GNU Linux-libre 5.19-rc6-gnu
[releases.git] / drivers / usb / host / xhci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10
11 #include <linux/pci.h>
12 #include <linux/iopoll.h>
13 #include <linux/irq.h>
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/slab.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-mapping.h>
20
21 #include "xhci.h"
22 #include "xhci-trace.h"
23 #include "xhci-debugfs.h"
24 #include "xhci-dbgcap.h"
25
26 #define DRIVER_AUTHOR "Sarah Sharp"
27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
28
29 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
30
31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
32 static int link_quirk;
33 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
35
36 static unsigned long long quirks;
37 module_param(quirks, ullong, S_IRUGO);
38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
39
40 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
41 {
42         struct xhci_segment *seg = ring->first_seg;
43
44         if (!td || !td->start_seg)
45                 return false;
46         do {
47                 if (seg == td->start_seg)
48                         return true;
49                 seg = seg->next;
50         } while (seg && seg != ring->first_seg);
51
52         return false;
53 }
54
55 /*
56  * xhci_handshake - spin reading hc until handshake completes or fails
57  * @ptr: address of hc register to be read
58  * @mask: bits to look at in result of read
59  * @done: value of those bits when handshake succeeds
60  * @usec: timeout in microseconds
61  *
62  * Returns negative errno, or zero on success
63  *
64  * Success happens when the "mask" bits have the specified value (hardware
65  * handshake done).  There are two failure modes:  "usec" have passed (major
66  * hardware flakeout), or the register reads as all-ones (hardware removed).
67  */
68 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us)
69 {
70         u32     result;
71         int     ret;
72
73         ret = readl_poll_timeout_atomic(ptr, result,
74                                         (result & mask) == done ||
75                                         result == U32_MAX,
76                                         1, timeout_us);
77         if (result == U32_MAX)          /* card removed */
78                 return -ENODEV;
79
80         return ret;
81 }
82
83 /*
84  * Disable interrupts and begin the xHCI halting process.
85  */
86 void xhci_quiesce(struct xhci_hcd *xhci)
87 {
88         u32 halted;
89         u32 cmd;
90         u32 mask;
91
92         mask = ~(XHCI_IRQS);
93         halted = readl(&xhci->op_regs->status) & STS_HALT;
94         if (!halted)
95                 mask &= ~CMD_RUN;
96
97         cmd = readl(&xhci->op_regs->command);
98         cmd &= mask;
99         writel(cmd, &xhci->op_regs->command);
100 }
101
102 /*
103  * Force HC into halt state.
104  *
105  * Disable any IRQs and clear the run/stop bit.
106  * HC will complete any current and actively pipelined transactions, and
107  * should halt within 16 ms of the run/stop bit being cleared.
108  * Read HC Halted bit in the status register to see when the HC is finished.
109  */
110 int xhci_halt(struct xhci_hcd *xhci)
111 {
112         int ret;
113
114         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
115         xhci_quiesce(xhci);
116
117         ret = xhci_handshake(&xhci->op_regs->status,
118                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
119         if (ret) {
120                 xhci_warn(xhci, "Host halt failed, %d\n", ret);
121                 return ret;
122         }
123
124         xhci->xhc_state |= XHCI_STATE_HALTED;
125         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
126
127         return ret;
128 }
129
130 /*
131  * Set the run bit and wait for the host to be running.
132  */
133 int xhci_start(struct xhci_hcd *xhci)
134 {
135         u32 temp;
136         int ret;
137
138         temp = readl(&xhci->op_regs->command);
139         temp |= (CMD_RUN);
140         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
141                         temp);
142         writel(temp, &xhci->op_regs->command);
143
144         /*
145          * Wait for the HCHalted Status bit to be 0 to indicate the host is
146          * running.
