE_HALTED;
739         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
740         xhci_halt(xhci);
741         xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
742         spin_unlock_irq(&xhci->lock);
743
744         xhci_cleanup_msix(xhci);
745
746         /* Deleting Compliance Mode Recovery Timer */
747         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
748                         (!(xhci_all_ports_seen_u0(xhci)))) {
749                 del_timer_sync(&xhci->comp_mode_recovery_timer);
750                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
751                                 "%s: compliance mode recovery timer deleted",
752                                 __func__);
753         }
754
755         if (xhci->quirks & XHCI_AMD_PLL_FIX)
756                 usb_amd_dev_put();
757
758         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
759                         "// Disabling event ring interrupts");
760         temp = readl(&xhci->op_regs->status);
761         writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
762         temp = readl(&xhci->ir_set->irq_pending);
763         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
764
765         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
766         xhci_mem_cleanup(xhci);
767         xhci_debugfs_exit(xhci);
768         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
769                         "xhci_stop completed - status = %x",
770                         readl(&xhci->op_regs->status));
771         mutex_unlock(&xhci->mutex);
772 }
773
774 /*
775  * Shutdown HC (not bus-specific)
776  *
777  * This is called when the machine is rebooting or halting.  We assume that the
778  * machine will be powered off, and the HC's internal state will be reset.
779  * Don't bother to free memory.
780  *
781  * This will only ever be called with the main usb_hcd (the USB3 roothub).
782  */
783 void xhci_shutdown(struct usb_hcd *hcd)
784 {
785         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
786
787         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
788                 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
789
790         /* Don't poll the roothubs after shutdown. */
791         xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
792                         __func__, hcd->self.busnum);
793         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
794         del_timer_sync(&hcd->rh_timer);
795
796         if (xhci->shared_hcd) {
797                 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
798                 del_timer_sync(&xhci->shared_hcd->rh_timer);
799         }
800
801         spin_lock_irq(&xhci->lock);
802         xhci_halt(xhci);
803
804         /*
805          * Workaround for spurious wakeps at shutdown with HSW, and for boot
806          * firmware delay in ADL-P PCH if port are left in U3 at shutdown
807          */
808         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP ||
809             xhci->quirks & XHCI_RESET_TO_DEFAULT)
810                 xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
811
812         spin_unlock_irq(&xhci->lock);
813
814         xhci_cleanup_msix(xhci);
815
816         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
817                         "xhci_shutdown completed - status = %x",
818                         readl(&xhci->op_regs->status));
819 }
820 EXPORT_SYMBOL_GPL(xhci_shutdown);
821
822 #ifdef CONFIG_PM
823 static void xhci_save_registers(struct xhci_hcd *xhci)
824 {
825         xhci->s3.command = readl(&xhci->op_regs->command);
826         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
827         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
828         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
829         xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
830         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
831         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
832         xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
833         xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
834 }
835
836 static void xhci_restore_registers(struct xhci_hcd *xhci)
837 {
838         writel(xhci->s3.command, &xhci->op_regs->command);
839         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
840         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
841         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
842         writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
843         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
844         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
845         writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
846         writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
847 }
848
849 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
850 {
851         u64     val_64;
852
853         /* step 2: initialize command ring buffer */
854         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
855         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
856                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
857                                       xhci->cmd_ring->dequeue) &
858                  (u64) ~CMD_RING_RSVD_BITS) |
859                 xhci->cmd_ring->cycle_state;
860         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
861                         "// Setting command ring address to 0x%llx",
862                         (long unsigned long) val_64);
863         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
864 }
865
866 /*
867  * The whole command ring must be cleared to zero when we suspend the host.
868  *
869  * The host doesn't save the command ring pointer in the suspend well, so we
870  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
871  * aligned, because of the reserved bits in the command ring dequeue pointer
872  * register.  Therefore, we can't just set the dequeue pointer back in the
873  * middle of the ring (TRBs are 16-byte aligned).
874  */
875 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
876 {
877         struct xhci_ring *ring;
878         struct xhci_segment *seg;
879
880         ring = xhci->cmd_ring;
881         seg = ring->deq_seg;
882         do {
883                 memset(seg->trbs, 0,
884                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
885                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
886                         cpu_to_le32(~TRB_CYCLE);
887                 seg = seg->next;
888         } while (seg != ring->deq_seg);
889
890         /* Reset the software enqueue and dequeue pointers */
891         ring->deq_seg = ring->first_seg;
892         ring->dequeue = ring->first_seg->trbs;
893         ring->enq_seg = ring->deq_seg;
894         ring->enqueue = ring->dequeue;
895
896         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
897         /*
898          * Ring is now zeroed, so the HW should look for change of ownership
899          * when the cycle bit is set to 1.
900          */
901         ring->cycle_state = 1;
902
903         /*
904          * Reset the hardware dequeue pointer.
905          * Yes, this will need to be re-written after resume, but we're paranoid
906          * and want to make sure the hardware doesn't access bogus memory
907          * because, say, the BIOS or an SMI started the host without changing
908          * the command ring pointers.
909          */
910         xhci_set_cmd_ring_deq(xhci);
911 }
912
913 /*
914  * Disable port wake bits if do_wakeup is not set.
915  *
916  * Also clear a possible internal port wake state left hanging for ports that
917  * detected termination but never successfully enumerated (trained to 0U).
918  * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
919  * at enumeration clears this wake, force one here as well for unconnected ports
920  */
921
922 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
923                                        struct xhci_hub *rhub,
924                                        bool do_wakeup)
925 {
926         unsigned long flags;
927         u32 t1, t2, portsc;
928         int i;
929
930         spin_lock_irqsave(&xhci->lock, flags);
931
932         for (i = 0; i < rhub->num_ports; i++) {
933                 portsc = readl(rhub->ports[i]->addr);
934                 t1 = xhci_port_state_to_neutral(portsc);
935                 t2 = t1;
936
937                 /* clear wake bits if do_wake is not set */
938                 if (!do_wakeup)
939                         t2 &= ~PORT_WAKE_BITS;
940
941                 /* Don't touch csc bit if connected or connect change is set */
942                 if (!(portsc & (PORT_CSC | PORT_CONNECT)))
943                         t2 |= PORT_CSC;
944
945                 if (t1 != t2) {
946                         writel(t2, rhub->ports[i]->addr);
947                         xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
948                                  rhub->hcd->self.busnum, i + 1, portsc, t2);
949                 }
950         }
951         spin_unlock_irqrestore(&xhci->lock, flags);
952 }
953
954 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
955 {
956         struct xhci_port        **ports;
957         int                     port_index;
958         u32                     status;
959         u32                     portsc;
960
961         status = readl(&xhci->op_regs->status);
962         if (status & STS_EINT)
963                 return true;
964         /*
965          * Checking STS_EINT is not enough as there is a lag between a change
966          * bit being set and the Port Status Change Event that it generated
967          * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
968          */
969
970         port_index = xhci->usb2_rhub.num_ports;
971         ports = xhci->usb2_rhub.ports;
972         while (port_index--) {
973                 portsc = readl(ports[port_index]->addr);
974                 if (portsc & PORT_CHANGE_MASK ||
975                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
976                         return true;
977         }
978         port_index = xhci->usb3_rhub.num_ports;
979         ports = xhci->usb3_rhub.ports;
980         while (port_index--) {
981                 portsc = readl(ports[port_index]->addr);
982                 if (portsc & PORT_CHANGE_MASK ||
983                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
984                         return true;
985         }
986         return false;
987 }
988
989 /*
990  * Stop HC (not bus-specific)
991  *
992  * This is called when the machine transition into S3/S4 mode.
993  *
994  */
995 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
996 {
997         int                     rc = 0;
998         unsigned int            delay = XHCI_MAX_HALT_USEC * 2;
999         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
1000         u32                     command;
1001         u32                     res;
1002
1003         if (!hcd->state)
1004                 return 0;
1005
1006         if (hcd->state != HC_STATE_SUSPENDED ||
1007                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
1008                 return -EINVAL;
1009
1010         /* Clear root port wake on bits if wakeup not allowed. */
1011         xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
1012         xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
1013
1014         if (!HCD_HW_ACCESSIBLE(hcd))
1015                 return 0;
1016
1017         xhci_dbc_suspend(xhci);
1018
1019         /* Don't poll the roothubs on bus suspend. */
1020         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
1021         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1022         del_timer_sync(&hcd->rh_timer);
1023         clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1024         del_timer_sync(&xhci->shared_hcd->rh_timer);
1025
1026         if (xhci->quirks & XHCI_SUSPEND_DELAY)
1027                 usleep_range(1000, 1500);
1028
1029         spin_lock_irq(&xhci->lock);
1030         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1031         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1032         /* step 1: stop endpoint */
1033         /* skipped assuming that port suspend has done */
1034
1035         /* step 2: clear Run/Stop bit */
1036         command = readl(&xhci->op_regs->command);
1037         command &= ~CMD_RUN;
1038         writel(command, &xhci->op_regs->command);
1039
1040         /* Some chips from Fresco Logic need an extraordinary delay */
1041         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1042
1043         if (xhci_handshake(&xhci->op_regs->status,
1044                       STS_HALT, STS_HALT, delay)) {
1045                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1046                 spin_unlock_irq(&xhci->lock);
1047                 return -ETIMEDOUT;
1048         }
1049         xhci_clear_command_ring(xhci);
1050
1051         /* step 3: save registers */
1052         xhci_save_registers(xhci);
1053
1054         /* step 4: set CSS flag */
1055         command = readl(&xhci->op_regs->command);
1056         command |= CMD_CSS;
1057         writel(command, &xhci->op_regs->command);
1058         xhci->broken_suspend = 0;
1059         if (xhci_handshake(&xhci->op_regs->status,
1060                                 STS_SAVE, 0, 20 * 1000)) {
1061         /*
1062          * AMD SNPS xHC 3.0 occasionally does not clear the
1063          * SSS bit of USBSTS and when driver tries to poll
1064          * to see if the xHC clears BIT(8) which never happens
1065          * and driver assumes that controller is not responding
1066          * and times out. To workaround this, its good to check
1067          * if SRE and HCE bits are not set (as per xhci
1068          * Section 5.4.2) and bypass the timeout.
1069          */
1070                 res = readl(&xhci->op_regs->status);
1071                 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1072                     (((res & STS_SRE) == 0) &&
1073                                 ((res & STS_HCE) == 0))) {
1074                         xhci->broken_suspend = 1;
1075                 } else {
1076                         xhci_warn(xhci, "WARN: xHC save state timeout\n");
1077                         spin_unlock_irq(&xhci->lock);
1078                         return -ETIMEDOUT;
1079                 }
1080         }
1081         spin_unlock_irq(&xhci->lock);
1082
1083         /*
1084          * Deleting Compliance Mode Recovery Timer because the xHCI Host
1085          * is about to be suspended.
1086          */
1087         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1088                         (!(xhci_all_ports_seen_u0(xhci)))) {
1089                 del_timer_sync(&xhci->comp_mode_recovery_timer);
1090                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1091                                 "%s: compliance mode recovery timer deleted",
1092                                 __func__);
1093         }
1094
1095         /* step 5: remove core well power */
1096         /* synchronize irq when using MSI-X */
1097         xhci_msix_sync_irqs(xhci);
1098
1099         return rc;
1100 }
1101 EXPORT_SYMBOL_GPL(xhci_suspend);
1102
1103 /*
1104  * start xHC (not bus-specific)
1105  *
1106  * This is called when the machine transition from S3/S4 mode.
1107  *
1108  */
1109 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1110 {
1111         u32                     command, temp = 0;
1112         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
1113         struct usb_hcd          *secondary_hcd;
1114         int                     retval = 0;
1115         bool                    comp_timer_running = false;
1116         bool                    pending_portevent = false;
1117         bool                    reinit_xhc = false;
1118
1119         if (!hcd->state)
1120                 return 0;
1121
1122         /* Wait a bit if either of the roothubs need to settle from the
1123          * transition into bus suspend.
1124          */
1125
1126         if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1127             time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1128                 msleep(100);
1129
1130         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1131         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1132
1133         spin_lock_irq(&xhci->lock);
1134
1135         if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
1136                 reinit_xhc = true;
1137
1138         if (!reinit_xhc) {
1139                 /*
1140                  * Some controllers might lose power during suspend, so wait
1141                  * for controller not ready bit to clear, just as in xHC init.
1142                  */
1143                 retval = xhci_handshake(&xhci->op_regs->status,
1144                                         STS_CNR, 0, 10 * 1000 * 1000);
1145                 if (retval) {
1146                         xhci_warn(xhci, "Controller not ready at resume %d\n",
1147                                   retval);
1148                         spin_unlock_irq(&xhci->lock);
1149                         return retval;
1150                 }
1151                 /* step 1: restore register */
1152                 xhci_restore_registers(xhci);
1153                 /* step 2: initialize command ring buffer */
1154                 xhci_set_cmd_ring_deq(xhci);
1155                 /* step 3: restore state and start state*/
1156                 /* step 3: set CRS flag */
1157                 command = readl(&xhci->op_regs->command);
1158                 command |= CMD_CRS;
1159                 writel(command, &xhci->op_regs->command);
1160                 /*
1161                  * Some controllers take up to 55+ ms to complete the controller
1162                  * restore so setting the timeout to 100ms. Xhci specification
1163                  * doesn't mention any timeout value.
1164                  */
1165                 if (xhci_handshake(&xhci->op_regs->status,
1166                               STS_RESTORE, 0, 100 * 1000)) {
1167                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1168                         spin_unlock_irq(&xhci->lock);
1169                         return -ETIMEDOUT;
1170                 }
1171         }
1172
1173         temp = readl(&xhci->op_regs->status);
1174
1175         /* re-initialize the HC on Restore Error, or Host Controller Error */
1176         if (temp & (STS_SRE | STS_HCE)) {
1177                 reinit_xhc = true;
1178                 if (!xhci->broken_suspend)
1179                         xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1180         }
1181
1182         if (reinit_xhc) {
1183                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1184                                 !(xhci_all_ports_seen_u0(xhci))) {
1185                         del_timer_sync(&xhci->comp_mode_recovery_timer);
1186                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1187                                 "Compliance Mode Recovery Timer deleted!");
1188                 }
1189
1190                 /* Let the USB core know _both_ roothubs lost power. */
1191                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1192                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1193
1194                 xhci_dbg(xhci, "Stop HCD\n");
1195                 xhci_halt(xhci);
1196                 xhci_zero_64b_regs(xhci);
1197                 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
1198                 spin_unlock_irq(&xhci->lock);
1199                 if (retval)
1200                         return retval;
1201                 xhci_cleanup_msix(xhci);
1202
1203                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1204                 temp = readl(&xhci->op_regs->status);
1205                 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1206                 temp = readl(&xhci->ir_set->irq_pending);
1207                 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1208
1209                 xhci_dbg(xhci, "cleaning up memory\n");
1210                 xhci_mem_cleanup(xhci);
1211                 xhci_debugfs_exit(xhci);
1212                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1213                             readl(&xhci->op_regs->status));
1214
1215                 /* USB core calls the PCI reinit and start functions twice:
1216                  * first with the primary HCD, and then with the secondary HCD.
1217                  * If we don't do the same, the host will never be started.
1218                  */
1219                 if (!usb_hcd_is_primary_hcd(hcd))
1220                         secondary_hcd = hcd;
1221                 else
1222                         secondary_hcd = xhci->shared_hcd;
1223
1224                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1225                 retval = xhci_init(hcd->primary_hcd);
1226                 if (retval)
1227                         return retval;
1228                 comp_timer_running = true;
1229
1230                 xhci_dbg(xhci, "Start the primary HCD\n");
1231                 retval = xhci_run(hcd->primary_hcd);
1232                 if (!retval) {
1233                         xhci_dbg(xhci, "Start the secondary HCD\n");
1234                         retval = xhci_run(secondary_hcd);
1235                 }
1236                 hcd->state = HC_STATE_SUSPENDED;
1237                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1238                 goto done;
1239         }
1240
1241         /* step 4: set Run/Stop bit */
1242         command = readl(&xhci->op_regs->command);
1243         command |= CMD_RUN;
1244         writel(command, &xhci->op_regs->command);
1245         xhci_handshake(&xhci->op_regs->status, STS_HALT,
1246                   0, 250 * 1000);
1247
1248         /* step 5: walk topology and initialize portsc,
1249          * portpmsc and portli
1250          */
1251         /* this is done in bus_resume */
1252
1253         /* step 6: restart each of the previously
1254          * Running endpoints by ringing their doorbells
1255          */
1256
1257         spin_unlock_irq(&xhci->lock);
1258
1259         xhci_dbc_resume(xhci);
1260
1261  done:
1262         if (retval == 0) {
1263                 /*
1264                  * Resume roothubs only if there are pending events.
1265                  * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1266                  * the first wake signalling failed, give it that chance.
1267                  */
1268                 pending_portevent = xhci_pending_portevent(xhci);
1269                 if (!pending_portevent) {
1270                         msleep(120);
1271                         pending_portevent = xhci_pending_portevent(xhci);
1272                 }
1273
1274                 if (pending_portevent) {
1275                         usb_hcd_resume_root_hub(xhci->shared_hcd);
1276                         usb_hcd_resume_root_hub(hcd);
1277                 }
1278         }
1279         /*
1280          * If system is subject to the Quirk, Compliance Mode Timer needs to
1281          * be re-initialized Always after a system resume. Ports are subject
1282          * to suffer the Compliance Mode issue again. It doesn't matter if
1283          * ports have entered previously to U0 before system's suspension.
1284          */
1285         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1286                 compliance_mode_recovery_timer_init(xhci);
1287
1288         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1289                 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1290
1291         /* Re-enable port polling. */
1292         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1293         set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1294         usb_hcd_poll_rh_status(xhci->shared_hcd);
1295         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1296         usb_hcd_poll_rh_status(hcd);
1297
1298         return retval;
1299 }
1300 EXPORT_SYMBOL_GPL(xhci_resume);
1301 #endif  /* CONFIG_PM */
1302
1303 /*-------------------------------------------------------------------------*/
1304
1305 /*
1306  * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1307  * we'll copy the actual data into the TRB address register. This is limited to
1308  * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1309  * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1310  */
1311 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1312                                 gfp_t mem_flags)
1313 {
1314         if (xhci_urb_suitable_for_idt(urb))
1315                 return 0;
1316
1317         return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1318 }
1319
1320 /*
1321  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1322  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1323  * value to right shift 1 for the bitmask.
1324  *
1325  * Index  = (epnum * 2) + direction - 1,
1326  * where direction = 0 for OUT, 1 for IN.
1327  * For control endpoints, the IN index is used (OUT index is unused), so
1328  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1329  */
1330 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1331 {
1332         unsigned int index;
1333         if (usb_endpoint_xfer_control(desc))
1334                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1335         else
1336                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1337                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1338         return index;
1339 }
1340
1341 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1342  * address from the XHCI endpoint index.
1343  */
1344 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1345 {
1346         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1347         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1348         return direction | number;
1349 }
1350
1351 /* Find the flag for this endpoint (for use in the control context).  Use the
1352  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1353  * bit 1, etc.
