GNU Linux-libre 6.8.7-gnu
[releases.git] / drivers / usb / host / xhci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10
11 #include <linux/pci.h>
12 #include <linux/iommu.h>
13 #include <linux/iopoll.h>
14 #include <linux/irq.h>
15 #include <linux/log2.h>
16 #include <linux/module.h>
17 #include <linux/moduleparam.h>
18 #include <linux/slab.h>
19 #include <linux/dmi.h>
20 #include <linux/dma-mapping.h>
21
22 #include "xhci.h"
23 #include "xhci-trace.h"
24 #include "xhci-debugfs.h"
25 #include "xhci-dbgcap.h"
26
27 #define DRIVER_AUTHOR "Sarah Sharp"
28 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
29
30 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
31
32 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
33 static int link_quirk;
34 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
35 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
36
37 static unsigned long long quirks;
38 module_param(quirks, ullong, S_IRUGO);
39 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
40
41 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
42 {
43         struct xhci_segment *seg = ring->first_seg;
44
45         if (!td || !td->start_seg)
46                 return false;
47         do {
48                 if (seg == td->start_seg)
49                         return true;
50                 seg = seg->next;
51         } while (seg && seg != ring->first_seg);
52
53         return false;
54 }
55
56 /*
57  * xhci_handshake - spin reading hc until handshake completes or fails
58  * @ptr: address of hc register to be read
59  * @mask: bits to look at in result of read
60  * @done: value of those bits when handshake succeeds
61  * @usec: timeout in microseconds
62  *
63  * Returns negative errno, or zero on success
64  *
65  * Success happens when the "mask" bits have the specified value (hardware
66  * handshake done).  There are two failure modes:  "usec" have passed (major
67  * hardware flakeout), or the register reads as all-ones (hardware removed).
68  */
69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us)
70 {
71         u32     result;
72         int     ret;
73
74         ret = readl_poll_timeout_atomic(ptr, result,
75                                         (result & mask) == done ||
76                                         result == U32_MAX,
77                                         1, timeout_us);
78         if (result == U32_MAX)          /* card removed */
79                 return -ENODEV;
80
81         return ret;
82 }
83
84 /*
85  * xhci_handshake_check_state - same as xhci_handshake but takes an additional
86  * exit_state parameter, and bails out with an error immediately when xhc_state
87  * has exit_state flag set.
88  */
89 int xhci_handshake_check_state(struct xhci_hcd *xhci, void __iomem *ptr,
90                 u32 mask, u32 done, int usec, unsigned int exit_state)
91 {
92         u32     result;
93         int     ret;
94
95         ret = readl_poll_timeout_atomic(ptr, result,
96                                 (result & mask) == done ||
97                                 result == U32_MAX ||
98                                 xhci->xhc_state & exit_state,
99                                 1, usec);
100
101         if (result == U32_MAX || xhci->xhc_state & exit_state)
102                 return -ENODEV;
103
104         return ret;
105 }
106
107 /*
108  * Disable interrupts and begin the xHCI halting process.
109  */
110 void xhci_quiesce(struct xhci_hcd *xhci)
111 {
112         u32 halted;
113         u32 cmd;
114         u32 mask;
115
116         mask = ~(XHCI_IRQS);
117         halted = readl(&xhci->op_regs->status) & STS_HALT;
118         if (!halted)
119                 mask &= ~CMD_RUN;
120
121         cmd = readl(&xhci->op_regs->command);
122         cmd &= mask;
123         writel(cmd, &xhci->op_regs->command);
124 }
125
126 /*
127  * Force HC into halt state.
128  *
129  * Disable any IRQs and clear the run/stop bit.
130  * HC will complete any current and actively pipelined transactions, and
131  * should halt within 16 ms of the run/stop bit being cleared.
132  * Read HC Halted bit in the status register to see when the HC is finished.
133  */
134 int xhci_halt(struct xhci_hcd *xhci)
135 {
136         int ret;
137
138         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
139         xhci_quiesce(xhci);
140
141         ret = xhci_handshake(&xhci->op_regs->status,
142                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
143         if (ret) {
144                 xhci_warn(xhci, "Host halt failed, %d\n", ret);
145                 return ret;
146         }
147
148         xhci->xhc_state |= XHCI_STATE_HALTED;
149         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
150
151         return ret;
152 }
153
154 /*
155  * Set the run bit and wait for the host to be running.
156  */
157 int xhci_start(struct xhci_hcd *xhci)
158 {
159         u32 temp;
160         int ret;
161
162         temp = readl(&xhci->op_regs->command);
163         temp |= (CMD_RUN);
164         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
165                         temp);
166         writel(temp, &xhci->op_regs->command);
167
168         /*
169          * Wait for the HCHalted Status bit to be 0 to indicate the host is
170          * running.
171          */
172         ret = xhci_handshake(&xhci->op_regs->status,
173                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
174         if (ret == -ETIMEDOUT)
175                 xhci_err(xhci, "Host took too long to start, "
176                                 "waited %u microseconds.\n",
177                                 XHCI_MAX_HALT_USEC);
178         if (!ret) {
179                 /* clear state flags. Including dying, halted or removing */
180                 xhci->xhc_state = 0;
181                 xhci->run_graceperiod = jiffies + msecs_to_jiffies(500);
182         }
183
184         return ret;
185 }
186
187 /*
188  * Reset a halted HC.
189  *
190  * This resets pipelines, timers, counters, state machines, etc.
191  * Transactions will be terminated immediately, and operational registers
192  * will be set to their defaults.
193  */
194 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us)
195 {
196         u32 command;
197         u32 state;
198         int ret;
199
200         state = readl(&xhci->op_regs->status);
201
202         if (state == ~(u32)0) {
203                 xhci_warn(xhci, "Host not accessible, reset failed.\n");
204                 return -ENODEV;
205         }
206
207         if ((state & STS_HALT) == 0) {
208                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
209                 return 0;
210         }
211
212         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
213         command = readl(&xhci->op_regs->command);
214         command |= CMD_RESET;
215         writel(command, &xhci->op_regs->command);
216
217         /* Existing Intel xHCI controllers require a delay of 1 mS,
218          * after setting the CMD_RESET bit, and before accessing any
219          * HC registers. This allows the HC to complete the
220          * reset operation and be ready for HC register access.
221          * Without this delay, the subsequent HC register access,
222          * may result in a system hang very rarely.
223          */
224         if (xhci->quirks & XHCI_INTEL_HOST)
225                 udelay(1000);
226
227         ret = xhci_handshake_check_state(xhci, &xhci->op_regs->command,
228                                 CMD_RESET, 0, timeout_us, XHCI_STATE_REMOVING);
229         if (ret)
230                 return ret;
231
232         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
233                 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
234
235         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
236                          "Wait for controller to be ready for doorbell rings");
237         /*
238          * xHCI cannot write to any doorbells or operational registers other
239          * than status until the "Controller Not Ready" flag is cleared.
240          */
241         ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us);
242
243         xhci->usb2_rhub.bus_state.port_c_suspend = 0;
244         xhci->usb2_rhub.bus_state.suspended_ports = 0;
245         xhci->usb2_rhub.bus_state.resuming_ports = 0;
246         xhci->usb3_rhub.bus_state.port_c_suspend = 0;
247         xhci->usb3_rhub.bus_state.suspended_ports = 0;
248         xhci->usb3_rhub.bus_state.resuming_ports = 0;
249
250         return ret;
251 }
252
253 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
254 {
255         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
256         struct iommu_domain *domain;
257         int err, i;
258         u64 val;
259         u32 intrs;
260
261         /*
262          * Some Renesas controllers get into a weird state if they are
263          * reset while programmed with 64bit addresses (they will preserve
264          * the top half of the address in internal, non visible
265          * registers). You end up with half the address coming from the
266          * kernel, and the other half coming from the firmware. Also,
267          * changing the programming leads to extra accesses even if the
268          * controller is supposed to be halted. The controller ends up with
269          * a fatal fault, and is then ripe for being properly reset.
270          *
271          * Special care is taken to only apply this if the device is behind
272          * an iommu. Doing anything when there is no iommu is definitely
273          * unsafe...
274          */
275         domain = iommu_get_domain_for_dev(dev);
276         if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !domain ||
277             domain->type == IOMMU_DOMAIN_IDENTITY)
278                 return;
279
280         xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
281
282         /* Clear HSEIE so that faults do not get signaled */
283         val = readl(&xhci->op_regs->command);
284         val &= ~CMD_HSEIE;
285         writel(val, &xhci->op_regs->command);
286
287         /* Clear HSE (aka FATAL) */
288         val = readl(&xhci->op_regs->status);
289         val |= STS_FATAL;
290         writel(val, &xhci->op_regs->status);
291
292         /* Now zero the registers, and brace for impact */
293         val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
294         if (upper_32_bits(val))
295                 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
296         val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
297         if (upper_32_bits(val))
298                 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
299
300         intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
301                       ARRAY_SIZE(xhci->run_regs->ir_set));
302
303         for (i = 0; i < intrs; i++) {
304                 struct xhci_intr_reg __iomem *ir;
305
306                 ir = &xhci->run_regs->ir_set[i];
307                 val = xhci_read_64(xhci, &ir->erst_base);
308                 if (upper_32_bits(val))
309                         xhci_write_64(xhci, 0, &ir->erst_base);
310                 val= xhci_read_64(xhci, &ir->erst_dequeue);
311                 if (upper_32_bits(val))
312                         xhci_write_64(xhci, 0, &ir->erst_dequeue);
313         }
314
315         /* Wait for the fault to appear. It will be cleared on reset */
316         err = xhci_handshake(&xhci->op_regs->status,
317                              STS_FATAL, STS_FATAL,
318                              XHCI_MAX_HALT_USEC);
319         if (!err)
320                 xhci_info(xhci, "Fault detected\n");
321 }
322
323 static int xhci_enable_interrupter(struct xhci_interrupter *ir)
324 {
325         u32 iman;
326
327         if (!ir || !ir->ir_set)
328                 return -EINVAL;
329
330         iman = readl(&ir->ir_set->irq_pending);
331         writel(ER_IRQ_ENABLE(iman), &ir->ir_set->irq_pending);
332
333         return 0;
334 }
335
336 static int xhci_disable_interrupter(struct xhci_interrupter *ir)
337 {
338         u32 iman;
339
340         if (!ir || !ir->ir_set)
341                 return -EINVAL;
342
343         iman = readl(&ir->ir_set->irq_pending);
344         writel(ER_IRQ_DISABLE(iman), &ir->ir_set->irq_pending);
345
346         return 0;
347 }
348
349 static void compliance_mode_recovery(struct timer_list *t)
350 {
351         struct xhci_hcd *xhci;
352         struct usb_hcd *hcd;
353         struct xhci_hub *rhub;
354         u32 temp;
355         int i;
356
357         xhci = from_timer(xhci, t, comp_mode_recovery_timer);
358         rhub = &xhci->usb3_rhub;
359         hcd = rhub->hcd;
360
361         if (!hcd)
362                 return;
363
364         for (i = 0; i < rhub->num_ports; i++) {
365                 temp = readl(rhub->ports[i]->addr);
366                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
367                         /*
368                          * Compliance Mode Detected. Letting USB Core
369                          * handle the Warm Reset
370                          */
371                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
372                                         "Compliance mode detected->port %d",
373                                         i + 1);
374                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
375                                         "Attempting compliance mode recovery");
376
377                         if (hcd->state == HC_STATE_SUSPENDED)
378                                 usb_hcd_resume_root_hub(hcd);
379
380                         usb_hcd_poll_rh_status(hcd);
381                 }
382         }
383
384         if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
385                 mod_timer(&xhci->comp_mode_recovery_timer,
386                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
387 }
388
389 /*
390  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
391  * that causes ports behind that hardware to enter compliance mode sometimes.
392  * The quirk creates a timer that polls every 2 seconds the link state of
393  * each host controller's port and recovers it by issuing a Warm reset
394  * if Compliance mode is detected, otherwise the port will become "dead" (no
395  * device connections or disconnections will be detected anymore). Becasue no
396  * status event is generated when entering compliance mode (per xhci spec),
397  * this quirk is needed on systems that have the failing hardware installed.
398  */
399 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
400 {
401         xhci->port_status_u0 = 0;
402         timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
403                     0);
404         xhci->comp_mode_recovery_timer.expires = jiffies +
405                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
406
407         add_timer(&xhci->comp_mode_recovery_timer);
408         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
409                         "Compliance mode recovery timer initialized");
410 }
411
412 /*
413  * This function identifies the systems that have installed the SN65LVPE502CP
414  * USB3.0 re-driver and that need the Compliance Mode Quirk.
415  * Systems:
416  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
417  */
418 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
419 {
420         const char *dmi_product_name, *dmi_sys_vendor;
421
422         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
423         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
424         if (!dmi_product_name || !dmi_sys_vendor)
425                 return false;
426
427         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
428                 return false;
429
430         if (strstr(dmi_product_name, "Z420") ||
431                         strstr(dmi_product_name, "Z620") ||
432                         strstr(dmi_product_name, "Z820") ||
433                         strstr(dmi_product_name, "Z1 Workstation"))
434                 return true;
435
436         return false;
437 }
438
439 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
440 {
441         return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
442 }
443
444
445 /*
446  * Initialize memory for HCD and xHC (one-time init).
447  *
448  * Program the PAGESIZE register, initialize the device context array, create
449  * device contexts (?), set up a command ring segment (or two?), create event
450  * ring (one for now).
451  */
452 static int xhci_init(struct usb_hcd *hcd)
453 {
454         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
455         int retval;
456
457         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
458         spin_lock_init(&xhci->lock);
459         if (xhci->hci_version == 0x95 && link_quirk) {
460                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
461                                 "QUIRK: Not clearing Link TRB chain bits.");
462                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
463         } else {
464                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
465                                 "xHCI doesn't need link TRB QUIRK");
466         }
467         retval = xhci_mem_init(xhci, GFP_KERNEL);
468         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
469
470         /* Initializing Compliance Mode Recovery Data If Needed */
471         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
472                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
473                 compliance_mode_recovery_timer_init(xhci);
474         }
475
476         return retval;
477 }
478
479 /*-------------------------------------------------------------------------*/
480
481 static int xhci_run_finished(struct xhci_hcd *xhci)
482 {
483         struct xhci_interrupter *ir = xhci->interrupters[0];
484         unsigned long   flags;
485         u32             temp;
486
487         /*
488          * Enable interrupts before starting the host (xhci 4.2 and 5.5.2).
489          * Protect the short window before host is running with a lock
490          */
491         spin_lock_irqsave(&xhci->lock, flags);
492
493         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts");
494         temp = readl(&xhci->op_regs->command);
495         temp |= (CMD_EIE);
496         writel(temp, &xhci->op_regs->command);
497
498         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter");
499         xhci_enable_interrupter(ir);
500
501         if (xhci_start(xhci)) {
502                 xhci_halt(xhci);
503                 spin_unlock_irqrestore(&xhci->lock, flags);
504                 return -ENODEV;
505         }
506
507         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
508
509         if (xhci->quirks & XHCI_NEC_HOST)
510                 xhci_ring_cmd_db(xhci);
511
512         spin_unlock_irqrestore(&xhci->lock, flags);
513
514         return 0;
515 }
516
517 /*
518  * Start the HC after it was halted.
519  *
520  * This function is called by the USB core when the HC driver is added.
521  * Its opposite is xhci_stop().
522  *
523  * xhci_init() must be called once before this function can be called.
524  * Reset the HC, enable device slot contexts, program DCBAAP, and
525  * set command ring pointer and event ring pointer.
526  *
527  * Setup MSI-X vectors and enable interrupts.
528  */
529 int xhci_run(struct usb_hcd *hcd)
530 {
531         u32 temp;
532         u64 temp_64;
533         int ret;
534         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
535         struct xhci_interrupter *ir = xhci->interrupters[0];
536         /* Start the xHCI host controller running only after the USB 2.0 roothub
537          * is setup.
538          */
539
540         hcd->uses_new_polling = 1;
541         if (hcd->msi_enabled)
542                 ir->ip_autoclear = true;
543
544         if (!usb_hcd_is_primary_hcd(hcd))
545                 return xhci_run_finished(xhci);
546
547         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
548
549         temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
550         temp_64 &= ERST_PTR_MASK;
551         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
552                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
553
554         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
555                         "// Set the interrupt modulation register");
556         temp = readl(&ir->ir_set->irq_control);
557         temp &= ~ER_IRQ_INTERVAL_MASK;
558         temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
559         writel(temp, &ir->ir_set->irq_control);
560
561         if (xhci->quirks & XHCI_NEC_HOST) {
562                 struct xhci_command *command;
563
564                 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
565                 if (!command)
566                         return -ENOMEM;
567
568                 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
569                                 TRB_TYPE(TRB_NEC_GET_FW));
570                 if (ret)
571                         xhci_free_command(xhci, command);
572         }
573         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
574                         "Finished %s for main hcd", __func__);
575
576         xhci_create_dbc_dev(xhci);
577
578         xhci_debugfs_init(xhci);
579
580         if (xhci_has_one_roothub(xhci))
581                 return xhci_run_finished(xhci);
582
583         set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags);
584
585         return 0;
586 }
587 EXPORT_SYMBOL_GPL(xhci_run);
588
589 /*
590  * Stop xHCI driver.
591  *
592  * This function is called by the USB core when the HC driver is removed.
593  * Its opposite is xhci_run().
594  *
595  * Disable device contexts, disable IRQs, and quiesce the HC.
596  * Reset the HC, finish any completed transactions, and cleanup memory.
597  */
598 void xhci_stop(struct usb_hcd *hcd)
599 {
600         u32 temp;
601         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
602         struct xhci_interrupter *ir = xhci->interrupters[0];
603
604         mutex_lock(&xhci->mutex);
605
606         /* Only halt host and free memory after both hcds are removed */
607         if (!usb_hcd_is_primary_hcd(hcd)) {
608                 mutex_unlock(&xhci->mutex);
609                 return;
610         }
611
612         xhci_remove_dbc_dev(xhci);
613
614         spin_lock_irq(&xhci->lock);
615         xhci->xhc_state |= XHCI_STATE_HALTED;
616         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
617         xhci_halt(xhci);
618         xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
619         spin_unlock_irq(&xhci->lock);
620
621         /* Deleting Compliance Mode Recovery Timer */
622         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
623                         (!(xhci_all_ports_seen_u0(xhci)))) {
624                 del_timer_sync(&xhci->comp_mode_recovery_timer);
625                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
626                                 "%s: compliance mode recovery timer deleted",
627                                 __func__);
628         }
629
630         if (xhci->quirks & XHCI_AMD_PLL_FIX)
631                 usb_amd_dev_put();
632
633         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
634                         "// Disabling event ring interrupts");
635         temp = readl(&xhci->op_regs->status);
636         writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
637         xhci_disable_interrupter(ir);
638
639         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
640         xhci_mem_cleanup(xhci);
641         xhci_debugfs_exit(xhci);
642         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
643                         "xhci_stop completed - status = %x",
644                         readl(&xhci->op_regs->status));
645         mutex_unlock(&xhci->mutex);
646 }
647 EXPORT_SYMBOL_GPL(xhci_stop);
648
649 /*
650  * Shutdown HC (not bus-specific)
651  *
652  * This is called when the machine is rebooting or halting.  We assume that the
653  * machine will be powered off, and the HC's internal state will be reset.
654  * Don't bother to free memory.
655  *
656  * This will only ever be called with the main usb_hcd (the USB3 roothub).
657  */
658 void xhci_shutdown(struct usb_hcd *hcd)
659 {
660         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
661
662         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
663                 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
664
665         /* Don't poll the roothubs after shutdown. */
666         xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
667                         __func__, hcd->self.busnum);
668         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
669         del_timer_sync(&hcd->rh_timer);
670
671         if (xhci->shared_hcd) {
672                 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
673                 del_timer_sync(&xhci->shared_hcd->rh_timer);
674         }
675
676         spin_lock_irq(&xhci->lock);
677         xhci_halt(xhci);
678
679         /*
680          * Workaround for spurious wakeps at shutdown with HSW, and for boot
681          * firmware delay in ADL-P PCH if port are left in U3 at shutdown
682          */
683         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP ||
684             xhci->quirks & XHCI_RESET_TO_DEFAULT)
685                 xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
686
687         spin_unlock_irq(&xhci->lock);
688
689         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
690                         "xhci_shutdown completed - status = %x",
691                         readl(&xhci->op_regs->status));
692 }
693 EXPORT_SYMBOL_GPL(xhci_shutdown);
694
695 #ifdef CONFIG_PM
696 static void xhci_save_registers(struct xhci_hcd *xhci)
697 {
698         struct xhci_interrupter *ir;
699         unsigned int i;
700
701         xhci->s3.command = readl(&xhci->op_regs->command);
702         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
703         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
704         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
705
706         /* save both primary and all secondary interrupters */
707         /* fixme, shold we lock  to prevent race with remove secondary interrupter? */
708         for (i = 0; i < xhci->max_interrupters; i++) {
709                 ir = xhci->interrupters[i];
710                 if (!ir)
711                         continue;
712
713                 ir->s3_erst_size = readl(&ir->ir_set->erst_size);
714                 ir->s3_erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base);
715                 ir->s3_erst_dequeue = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
716                 ir->s3_irq_pending = readl(&ir->ir_set->irq_pending);
717                 ir->s3_irq_control = readl(&ir->ir_set->irq_control);
718         }
719 }
720
721 static void xhci_restore_registers(struct xhci_hcd *xhci)
722 {
723         struct xhci_interrupter *ir;
724         unsigned int i;
725
726         writel(xhci->s3.command, &xhci->op_regs->command);
727         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
728         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
729         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
730
731         /* FIXME should we lock to protect against freeing of interrupters */
732         for (i = 0; i < xhci->max_interrupters; i++) {
733                 ir = xhci->interrupters[i];
734                 if (!ir)
735                         continue;
736
737                 writel(ir->s3_erst_size, &ir->ir_set->erst_size);
738                 xhci_write_64(xhci, ir->s3_erst_base, &ir->ir_set->erst_base);
739                 xhci_write_64(xhci, ir->s3_erst_dequeue, &ir->ir_set->erst_dequeue);
740                 writel(ir->s3_irq_pending, &ir->ir_set->irq_pending);
741                 writel(ir->s3_irq_control, &ir->ir_set->irq_control);
742         }
743 }
744
745 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
746 {
747         u64     val_64;
748
749         /* step 2: initialize command ring buffer */
750         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
751         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
752                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
753                                       xhci->cmd_ring->dequeue) &
754                  (u64) ~CMD_RING_RSVD_BITS) |
755                 xhci->cmd_ring->cycle_state;
756         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
757                         "// Setting command ring address to 0x%llx",
758                         (long unsigned long) val_64);
759         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
760 }
761
762 /*
763  * The whole command ring must be cleared to zero when we suspend the host.