147          */
148         ret = xhci_handshake(&xhci->op_regs->status,
149                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
150         if (ret == -ETIMEDOUT)
151                 xhci_err(xhci, "Host took too long to start, "
152                                 "waited %u microseconds.\n",
153                                 XHCI_MAX_HALT_USEC);
154         if (!ret)
155                 /* clear state flags. Including dying, halted or removing */
156                 xhci->xhc_state = 0;
157
158         return ret;
159 }
160
161 /*
162  * Reset a halted HC.
163  *
164  * This resets pipelines, timers, counters, state machines, etc.
165  * Transactions will be terminated immediately, and operational registers
166  * will be set to their defaults.
167  */
168 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us)
169 {
170         u32 command;
171         u32 state;
172         int ret;
173
174         state = readl(&xhci->op_regs->status);
175
176         if (state == ~(u32)0) {
177                 xhci_warn(xhci, "Host not accessible, reset failed.\n");
178                 return -ENODEV;
179         }
180
181         if ((state & STS_HALT) == 0) {
182                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
183                 return 0;
184         }
185
186         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
187         command = readl(&xhci->op_regs->command);
188         command |= CMD_RESET;
189         writel(command, &xhci->op_regs->command);
190
191         /* Existing Intel xHCI controllers require a delay of 1 mS,
192          * after setting the CMD_RESET bit, and before accessing any
193          * HC registers. This allows the HC to complete the
194          * reset operation and be ready for HC register access.
195          * Without this delay, the subsequent HC register access,
196          * may result in a system hang very rarely.
197          */
198         if (xhci->quirks & XHCI_INTEL_HOST)
199                 udelay(1000);
200
201         ret = xhci_handshake(&xhci->op_regs->command, CMD_RESET, 0, timeout_us);
202         if (ret)
203                 return ret;
204
205         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
206                 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
207
208         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
209                          "Wait for controller to be ready for doorbell rings");
210         /*
211          * xHCI cannot write to any doorbells or operational registers other
212          * than status until the "Controller Not Ready" flag is cleared.
213          */
214         ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us);
215
216         xhci->usb2_rhub.bus_state.port_c_suspend = 0;
217         xhci->usb2_rhub.bus_state.suspended_ports = 0;
218         xhci->usb2_rhub.bus_state.resuming_ports = 0;
219         xhci->usb3_rhub.bus_state.port_c_suspend = 0;
220         xhci->usb3_rhub.bus_state.suspended_ports = 0;
221         xhci->usb3_rhub.bus_state.resuming_ports = 0;
222
223         return ret;
224 }
225
226 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
227 {
228         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
229         int err, i;
230         u64 val;
231         u32 intrs;
232
233         /*
234          * Some Renesas controllers get into a weird state if they are
235          * reset while programmed with 64bit addresses (they will preserve
236          * the top half of the address in internal, non visible
237          * registers). You end up with half the address coming from the
238          * kernel, and the other half coming from the firmware. Also,
239          * changing the programming leads to extra accesses even if the
240          * controller is supposed to be halted. The controller ends up with
241          * a fatal fault, and is then ripe for being properly reset.
242          *
243          * Special care is taken to only apply this if the device is behind
244          * an iommu. Doing anything when there is no iommu is definitely
245          * unsafe...