1354  */
1355 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1356 {
1357         return 1 << (xhci_get_endpoint_index(desc) + 1);
1358 }
1359
1360 /* Find the flag for this endpoint (for use in the control context).  Use the
1361  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1362  * bit 1, etc.
1363  */
1364 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1365 {
1366         return 1 << (ep_index + 1);
1367 }
1368
1369 /* Compute the last valid endpoint context index.  Basically, this is the
1370  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1371  * we find the most significant bit set in the added contexts flags.
1372  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1373  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1374  */
1375 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1376 {
1377         return fls(added_ctxs) - 1;
1378 }
1379
1380 /* Returns 1 if the arguments are OK;
1381  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1382  */
1383 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1384                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1385                 const char *func) {
1386         struct xhci_hcd *xhci;
1387         struct xhci_virt_device *virt_dev;
1388
1389         if (!hcd || (check_ep && !ep) || !udev) {
1390                 pr_debug("xHCI %s called with invalid args\n", func);
1391                 return -EINVAL;
1392         }
1393         if (!udev->parent) {
1394                 pr_debug("xHCI %s called for root hub\n", func);
1395                 return 0;
1396         }
1397
1398         xhci = hcd_to_xhci(hcd);
1399         if (check_virt_dev) {
1400                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1401                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1402                                         func);
1403                         return -EINVAL;
1404                 }
1405
1406                 virt_dev = xhci->devs[udev->slot_id];
1407                 if (virt_dev->udev != udev) {
1408                         xhci_dbg(xhci, "xHCI %s called with udev and "
1409                                           "virt_dev does not match\n", func);
1410                         return -EINVAL;
1411                 }
1412         }
1413
1414         if (xhci->xhc_state & XHCI_STATE_HALTED)
1415                 return -ENODEV;
1416
1417         return 1;
1418 }
1419
1420 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1421                 struct usb_device *udev, struct xhci_command *command,
1422                 bool ctx_change, bool must_succeed);
1423
1424 /*
1425  * Full speed devices may have a max packet size greater than 8 bytes, but the
1426  * USB core doesn't know that until it reads the first 8 bytes of the
1427  * descriptor.  If the usb_device's max packet size changes after that point,
1428  * we need to issue an evaluate context command and wait on it.
1429  */
1430 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1431                 unsigned int ep_index, struct urb *urb, gfp_t mem_flags)
1432 {
1433         struct xhci_container_ctx *out_ctx;
1434         struct xhci_input_control_ctx *ctrl_ctx;
1435         struct xhci_ep_ctx *ep_ctx;
1436         struct xhci_command *command;
1437         int max_packet_size;
1438         int hw_max_packet_size;
1439         int ret = 0;
1440
1441         out_ctx = xhci->devs[slot_id]->out_ctx;
1442         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1443         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1444         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1445         if (hw_max_packet_size != max_packet_size) {
1446                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1447                                 "Max Packet Size for ep 0 changed.");
1448                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1449                                 "Max packet size in usb_device = %d",
1450                                 max_packet_size);
1451                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1452                                 "Max packet size in xHCI HW = %d",
1453                                 hw_max_packet_size);
1454                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1455                                 "Issuing evaluate context command.");
1456
1457                 /* Set up the input context flags for the command */
1458                 /* FIXME: This won't work if a non-default control endpoint
1459                  * changes max packet sizes.
1460                  */
1461
1462                 command = xhci_alloc_command(xhci, true, mem_flags);
1463                 if (!command)
1464                         return -ENOMEM;
1465
1466                 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1467                 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1468                 if (!ctrl_ctx) {
1469                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1470                                         __func__);
1471                         ret = -ENOMEM;
1472                         goto command_cleanup;
1473                 }
1474                 /* Set up the modified control endpoint 0 */
1475                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1476                                 xhci->devs[slot_id]->out_ctx, ep_index);
1477
1478                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1479                 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1480                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1481                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1482
1483                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1484                 ctrl_ctx->drop_flags = 0;
1485
1486                 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1487                                 true, false);
1488
1489                 /* Clean up the input context for later use by bandwidth
1490                  * functions.
1491                  */
1492                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1493 command_cleanup:
1494                 kfree(command->completion);
1495                 kfree(command);
1496         }
1497         return ret;
1498 }
1499
1500 /*
1501  * non-error returns are a promise to giveback() the urb later
1502  * we drop ownership so next owner (or urb unlink) can get it
1503  */
1504 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1505 {
1506         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1507         unsigned long flags;
1508         int ret = 0;
1509         unsigned int slot_id, ep_index;
1510         unsigned int *ep_state;
1511         struct urb_priv *urb_priv;
1512         int num_tds;
1513
1514         if (!urb)
1515                 return -EINVAL;
1516         ret = xhci_check_args(hcd, urb->dev, urb->ep,
1517                                         true, true, __func__);
1518         if (ret <= 0)
1519                 return ret ? ret : -EINVAL;
1520
1521         slot_id = urb->dev->slot_id;
1522         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1523         ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1524
1525         if (!HCD_HW_ACCESSIBLE(hcd)) {
1526                 if (!in_interrupt())
1527                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1528                 return -ESHUTDOWN;
1529         }
1530         if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1531                 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1532                 return -ENODEV;
1533         }
1534
1535         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1536                 num_tds = urb->number_of_packets;
1537         else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1538             urb->transfer_buffer_length > 0 &&
1539             urb->transfer_flags & URB_ZERO_PACKET &&
1540             !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1541                 num_tds = 2;
1542         else
1543                 num_tds = 1;
1544
1545         urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1546         if (!urb_priv)
1547                 return -ENOMEM;
1548
1549         urb_priv->num_tds = num_tds;
1550         urb_priv->num_tds_done = 0;
1551         urb->hcpriv = urb_priv;
1552
1553         trace_xhci_urb_enqueue(urb);
1554
1555         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1556                 /* Check to see if the max packet size for the default control
1557                  * endpoint changed during FS device enumeration
1558                  */
1559                 if (urb->dev->speed == USB_SPEED_FULL) {
1560                         ret = xhci_check_maxpacket(xhci, slot_id,
1561                                         ep_index, urb, mem_flags);
1562                         if (ret < 0) {
1563                                 xhci_urb_free_priv(urb_priv);
1564                                 urb->hcpriv = NULL;
1565                                 return ret;
1566                         }
1567                 }
1568         }
1569
1570         spin_lock_irqsave(&xhci->lock, flags);
1571
1572         if (xhci->xhc_state & XHCI_STATE_DYING) {
1573                 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1574                          urb->ep->desc.bEndpointAddress, urb);
1575                 ret = -ESHUTDOWN;
1576                 goto free_priv;
1577         }
1578         if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1579                 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1580                           *ep_state);
1581                 ret = -EINVAL;
1582                 goto free_priv;
1583         }
1584         if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1585                 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1586                 ret = -EINVAL;
1587                 goto free_priv;
1588         }
1589
1590         switch (usb_endpoint_type(&urb->ep->desc)) {
1591
1592         case USB_ENDPOINT_XFER_CONTROL:
1593                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1594                                          slot_id, ep_index);
1595                 break;
1596         case USB_ENDPOINT_XFER_BULK:
1597                 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1598                                          slot_id, ep_index);
1599                 break;
1600         case USB_ENDPOINT_XFER_INT:
1601                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1602                                 slot_id, ep_index);
1603                 break;
1604         case USB_ENDPOINT_XFER_ISOC:
1605                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1606                                 slot_id, ep_index);
1607         }
1608
1609         if (ret) {
1610 free_priv:
1611                 xhci_urb_free_priv(urb_priv);
1612                 urb->hcpriv = NULL;
1613         }
1614         spin_unlock_irqrestore(&xhci->lock, flags);
1615         return ret;
1616 }
1617
1618 /*
1619  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1620  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1621  * should pick up where it left off in the TD, unless a Set Transfer Ring
1622  * Dequeue Pointer is issued.
1623  *
1624  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1625  * the ring.  Since the ring is a contiguous structure, they can't be physically
1626  * removed.  Instead, there are two options:
1627  *
1628  *  1) If the HC is in the middle of processing the URB to be canceled, we
1629  *     simply move the ring's dequeue pointer past those TRBs using the Set
1630  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1631  *     when drivers timeout on the last submitted URB and attempt to cancel.
1632  *
1633  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1634  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1635  *     HC will need to invalidate the any TRBs it has cached after the stop
1636  *     endpoint command, as noted in the xHCI 0.95 errata.
1637  *
1638  *  3) The TD may have completed by the time the Stop Endpoint Command
1639  *     completes, so software needs to handle that case too.
1640  *
1641  * This function should protect against the TD enqueueing code ringing the
1642  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1643  * It also needs to account for multiple cancellations on happening at the same
1644  * time for the same endpoint.
1645  *
1646  * Note that this function can be called in any context, or so says
1647  * usb_hcd_unlink_urb()
1648  */
1649 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1650 {
1651         unsigned long flags;
1652         int ret, i;
1653         u32 temp;
1654         struct xhci_hcd *xhci;
1655         struct urb_priv *urb_priv;
1656         struct xhci_td *td;
1657         unsigned int ep_index;
1658         struct xhci_ring *ep_ring;
1659         struct xhci_virt_ep *ep;
1660         struct xhci_command *command;
1661         struct xhci_virt_device *vdev;
1662
1663         xhci = hcd_to_xhci(hcd);
1664         spin_lock_irqsave(&xhci->lock, flags);
1665
1666         trace_xhci_urb_dequeue(urb);
1667
1668         /* Make sure the URB hasn't completed or been unlinked already */
1669         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1670         if (ret)
1671                 goto done;
1672
1673         /* give back URB now if we can't queue it for cancel */
1674         vdev = xhci->devs[urb->dev->slot_id];
1675         urb_priv = urb->hcpriv;
1676         if (!vdev || !urb_priv)
1677                 goto err_giveback;
1678
1679         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1680         ep = &vdev->eps[ep_index];
1681         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1682         if (!ep || !ep_ring)
1683                 goto err_giveback;
1684
1685         /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1686         temp = readl(&xhci->op_regs->status);
1687         if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1688                 xhci_hc_died(xhci);
1689                 goto done;
1690         }
1691
1692         /*
1693          * check ring is not re-allocated since URB was enqueued. If it is, then
1694          * make sure none of the ring related pointers in this URB private data
1695          * are touched, such as td_list, otherwise we overwrite freed data
1696          */
1697         if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1698                 xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1699                 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1700                         td = &urb_priv->td[i];
1701                         if (!list_empty(&td->cancelled_td_list))
1702                                 list_del_init(&td->cancelled_td_list);
1703                 }
1704                 goto err_giveback;
1705         }
1706
1707         if (xhci->xhc_state & XHCI_STATE_HALTED) {
1708                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1709                                 "HC halted, freeing TD manually.");
1710                 for (i = urb_priv->num_tds_done;
1711                      i < urb_priv->num_tds;
1712                      i++) {
1713                         td = &urb_priv->td[i];
1714                         if (!list_empty(&td->td_list))
1715                                 list_del_init(&td->td_list);
1716                         if (!list_empty(&td->cancelled_td_list))
1717                                 list_del_init(&td->cancelled_td_list);
1718                 }
1719                 goto err_giveback;
1720         }
1721
1722         i = urb_priv->num_tds_done;
1723         if (i < urb_priv->num_tds)
1724                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1725                                 "Cancel URB %p, dev %s, ep 0x%x, "
1726                                 "starting at offset 0x%llx",
1727                                 urb, urb->dev->devpath,
1728                                 urb->ep->desc.bEndpointAddress,
1729                                 (unsigned long long) xhci_trb_virt_to_dma(
1730                                         urb_priv->td[i].start_seg,
1731                                         urb_priv->td[i].first_trb));
1732
1733         for (; i < urb_priv->num_tds; i++) {
1734                 td = &urb_priv->td[i];
1735                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1736         }
1737
1738         /* Queue a stop endpoint command, but only if this is
1739          * the first cancellation to be handled.
1740          */
1741         if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1742                 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1743                 if (!command) {
1744                         ret = -ENOMEM;
1745                         goto done;
1746                 }
1747                 ep->ep_state |= EP_STOP_CMD_PENDING;
1748                 ep->stop_cmd_timer.expires = jiffies +
1749                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1750                 add_timer(&ep->stop_cmd_timer);
1751                 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1752                                          ep_index, 0);
1753                 xhci_ring_cmd_db(xhci);
1754         }
1755 done:
1756         spin_unlock_irqrestore(&xhci->lock, flags);
1757         return ret;
1758
1759 err_giveback:
1760         if (urb_priv)
1761                 xhci_urb_free_priv(urb_priv);
1762         usb_hcd_unlink_urb_from_ep(hcd, urb);
1763         spin_unlock_irqrestore(&xhci->lock, flags);
1764         usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1765         return ret;
1766 }
1767
1768 /* Drop an endpoint from a new bandwidth configuration for this device.
1769  * Only one call to this function is allowed per endpoint before
1770  * check_bandwidth() or reset_bandwidth() must be called.
1771  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1772  * add the endpoint to the schedule with possibly new parameters denoted by a
1773  * different endpoint descriptor in usb_host_endpoint.
1774  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1775  * not allowed.
1776  *
1777  * The USB core will not allow URBs to be queued to an endpoint that is being
1778  * disabled, so there's no need for mutual exclusion to protect
1779  * the xhci->devs[slot_id] structure.
1780  */
1781 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1782                 struct usb_host_endpoint *ep)
1783 {
1784         struct xhci_hcd *xhci;
1785         struct xhci_container_ctx *in_ctx, *out_ctx;
1786         struct xhci_input_control_ctx *ctrl_ctx;
1787         unsigned int ep_index;
1788         struct xhci_ep_ctx *ep_ctx;
1789         u32 drop_flag;
1790         u32 new_add_flags, new_drop_flags;
1791         int ret;
1792
1793         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1794         if (ret <= 0)
1795                 return ret;
1796         xhci = hcd_to_xhci(hcd);
1797         if (xhci->xhc_state & XHCI_STATE_DYING)
1798                 return -ENODEV;
1799
1800         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1801         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1802         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1803                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1804                                 __func__, drop_flag);
1805                 return 0;
1806         }
1807
1808         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1809         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1810         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1811         if (!ctrl_ctx) {
1812                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1813                                 __func__);
1814                 return 0;
1815         }
1816
1817         ep_index = xhci_get_endpoint_index(&ep->desc);
1818         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1819         /* If the HC already knows the endpoint is disabled,
1820          * or the HCD has noted it is disabled, ignore this request
1821          */
1822         if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1823             le32_to_cpu(ctrl_ctx->drop_flags) &
1824             xhci_get_endpoint_flag(&ep->desc)) {
1825                 /* Do not warn when called after a usb_device_reset */
1826                 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1827                         xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1828                                   __func__, ep);
1829                 return 0;
1830         }
1831
1832         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1833         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1834
1835         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1836         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1837
1838         xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1839
1840         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1841
1842         if (xhci->quirks & XHCI_MTK_HOST)
1843                 xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1844
1845         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1846                         (unsigned int) ep->desc.bEndpointAddress,
1847                         udev->slot_id,
1848                         (unsigned int) new_drop_flags,
1849                         (unsigned int) new_add_flags);
1850         return 0;
1851 }
1852
1853 /* Add an endpoint to a new possible bandwidth configuration for this device.
1854  * Only one call to this function is allowed per endpoint before
1855  * check_bandwidth() or reset_bandwidth() must be called.
1856  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1857  * add the endpoint to the schedule with possibly new parameters denoted by a
1858  * different endpoint descriptor in usb_host_endpoint.
1859  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1860  * not allowed.
1861  *
1862  * The USB core will not allow URBs to be queued to an endpoint until the
1863  * configuration or alt setting is installed in the device, so there's no need
1864  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1865  */
1866 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1867                 struct usb_host_endpoint *ep)
1868 {
1869         struct xhci_hcd *xhci;
1870         struct xhci_container_ctx *in_ctx;
1871         unsigned int ep_index;
1872         struct xhci_input_control_ctx *ctrl_ctx;
1873         struct xhci_ep_ctx *ep_ctx;
1874         u32 added_ctxs;
1875         u32 new_add_flags, new_drop_flags;
1876         struct xhci_virt_device *virt_dev;
1877         int ret = 0;
1878
1879         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1880         if (ret <= 0) {
1881                 /* So we won't queue a reset ep command for a root hub */
1882                 ep->hcpriv = NULL;
1883                 return ret;
1884         }
1885         xhci = hcd_to_xhci(hcd);
1886         if (xhci->xhc_state & XHCI_STATE_DYING)
1887                 return -ENODEV;
1888
1889         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1890         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1891                 /* FIXME when we have to issue an evaluate endpoint command to
1892                  * deal with ep0 max packet size changing once we get the
1893                  * descriptors
1894                  */
1895                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1896                                 __func__, added_ctxs);
1897                 return 0;
1898         }
1899
1900         virt_dev = xhci->devs[udev->slot_id];
1901         in_ctx = virt_dev->in_ctx;
1902         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1903         if (!ctrl_ctx) {
1904                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1905                                 __func__);
1906                 return 0;
1907         }
1908
1909         ep_index = xhci_get_endpoint_index(&ep->desc);
1910         /* If this endpoint is already in use, and the upper layers are trying
1911          * to add it again without dropping it, reject the addition.
1912          */
1913         if (virt_dev->eps[ep_index].ring &&
1914                         !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1915                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1916                                 "without dropping it.\n",
1917                                 (unsigned int) ep->desc.bEndpointAddress);
1918                 return -EINVAL;
1919         }
1920
1921         /* If the HCD has already noted the endpoint is enabled,
1922          * ignore this request.
1923          */
1924         if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1925                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1926                                 __func__, ep);
1927                 return 0;
1928         }
1929
1930         /*
1931          * Configuration and alternate setting changes must be done in
1932          * process context, not interrupt context (or so documenation
1933          * for usb_set_interface() and usb_set_configuration() claim).
1934          */
1935         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1936                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1937                                 __func__, ep->desc.bEndpointAddress);
1938                 return -ENOMEM;
1939         }
1940
1941         if (xhci->quirks & XHCI_MTK_HOST) {
1942                 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1943                 if (ret < 0) {
1944                         xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring);
1945                         virt_dev->eps[ep_index].new_ring = NULL;
1946                         return ret;
1947                 }
1948         }
1949
1950         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1951         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1952
1953         /* If xhci_endpoint_disable() was called for this endpoint, but the
1954          * xHC hasn't been notified yet through the check_bandwidth() call,
1955          * this re-adds a new state for the endpoint from the new endpoint
1956          * descriptors.  We must drop and re-add this endpoint, so we leave the
1957          * drop flags alone.