764  *
765  * The host doesn't save the command ring pointer in the suspend well, so we
766  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
767  * aligned, because of the reserved bits in the command ring dequeue pointer
768  * register.  Therefore, we can't just set the dequeue pointer back in the
769  * middle of the ring (TRBs are 16-byte aligned).
770  */
771 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
772 {
773         struct xhci_ring *ring;
774         struct xhci_segment *seg;
775
776         ring = xhci->cmd_ring;
777         seg = ring->deq_seg;
778         do {
779                 memset(seg->trbs, 0,
780                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
781                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
782                         cpu_to_le32(~TRB_CYCLE);
783                 seg = seg->next;
784         } while (seg != ring->deq_seg);
785
786         /* Reset the software enqueue and dequeue pointers */
787         ring->deq_seg = ring->first_seg;
788         ring->dequeue = ring->first_seg->trbs;
789         ring->enq_seg = ring->deq_seg;
790         ring->enqueue = ring->dequeue;
791
792         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
793         /*
794          * Ring is now zeroed, so the HW should look for change of ownership
795          * when the cycle bit is set to 1.
796          */
797         ring->cycle_state = 1;
798
799         /*
800          * Reset the hardware dequeue pointer.
801          * Yes, this will need to be re-written after resume, but we're paranoid
802          * and want to make sure the hardware doesn't access bogus memory
803          * because, say, the BIOS or an SMI started the host without changing
804          * the command ring pointers.
805          */
806         xhci_set_cmd_ring_deq(xhci);
807 }
808
809 /*
810  * Disable port wake bits if do_wakeup is not set.
811  *
812  * Also clear a possible internal port wake state left hanging for ports that
813  * detected termination but never successfully enumerated (trained to 0U).
814  * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
815  * at enumeration clears this wake, force one here as well for unconnected ports
816  */
817
818 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
819                                        struct xhci_hub *rhub,
820                                        bool do_wakeup)
821 {
822         unsigned long flags;
823         u32 t1, t2, portsc;
824         int i;
825
826         spin_lock_irqsave(&xhci->lock, flags);
827
828         for (i = 0; i < rhub->num_ports; i++) {
829                 portsc = readl(rhub->ports[i]->addr);
830                 t1 = xhci_port_state_to_neutral(portsc);
831                 t2 = t1;
832
833                 /* clear wake bits if do_wake is not set */
834                 if (!do_wakeup)
835                         t2 &= ~PORT_WAKE_BITS;
836
837                 /* Don't touch csc bit if connected or connect change is set */
838                 if (!(portsc & (PORT_CSC | PORT_CONNECT)))
839                         t2 |= PORT_CSC;
840
841                 if (t1 != t2) {
842                         writel(t2, rhub->ports[i]->addr);
843                         xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
844                                  rhub->hcd->self.busnum, i + 1, portsc, t2);
845                 }
846         }
847         spin_unlock_irqrestore(&xhci->lock, flags);
848 }
849
850 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
851 {
852         struct xhci_port        **ports;
853         int                     port_index;
854         u32                     status;
855         u32                     portsc;
856
857         status = readl(&xhci->op_regs->status);
858         if (status & STS_EINT)
859                 return true;
860         /*
861          * Checking STS_EINT is not enough as there is a lag between a change
862          * bit being set and the Port Status Change Event that it generated
863          * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
864          */
865
866         port_index = xhci->usb2_rhub.num_ports;
867         ports = xhci->usb2_rhub.ports;
868         while (port_index--) {
869                 portsc = readl(ports[port_index]->addr);
870                 if (portsc & PORT_CHANGE_MASK ||
871                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
872                         return true;
873         }
874         port_index = xhci->usb3_rhub.num_ports;
875         ports = xhci->usb3_rhub.ports;
876         while (port_index--) {
877                 portsc = readl(ports[port_index]->addr);
878                 if (portsc & (PORT_CHANGE_MASK | PORT_CAS) ||
879                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
880                         return true;
881         }
882         return false;
883 }
884
885 /*
886  * Stop HC (not bus-specific)
887  *
888  * This is called when the machine transition into S3/S4 mode.
889  *
890  */
891 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
892 {
893         int                     rc = 0;
894         unsigned int            delay = XHCI_MAX_HALT_USEC * 2;
895         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
896         u32                     command;
897         u32                     res;
898
899         if (!hcd->state)
900                 return 0;
901
902         if (hcd->state != HC_STATE_SUSPENDED ||
903             (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED))
904                 return -EINVAL;
905
906         /* Clear root port wake on bits if wakeup not allowed. */
907         xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
908         xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
909
910         if (!HCD_HW_ACCESSIBLE(hcd))
911                 return 0;
912
913         xhci_dbc_suspend(xhci);
914
915         /* Don't poll the roothubs on bus suspend. */
916         xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
917                  __func__, hcd->self.busnum);
918         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
919         del_timer_sync(&hcd->rh_timer);
920         if (xhci->shared_hcd) {
921                 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
922                 del_timer_sync(&xhci->shared_hcd->rh_timer);
923         }
924
925         if (xhci->quirks & XHCI_SUSPEND_DELAY)
926                 usleep_range(1000, 1500);
927
928         spin_lock_irq(&xhci->lock);
929         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
930         if (xhci->shared_hcd)
931                 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
932         /* step 1: stop endpoint */
933         /* skipped assuming that port suspend has done */
934
935         /* step 2: clear Run/Stop bit */
936         command = readl(&xhci->op_regs->command);
937         command &= ~CMD_RUN;
938         writel(command, &xhci->op_regs->command);
939
940         /* Some chips from Fresco Logic need an extraordinary delay */
941         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
942
943         if (xhci_handshake(&xhci->op_regs->status,
944                       STS_HALT, STS_HALT, delay)) {
945                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
946                 spin_unlock_irq(&xhci->lock);
947                 return -ETIMEDOUT;
948         }
949         xhci_clear_command_ring(xhci);
950
951         /* step 3: save registers */
952         xhci_save_registers(xhci);
953
954         /* step 4: set CSS flag */
955         command = readl(&xhci->op_regs->command);
956         command |= CMD_CSS;
957         writel(command, &xhci->op_regs->command);
958         xhci->broken_suspend = 0;
959         if (xhci_handshake(&xhci->op_regs->status,
960                                 STS_SAVE, 0, 20 * 1000)) {
961         /*
962          * AMD SNPS xHC 3.0 occasionally does not clear the
963          * SSS bit of USBSTS and when driver tries to poll
964          * to see if the xHC clears BIT(8) which never happens
965          * and driver assumes that controller is not responding
966          * and times out. To workaround this, its good to check
967          * if SRE and HCE bits are not set (as per xhci
968          * Section 5.4.2) and bypass the timeout.
969          */
970                 res = readl(&xhci->op_regs->status);
971                 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
972                     (((res & STS_SRE) == 0) &&
973                                 ((res & STS_HCE) == 0))) {
974                         xhci->broken_suspend = 1;
975                 } else {
976                         xhci_warn(xhci, "WARN: xHC save state timeout\n");
977                         spin_unlock_irq(&xhci->lock);
978                         return -ETIMEDOUT;
979                 }
980         }
981         spin_unlock_irq(&xhci->lock);
982
983         /*
984          * Deleting Compliance Mode Recovery Timer because the xHCI Host
985          * is about to be suspended.
986          */
987         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
988                         (!(xhci_all_ports_seen_u0(xhci)))) {
989                 del_timer_sync(&xhci->comp_mode_recovery_timer);
990                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
991                                 "%s: compliance mode recovery timer deleted",
992                                 __func__);
993         }
994
995         return rc;
996 }
997 EXPORT_SYMBOL_GPL(xhci_suspend);
998
999 /*
1000  * start xHC (not bus-specific)
1001  *
1002  * This is called when the machine transition from S3/S4 mode.
1003  *
1004  */
1005 int xhci_resume(struct xhci_hcd *xhci, pm_message_t msg)
1006 {
1007         bool                    hibernated = (msg.event == PM_EVENT_RESTORE);
1008         u32                     command, temp = 0;
1009         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
1010         int                     retval = 0;
1011         bool                    comp_timer_running = false;
1012         bool                    pending_portevent = false;
1013         bool                    suspended_usb3_devs = false;
1014         bool                    reinit_xhc = false;
1015
1016         if (!hcd->state)
1017                 return 0;
1018
1019         /* Wait a bit if either of the roothubs need to settle from the
1020          * transition into bus suspend.
1021          */
1022
1023         if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1024             time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1025                 msleep(100);
1026
1027         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1028         if (xhci->shared_hcd)
1029                 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1030
1031         spin_lock_irq(&xhci->lock);
1032
1033         if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
1034                 reinit_xhc = true;
1035
1036         if (!reinit_xhc) {
1037                 /*
1038                  * Some controllers might lose power during suspend, so wait
1039                  * for controller not ready bit to clear, just as in xHC init.
1040                  */
1041                 retval = xhci_handshake(&xhci->op_regs->status,
1042                                         STS_CNR, 0, 10 * 1000 * 1000);
1043                 if (retval) {
1044                         xhci_warn(xhci, "Controller not ready at resume %d\n",
1045                                   retval);
1046                         spin_unlock_irq(&xhci->lock);
1047                         return retval;
1048                 }
1049                 /* step 1: restore register */
1050                 xhci_restore_registers(xhci);
1051                 /* step 2: initialize command ring buffer */
1052                 xhci_set_cmd_ring_deq(xhci);
1053                 /* step 3: restore state and start state*/
1054                 /* step 3: set CRS flag */
1055                 command = readl(&xhci->op_regs->command);
1056                 command |= CMD_CRS;
1057                 writel(command, &xhci->op_regs->command);
1058                 /*
1059                  * Some controllers take up to 55+ ms to complete the controller
1060                  * restore so setting the timeout to 100ms. Xhci specification
1061                  * doesn't mention any timeout value.
1062                  */
1063                 if (xhci_handshake(&xhci->op_regs->status,
1064                               STS_RESTORE, 0, 100 * 1000)) {
1065                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1066                         spin_unlock_irq(&xhci->lock);
1067                         return -ETIMEDOUT;
1068                 }
1069         }
1070
1071         temp = readl(&xhci->op_regs->status);
1072
1073         /* re-initialize the HC on Restore Error, or Host Controller Error */
1074         if ((temp & (STS_SRE | STS_HCE)) &&
1075             !(xhci->xhc_state & XHCI_STATE_REMOVING)) {
1076                 reinit_xhc = true;
1077                 if (!xhci->broken_suspend)
1078                         xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1079         }
1080
1081         if (reinit_xhc) {
1082                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1083                                 !(xhci_all_ports_seen_u0(xhci))) {
1084                         del_timer_sync(&xhci->comp_mode_recovery_timer);
1085                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1086                                 "Compliance Mode Recovery Timer deleted!");
1087                 }
1088
1089                 /* Let the USB core know _both_ roothubs lost power. */
1090                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1091                 if (xhci->shared_hcd)
1092                         usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1093
1094                 xhci_dbg(xhci, "Stop HCD\n");
1095                 xhci_halt(xhci);
1096                 xhci_zero_64b_regs(xhci);
1097                 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
1098                 spin_unlock_irq(&xhci->lock);
1099                 if (retval)
1100                         return retval;
1101
1102                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1103                 temp = readl(&xhci->op_regs->status);
1104                 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1105                 xhci_disable_interrupter(xhci->interrupters[0]);
1106
1107                 xhci_dbg(xhci, "cleaning up memory\n");
1108                 xhci_mem_cleanup(xhci);
1109                 xhci_debugfs_exit(xhci);
1110                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1111                             readl(&xhci->op_regs->status));
1112
1113                 /* USB core calls the PCI reinit and start functions twice:
1114                  * first with the primary HCD, and then with the secondary HCD.
1115                  * If we don't do the same, the host will never be started.
1116                  */
1117                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1118                 retval = xhci_init(hcd);
1119                 if (retval)
1120                         return retval;
1121                 comp_timer_running = true;
1122
1123                 xhci_dbg(xhci, "Start the primary HCD\n");
1124                 retval = xhci_run(hcd);
1125                 if (!retval && xhci->shared_hcd) {
1126                         xhci_dbg(xhci, "Start the secondary HCD\n");
1127                         retval = xhci_run(xhci->shared_hcd);
1128                 }
1129
1130                 hcd->state = HC_STATE_SUSPENDED;
1131                 if (xhci->shared_hcd)
1132                         xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1133                 goto done;
1134         }
1135
1136         /* step 4: set Run/Stop bit */
1137         command = readl(&xhci->op_regs->command);
1138         command |= CMD_RUN;
1139         writel(command, &xhci->op_regs->command);
1140         xhci_handshake(&xhci->op_regs->status, STS_HALT,
1141                   0, 250 * 1000);
1142
1143         /* step 5: walk topology and initialize portsc,
1144          * portpmsc and portli
1145          */
1146         /* this is done in bus_resume */
1147
1148         /* step 6: restart each of the previously
1149          * Running endpoints by ringing their doorbells
1150          */
1151
1152         spin_unlock_irq(&xhci->lock);
1153
1154         xhci_dbc_resume(xhci);
1155
1156  done:
1157         if (retval == 0) {
1158                 /*
1159                  * Resume roothubs only if there are pending events.
1160                  * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1161                  * the first wake signalling failed, give it that chance if
1162                  * there are suspended USB 3 devices.
1163                  */
1164                 if (xhci->usb3_rhub.bus_state.suspended_ports ||
1165                     xhci->usb3_rhub.bus_state.bus_suspended)
1166                         suspended_usb3_devs = true;
1167
1168                 pending_portevent = xhci_pending_portevent(xhci);
1169
1170                 if (suspended_usb3_devs && !pending_portevent &&
1171                     msg.event == PM_EVENT_AUTO_RESUME) {
1172                         msleep(120);
1173                         pending_portevent = xhci_pending_portevent(xhci);
1174                 }
1175
1176                 if (pending_portevent) {
1177                         if (xhci->shared_hcd)
1178                                 usb_hcd_resume_root_hub(xhci->shared_hcd);
1179                         usb_hcd_resume_root_hub(hcd);
1180                 }
1181         }
1182         /*
1183          * If system is subject to the Quirk, Compliance Mode Timer needs to
1184          * be re-initialized Always after a system resume. Ports are subject
1185          * to suffer the Compliance Mode issue again. It doesn't matter if
1186          * ports have entered previously to U0 before system's suspension.
1187          */
1188         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1189                 compliance_mode_recovery_timer_init(xhci);
1190
1191         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1192                 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1193
1194         /* Re-enable port polling. */
1195         xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1196                  __func__, hcd->self.busnum);
1197         if (xhci->shared_hcd) {
1198                 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1199                 usb_hcd_poll_rh_status(xhci->shared_hcd);
1200         }
1201         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1202         usb_hcd_poll_rh_status(hcd);
1203
1204         return retval;
1205 }
1206 EXPORT_SYMBOL_GPL(xhci_resume);
1207 #endif  /* CONFIG_PM */
1208
1209 /*-------------------------------------------------------------------------*/
1210
1211 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1212 {
1213         void *temp;
1214         int ret = 0;
1215         unsigned int buf_len;
1216         enum dma_data_direction dir;
1217
1218         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1219         buf_len = urb->transfer_buffer_length;
1220
1221         temp = kzalloc_node(buf_len, GFP_ATOMIC,
1222                             dev_to_node(hcd->self.sysdev));
1223         if (!temp)
1224                 return -ENOMEM;
1225
1226         if (usb_urb_dir_out(urb))
1227                 sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1228                                    temp, buf_len, 0);
1229
1230         urb->transfer_buffer = temp;
1231         urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1232                                            urb->transfer_buffer,
1233                                            urb->transfer_buffer_length,
1234                                            dir);
1235
1236         if (dma_mapping_error(hcd->self.sysdev,
1237                               urb->transfer_dma)) {
1238                 ret = -EAGAIN;
1239                 kfree(temp);
1240         } else {
1241                 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1242         }
1243
1244         return ret;
1245 }
1246
1247 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1248                                           struct urb *urb)
1249 {
1250         bool ret = false;
1251         unsigned int i;
1252         unsigned int len = 0;
1253         unsigned int trb_size;
1254         unsigned int max_pkt;
1255         struct scatterlist *sg;
1256         struct scatterlist *tail_sg;
1257
1258         tail_sg = urb->sg;
1259         max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1260
1261         if (!urb->num_sgs)
1262                 return ret;
1263
1264         if (urb->dev->speed >= USB_SPEED_SUPER)
1265                 trb_size = TRB_CACHE_SIZE_SS;
1266         else
1267                 trb_size = TRB_CACHE_SIZE_HS;
1268
1269         if (urb->transfer_buffer_length != 0 &&
1270             !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1271                 for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1272                         len = len + sg->length;
1273                         if (i > trb_size - 2) {
1274                                 len = len - tail_sg->length;
1275                                 if (len < max_pkt) {
1276                                         ret = true;
1277                                         break;
1278                                 }
1279
1280                                 tail_sg = sg_next(tail_sg);
1281                         }
1282                 }
1283         }
1284         return ret;
1285 }
1286
1287 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1288 {
1289         unsigned int len;
1290         unsigned int buf_len;
1291         enum dma_data_direction dir;
1292
1293         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1294
1295         buf_len = urb->transfer_buffer_length;
1296
1297         if (IS_ENABLED(CONFIG_HAS_DMA) &&
1298             (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1299                 dma_unmap_single(hcd->self.sysdev,
1300                                  urb->transfer_dma,
1301                                  urb->transfer_buffer_length,
1302                                  dir);
1303
1304         if (usb_urb_dir_in(urb)) {
1305                 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1306                                            urb->transfer_buffer,
1307                                            buf_len,
1308                                            0);
1309                 if (len != buf_len) {
1310                         xhci_dbg(hcd_to_xhci(hcd),
1311                                  "Copy from tmp buf to urb sg list failed\n");
1312                         urb->actual_length = len;
1313                 }
1314         }
1315         urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1316         kfree(urb->transfer_buffer);
1317         urb->transfer_buffer = NULL;
1318 }
1319
1320 /*
1321  * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1322  * we'll copy the actual data into the TRB address register. This is limited to
1323  * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1324  * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1325  */
1326 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1327                                 gfp_t mem_flags)
1328 {
1329         struct xhci_hcd *xhci;
1330
1331         xhci = hcd_to_xhci(hcd);
1332
1333         if (xhci_urb_suitable_for_idt(urb))
1334                 return 0;
1335
1336         if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1337                 if (xhci_urb_temp_buffer_required(hcd, urb))
1338                         return xhci_map_temp_buffer(hcd, urb);
1339         }
1340         return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1341 }
1342
1343 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1344 {
1345         struct xhci_hcd *xhci;
1346         bool unmap_temp_buf = false;
1347
1348         xhci = hcd_to_xhci(hcd);
1349
1350         if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1351                 unmap_temp_buf = true;
1352
1353         if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1354                 xhci_unmap_temp_buf(hcd, urb);
1355         else
1356                 usb_hcd_unmap_urb_for_dma(hcd, urb);
1357 }
1358
1359 /**
1360  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1361  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1362  * value to right shift 1 for the bitmask.
1363  *
1364  * Index  = (epnum * 2) + direction - 1,
1365  * where direction = 0 for OUT, 1 for IN.
1366  * For control endpoints, the IN index is used (OUT index is unused), so
1367  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1368  */
1369 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1370 {
1371         unsigned int index;
1372         if (usb_endpoint_xfer_control(desc))
1373                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1374         else
1375                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1376                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1377         return index;
1378 }
1379 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1380
1381 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1382  * address from the XHCI endpoint index.
1383  */
1384 static unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1385 {
1386         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1387         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1388         return direction | number;
1389 }
1390
1391 /* Find the flag for this endpoint (for use in the control context).  Use the
1392  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1393  * bit 1, etc.
1394  */
1395 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1396 {
1397         return 1 << (xhci_get_endpoint_index(desc) + 1);
1398 }
1399
1400 /* Compute the last valid endpoint context index.  Basically, this is the
1401  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1402  * we find the most significant bit set in the added contexts flags.