246          */
247         if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
248                 return;
249
250         xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
251
252         /* Clear HSEIE so that faults do not get signaled */
253         val = readl(&xhci->op_regs->command);
254         val &= ~CMD_HSEIE;
255         writel(val, &xhci->op_regs->command);
256
257         /* Clear HSE (aka FATAL) */
258         val = readl(&xhci->op_regs->status);
259         val |= STS_FATAL;
260         writel(val, &xhci->op_regs->status);
261
262         /* Now zero the registers, and brace for impact */
263         val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
264         if (upper_32_bits(val))
265                 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
266         val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
267         if (upper_32_bits(val))
268                 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
269
270         intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
271                       ARRAY_SIZE(xhci->run_regs->ir_set));
272
273         for (i = 0; i < intrs; i++) {
274                 struct xhci_intr_reg __iomem *ir;
275
276                 ir = &xhci->run_regs->ir_set[i];
277                 val = xhci_read_64(xhci, &ir->erst_base);
278                 if (upper_32_bits(val))
279                         xhci_write_64(xhci, 0, &ir->erst_base);
280                 val= xhci_read_64(xhci, &ir->erst_dequeue);
281                 if (upper_32_bits(val))
282                         xhci_write_64(xhci, 0, &ir->erst_dequeue);
283         }
284
285         /* Wait for the fault to appear. It will be cleared on reset */
286         err = xhci_handshake(&xhci->op_regs->status,
287                              STS_FATAL, STS_FATAL,
288                              XHCI_MAX_HALT_USEC);
289         if (!err)
290                 xhci_info(xhci, "Fault detected\n");
291 }
292
293 #ifdef CONFIG_USB_PCI
294 /*
295  * Set up MSI
296  */
297 static int xhci_setup_msi(struct xhci_hcd *xhci)
298 {
299         int ret;
300         /*
301          * TODO:Check with MSI Soc for sysdev
302          */
303         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
304
305         ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
306         if (ret < 0) {
307                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
308                                 "failed to allocate MSI entry");
309                 return ret;
310         }
311
312         ret = request_irq(pdev->irq, xhci_msi_irq,
313                                 0, "xhci_hcd", xhci_to_hcd(xhci));
314         if (ret) {
315                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
316                                 "disable MSI interrupt");
317                 pci_free_irq_vectors(pdev);
318         }
319
320         return ret;
321 }
322
323 /*
324  * Set up MSI-X
325  */
326 static int xhci_setup_msix(struct xhci_hcd *xhci)
327 {
328         int i, ret;
329         struct usb_hcd *hcd = xhci_to_hcd(xhci);
330         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
331
332         /*
333          * calculate number of msi-x vectors supported.
334          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
335          *   with max number of interrupters based on the xhci HCSPARAMS1.
336          * - num_online_cpus: maximum msi-x vectors per CPUs core.
337          *   Add additional 1 vector to ensure always available interrupt.
338          */
339         xhci->msix_count = min(num_online_cpus() + 1,
340                                 HCS_MAX_INTRS(xhci->hcs_params1));
341
342         ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
343                         PCI_IRQ_MSIX);
344         if (ret < 0) {
345                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
346                                 "Failed to enable MSI-X");
347                 return ret;
348         }
349
350         for (i = 0; i < xhci->msix_count; i++) {
351                 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
352                                 "xhci_hcd", xhci_to_hcd(xhci));
353                 if (ret)
354                         goto disable_msix;
355         }
356
357         hcd->msix_enabled = 1;
358         return ret;
359
360 disable_msix:
361         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
362         while (--i >= 0)
363                 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
364         pci_free_irq_vectors(pdev);
365         return ret;
366 }
367
368 /* Free any IRQs and disable MSI-X */
369 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
370 {
371         struct usb_hcd *hcd = xhci_to_hcd(xhci);
372         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
373
374         if (xhci->quirks & XHCI_PLAT)
375                 return;
376
377         /* return if using legacy interrupt */
378         if (hcd->irq > 0)
379                 return;
380
381         if (hcd->msix_enabled) {
382                 int i;
383
384                 for (i = 0; i < xhci->msix_count; i++)
385                         free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
386         } else {
387                 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
388         }
389
390         pci_free_irq_vectors(pdev);
391         hcd->msix_enabled = 0;
392 }
393
394 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
395 {
396         struct usb_hcd *hcd = xhci_to_hcd(xhci);
397
398         if (hcd->msix_enabled) {
399                 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
400                 int i;
401
402                 for (i = 0; i < xhci->msix_count; i++)
403                         synchronize_irq(pci_irq_vector(pdev, i));
404         }
405 }
406
407 static int xhci_try_enable_msi(struct usb_hcd *hcd)
408 {
409         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
410         struct pci_dev  *pdev;
411         int ret;
412
413         /* The xhci platform device has set up IRQs through usb_add_hcd. */
414         if (xhci->quirks & XHCI_PLAT)
415                 return 0;
416
417         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
418         /*
419          * Some Fresco Logic host controllers advertise MSI, but fail to
420          * generate interrupts.  Don't even try to enable MSI.