1958          */
1959         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1960
1961         /* Store the usb_device pointer for later use */
1962         ep->hcpriv = udev;
1963
1964         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1965         trace_xhci_add_endpoint(ep_ctx);
1966
1967         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1968                         (unsigned int) ep->desc.bEndpointAddress,
1969                         udev->slot_id,
1970                         (unsigned int) new_drop_flags,
1971                         (unsigned int) new_add_flags);
1972         return 0;
1973 }
1974
1975 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1976 {
1977         struct xhci_input_control_ctx *ctrl_ctx;
1978         struct xhci_ep_ctx *ep_ctx;
1979         struct xhci_slot_ctx *slot_ctx;
1980         int i;
1981
1982         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1983         if (!ctrl_ctx) {
1984                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1985                                 __func__);
1986                 return;
1987         }
1988
1989         /* When a device's add flag and drop flag are zero, any subsequent
1990          * configure endpoint command will leave that endpoint's state
1991          * untouched.  Make sure we don't leave any old state in the input
1992          * endpoint contexts.
1993          */
1994         ctrl_ctx->drop_flags = 0;
1995         ctrl_ctx->add_flags = 0;
1996         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1997         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1998         /* Endpoint 0 is always valid */
1999         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2000         for (i = 1; i < 31; i++) {
2001                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2002                 ep_ctx->ep_info = 0;
2003                 ep_ctx->ep_info2 = 0;
2004                 ep_ctx->deq = 0;
2005                 ep_ctx->tx_info = 0;
2006         }
2007 }
2008
2009 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2010                 struct usb_device *udev, u32 *cmd_status)
2011 {
2012         int ret;
2013
2014         switch (*cmd_status) {
2015         case COMP_COMMAND_ABORTED:
2016         case COMP_COMMAND_RING_STOPPED:
2017                 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2018                 ret = -ETIME;
2019                 break;
2020         case COMP_RESOURCE_ERROR:
2021                 dev_warn(&udev->dev,
2022                          "Not enough host controller resources for new device state.\n");
2023                 ret = -ENOMEM;
2024                 /* FIXME: can we allocate more resources for the HC? */
2025                 break;
2026         case COMP_BANDWIDTH_ERROR:
2027         case COMP_SECONDARY_BANDWIDTH_ERROR:
2028                 dev_warn(&udev->dev,
2029                          "Not enough bandwidth for new device state.\n");
2030                 ret = -ENOSPC;
2031                 /* FIXME: can we go back to the old state? */
2032                 break;
2033         case COMP_TRB_ERROR:
2034                 /* the HCD set up something wrong */
2035                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2036                                 "add flag = 1, "
2037                                 "and endpoint is not disabled.\n");
2038                 ret = -EINVAL;
2039                 break;
2040         case COMP_INCOMPATIBLE_DEVICE_ERROR:
2041                 dev_warn(&udev->dev,
2042                          "ERROR: Incompatible device for endpoint configure command.\n");
2043                 ret = -ENODEV;
2044                 break;
2045         case COMP_SUCCESS:
2046                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2047                                 "Successful Endpoint Configure command");
2048                 ret = 0;
2049                 break;
2050         default:
2051                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2052                                 *cmd_status);
2053                 ret = -EINVAL;
2054                 break;
2055         }
2056         return ret;
2057 }
2058
2059 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2060                 struct usb_device *udev, u32 *cmd_status)
2061 {
2062         int ret;
2063
2064         switch (*cmd_status) {
2065         case COMP_COMMAND_ABORTED:
2066         case COMP_COMMAND_RING_STOPPED:
2067                 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2068                 ret = -ETIME;
2069                 break;
2070         case COMP_PARAMETER_ERROR:
2071                 dev_warn(&udev->dev,
2072                          "WARN: xHCI driver setup invalid evaluate context command.\n");
2073                 ret = -EINVAL;
2074                 break;
2075         case COMP_SLOT_NOT_ENABLED_ERROR:
2076                 dev_warn(&udev->dev,
2077                         "WARN: slot not enabled for evaluate context command.\n");
2078                 ret = -EINVAL;
2079                 break;
2080         case COMP_CONTEXT_STATE_ERROR:
2081                 dev_warn(&udev->dev,
2082                         "WARN: invalid context state for evaluate context command.\n");
2083                 ret = -EINVAL;
2084                 break;
2085         case COMP_INCOMPATIBLE_DEVICE_ERROR:
2086                 dev_warn(&udev->dev,
2087                         "ERROR: Incompatible device for evaluate context command.\n");
2088                 ret = -ENODEV;
2089                 break;
2090         case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2091                 /* Max Exit Latency too large error */
2092                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2093                 ret = -EINVAL;
2094                 break;
2095         case COMP_SUCCESS:
2096                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2097                                 "Successful evaluate context command");
2098                 ret = 0;
2099                 break;
2100         default:
2101                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2102                         *cmd_status);
2103                 ret = -EINVAL;
2104                 break;
2105         }
2106         return ret;
2107 }
2108
2109 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2110                 struct xhci_input_control_ctx *ctrl_ctx)
2111 {
2112         u32 valid_add_flags;
2113         u32 valid_drop_flags;
2114
2115         /* Ignore the slot flag (bit 0), and the default control endpoint flag
2116          * (bit 1).  The default control endpoint is added during the Address
2117          * Device command and is never removed until the slot is disabled.
2118          */
2119         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2120         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2121
2122         /* Use hweight32 to count the number of ones in the add flags, or
2123          * number of endpoints added.  Don't count endpoints that are changed
2124          * (both added and dropped).
2125          */
2126         return hweight32(valid_add_flags) -
2127                 hweight32(valid_add_flags & valid_drop_flags);
2128 }
2129
2130 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2131                 struct xhci_input_control_ctx *ctrl_ctx)
2132 {
2133         u32 valid_add_flags;
2134         u32 valid_drop_flags;
2135
2136         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2137         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2138
2139         return hweight32(valid_drop_flags) -
2140                 hweight32(valid_add_flags & valid_drop_flags);
2141 }
2142
2143 /*
2144  * We need to reserve the new number of endpoints before the configure endpoint
2145  * command completes.  We can't subtract the dropped endpoints from the number
2146  * of active endpoints until the command completes because we can oversubscribe
2147  * the host in this case:
2148  *
2149  *  - the first configure endpoint command drops more endpoints than it adds
2150  *  - a second configure endpoint command that adds more endpoints is queued
2151  *  - the first configure endpoint command fails, so the config is unchanged
2152  *  - the second command may succeed, even though there isn't enough resources
2153  *
2154  * Must be called with xhci->lock held.
2155  */
2156 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2157                 struct xhci_input_control_ctx *ctrl_ctx)
2158 {
2159         u32 added_eps;
2160
2161         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2162         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2163                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2164                                 "Not enough ep ctxs: "
2165                                 "%u active, need to add %u, limit is %u.",
2166                                 xhci->num_active_eps, added_eps,
2167                                 xhci->limit_active_eps);
2168                 return -ENOMEM;
2169         }
2170         xhci->num_active_eps += added_eps;
2171         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2172                         "Adding %u ep ctxs, %u now active.", added_eps,
2173                         xhci->num_active_eps);
2174         return 0;
2175 }
2176
2177 /*
2178  * The configure endpoint was failed by the xHC for some other reason, so we
2179  * need to revert the resources that failed configuration would have used.
2180  *
2181  * Must be called with xhci->lock held.
2182  */
2183 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2184                 struct xhci_input_control_ctx *ctrl_ctx)
2185 {
2186         u32 num_failed_eps;
2187
2188         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2189         xhci->num_active_eps -= num_failed_eps;
2190         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2191                         "Removing %u failed ep ctxs, %u now active.",
2192                         num_failed_eps,
2193                         xhci->num_active_eps);
2194 }
2195
2196 /*
2197  * Now that the command has completed, clean up the active endpoint count by
2198  * subtracting out the endpoints that were dropped (but not changed).
2199  *
2200  * Must be called with xhci->lock held.
2201  */
2202 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2203                 struct xhci_input_control_ctx *ctrl_ctx)
2204 {
2205         u32 num_dropped_eps;
2206
2207         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2208         xhci->num_active_eps -= num_dropped_eps;
2209         if (num_dropped_eps)
2210                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2211                                 "Removing %u dropped ep ctxs, %u now active.",
2212                                 num_dropped_eps,
2213                                 xhci->num_active_eps);
2214 }
2215
2216 static unsigned int xhci_get_block_size(struct usb_device *udev)
2217 {
2218         switch (udev->speed) {
2219         case USB_SPEED_LOW:
2220         case USB_SPEED_FULL:
2221                 return FS_BLOCK;
2222         case USB_SPEED_HIGH:
2223                 return HS_BLOCK;
2224         case USB_SPEED_SUPER:
2225         case USB_SPEED_SUPER_PLUS:
2226                 return SS_BLOCK;
2227         case USB_SPEED_UNKNOWN:
2228         case USB_SPEED_WIRELESS:
2229         default:
2230                 /* Should never happen */
2231                 return 1;
2232         }
2233 }
2234
2235 static unsigned int
2236 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2237 {
2238         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2239                 return LS_OVERHEAD;
2240         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2241                 return FS_OVERHEAD;
2242         return HS_OVERHEAD;
2243 }
2244
2245 /* If we are changing a LS/FS device under a HS hub,
2246  * make sure (if we are activating a new TT) that the HS bus has enough
2247  * bandwidth for this new TT.
2248  */
2249 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2250                 struct xhci_virt_device *virt_dev,
2251                 int old_active_eps)
2252 {
2253         struct xhci_interval_bw_table *bw_table;
2254         struct xhci_tt_bw_info *tt_info;
2255
2256         /* Find the bandwidth table for the root port this TT is attached to. */
2257         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2258         tt_info = virt_dev->tt_info;
2259         /* If this TT already had active endpoints, the bandwidth for this TT
2260          * has already been added.  Removing all periodic endpoints (and thus
2261          * making the TT enactive) will only decrease the bandwidth used.
2262          */
2263         if (old_active_eps)
2264                 return 0;
2265         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2266                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2267                         return -ENOMEM;
2268                 return 0;
2269         }
2270         /* Not sure why we would have no new active endpoints...
2271          *
2272          * Maybe because of an Evaluate Context change for a hub update or a
2273          * control endpoint 0 max packet size change?
2274          * FIXME: skip the bandwidth calculation in that case.
2275          */
2276         return 0;
2277 }
2278
2279 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2280                 struct xhci_virt_device *virt_dev)
2281 {
2282         unsigned int bw_reserved;
2283
2284         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2285         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2286                 return -ENOMEM;
2287
2288         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2289         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2290                 return -ENOMEM;
2291
2292         return 0;
2293 }
2294
2295 /*
2296  * This algorithm is a very conservative estimate of the worst-case scheduling
2297  * scenario for any one interval.  The hardware dynamically schedules the
2298  * packets, so we can't tell which microframe could be the limiting factor in
2299  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2300  *
2301  * Obviously, we can't solve an NP complete problem to find the minimum worst
2302  * case scenario.  Instead, we come up with an estimate that is no less than
2303  * the worst case bandwidth used for any one microframe, but may be an
2304  * over-estimate.
2305  *
2306  * We walk the requirements for each endpoint by interval, starting with the
2307  * smallest interval, and place packets in the schedule where there is only one
2308  * possible way to schedule packets for that interval.  In order to simplify
2309  * this algorithm, we record the largest max packet size for each interval, and
2310  * assume all packets will be that size.
2311  *
2312  * For interval 0, we obviously must schedule all packets for each interval.
2313  * The bandwidth for interval 0 is just the amount of data to be transmitted
2314  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2315  * the number of packets).
2316  *
2317  * For interval 1, we have two possible microframes to schedule those packets
2318  * in.  For this algorithm, if we can schedule the same number of packets for
2319  * each possible scheduling opportunity (each microframe), we will do so.  The
2320  * remaining number of packets will be saved to be transmitted in the gaps in
2321  * the next interval's scheduling sequence.
2322  *
2323  * As we move those remaining packets to be scheduled with interval 2 packets,
2324  * we have to double the number of remaining packets to transmit.  This is
2325  * because the intervals are actually powers of 2, and we would be transmitting
2326  * the previous interval's packets twice in this interval.  We also have to be
2327  * sure that when we look at the largest max packet size for this interval, we
2328  * also look at the largest max packet size for the remaining packets and take
2329  * the greater of the two.
2330  *
2331  * The algorithm continues to evenly distribute packets in each scheduling
2332  * opportunity, and push the remaining packets out, until we get to the last
2333  * interval.  Then those packets and their associated overhead are just added
2334  * to the bandwidth used.
2335  */
2336 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2337                 struct xhci_virt_device *virt_dev,
2338                 int old_active_eps)
2339 {
2340         unsigned int bw_reserved;
2341         unsigned int max_bandwidth;
2342         unsigned int bw_used;
2343         unsigned int block_size;
2344         struct xhci_interval_bw_table *bw_table;
2345         unsigned int packet_size = 0;
2346         unsigned int overhead = 0;
2347         unsigned int packets_transmitted = 0;
2348         unsigned int packets_remaining = 0;
2349         unsigned int i;
2350
2351         if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2352                 return xhci_check_ss_bw(xhci, virt_dev);
2353
2354         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2355                 max_bandwidth = HS_BW_LIMIT;
2356                 /* Convert percent of bus BW reserved to blocks reserved */
2357                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2358         } else {
2359                 max_bandwidth = FS_BW_LIMIT;
2360                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2361         }
2362
2363         bw_table = virt_dev->bw_table;
2364         /* We need to translate the max packet size and max ESIT payloads into
2365          * the units the hardware uses.
2366          */
2367         block_size = xhci_get_block_size(virt_dev->udev);
2368
2369         /* If we are manipulating a LS/FS device under a HS hub, double check
2370          * that the HS bus has enough bandwidth if we are activing a new TT.
2371          */
2372         if (virt_dev->tt_info) {
2373                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2374                                 "Recalculating BW for rootport %u",
2375                                 virt_dev->real_port);
2376                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2377                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2378                                         "newly activated TT.\n");
2379                         return -ENOMEM;
2380                 }
2381                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2382                                 "Recalculating BW for TT slot %u port %u",
2383                                 virt_dev->tt_info->slot_id,
2384                                 virt_dev->tt_info->ttport);
2385         } else {
2386                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2387                                 "Recalculating BW for rootport %u",
2388                                 virt_dev->real_port);
2389         }
2390
2391         /* Add in how much bandwidth will be used for interval zero, or the
2392          * rounded max ESIT payload + number of packets * largest overhead.
2393          */
2394         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2395                 bw_table->interval_bw[0].num_packets *
2396                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2397
2398         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2399                 unsigned int bw_added;
2400                 unsigned int largest_mps;
2401                 unsigned int interval_overhead;
2402
2403                 /*
2404                  * How many packets could we transmit in this interval?
2405                  * If packets didn't fit in the previous interval, we will need
2406                  * to transmit that many packets twice within this interval.
2407                  */
2408                 packets_remaining = 2 * packets_remaining +
2409                         bw_table->interval_bw[i].num_packets;
2410
2411                 /* Find the largest max packet size of this or the previous
2412                  * interval.
2413                  */
2414                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2415                         largest_mps = 0;
2416                 else {
2417                         struct xhci_virt_ep *virt_ep;
2418                         struct list_head *ep_entry;
2419
2420                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2421                         virt_ep = list_entry(ep_entry,
2422                                         struct xhci_virt_ep, bw_endpoint_list);
2423                         /* Convert to blocks, rounding up */
2424                         largest_mps = DIV_ROUND_UP(
2425                                         virt_ep->bw_info.max_packet_size,
2426                                         block_size);
2427                 }
2428                 if (largest_mps > packet_size)
2429                         packet_size = largest_mps;
2430
2431                 /* Use the larger overhead of this or the previous interval. */
2432                 interval_overhead = xhci_get_largest_overhead(
2433                                 &bw_table->interval_bw[i]);
2434                 if (interval_overhead > overhead)
2435                         overhead = interval_overhead;
2436
2437                 /* How many packets can we evenly distribute across
2438                  * (1 << (i + 1)) possible scheduling opportunities?
2439                  */
2440                 packets_transmitted = packets_remaining >> (i + 1);
2441
2442                 /* Add in the bandwidth used for those scheduled packets */
2443                 bw_added = packets_transmitted * (overhead + packet_size);
2444
2445                 /* How many packets do we have remaining to transmit? */
2446                 packets_remaining = packets_remaining % (1 << (i + 1));
2447
2448                 /* What largest max packet size should those packets have? */
2449                 /* If we've transmitted all packets, don't carry over the
2450                  * largest packet size.
2451                  */
2452                 if (packets_remaining == 0) {
2453                         packet_size = 0;
2454                         overhead = 0;
2455                 } else if (packets_transmitted > 0) {
2456                         /* Otherwise if we do have remaining packets, and we've
2457                          * scheduled some packets in this interval, take the
2458                          * largest max packet size from endpoints with this
2459                          * interval.
2460                          */
2461                         packet_size = largest_mps;
2462                         overhead = interval_overhead;
2463                 }
2464                 /* Otherwise carry over packet_size and overhead from the last
2465                  * time we had a remainder.
2466                  */
2467                 bw_used += bw_added;
2468                 if (bw_used > max_bandwidth) {
2469                         xhci_warn(xhci, "Not enough bandwidth. "
2470                                         "Proposed: %u, Max: %u\n",
2471                                 bw_used, max_bandwidth);
2472                         return -ENOMEM;
2473                 }
2474         }
2475         /*
2476          * Ok, we know we have some packets left over after even-handedly
2477          * scheduling interval 15.  We don't know which microframes they will
2478          * fit into, so we over-schedule and say they will be scheduled every
2479          * microframe.
2480          */
2481         if (packets_remaining > 0)
2482                 bw_used += overhead + packet_size;
2483
2484         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2485                 unsigned int port_index = virt_dev->real_port - 1;
2486
2487                 /* OK, we're manipulating a HS device attached to a
2488                  * root port bandwidth domain.  Include the number of active TTs
2489                  * in the bandwidth used.
2490                  */
2491                 bw_used += TT_HS_OVERHEAD *
2492                         xhci->rh_bw[port_index].num_active_tts;
2493         }
2494
2495         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2496                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2497                 "Available: %u " "percent",
2498                 bw_used, max_bandwidth, bw_reserved,
2499                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2500                 max_bandwidth);
2501
2502         bw_used += bw_reserved;
2503         if (bw_used > max_bandwidth) {
2504                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2505                                 bw_used, max_bandwidth);
2506                 return -ENOMEM;
2507         }
2508
2509         bw_table->bw_used = bw_used;
2510         return 0;
2511 }
2512
2513 static bool xhci_is_async_ep(unsigned int ep_type)
2514 {
2515         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2516                                         ep_type != ISOC_IN_EP &&
2517                                         ep_type != INT_IN_EP);
2518 }
2519
2520 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2521 {
2522         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2523 }
2524
2525 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2526 {
2527         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2528
2529         if (ep_bw->ep_interval == 0)
2530                 return SS_OVERHEAD_BURST +
2531                         (ep_bw->mult * ep_bw->num_packets *
2532                                         (SS_OVERHEAD + mps));
2533         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2534                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2535                                 1 << ep_bw->ep_interval);
2536
2537 }
2538
2539 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2540                 struct xhci_bw_info *ep_bw,
2541                 struct xhci_interval_bw_table *bw_table,
2542                 struct usb_device *udev,
2543                 struct xhci_virt_ep *virt_ep,
2544                 struct xhci_tt_bw_info *tt_info)
2545 {
2546         struct xhci_interval_bw *interval_bw;
2547         int normalized_interval;
2548
2549         if (xhci_is_async_ep(ep_bw->type))
2550                 return;
2551
2552         if (udev->speed >= USB_SPEED_SUPER) {
2553                 if (xhci_is_sync_in_ep(ep_bw->type))
2554                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2555                                 xhci_get_ss_bw_consumed(ep_bw);
2556                 else
2557                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2558                                 xhci_get_ss_bw_consumed(ep_bw);
2559                 return;
2560         }
2561
2562         /* SuperSpeed endpoints never get added to intervals in the table, so
2563          * this check is only valid for HS/FS/LS devices.