1403  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1404  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1405  */
1406 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1407 {
1408         return fls(added_ctxs) - 1;
1409 }
1410
1411 /* Returns 1 if the arguments are OK;
1412  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1413  */
1414 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1415                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1416                 const char *func) {
1417         struct xhci_hcd *xhci;
1418         struct xhci_virt_device *virt_dev;
1419
1420         if (!hcd || (check_ep && !ep) || !udev) {
1421                 pr_debug("xHCI %s called with invalid args\n", func);
1422                 return -EINVAL;
1423         }
1424         if (!udev->parent) {
1425                 pr_debug("xHCI %s called for root hub\n", func);
1426                 return 0;
1427         }
1428
1429         xhci = hcd_to_xhci(hcd);
1430         if (check_virt_dev) {
1431                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1432                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1433                                         func);
1434                         return -EINVAL;
1435                 }
1436
1437                 virt_dev = xhci->devs[udev->slot_id];
1438                 if (virt_dev->udev != udev) {
1439                         xhci_dbg(xhci, "xHCI %s called with udev and "
1440                                           "virt_dev does not match\n", func);
1441                         return -EINVAL;
1442                 }
1443         }
1444
1445         if (xhci->xhc_state & XHCI_STATE_HALTED)
1446                 return -ENODEV;
1447
1448         return 1;
1449 }
1450
1451 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1452                 struct usb_device *udev, struct xhci_command *command,
1453                 bool ctx_change, bool must_succeed);
1454
1455 /*
1456  * Full speed devices may have a max packet size greater than 8 bytes, but the
1457  * USB core doesn't know that until it reads the first 8 bytes of the
1458  * descriptor.  If the usb_device's max packet size changes after that point,
1459  * we need to issue an evaluate context command and wait on it.
1460  */
1461 static int xhci_check_ep0_maxpacket(struct xhci_hcd *xhci, struct xhci_virt_device *vdev)
1462 {
1463         struct xhci_input_control_ctx *ctrl_ctx;
1464         struct xhci_ep_ctx *ep_ctx;
1465         struct xhci_command *command;
1466         int max_packet_size;
1467         int hw_max_packet_size;
1468         int ret = 0;
1469
1470         ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, 0);
1471         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1472         max_packet_size = usb_endpoint_maxp(&vdev->udev->ep0.desc);
1473
1474         if (hw_max_packet_size == max_packet_size)
1475                 return 0;
1476
1477         switch (max_packet_size) {
1478         case 8: case 16: case 32: case 64: case 9:
1479                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1480                                 "Max Packet Size for ep 0 changed.");
1481                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1482                                 "Max packet size in usb_device = %d",
1483                                 max_packet_size);
1484                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1485                                 "Max packet size in xHCI HW = %d",
1486                                 hw_max_packet_size);
1487                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1488                                 "Issuing evaluate context command.");
1489
1490                 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1491                 if (!command)
1492                         return -ENOMEM;
1493
1494                 command->in_ctx = vdev->in_ctx;
1495                 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1496                 if (!ctrl_ctx) {
1497                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1498                                         __func__);
1499                         ret = -ENOMEM;
1500                         break;
1501                 }
1502                 /* Set up the modified control endpoint 0 */
1503                 xhci_endpoint_copy(xhci, vdev->in_ctx, vdev->out_ctx, 0);
1504
1505                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, 0);
1506                 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1507                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1508                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1509
1510                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1511                 ctrl_ctx->drop_flags = 0;
1512
1513                 ret = xhci_configure_endpoint(xhci, vdev->udev, command,
1514                                               true, false);
1515                 /* Clean up the input context for later use by bandwidth functions */
1516                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1517                 break;
1518         default:
1519                 dev_dbg(&vdev->udev->dev, "incorrect max packet size %d for ep0\n",
1520                         max_packet_size);
1521                 return -EINVAL;
1522         }
1523
1524         kfree(command->completion);
1525         kfree(command);
1526
1527         return ret;
1528 }
1529
1530 /*
1531  * non-error returns are a promise to giveback() the urb later
1532  * we drop ownership so next owner (or urb unlink) can get it
1533  */
1534 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1535 {
1536         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1537         unsigned long flags;
1538         int ret = 0;
1539         unsigned int slot_id, ep_index;
1540         unsigned int *ep_state;
1541         struct urb_priv *urb_priv;
1542         int num_tds;
1543
1544         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1545
1546         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1547                 num_tds = urb->number_of_packets;
1548         else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1549             urb->transfer_buffer_length > 0 &&
1550             urb->transfer_flags & URB_ZERO_PACKET &&
1551             !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1552                 num_tds = 2;
1553         else
1554                 num_tds = 1;
1555
1556         urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1557         if (!urb_priv)
1558                 return -ENOMEM;
1559
1560         urb_priv->num_tds = num_tds;
1561         urb_priv->num_tds_done = 0;
1562         urb->hcpriv = urb_priv;
1563
1564         trace_xhci_urb_enqueue(urb);
1565
1566         spin_lock_irqsave(&xhci->lock, flags);
1567
1568         ret = xhci_check_args(hcd, urb->dev, urb->ep,
1569                               true, true, __func__);
1570         if (ret <= 0) {
1571                 ret = ret ? ret : -EINVAL;
1572                 goto free_priv;
1573         }
1574
1575         slot_id = urb->dev->slot_id;
1576
1577         if (!HCD_HW_ACCESSIBLE(hcd)) {
1578                 ret = -ESHUTDOWN;
1579                 goto free_priv;
1580         }
1581
1582         if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1583                 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1584                 ret = -ENODEV;
1585                 goto free_priv;
1586         }
1587
1588         if (xhci->xhc_state & XHCI_STATE_DYING) {
1589                 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1590                          urb->ep->desc.bEndpointAddress, urb);
1591                 ret = -ESHUTDOWN;
1592                 goto free_priv;
1593         }
1594
1595         ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1596
1597         if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1598                 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1599                           *ep_state);
1600                 ret = -EINVAL;
1601                 goto free_priv;
1602         }
1603         if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1604                 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1605                 ret = -EINVAL;
1606                 goto free_priv;
1607         }
1608
1609         switch (usb_endpoint_type(&urb->ep->desc)) {
1610
1611         case USB_ENDPOINT_XFER_CONTROL:
1612                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1613                                          slot_id, ep_index);
1614                 break;
1615         case USB_ENDPOINT_XFER_BULK:
1616                 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1617                                          slot_id, ep_index);
1618                 break;
1619         case USB_ENDPOINT_XFER_INT:
1620                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1621                                 slot_id, ep_index);
1622                 break;
1623         case USB_ENDPOINT_XFER_ISOC:
1624                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1625                                 slot_id, ep_index);
1626         }
1627
1628         if (ret) {
1629 free_priv:
1630                 xhci_urb_free_priv(urb_priv);
1631                 urb->hcpriv = NULL;
1632         }
1633         spin_unlock_irqrestore(&xhci->lock, flags);
1634         return ret;
1635 }
1636
1637 /*
1638  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1639  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1640  * should pick up where it left off in the TD, unless a Set Transfer Ring
1641  * Dequeue Pointer is issued.
1642  *
1643  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1644  * the ring.  Since the ring is a contiguous structure, they can't be physically
1645  * removed.  Instead, there are two options:
1646  *
1647  *  1) If the HC is in the middle of processing the URB to be canceled, we
1648  *     simply move the ring's dequeue pointer past those TRBs using the Set
1649  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1650  *     when drivers timeout on the last submitted URB and attempt to cancel.
1651  *
1652  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1653  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1654  *     HC will need to invalidate the any TRBs it has cached after the stop
1655  *     endpoint command, as noted in the xHCI 0.95 errata.
1656  *
1657  *  3) The TD may have completed by the time the Stop Endpoint Command
1658  *     completes, so software needs to handle that case too.
1659  *
1660  * This function should protect against the TD enqueueing code ringing the
1661  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1662  * It also needs to account for multiple cancellations on happening at the same
1663  * time for the same endpoint.
1664  *
1665  * Note that this function can be called in any context, or so says
1666  * usb_hcd_unlink_urb()
1667  */
1668 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1669 {
1670         unsigned long flags;
1671         int ret, i;
1672         u32 temp;
1673         struct xhci_hcd *xhci;
1674         struct urb_priv *urb_priv;
1675         struct xhci_td *td;
1676         unsigned int ep_index;
1677         struct xhci_ring *ep_ring;
1678         struct xhci_virt_ep *ep;
1679         struct xhci_command *command;
1680         struct xhci_virt_device *vdev;
1681
1682         xhci = hcd_to_xhci(hcd);
1683         spin_lock_irqsave(&xhci->lock, flags);
1684
1685         trace_xhci_urb_dequeue(urb);
1686
1687         /* Make sure the URB hasn't completed or been unlinked already */
1688         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1689         if (ret)
1690                 goto done;
1691
1692         /* give back URB now if we can't queue it for cancel */
1693         vdev = xhci->devs[urb->dev->slot_id];
1694         urb_priv = urb->hcpriv;
1695         if (!vdev || !urb_priv)
1696                 goto err_giveback;
1697
1698         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1699         ep = &vdev->eps[ep_index];
1700         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1701         if (!ep || !ep_ring)
1702                 goto err_giveback;
1703
1704         /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1705         temp = readl(&xhci->op_regs->status);
1706         if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1707                 xhci_hc_died(xhci);
1708                 goto done;
1709         }
1710
1711         /*
1712          * check ring is not re-allocated since URB was enqueued. If it is, then
1713          * make sure none of the ring related pointers in this URB private data
1714          * are touched, such as td_list, otherwise we overwrite freed data
1715          */
1716         if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1717                 xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1718                 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1719                         td = &urb_priv->td[i];
1720                         if (!list_empty(&td->cancelled_td_list))
1721                                 list_del_init(&td->cancelled_td_list);
1722                 }
1723                 goto err_giveback;
1724         }
1725
1726         if (xhci->xhc_state & XHCI_STATE_HALTED) {
1727                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1728                                 "HC halted, freeing TD manually.");
1729                 for (i = urb_priv->num_tds_done;
1730                      i < urb_priv->num_tds;
1731                      i++) {
1732                         td = &urb_priv->td[i];
1733                         if (!list_empty(&td->td_list))
1734                                 list_del_init(&td->td_list);
1735                         if (!list_empty(&td->cancelled_td_list))
1736                                 list_del_init(&td->cancelled_td_list);
1737                 }
1738                 goto err_giveback;
1739         }
1740
1741         i = urb_priv->num_tds_done;
1742         if (i < urb_priv->num_tds)
1743                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1744                                 "Cancel URB %p, dev %s, ep 0x%x, "
1745                                 "starting at offset 0x%llx",
1746                                 urb, urb->dev->devpath,
1747                                 urb->ep->desc.bEndpointAddress,
1748                                 (unsigned long long) xhci_trb_virt_to_dma(
1749                                         urb_priv->td[i].start_seg,
1750                                         urb_priv->td[i].first_trb));
1751
1752         for (; i < urb_priv->num_tds; i++) {
1753                 td = &urb_priv->td[i];
1754                 /* TD can already be on cancelled list if ep halted on it */
1755                 if (list_empty(&td->cancelled_td_list)) {
1756                         td->cancel_status = TD_DIRTY;
1757                         list_add_tail(&td->cancelled_td_list,
1758                                       &ep->cancelled_td_list);
1759                 }
1760         }
1761
1762         /* Queue a stop endpoint command, but only if this is
1763          * the first cancellation to be handled.
1764          */
1765         if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1766                 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1767                 if (!command) {
1768                         ret = -ENOMEM;
1769                         goto done;
1770                 }
1771                 ep->ep_state |= EP_STOP_CMD_PENDING;
1772                 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1773                                          ep_index, 0);
1774                 xhci_ring_cmd_db(xhci);
1775         }
1776 done:
1777         spin_unlock_irqrestore(&xhci->lock, flags);
1778         return ret;
1779
1780 err_giveback:
1781         if (urb_priv)
1782                 xhci_urb_free_priv(urb_priv);
1783         usb_hcd_unlink_urb_from_ep(hcd, urb);
1784         spin_unlock_irqrestore(&xhci->lock, flags);
1785         usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1786         return ret;
1787 }
1788
1789 /* Drop an endpoint from a new bandwidth configuration for this device.
1790  * Only one call to this function is allowed per endpoint before
1791  * check_bandwidth() or reset_bandwidth() must be called.
1792  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1793  * add the endpoint to the schedule with possibly new parameters denoted by a
1794  * different endpoint descriptor in usb_host_endpoint.
1795  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1796  * not allowed.
1797  *
1798  * The USB core will not allow URBs to be queued to an endpoint that is being
1799  * disabled, so there's no need for mutual exclusion to protect
1800  * the xhci->devs[slot_id] structure.
1801  */
1802 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1803                        struct usb_host_endpoint *ep)
1804 {
1805         struct xhci_hcd *xhci;
1806         struct xhci_container_ctx *in_ctx, *out_ctx;
1807         struct xhci_input_control_ctx *ctrl_ctx;
1808         unsigned int ep_index;
1809         struct xhci_ep_ctx *ep_ctx;
1810         u32 drop_flag;
1811         u32 new_add_flags, new_drop_flags;
1812         int ret;
1813
1814         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1815         if (ret <= 0)
1816                 return ret;
1817         xhci = hcd_to_xhci(hcd);
1818         if (xhci->xhc_state & XHCI_STATE_DYING)
1819                 return -ENODEV;
1820
1821         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1822         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1823         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1824                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1825                                 __func__, drop_flag);
1826                 return 0;
1827         }
1828
1829         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1830         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1831         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1832         if (!ctrl_ctx) {
1833                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1834                                 __func__);
1835                 return 0;
1836         }
1837
1838         ep_index = xhci_get_endpoint_index(&ep->desc);
1839         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1840         /* If the HC already knows the endpoint is disabled,
1841          * or the HCD has noted it is disabled, ignore this request
1842          */
1843         if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1844             le32_to_cpu(ctrl_ctx->drop_flags) &
1845             xhci_get_endpoint_flag(&ep->desc)) {
1846                 /* Do not warn when called after a usb_device_reset */
1847                 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1848                         xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1849                                   __func__, ep);
1850                 return 0;
1851         }
1852
1853         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1854         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1855
1856         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1857         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1858
1859         xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1860
1861         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1862
1863         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1864                         (unsigned int) ep->desc.bEndpointAddress,
1865                         udev->slot_id,
1866                         (unsigned int) new_drop_flags,
1867                         (unsigned int) new_add_flags);
1868         return 0;
1869 }
1870 EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1871
1872 /* Add an endpoint to a new possible bandwidth configuration for this device.
1873  * Only one call to this function is allowed per endpoint before
1874  * check_bandwidth() or reset_bandwidth() must be called.
1875  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1876  * add the endpoint to the schedule with possibly new parameters denoted by a
1877  * different endpoint descriptor in usb_host_endpoint.
1878  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1879  * not allowed.
1880  *
1881  * The USB core will not allow URBs to be queued to an endpoint until the
1882  * configuration or alt setting is installed in the device, so there's no need
1883  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1884  */
1885 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1886                       struct usb_host_endpoint *ep)
1887 {
1888         struct xhci_hcd *xhci;
1889         struct xhci_container_ctx *in_ctx;
1890         unsigned int ep_index;
1891         struct xhci_input_control_ctx *ctrl_ctx;
1892         struct xhci_ep_ctx *ep_ctx;
1893         u32 added_ctxs;
1894         u32 new_add_flags, new_drop_flags;
1895         struct xhci_virt_device *virt_dev;
1896         int ret = 0;
1897
1898         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1899         if (ret <= 0) {
1900                 /* So we won't queue a reset ep command for a root hub */
1901                 ep->hcpriv = NULL;
1902                 return ret;
1903         }
1904         xhci = hcd_to_xhci(hcd);
1905         if (xhci->xhc_state & XHCI_STATE_DYING)
1906                 return -ENODEV;
1907
1908         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1909         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1910                 /* FIXME when we have to issue an evaluate endpoint command to
1911                  * deal with ep0 max packet size changing once we get the
1912                  * descriptors
1913                  */
1914                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1915                                 __func__, added_ctxs);
1916                 return 0;
1917         }
1918
1919         virt_dev = xhci->devs[udev->slot_id];
1920         in_ctx = virt_dev->in_ctx;
1921         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1922         if (!ctrl_ctx) {
1923                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1924                                 __func__);
1925                 return 0;
1926         }
1927
1928         ep_index = xhci_get_endpoint_index(&ep->desc);
1929         /* If this endpoint is already in use, and the upper layers are trying
1930          * to add it again without dropping it, reject the addition.
1931          */
1932         if (virt_dev->eps[ep_index].ring &&
1933                         !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1934                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1935                                 "without dropping it.\n",
1936                                 (unsigned int) ep->desc.bEndpointAddress);
1937                 return -EINVAL;
1938         }
1939
1940         /* If the HCD has already noted the endpoint is enabled,
1941          * ignore this request.
1942          */
1943         if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1944                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1945                                 __func__, ep);
1946                 return 0;
1947         }
1948
1949         /*
1950          * Configuration and alternate setting changes must be done in
1951          * process context, not interrupt context (or so documenation
1952          * for usb_set_interface() and usb_set_configuration() claim).
1953          */
1954         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1955                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1956                                 __func__, ep->desc.bEndpointAddress);
1957                 return -ENOMEM;
1958         }
1959
1960         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1961         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1962
1963         /* If xhci_endpoint_disable() was called for this endpoint, but the
1964          * xHC hasn't been notified yet through the check_bandwidth() call,
1965          * this re-adds a new state for the endpoint from the new endpoint
1966          * descriptors.  We must drop and re-add this endpoint, so we leave the
1967          * drop flags alone.
1968          */
1969         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1970
1971         /* Store the usb_device pointer for later use */
1972         ep->hcpriv = udev;
1973
1974         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1975         trace_xhci_add_endpoint(ep_ctx);
1976
1977         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1978                         (unsigned int) ep->desc.bEndpointAddress,
1979                         udev->slot_id,
1980                         (unsigned int) new_drop_flags,
1981                         (unsigned int) new_add_flags);
1982         return 0;
1983 }
1984 EXPORT_SYMBOL_GPL(xhci_add_endpoint);
1985
1986 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1987 {
1988         struct xhci_input_control_ctx *ctrl_ctx;
1989         struct xhci_ep_ctx *ep_ctx;
1990         struct xhci_slot_ctx *slot_ctx;
1991         int i;
1992
1993         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1994         if (!ctrl_ctx) {
1995                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1996                                 __func__);
1997                 return;
1998         }
1999
2000         /* When a device's add flag and drop flag are zero, any subsequent
2001          * configure endpoint command will leave that endpoint's state
2002          * untouched.  Make sure we don't leave any old state in the input
2003          * endpoint contexts.
2004          */
2005         ctrl_ctx->drop_flags = 0;
2006         ctrl_ctx->add_flags = 0;
2007         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2008         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2009         /* Endpoint 0 is always valid */
2010         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2011         for (i = 1; i < 31; i++) {
2012                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2013                 ep_ctx->ep_info = 0;
2014                 ep_ctx->ep_info2 = 0;
2015                 ep_ctx->deq = 0;
2016                 ep_ctx->tx_info = 0;
2017         }
2018 }
2019
2020 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2021                 struct usb_device *udev, u32 *cmd_status)
2022 {
2023         int ret;
2024
2025         switch (*cmd_status) {
2026         case COMP_COMMAND_ABORTED:
2027         case COMP_COMMAND_RING_STOPPED:
2028                 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2029                 ret = -ETIME;
2030                 break;
2031         case COMP_RESOURCE_ERROR:
2032                 dev_warn(&udev->dev,
2033                          "Not enough host controller resources for new device state.\n");
2034                 ret = -ENOMEM;
2035                 /* FIXME: can we allocate more resources for the HC? */
2036                 break;
2037         case COMP_BANDWIDTH_ERROR:
2038         case COMP_SECONDARY_BANDWIDTH_ERROR:
2039                 dev_warn(&udev->dev,
2040                          "Not enough bandwidth for new device state.\n");
2041                 ret = -ENOSPC;
2042                 /* FIXME: can we go back to the old state? */
2043                 break;
2044         case COMP_TRB_ERROR:
2045                 /* the HCD set up something wrong */
2046                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2047                                 "add flag = 1, "
2048                                 "and endpoint is not disabled.\n");
2049                 ret = -EINVAL;
2050                 break;
2051         case COMP_INCOMPATIBLE_DEVICE_ERROR:
2052                 dev_warn(&udev->dev,
2053                          "ERROR: Incompatible device for endpoint configure command.\n");
2054                 ret = -ENODEV;
2055                 break;
2056         case COMP_SUCCESS:
2057                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2058                                 "Successful Endpoint Configure command");
2059                 ret = 0;
2060                 break;
2061         default:
2062                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2063                                 *cmd_status);
2064                 ret = -EINVAL;
2065                 break;
2066         }
2067         return ret;
2068 }
2069
2070 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2071                 struct usb_device *udev, u32 *cmd_status)
2072 {
2073         int ret;
2074
2075         switch (*cmd_status) {
2076         case COMP_COMMAND_ABORTED:
2077         case COMP_COMMAND_RING_STOPPED:
2078                 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2079                 ret = -ETIME;
2080                 break;
2081         case COMP_PARAMETER_ERROR:
2082                 dev_warn(&udev->dev,
2083                          "WARN: xHCI driver setup invalid evaluate context command.\n");
2084                 ret = -EINVAL;
2085                 break;
2086         case COMP_SLOT_NOT_ENABLED_ERROR:
2087                 dev_warn(&udev->dev,
2088                         "WARN: slot not enabled for evaluate context command.\n");
2089                 ret = -EINVAL;
2090                 break;
2091         case COMP_CONTEXT_STATE_ERROR:
2092                 dev_warn(&udev->dev,
2093                         "WARN: invalid context state for evaluate context command.\n");
2094                 ret = -EINVAL;
2095                 break;
2096         case COMP_INCOMPATIBLE_DEVICE_ERROR:
2097                 dev_warn(&udev->dev,
2098                         "ERROR: Incompatible device for evaluate context command.\n");
2099                 ret = -ENODEV;
2100                 break;
2101         case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2102                 /* Max Exit Latency too large error */
2103                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2104                 ret = -EINVAL;
2105                 break;
2106         case COMP_SUCCESS:
2107                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2108                                 "Successful evaluate context command");
2109                 ret = 0;
2110                 break;
2111         default:
2112                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2113                         *cmd_status);
2114                 ret = -EINVAL;
2115                 break;
2116         }
2117         return ret;
2118 }
2119
2120 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2121                 struct xhci_input_control_ctx *ctrl_ctx)
2122 {
2123         u32 valid_add_flags;
2124         u32 valid_drop_flags;
2125
2126         /* Ignore the slot flag (bit 0), and the default control endpoint flag
2127          * (bit 1).  The default control endpoint is added during the Address
2128          * Device command and is never removed until the slot is disabled.