421          */
422         if (xhci->quirks & XHCI_BROKEN_MSI)
423                 goto legacy_irq;
424
425         /* unregister the legacy interrupt */
426         if (hcd->irq)
427                 free_irq(hcd->irq, hcd);
428         hcd->irq = 0;
429
430         ret = xhci_setup_msix(xhci);
431         if (ret)
432                 /* fall back to msi*/
433                 ret = xhci_setup_msi(xhci);
434
435         if (!ret) {
436                 hcd->msi_enabled = 1;
437                 return 0;
438         }
439
440         if (!pdev->irq) {
441                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
442                 return -EINVAL;
443         }
444
445  legacy_irq:
446         if (!strlen(hcd->irq_descr))
447                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
448                          hcd->driver->description, hcd->self.busnum);
449
450         /* fall back to legacy interrupt*/
451         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
452                         hcd->irq_descr, hcd);
453         if (ret) {
454                 xhci_err(xhci, "request interrupt %d failed\n",
455                                 pdev->irq);
456                 return ret;
457         }
458         hcd->irq = pdev->irq;
459         return 0;
460 }
461
462 #else
463
464 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
465 {
466         return 0;
467 }
468
469 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
470 {
471 }
472
473 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
474 {
475 }
476
477 #endif
478
479 static void compliance_mode_recovery(struct timer_list *t)
480 {
481         struct xhci_hcd *xhci;
482         struct usb_hcd *hcd;
483         struct xhci_hub *rhub;
484         u32 temp;
485         int i;
486
487         xhci = from_timer(xhci, t, comp_mode_recovery_timer);
488         rhub = &xhci->usb3_rhub;
489         hcd = rhub->hcd;
490
491         if (!hcd)
492                 return;
493
494         for (i = 0; i < rhub->num_ports; i++) {
495                 temp = readl(rhub->ports[i]->addr);
496                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
497                         /*
498                          * Compliance Mode Detected. Letting USB Core
499                          * handle the Warm Reset
500                          */
501                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
502                                         "Compliance mode detected->port %d",
503                                         i + 1);
504                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
505                                         "Attempting compliance mode recovery");
506
507                         if (hcd->state == HC_STATE_SUSPENDED)
508                                 usb_hcd_resume_root_hub(hcd);
509
510                         usb_hcd_poll_rh_status(hcd);
511                 }
512         }
513
514         if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
515                 mod_timer(&xhci->comp_mode_recovery_timer,
516                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
517 }
518
519 /*
520  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
521  * that causes ports behind that hardware to enter compliance mode sometimes.
522  * The quirk creates a timer that polls every 2 seconds the link state of
523  * each host controller's port and recovers it by issuing a Warm reset
524  * if Compliance mode is detected, otherwise the port will become "dead" (no
525  * device connections or disconnections will be detected anymore). Becasue no
526  * status event is generated when entering compliance mode (per xhci spec),
527  * this quirk is needed on systems that have the failing hardware installed.
528  */
529 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
530 {
531         xhci->port_status_u0 = 0;
532         timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
533                     0);
534         xhci->comp_mode_recovery_timer.expires = jiffies +
535                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
536
537         add_timer(&xhci->comp_mode_recovery_timer);
538         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
539                         "Compliance mode recovery timer initialized");
540 }
541
542 /*
543  * This function identifies the systems that have installed the SN65LVPE502CP
544  * USB3.0 re-driver and that need the Compliance Mode Quirk.
545  * Systems:
546  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
547  */
548 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
549 {
550         const char *dmi_product_name, *dmi_sys_vendor;
551
552         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
553         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
554         if (!dmi_product_name || !dmi_sys_vendor)
555                 return false;
556
557         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
558                 return false;
559
560         if (strstr(dmi_product_name, "Z420") ||
561                         strstr(dmi_product_name, "Z620") ||
562                         strstr(dmi_product_name, "Z820") ||
563                         strstr(dmi_product_name, "Z1 Workstation"))
564                 return true;
565
566         return false;
567 }
568
569 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
570 {
571         return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
572 }
573
574
575 /*
576  * Initialize memory for HCD and xHC (one-time init).