2564          */
2565         if (list_empty(&virt_ep->bw_endpoint_list))
2566                 return;
2567         /* For LS/FS devices, we need to translate the interval expressed in
2568          * microframes to frames.
2569          */
2570         if (udev->speed == USB_SPEED_HIGH)
2571                 normalized_interval = ep_bw->ep_interval;
2572         else
2573                 normalized_interval = ep_bw->ep_interval - 3;
2574
2575         if (normalized_interval == 0)
2576                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2577         interval_bw = &bw_table->interval_bw[normalized_interval];
2578         interval_bw->num_packets -= ep_bw->num_packets;
2579         switch (udev->speed) {
2580         case USB_SPEED_LOW:
2581                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2582                 break;
2583         case USB_SPEED_FULL:
2584                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2585                 break;
2586         case USB_SPEED_HIGH:
2587                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2588                 break;
2589         case USB_SPEED_SUPER:
2590         case USB_SPEED_SUPER_PLUS:
2591         case USB_SPEED_UNKNOWN:
2592         case USB_SPEED_WIRELESS:
2593                 /* Should never happen because only LS/FS/HS endpoints will get
2594                  * added to the endpoint list.
2595                  */
2596                 return;
2597         }
2598         if (tt_info)
2599                 tt_info->active_eps -= 1;
2600         list_del_init(&virt_ep->bw_endpoint_list);
2601 }
2602
2603 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2604                 struct xhci_bw_info *ep_bw,
2605                 struct xhci_interval_bw_table *bw_table,
2606                 struct usb_device *udev,
2607                 struct xhci_virt_ep *virt_ep,
2608                 struct xhci_tt_bw_info *tt_info)
2609 {
2610         struct xhci_interval_bw *interval_bw;
2611         struct xhci_virt_ep *smaller_ep;
2612         int normalized_interval;
2613
2614         if (xhci_is_async_ep(ep_bw->type))
2615                 return;
2616
2617         if (udev->speed == USB_SPEED_SUPER) {
2618                 if (xhci_is_sync_in_ep(ep_bw->type))
2619                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2620                                 xhci_get_ss_bw_consumed(ep_bw);
2621                 else
2622                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2623                                 xhci_get_ss_bw_consumed(ep_bw);
2624                 return;
2625         }
2626
2627         /* For LS/FS devices, we need to translate the interval expressed in
2628          * microframes to frames.
2629          */
2630         if (udev->speed == USB_SPEED_HIGH)
2631                 normalized_interval = ep_bw->ep_interval;
2632         else
2633                 normalized_interval = ep_bw->ep_interval - 3;
2634
2635         if (normalized_interval == 0)
2636                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2637         interval_bw = &bw_table->interval_bw[normalized_interval];
2638         interval_bw->num_packets += ep_bw->num_packets;
2639         switch (udev->speed) {
2640         case USB_SPEED_LOW:
2641                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2642                 break;
2643         case USB_SPEED_FULL:
2644                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2645                 break;
2646         case USB_SPEED_HIGH:
2647                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2648                 break;
2649         case USB_SPEED_SUPER:
2650         case USB_SPEED_SUPER_PLUS:
2651         case USB_SPEED_UNKNOWN:
2652         case USB_SPEED_WIRELESS:
2653                 /* Should never happen because only LS/FS/HS endpoints will get
2654                  * added to the endpoint list.
2655                  */
2656                 return;
2657         }
2658
2659         if (tt_info)
2660                 tt_info->active_eps += 1;
2661         /* Insert the endpoint into the list, largest max packet size first. */
2662         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2663                         bw_endpoint_list) {
2664                 if (ep_bw->max_packet_size >=
2665                                 smaller_ep->bw_info.max_packet_size) {
2666                         /* Add the new ep before the smaller endpoint */
2667                         list_add_tail(&virt_ep->bw_endpoint_list,
2668                                         &smaller_ep->bw_endpoint_list);
2669                         return;
2670                 }
2671         }
2672         /* Add the new endpoint at the end of the list. */
2673         list_add_tail(&virt_ep->bw_endpoint_list,
2674                         &interval_bw->endpoints);
2675 }
2676
2677 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2678                 struct xhci_virt_device *virt_dev,
2679                 int old_active_eps)
2680 {
2681         struct xhci_root_port_bw_info *rh_bw_info;
2682         if (!virt_dev->tt_info)
2683                 return;
2684
2685         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2686         if (old_active_eps == 0 &&
2687                                 virt_dev->tt_info->active_eps != 0) {
2688                 rh_bw_info->num_active_tts += 1;
2689                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2690         } else if (old_active_eps != 0 &&
2691                                 virt_dev->tt_info->active_eps == 0) {
2692                 rh_bw_info->num_active_tts -= 1;
2693                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2694         }
2695 }
2696
2697 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2698                 struct xhci_virt_device *virt_dev,
2699                 struct xhci_container_ctx *in_ctx)
2700 {
2701         struct xhci_bw_info ep_bw_info[31];
2702         int i;
2703         struct xhci_input_control_ctx *ctrl_ctx;
2704         int old_active_eps = 0;
2705
2706         if (virt_dev->tt_info)
2707                 old_active_eps = virt_dev->tt_info->active_eps;
2708
2709         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2710         if (!ctrl_ctx) {
2711                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2712                                 __func__);
2713                 return -ENOMEM;
2714         }
2715
2716         for (i = 0; i < 31; i++) {
2717                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2718                         continue;
2719
2720                 /* Make a copy of the BW info in case we need to revert this */
2721                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2722                                 sizeof(ep_bw_info[i]));
2723                 /* Drop the endpoint from the interval table if the endpoint is
2724                  * being dropped or changed.
2725                  */
2726                 if (EP_IS_DROPPED(ctrl_ctx, i))
2727                         xhci_drop_ep_from_interval_table(xhci,
2728                                         &virt_dev->eps[i].bw_info,
2729                                         virt_dev->bw_table,
2730                                         virt_dev->udev,
2731                                         &virt_dev->eps[i],
2732                                         virt_dev->tt_info);
2733         }
2734         /* Overwrite the information stored in the endpoints' bw_info */
2735         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2736         for (i = 0; i < 31; i++) {
2737                 /* Add any changed or added endpoints to the interval table */
2738                 if (EP_IS_ADDED(ctrl_ctx, i))
2739                         xhci_add_ep_to_interval_table(xhci,
2740                                         &virt_dev->eps[i].bw_info,
2741                                         virt_dev->bw_table,
2742                                         virt_dev->udev,
2743                                         &virt_dev->eps[i],
2744                                         virt_dev->tt_info);
2745         }
2746
2747         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2748                 /* Ok, this fits in the bandwidth we have.
2749                  * Update the number of active TTs.
2750                  */
2751                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2752                 return 0;
2753         }
2754
2755         /* We don't have enough bandwidth for this, revert the stored info. */
2756         for (i = 0; i < 31; i++) {
2757                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2758                         continue;
2759
2760                 /* Drop the new copies of any added or changed endpoints from
2761                  * the interval table.
2762                  */
2763                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2764                         xhci_drop_ep_from_interval_table(xhci,
2765                                         &virt_dev->eps[i].bw_info,
2766                                         virt_dev->bw_table,
2767                                         virt_dev->udev,
2768                                         &virt_dev->eps[i],
2769                                         virt_dev->tt_info);
2770                 }
2771                 /* Revert the endpoint back to its old information */
2772                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2773                                 sizeof(ep_bw_info[i]));
2774                 /* Add any changed or dropped endpoints back into the table */
2775                 if (EP_IS_DROPPED(ctrl_ctx, i))
2776                         xhci_add_ep_to_interval_table(xhci,
2777                                         &virt_dev->eps[i].bw_info,
2778                                         virt_dev->bw_table,
2779                                         virt_dev->udev,
2780                                         &virt_dev->eps[i],
2781                                         virt_dev->tt_info);
2782         }
2783         return -ENOMEM;
2784 }
2785
2786
2787 /* Issue a configure endpoint command or evaluate context command
2788  * and wait for it to finish.
2789  */
2790 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2791                 struct usb_device *udev,
2792                 struct xhci_command *command,
2793                 bool ctx_change, bool must_succeed)
2794 {
2795         int ret;
2796         unsigned long flags;
2797         struct xhci_input_control_ctx *ctrl_ctx;
2798         struct xhci_virt_device *virt_dev;
2799         struct xhci_slot_ctx *slot_ctx;
2800
2801         if (!command)
2802                 return -EINVAL;
2803
2804         spin_lock_irqsave(&xhci->lock, flags);
2805
2806         if (xhci->xhc_state & XHCI_STATE_DYING) {
2807                 spin_unlock_irqrestore(&xhci->lock, flags);
2808                 return -ESHUTDOWN;
2809         }
2810
2811         virt_dev = xhci->devs[udev->slot_id];
2812
2813         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2814         if (!ctrl_ctx) {
2815                 spin_unlock_irqrestore(&xhci->lock, flags);
2816                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2817                                 __func__);
2818                 return -ENOMEM;
2819         }
2820
2821         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2822                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2823                 spin_unlock_irqrestore(&xhci->lock, flags);
2824                 xhci_warn(xhci, "Not enough host resources, "
2825                                 "active endpoint contexts = %u\n",
2826                                 xhci->num_active_eps);
2827                 return -ENOMEM;
2828         }
2829         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2830             xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2831                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2832                         xhci_free_host_resources(xhci, ctrl_ctx);
2833                 spin_unlock_irqrestore(&xhci->lock, flags);
2834                 xhci_warn(xhci, "Not enough bandwidth\n");
2835                 return -ENOMEM;
2836         }
2837
2838         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2839
2840         trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2841         trace_xhci_configure_endpoint(slot_ctx);
2842
2843         if (!ctx_change)
2844                 ret = xhci_queue_configure_endpoint(xhci, command,
2845                                 command->in_ctx->dma,
2846                                 udev->slot_id, must_succeed);
2847         else
2848                 ret = xhci_queue_evaluate_context(xhci, command,
2849                                 command->in_ctx->dma,
2850                                 udev->slot_id, must_succeed);
2851         if (ret < 0) {
2852                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2853                         xhci_free_host_resources(xhci, ctrl_ctx);
2854                 spin_unlock_irqrestore(&xhci->lock, flags);
2855                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2856                                 "FIXME allocate a new ring segment");
2857                 return -ENOMEM;
2858         }
2859         xhci_ring_cmd_db(xhci);
2860         spin_unlock_irqrestore(&xhci->lock, flags);
2861
2862         /* Wait for the configure endpoint command to complete */
2863         wait_for_completion(command->completion);
2864
2865         if (!ctx_change)
2866                 ret = xhci_configure_endpoint_result(xhci, udev,
2867                                                      &command->status);
2868         else
2869                 ret = xhci_evaluate_context_result(xhci, udev,
2870                                                    &command->status);
2871
2872         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2873                 spin_lock_irqsave(&xhci->lock, flags);
2874                 /* If the command failed, remove the reserved resources.
2875                  * Otherwise, clean up the estimate to include dropped eps.
2876                  */
2877                 if (ret)
2878                         xhci_free_host_resources(xhci, ctrl_ctx);
2879                 else
2880                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2881                 spin_unlock_irqrestore(&xhci->lock, flags);
2882         }
2883         return ret;
2884 }
2885
2886 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2887         struct xhci_virt_device *vdev, int i)
2888 {
2889         struct xhci_virt_ep *ep = &vdev->eps[i];
2890
2891         if (ep->ep_state & EP_HAS_STREAMS) {
2892                 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2893                                 xhci_get_endpoint_address(i));
2894                 xhci_free_stream_info(xhci, ep->stream_info);
2895                 ep->stream_info = NULL;
2896                 ep->ep_state &= ~EP_HAS_STREAMS;
2897         }
2898 }
2899
2900 /* Called after one or more calls to xhci_add_endpoint() or
2901  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2902  * to call xhci_reset_bandwidth().
2903  *
2904  * Since we are in the middle of changing either configuration or
2905  * installing a new alt setting, the USB core won't allow URBs to be
2906  * enqueued for any endpoint on the old config or interface.  Nothing
2907  * else should be touching the xhci->devs[slot_id] structure, so we
2908  * don't need to take the xhci->lock for manipulating that.
2909  */
2910 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2911 {
2912         int i;
2913         int ret = 0;
2914         struct xhci_hcd *xhci;
2915         struct xhci_virt_device *virt_dev;
2916         struct xhci_input_control_ctx *ctrl_ctx;
2917         struct xhci_slot_ctx *slot_ctx;
2918         struct xhci_command *command;
2919
2920         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2921         if (ret <= 0)
2922                 return ret;
2923         xhci = hcd_to_xhci(hcd);
2924         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2925                 (xhci->xhc_state & XHCI_STATE_REMOVING))
2926                 return -ENODEV;
2927
2928         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2929         virt_dev = xhci->devs[udev->slot_id];
2930
2931         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2932         if (!command)
2933                 return -ENOMEM;
2934
2935         command->in_ctx = virt_dev->in_ctx;
2936
2937         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2938         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2939         if (!ctrl_ctx) {
2940                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2941                                 __func__);
2942                 ret = -ENOMEM;
2943                 goto command_cleanup;
2944         }
2945         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2946         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2947         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2948
2949         /* Don't issue the command if there's no endpoints to update. */
2950         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2951             ctrl_ctx->drop_flags == 0) {
2952                 ret = 0;
2953                 goto command_cleanup;
2954         }
2955         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2956         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2957         for (i = 31; i >= 1; i--) {
2958                 __le32 le32 = cpu_to_le32(BIT(i));
2959
2960                 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2961                     || (ctrl_ctx->add_flags & le32) || i == 1) {
2962                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2963                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2964                         break;
2965                 }
2966         }
2967
2968         ret = xhci_configure_endpoint(xhci, udev, command,
2969                         false, false);
2970         if (ret)
2971                 /* Callee should call reset_bandwidth() */
2972                 goto command_cleanup;
2973
2974         /* Free any rings that were dropped, but not changed. */
2975         for (i = 1; i < 31; i++) {
2976                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2977                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2978                         xhci_free_endpoint_ring(xhci, virt_dev, i);
2979                         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2980                 }
2981         }
2982         xhci_zero_in_ctx(xhci, virt_dev);
2983         /*
2984          * Install any rings for completely new endpoints or changed endpoints,
2985          * and free any old rings from changed endpoints.
2986          */
2987         for (i = 1; i < 31; i++) {
2988                 if (!virt_dev->eps[i].new_ring)
2989                         continue;
2990                 /* Only free the old ring if it exists.
2991                  * It may not if this is the first add of an endpoint.
2992                  */
2993                 if (virt_dev->eps[i].ring) {
2994                         xhci_free_endpoint_ring(xhci, virt_dev, i);
2995                 }
2996                 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2997                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2998                 virt_dev->eps[i].new_ring = NULL;
2999                 xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3000         }
3001 command_cleanup:
3002         kfree(command->completion);
3003         kfree(command);
3004
3005         return ret;
3006 }
3007
3008 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3009 {
3010         struct xhci_hcd *xhci;
3011         struct xhci_virt_device *virt_dev;
3012         int i, ret;
3013
3014         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3015         if (ret <= 0)
3016                 return;
3017         xhci = hcd_to_xhci(hcd);
3018
3019         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3020         virt_dev = xhci->devs[udev->slot_id];
3021         /* Free any rings allocated for added endpoints */
3022         for (i = 0; i < 31; i++) {
3023                 if (virt_dev->eps[i].new_ring) {
3024                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3025                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3026                         virt_dev->eps[i].new_ring = NULL;
3027                 }
3028         }
3029         xhci_zero_in_ctx(xhci, virt_dev);
3030 }
3031
3032 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3033                 struct xhci_container_ctx *in_ctx,
3034                 struct xhci_container_ctx *out_ctx,
3035                 struct xhci_input_control_ctx *ctrl_ctx,
3036                 u32 add_flags, u32 drop_flags)
3037 {
3038         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3039         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3040         xhci_slot_copy(xhci, in_ctx, out_ctx);
3041         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3042 }
3043
3044 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
3045                 unsigned int slot_id, unsigned int ep_index,
3046                 struct xhci_dequeue_state *deq_state)
3047 {
3048         struct xhci_input_control_ctx *ctrl_ctx;
3049         struct xhci_container_ctx *in_ctx;
3050         struct xhci_ep_ctx *ep_ctx;
3051         u32 added_ctxs;
3052         dma_addr_t addr;
3053
3054         in_ctx = xhci->devs[slot_id]->in_ctx;
3055         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
3056         if (!ctrl_ctx) {
3057                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3058                                 __func__);
3059                 return;
3060         }
3061
3062         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
3063                         xhci->devs[slot_id]->out_ctx, ep_index);
3064         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
3065         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
3066                         deq_state->new_deq_ptr);
3067         if (addr == 0) {
3068                 xhci_warn(xhci, "WARN Cannot submit config ep after "
3069                                 "reset ep command\n");
3070                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
3071                                 deq_state->new_deq_seg,
3072                                 deq_state->new_deq_ptr);
3073                 return;
3074         }
3075         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
3076
3077         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
3078         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
3079                         xhci->devs[slot_id]->out_ctx, ctrl_ctx,
3080                         added_ctxs, added_ctxs);
3081 }
3082
3083 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int slot_id,
3084                                unsigned int ep_index, unsigned int stream_id,
3085                                struct xhci_td *td)
3086 {
3087         struct xhci_dequeue_state deq_state;
3088
3089         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
3090                         "Cleaning up stalled endpoint ring");
3091         /* We need to move the HW's dequeue pointer past this TD,
3092          * or it will attempt to resend it on the next doorbell ring.
3093          */
3094         xhci_find_new_dequeue_state(xhci, slot_id, ep_index, stream_id, td,
3095                                     &deq_state);
3096
3097         if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
3098                 return;
3099
3100         /* HW with the reset endpoint quirk will use the saved dequeue state to
3101          * issue a configure endpoint command later.
3102          */
3103         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
3104                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
3105                                 "Queueing new dequeue state");
3106                 xhci_queue_new_dequeue_state(xhci, slot_id,
3107                                 ep_index, &deq_state);
3108         } else {
3109                 /* Better hope no one uses the input context between now and the
3110                  * reset endpoint completion!