2129          */
2130         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2131         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2132
2133         /* Use hweight32 to count the number of ones in the add flags, or
2134          * number of endpoints added.  Don't count endpoints that are changed
2135          * (both added and dropped).
2136          */
2137         return hweight32(valid_add_flags) -
2138                 hweight32(valid_add_flags & valid_drop_flags);
2139 }
2140
2141 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2142                 struct xhci_input_control_ctx *ctrl_ctx)
2143 {
2144         u32 valid_add_flags;
2145         u32 valid_drop_flags;
2146
2147         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2148         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2149
2150         return hweight32(valid_drop_flags) -
2151                 hweight32(valid_add_flags & valid_drop_flags);
2152 }
2153
2154 /*
2155  * We need to reserve the new number of endpoints before the configure endpoint
2156  * command completes.  We can't subtract the dropped endpoints from the number
2157  * of active endpoints until the command completes because we can oversubscribe
2158  * the host in this case:
2159  *
2160  *  - the first configure endpoint command drops more endpoints than it adds
2161  *  - a second configure endpoint command that adds more endpoints is queued
2162  *  - the first configure endpoint command fails, so the config is unchanged
2163  *  - the second command may succeed, even though there isn't enough resources
2164  *
2165  * Must be called with xhci->lock held.
2166  */
2167 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2168                 struct xhci_input_control_ctx *ctrl_ctx)
2169 {
2170         u32 added_eps;
2171
2172         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2173         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2174                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2175                                 "Not enough ep ctxs: "
2176                                 "%u active, need to add %u, limit is %u.",
2177                                 xhci->num_active_eps, added_eps,
2178                                 xhci->limit_active_eps);
2179                 return -ENOMEM;
2180         }
2181         xhci->num_active_eps += added_eps;
2182         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2183                         "Adding %u ep ctxs, %u now active.", added_eps,
2184                         xhci->num_active_eps);
2185         return 0;
2186 }
2187
2188 /*
2189  * The configure endpoint was failed by the xHC for some other reason, so we
2190  * need to revert the resources that failed configuration would have used.
2191  *
2192  * Must be called with xhci->lock held.
2193  */
2194 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2195                 struct xhci_input_control_ctx *ctrl_ctx)
2196 {
2197         u32 num_failed_eps;
2198
2199         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2200         xhci->num_active_eps -= num_failed_eps;
2201         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2202                         "Removing %u failed ep ctxs, %u now active.",
2203                         num_failed_eps,
2204                         xhci->num_active_eps);
2205 }
2206
2207 /*
2208  * Now that the command has completed, clean up the active endpoint count by
2209  * subtracting out the endpoints that were dropped (but not changed).
2210  *
2211  * Must be called with xhci->lock held.
2212  */
2213 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2214                 struct xhci_input_control_ctx *ctrl_ctx)
2215 {
2216         u32 num_dropped_eps;
2217
2218         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2219         xhci->num_active_eps -= num_dropped_eps;
2220         if (num_dropped_eps)
2221                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2222                                 "Removing %u dropped ep ctxs, %u now active.",
2223                                 num_dropped_eps,
2224                                 xhci->num_active_eps);
2225 }
2226
2227 static unsigned int xhci_get_block_size(struct usb_device *udev)
2228 {
2229         switch (udev->speed) {
2230         case USB_SPEED_LOW:
2231         case USB_SPEED_FULL:
2232                 return FS_BLOCK;
2233         case USB_SPEED_HIGH:
2234                 return HS_BLOCK;
2235         case USB_SPEED_SUPER:
2236         case USB_SPEED_SUPER_PLUS:
2237                 return SS_BLOCK;
2238         case USB_SPEED_UNKNOWN:
2239         default:
2240                 /* Should never happen */
2241                 return 1;
2242         }
2243 }
2244
2245 static unsigned int
2246 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2247 {
2248         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2249                 return LS_OVERHEAD;
2250         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2251                 return FS_OVERHEAD;
2252         return HS_OVERHEAD;
2253 }
2254
2255 /* If we are changing a LS/FS device under a HS hub,
2256  * make sure (if we are activating a new TT) that the HS bus has enough
2257  * bandwidth for this new TT.
2258  */
2259 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2260                 struct xhci_virt_device *virt_dev,
2261                 int old_active_eps)
2262 {
2263         struct xhci_interval_bw_table *bw_table;
2264         struct xhci_tt_bw_info *tt_info;
2265
2266         /* Find the bandwidth table for the root port this TT is attached to. */
2267         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2268         tt_info = virt_dev->tt_info;
2269         /* If this TT already had active endpoints, the bandwidth for this TT
2270          * has already been added.  Removing all periodic endpoints (and thus
2271          * making the TT enactive) will only decrease the bandwidth used.
2272          */
2273         if (old_active_eps)
2274                 return 0;
2275         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2276                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2277                         return -ENOMEM;
2278                 return 0;
2279         }
2280         /* Not sure why we would have no new active endpoints...
2281          *
2282          * Maybe because of an Evaluate Context change for a hub update or a
2283          * control endpoint 0 max packet size change?
2284          * FIXME: skip the bandwidth calculation in that case.
2285          */
2286         return 0;
2287 }
2288
2289 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2290                 struct xhci_virt_device *virt_dev)
2291 {
2292         unsigned int bw_reserved;
2293
2294         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2295         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2296                 return -ENOMEM;
2297
2298         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2299         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2300                 return -ENOMEM;
2301
2302         return 0;
2303 }
2304
2305 /*
2306  * This algorithm is a very conservative estimate of the worst-case scheduling
2307  * scenario for any one interval.  The hardware dynamically schedules the
2308  * packets, so we can't tell which microframe could be the limiting factor in
2309  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2310  *
2311  * Obviously, we can't solve an NP complete problem to find the minimum worst
2312  * case scenario.  Instead, we come up with an estimate that is no less than
2313  * the worst case bandwidth used for any one microframe, but may be an
2314  * over-estimate.
2315  *
2316  * We walk the requirements for each endpoint by interval, starting with the
2317  * smallest interval, and place packets in the schedule where there is only one
2318  * possible way to schedule packets for that interval.  In order to simplify
2319  * this algorithm, we record the largest max packet size for each interval, and
2320  * assume all packets will be that size.
2321  *
2322  * For interval 0, we obviously must schedule all packets for each interval.
2323  * The bandwidth for interval 0 is just the amount of data to be transmitted
2324  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2325  * the number of packets).
2326  *
2327  * For interval 1, we have two possible microframes to schedule those packets
2328  * in.  For this algorithm, if we can schedule the same number of packets for
2329  * each possible scheduling opportunity (each microframe), we will do so.  The
2330  * remaining number of packets will be saved to be transmitted in the gaps in
2331  * the next interval's scheduling sequence.
2332  *
2333  * As we move those remaining packets to be scheduled with interval 2 packets,
2334  * we have to double the number of remaining packets to transmit.  This is
2335  * because the intervals are actually powers of 2, and we would be transmitting
2336  * the previous interval's packets twice in this interval.  We also have to be
2337  * sure that when we look at the largest max packet size for this interval, we
2338  * also look at the largest max packet size for the remaining packets and take
2339  * the greater of the two.
2340  *
2341  * The algorithm continues to evenly distribute packets in each scheduling
2342  * opportunity, and push the remaining packets out, until we get to the last
2343  * interval.  Then those packets and their associated overhead are just added
2344  * to the bandwidth used.
2345  */
2346 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2347                 struct xhci_virt_device *virt_dev,
2348                 int old_active_eps)
2349 {
2350         unsigned int bw_reserved;
2351         unsigned int max_bandwidth;
2352         unsigned int bw_used;
2353         unsigned int block_size;
2354         struct xhci_interval_bw_table *bw_table;
2355         unsigned int packet_size = 0;
2356         unsigned int overhead = 0;
2357         unsigned int packets_transmitted = 0;
2358         unsigned int packets_remaining = 0;
2359         unsigned int i;
2360
2361         if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2362                 return xhci_check_ss_bw(xhci, virt_dev);
2363
2364         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2365                 max_bandwidth = HS_BW_LIMIT;
2366                 /* Convert percent of bus BW reserved to blocks reserved */
2367                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2368         } else {
2369                 max_bandwidth = FS_BW_LIMIT;
2370                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2371         }
2372
2373         bw_table = virt_dev->bw_table;
2374         /* We need to translate the max packet size and max ESIT payloads into
2375          * the units the hardware uses.
2376          */
2377         block_size = xhci_get_block_size(virt_dev->udev);
2378
2379         /* If we are manipulating a LS/FS device under a HS hub, double check
2380          * that the HS bus has enough bandwidth if we are activing a new TT.
2381          */
2382         if (virt_dev->tt_info) {
2383                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2384                                 "Recalculating BW for rootport %u",
2385                                 virt_dev->real_port);
2386                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2387                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2388                                         "newly activated TT.\n");
2389                         return -ENOMEM;
2390                 }
2391                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2392                                 "Recalculating BW for TT slot %u port %u",
2393                                 virt_dev->tt_info->slot_id,
2394                                 virt_dev->tt_info->ttport);
2395         } else {
2396                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2397                                 "Recalculating BW for rootport %u",
2398                                 virt_dev->real_port);
2399         }
2400
2401         /* Add in how much bandwidth will be used for interval zero, or the
2402          * rounded max ESIT payload + number of packets * largest overhead.
2403          */
2404         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2405                 bw_table->interval_bw[0].num_packets *
2406                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2407
2408         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2409                 unsigned int bw_added;
2410                 unsigned int largest_mps;
2411                 unsigned int interval_overhead;
2412
2413                 /*
2414                  * How many packets could we transmit in this interval?
2415                  * If packets didn't fit in the previous interval, we will need
2416                  * to transmit that many packets twice within this interval.
2417                  */
2418                 packets_remaining = 2 * packets_remaining +
2419                         bw_table->interval_bw[i].num_packets;
2420
2421                 /* Find the largest max packet size of this or the previous
2422                  * interval.
2423                  */
2424                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2425                         largest_mps = 0;
2426                 else {
2427                         struct xhci_virt_ep *virt_ep;
2428                         struct list_head *ep_entry;
2429
2430                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2431                         virt_ep = list_entry(ep_entry,
2432                                         struct xhci_virt_ep, bw_endpoint_list);
2433                         /* Convert to blocks, rounding up */
2434                         largest_mps = DIV_ROUND_UP(
2435                                         virt_ep->bw_info.max_packet_size,
2436                                         block_size);
2437                 }
2438                 if (largest_mps > packet_size)
2439                         packet_size = largest_mps;
2440
2441                 /* Use the larger overhead of this or the previous interval. */
2442                 interval_overhead = xhci_get_largest_overhead(
2443                                 &bw_table->interval_bw[i]);
2444                 if (interval_overhead > overhead)
2445                         overhead = interval_overhead;
2446
2447                 /* How many packets can we evenly distribute across
2448                  * (1 << (i + 1)) possible scheduling opportunities?
2449                  */
2450                 packets_transmitted = packets_remaining >> (i + 1);
2451
2452                 /* Add in the bandwidth used for those scheduled packets */
2453                 bw_added = packets_transmitted * (overhead + packet_size);
2454
2455                 /* How many packets do we have remaining to transmit? */
2456                 packets_remaining = packets_remaining % (1 << (i + 1));
2457
2458                 /* What largest max packet size should those packets have? */
2459                 /* If we've transmitted all packets, don't carry over the
2460                  * largest packet size.
2461                  */
2462                 if (packets_remaining == 0) {
2463                         packet_size = 0;
2464                         overhead = 0;
2465                 } else if (packets_transmitted > 0) {
2466                         /* Otherwise if we do have remaining packets, and we've
2467                          * scheduled some packets in this interval, take the
2468                          * largest max packet size from endpoints with this
2469                          * interval.
2470                          */
2471                         packet_size = largest_mps;
2472                         overhead = interval_overhead;
2473                 }
2474                 /* Otherwise carry over packet_size and overhead from the last
2475                  * time we had a remainder.
2476                  */
2477                 bw_used += bw_added;
2478                 if (bw_used > max_bandwidth) {
2479                         xhci_warn(xhci, "Not enough bandwidth. "
2480                                         "Proposed: %u, Max: %u\n",
2481                                 bw_used, max_bandwidth);
2482                         return -ENOMEM;
2483                 }
2484         }
2485         /*
2486          * Ok, we know we have some packets left over after even-handedly
2487          * scheduling interval 15.  We don't know which microframes they will
2488          * fit into, so we over-schedule and say they will be scheduled every
2489          * microframe.
2490          */
2491         if (packets_remaining > 0)
2492                 bw_used += overhead + packet_size;
2493
2494         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2495                 unsigned int port_index = virt_dev->real_port - 1;
2496
2497                 /* OK, we're manipulating a HS device attached to a
2498                  * root port bandwidth domain.  Include the number of active TTs
2499                  * in the bandwidth used.
2500                  */
2501                 bw_used += TT_HS_OVERHEAD *
2502                         xhci->rh_bw[port_index].num_active_tts;
2503         }
2504
2505         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2506                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2507                 "Available: %u " "percent",
2508                 bw_used, max_bandwidth, bw_reserved,
2509                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2510                 max_bandwidth);
2511
2512         bw_used += bw_reserved;
2513         if (bw_used > max_bandwidth) {
2514                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2515                                 bw_used, max_bandwidth);
2516                 return -ENOMEM;
2517         }
2518
2519         bw_table->bw_used = bw_used;
2520         return 0;
2521 }
2522
2523 static bool xhci_is_async_ep(unsigned int ep_type)
2524 {
2525         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2526                                         ep_type != ISOC_IN_EP &&
2527                                         ep_type != INT_IN_EP);
2528 }
2529
2530 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2531 {
2532         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2533 }
2534
2535 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2536 {
2537         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2538
2539         if (ep_bw->ep_interval == 0)
2540                 return SS_OVERHEAD_BURST +
2541                         (ep_bw->mult * ep_bw->num_packets *
2542                                         (SS_OVERHEAD + mps));
2543         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2544                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2545                                 1 << ep_bw->ep_interval);
2546
2547 }
2548
2549 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2550                 struct xhci_bw_info *ep_bw,
2551                 struct xhci_interval_bw_table *bw_table,
2552                 struct usb_device *udev,
2553                 struct xhci_virt_ep *virt_ep,
2554                 struct xhci_tt_bw_info *tt_info)
2555 {
2556         struct xhci_interval_bw *interval_bw;
2557         int normalized_interval;
2558
2559         if (xhci_is_async_ep(ep_bw->type))
2560                 return;
2561
2562         if (udev->speed >= USB_SPEED_SUPER) {
2563                 if (xhci_is_sync_in_ep(ep_bw->type))
2564                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2565                                 xhci_get_ss_bw_consumed(ep_bw);
2566                 else
2567                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2568                                 xhci_get_ss_bw_consumed(ep_bw);
2569                 return;
2570         }
2571
2572         /* SuperSpeed endpoints never get added to intervals in the table, so
2573          * this check is only valid for HS/FS/LS devices.
2574          */
2575         if (list_empty(&virt_ep->bw_endpoint_list))
2576                 return;
2577         /* For LS/FS devices, we need to translate the interval expressed in
2578          * microframes to frames.
2579          */
2580         if (udev->speed == USB_SPEED_HIGH)
2581                 normalized_interval = ep_bw->ep_interval;
2582         else
2583                 normalized_interval = ep_bw->ep_interval - 3;
2584
2585         if (normalized_interval == 0)
2586                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2587         interval_bw = &bw_table->interval_bw[normalized_interval];
2588         interval_bw->num_packets -= ep_bw->num_packets;
2589         switch (udev->speed) {
2590         case USB_SPEED_LOW:
2591                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2592                 break;
2593         case USB_SPEED_FULL:
2594                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2595                 break;
2596         case USB_SPEED_HIGH:
2597                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2598                 break;
2599         default:
2600                 /* Should never happen because only LS/FS/HS endpoints will get
2601                  * added to the endpoint list.
2602                  */
2603                 return;
2604         }
2605         if (tt_info)
2606                 tt_info->active_eps -= 1;
2607         list_del_init(&virt_ep->bw_endpoint_list);
2608 }
2609
2610 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2611                 struct xhci_bw_info *ep_bw,
2612                 struct xhci_interval_bw_table *bw_table,
2613                 struct usb_device *udev,
2614                 struct xhci_virt_ep *virt_ep,
2615                 struct xhci_tt_bw_info *tt_info)
2616 {
2617         struct xhci_interval_bw *interval_bw;
2618         struct xhci_virt_ep *smaller_ep;
2619         int normalized_interval;
2620
2621         if (xhci_is_async_ep(ep_bw->type))
2622                 return;
2623
2624         if (udev->speed == USB_SPEED_SUPER) {
2625                 if (xhci_is_sync_in_ep(ep_bw->type))
2626                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2627                                 xhci_get_ss_bw_consumed(ep_bw);
2628                 else
2629                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2630                                 xhci_get_ss_bw_consumed(ep_bw);
2631                 return;
2632         }
2633
2634         /* For LS/FS devices, we need to translate the interval expressed in
2635          * microframes to frames.
2636          */
2637         if (udev->speed == USB_SPEED_HIGH)
2638                 normalized_interval = ep_bw->ep_interval;
2639         else
2640                 normalized_interval = ep_bw->ep_interval - 3;
2641
2642         if (normalized_interval == 0)
2643                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2644         interval_bw = &bw_table->interval_bw[normalized_interval];
2645         interval_bw->num_packets += ep_bw->num_packets;
2646         switch (udev->speed) {
2647         case USB_SPEED_LOW:
2648                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2649                 break;
2650         case USB_SPEED_FULL:
2651                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2652                 break;
2653         case USB_SPEED_HIGH:
2654                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2655                 break;
2656         default:
2657                 /* Should never happen because only LS/FS/HS endpoints will get
2658                  * added to the endpoint list.
2659                  */
2660                 return;
2661         }
2662
2663         if (tt_info)
2664                 tt_info->active_eps += 1;
2665         /* Insert the endpoint into the list, largest max packet size first. */
2666         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2667                         bw_endpoint_list) {
2668                 if (ep_bw->max_packet_size >=
2669                                 smaller_ep->bw_info.max_packet_size) {
2670                         /* Add the new ep before the smaller endpoint */
2671                         list_add_tail(&virt_ep->bw_endpoint_list,
2672                                         &smaller_ep->bw_endpoint_list);
2673                         return;
2674                 }
2675         }
2676         /* Add the new endpoint at the end of the list. */
2677         list_add_tail(&virt_ep->bw_endpoint_list,
2678                         &interval_bw->endpoints);
2679 }
2680
2681 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2682                 struct xhci_virt_device *virt_dev,
2683                 int old_active_eps)
2684 {
2685         struct xhci_root_port_bw_info *rh_bw_info;
2686         if (!virt_dev->tt_info)
2687                 return;
2688
2689         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2690         if (old_active_eps == 0 &&
2691                                 virt_dev->tt_info->active_eps != 0) {
2692                 rh_bw_info->num_active_tts += 1;
2693                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2694         } else if (old_active_eps != 0 &&
2695                                 virt_dev->tt_info->active_eps == 0) {
2696                 rh_bw_info->num_active_tts -= 1;
2697                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2698         }
2699 }
2700
2701 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2702                 struct xhci_virt_device *virt_dev,
2703                 struct xhci_container_ctx *in_ctx)
2704 {
2705         struct xhci_bw_info ep_bw_info[31];
2706         int i;
2707         struct xhci_input_control_ctx *ctrl_ctx;
2708         int old_active_eps = 0;
2709
2710         if (virt_dev->tt_info)
2711                 old_active_eps = virt_dev->tt_info->active_eps;
2712
2713         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2714         if (!ctrl_ctx) {
2715                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2716                                 __func__);
2717                 return -ENOMEM;
2718         }
2719
2720         for (i = 0; i < 31; i++) {
2721                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2722                         continue;
2723
2724                 /* Make a copy of the BW info in case we need to revert this */
2725                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2726                                 sizeof(ep_bw_info[i]));
2727                 /* Drop the endpoint from the interval table if the endpoint is
2728                  * being dropped or changed.
2729                  */
2730                 if (EP_IS_DROPPED(ctrl_ctx, i))
2731                         xhci_drop_ep_from_interval_table(xhci,
2732                                         &virt_dev->eps[i].bw_info,
2733                                         virt_dev->bw_table,
2734                                         virt_dev->udev,
2735                                         &virt_dev->eps[i],
2736                                         virt_dev->tt_info);
2737         }
2738         /* Overwrite the information stored in the endpoints' bw_info */
2739         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2740         for (i = 0; i < 31; i++) {
2741                 /* Add any changed or added endpoints to the interval table */
2742                 if (EP_IS_ADDED(ctrl_ctx, i))
2743                         xhci_add_ep_to_interval_table(xhci,
2744                                         &virt_dev->eps[i].bw_info,
2745                                         virt_dev->bw_table,
2746                                         virt_dev->udev,
2747                                         &virt_dev->eps[i],
2748                                         virt_dev->tt_info);
2749         }
2750
2751         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2752                 /* Ok, this fits in the bandwidth we have.