577  *
578  * Program the PAGESIZE register, initialize the device context array, create
579  * device contexts (?), set up a command ring segment (or two?), create event
580  * ring (one for now).
581  */
582 static int xhci_init(struct usb_hcd *hcd)
583 {
584         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
585         int retval;
586
587         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
588         spin_lock_init(&xhci->lock);
589         if (xhci->hci_version == 0x95 && link_quirk) {
590                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
591                                 "QUIRK: Not clearing Link TRB chain bits.");
592                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
593         } else {
594                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
595                                 "xHCI doesn't need link TRB QUIRK");
596         }
597         retval = xhci_mem_init(xhci, GFP_KERNEL);
598         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
599
600         /* Initializing Compliance Mode Recovery Data If Needed */
601         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
602                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
603                 compliance_mode_recovery_timer_init(xhci);
604         }
605
606         return retval;
607 }
608
609 /*-------------------------------------------------------------------------*/
610
611
612 static int xhci_run_finished(struct xhci_hcd *xhci)
613 {
614         unsigned long   flags;
615         u32             temp;
616
617         /*
618          * Enable interrupts before starting the host (xhci 4.2 and 5.5.2).
619          * Protect the short window before host is running with a lock
620          */
621         spin_lock_irqsave(&xhci->lock, flags);
622
623         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts");
624         temp = readl(&xhci->op_regs->command);
625         temp |= (CMD_EIE);
626         writel(temp, &xhci->op_regs->command);
627
628         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter");
629         temp = readl(&xhci->ir_set->irq_pending);
630         writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
631
632         if (xhci_start(xhci)) {
633                 xhci_halt(xhci);
634                 spin_unlock_irqrestore(&xhci->lock, flags);
635                 return -ENODEV;
636         }
637
638         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
639
640         if (xhci->quirks & XHCI_NEC_HOST)
641                 xhci_ring_cmd_db(xhci);
642
643         spin_unlock_irqrestore(&xhci->lock, flags);
644
645         return 0;
646 }
647
648 /*
649  * Start the HC after it was halted.
650  *
651  * This function is called by the USB core when the HC driver is added.
652  * Its opposite is xhci_stop().
653  *
654  * xhci_init() must be called once before this function can be called.
655  * Reset the HC, enable device slot contexts, program DCBAAP, and
656  * set command ring pointer and event ring pointer.
657  *
658  * Setup MSI-X vectors and enable interrupts.
659  */
660 int xhci_run(struct usb_hcd *hcd)
661 {
662         u32 temp;
663         u64 temp_64;
664         int ret;
665         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
666
667         /* Start the xHCI host controller running only after the USB 2.0 roothub
668          * is setup.
669          */
670
671         hcd->uses_new_polling = 1;
672         if (!usb_hcd_is_primary_hcd(hcd))
673                 return xhci_run_finished(xhci);
674
675         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
676
677         ret = xhci_try_enable_msi(hcd);
678         if (ret)
679                 return ret;
680
681         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
682         temp_64 &= ~ERST_PTR_MASK;
683         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
684                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
685
686         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
687                         "// Set the interrupt modulation register");
688         temp = readl(&xhci->ir_set->irq_control);
689         temp &= ~ER_IRQ_INTERVAL_MASK;
690         temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
691         writel(temp, &xhci->ir_set->irq_control);
692
693         if (xhci->quirks & XHCI_NEC_HOST) {
694                 struct xhci_command *command;
695
696                 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
697                 if (!command)
698                         return -ENOMEM;
699
700                 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
701                                 TRB_TYPE(TRB_NEC_GET_FW));
702                 if (ret)
703                         xhci_free_command(xhci, command);
704         }
705         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
706                         "Finished %s for main hcd", __func__);
707
708         xhci_create_dbc_dev(xhci);
709
710         xhci_debugfs_init(xhci);
711
712         if (xhci_has_one_roothub(xhci))
713                 return xhci_run_finished(xhci);
714
715         set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags);
716
717         return 0;
718 }
719 EXPORT_SYMBOL_GPL(xhci_run);
720
721 /*
722  * Stop xHCI driver.