3111                  * XXX: No idea how this hardware will react when stream rings
3112                  * are enabled.
3113                  */
3114                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3115                                 "Setting up input context for "
3116                                 "configure endpoint command");
3117                 xhci_setup_input_ctx_for_quirk(xhci, slot_id,
3118                                 ep_index, &deq_state);
3119         }
3120 }
3121
3122 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3123                                   struct usb_host_endpoint *host_ep)
3124 {
3125         struct xhci_hcd         *xhci;
3126         struct xhci_virt_device *vdev;
3127         struct xhci_virt_ep     *ep;
3128         struct usb_device       *udev;
3129         unsigned long           flags;
3130         unsigned int            ep_index;
3131
3132         xhci = hcd_to_xhci(hcd);
3133 rescan:
3134         spin_lock_irqsave(&xhci->lock, flags);
3135
3136         udev = (struct usb_device *)host_ep->hcpriv;
3137         if (!udev || !udev->slot_id)
3138                 goto done;
3139
3140         vdev = xhci->devs[udev->slot_id];
3141         if (!vdev)
3142                 goto done;
3143
3144         ep_index = xhci_get_endpoint_index(&host_ep->desc);
3145         ep = &vdev->eps[ep_index];
3146         if (!ep)
3147                 goto done;
3148
3149         /* wait for hub_tt_work to finish clearing hub TT */
3150         if (ep->ep_state & EP_CLEARING_TT) {
3151                 spin_unlock_irqrestore(&xhci->lock, flags);
3152                 schedule_timeout_uninterruptible(1);
3153                 goto rescan;
3154         }
3155
3156         if (ep->ep_state)
3157                 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3158                          ep->ep_state);
3159 done:
3160         host_ep->hcpriv = NULL;
3161         spin_unlock_irqrestore(&xhci->lock, flags);
3162 }
3163
3164 /*
3165  * Called after usb core issues a clear halt control message.
3166  * The host side of the halt should already be cleared by a reset endpoint
3167  * command issued when the STALL event was received.
3168  *
3169  * The reset endpoint command may only be issued to endpoints in the halted
3170  * state. For software that wishes to reset the data toggle or sequence number
3171  * of an endpoint that isn't in the halted state this function will issue a
3172  * configure endpoint command with the Drop and Add bits set for the target
3173  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3174  */
3175
3176 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3177                 struct usb_host_endpoint *host_ep)
3178 {
3179         struct xhci_hcd *xhci;
3180         struct usb_device *udev;
3181         struct xhci_virt_device *vdev;
3182         struct xhci_virt_ep *ep;
3183         struct xhci_input_control_ctx *ctrl_ctx;
3184         struct xhci_command *stop_cmd, *cfg_cmd;
3185         unsigned int ep_index;
3186         unsigned long flags;
3187         u32 ep_flag;
3188         int err;
3189
3190         xhci = hcd_to_xhci(hcd);
3191         if (!host_ep->hcpriv)
3192                 return;
3193         udev = (struct usb_device *) host_ep->hcpriv;
3194         vdev = xhci->devs[udev->slot_id];
3195
3196         /*
3197          * vdev may be lost due to xHC restore error and re-initialization
3198          * during S3/S4 resume. A new vdev will be allocated later by
3199          * xhci_discover_or_reset_device()
3200          */
3201         if (!udev->slot_id || !vdev)
3202                 return;
3203         ep_index = xhci_get_endpoint_index(&host_ep->desc);
3204         ep = &vdev->eps[ep_index];
3205         if (!ep)
3206                 return;
3207
3208         /* Bail out if toggle is already being cleared by a endpoint reset */
3209         spin_lock_irqsave(&xhci->lock, flags);
3210         if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3211                 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3212                 spin_unlock_irqrestore(&xhci->lock, flags);
3213                 return;
3214         }
3215         spin_unlock_irqrestore(&xhci->lock, flags);
3216         /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3217         if (usb_endpoint_xfer_control(&host_ep->desc) ||
3218             usb_endpoint_xfer_isoc(&host_ep->desc))
3219                 return;
3220
3221         ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3222
3223         if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3224                 return;
3225
3226         stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3227         if (!stop_cmd)
3228                 return;
3229
3230         cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3231         if (!cfg_cmd)
3232                 goto cleanup;
3233
3234         spin_lock_irqsave(&xhci->lock, flags);
3235
3236         /* block queuing new trbs and ringing ep doorbell */
3237         ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3238
3239         /*
3240          * Make sure endpoint ring is empty before resetting the toggle/seq.
3241          * Driver is required to synchronously cancel all transfer request.
3242          * Stop the endpoint to force xHC to update the output context
3243          */
3244
3245         if (!list_empty(&ep->ring->td_list)) {
3246                 dev_err(&udev->dev, "EP not empty, refuse reset\n");
3247                 spin_unlock_irqrestore(&xhci->lock, flags);
3248                 xhci_free_command(xhci, cfg_cmd);
3249                 goto cleanup;
3250         }
3251
3252         err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3253                                         ep_index, 0);
3254         if (err < 0) {
3255                 spin_unlock_irqrestore(&xhci->lock, flags);
3256                 xhci_free_command(xhci, cfg_cmd);
3257                 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3258                                 __func__, err);
3259                 goto cleanup;
3260         }
3261
3262         xhci_ring_cmd_db(xhci);
3263         spin_unlock_irqrestore(&xhci->lock, flags);
3264
3265         wait_for_completion(stop_cmd->completion);
3266
3267         spin_lock_irqsave(&xhci->lock, flags);
3268
3269         /* config ep command clears toggle if add and drop ep flags are set */
3270         ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3271         if (!ctrl_ctx) {
3272                 spin_unlock_irqrestore(&xhci->lock, flags);
3273                 xhci_free_command(xhci, cfg_cmd);
3274                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3275                                 __func__);
3276                 goto cleanup;
3277         }
3278
3279         xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3280                                            ctrl_ctx, ep_flag, ep_flag);
3281         xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3282
3283         err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3284                                       udev->slot_id, false);
3285         if (err < 0) {
3286                 spin_unlock_irqrestore(&xhci->lock, flags);
3287                 xhci_free_command(xhci, cfg_cmd);
3288                 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3289                                 __func__, err);
3290                 goto cleanup;
3291         }
3292
3293         xhci_ring_cmd_db(xhci);
3294         spin_unlock_irqrestore(&xhci->lock, flags);
3295
3296         wait_for_completion(cfg_cmd->completion);
3297
3298         xhci_free_command(xhci, cfg_cmd);
3299 cleanup:
3300         xhci_free_command(xhci, stop_cmd);
3301         spin_lock_irqsave(&xhci->lock, flags);
3302         if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3303                 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3304         spin_unlock_irqrestore(&xhci->lock, flags);
3305 }
3306
3307 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3308                 struct usb_device *udev, struct usb_host_endpoint *ep,
3309                 unsigned int slot_id)
3310 {
3311         int ret;
3312         unsigned int ep_index;
3313         unsigned int ep_state;
3314
3315         if (!ep)
3316                 return -EINVAL;
3317         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3318         if (ret <= 0)
3319                 return ret ? ret : -EINVAL;
3320         if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3321                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3322                                 " descriptor for ep 0x%x does not support streams\n",
3323                                 ep->desc.bEndpointAddress);
3324                 return -EINVAL;
3325         }
3326
3327         ep_index = xhci_get_endpoint_index(&ep->desc);
3328         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3329         if (ep_state & EP_HAS_STREAMS ||
3330                         ep_state & EP_GETTING_STREAMS) {
3331                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3332                                 "already has streams set up.\n",
3333                                 ep->desc.bEndpointAddress);
3334                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3335                                 "dynamic stream context array reallocation.\n");
3336                 return -EINVAL;
3337         }
3338         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3339                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3340                                 "endpoint 0x%x; URBs are pending.\n",
3341                                 ep->desc.bEndpointAddress);
3342                 return -EINVAL;
3343         }
3344         return 0;
3345 }
3346
3347 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3348                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3349 {
3350         unsigned int max_streams;
3351
3352         /* The stream context array size must be a power of two */
3353         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3354         /*
3355          * Find out how many primary stream array entries the host controller
3356          * supports.  Later we may use secondary stream arrays (similar to 2nd
3357          * level page entries), but that's an optional feature for xHCI host
3358          * controllers. xHCs must support at least 4 stream IDs.
3359          */
3360         max_streams = HCC_MAX_PSA(xhci->hcc_params);
3361         if (*num_stream_ctxs > max_streams) {
3362                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3363                                 max_streams);
3364                 *num_stream_ctxs = max_streams;
3365                 *num_streams = max_streams;
3366         }
3367 }
3368
3369 /* Returns an error code if one of the endpoint already has streams.
3370  * This does not change any data structures, it only checks and gathers
3371  * information.
3372  */
3373 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3374                 struct usb_device *udev,
3375                 struct usb_host_endpoint **eps, unsigned int num_eps,
3376                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3377 {
3378         unsigned int max_streams;
3379         unsigned int endpoint_flag;
3380         int i;
3381         int ret;
3382
3383         for (i = 0; i < num_eps; i++) {
3384                 ret = xhci_check_streams_endpoint(xhci, udev,
3385                                 eps[i], udev->slot_id);
3386                 if (ret < 0)
3387                         return ret;
3388
3389                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3390                 if (max_streams < (*num_streams - 1)) {
3391                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3392                                         eps[i]->desc.bEndpointAddress,
3393                                         max_streams);
3394                         *num_streams = max_streams+1;
3395                 }
3396
3397                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3398                 if (*changed_ep_bitmask & endpoint_flag)
3399                         return -EINVAL;
3400                 *changed_ep_bitmask |= endpoint_flag;
3401         }
3402         return 0;
3403 }
3404
3405 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3406                 struct usb_device *udev,
3407                 struct usb_host_endpoint **eps, unsigned int num_eps)
3408 {
3409         u32 changed_ep_bitmask = 0;
3410         unsigned int slot_id;
3411         unsigned int ep_index;
3412         unsigned int ep_state;
3413         int i;
3414
3415         slot_id = udev->slot_id;
3416         if (!xhci->devs[slot_id])
3417                 return 0;
3418
3419         for (i = 0; i < num_eps; i++) {
3420                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3421                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3422                 /* Are streams already being freed for the endpoint? */
3423                 if (ep_state & EP_GETTING_NO_STREAMS) {
3424                         xhci_warn(xhci, "WARN Can't disable streams for "
3425                                         "endpoint 0x%x, "
3426                                         "streams are being disabled already\n",
3427                                         eps[i]->desc.bEndpointAddress);
3428                         return 0;
3429                 }
3430                 /* Are there actually any streams to free? */
3431                 if (!(ep_state & EP_HAS_STREAMS) &&
3432                                 !(ep_state & EP_GETTING_STREAMS)) {
3433                         xhci_warn(xhci, "WARN Can't disable streams for "
3434                                         "endpoint 0x%x, "
3435                                         "streams are already disabled!\n",
3436                                         eps[i]->desc.bEndpointAddress);
3437                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3438                                         "with non-streams endpoint\n");
3439                         return 0;
3440                 }
3441                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3442         }
3443         return changed_ep_bitmask;
3444 }
3445
3446 /*
3447  * The USB device drivers use this function (through the HCD interface in USB
3448  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3449  * coordinate mass storage command queueing across multiple endpoints (basically
3450  * a stream ID == a task ID).
3451  *
3452  * Setting up streams involves allocating the same size stream context array
3453  * for each endpoint and issuing a configure endpoint command for all endpoints.
3454  *
3455  * Don't allow the call to succeed if one endpoint only supports one stream
3456  * (which means it doesn't support streams at all).
3457  *
3458  * Drivers may get less stream IDs than they asked for, if the host controller
3459  * hardware or endpoints claim they can't support the number of requested
3460  * stream IDs.
3461  */
3462 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3463                 struct usb_host_endpoint **eps, unsigned int num_eps,
3464                 unsigned int num_streams, gfp_t mem_flags)
3465 {
3466         int i, ret;
3467         struct xhci_hcd *xhci;
3468         struct xhci_virt_device *vdev;
3469         struct xhci_command *config_cmd;
3470         struct xhci_input_control_ctx *ctrl_ctx;
3471         unsigned int ep_index;
3472         unsigned int num_stream_ctxs;
3473         unsigned int max_packet;
3474         unsigned long flags;
3475         u32 changed_ep_bitmask = 0;
3476
3477         if (!eps)
3478                 return -EINVAL;
3479
3480         /* Add one to the number of streams requested to account for
3481          * stream 0 that is reserved for xHCI usage.
3482          */
3483         num_streams += 1;
3484         xhci = hcd_to_xhci(hcd);
3485         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3486                         num_streams);
3487
3488         /* MaxPSASize value 0 (2 streams) means streams are not supported */
3489         if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3490                         HCC_MAX_PSA(xhci->hcc_params) < 4) {
3491                 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3492                 return -ENOSYS;
3493         }
3494
3495         config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3496         if (!config_cmd)
3497                 return -ENOMEM;
3498
3499         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3500         if (!ctrl_ctx) {
3501                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3502                                 __func__);
3503                 xhci_free_command(xhci, config_cmd);
3504                 return -ENOMEM;
3505         }
3506
3507         /* Check to make sure all endpoints are not already configured for
3508          * streams.  While we're at it, find the maximum number of streams that
3509          * all the endpoints will support and check for duplicate endpoints.
3510          */
3511         spin_lock_irqsave(&xhci->lock, flags);
3512         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3513                         num_eps, &num_streams, &changed_ep_bitmask);
3514         if (ret < 0) {
3515                 xhci_free_command(xhci, config_cmd);
3516                 spin_unlock_irqrestore(&xhci->lock, flags);
3517                 return ret;
3518         }
3519         if (num_streams <= 1) {
3520                 xhci_warn(xhci, "WARN: endpoints can't handle "
3521                                 "more than one stream.\n");
3522                 xhci_free_command(xhci, config_cmd);
3523                 spin_unlock_irqrestore(&xhci->lock, flags);
3524                 return -EINVAL;
3525         }
3526         vdev = xhci->devs[udev->slot_id];
3527         /* Mark each endpoint as being in transition, so
3528          * xhci_urb_enqueue() will reject all URBs.
3529          */
3530         for (i = 0; i < num_eps; i++) {
3531                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3532                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3533         }
3534         spin_unlock_irqrestore(&xhci->lock, flags);
3535
3536         /* Setup internal data structures and allocate HW data structures for
3537          * streams (but don't install the HW structures in the input context
3538          * until we're sure all memory allocation succeeded).
3539          */
3540         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3541         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3542                         num_stream_ctxs, num_streams);
3543
3544         for (i = 0; i < num_eps; i++) {
3545                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3546                 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3547                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3548                                 num_stream_ctxs,
3549                                 num_streams,
3550                                 max_packet, mem_flags);
3551                 if (!vdev->eps[ep_index].stream_info)
3552                         goto cleanup;
3553                 /* Set maxPstreams in endpoint context and update deq ptr to
3554                  * point to stream context array. FIXME
3555                  */
3556         }
3557
3558         /* Set up the input context for a configure endpoint command. */
3559         for (i = 0; i < num_eps; i++) {
3560                 struct xhci_ep_ctx *ep_ctx;
3561
3562                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3563                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3564
3565                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3566                                 vdev->out_ctx, ep_index);
3567                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3568                                 vdev->eps[ep_index].stream_info);
3569         }
3570         /* Tell the HW to drop its old copy of the endpoint context info
3571          * and add the updated copy from the input context.
3572          */
3573         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3574                         vdev->out_ctx, ctrl_ctx,
3575                         changed_ep_bitmask, changed_ep_bitmask);
3576
3577         /* Issue and wait for the configure endpoint command */
3578         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3579                         false, false);
3580
3581         /* xHC rejected the configure endpoint command for some reason, so we
3582          * leave the old ring intact and free our internal streams data
3583          * structure.
3584          */
3585         if (ret < 0)
3586                 goto cleanup;
3587
3588         spin_lock_irqsave(&xhci->lock, flags);
3589         for (i = 0; i < num_eps; i++) {
3590                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3591                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3592                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3593                          udev->slot_id, ep_index);
3594                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3595         }
3596         xhci_free_command(xhci, config_cmd);
3597         spin_unlock_irqrestore(&xhci->lock, flags);
3598
3599         for (i = 0; i < num_eps; i++) {
3600                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3601                 xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3602         }
3603         /* Subtract 1 for stream 0, which drivers can't use */
3604         return num_streams - 1;
3605
3606 cleanup:
3607         /* If it didn't work, free the streams! */
3608         for (i = 0; i < num_eps; i++) {
3609                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3610                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3611                 vdev->eps[ep_index].stream_info = NULL;
3612                 /* FIXME Unset maxPstreams in endpoint context and
3613                  * update deq ptr to point to normal string ring.
3614                  */
3615                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3616                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3617                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3618         }
3619         xhci_free_command(xhci, config_cmd);
3620         return -ENOMEM;
3621 }
3622
3623 /* Transition the endpoint from using streams to being a "normal" endpoint
3624  * without streams.
3625  *
3626  * Modify the endpoint context state, submit a configure endpoint command,
3627  * and free all endpoint rings for streams if that completes successfully.
3628  */
3629 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3630                 struct usb_host_endpoint **eps, unsigned int num_eps,
3631                 gfp_t mem_flags)
3632 {
3633         int i, ret;
3634         struct xhci_hcd *xhci;
3635         struct xhci_virt_device *vdev;
3636         struct xhci_command *command;
3637         struct xhci_input_control_ctx *ctrl_ctx;
3638         unsigned int ep_index;
3639         unsigned long flags;
3640         u32 changed_ep_bitmask;
3641
3642         xhci = hcd_to_xhci(hcd);
3643         vdev = xhci->devs[udev->slot_id];
3644
3645         /* Set up a configure endpoint command to remove the streams rings */
3646         spin_lock_irqsave(&xhci->lock, flags);
3647         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3648                         udev, eps, num_eps);
3649         if (changed_ep_bitmask == 0) {
3650                 spin_unlock_irqrestore(&xhci->lock, flags);
3651                 return -EINVAL;
3652         }
3653
3654         /* Use the xhci_command structure from the first endpoint.  We may have
3655          * allocated too many, but the driver may call xhci_free_streams() for
3656          * each endpoint it grouped into one call to xhci_alloc_streams().
3657          */
3658         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3659         command = vdev->eps[ep_index].stream_info->free_streams_command;
3660         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3661         if (!ctrl_ctx) {
3662                 spin_unlock_irqrestore(&xhci->lock, flags);
3663                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3664                                 __func__);
3665                 return -EINVAL;
3666         }
3667
3668         for (i = 0; i < num_eps; i++) {
3669                 struct xhci_ep_ctx *ep_ctx;
3670
3671                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3672                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3673                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3674                         EP_GETTING_NO_STREAMS;
3675
3676                 xhci_endpoint_copy(xhci, command->in_ctx,
3677                                 vdev->out_ctx, ep_index);
3678                 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3679                                 &vdev->eps[ep_index]);
3680         }
3681         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3682                         vdev->out_ctx, ctrl_ctx,
3683                         changed_ep_bitmask, changed_ep_bitmask);
3684         spin_unlock_irqrestore(&xhci->lock, flags);
3685
3686         /* Issue and wait for the configure endpoint command,
3687          * which must succeed.