2753                  * Update the number of active TTs.
2754                  */
2755                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2756                 return 0;
2757         }
2758
2759         /* We don't have enough bandwidth for this, revert the stored info. */
2760         for (i = 0; i < 31; i++) {
2761                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2762                         continue;
2763
2764                 /* Drop the new copies of any added or changed endpoints from
2765                  * the interval table.
2766                  */
2767                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2768                         xhci_drop_ep_from_interval_table(xhci,
2769                                         &virt_dev->eps[i].bw_info,
2770                                         virt_dev->bw_table,
2771                                         virt_dev->udev,
2772                                         &virt_dev->eps[i],
2773                                         virt_dev->tt_info);
2774                 }
2775                 /* Revert the endpoint back to its old information */
2776                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2777                                 sizeof(ep_bw_info[i]));
2778                 /* Add any changed or dropped endpoints back into the table */
2779                 if (EP_IS_DROPPED(ctrl_ctx, i))
2780                         xhci_add_ep_to_interval_table(xhci,
2781                                         &virt_dev->eps[i].bw_info,
2782                                         virt_dev->bw_table,
2783                                         virt_dev->udev,
2784                                         &virt_dev->eps[i],
2785                                         virt_dev->tt_info);
2786         }
2787         return -ENOMEM;
2788 }
2789
2790
2791 /* Issue a configure endpoint command or evaluate context command
2792  * and wait for it to finish.
2793  */
2794 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2795                 struct usb_device *udev,
2796                 struct xhci_command *command,
2797                 bool ctx_change, bool must_succeed)
2798 {
2799         int ret;
2800         unsigned long flags;
2801         struct xhci_input_control_ctx *ctrl_ctx;
2802         struct xhci_virt_device *virt_dev;
2803         struct xhci_slot_ctx *slot_ctx;
2804
2805         if (!command)
2806                 return -EINVAL;
2807
2808         spin_lock_irqsave(&xhci->lock, flags);
2809
2810         if (xhci->xhc_state & XHCI_STATE_DYING) {
2811                 spin_unlock_irqrestore(&xhci->lock, flags);
2812                 return -ESHUTDOWN;
2813         }
2814
2815         virt_dev = xhci->devs[udev->slot_id];
2816
2817         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2818         if (!ctrl_ctx) {
2819                 spin_unlock_irqrestore(&xhci->lock, flags);
2820                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2821                                 __func__);
2822                 return -ENOMEM;
2823         }
2824
2825         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2826                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2827                 spin_unlock_irqrestore(&xhci->lock, flags);
2828                 xhci_warn(xhci, "Not enough host resources, "
2829                                 "active endpoint contexts = %u\n",
2830                                 xhci->num_active_eps);
2831                 return -ENOMEM;
2832         }
2833         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2834             xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2835                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2836                         xhci_free_host_resources(xhci, ctrl_ctx);
2837                 spin_unlock_irqrestore(&xhci->lock, flags);
2838                 xhci_warn(xhci, "Not enough bandwidth\n");
2839                 return -ENOMEM;
2840         }
2841
2842         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2843
2844         trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2845         trace_xhci_configure_endpoint(slot_ctx);
2846
2847         if (!ctx_change)
2848                 ret = xhci_queue_configure_endpoint(xhci, command,
2849                                 command->in_ctx->dma,
2850                                 udev->slot_id, must_succeed);
2851         else
2852                 ret = xhci_queue_evaluate_context(xhci, command,
2853                                 command->in_ctx->dma,
2854                                 udev->slot_id, must_succeed);
2855         if (ret < 0) {
2856                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2857                         xhci_free_host_resources(xhci, ctrl_ctx);
2858                 spin_unlock_irqrestore(&xhci->lock, flags);
2859                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2860                                 "FIXME allocate a new ring segment");
2861                 return -ENOMEM;
2862         }
2863         xhci_ring_cmd_db(xhci);
2864         spin_unlock_irqrestore(&xhci->lock, flags);
2865
2866         /* Wait for the configure endpoint command to complete */
2867         wait_for_completion(command->completion);
2868
2869         if (!ctx_change)
2870                 ret = xhci_configure_endpoint_result(xhci, udev,
2871                                                      &command->status);
2872         else
2873                 ret = xhci_evaluate_context_result(xhci, udev,
2874                                                    &command->status);
2875
2876         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2877                 spin_lock_irqsave(&xhci->lock, flags);
2878                 /* If the command failed, remove the reserved resources.
2879                  * Otherwise, clean up the estimate to include dropped eps.
2880                  */
2881                 if (ret)
2882                         xhci_free_host_resources(xhci, ctrl_ctx);
2883                 else
2884                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2885                 spin_unlock_irqrestore(&xhci->lock, flags);
2886         }
2887         return ret;
2888 }
2889
2890 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2891         struct xhci_virt_device *vdev, int i)
2892 {
2893         struct xhci_virt_ep *ep = &vdev->eps[i];
2894
2895         if (ep->ep_state & EP_HAS_STREAMS) {
2896                 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2897                                 xhci_get_endpoint_address(i));
2898                 xhci_free_stream_info(xhci, ep->stream_info);
2899                 ep->stream_info = NULL;
2900                 ep->ep_state &= ~EP_HAS_STREAMS;
2901         }
2902 }
2903
2904 /* Called after one or more calls to xhci_add_endpoint() or
2905  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2906  * to call xhci_reset_bandwidth().
2907  *
2908  * Since we are in the middle of changing either configuration or
2909  * installing a new alt setting, the USB core won't allow URBs to be
2910  * enqueued for any endpoint on the old config or interface.  Nothing
2911  * else should be touching the xhci->devs[slot_id] structure, so we
2912  * don't need to take the xhci->lock for manipulating that.
2913  */
2914 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2915 {
2916         int i;
2917         int ret = 0;
2918         struct xhci_hcd *xhci;
2919         struct xhci_virt_device *virt_dev;
2920         struct xhci_input_control_ctx *ctrl_ctx;
2921         struct xhci_slot_ctx *slot_ctx;
2922         struct xhci_command *command;
2923
2924         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2925         if (ret <= 0)
2926                 return ret;
2927         xhci = hcd_to_xhci(hcd);
2928         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2929                 (xhci->xhc_state & XHCI_STATE_REMOVING))
2930                 return -ENODEV;
2931
2932         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2933         virt_dev = xhci->devs[udev->slot_id];
2934
2935         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2936         if (!command)
2937                 return -ENOMEM;
2938
2939         command->in_ctx = virt_dev->in_ctx;
2940
2941         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2942         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2943         if (!ctrl_ctx) {
2944                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2945                                 __func__);
2946                 ret = -ENOMEM;
2947                 goto command_cleanup;
2948         }
2949         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2950         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2951         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2952
2953         /* Don't issue the command if there's no endpoints to update. */
2954         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2955             ctrl_ctx->drop_flags == 0) {
2956                 ret = 0;
2957                 goto command_cleanup;
2958         }
2959         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2960         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2961         for (i = 31; i >= 1; i--) {
2962                 __le32 le32 = cpu_to_le32(BIT(i));
2963
2964                 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2965                     || (ctrl_ctx->add_flags & le32) || i == 1) {
2966                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2967                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2968                         break;
2969                 }
2970         }
2971
2972         ret = xhci_configure_endpoint(xhci, udev, command,
2973                         false, false);
2974         if (ret)
2975                 /* Callee should call reset_bandwidth() */
2976                 goto command_cleanup;
2977
2978         /* Free any rings that were dropped, but not changed. */
2979         for (i = 1; i < 31; i++) {
2980                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2981                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2982                         xhci_free_endpoint_ring(xhci, virt_dev, i);
2983                         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2984                 }
2985         }
2986         xhci_zero_in_ctx(xhci, virt_dev);
2987         /*
2988          * Install any rings for completely new endpoints or changed endpoints,
2989          * and free any old rings from changed endpoints.
2990          */
2991         for (i = 1; i < 31; i++) {
2992                 if (!virt_dev->eps[i].new_ring)
2993                         continue;
2994                 /* Only free the old ring if it exists.
2995                  * It may not if this is the first add of an endpoint.
2996                  */
2997                 if (virt_dev->eps[i].ring) {
2998                         xhci_free_endpoint_ring(xhci, virt_dev, i);
2999                 }
3000                 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3001                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
3002                 virt_dev->eps[i].new_ring = NULL;
3003                 xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3004         }
3005 command_cleanup:
3006         kfree(command->completion);
3007         kfree(command);
3008
3009         return ret;
3010 }
3011 EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3012
3013 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3014 {
3015         struct xhci_hcd *xhci;
3016         struct xhci_virt_device *virt_dev;
3017         int i, ret;
3018
3019         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3020         if (ret <= 0)
3021                 return;
3022         xhci = hcd_to_xhci(hcd);
3023
3024         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3025         virt_dev = xhci->devs[udev->slot_id];
3026         /* Free any rings allocated for added endpoints */
3027         for (i = 0; i < 31; i++) {
3028                 if (virt_dev->eps[i].new_ring) {
3029                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3030                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3031                         virt_dev->eps[i].new_ring = NULL;
3032                 }
3033         }
3034         xhci_zero_in_ctx(xhci, virt_dev);
3035 }
3036 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3037
3038 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3039                 struct xhci_container_ctx *in_ctx,
3040                 struct xhci_container_ctx *out_ctx,
3041                 struct xhci_input_control_ctx *ctrl_ctx,
3042                 u32 add_flags, u32 drop_flags)
3043 {
3044         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3045         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3046         xhci_slot_copy(xhci, in_ctx, out_ctx);
3047         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3048 }
3049
3050 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3051                                   struct usb_host_endpoint *host_ep)
3052 {
3053         struct xhci_hcd         *xhci;
3054         struct xhci_virt_device *vdev;
3055         struct xhci_virt_ep     *ep;
3056         struct usb_device       *udev;
3057         unsigned long           flags;
3058         unsigned int            ep_index;
3059
3060         xhci = hcd_to_xhci(hcd);
3061 rescan:
3062         spin_lock_irqsave(&xhci->lock, flags);
3063
3064         udev = (struct usb_device *)host_ep->hcpriv;
3065         if (!udev || !udev->slot_id)
3066                 goto done;
3067
3068         vdev = xhci->devs[udev->slot_id];
3069         if (!vdev)
3070                 goto done;
3071
3072         ep_index = xhci_get_endpoint_index(&host_ep->desc);
3073         ep = &vdev->eps[ep_index];
3074
3075         /* wait for hub_tt_work to finish clearing hub TT */
3076         if (ep->ep_state & EP_CLEARING_TT) {
3077                 spin_unlock_irqrestore(&xhci->lock, flags);
3078                 schedule_timeout_uninterruptible(1);
3079                 goto rescan;
3080         }
3081
3082         if (ep->ep_state)
3083                 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3084                          ep->ep_state);
3085 done:
3086         host_ep->hcpriv = NULL;
3087         spin_unlock_irqrestore(&xhci->lock, flags);
3088 }
3089
3090 /*
3091  * Called after usb core issues a clear halt control message.
3092  * The host side of the halt should already be cleared by a reset endpoint
3093  * command issued when the STALL event was received.
3094  *
3095  * The reset endpoint command may only be issued to endpoints in the halted
3096  * state. For software that wishes to reset the data toggle or sequence number
3097  * of an endpoint that isn't in the halted state this function will issue a
3098  * configure endpoint command with the Drop and Add bits set for the target
3099  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3100  *
3101  * vdev may be lost due to xHC restore error and re-initialization during S3/S4
3102  * resume. A new vdev will be allocated later by xhci_discover_or_reset_device()
3103  */
3104
3105 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3106                 struct usb_host_endpoint *host_ep)
3107 {
3108         struct xhci_hcd *xhci;
3109         struct usb_device *udev;
3110         struct xhci_virt_device *vdev;
3111         struct xhci_virt_ep *ep;
3112         struct xhci_input_control_ctx *ctrl_ctx;
3113         struct xhci_command *stop_cmd, *cfg_cmd;
3114         unsigned int ep_index;
3115         unsigned long flags;
3116         u32 ep_flag;
3117         int err;
3118
3119         xhci = hcd_to_xhci(hcd);
3120         ep_index = xhci_get_endpoint_index(&host_ep->desc);
3121
3122         /*
3123          * Usb core assumes a max packet value for ep0 on FS devices until the
3124          * real value is read from the descriptor. Core resets Ep0 if values
3125          * mismatch. Reconfigure the xhci ep0 endpoint context here in that case
3126          */
3127         if (usb_endpoint_xfer_control(&host_ep->desc) && ep_index == 0) {
3128
3129                 udev = container_of(host_ep, struct usb_device, ep0);
3130                 if (udev->speed != USB_SPEED_FULL || !udev->slot_id)
3131                         return;
3132
3133                 vdev = xhci->devs[udev->slot_id];
3134                 if (!vdev || vdev->udev != udev)
3135                         return;
3136
3137                 xhci_check_ep0_maxpacket(xhci, vdev);
3138
3139                 /* Nothing else should be done here for ep0 during ep reset */
3140                 return;
3141         }
3142
3143         if (!host_ep->hcpriv)
3144                 return;
3145         udev = (struct usb_device *) host_ep->hcpriv;
3146         vdev = xhci->devs[udev->slot_id];
3147
3148         if (!udev->slot_id || !vdev)
3149                 return;
3150
3151         ep = &vdev->eps[ep_index];
3152
3153         /* Bail out if toggle is already being cleared by a endpoint reset */
3154         spin_lock_irqsave(&xhci->lock, flags);
3155         if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3156                 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3157                 spin_unlock_irqrestore(&xhci->lock, flags);
3158                 return;
3159         }
3160         spin_unlock_irqrestore(&xhci->lock, flags);
3161         /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3162         if (usb_endpoint_xfer_control(&host_ep->desc) ||
3163             usb_endpoint_xfer_isoc(&host_ep->desc))
3164                 return;
3165
3166         ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3167
3168         if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3169                 return;
3170
3171         stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3172         if (!stop_cmd)
3173                 return;
3174
3175         cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3176         if (!cfg_cmd)
3177                 goto cleanup;
3178
3179         spin_lock_irqsave(&xhci->lock, flags);
3180
3181         /* block queuing new trbs and ringing ep doorbell */
3182         ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3183
3184         /*
3185          * Make sure endpoint ring is empty before resetting the toggle/seq.
3186          * Driver is required to synchronously cancel all transfer request.
3187          * Stop the endpoint to force xHC to update the output context
3188          */
3189
3190         if (!list_empty(&ep->ring->td_list)) {
3191                 dev_err(&udev->dev, "EP not empty, refuse reset\n");
3192                 spin_unlock_irqrestore(&xhci->lock, flags);
3193                 xhci_free_command(xhci, cfg_cmd);
3194                 goto cleanup;
3195         }
3196
3197         err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3198                                         ep_index, 0);
3199         if (err < 0) {
3200                 spin_unlock_irqrestore(&xhci->lock, flags);
3201                 xhci_free_command(xhci, cfg_cmd);
3202                 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3203                                 __func__, err);
3204                 goto cleanup;
3205         }
3206
3207         xhci_ring_cmd_db(xhci);
3208         spin_unlock_irqrestore(&xhci->lock, flags);
3209
3210         wait_for_completion(stop_cmd->completion);
3211
3212         spin_lock_irqsave(&xhci->lock, flags);
3213
3214         /* config ep command clears toggle if add and drop ep flags are set */
3215         ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3216         if (!ctrl_ctx) {
3217                 spin_unlock_irqrestore(&xhci->lock, flags);
3218                 xhci_free_command(xhci, cfg_cmd);
3219                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3220                                 __func__);
3221                 goto cleanup;
3222         }
3223
3224         xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3225                                            ctrl_ctx, ep_flag, ep_flag);
3226         xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3227
3228         err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3229                                       udev->slot_id, false);
3230         if (err < 0) {
3231                 spin_unlock_irqrestore(&xhci->lock, flags);
3232                 xhci_free_command(xhci, cfg_cmd);
3233                 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3234                                 __func__, err);
3235                 goto cleanup;
3236         }
3237
3238         xhci_ring_cmd_db(xhci);
3239         spin_unlock_irqrestore(&xhci->lock, flags);
3240
3241         wait_for_completion(cfg_cmd->completion);
3242
3243         xhci_free_command(xhci, cfg_cmd);
3244 cleanup:
3245         xhci_free_command(xhci, stop_cmd);
3246         spin_lock_irqsave(&xhci->lock, flags);
3247         if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3248                 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3249         spin_unlock_irqrestore(&xhci->lock, flags);
3250 }
3251
3252 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3253                 struct usb_device *udev, struct usb_host_endpoint *ep,
3254                 unsigned int slot_id)
3255 {
3256         int ret;
3257         unsigned int ep_index;
3258         unsigned int ep_state;
3259
3260         if (!ep)
3261                 return -EINVAL;
3262         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3263         if (ret <= 0)
3264                 return ret ? ret : -EINVAL;
3265         if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3266                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3267                                 " descriptor for ep 0x%x does not support streams\n",
3268                                 ep->desc.bEndpointAddress);
3269                 return -EINVAL;
3270         }
3271
3272         ep_index = xhci_get_endpoint_index(&ep->desc);
3273         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3274         if (ep_state & EP_HAS_STREAMS ||
3275                         ep_state & EP_GETTING_STREAMS) {
3276                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3277                                 "already has streams set up.\n",
3278                                 ep->desc.bEndpointAddress);
3279                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3280                                 "dynamic stream context array reallocation.\n");
3281                 return -EINVAL;
3282         }
3283         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3284                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3285                                 "endpoint 0x%x; URBs are pending.\n",
3286                                 ep->desc.bEndpointAddress);
3287                 return -EINVAL;
3288         }
3289         return 0;
3290 }
3291
3292 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3293                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3294 {
3295         unsigned int max_streams;
3296
3297         /* The stream context array size must be a power of two */
3298         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3299         /*
3300          * Find out how many primary stream array entries the host controller
3301          * supports.  Later we may use secondary stream arrays (similar to 2nd
3302          * level page entries), but that's an optional feature for xHCI host
3303          * controllers. xHCs must support at least 4 stream IDs.
3304          */
3305         max_streams = HCC_MAX_PSA(xhci->hcc_params);
3306         if (*num_stream_ctxs > max_streams) {
3307                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3308                                 max_streams);
3309                 *num_stream_ctxs = max_streams;
3310                 *num_streams = max_streams;
3311         }
3312 }
3313
3314 /* Returns an error code if one of the endpoint already has streams.
3315  * This does not change any data structures, it only checks and gathers
3316  * information.
3317  */
3318 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3319                 struct usb_device *udev,
3320                 struct usb_host_endpoint **eps, unsigned int num_eps,
3321                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3322 {
3323         unsigned int max_streams;
3324         unsigned int endpoint_flag;
3325         int i;
3326         int ret;
3327
3328         for (i = 0; i < num_eps; i++) {
3329                 ret = xhci_check_streams_endpoint(xhci, udev,
3330                                 eps[i], udev->slot_id);
3331                 if (ret < 0)
3332                         return ret;
3333
3334                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3335                 if (max_streams < (*num_streams - 1)) {
3336                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3337                                         eps[i]->desc.bEndpointAddress,
3338                                         max_streams);
3339                         *num_streams = max_streams+1;
3340                 }
3341
3342                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3343                 if (*changed_ep_bitmask & endpoint_flag)
3344                         return -EINVAL;
3345                 *changed_ep_bitmask |= endpoint_flag;
3346         }
3347         return 0;
3348 }
3349
3350 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3351                 struct usb_device *udev,
3352                 struct usb_host_endpoint **eps, unsigned int num_eps)
3353 {
3354         u32 changed_ep_bitmask = 0;
3355         unsigned int slot_id;
3356         unsigned int ep_index;
3357         unsigned int ep_state;
3358         int i;
3359
3360         slot_id = udev->slot_id;
3361         if (!xhci->devs[slot_id])
3362                 return 0;
3363
3364         for (i = 0; i < num_eps; i++) {
3365                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3366                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3367                 /* Are streams already being freed for the endpoint? */
3368                 if (ep_state & EP_GETTING_NO_STREAMS) {
3369                         xhci_warn(xhci, "WARN Can't disable streams for "
3370                                         "endpoint 0x%x, "
3371                                         "streams are being disabled already\n",
3372                                         eps[i]->desc.bEndpointAddress);
3373                         return 0;
3374                 }
3375                 /* Are there actually any streams to free? */
3376                 if (!(ep_state & EP_HAS_STREAMS) &&
3377                                 !(ep_state & EP_GETTING_STREAMS)) {
3378                         xhci_warn(xhci, "WARN Can't disable streams for "
3379                                         "endpoint 0x%x, "
3380                                         "streams are already disabled!\n",
3381                                         eps[i]->desc.bEndpointAddress);
3382                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3383                                         "with non-streams endpoint\n");
3384                         return 0;
3385                 }
3386                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3387         }
3388         return changed_ep_bitmask;
3389 }
3390
3391 /*
3392  * The USB device drivers use this function (through the HCD interface in USB
3393  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3394  * coordinate mass storage command queueing across multiple endpoints (basically
3395  * a stream ID == a task ID).
3396  *
3397  * Setting up streams involves allocating the same size stream context array
3398  * for each endpoint and issuing a configure endpoint command for all endpoints.
3399  *
3400  * Don't allow the call to succeed if one endpoint only supports one stream
3401  * (which means it doesn't support streams at all).