723  *
724  * This function is called by the USB core when the HC driver is removed.
725  * Its opposite is xhci_run().
726  *
727  * Disable device contexts, disable IRQs, and quiesce the HC.
728  * Reset the HC, finish any completed transactions, and cleanup memory.
729  */
730 static void xhci_stop(struct usb_hcd *hcd)
731 {
732         u32 temp;
733         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
734
735         mutex_lock(&xhci->mutex);
736
737         /* Only halt host and free memory after both hcds are removed */
738         if (!usb_hcd_is_primary_hcd(hcd)) {
739                 mutex_unlock(&xhci->mutex);
740                 return;
741         }
742
743         xhci_remove_dbc_dev(xhci);
744
745         spin_lock_irq(&xhci->lock);
746         xhci->xhc_state |= XHCI_STATE_HALTED;
747         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
748         xhci_halt(xhci);
749         xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
750         spin_unlock_irq(&xhci->lock);
751
752         xhci_cleanup_msix(xhci);
753
754         /* Deleting Compliance Mode Recovery Timer */
755         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
756                         (!(xhci_all_ports_seen_u0(xhci)))) {
757                 del_timer_sync(&xhci->comp_mode_recovery_timer);
758                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
759                                 "%s: compliance mode recovery timer deleted",
760                                 __func__);
761         }
762
763         if (xhci->quirks & XHCI_AMD_PLL_FIX)
764                 usb_amd_dev_put();
765
766         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
767                         "// Disabling event ring interrupts");
768         temp = readl(&xhci->op_regs->status);
769         writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
770         temp = readl(&xhci->ir_set->irq_pending);
771         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
772
773         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
774         xhci_mem_cleanup(xhci);
775         xhci_debugfs_exit(xhci);
776         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
777                         "xhci_stop completed - status = %x",
778                         readl(&xhci->op_regs->status));
779         mutex_unlock(&xhci->mutex);
780 }
781
782 /*
783  * Shutdown HC (not bus-specific)
784  *
785  * This is called when the machine is rebooting or halting.  We assume that the
786  * machine will be powered off, and the HC's internal state will be reset.
787  * Don't bother to free memory.
788  *
789  * This will only ever be called with the main usb_hcd (the USB3 roothub).
790  */
791 void xhci_shutdown(struct usb_hcd *hcd)
792 {
793         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
794         unsigned long flags;
795         int i;
796
797         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
798                 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
799
800         /* Don't poll the roothubs after shutdown. */
801         xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
802                         __func__, hcd->self.busnum);
803         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
804         del_timer_sync(&hcd->rh_timer);
805
806         if (xhci->shared_hcd) {
807                 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
808                 del_timer_sync(&xhci->shared_hcd->rh_timer);
809         }
810
811         spin_lock_irqsave(&xhci->lock, flags);
812         xhci_halt(xhci);
813
814         /* Power off USB2 ports*/
815         for (i = 0; i < xhci->usb2_rhub.num_ports; i++)
816                 xhci_set_port_power(xhci, xhci->main_hcd, i, false, &flags);
817
818         /* Power off USB3 ports*/
819         for (i = 0; i < xhci->usb3_rhub.num_ports; i++)
820                 xhci_set_port_power(xhci, xhci->shared_hcd, i, false, &flags);
821
822         /* Workaround for spurious wakeups at shutdown with HSW */
823         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
824                 xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
825         spin_unlock_irqrestore(&xhci->lock, flags);
826
827         xhci_cleanup_msix(xhci);
828
829         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
830                         "xhci_shutdown completed - status = %x",
831                         readl(&xhci->op_regs->status));
832 }
833 EXPORT_SYMBOL_GPL(xhci_shutdown);
834
835 #ifdef CONFIG_PM
836 static void xhci_save_registers(struct xhci_hcd *xhci)
837 {
838         xhci->s3.command = readl(&xhci->op_regs->command);
839         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
840         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
841         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
842         xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
843         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
844         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
845         xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
846         xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
847 }
848
849 static void xhci_restore_registers(struct xhci_hcd *xhci)
850 {
851         writel(xhci->s3.command, &xhci->op_regs->command);
852         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
853         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
854         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
855         writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
856         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
857         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
858         writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
859         writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
860 }
861
862 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
863 {
864         u64     val_64;
865
866         /* step 2: initialize command ring buffer */
867         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
868         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
869                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
870                                       xhci->cmd_ring->dequeue) &
871                  (u64) ~CMD_RING_RSVD_BITS) |
872                 xhci->cmd_ring->cycle_state;
873         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
874                         "// Setting command ring address to 0x%llx",
875                         (long unsigned long) val_64);
876         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
877 }
878
879 /*
880  * The whole command ring must be cleared to zero when we suspend the host.