3688          */
3689         ret = xhci_configure_endpoint(xhci, udev, command,
3690                         false, true);
3691
3692         /* xHC rejected the configure endpoint command for some reason, so we
3693          * leave the streams rings intact.
3694          */
3695         if (ret < 0)
3696                 return ret;
3697
3698         spin_lock_irqsave(&xhci->lock, flags);
3699         for (i = 0; i < num_eps; i++) {
3700                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3701                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3702                 vdev->eps[ep_index].stream_info = NULL;
3703                 /* FIXME Unset maxPstreams in endpoint context and
3704                  * update deq ptr to point to normal string ring.
3705                  */
3706                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3707                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3708         }
3709         spin_unlock_irqrestore(&xhci->lock, flags);
3710
3711         return 0;
3712 }
3713
3714 /*
3715  * Deletes endpoint resources for endpoints that were active before a Reset
3716  * Device command, or a Disable Slot command.  The Reset Device command leaves
3717  * the control endpoint intact, whereas the Disable Slot command deletes it.
3718  *
3719  * Must be called with xhci->lock held.
3720  */
3721 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3722         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3723 {
3724         int i;
3725         unsigned int num_dropped_eps = 0;
3726         unsigned int drop_flags = 0;
3727
3728         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3729                 if (virt_dev->eps[i].ring) {
3730                         drop_flags |= 1 << i;
3731                         num_dropped_eps++;
3732                 }
3733         }
3734         xhci->num_active_eps -= num_dropped_eps;
3735         if (num_dropped_eps)
3736                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3737                                 "Dropped %u ep ctxs, flags = 0x%x, "
3738                                 "%u now active.",
3739                                 num_dropped_eps, drop_flags,
3740                                 xhci->num_active_eps);
3741 }
3742
3743 /*
3744  * This submits a Reset Device Command, which will set the device state to 0,
3745  * set the device address to 0, and disable all the endpoints except the default
3746  * control endpoint.  The USB core should come back and call
3747  * xhci_address_device(), and then re-set up the configuration.  If this is
3748  * called because of a usb_reset_and_verify_device(), then the old alternate
3749  * settings will be re-installed through the normal bandwidth allocation
3750  * functions.
3751  *
3752  * Wait for the Reset Device command to finish.  Remove all structures
3753  * associated with the endpoints that were disabled.  Clear the input device
3754  * structure? Reset the control endpoint 0 max packet size?
3755  *
3756  * If the virt_dev to be reset does not exist or does not match the udev,
3757  * it means the device is lost, possibly due to the xHC restore error and
3758  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3759  * re-allocate the device.
3760  */
3761 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3762                 struct usb_device *udev)
3763 {
3764         int ret, i;
3765         unsigned long flags;
3766         struct xhci_hcd *xhci;
3767         unsigned int slot_id;
3768         struct xhci_virt_device *virt_dev;
3769         struct xhci_command *reset_device_cmd;
3770         struct xhci_slot_ctx *slot_ctx;
3771         int old_active_eps = 0;
3772
3773         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3774         if (ret <= 0)
3775                 return ret;
3776         xhci = hcd_to_xhci(hcd);
3777         slot_id = udev->slot_id;
3778         virt_dev = xhci->devs[slot_id];
3779         if (!virt_dev) {
3780                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3781                                 "not exist. Re-allocate the device\n", slot_id);
3782                 ret = xhci_alloc_dev(hcd, udev);
3783                 if (ret == 1)
3784                         return 0;
3785                 else
3786                         return -EINVAL;
3787         }
3788
3789         if (virt_dev->tt_info)
3790                 old_active_eps = virt_dev->tt_info->active_eps;
3791
3792         if (virt_dev->udev != udev) {
3793                 /* If the virt_dev and the udev does not match, this virt_dev
3794                  * may belong to another udev.
3795                  * Re-allocate the device.
3796                  */
3797                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3798                                 "not match the udev. Re-allocate the device\n",
3799                                 slot_id);
3800                 ret = xhci_alloc_dev(hcd, udev);
3801                 if (ret == 1)
3802                         return 0;
3803                 else
3804                         return -EINVAL;
3805         }
3806
3807         /* If device is not setup, there is no point in resetting it */
3808         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3809         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3810                                                 SLOT_STATE_DISABLED)
3811                 return 0;
3812
3813         trace_xhci_discover_or_reset_device(slot_ctx);
3814
3815         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3816         /* Allocate the command structure that holds the struct completion.
3817          * Assume we're in process context, since the normal device reset
3818          * process has to wait for the device anyway.  Storage devices are
3819          * reset as part of error handling, so use GFP_NOIO instead of
3820          * GFP_KERNEL.
3821          */
3822         reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3823         if (!reset_device_cmd) {
3824                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3825                 return -ENOMEM;
3826         }
3827
3828         /* Attempt to submit the Reset Device command to the command ring */
3829         spin_lock_irqsave(&xhci->lock, flags);
3830
3831         ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3832         if (ret) {
3833                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3834                 spin_unlock_irqrestore(&xhci->lock, flags);
3835                 goto command_cleanup;
3836         }
3837         xhci_ring_cmd_db(xhci);
3838         spin_unlock_irqrestore(&xhci->lock, flags);
3839
3840         /* Wait for the Reset Device command to finish */
3841         wait_for_completion(reset_device_cmd->completion);
3842
3843         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3844          * unless we tried to reset a slot ID that wasn't enabled,
3845          * or the device wasn't in the addressed or configured state.
3846          */
3847         ret = reset_device_cmd->status;
3848         switch (ret) {
3849         case COMP_COMMAND_ABORTED:
3850         case COMP_COMMAND_RING_STOPPED:
3851                 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3852                 ret = -ETIME;
3853                 goto command_cleanup;
3854         case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3855         case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3856                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3857                                 slot_id,
3858                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3859                 xhci_dbg(xhci, "Not freeing device rings.\n");
3860                 /* Don't treat this as an error.  May change my mind later. */
3861                 ret = 0;
3862                 goto command_cleanup;
3863         case COMP_SUCCESS:
3864                 xhci_dbg(xhci, "Successful reset device command.\n");
3865                 break;
3866         default:
3867                 if (xhci_is_vendor_info_code(xhci, ret))
3868                         break;
3869                 xhci_warn(xhci, "Unknown completion code %u for "
3870                                 "reset device command.\n", ret);
3871                 ret = -EINVAL;
3872                 goto command_cleanup;
3873         }
3874
3875         /* Free up host controller endpoint resources */
3876         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3877                 spin_lock_irqsave(&xhci->lock, flags);
3878                 /* Don't delete the default control endpoint resources */
3879                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3880                 spin_unlock_irqrestore(&xhci->lock, flags);
3881         }
3882
3883         /* Everything but endpoint 0 is disabled, so free the rings. */
3884         for (i = 1; i < 31; i++) {
3885                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3886
3887                 if (ep->ep_state & EP_HAS_STREAMS) {
3888                         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3889                                         xhci_get_endpoint_address(i));
3890                         xhci_free_stream_info(xhci, ep->stream_info);
3891                         ep->stream_info = NULL;
3892                         ep->ep_state &= ~EP_HAS_STREAMS;
3893                 }
3894
3895                 if (ep->ring) {
3896                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3897                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3898                 }
3899                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3900                         xhci_drop_ep_from_interval_table(xhci,
3901                                         &virt_dev->eps[i].bw_info,
3902                                         virt_dev->bw_table,
3903                                         udev,
3904                                         &virt_dev->eps[i],
3905                                         virt_dev->tt_info);
3906                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3907         }
3908         /* If necessary, update the number of active TTs on this root port */
3909         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3910         virt_dev->flags = 0;
3911         ret = 0;
3912
3913 command_cleanup:
3914         xhci_free_command(xhci, reset_device_cmd);
3915         return ret;
3916 }
3917
3918 /*
3919  * At this point, the struct usb_device is about to go away, the device has
3920  * disconnected, and all traffic has been stopped and the endpoints have been
3921  * disabled.  Free any HC data structures associated with that device.
3922  */
3923 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3924 {
3925         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3926         struct xhci_virt_device *virt_dev;
3927         struct xhci_slot_ctx *slot_ctx;
3928         unsigned long flags;
3929         int i, ret;
3930
3931         /*
3932          * We called pm_runtime_get_noresume when the device was attached.
3933          * Decrement the counter here to allow controller to runtime suspend
3934          * if no devices remain.
3935          */
3936         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3937                 pm_runtime_put_noidle(hcd->self.controller);
3938
3939         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3940         /* If the host is halted due to driver unload, we still need to free the
3941          * device.
3942          */
3943         if (ret <= 0 && ret != -ENODEV)
3944                 return;
3945
3946         virt_dev = xhci->devs[udev->slot_id];
3947         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3948         trace_xhci_free_dev(slot_ctx);
3949
3950         /* Stop any wayward timer functions (which may grab the lock) */
3951         for (i = 0; i < 31; i++) {
3952                 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3953                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3954         }
3955         virt_dev->udev = NULL;
3956         xhci_disable_slot(xhci, udev->slot_id);
3957
3958         spin_lock_irqsave(&xhci->lock, flags);
3959         xhci_free_virt_device(xhci, udev->slot_id);
3960         spin_unlock_irqrestore(&xhci->lock, flags);
3961
3962 }
3963
3964 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3965 {
3966         struct xhci_command *command;
3967         unsigned long flags;
3968         u32 state;
3969         int ret = 0;
3970
3971         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3972         if (!command)
3973                 return -ENOMEM;
3974
3975         xhci_debugfs_remove_slot(xhci, slot_id);
3976
3977         spin_lock_irqsave(&xhci->lock, flags);
3978         /* Don't disable the slot if the host controller is dead. */
3979         state = readl(&xhci->op_regs->status);
3980         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3981                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3982                 spin_unlock_irqrestore(&xhci->lock, flags);
3983                 kfree(command);
3984                 return -ENODEV;
3985         }
3986
3987         ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3988                                 slot_id);
3989         if (ret) {
3990                 spin_unlock_irqrestore(&xhci->lock, flags);
3991                 kfree(command);
3992                 return ret;
3993         }
3994         xhci_ring_cmd_db(xhci);
3995         spin_unlock_irqrestore(&xhci->lock, flags);
3996
3997         wait_for_completion(command->completion);
3998
3999         if (command->status != COMP_SUCCESS)
4000                 xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
4001                           slot_id, command->status);
4002
4003         xhci_free_command(xhci, command);
4004
4005         return ret;
4006 }
4007
4008 /*
4009  * Checks if we have enough host controller resources for the default control
4010  * endpoint.
4011  *
4012  * Must be called with xhci->lock held.
4013  */
4014 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
4015 {
4016         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
4017                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4018                                 "Not enough ep ctxs: "
4019                                 "%u active, need to add 1, limit is %u.",
4020                                 xhci->num_active_eps, xhci->limit_active_eps);
4021                 return -ENOMEM;
4022         }
4023         xhci->num_active_eps += 1;
4024         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4025                         "Adding 1 ep ctx, %u now active.",
4026                         xhci->num_active_eps);
4027         return 0;
4028 }
4029
4030
4031 /*
4032  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
4033  * timed out, or allocating memory failed.  Returns 1 on success.
4034  */
4035 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
4036 {
4037         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4038         struct xhci_virt_device *vdev;
4039         struct xhci_slot_ctx *slot_ctx;
4040         unsigned long flags;
4041         int ret, slot_id;
4042         struct xhci_command *command;
4043
4044         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4045         if (!command)
4046                 return 0;
4047
4048         spin_lock_irqsave(&xhci->lock, flags);
4049         ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
4050         if (ret) {
4051                 spin_unlock_irqrestore(&xhci->lock, flags);
4052                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
4053                 xhci_free_command(xhci, command);
4054                 return 0;
4055         }
4056         xhci_ring_cmd_db(xhci);
4057         spin_unlock_irqrestore(&xhci->lock, flags);
4058
4059         wait_for_completion(command->completion);
4060         slot_id = command->slot_id;
4061
4062         if (!slot_id || command->status != COMP_SUCCESS) {
4063                 xhci_err(xhci, "Error while assigning device slot ID\n");
4064                 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4065                                 HCS_MAX_SLOTS(
4066                                         readl(&xhci->cap_regs->hcs_params1)));
4067                 xhci_free_command(xhci, command);
4068                 return 0;
4069         }
4070
4071         xhci_free_command(xhci, command);
4072
4073         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4074                 spin_lock_irqsave(&xhci->lock, flags);
4075                 ret = xhci_reserve_host_control_ep_resources(xhci);
4076                 if (ret) {
4077                         spin_unlock_irqrestore(&xhci->lock, flags);
4078                         xhci_warn(xhci, "Not enough host resources, "
4079                                         "active endpoint contexts = %u\n",
4080                                         xhci->num_active_eps);
4081                         goto disable_slot;
4082                 }
4083                 spin_unlock_irqrestore(&xhci->lock, flags);
4084         }
4085         /* Use GFP_NOIO, since this function can be called from
4086          * xhci_discover_or_reset_device(), which may be called as part of
4087          * mass storage driver error handling.
4088          */
4089         if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4090                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4091                 goto disable_slot;
4092         }
4093         vdev = xhci->devs[slot_id];
4094         slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4095         trace_xhci_alloc_dev(slot_ctx);
4096
4097         udev->slot_id = slot_id;
4098
4099         xhci_debugfs_create_slot(xhci, slot_id);
4100
4101         /*
4102          * If resetting upon resume, we can't put the controller into runtime
4103          * suspend if there is a device attached.
4104          */
4105         if (xhci->quirks & XHCI_RESET_ON_RESUME)
4106                 pm_runtime_get_noresume(hcd->self.controller);
4107
4108         /* Is this a LS or FS device under a HS hub? */
4109         /* Hub or peripherial? */
4110         return 1;
4111
4112 disable_slot:
4113         xhci_disable_slot(xhci, udev->slot_id);
4114         xhci_free_virt_device(xhci, udev->slot_id);
4115
4116         return 0;
4117 }
4118
4119 /*
4120  * Issue an Address Device command and optionally send a corresponding
4121  * SetAddress request to the device.
4122  */
4123 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4124                              enum xhci_setup_dev setup)
4125 {
4126         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4127         unsigned long flags;
4128         struct xhci_virt_device *virt_dev;
4129         int ret = 0;
4130         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4131         struct xhci_slot_ctx *slot_ctx;
4132         struct xhci_input_control_ctx *ctrl_ctx;
4133         u64 temp_64;
4134         struct xhci_command *command = NULL;
4135
4136         mutex_lock(&xhci->mutex);
4137
4138         if (xhci->xhc_state) {  /* dying, removing or halted */
4139                 ret = -ESHUTDOWN;
4140                 goto out;
4141         }
4142
4143         if (!udev->slot_id) {
4144                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4145                                 "Bad Slot ID %d", udev->slot_id);
4146                 ret = -EINVAL;
4147                 goto out;
4148         }
4149
4150         virt_dev = xhci->devs[udev->slot_id];
4151
4152         if (WARN_ON(!virt_dev)) {
4153                 /*
4154                  * In plug/unplug torture test with an NEC controller,
4155                  * a zero-dereference was observed once due to virt_dev = 0.
4156                  * Print useful debug rather than crash if it is observed again!
4157                  */
4158                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4159                         udev->slot_id);
4160                 ret = -EINVAL;
4161                 goto out;
4162         }
4163         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4164         trace_xhci_setup_device_slot(slot_ctx);
4165
4166         if (setup == SETUP_CONTEXT_ONLY) {
4167                 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4168                     SLOT_STATE_DEFAULT) {
4169                         xhci_dbg(xhci, "Slot already in default state\n");
4170                         goto out;
4171                 }
4172         }
4173
4174         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4175         if (!command) {
4176                 ret = -ENOMEM;
4177                 goto out;
4178         }
4179
4180         command->in_ctx = virt_dev->in_ctx;
4181
4182         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4183         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4184         if (!ctrl_ctx) {
4185                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4186                                 __func__);
4187                 ret = -EINVAL;
4188                 goto out;
4189         }
4190         /*
4191          * If this is the first Set Address since device plug-in or
4192          * virt_device realloaction after a resume with an xHCI power loss,
4193          * then set up the slot context.
4194          */
4195         if (!slot_ctx->dev_info)
4196                 xhci_setup_addressable_virt_dev(xhci, udev);
4197         /* Otherwise, update the control endpoint ring enqueue pointer. */
4198         else
4199                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4200         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4201         ctrl_ctx->drop_flags = 0;
4202
4203         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4204                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4205
4206         trace_xhci_address_ctrl_ctx(ctrl_ctx);
4207         spin_lock_irqsave(&xhci->lock, flags);
4208         trace_xhci_setup_device(virt_dev);
4209         ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4210                                         udev->slot_id, setup);
4211         if (ret) {
4212                 spin_unlock_irqrestore(&xhci->lock, flags);
4213                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4214                                 "FIXME: allocate a command ring segment");
4215                 goto out;
4216         }
4217         xhci_ring_cmd_db(xhci);
4218         spin_unlock_irqrestore(&xhci->lock, flags);
4219
4220         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4221         wait_for_completion(command->completion);
4222
4223         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
4224          * the SetAddress() "recovery interval" required by USB and aborting the
4225          * command on a timeout.
4226          */
4227         switch (command->status) {
4228         case COMP_COMMAND_ABORTED:
4229         case COMP_COMMAND_RING_STOPPED:
4230                 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4231                 ret = -ETIME;
4232                 break;
4233         case COMP_CONTEXT_STATE_ERROR:
4234         case COMP_SLOT_NOT_ENABLED_ERROR:
4235                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4236                          act, udev->slot_id);
4237                 ret = -EINVAL;
4238                 break;
4239         case COMP_USB_TRANSACTION_ERROR:
4240                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4241
4242                 mutex_unlock(&xhci->mutex);
4243                 ret = xhci_disable_slot(xhci, udev->slot_id);
4244                 xhci_free_virt_device(xhci, udev->slot_id);
4245                 if (!ret)
4246                         xhci_alloc_dev(hcd, udev);
4247                 kfree(command->completion);
4248                 kfree(command);
4249                 return -EPROTO;
4250         case COMP_INCOMPATIBLE_DEVICE_ERROR:
4251                 dev_warn(&udev->dev,
4252                          "ERROR: Incompatible device for setup %s command\n", act);
4253                 ret = -ENODEV;
4254                 break;
4255         case COMP_SUCCESS:
4256                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4257                                "Successful setup %s command", act);
4258                 break;
4259         default:
4260                 xhci_err(xhci,
4261                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
4262                          act, command->status);
4263                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4264                 ret = -EINVAL;
4265                 break;
4266         }
4267         if (ret)
4268                 goto out;
4269         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4270         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4271                         "Op regs DCBAA ptr = %#016llx", temp_64);
4272         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4273                 "Slot ID %d dcbaa entry @%p = %#016llx",
4274                 udev->slot_id,
4275                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4276                 (unsigned long long)
4277                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4278         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4279                         "Output Context DMA address = %#08llx",
4280                         (unsigned long long)virt_dev->out_ctx->dma);
4281         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4282                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4283         /*
4284          * USB core uses address 1 for the roothubs, so we add one to the
4285          * address given back to us by the HC.