3402  *
3403  * Drivers may get less stream IDs than they asked for, if the host controller
3404  * hardware or endpoints claim they can't support the number of requested
3405  * stream IDs.
3406  */
3407 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3408                 struct usb_host_endpoint **eps, unsigned int num_eps,
3409                 unsigned int num_streams, gfp_t mem_flags)
3410 {
3411         int i, ret;
3412         struct xhci_hcd *xhci;
3413         struct xhci_virt_device *vdev;
3414         struct xhci_command *config_cmd;
3415         struct xhci_input_control_ctx *ctrl_ctx;
3416         unsigned int ep_index;
3417         unsigned int num_stream_ctxs;
3418         unsigned int max_packet;
3419         unsigned long flags;
3420         u32 changed_ep_bitmask = 0;
3421
3422         if (!eps)
3423                 return -EINVAL;
3424
3425         /* Add one to the number of streams requested to account for
3426          * stream 0 that is reserved for xHCI usage.
3427          */
3428         num_streams += 1;
3429         xhci = hcd_to_xhci(hcd);
3430         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3431                         num_streams);
3432
3433         /* MaxPSASize value 0 (2 streams) means streams are not supported */
3434         if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3435                         HCC_MAX_PSA(xhci->hcc_params) < 4) {
3436                 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3437                 return -ENOSYS;
3438         }
3439
3440         config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3441         if (!config_cmd)
3442                 return -ENOMEM;
3443
3444         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3445         if (!ctrl_ctx) {
3446                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3447                                 __func__);
3448                 xhci_free_command(xhci, config_cmd);
3449                 return -ENOMEM;
3450         }
3451
3452         /* Check to make sure all endpoints are not already configured for
3453          * streams.  While we're at it, find the maximum number of streams that
3454          * all the endpoints will support and check for duplicate endpoints.
3455          */
3456         spin_lock_irqsave(&xhci->lock, flags);
3457         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3458                         num_eps, &num_streams, &changed_ep_bitmask);
3459         if (ret < 0) {
3460                 xhci_free_command(xhci, config_cmd);
3461                 spin_unlock_irqrestore(&xhci->lock, flags);
3462                 return ret;
3463         }
3464         if (num_streams <= 1) {
3465                 xhci_warn(xhci, "WARN: endpoints can't handle "
3466                                 "more than one stream.\n");
3467                 xhci_free_command(xhci, config_cmd);
3468                 spin_unlock_irqrestore(&xhci->lock, flags);
3469                 return -EINVAL;
3470         }
3471         vdev = xhci->devs[udev->slot_id];
3472         /* Mark each endpoint as being in transition, so
3473          * xhci_urb_enqueue() will reject all URBs.
3474          */
3475         for (i = 0; i < num_eps; i++) {
3476                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3477                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3478         }
3479         spin_unlock_irqrestore(&xhci->lock, flags);
3480
3481         /* Setup internal data structures and allocate HW data structures for
3482          * streams (but don't install the HW structures in the input context
3483          * until we're sure all memory allocation succeeded).
3484          */
3485         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3486         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3487                         num_stream_ctxs, num_streams);
3488
3489         for (i = 0; i < num_eps; i++) {
3490                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3491                 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3492                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3493                                 num_stream_ctxs,
3494                                 num_streams,
3495                                 max_packet, mem_flags);
3496                 if (!vdev->eps[ep_index].stream_info)
3497                         goto cleanup;
3498                 /* Set maxPstreams in endpoint context and update deq ptr to
3499                  * point to stream context array. FIXME
3500                  */
3501         }
3502
3503         /* Set up the input context for a configure endpoint command. */
3504         for (i = 0; i < num_eps; i++) {
3505                 struct xhci_ep_ctx *ep_ctx;
3506
3507                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3508                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3509
3510                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3511                                 vdev->out_ctx, ep_index);
3512                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3513                                 vdev->eps[ep_index].stream_info);
3514         }
3515         /* Tell the HW to drop its old copy of the endpoint context info
3516          * and add the updated copy from the input context.
3517          */
3518         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3519                         vdev->out_ctx, ctrl_ctx,
3520                         changed_ep_bitmask, changed_ep_bitmask);
3521
3522         /* Issue and wait for the configure endpoint command */
3523         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3524                         false, false);
3525
3526         /* xHC rejected the configure endpoint command for some reason, so we
3527          * leave the old ring intact and free our internal streams data
3528          * structure.
3529          */
3530         if (ret < 0)
3531                 goto cleanup;
3532
3533         spin_lock_irqsave(&xhci->lock, flags);
3534         for (i = 0; i < num_eps; i++) {
3535                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3536                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3537                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3538                          udev->slot_id, ep_index);
3539                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3540         }
3541         xhci_free_command(xhci, config_cmd);
3542         spin_unlock_irqrestore(&xhci->lock, flags);
3543
3544         for (i = 0; i < num_eps; i++) {
3545                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3546                 xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3547         }
3548         /* Subtract 1 for stream 0, which drivers can't use */
3549         return num_streams - 1;
3550
3551 cleanup:
3552         /* If it didn't work, free the streams! */
3553         for (i = 0; i < num_eps; i++) {
3554                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3555                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3556                 vdev->eps[ep_index].stream_info = NULL;
3557                 /* FIXME Unset maxPstreams in endpoint context and
3558                  * update deq ptr to point to normal string ring.
3559                  */
3560                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3561                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3562                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3563         }
3564         xhci_free_command(xhci, config_cmd);
3565         return -ENOMEM;
3566 }
3567
3568 /* Transition the endpoint from using streams to being a "normal" endpoint
3569  * without streams.
3570  *
3571  * Modify the endpoint context state, submit a configure endpoint command,
3572  * and free all endpoint rings for streams if that completes successfully.
3573  */
3574 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3575                 struct usb_host_endpoint **eps, unsigned int num_eps,
3576                 gfp_t mem_flags)
3577 {
3578         int i, ret;
3579         struct xhci_hcd *xhci;
3580         struct xhci_virt_device *vdev;
3581         struct xhci_command *command;
3582         struct xhci_input_control_ctx *ctrl_ctx;
3583         unsigned int ep_index;
3584         unsigned long flags;
3585         u32 changed_ep_bitmask;
3586
3587         xhci = hcd_to_xhci(hcd);
3588         vdev = xhci->devs[udev->slot_id];
3589
3590         /* Set up a configure endpoint command to remove the streams rings */
3591         spin_lock_irqsave(&xhci->lock, flags);
3592         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3593                         udev, eps, num_eps);
3594         if (changed_ep_bitmask == 0) {
3595                 spin_unlock_irqrestore(&xhci->lock, flags);
3596                 return -EINVAL;
3597         }
3598
3599         /* Use the xhci_command structure from the first endpoint.  We may have
3600          * allocated too many, but the driver may call xhci_free_streams() for
3601          * each endpoint it grouped into one call to xhci_alloc_streams().
3602          */
3603         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3604         command = vdev->eps[ep_index].stream_info->free_streams_command;
3605         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3606         if (!ctrl_ctx) {
3607                 spin_unlock_irqrestore(&xhci->lock, flags);
3608                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3609                                 __func__);
3610                 return -EINVAL;
3611         }
3612
3613         for (i = 0; i < num_eps; i++) {
3614                 struct xhci_ep_ctx *ep_ctx;
3615
3616                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3617                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3618                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3619                         EP_GETTING_NO_STREAMS;
3620
3621                 xhci_endpoint_copy(xhci, command->in_ctx,
3622                                 vdev->out_ctx, ep_index);
3623                 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3624                                 &vdev->eps[ep_index]);
3625         }
3626         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3627                         vdev->out_ctx, ctrl_ctx,
3628                         changed_ep_bitmask, changed_ep_bitmask);
3629         spin_unlock_irqrestore(&xhci->lock, flags);
3630
3631         /* Issue and wait for the configure endpoint command,
3632          * which must succeed.
3633          */
3634         ret = xhci_configure_endpoint(xhci, udev, command,
3635                         false, true);
3636
3637         /* xHC rejected the configure endpoint command for some reason, so we
3638          * leave the streams rings intact.
3639          */
3640         if (ret < 0)
3641                 return ret;
3642
3643         spin_lock_irqsave(&xhci->lock, flags);
3644         for (i = 0; i < num_eps; i++) {
3645                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3646                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3647                 vdev->eps[ep_index].stream_info = NULL;
3648                 /* FIXME Unset maxPstreams in endpoint context and
3649                  * update deq ptr to point to normal string ring.
3650                  */
3651                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3652                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3653         }
3654         spin_unlock_irqrestore(&xhci->lock, flags);
3655
3656         return 0;
3657 }
3658
3659 /*
3660  * Deletes endpoint resources for endpoints that were active before a Reset
3661  * Device command, or a Disable Slot command.  The Reset Device command leaves
3662  * the control endpoint intact, whereas the Disable Slot command deletes it.
3663  *
3664  * Must be called with xhci->lock held.
3665  */
3666 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3667         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3668 {
3669         int i;
3670         unsigned int num_dropped_eps = 0;
3671         unsigned int drop_flags = 0;
3672
3673         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3674                 if (virt_dev->eps[i].ring) {
3675                         drop_flags |= 1 << i;
3676                         num_dropped_eps++;
3677                 }
3678         }
3679         xhci->num_active_eps -= num_dropped_eps;
3680         if (num_dropped_eps)
3681                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3682                                 "Dropped %u ep ctxs, flags = 0x%x, "
3683                                 "%u now active.",
3684                                 num_dropped_eps, drop_flags,
3685                                 xhci->num_active_eps);
3686 }
3687
3688 /*
3689  * This submits a Reset Device Command, which will set the device state to 0,
3690  * set the device address to 0, and disable all the endpoints except the default
3691  * control endpoint.  The USB core should come back and call
3692  * xhci_address_device(), and then re-set up the configuration.  If this is
3693  * called because of a usb_reset_and_verify_device(), then the old alternate
3694  * settings will be re-installed through the normal bandwidth allocation
3695  * functions.
3696  *
3697  * Wait for the Reset Device command to finish.  Remove all structures
3698  * associated with the endpoints that were disabled.  Clear the input device
3699  * structure? Reset the control endpoint 0 max packet size?
3700  *
3701  * If the virt_dev to be reset does not exist or does not match the udev,
3702  * it means the device is lost, possibly due to the xHC restore error and
3703  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3704  * re-allocate the device.
3705  */
3706 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3707                 struct usb_device *udev)
3708 {
3709         int ret, i;
3710         unsigned long flags;
3711         struct xhci_hcd *xhci;
3712         unsigned int slot_id;
3713         struct xhci_virt_device *virt_dev;
3714         struct xhci_command *reset_device_cmd;
3715         struct xhci_slot_ctx *slot_ctx;
3716         int old_active_eps = 0;
3717
3718         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3719         if (ret <= 0)
3720                 return ret;
3721         xhci = hcd_to_xhci(hcd);
3722         slot_id = udev->slot_id;
3723         virt_dev = xhci->devs[slot_id];
3724         if (!virt_dev) {
3725                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3726                                 "not exist. Re-allocate the device\n", slot_id);
3727                 ret = xhci_alloc_dev(hcd, udev);
3728                 if (ret == 1)
3729                         return 0;
3730                 else
3731                         return -EINVAL;
3732         }
3733
3734         if (virt_dev->tt_info)
3735                 old_active_eps = virt_dev->tt_info->active_eps;
3736
3737         if (virt_dev->udev != udev) {
3738                 /* If the virt_dev and the udev does not match, this virt_dev
3739                  * may belong to another udev.
3740                  * Re-allocate the device.
3741                  */
3742                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3743                                 "not match the udev. Re-allocate the device\n",
3744                                 slot_id);
3745                 ret = xhci_alloc_dev(hcd, udev);
3746                 if (ret == 1)
3747                         return 0;
3748                 else
3749                         return -EINVAL;
3750         }
3751
3752         /* If device is not setup, there is no point in resetting it */
3753         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3754         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3755                                                 SLOT_STATE_DISABLED)
3756                 return 0;
3757
3758         trace_xhci_discover_or_reset_device(slot_ctx);
3759
3760         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3761         /* Allocate the command structure that holds the struct completion.
3762          * Assume we're in process context, since the normal device reset
3763          * process has to wait for the device anyway.  Storage devices are
3764          * reset as part of error handling, so use GFP_NOIO instead of
3765          * GFP_KERNEL.
3766          */
3767         reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3768         if (!reset_device_cmd) {
3769                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3770                 return -ENOMEM;
3771         }
3772
3773         /* Attempt to submit the Reset Device command to the command ring */
3774         spin_lock_irqsave(&xhci->lock, flags);
3775
3776         ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3777         if (ret) {
3778                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3779                 spin_unlock_irqrestore(&xhci->lock, flags);
3780                 goto command_cleanup;
3781         }
3782         xhci_ring_cmd_db(xhci);
3783         spin_unlock_irqrestore(&xhci->lock, flags);
3784
3785         /* Wait for the Reset Device command to finish */
3786         wait_for_completion(reset_device_cmd->completion);
3787
3788         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3789          * unless we tried to reset a slot ID that wasn't enabled,
3790          * or the device wasn't in the addressed or configured state.
3791          */
3792         ret = reset_device_cmd->status;
3793         switch (ret) {
3794         case COMP_COMMAND_ABORTED:
3795         case COMP_COMMAND_RING_STOPPED:
3796                 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3797                 ret = -ETIME;
3798                 goto command_cleanup;
3799         case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3800         case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3801                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3802                                 slot_id,
3803                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3804                 xhci_dbg(xhci, "Not freeing device rings.\n");
3805                 /* Don't treat this as an error.  May change my mind later. */
3806                 ret = 0;
3807                 goto command_cleanup;
3808         case COMP_SUCCESS:
3809                 xhci_dbg(xhci, "Successful reset device command.\n");
3810                 break;
3811         default:
3812                 if (xhci_is_vendor_info_code(xhci, ret))
3813                         break;
3814                 xhci_warn(xhci, "Unknown completion code %u for "
3815                                 "reset device command.\n", ret);
3816                 ret = -EINVAL;
3817                 goto command_cleanup;
3818         }
3819
3820         /* Free up host controller endpoint resources */
3821         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3822                 spin_lock_irqsave(&xhci->lock, flags);
3823                 /* Don't delete the default control endpoint resources */
3824                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3825                 spin_unlock_irqrestore(&xhci->lock, flags);
3826         }
3827
3828         /* Everything but endpoint 0 is disabled, so free the rings. */
3829         for (i = 1; i < 31; i++) {
3830                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3831
3832                 if (ep->ep_state & EP_HAS_STREAMS) {
3833                         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3834                                         xhci_get_endpoint_address(i));
3835                         xhci_free_stream_info(xhci, ep->stream_info);
3836                         ep->stream_info = NULL;
3837                         ep->ep_state &= ~EP_HAS_STREAMS;
3838                 }
3839
3840                 if (ep->ring) {
3841                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3842                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3843                 }
3844                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3845                         xhci_drop_ep_from_interval_table(xhci,
3846                                         &virt_dev->eps[i].bw_info,
3847                                         virt_dev->bw_table,
3848                                         udev,
3849                                         &virt_dev->eps[i],
3850                                         virt_dev->tt_info);
3851                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3852         }
3853         /* If necessary, update the number of active TTs on this root port */
3854         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3855         virt_dev->flags = 0;
3856         ret = 0;
3857
3858 command_cleanup:
3859         xhci_free_command(xhci, reset_device_cmd);
3860         return ret;
3861 }
3862
3863 /*
3864  * At this point, the struct usb_device is about to go away, the device has
3865  * disconnected, and all traffic has been stopped and the endpoints have been
3866  * disabled.  Free any HC data structures associated with that device.
3867  */
3868 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3869 {
3870         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3871         struct xhci_virt_device *virt_dev;
3872         struct xhci_slot_ctx *slot_ctx;
3873         unsigned long flags;
3874         int i, ret;
3875
3876         /*
3877          * We called pm_runtime_get_noresume when the device was attached.
3878          * Decrement the counter here to allow controller to runtime suspend
3879          * if no devices remain.
3880          */
3881         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3882                 pm_runtime_put_noidle(hcd->self.controller);
3883
3884         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3885         /* If the host is halted due to driver unload, we still need to free the
3886          * device.
3887          */
3888         if (ret <= 0 && ret != -ENODEV)
3889                 return;
3890
3891         virt_dev = xhci->devs[udev->slot_id];
3892         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3893         trace_xhci_free_dev(slot_ctx);
3894
3895         /* Stop any wayward timer functions (which may grab the lock) */
3896         for (i = 0; i < 31; i++)
3897                 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3898         virt_dev->udev = NULL;
3899         xhci_disable_slot(xhci, udev->slot_id);
3900
3901         spin_lock_irqsave(&xhci->lock, flags);
3902         xhci_free_virt_device(xhci, udev->slot_id);
3903         spin_unlock_irqrestore(&xhci->lock, flags);
3904
3905 }
3906
3907 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3908 {
3909         struct xhci_command *command;
3910         unsigned long flags;
3911         u32 state;
3912         int ret;
3913
3914         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3915         if (!command)
3916                 return -ENOMEM;
3917
3918         xhci_debugfs_remove_slot(xhci, slot_id);
3919
3920         spin_lock_irqsave(&xhci->lock, flags);
3921         /* Don't disable the slot if the host controller is dead. */
3922         state = readl(&xhci->op_regs->status);
3923         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3924                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3925                 spin_unlock_irqrestore(&xhci->lock, flags);
3926                 kfree(command);
3927                 return -ENODEV;
3928         }
3929
3930         ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3931                                 slot_id);
3932         if (ret) {
3933                 spin_unlock_irqrestore(&xhci->lock, flags);
3934                 kfree(command);
3935                 return ret;
3936         }
3937         xhci_ring_cmd_db(xhci);
3938         spin_unlock_irqrestore(&xhci->lock, flags);
3939
3940         wait_for_completion(command->completion);
3941
3942         if (command->status != COMP_SUCCESS)
3943                 xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
3944                           slot_id, command->status);
3945
3946         xhci_free_command(xhci, command);
3947
3948         return 0;
3949 }
3950
3951 /*
3952  * Checks if we have enough host controller resources for the default control
3953  * endpoint.
3954  *
3955  * Must be called with xhci->lock held.
3956  */
3957 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3958 {
3959         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3960                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3961                                 "Not enough ep ctxs: "
3962                                 "%u active, need to add 1, limit is %u.",
3963                                 xhci->num_active_eps, xhci->limit_active_eps);
3964                 return -ENOMEM;
3965         }
3966         xhci->num_active_eps += 1;
3967         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3968                         "Adding 1 ep ctx, %u now active.",
3969                         xhci->num_active_eps);
3970         return 0;
3971 }
3972
3973
3974 /*
3975  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3976  * timed out, or allocating memory failed.  Returns 1 on success.
3977  */
3978 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3979 {
3980         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3981         struct xhci_virt_device *vdev;
3982         struct xhci_slot_ctx *slot_ctx;
3983         unsigned long flags;
3984         int ret, slot_id;
3985         struct xhci_command *command;
3986
3987         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3988         if (!command)
3989                 return 0;
3990
3991         spin_lock_irqsave(&xhci->lock, flags);
3992         ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3993         if (ret) {
3994                 spin_unlock_irqrestore(&xhci->lock, flags);
3995                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3996                 xhci_free_command(xhci, command);
3997                 return 0;
3998         }
3999         xhci_ring_cmd_db(xhci);
4000         spin_unlock_irqrestore(&xhci->lock, flags);
4001
4002         wait_for_completion(command->completion);
4003         slot_id = command->slot_id;
4004
4005         if (!slot_id || command->status != COMP_SUCCESS) {
4006                 xhci_err(xhci, "Error while assigning device slot ID: %s\n",
4007                          xhci_trb_comp_code_string(command->status));
4008                 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4009                                 HCS_MAX_SLOTS(
4010                                         readl(&xhci->cap_regs->hcs_params1)));
4011                 xhci_free_command(xhci, command);
4012                 return 0;
4013         }
4014
4015         xhci_free_command(xhci, command);
4016
4017         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4018                 spin_lock_irqsave(&xhci->lock, flags);
4019                 ret = xhci_reserve_host_control_ep_resources(xhci);
4020                 if (ret) {
4021                         spin_unlock_irqrestore(&xhci->lock, flags);
4022                         xhci_warn(xhci, "Not enough host resources, "
4023                                         "active endpoint contexts = %u\n",
4024                                         xhci->num_active_eps);
4025                         goto disable_slot;
4026                 }
4027                 spin_unlock_irqrestore(&xhci->lock, flags);
4028         }
4029         /* Use GFP_NOIO, since this function can be called from
4030          * xhci_discover_or_reset_device(), which may be called as part of
4031          * mass storage driver error handling.
4032          */
4033         if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4034                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4035                 goto disable_slot;
4036         }
4037         vdev = xhci->devs[slot_id];
4038         slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4039         trace_xhci_alloc_dev(slot_ctx);
4040
4041         udev->slot_id = slot_id;
4042
4043         xhci_debugfs_create_slot(xhci, slot_id);
4044
4045         /*
4046          * If resetting upon resume, we can't put the controller into runtime
4047          * suspend if there is a device attached.
4048          */
4049         if (xhci->quirks & XHCI_RESET_ON_RESUME)
4050                 pm_runtime_get_noresume(hcd->self.controller);
4051
4052         /* Is this a LS or FS device under a HS hub? */
4053         /* Hub or peripherial? */
4054         return 1;
4055
4056 disable_slot:
4057         xhci_disable_slot(xhci, udev->slot_id);
4058         xhci_free_virt_device(xhci, udev->slot_id);
4059
4060         return 0;
4061 }
4062
4063 /**
4064  * xhci_setup_device - issues an Address Device command to assign a unique
4065  *                      USB bus address.