4286          */
4287         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4288                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4289         /* Zero the input context control for later use */
4290         ctrl_ctx->add_flags = 0;
4291         ctrl_ctx->drop_flags = 0;
4292         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4293         udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4294
4295         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4296                        "Internal device address = %d",
4297                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4298 out:
4299         mutex_unlock(&xhci->mutex);
4300         if (command) {
4301                 kfree(command->completion);
4302                 kfree(command);
4303         }
4304         return ret;
4305 }
4306
4307 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4308 {
4309         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4310 }
4311
4312 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4313 {
4314         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4315 }
4316
4317 /*
4318  * Transfer the port index into real index in the HW port status
4319  * registers. Caculate offset between the port's PORTSC register
4320  * and port status base. Divide the number of per port register
4321  * to get the real index. The raw port number bases 1.
4322  */
4323 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4324 {
4325         struct xhci_hub *rhub;
4326
4327         rhub = xhci_get_rhub(hcd);
4328         return rhub->ports[port1 - 1]->hw_portnum + 1;
4329 }
4330
4331 /*
4332  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4333  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4334  */
4335 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4336                         struct usb_device *udev, u16 max_exit_latency)
4337 {
4338         struct xhci_virt_device *virt_dev;
4339         struct xhci_command *command;
4340         struct xhci_input_control_ctx *ctrl_ctx;
4341         struct xhci_slot_ctx *slot_ctx;
4342         unsigned long flags;
4343         int ret;
4344
4345         spin_lock_irqsave(&xhci->lock, flags);
4346
4347         virt_dev = xhci->devs[udev->slot_id];
4348
4349         /*
4350          * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4351          * xHC was re-initialized. Exit latency will be set later after
4352          * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4353          */
4354
4355         if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4356                 spin_unlock_irqrestore(&xhci->lock, flags);
4357                 return 0;
4358         }
4359
4360         /* Attempt to issue an Evaluate Context command to change the MEL. */
4361         command = xhci->lpm_command;
4362         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4363         if (!ctrl_ctx) {
4364                 spin_unlock_irqrestore(&xhci->lock, flags);
4365                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4366                                 __func__);
4367                 return -ENOMEM;
4368         }
4369
4370         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4371         spin_unlock_irqrestore(&xhci->lock, flags);
4372
4373         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4374         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4375         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4376         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4377         slot_ctx->dev_state = 0;
4378
4379         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4380                         "Set up evaluate context for LPM MEL change.");
4381
4382         /* Issue and wait for the evaluate context command. */
4383         ret = xhci_configure_endpoint(xhci, udev, command,
4384                         true, true);
4385
4386         if (!ret) {
4387                 spin_lock_irqsave(&xhci->lock, flags);
4388                 virt_dev->current_mel = max_exit_latency;
4389                 spin_unlock_irqrestore(&xhci->lock, flags);
4390         }
4391         return ret;
4392 }
4393
4394 #ifdef CONFIG_PM
4395
4396 /* BESL to HIRD Encoding array for USB2 LPM */
4397 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4398         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4399
4400 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4401 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4402                                         struct usb_device *udev)
4403 {
4404         int u2del, besl, besl_host;
4405         int besl_device = 0;
4406         u32 field;
4407
4408         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4409         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4410
4411         if (field & USB_BESL_SUPPORT) {
4412                 for (besl_host = 0; besl_host < 16; besl_host++) {
4413                         if (xhci_besl_encoding[besl_host] >= u2del)
4414                                 break;
4415                 }
4416                 /* Use baseline BESL value as default */
4417                 if (field & USB_BESL_BASELINE_VALID)
4418                         besl_device = USB_GET_BESL_BASELINE(field);
4419                 else if (field & USB_BESL_DEEP_VALID)
4420                         besl_device = USB_GET_BESL_DEEP(field);
4421         } else {
4422                 if (u2del <= 50)
4423                         besl_host = 0;
4424                 else
4425                         besl_host = (u2del - 51) / 75 + 1;
4426         }
4427
4428         besl = besl_host + besl_device;
4429         if (besl > 15)
4430                 besl = 15;
4431
4432         return besl;
4433 }
4434
4435 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4436 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4437 {
4438         u32 field;
4439         int l1;
4440         int besld = 0;
4441         int hirdm = 0;
4442
4443         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4444
4445         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4446         l1 = udev->l1_params.timeout / 256;
4447
4448         /* device has preferred BESLD */
4449         if (field & USB_BESL_DEEP_VALID) {
4450                 besld = USB_GET_BESL_DEEP(field);
4451                 hirdm = 1;
4452         }
4453
4454         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4455 }
4456
4457 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4458                         struct usb_device *udev, int enable)
4459 {
4460         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4461         struct xhci_port **ports;
4462         __le32 __iomem  *pm_addr, *hlpm_addr;
4463         u32             pm_val, hlpm_val, field;
4464         unsigned int    port_num;
4465         unsigned long   flags;
4466         int             hird, exit_latency;
4467         int             ret;
4468
4469         if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4470                 return -EPERM;
4471
4472         if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4473                         !udev->lpm_capable)
4474                 return -EPERM;
4475
4476         if (!udev->parent || udev->parent->parent ||
4477                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4478                 return -EPERM;
4479
4480         if (udev->usb2_hw_lpm_capable != 1)
4481                 return -EPERM;
4482
4483         spin_lock_irqsave(&xhci->lock, flags);
4484
4485         ports = xhci->usb2_rhub.ports;
4486         port_num = udev->portnum - 1;
4487         pm_addr = ports[port_num]->addr + PORTPMSC;
4488         pm_val = readl(pm_addr);
4489         hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4490
4491         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4492                         enable ? "enable" : "disable", port_num + 1);
4493
4494         if (enable) {
4495                 /* Host supports BESL timeout instead of HIRD */
4496                 if (udev->usb2_hw_lpm_besl_capable) {
4497                         /* if device doesn't have a preferred BESL value use a
4498                          * default one which works with mixed HIRD and BESL
4499                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4500                          */
4501                         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4502                         if ((field & USB_BESL_SUPPORT) &&
4503                             (field & USB_BESL_BASELINE_VALID))
4504                                 hird = USB_GET_BESL_BASELINE(field);
4505                         else
4506                                 hird = udev->l1_params.besl;
4507
4508                         exit_latency = xhci_besl_encoding[hird];
4509                         spin_unlock_irqrestore(&xhci->lock, flags);
4510
4511                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4512                          * input context for link powermanagement evaluate
4513                          * context commands. It is protected by hcd->bandwidth
4514                          * mutex and is shared by all devices. We need to set
4515                          * the max ext latency in USB 2 BESL LPM as well, so
4516                          * use the same mutex and xhci_change_max_exit_latency()
4517                          */
4518                         mutex_lock(hcd->bandwidth_mutex);
4519                         ret = xhci_change_max_exit_latency(xhci, udev,
4520                                                            exit_latency);
4521                         mutex_unlock(hcd->bandwidth_mutex);
4522
4523                         if (ret < 0)
4524                                 return ret;
4525                         spin_lock_irqsave(&xhci->lock, flags);
4526
4527                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4528                         writel(hlpm_val, hlpm_addr);
4529                         /* flush write */
4530                         readl(hlpm_addr);
4531                 } else {
4532                         hird = xhci_calculate_hird_besl(xhci, udev);
4533                 }
4534
4535                 pm_val &= ~PORT_HIRD_MASK;
4536                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4537                 writel(pm_val, pm_addr);
4538                 pm_val = readl(pm_addr);
4539                 pm_val |= PORT_HLE;
4540                 writel(pm_val, pm_addr);
4541                 /* flush write */
4542                 readl(pm_addr);
4543         } else {
4544                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4545                 writel(pm_val, pm_addr);
4546                 /* flush write */
4547                 readl(pm_addr);
4548                 if (udev->usb2_hw_lpm_besl_capable) {
4549                         spin_unlock_irqrestore(&xhci->lock, flags);
4550                         mutex_lock(hcd->bandwidth_mutex);
4551                         xhci_change_max_exit_latency(xhci, udev, 0);
4552                         mutex_unlock(hcd->bandwidth_mutex);
4553                         readl_poll_timeout(ports[port_num]->addr, pm_val,
4554                                            (pm_val & PORT_PLS_MASK) == XDEV_U0,
4555                                            100, 10000);
4556                         return 0;
4557                 }
4558         }
4559
4560         spin_unlock_irqrestore(&xhci->lock, flags);
4561         return 0;
4562 }
4563
4564 /* check if a usb2 port supports a given extened capability protocol
4565  * only USB2 ports extended protocol capability values are cached.
4566  * Return 1 if capability is supported
4567  */
4568 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4569                                            unsigned capability)
4570 {
4571         u32 port_offset, port_count;
4572         int i;
4573
4574         for (i = 0; i < xhci->num_ext_caps; i++) {
4575                 if (xhci->ext_caps[i] & capability) {
4576                         /* port offsets starts at 1 */
4577                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4578                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4579                         if (port >= port_offset &&
4580                             port < port_offset + port_count)
4581                                 return 1;
4582                 }
4583         }
4584         return 0;
4585 }
4586
4587 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4588 {
4589         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4590         int             portnum = udev->portnum - 1;
4591
4592         if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4593                 return 0;
4594
4595         /* we only support lpm for non-hub device connected to root hub yet */
4596         if (!udev->parent || udev->parent->parent ||
4597                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4598                 return 0;
4599
4600         if (xhci->hw_lpm_support == 1 &&
4601                         xhci_check_usb2_port_capability(
4602                                 xhci, portnum, XHCI_HLC)) {
4603                 udev->usb2_hw_lpm_capable = 1;
4604                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4605                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4606                 if (xhci_check_usb2_port_capability(xhci, portnum,
4607                                         XHCI_BLC))
4608                         udev->usb2_hw_lpm_besl_capable = 1;
4609         }
4610
4611         return 0;
4612 }
4613
4614 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4615
4616 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4617 static unsigned long long xhci_service_interval_to_ns(
4618                 struct usb_endpoint_descriptor *desc)
4619 {
4620         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4621 }
4622
4623 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4624                 enum usb3_link_state state)
4625 {
4626         unsigned long long sel;
4627         unsigned long long pel;
4628         unsigned int max_sel_pel;
4629         char *state_name;
4630
4631         switch (state) {
4632         case USB3_LPM_U1:
4633                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4634                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4635                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4636                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4637                 state_name = "U1";
4638                 break;
4639         case USB3_LPM_U2:
4640                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4641                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4642                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4643                 state_name = "U2";
4644                 break;
4645         default:
4646                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4647                                 __func__);
4648                 return USB3_LPM_DISABLED;
4649         }
4650
4651         if (sel <= max_sel_pel && pel <= max_sel_pel)
4652                 return USB3_LPM_DEVICE_INITIATED;
4653
4654         if (sel > max_sel_pel)
4655                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4656                                 "due to long SEL %llu ms\n",
4657                                 state_name, sel);
4658         else
4659                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4660                                 "due to long PEL %llu ms\n",
4661                                 state_name, pel);
4662         return USB3_LPM_DISABLED;
4663 }
4664
4665 /* The U1 timeout should be the maximum of the following values:
4666  *  - For control endpoints, U1 system exit latency (SEL) * 3
4667  *  - For bulk endpoints, U1 SEL * 5
4668  *  - For interrupt endpoints:
4669  *    - Notification EPs, U1 SEL * 3
4670  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4671  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4672  */
4673 static unsigned long long xhci_calculate_intel_u1_timeout(
4674                 struct usb_device *udev,
4675                 struct usb_endpoint_descriptor *desc)
4676 {
4677         unsigned long long timeout_ns;
4678         int ep_type;
4679         int intr_type;
4680
4681         ep_type = usb_endpoint_type(desc);
4682         switch (ep_type) {
4683         case USB_ENDPOINT_XFER_CONTROL:
4684                 timeout_ns = udev->u1_params.sel * 3;
4685                 break;
4686         case USB_ENDPOINT_XFER_BULK:
4687                 timeout_ns = udev->u1_params.sel * 5;
4688                 break;
4689         case USB_ENDPOINT_XFER_INT:
4690                 intr_type = usb_endpoint_interrupt_type(desc);
4691                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4692                         timeout_ns = udev->u1_params.sel * 3;
4693                         break;
4694                 }
4695                 /* Otherwise the calculation is the same as isoc eps */
4696                 fallthrough;
4697         case USB_ENDPOINT_XFER_ISOC:
4698                 timeout_ns = xhci_service_interval_to_ns(desc);
4699                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4700                 if (timeout_ns < udev->u1_params.sel * 2)
4701                         timeout_ns = udev->u1_params.sel * 2;
4702                 break;
4703         default:
4704                 return 0;
4705         }
4706
4707         return timeout_ns;
4708 }
4709
4710 /* Returns the hub-encoded U1 timeout value. */
4711 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4712                 struct usb_device *udev,
4713                 struct usb_endpoint_descriptor *desc)
4714 {
4715         unsigned long long timeout_ns;
4716
4717         /* Prevent U1 if service interval is shorter than U1 exit latency */
4718         if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4719                 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4720                         dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4721                         return USB3_LPM_DISABLED;
4722                 }
4723         }
4724
4725         if (xhci->quirks & XHCI_INTEL_HOST)
4726                 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4727         else
4728                 timeout_ns = udev->u1_params.sel;
4729
4730         /* The U1 timeout is encoded in 1us intervals.
4731          * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4732          */
4733         if (timeout_ns == USB3_LPM_DISABLED)
4734                 timeout_ns = 1;
4735         else
4736                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4737
4738         /* If the necessary timeout value is bigger than what we can set in the
4739          * USB 3.0 hub, we have to disable hub-initiated U1.
4740          */
4741         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4742                 return timeout_ns;
4743         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4744                         "due to long timeout %llu ms\n", timeout_ns);
4745         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4746 }
4747
4748 /* The U2 timeout should be the maximum of:
4749  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4750  *  - largest bInterval of any active periodic endpoint (to avoid going
4751  *    into lower power link states between intervals).
4752  *  - the U2 Exit Latency of the device
4753  */
4754 static unsigned long long xhci_calculate_intel_u2_timeout(
4755                 struct usb_device *udev,
4756                 struct usb_endpoint_descriptor *desc)
4757 {
4758         unsigned long long timeout_ns;
4759         unsigned long long u2_del_ns;
4760
4761         timeout_ns = 10 * 1000 * 1000;
4762
4763         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4764                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4765                 timeout_ns = xhci_service_interval_to_ns(desc);
4766
4767         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4768         if (u2_del_ns > timeout_ns)
4769                 timeout_ns = u2_del_ns;
4770
4771         return timeout_ns;
4772 }
4773
4774 /* Returns the hub-encoded U2 timeout value. */
4775 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4776                 struct usb_device *udev,
4777                 struct usb_endpoint_descriptor *desc)
4778 {
4779         unsigned long long timeout_ns;
4780
4781         /* Prevent U2 if service interval is shorter than U2 exit latency */
4782         if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4783                 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4784                         dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4785                         return USB3_LPM_DISABLED;
4786                 }
4787         }
4788
4789         if (xhci->quirks & XHCI_INTEL_HOST)
4790                 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4791         else
4792                 timeout_ns = udev->u2_params.sel;
4793
4794         /* The U2 timeout is encoded in 256us intervals */
4795         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4796         /* If the necessary timeout value is bigger than what we can set in the
4797          * USB 3.0 hub, we have to disable hub-initiated U2.
4798          */
4799         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4800                 return timeout_ns;
4801         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4802                         "due to long timeout %llu ms\n", timeout_ns);
4803         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4804 }
4805
4806 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4807                 struct usb_device *udev,
4808                 struct usb_endpoint_descriptor *desc,
4809                 enum usb3_link_state state,
4810                 u16 *timeout)
4811 {
4812         if (state == USB3_LPM_U1)
4813                 return xhci_calculate_u1_timeout(xhci, udev, desc);
4814         else if (state == USB3_LPM_U2)
4815                 return xhci_calculate_u2_timeout(xhci, udev, desc);
4816
4817         return USB3_LPM_DISABLED;
4818 }
4819
4820 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4821                 struct usb_device *udev,
4822                 struct usb_endpoint_descriptor *desc,
4823                 enum usb3_link_state state,
4824                 u16 *timeout)
4825 {
4826         u16 alt_timeout;
4827
4828         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4829                 desc, state, timeout);
4830
4831         /* If we found we can't enable hub-initiated LPM, and
4832          * the U1 or U2 exit latency was too high to allow
4833          * device-initiated LPM as well, then we will disable LPM
4834          * for this device, so stop searching any further.
4835          */
4836         if (alt_timeout == USB3_LPM_DISABLED) {
4837                 *timeout = alt_timeout;
4838                 return -E2BIG;
4839         }
4840         if (alt_timeout > *timeout)
4841                 *timeout = alt_timeout;
4842         return 0;
4843 }
4844
4845 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4846                 struct usb_device *udev,
4847                 struct usb_host_interface *alt,
4848                 enum usb3_link_state state,
4849                 u16 *timeout)
4850 {
4851         int j;
4852
4853         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4854                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4855                                         &alt->endpoint[j].desc, state, timeout))
4856                         return -E2BIG;
4857                 continue;
4858         }
4859         return 0;
4860 }
4861
4862 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4863                 enum usb3_link_state state)
4864 {
4865         struct usb_device *parent;
4866         unsigned int num_hubs;
4867
4868         if (state == USB3_LPM_U2)
4869                 return 0;
4870
4871         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4872         for (parent = udev->parent, num_hubs = 0; parent->parent;
4873                         parent = parent->parent)
4874                 num_hubs++;
4875
4876         if (num_hubs < 2)
4877                 return 0;
4878
4879         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4880                         " below second-tier hub.\n");
4881         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4882                         "to decrease power consumption.\n");
4883         return -E2BIG;
4884 }
4885
4886 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4887                 struct usb_device *udev,
4888                 enum usb3_link_state state)
4889 {
4890         if (xhci->quirks & XHCI_INTEL_HOST)
4891                 return xhci_check_intel_tier_policy(udev, state);
4892         else
4893                 return 0;
4894 }
4895
4896 /* Returns the U1 or U2 timeout that should be enabled.
4897  * If the tier check or timeout setting functions return with a non-zero exit
4898  * code, that means the timeout value has been finalized and we shouldn't look
4899  * at any more endpoints.