4066  * @hcd: USB host controller data structure.
4067  * @udev: USB dev structure representing the connected device.
4068  * @setup: Enum specifying setup mode: address only or with context.
4069  * @timeout_ms: Max wait time (ms) for the command operation to complete.
4070  *
4071  * Return: 0 if successful; otherwise, negative error code.
4072  */
4073 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4074                              enum xhci_setup_dev setup, unsigned int timeout_ms)
4075 {
4076         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4077         unsigned long flags;
4078         struct xhci_virt_device *virt_dev;
4079         int ret = 0;
4080         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4081         struct xhci_slot_ctx *slot_ctx;
4082         struct xhci_input_control_ctx *ctrl_ctx;
4083         u64 temp_64;
4084         struct xhci_command *command = NULL;
4085
4086         mutex_lock(&xhci->mutex);
4087
4088         if (xhci->xhc_state) {  /* dying, removing or halted */
4089                 ret = -ESHUTDOWN;
4090                 goto out;
4091         }
4092
4093         if (!udev->slot_id) {
4094                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4095                                 "Bad Slot ID %d", udev->slot_id);
4096                 ret = -EINVAL;
4097                 goto out;
4098         }
4099
4100         virt_dev = xhci->devs[udev->slot_id];
4101
4102         if (WARN_ON(!virt_dev)) {
4103                 /*
4104                  * In plug/unplug torture test with an NEC controller,
4105                  * a zero-dereference was observed once due to virt_dev = 0.
4106                  * Print useful debug rather than crash if it is observed again!
4107                  */
4108                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4109                         udev->slot_id);
4110                 ret = -EINVAL;
4111                 goto out;
4112         }
4113         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4114         trace_xhci_setup_device_slot(slot_ctx);
4115
4116         if (setup == SETUP_CONTEXT_ONLY) {
4117                 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4118                     SLOT_STATE_DEFAULT) {
4119                         xhci_dbg(xhci, "Slot already in default state\n");
4120                         goto out;
4121                 }
4122         }
4123
4124         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4125         if (!command) {
4126                 ret = -ENOMEM;
4127                 goto out;
4128         }
4129
4130         command->in_ctx = virt_dev->in_ctx;
4131         command->timeout_ms = timeout_ms;
4132
4133         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4134         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4135         if (!ctrl_ctx) {
4136                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4137                                 __func__);
4138                 ret = -EINVAL;
4139                 goto out;
4140         }
4141         /*
4142          * If this is the first Set Address since device plug-in or
4143          * virt_device realloaction after a resume with an xHCI power loss,
4144          * then set up the slot context.
4145          */
4146         if (!slot_ctx->dev_info)
4147                 xhci_setup_addressable_virt_dev(xhci, udev);
4148         /* Otherwise, update the control endpoint ring enqueue pointer. */
4149         else
4150                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4151         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4152         ctrl_ctx->drop_flags = 0;
4153
4154         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4155                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4156
4157         trace_xhci_address_ctrl_ctx(ctrl_ctx);
4158         spin_lock_irqsave(&xhci->lock, flags);
4159         trace_xhci_setup_device(virt_dev);
4160         ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4161                                         udev->slot_id, setup);
4162         if (ret) {
4163                 spin_unlock_irqrestore(&xhci->lock, flags);
4164                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4165                                 "FIXME: allocate a command ring segment");
4166                 goto out;
4167         }
4168         xhci_ring_cmd_db(xhci);
4169         spin_unlock_irqrestore(&xhci->lock, flags);
4170
4171         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4172         wait_for_completion(command->completion);
4173
4174         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
4175          * the SetAddress() "recovery interval" required by USB and aborting the
4176          * command on a timeout.
4177          */
4178         switch (command->status) {
4179         case COMP_COMMAND_ABORTED:
4180         case COMP_COMMAND_RING_STOPPED:
4181                 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4182                 ret = -ETIME;
4183                 break;
4184         case COMP_CONTEXT_STATE_ERROR:
4185         case COMP_SLOT_NOT_ENABLED_ERROR:
4186                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4187                          act, udev->slot_id);
4188                 ret = -EINVAL;
4189                 break;
4190         case COMP_USB_TRANSACTION_ERROR:
4191                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4192
4193                 mutex_unlock(&xhci->mutex);
4194                 ret = xhci_disable_slot(xhci, udev->slot_id);
4195                 xhci_free_virt_device(xhci, udev->slot_id);
4196                 if (!ret)
4197                         xhci_alloc_dev(hcd, udev);
4198                 kfree(command->completion);
4199                 kfree(command);
4200                 return -EPROTO;
4201         case COMP_INCOMPATIBLE_DEVICE_ERROR:
4202                 dev_warn(&udev->dev,
4203                          "ERROR: Incompatible device for setup %s command\n", act);
4204                 ret = -ENODEV;
4205                 break;
4206         case COMP_SUCCESS:
4207                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4208                                "Successful setup %s command", act);
4209                 break;
4210         default:
4211                 xhci_err(xhci,
4212                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
4213                          act, command->status);
4214                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4215                 ret = -EINVAL;
4216                 break;
4217         }
4218         if (ret)
4219                 goto out;
4220         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4221         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4222                         "Op regs DCBAA ptr = %#016llx", temp_64);
4223         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4224                 "Slot ID %d dcbaa entry @%p = %#016llx",
4225                 udev->slot_id,
4226                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4227                 (unsigned long long)
4228                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4229         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4230                         "Output Context DMA address = %#08llx",
4231                         (unsigned long long)virt_dev->out_ctx->dma);
4232         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4233                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4234         /*
4235          * USB core uses address 1 for the roothubs, so we add one to the
4236          * address given back to us by the HC.
4237          */
4238         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4239                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4240         /* Zero the input context control for later use */
4241         ctrl_ctx->add_flags = 0;
4242         ctrl_ctx->drop_flags = 0;
4243         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4244         udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4245
4246         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4247                        "Internal device address = %d",
4248                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4249 out:
4250         mutex_unlock(&xhci->mutex);
4251         if (command) {
4252                 kfree(command->completion);
4253                 kfree(command);
4254         }
4255         return ret;
4256 }
4257
4258 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev,
4259                                unsigned int timeout_ms)
4260 {
4261         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS, timeout_ms);
4262 }
4263
4264 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4265 {
4266         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY,
4267                                  XHCI_CMD_DEFAULT_TIMEOUT);
4268 }
4269
4270 /*
4271  * Transfer the port index into real index in the HW port status
4272  * registers. Caculate offset between the port's PORTSC register
4273  * and port status base. Divide the number of per port register
4274  * to get the real index. The raw port number bases 1.
4275  */
4276 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4277 {
4278         struct xhci_hub *rhub;
4279
4280         rhub = xhci_get_rhub(hcd);
4281         return rhub->ports[port1 - 1]->hw_portnum + 1;
4282 }
4283
4284 /*
4285  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4286  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4287  */
4288 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4289                         struct usb_device *udev, u16 max_exit_latency)
4290 {
4291         struct xhci_virt_device *virt_dev;
4292         struct xhci_command *command;
4293         struct xhci_input_control_ctx *ctrl_ctx;
4294         struct xhci_slot_ctx *slot_ctx;
4295         unsigned long flags;
4296         int ret;
4297
4298         command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL);
4299         if (!command)
4300                 return -ENOMEM;
4301
4302         spin_lock_irqsave(&xhci->lock, flags);
4303
4304         virt_dev = xhci->devs[udev->slot_id];
4305
4306         /*
4307          * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4308          * xHC was re-initialized. Exit latency will be set later after
4309          * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4310          */
4311
4312         if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4313                 spin_unlock_irqrestore(&xhci->lock, flags);
4314                 xhci_free_command(xhci, command);
4315                 return 0;
4316         }
4317
4318         /* Attempt to issue an Evaluate Context command to change the MEL. */
4319         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4320         if (!ctrl_ctx) {
4321                 spin_unlock_irqrestore(&xhci->lock, flags);
4322                 xhci_free_command(xhci, command);
4323                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4324                                 __func__);
4325                 return -ENOMEM;
4326         }
4327
4328         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4329         spin_unlock_irqrestore(&xhci->lock, flags);
4330
4331         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4332         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4333         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4334         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4335         slot_ctx->dev_state = 0;
4336
4337         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4338                         "Set up evaluate context for LPM MEL change.");
4339
4340         /* Issue and wait for the evaluate context command. */
4341         ret = xhci_configure_endpoint(xhci, udev, command,
4342                         true, true);
4343
4344         if (!ret) {
4345                 spin_lock_irqsave(&xhci->lock, flags);
4346                 virt_dev->current_mel = max_exit_latency;
4347                 spin_unlock_irqrestore(&xhci->lock, flags);
4348         }
4349
4350         xhci_free_command(xhci, command);
4351
4352         return ret;
4353 }
4354
4355 #ifdef CONFIG_PM
4356
4357 /* BESL to HIRD Encoding array for USB2 LPM */
4358 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4359         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4360
4361 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4362 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4363                                         struct usb_device *udev)
4364 {
4365         int u2del, besl, besl_host;
4366         int besl_device = 0;
4367         u32 field;
4368
4369         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4370         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4371
4372         if (field & USB_BESL_SUPPORT) {
4373                 for (besl_host = 0; besl_host < 16; besl_host++) {
4374                         if (xhci_besl_encoding[besl_host] >= u2del)
4375                                 break;
4376                 }
4377                 /* Use baseline BESL value as default */
4378                 if (field & USB_BESL_BASELINE_VALID)
4379                         besl_device = USB_GET_BESL_BASELINE(field);
4380                 else if (field & USB_BESL_DEEP_VALID)
4381                         besl_device = USB_GET_BESL_DEEP(field);
4382         } else {
4383                 if (u2del <= 50)
4384                         besl_host = 0;
4385                 else
4386                         besl_host = (u2del - 51) / 75 + 1;
4387         }
4388
4389         besl = besl_host + besl_device;
4390         if (besl > 15)
4391                 besl = 15;
4392
4393         return besl;
4394 }
4395
4396 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4397 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4398 {
4399         u32 field;
4400         int l1;
4401         int besld = 0;
4402         int hirdm = 0;
4403
4404         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4405
4406         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4407         l1 = udev->l1_params.timeout / 256;
4408
4409         /* device has preferred BESLD */
4410         if (field & USB_BESL_DEEP_VALID) {
4411                 besld = USB_GET_BESL_DEEP(field);
4412                 hirdm = 1;
4413         }
4414
4415         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4416 }
4417
4418 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4419                         struct usb_device *udev, int enable)
4420 {
4421         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4422         struct xhci_port **ports;
4423         __le32 __iomem  *pm_addr, *hlpm_addr;
4424         u32             pm_val, hlpm_val, field;
4425         unsigned int    port_num;
4426         unsigned long   flags;
4427         int             hird, exit_latency;
4428         int             ret;
4429
4430         if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4431                 return -EPERM;
4432
4433         if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4434                         !udev->lpm_capable)
4435                 return -EPERM;
4436
4437         if (!udev->parent || udev->parent->parent ||
4438                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4439                 return -EPERM;
4440
4441         if (udev->usb2_hw_lpm_capable != 1)
4442                 return -EPERM;
4443
4444         spin_lock_irqsave(&xhci->lock, flags);
4445
4446         ports = xhci->usb2_rhub.ports;
4447         port_num = udev->portnum - 1;
4448         pm_addr = ports[port_num]->addr + PORTPMSC;
4449         pm_val = readl(pm_addr);
4450         hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4451
4452         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4453                         enable ? "enable" : "disable", port_num + 1);
4454
4455         if (enable) {
4456                 /* Host supports BESL timeout instead of HIRD */
4457                 if (udev->usb2_hw_lpm_besl_capable) {
4458                         /* if device doesn't have a preferred BESL value use a
4459                          * default one which works with mixed HIRD and BESL
4460                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4461                          */
4462                         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4463                         if ((field & USB_BESL_SUPPORT) &&
4464                             (field & USB_BESL_BASELINE_VALID))
4465                                 hird = USB_GET_BESL_BASELINE(field);
4466                         else
4467                                 hird = udev->l1_params.besl;
4468
4469                         exit_latency = xhci_besl_encoding[hird];
4470                         spin_unlock_irqrestore(&xhci->lock, flags);
4471
4472                         ret = xhci_change_max_exit_latency(xhci, udev,
4473                                                            exit_latency);
4474                         if (ret < 0)
4475                                 return ret;
4476                         spin_lock_irqsave(&xhci->lock, flags);
4477
4478                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4479                         writel(hlpm_val, hlpm_addr);
4480                         /* flush write */
4481                         readl(hlpm_addr);
4482                 } else {
4483                         hird = xhci_calculate_hird_besl(xhci, udev);
4484                 }
4485
4486                 pm_val &= ~PORT_HIRD_MASK;
4487                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4488                 writel(pm_val, pm_addr);
4489                 pm_val = readl(pm_addr);
4490                 pm_val |= PORT_HLE;
4491                 writel(pm_val, pm_addr);
4492                 /* flush write */
4493                 readl(pm_addr);
4494         } else {
4495                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4496                 writel(pm_val, pm_addr);
4497                 /* flush write */
4498                 readl(pm_addr);
4499                 if (udev->usb2_hw_lpm_besl_capable) {
4500                         spin_unlock_irqrestore(&xhci->lock, flags);
4501                         xhci_change_max_exit_latency(xhci, udev, 0);
4502                         readl_poll_timeout(ports[port_num]->addr, pm_val,
4503                                            (pm_val & PORT_PLS_MASK) == XDEV_U0,
4504                                            100, 10000);
4505                         return 0;
4506                 }
4507         }
4508
4509         spin_unlock_irqrestore(&xhci->lock, flags);
4510         return 0;
4511 }
4512
4513 /* check if a usb2 port supports a given extened capability protocol
4514  * only USB2 ports extended protocol capability values are cached.
4515  * Return 1 if capability is supported
4516  */
4517 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4518                                            unsigned capability)
4519 {
4520         u32 port_offset, port_count;
4521         int i;
4522
4523         for (i = 0; i < xhci->num_ext_caps; i++) {
4524                 if (xhci->ext_caps[i] & capability) {
4525                         /* port offsets starts at 1 */
4526                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4527                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4528                         if (port >= port_offset &&
4529                             port < port_offset + port_count)
4530                                 return 1;
4531                 }
4532         }
4533         return 0;
4534 }
4535
4536 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4537 {
4538         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4539         int             portnum = udev->portnum - 1;
4540
4541         if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4542                 return 0;
4543
4544         /* we only support lpm for non-hub device connected to root hub yet */
4545         if (!udev->parent || udev->parent->parent ||
4546                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4547                 return 0;
4548
4549         if (xhci->hw_lpm_support == 1 &&
4550                         xhci_check_usb2_port_capability(
4551                                 xhci, portnum, XHCI_HLC)) {
4552                 udev->usb2_hw_lpm_capable = 1;
4553                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4554                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4555                 if (xhci_check_usb2_port_capability(xhci, portnum,
4556                                         XHCI_BLC))
4557                         udev->usb2_hw_lpm_besl_capable = 1;
4558         }
4559
4560         return 0;
4561 }
4562
4563 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4564
4565 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4566 static unsigned long long xhci_service_interval_to_ns(
4567                 struct usb_endpoint_descriptor *desc)
4568 {
4569         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4570 }
4571
4572 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4573                 enum usb3_link_state state)
4574 {
4575         unsigned long long sel;
4576         unsigned long long pel;
4577         unsigned int max_sel_pel;
4578         char *state_name;
4579
4580         switch (state) {
4581         case USB3_LPM_U1:
4582                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4583                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4584                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4585                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4586                 state_name = "U1";
4587                 break;
4588         case USB3_LPM_U2:
4589                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4590                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4591                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4592                 state_name = "U2";
4593                 break;
4594         default:
4595                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4596                                 __func__);
4597                 return USB3_LPM_DISABLED;
4598         }
4599
4600         if (sel <= max_sel_pel && pel <= max_sel_pel)
4601                 return USB3_LPM_DEVICE_INITIATED;
4602
4603         if (sel > max_sel_pel)
4604                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4605                                 "due to long SEL %llu ms\n",
4606                                 state_name, sel);
4607         else
4608                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4609                                 "due to long PEL %llu ms\n",
4610                                 state_name, pel);
4611         return USB3_LPM_DISABLED;
4612 }
4613
4614 /* The U1 timeout should be the maximum of the following values:
4615  *  - For control endpoints, U1 system exit latency (SEL) * 3
4616  *  - For bulk endpoints, U1 SEL * 5
4617  *  - For interrupt endpoints:
4618  *    - Notification EPs, U1 SEL * 3
4619  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4620  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4621  */
4622 static unsigned long long xhci_calculate_intel_u1_timeout(
4623                 struct usb_device *udev,
4624                 struct usb_endpoint_descriptor *desc)
4625 {
4626         unsigned long long timeout_ns;
4627         int ep_type;
4628         int intr_type;
4629
4630         ep_type = usb_endpoint_type(desc);
4631         switch (ep_type) {
4632         case USB_ENDPOINT_XFER_CONTROL:
4633                 timeout_ns = udev->u1_params.sel * 3;
4634                 break;
4635         case USB_ENDPOINT_XFER_BULK:
4636                 timeout_ns = udev->u1_params.sel * 5;
4637                 break;
4638         case USB_ENDPOINT_XFER_INT:
4639                 intr_type = usb_endpoint_interrupt_type(desc);
4640                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4641                         timeout_ns = udev->u1_params.sel * 3;
4642                         break;
4643                 }
4644                 /* Otherwise the calculation is the same as isoc eps */
4645                 fallthrough;
4646         case USB_ENDPOINT_XFER_ISOC:
4647                 timeout_ns = xhci_service_interval_to_ns(desc);
4648                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4649                 if (timeout_ns < udev->u1_params.sel * 2)
4650                         timeout_ns = udev->u1_params.sel * 2;
4651                 break;
4652         default:
4653                 return 0;
4654         }
4655
4656         return timeout_ns;
4657 }
4658
4659 /* Returns the hub-encoded U1 timeout value. */
4660 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4661                 struct usb_device *udev,
4662                 struct usb_endpoint_descriptor *desc)
4663 {
4664         unsigned long long timeout_ns;
4665
4666         /* Prevent U1 if service interval is shorter than U1 exit latency */
4667         if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4668                 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4669                         dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4670                         return USB3_LPM_DISABLED;
4671                 }
4672         }
4673
4674         if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4675                 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4676         else
4677                 timeout_ns = udev->u1_params.sel;
4678
4679         /* The U1 timeout is encoded in 1us intervals.
4680          * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4681          */
4682         if (timeout_ns == USB3_LPM_DISABLED)
4683                 timeout_ns = 1;
4684         else
4685                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4686
4687         /* If the necessary timeout value is bigger than what we can set in the
4688          * USB 3.0 hub, we have to disable hub-initiated U1.
4689          */
4690         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4691                 return timeout_ns;
4692         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4693                         "due to long timeout %llu ms\n", timeout_ns);
4694         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4695 }
4696
4697 /* The U2 timeout should be the maximum of:
4698  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4699  *  - largest bInterval of any active periodic endpoint (to avoid going
4700  *    into lower power link states between intervals).
4701  *  - the U2 Exit Latency of the device
4702  */
4703 static unsigned long long xhci_calculate_intel_u2_timeout(
4704                 struct usb_device *udev,
4705                 struct usb_endpoint_descriptor *desc)
4706 {
4707         unsigned long long timeout_ns;
4708         unsigned long long u2_del_ns;
4709
4710         timeout_ns = 10 * 1000 * 1000;
4711
4712         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4713                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4714                 timeout_ns = xhci_service_interval_to_ns(desc);
4715
4716         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4717         if (u2_del_ns > timeout_ns)
4718                 timeout_ns = u2_del_ns;
4719
4720         return timeout_ns;
4721 }
4722
4723 /* Returns the hub-encoded U2 timeout value. */
4724 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4725                 struct usb_device *udev,
4726                 struct usb_endpoint_descriptor *desc)
4727 {
4728         unsigned long long timeout_ns;
4729
4730         /* Prevent U2 if service interval is shorter than U2 exit latency */
4731         if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4732                 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4733                         dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4734                         return USB3_LPM_DISABLED;
4735                 }
4736         }
4737
4738         if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4739                 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4740         else
4741                 timeout_ns = udev->u2_params.sel;
4742
4743         /* The U2 timeout is encoded in 256us intervals */
4744         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4745         /* If the necessary timeout value is bigger than what we can set in the
4746          * USB 3.0 hub, we have to disable hub-initiated U2.
4747          */
4748         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4749                 return timeout_ns;
4750         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4751                         "due to long timeout %llu ms\n", timeout_ns);
4752         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4753 }
4754
4755 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4756                 struct usb_device *udev,
4757                 struct usb_endpoint_descriptor *desc,
4758                 enum usb3_link_state state,
4759                 u16 *timeout)
4760 {
4761         if (state == USB3_LPM_U1)
4762                 return xhci_calculate_u1_timeout(xhci, udev, desc);
4763         else if (state == USB3_LPM_U2)
4764                 return xhci_calculate_u2_timeout(xhci, udev, desc);
4765
4766         return USB3_LPM_DISABLED;
4767 }
4768
4769 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4770                 struct usb_device *udev,
4771                 struct usb_endpoint_descriptor *desc,
4772                 enum usb3_link_state state,
4773                 u16 *timeout)
4774 {
4775         u16 alt_timeout;
4776
4777         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4778                 desc, state, timeout);
4779
4780         /* If we found we can't enable hub-initiated LPM, and
4781          * the U1 or U2 exit latency was too high to allow
4782          * device-initiated LPM as well, then we will disable LPM
4783          * for this device, so stop searching any further.