4900  */
4901 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4902                         struct usb_device *udev, enum usb3_link_state state)
4903 {
4904         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4905         struct usb_host_config *config;
4906         char *state_name;
4907         int i;
4908         u16 timeout = USB3_LPM_DISABLED;
4909
4910         if (state == USB3_LPM_U1)
4911                 state_name = "U1";
4912         else if (state == USB3_LPM_U2)
4913                 state_name = "U2";
4914         else {
4915                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4916                                 state);
4917                 return timeout;
4918         }
4919
4920         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4921                 return timeout;
4922
4923         /* Gather some information about the currently installed configuration
4924          * and alternate interface settings.
4925          */
4926         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4927                         state, &timeout))
4928                 return timeout;
4929
4930         config = udev->actconfig;
4931         if (!config)
4932                 return timeout;
4933
4934         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4935                 struct usb_driver *driver;
4936                 struct usb_interface *intf = config->interface[i];
4937
4938                 if (!intf)
4939                         continue;
4940
4941                 /* Check if any currently bound drivers want hub-initiated LPM
4942                  * disabled.
4943                  */
4944                 if (intf->dev.driver) {
4945                         driver = to_usb_driver(intf->dev.driver);
4946                         if (driver && driver->disable_hub_initiated_lpm) {
4947                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4948                                         state_name, driver->name);
4949                                 timeout = xhci_get_timeout_no_hub_lpm(udev,
4950                                                                       state);
4951                                 if (timeout == USB3_LPM_DISABLED)
4952                                         return timeout;
4953                         }
4954                 }
4955
4956                 /* Not sure how this could happen... */
4957                 if (!intf->cur_altsetting)
4958                         continue;
4959
4960                 if (xhci_update_timeout_for_interface(xhci, udev,
4961                                         intf->cur_altsetting,
4962                                         state, &timeout))
4963                         return timeout;
4964         }
4965         return timeout;
4966 }
4967
4968 static int calculate_max_exit_latency(struct usb_device *udev,
4969                 enum usb3_link_state state_changed,
4970                 u16 hub_encoded_timeout)
4971 {
4972         unsigned long long u1_mel_us = 0;
4973         unsigned long long u2_mel_us = 0;
4974         unsigned long long mel_us = 0;
4975         bool disabling_u1;
4976         bool disabling_u2;
4977         bool enabling_u1;
4978         bool enabling_u2;
4979
4980         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4981                         hub_encoded_timeout == USB3_LPM_DISABLED);
4982         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4983                         hub_encoded_timeout == USB3_LPM_DISABLED);
4984
4985         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4986                         hub_encoded_timeout != USB3_LPM_DISABLED);
4987         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4988                         hub_encoded_timeout != USB3_LPM_DISABLED);
4989
4990         /* If U1 was already enabled and we're not disabling it,
4991          * or we're going to enable U1, account for the U1 max exit latency.
4992          */
4993         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4994                         enabling_u1)
4995                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4996         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4997                         enabling_u2)
4998                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4999
5000         if (u1_mel_us > u2_mel_us)
5001                 mel_us = u1_mel_us;
5002         else
5003                 mel_us = u2_mel_us;
5004         /* xHCI host controller max exit latency field is only 16 bits wide. */
5005         if (mel_us > MAX_EXIT) {
5006                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
5007                                 "is too big.\n", mel_us);
5008                 return -E2BIG;
5009         }
5010         return mel_us;
5011 }
5012
5013 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
5014 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5015                         struct usb_device *udev, enum usb3_link_state state)
5016 {
5017         struct xhci_hcd *xhci;
5018         struct xhci_port *port;
5019         u16 hub_encoded_timeout;
5020         int mel;
5021         int ret;
5022
5023         xhci = hcd_to_xhci(hcd);
5024         /* The LPM timeout values are pretty host-controller specific, so don't
5025          * enable hub-initiated timeouts unless the vendor has provided
5026          * information about their timeout algorithm.
5027          */
5028         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5029                         !xhci->devs[udev->slot_id])
5030                 return USB3_LPM_DISABLED;
5031
5032         /* If connected to root port then check port can handle lpm */
5033         if (udev->parent && !udev->parent->parent) {
5034                 port = xhci->usb3_rhub.ports[udev->portnum - 1];
5035                 if (port->lpm_incapable)
5036                         return USB3_LPM_DISABLED;
5037         }
5038
5039         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
5040         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
5041         if (mel < 0) {
5042                 /* Max Exit Latency is too big, disable LPM. */
5043                 hub_encoded_timeout = USB3_LPM_DISABLED;
5044                 mel = 0;
5045         }
5046
5047         ret = xhci_change_max_exit_latency(xhci, udev, mel);
5048         if (ret)
5049                 return ret;
5050         return hub_encoded_timeout;
5051 }
5052
5053 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5054                         struct usb_device *udev, enum usb3_link_state state)
5055 {
5056         struct xhci_hcd *xhci;
5057         u16 mel;
5058
5059         xhci = hcd_to_xhci(hcd);
5060         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5061                         !xhci->devs[udev->slot_id])
5062                 return 0;
5063
5064         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5065         return xhci_change_max_exit_latency(xhci, udev, mel);
5066 }
5067 #else /* CONFIG_PM */
5068
5069 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5070                                 struct usb_device *udev, int enable)
5071 {
5072         return 0;
5073 }
5074
5075 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5076 {
5077         return 0;
5078 }
5079
5080 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5081                         struct usb_device *udev, enum usb3_link_state state)
5082 {
5083         return USB3_LPM_DISABLED;
5084 }
5085
5086 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5087                         struct usb_device *udev, enum usb3_link_state state)
5088 {
5089         return 0;
5090 }
5091 #endif  /* CONFIG_PM */
5092
5093 /*-------------------------------------------------------------------------*/
5094
5095 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5096  * internal data structures for the device.
5097  */
5098 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5099                         struct usb_tt *tt, gfp_t mem_flags)
5100 {
5101         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5102         struct xhci_virt_device *vdev;
5103         struct xhci_command *config_cmd;
5104         struct xhci_input_control_ctx *ctrl_ctx;
5105         struct xhci_slot_ctx *slot_ctx;
5106         unsigned long flags;
5107         unsigned think_time;
5108         int ret;
5109
5110         /* Ignore root hubs */
5111         if (!hdev->parent)
5112                 return 0;
5113
5114         vdev = xhci->devs[hdev->slot_id];
5115         if (!vdev) {
5116                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5117                 return -EINVAL;
5118         }
5119
5120         config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5121         if (!config_cmd)
5122                 return -ENOMEM;
5123
5124         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5125         if (!ctrl_ctx) {
5126                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5127                                 __func__);
5128                 xhci_free_command(xhci, config_cmd);
5129                 return -ENOMEM;
5130         }
5131
5132         spin_lock_irqsave(&xhci->lock, flags);
5133         if (hdev->speed == USB_SPEED_HIGH &&
5134                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5135                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5136                 xhci_free_command(xhci, config_cmd);
5137                 spin_unlock_irqrestore(&xhci->lock, flags);
5138                 return -ENOMEM;
5139         }
5140
5141         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5142         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5143         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5144         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5145         /*
5146          * refer to section 6.2.2: MTT should be 0 for full speed hub,
5147          * but it may be already set to 1 when setup an xHCI virtual
5148          * device, so clear it anyway.
5149          */
5150         if (tt->multi)
5151                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5152         else if (hdev->speed == USB_SPEED_FULL)
5153                 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5154
5155         if (xhci->hci_version > 0x95) {
5156                 xhci_dbg(xhci, "xHCI version %x needs hub "
5157                                 "TT think time and number of ports\n",
5158                                 (unsigned int) xhci->hci_version);
5159                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5160                 /* Set TT think time - convert from ns to FS bit times.
5161                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
5162                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
5163                  *
5164                  * xHCI 1.0: this field shall be 0 if the device is not a
5165                  * High-spped hub.
5166                  */
5167                 think_time = tt->think_time;
5168                 if (think_time != 0)
5169                         think_time = (think_time / 666) - 1;
5170                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5171                         slot_ctx->tt_info |=
5172                                 cpu_to_le32(TT_THINK_TIME(think_time));
5173         } else {
5174                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5175                                 "TT think time or number of ports\n",
5176                                 (unsigned int) xhci->hci_version);
5177         }
5178         slot_ctx->dev_state = 0;
5179         spin_unlock_irqrestore(&xhci->lock, flags);
5180
5181         xhci_dbg(xhci, "Set up %s for hub device.\n",
5182                         (xhci->hci_version > 0x95) ?
5183                         "configure endpoint" : "evaluate context");
5184
5185         /* Issue and wait for the configure endpoint or
5186          * evaluate context command.
5187          */
5188         if (xhci->hci_version > 0x95)
5189                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5190                                 false, false);
5191         else
5192                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5193                                 true, false);
5194
5195         xhci_free_command(xhci, config_cmd);
5196         return ret;
5197 }
5198 EXPORT_SYMBOL_GPL(xhci_update_hub_device);
5199
5200 static int xhci_get_frame(struct usb_hcd *hcd)
5201 {
5202         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5203         /* EHCI mods by the periodic size.  Why? */
5204         return readl(&xhci->run_regs->microframe_index) >> 3;
5205 }
5206
5207 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5208 {
5209         struct xhci_hcd         *xhci;
5210         /*
5211          * TODO: Check with DWC3 clients for sysdev according to
5212          * quirks
5213          */
5214         struct device           *dev = hcd->self.sysdev;
5215         unsigned int            minor_rev;
5216         int                     retval;
5217
5218         /* Accept arbitrarily long scatter-gather lists */
5219         hcd->self.sg_tablesize = ~0;
5220
5221         /* support to build packet from discontinuous buffers */
5222         hcd->self.no_sg_constraint = 1;
5223
5224         /* XHCI controllers don't stop the ep queue on short packets :| */
5225         hcd->self.no_stop_on_short = 1;
5226
5227         xhci = hcd_to_xhci(hcd);
5228
5229         if (usb_hcd_is_primary_hcd(hcd)) {
5230                 xhci->main_hcd = hcd;
5231                 xhci->usb2_rhub.hcd = hcd;
5232                 /* Mark the first roothub as being USB 2.0.
5233                  * The xHCI driver will register the USB 3.0 roothub.
5234                  */
5235                 hcd->speed = HCD_USB2;
5236                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
5237                 /*
5238                  * USB 2.0 roothub under xHCI has an integrated TT,
5239                  * (rate matching hub) as opposed to having an OHCI/UHCI
5240                  * companion controller.
5241                  */
5242                 hcd->has_tt = 1;
5243         } else {
5244                 /*
5245                  * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5246                  * should return 0x31 for sbrn, or that the minor revision
5247                  * is a two digit BCD containig minor and sub-minor numbers.
5248                  * This was later clarified in xHCI 1.2.
5249                  *
5250                  * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5251                  * minor revision set to 0x1 instead of 0x10.
5252                  */
5253                 if (xhci->usb3_rhub.min_rev == 0x1)
5254                         minor_rev = 1;
5255                 else
5256                         minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5257
5258                 switch (minor_rev) {
5259                 case 2:
5260                         hcd->speed = HCD_USB32;
5261                         hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5262                         hcd->self.root_hub->rx_lanes = 2;
5263                         hcd->self.root_hub->tx_lanes = 2;
5264                         break;
5265                 case 1:
5266                         hcd->speed = HCD_USB31;
5267                         hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5268                         break;
5269                 }
5270                 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5271                           minor_rev,
5272                           minor_rev ? "Enhanced " : "");
5273
5274                 xhci->usb3_rhub.hcd = hcd;
5275                 /* xHCI private pointer was set in xhci_pci_probe for the second
5276                  * registered roothub.
5277                  */
5278                 return 0;
5279         }
5280
5281         mutex_init(&xhci->mutex);
5282         xhci->cap_regs = hcd->regs;
5283         xhci->op_regs = hcd->regs +
5284                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5285         xhci->run_regs = hcd->regs +
5286                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5287         /* Cache read-only capability registers */
5288         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5289         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5290         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5291         xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
5292         xhci->hci_version = HC_VERSION(xhci->hcc_params);
5293         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5294         if (xhci->hci_version > 0x100)
5295                 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5296
5297         xhci->quirks |= quirks;
5298
5299         get_quirks(dev, xhci);
5300
5301         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
5302          * success event after a short transfer. This quirk will ignore such
5303          * spurious event.
5304          */
5305         if (xhci->hci_version > 0x96)
5306                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5307
5308         /* Make sure the HC is halted. */
5309         retval = xhci_halt(xhci);
5310         if (retval)
5311                 return retval;
5312
5313         xhci_zero_64b_regs(xhci);
5314
5315         xhci_dbg(xhci, "Resetting HCD\n");
5316         /* Reset the internal HC memory state and registers. */
5317         retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
5318         if (retval)
5319                 return retval;
5320         xhci_dbg(xhci, "Reset complete\n");
5321
5322         /*
5323          * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5324          * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5325          * address memory pointers actually. So, this driver clears the AC64
5326          * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5327          * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5328          */
5329         if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5330                 xhci->hcc_params &= ~BIT(0);
5331
5332         /* Set dma_mask and coherent_dma_mask to 64-bits,
5333          * if xHC supports 64-bit addressing */
5334         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5335                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5336                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5337                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5338         } else {
5339                 /*
5340                  * This is to avoid error in cases where a 32-bit USB
5341                  * controller is used on a 64-bit capable system.
5342                  */
5343                 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5344                 if (retval)
5345                         return retval;
5346                 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5347                 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5348         }
5349
5350         xhci_dbg(xhci, "Calling HCD init\n");
5351         /* Initialize HCD and host controller data structures. */
5352         retval = xhci_init(hcd);
5353         if (retval)
5354                 return retval;
5355         xhci_dbg(xhci, "Called HCD init\n");
5356
5357         xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5358                   xhci->hcc_params, xhci->hci_version, xhci->quirks);
5359
5360         return 0;
5361 }
5362 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5363
5364 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5365                 struct usb_host_endpoint *ep)
5366 {
5367         struct xhci_hcd *xhci;
5368         struct usb_device *udev;
5369         unsigned int slot_id;
5370         unsigned int ep_index;
5371         unsigned long flags;
5372
5373         xhci = hcd_to_xhci(hcd);
5374
5375         spin_lock_irqsave(&xhci->lock, flags);
5376         udev = (struct usb_device *)ep->hcpriv;
5377         slot_id = udev->slot_id;
5378         ep_index = xhci_get_endpoint_index(&ep->desc);
5379
5380         xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5381         xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5382         spin_unlock_irqrestore(&xhci->lock, flags);
5383 }
5384
5385 static const struct hc_driver xhci_hc_driver = {
5386         .description =          "xhci-hcd",
5387         .product_desc =         "xHCI Host Controller",
5388         .hcd_priv_size =        sizeof(struct xhci_hcd),
5389
5390         /*
5391          * generic hardware linkage
5392          */
5393         .irq =                  xhci_irq,
5394         .flags =                HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5395                                 HCD_BH,
5396
5397         /*
5398          * basic lifecycle operations
5399          */
5400         .reset =                NULL, /* set in xhci_init_driver() */
5401         .start =                xhci_run,
5402         .stop =                 xhci_stop,
5403         .shutdown =             xhci_shutdown,
5404
5405         /*
5406          * managing i/o requests and associated device resources
5407          */
5408         .map_urb_for_dma =      xhci_map_urb_for_dma,
5409         .urb_enqueue =          xhci_urb_enqueue,
5410         .urb_dequeue =          xhci_urb_dequeue,
5411         .alloc_dev =            xhci_alloc_dev,
5412         .free_dev =             xhci_free_dev,
5413         .alloc_streams =        xhci_alloc_streams,
5414         .free_streams =         xhci_free_streams,
5415         .add_endpoint =         xhci_add_endpoint,
5416         .drop_endpoint =        xhci_drop_endpoint,
5417         .endpoint_disable =     xhci_endpoint_disable,
5418         .endpoint_reset =       xhci_endpoint_reset,
5419         .check_bandwidth =      xhci_check_bandwidth,
5420         .reset_bandwidth =      xhci_reset_bandwidth,
5421         .address_device =       xhci_address_device,
5422         .enable_device =        xhci_enable_device,
5423         .update_hub_device =    xhci_update_hub_device,
5424         .reset_device =         xhci_discover_or_reset_device,
5425
5426         /*
5427          * scheduling support
5428          */
5429         .get_frame_number =     xhci_get_frame,
5430
5431         /*
5432          * root hub support
5433          */
5434         .hub_control =          xhci_hub_control,
5435         .hub_status_data =      xhci_hub_status_data,
5436         .bus_suspend =          xhci_bus_suspend,
5437         .bus_resume =           xhci_bus_resume,
5438         .get_resuming_ports =   xhci_get_resuming_ports,
5439
5440         /*
5441          * call back when device connected and addressed
5442          */
5443         .update_device =        xhci_update_device,
5444         .set_usb2_hw_lpm =      xhci_set_usb2_hardware_lpm,
5445         .enable_usb3_lpm_timeout =      xhci_enable_usb3_lpm_timeout,
5446         .disable_usb3_lpm_timeout =     xhci_disable_usb3_lpm_timeout,
5447         .find_raw_port_number = xhci_find_raw_port_number,
5448         .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5449 };
5450
5451 void xhci_init_driver(struct hc_driver *drv,
5452                       const struct xhci_driver_overrides *over)
5453 {
5454         BUG_ON(!over);
5455
5456         /* Copy the generic table to drv then apply the overrides */
5457         *drv = xhci_hc_driver;
5458
5459         if (over) {
5460                 drv->hcd_priv_size += over->extra_priv_size;
5461                 if (over->reset)
5462                         drv->reset = over->reset;
5463                 if (over->start)
5464                         drv->start = over->start;
5465                 if (over->check_bandwidth)
5466                         drv->check_bandwidth = over->check_bandwidth;
5467                 if (over->reset_bandwidth)
5468                         drv->reset_bandwidth = over->reset_bandwidth;
5469                 if (over->update_hub_device)
5470                         drv->update_hub_device = over->update_hub_device;
5471         }
5472 }
5473 EXPORT_SYMBOL_GPL(xhci_init_driver);
5474
5475 MODULE_DESCRIPTION(DRIVER_DESC);
5476 MODULE_AUTHOR(DRIVER_AUTHOR);
5477 MODULE_LICENSE("GPL");
5478
5479 static int __init xhci_hcd_init(void)
5480 {
5481         /*
5482          * Check the compiler generated sizes of structures that must be laid
5483          * out in specific ways for hardware access.
5484          */
5485         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5486         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5487         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5488         /* xhci_device_control has eight fields, and also
5489          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5490          */
5491         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5492         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5493         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5494         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5495         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5496         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5497         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5498
5499         if (usb_disabled())
5500                 return -ENODEV;
5501
5502         xhci_debugfs_create_root();
5503
5504         return 0;
5505 }
5506
5507 /*
5508  * If an init function is provided, an exit function must also be provided
5509  * to allow module unload.
5510  */
5511 static void __exit xhci_hcd_fini(void)
5512 {
5513         xhci_debugfs_remove_root();
5514 }
5515
5516 module_init(xhci_hcd_init);
5517 module_exit(xhci_hcd_fini);