4784          */
4785         if (alt_timeout == USB3_LPM_DISABLED) {
4786                 *timeout = alt_timeout;
4787                 return -E2BIG;
4788         }
4789         if (alt_timeout > *timeout)
4790                 *timeout = alt_timeout;
4791         return 0;
4792 }
4793
4794 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4795                 struct usb_device *udev,
4796                 struct usb_host_interface *alt,
4797                 enum usb3_link_state state,
4798                 u16 *timeout)
4799 {
4800         int j;
4801
4802         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4803                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4804                                         &alt->endpoint[j].desc, state, timeout))
4805                         return -E2BIG;
4806         }
4807         return 0;
4808 }
4809
4810 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4811                 struct usb_device *udev,
4812                 enum usb3_link_state state)
4813 {
4814         struct usb_device *parent = udev->parent;
4815         int tier = 1; /* roothub is tier1 */
4816
4817         while (parent) {
4818                 parent = parent->parent;
4819                 tier++;
4820         }
4821
4822         if (xhci->quirks & XHCI_INTEL_HOST && tier > 3)
4823                 goto fail;
4824         if (xhci->quirks & XHCI_ZHAOXIN_HOST && tier > 2)
4825                 goto fail;
4826
4827         return 0;
4828 fail:
4829         dev_dbg(&udev->dev, "Tier policy prevents U1/U2 LPM states for devices at tier %d\n",
4830                         tier);
4831         return -E2BIG;
4832 }
4833
4834 /* Returns the U1 or U2 timeout that should be enabled.
4835  * If the tier check or timeout setting functions return with a non-zero exit
4836  * code, that means the timeout value has been finalized and we shouldn't look
4837  * at any more endpoints.
4838  */
4839 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4840                         struct usb_device *udev, enum usb3_link_state state)
4841 {
4842         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4843         struct usb_host_config *config;
4844         char *state_name;
4845         int i;
4846         u16 timeout = USB3_LPM_DISABLED;
4847
4848         if (state == USB3_LPM_U1)
4849                 state_name = "U1";
4850         else if (state == USB3_LPM_U2)
4851                 state_name = "U2";
4852         else {
4853                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4854                                 state);
4855                 return timeout;
4856         }
4857
4858         /* Gather some information about the currently installed configuration
4859          * and alternate interface settings.
4860          */
4861         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4862                         state, &timeout))
4863                 return timeout;
4864
4865         config = udev->actconfig;
4866         if (!config)
4867                 return timeout;
4868
4869         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4870                 struct usb_driver *driver;
4871                 struct usb_interface *intf = config->interface[i];
4872
4873                 if (!intf)
4874                         continue;
4875
4876                 /* Check if any currently bound drivers want hub-initiated LPM
4877                  * disabled.
4878                  */
4879                 if (intf->dev.driver) {
4880                         driver = to_usb_driver(intf->dev.driver);
4881                         if (driver && driver->disable_hub_initiated_lpm) {
4882                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4883                                         state_name, driver->name);
4884                                 timeout = xhci_get_timeout_no_hub_lpm(udev,
4885                                                                       state);
4886                                 if (timeout == USB3_LPM_DISABLED)
4887                                         return timeout;
4888                         }
4889                 }
4890
4891                 /* Not sure how this could happen... */
4892                 if (!intf->cur_altsetting)
4893                         continue;
4894
4895                 if (xhci_update_timeout_for_interface(xhci, udev,
4896                                         intf->cur_altsetting,
4897                                         state, &timeout))
4898                         return timeout;
4899         }
4900         return timeout;
4901 }
4902
4903 static int calculate_max_exit_latency(struct usb_device *udev,
4904                 enum usb3_link_state state_changed,
4905                 u16 hub_encoded_timeout)
4906 {
4907         unsigned long long u1_mel_us = 0;
4908         unsigned long long u2_mel_us = 0;
4909         unsigned long long mel_us = 0;
4910         bool disabling_u1;
4911         bool disabling_u2;
4912         bool enabling_u1;
4913         bool enabling_u2;
4914
4915         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4916                         hub_encoded_timeout == USB3_LPM_DISABLED);
4917         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4918                         hub_encoded_timeout == USB3_LPM_DISABLED);
4919
4920         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4921                         hub_encoded_timeout != USB3_LPM_DISABLED);
4922         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4923                         hub_encoded_timeout != USB3_LPM_DISABLED);
4924
4925         /* If U1 was already enabled and we're not disabling it,
4926          * or we're going to enable U1, account for the U1 max exit latency.
4927          */
4928         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4929                         enabling_u1)
4930                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4931         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4932                         enabling_u2)
4933                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4934
4935         mel_us = max(u1_mel_us, u2_mel_us);
4936
4937         /* xHCI host controller max exit latency field is only 16 bits wide. */
4938         if (mel_us > MAX_EXIT) {
4939                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4940                                 "is too big.\n", mel_us);
4941                 return -E2BIG;
4942         }
4943         return mel_us;
4944 }
4945
4946 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4947 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4948                         struct usb_device *udev, enum usb3_link_state state)
4949 {
4950         struct xhci_hcd *xhci;
4951         struct xhci_port *port;
4952         u16 hub_encoded_timeout;
4953         int mel;
4954         int ret;
4955
4956         xhci = hcd_to_xhci(hcd);
4957         /* The LPM timeout values are pretty host-controller specific, so don't
4958          * enable hub-initiated timeouts unless the vendor has provided
4959          * information about their timeout algorithm.
4960          */
4961         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4962                         !xhci->devs[udev->slot_id])
4963                 return USB3_LPM_DISABLED;
4964
4965         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4966                 return USB3_LPM_DISABLED;
4967
4968         /* If connected to root port then check port can handle lpm */
4969         if (udev->parent && !udev->parent->parent) {
4970                 port = xhci->usb3_rhub.ports[udev->portnum - 1];
4971                 if (port->lpm_incapable)
4972                         return USB3_LPM_DISABLED;
4973         }
4974
4975         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4976         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4977         if (mel < 0) {
4978                 /* Max Exit Latency is too big, disable LPM. */
4979                 hub_encoded_timeout = USB3_LPM_DISABLED;
4980                 mel = 0;
4981         }
4982
4983         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4984         if (ret)
4985                 return ret;
4986         return hub_encoded_timeout;
4987 }
4988
4989 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4990                         struct usb_device *udev, enum usb3_link_state state)
4991 {
4992         struct xhci_hcd *xhci;
4993         u16 mel;
4994
4995         xhci = hcd_to_xhci(hcd);
4996         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4997                         !xhci->devs[udev->slot_id])
4998                 return 0;
4999
5000         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5001         return xhci_change_max_exit_latency(xhci, udev, mel);
5002 }
5003 #else /* CONFIG_PM */
5004
5005 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5006                                 struct usb_device *udev, int enable)
5007 {
5008         return 0;
5009 }
5010
5011 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5012 {
5013         return 0;
5014 }
5015
5016 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5017                         struct usb_device *udev, enum usb3_link_state state)
5018 {
5019         return USB3_LPM_DISABLED;
5020 }
5021
5022 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5023                         struct usb_device *udev, enum usb3_link_state state)
5024 {
5025         return 0;
5026 }
5027 #endif  /* CONFIG_PM */
5028
5029 /*-------------------------------------------------------------------------*/
5030
5031 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5032  * internal data structures for the device.
5033  */
5034 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5035                         struct usb_tt *tt, gfp_t mem_flags)
5036 {
5037         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5038         struct xhci_virt_device *vdev;
5039         struct xhci_command *config_cmd;
5040         struct xhci_input_control_ctx *ctrl_ctx;
5041         struct xhci_slot_ctx *slot_ctx;
5042         unsigned long flags;
5043         unsigned think_time;
5044         int ret;
5045
5046         /* Ignore root hubs */
5047         if (!hdev->parent)
5048                 return 0;
5049
5050         vdev = xhci->devs[hdev->slot_id];
5051         if (!vdev) {
5052                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5053                 return -EINVAL;
5054         }
5055
5056         config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5057         if (!config_cmd)
5058                 return -ENOMEM;
5059
5060         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5061         if (!ctrl_ctx) {
5062                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5063                                 __func__);
5064                 xhci_free_command(xhci, config_cmd);
5065                 return -ENOMEM;
5066         }
5067
5068         spin_lock_irqsave(&xhci->lock, flags);
5069         if (hdev->speed == USB_SPEED_HIGH &&
5070                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5071                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5072                 xhci_free_command(xhci, config_cmd);
5073                 spin_unlock_irqrestore(&xhci->lock, flags);
5074                 return -ENOMEM;
5075         }
5076
5077         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5078         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5079         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5080         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5081         /*
5082          * refer to section 6.2.2: MTT should be 0 for full speed hub,
5083          * but it may be already set to 1 when setup an xHCI virtual
5084          * device, so clear it anyway.
5085          */
5086         if (tt->multi)
5087                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5088         else if (hdev->speed == USB_SPEED_FULL)
5089                 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5090
5091         if (xhci->hci_version > 0x95) {
5092                 xhci_dbg(xhci, "xHCI version %x needs hub "
5093                                 "TT think time and number of ports\n",
5094                                 (unsigned int) xhci->hci_version);
5095                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5096                 /* Set TT think time - convert from ns to FS bit times.
5097                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
5098                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
5099                  *
5100                  * xHCI 1.0: this field shall be 0 if the device is not a
5101                  * High-spped hub.
5102                  */
5103                 think_time = tt->think_time;
5104                 if (think_time != 0)
5105                         think_time = (think_time / 666) - 1;
5106                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5107                         slot_ctx->tt_info |=
5108                                 cpu_to_le32(TT_THINK_TIME(think_time));
5109         } else {
5110                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5111                                 "TT think time or number of ports\n",
5112                                 (unsigned int) xhci->hci_version);
5113         }
5114         slot_ctx->dev_state = 0;
5115         spin_unlock_irqrestore(&xhci->lock, flags);
5116
5117         xhci_dbg(xhci, "Set up %s for hub device.\n",
5118                         (xhci->hci_version > 0x95) ?
5119                         "configure endpoint" : "evaluate context");
5120
5121         /* Issue and wait for the configure endpoint or
5122          * evaluate context command.
5123          */
5124         if (xhci->hci_version > 0x95)
5125                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5126                                 false, false);
5127         else
5128                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5129                                 true, false);
5130
5131         xhci_free_command(xhci, config_cmd);
5132         return ret;
5133 }
5134 EXPORT_SYMBOL_GPL(xhci_update_hub_device);
5135
5136 static int xhci_get_frame(struct usb_hcd *hcd)
5137 {
5138         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5139         /* EHCI mods by the periodic size.  Why? */
5140         return readl(&xhci->run_regs->microframe_index) >> 3;
5141 }
5142
5143 static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5144 {
5145         xhci->usb2_rhub.hcd = hcd;
5146         hcd->speed = HCD_USB2;
5147         hcd->self.root_hub->speed = USB_SPEED_HIGH;
5148         /*
5149          * USB 2.0 roothub under xHCI has an integrated TT,
5150          * (rate matching hub) as opposed to having an OHCI/UHCI
5151          * companion controller.
5152          */
5153         hcd->has_tt = 1;
5154 }
5155
5156 static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5157 {
5158         unsigned int minor_rev;
5159
5160         /*
5161          * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5162          * should return 0x31 for sbrn, or that the minor revision
5163          * is a two digit BCD containig minor and sub-minor numbers.
5164          * This was later clarified in xHCI 1.2.
5165          *
5166          * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5167          * minor revision set to 0x1 instead of 0x10.
5168          */
5169         if (xhci->usb3_rhub.min_rev == 0x1)
5170                 minor_rev = 1;
5171         else
5172                 minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5173
5174         switch (minor_rev) {
5175         case 2:
5176                 hcd->speed = HCD_USB32;
5177                 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5178                 hcd->self.root_hub->rx_lanes = 2;
5179                 hcd->self.root_hub->tx_lanes = 2;
5180                 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5181                 break;
5182         case 1:
5183                 hcd->speed = HCD_USB31;
5184                 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5185                 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5186                 break;
5187         }
5188         xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5189                   minor_rev, minor_rev ? "Enhanced " : "");
5190
5191         xhci->usb3_rhub.hcd = hcd;
5192 }
5193
5194 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5195 {
5196         struct xhci_hcd         *xhci;
5197         /*
5198          * TODO: Check with DWC3 clients for sysdev according to
5199          * quirks
5200          */
5201         struct device           *dev = hcd->self.sysdev;
5202         int                     retval;
5203
5204         /* Accept arbitrarily long scatter-gather lists */
5205         hcd->self.sg_tablesize = ~0;
5206
5207         /* support to build packet from discontinuous buffers */
5208         hcd->self.no_sg_constraint = 1;
5209
5210         /* XHCI controllers don't stop the ep queue on short packets :| */
5211         hcd->self.no_stop_on_short = 1;
5212
5213         xhci = hcd_to_xhci(hcd);
5214
5215         if (!usb_hcd_is_primary_hcd(hcd)) {
5216                 xhci_hcd_init_usb3_data(xhci, hcd);
5217                 return 0;
5218         }
5219
5220         mutex_init(&xhci->mutex);
5221         xhci->main_hcd = hcd;
5222         xhci->cap_regs = hcd->regs;
5223         xhci->op_regs = hcd->regs +
5224                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5225         xhci->run_regs = hcd->regs +
5226                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5227         /* Cache read-only capability registers */
5228         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5229         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5230         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5231         xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase));
5232         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5233         if (xhci->hci_version > 0x100)
5234                 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5235
5236         /* xhci-plat or xhci-pci might have set max_interrupters already */
5237         if ((!xhci->max_interrupters) ||
5238             xhci->max_interrupters > HCS_MAX_INTRS(xhci->hcs_params1))
5239                 xhci->max_interrupters = HCS_MAX_INTRS(xhci->hcs_params1);
5240
5241         xhci->quirks |= quirks;
5242
5243         if (get_quirks)
5244                 get_quirks(dev, xhci);
5245
5246         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
5247          * success event after a short transfer. This quirk will ignore such
5248          * spurious event.
5249          */
5250         if (xhci->hci_version > 0x96)
5251                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5252
5253         /* Make sure the HC is halted. */
5254         retval = xhci_halt(xhci);
5255         if (retval)
5256                 return retval;
5257
5258         xhci_zero_64b_regs(xhci);
5259
5260         xhci_dbg(xhci, "Resetting HCD\n");
5261         /* Reset the internal HC memory state and registers. */
5262         retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
5263         if (retval)
5264                 return retval;
5265         xhci_dbg(xhci, "Reset complete\n");
5266
5267         /*
5268          * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5269          * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5270          * address memory pointers actually. So, this driver clears the AC64
5271          * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5272          * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5273          */
5274         if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5275                 xhci->hcc_params &= ~BIT(0);
5276
5277         /* Set dma_mask and coherent_dma_mask to 64-bits,
5278          * if xHC supports 64-bit addressing */
5279         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5280                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5281                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5282                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5283         } else {
5284                 /*
5285                  * This is to avoid error in cases where a 32-bit USB
5286                  * controller is used on a 64-bit capable system.
5287                  */
5288                 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5289                 if (retval)
5290                         return retval;
5291                 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5292                 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5293         }
5294
5295         xhci_dbg(xhci, "Calling HCD init\n");
5296         /* Initialize HCD and host controller data structures. */
5297         retval = xhci_init(hcd);
5298         if (retval)
5299                 return retval;
5300         xhci_dbg(xhci, "Called HCD init\n");
5301
5302         if (xhci_hcd_is_usb3(hcd))
5303                 xhci_hcd_init_usb3_data(xhci, hcd);
5304         else
5305                 xhci_hcd_init_usb2_data(xhci, hcd);
5306
5307         xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5308                   xhci->hcc_params, xhci->hci_version, xhci->quirks);
5309
5310         return 0;
5311 }
5312 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5313
5314 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5315                 struct usb_host_endpoint *ep)
5316 {
5317         struct xhci_hcd *xhci;
5318         struct usb_device *udev;
5319         unsigned int slot_id;
5320         unsigned int ep_index;
5321         unsigned long flags;
5322
5323         xhci = hcd_to_xhci(hcd);
5324
5325         spin_lock_irqsave(&xhci->lock, flags);
5326         udev = (struct usb_device *)ep->hcpriv;
5327         slot_id = udev->slot_id;
5328         ep_index = xhci_get_endpoint_index(&ep->desc);
5329
5330         xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5331         xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5332         spin_unlock_irqrestore(&xhci->lock, flags);
5333 }
5334
5335 static const struct hc_driver xhci_hc_driver = {
5336         .description =          "xhci-hcd",
5337         .product_desc =         "xHCI Host Controller",
5338         .hcd_priv_size =        sizeof(struct xhci_hcd),
5339
5340         /*
5341          * generic hardware linkage
5342          */
5343         .irq =                  xhci_irq,
5344         .flags =                HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5345                                 HCD_BH,
5346
5347         /*
5348          * basic lifecycle operations
5349          */
5350         .reset =                NULL, /* set in xhci_init_driver() */
5351         .start =                xhci_run,
5352         .stop =                 xhci_stop,
5353         .shutdown =             xhci_shutdown,
5354
5355         /*
5356          * managing i/o requests and associated device resources
5357          */
5358         .map_urb_for_dma =      xhci_map_urb_for_dma,
5359         .unmap_urb_for_dma =    xhci_unmap_urb_for_dma,
5360         .urb_enqueue =          xhci_urb_enqueue,
5361         .urb_dequeue =          xhci_urb_dequeue,
5362         .alloc_dev =            xhci_alloc_dev,
5363         .free_dev =             xhci_free_dev,
5364         .alloc_streams =        xhci_alloc_streams,
5365         .free_streams =         xhci_free_streams,
5366         .add_endpoint =         xhci_add_endpoint,
5367         .drop_endpoint =        xhci_drop_endpoint,
5368         .endpoint_disable =     xhci_endpoint_disable,
5369         .endpoint_reset =       xhci_endpoint_reset,
5370         .check_bandwidth =      xhci_check_bandwidth,
5371         .reset_bandwidth =      xhci_reset_bandwidth,
5372         .address_device =       xhci_address_device,
5373         .enable_device =        xhci_enable_device,
5374         .update_hub_device =    xhci_update_hub_device,
5375         .reset_device =         xhci_discover_or_reset_device,
5376
5377         /*
5378          * scheduling support
5379          */
5380         .get_frame_number =     xhci_get_frame,
5381
5382         /*
5383          * root hub support
5384          */
5385         .hub_control =          xhci_hub_control,
5386         .hub_status_data =      xhci_hub_status_data,
5387         .bus_suspend =          xhci_bus_suspend,
5388         .bus_resume =           xhci_bus_resume,
5389         .get_resuming_ports =   xhci_get_resuming_ports,
5390
5391         /*
5392          * call back when device connected and addressed
5393          */
5394         .update_device =        xhci_update_device,
5395         .set_usb2_hw_lpm =      xhci_set_usb2_hardware_lpm,
5396         .enable_usb3_lpm_timeout =      xhci_enable_usb3_lpm_timeout,
5397         .disable_usb3_lpm_timeout =     xhci_disable_usb3_lpm_timeout,
5398         .find_raw_port_number = xhci_find_raw_port_number,
5399         .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5400 };
5401
5402 void xhci_init_driver(struct hc_driver *drv,
5403                       const struct xhci_driver_overrides *over)
5404 {
5405         BUG_ON(!over);
5406
5407         /* Copy the generic table to drv then apply the overrides */
5408         *drv = xhci_hc_driver;
5409
5410         if (over) {
5411                 drv->hcd_priv_size += over->extra_priv_size;
5412                 if (over->reset)
5413                         drv->reset = over->reset;
5414                 if (over->start)
5415                         drv->start = over->start;
5416                 if (over->add_endpoint)
5417                         drv->add_endpoint = over->add_endpoint;
5418                 if (over->drop_endpoint)
5419                         drv->drop_endpoint = over->drop_endpoint;
5420                 if (over->check_bandwidth)
5421                         drv->check_bandwidth = over->check_bandwidth;
5422                 if (over->reset_bandwidth)
5423                         drv->reset_bandwidth = over->reset_bandwidth;
5424                 if (over->update_hub_device)
5425                         drv->update_hub_device = over->update_hub_device;
5426                 if (over->hub_control)
5427                         drv->hub_control = over->hub_control;
5428         }
5429 }
5430 EXPORT_SYMBOL_GPL(xhci_init_driver);
5431
5432 MODULE_DESCRIPTION(DRIVER_DESC);
5433 MODULE_AUTHOR(DRIVER_AUTHOR);
5434 MODULE_LICENSE("GPL");
5435
5436 static int __init xhci_hcd_init(void)
5437 {
5438         /*
5439          * Check the compiler generated sizes of structures that must be laid
5440          * out in specific ways for hardware access.
5441          */
5442         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5443         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5444         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5445         /* xhci_device_control has eight fields, and also
5446          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5447          */
5448         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5449         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5450         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5451         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5452         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5453         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5454         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5455
5456         if (usb_disabled())
5457                 return -ENODEV;
5458
5459         xhci_debugfs_create_root();
5460         xhci_dbc_init();
5461
5462         return 0;
5463 }
5464
5465 /*
5466  * If an init function is provided, an exit function must also be provided
5467  * to allow module unload.
5468  */
5469 static void __exit xhci_hcd_fini(void)
5470 {
5471         xhci_debugfs_remove_root();
5472         xhci_dbc_exit();
5473 }
5474
5475 module_init(xhci_hcd_init);
5476 module_exit(xhci_hcd_fini);