881  *
882  * The host doesn't save the command ring pointer in the suspend well, so we
883  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
884  * aligned, because of the reserved bits in the command ring dequeue pointer
885  * register.  Therefore, we can't just set the dequeue pointer back in the
886  * middle of the ring (TRBs are 16-byte aligned).
887  */
888 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
889 {
890         struct xhci_ring *ring;
891         struct xhci_segment *seg;
892
893         ring = xhci->cmd_ring;
894         seg = ring->deq_seg;
895         do {
896                 memset(seg->trbs, 0,
897                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
898                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
899                         cpu_to_le32(~TRB_CYCLE);
900                 seg = seg->next;
901         } while (seg != ring->deq_seg);
902
903         /* Reset the software enqueue and dequeue pointers */
904         ring->deq_seg = ring->first_seg;
905         ring->dequeue = ring->first_seg->trbs;
906         ring->enq_seg = ring->deq_seg;
907         ring->enqueue = ring->dequeue;
908
909         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
910         /*
911          * Ring is now zeroed, so the HW should look for change of ownership
912          * when the cycle bit is set to 1.
913          */
914         ring->cycle_state = 1;
915
916         /*
917          * Reset the hardware dequeue pointer.
918          * Yes, this will need to be re-written after resume, but we're paranoid
919          * and want to make sure the hardware doesn't access bogus memory
920          * because, say, the BIOS or an SMI started the host without changing
921          * the command ring pointers.
922          */
923         xhci_set_cmd_ring_deq(xhci);
924 }
925
926 /*
927  * Disable port wake bits if do_wakeup is not set.
928  *
929  * Also clear a possible internal port wake state left hanging for ports that
930  * detected termination but never successfully enumerated (trained to 0U).
931  * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
932  * at enumeration clears this wake, force one here as well for unconnected ports
933  */
934
935 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
936                                        struct xhci_hub *rhub,
937                                        bool do_wakeup)
938 {
939         unsigned long flags;
940         u32 t1, t2, portsc;
941         int i;
942
943         spin_lock_irqsave(&xhci->lock, flags);
944
945         for (i = 0; i < rhub->num_ports; i++) {
946                 portsc = readl(rhub->ports[i]->addr);
947                 t1 = xhci_port_state_to_neutral(portsc);
948                 t2 = t1;
949
950                 /* clear wake bits if do_wake is not set */
951                 if (!do_wakeup)
952                         t2 &= ~PORT_WAKE_BITS;
953
954                 /* Don't touch csc bit if connected or connect change is set */
955                 if (!(portsc & (PORT_CSC | PORT_CONNECT)))
956                         t2 |= PORT_CSC;
957
958                 if (t1 != t2) {
959                         writel(t2, rhub->ports[i]->addr);
960                         xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
961                                  rhub->hcd->self.busnum, i + 1, portsc, t2);
962                 }
963         }
964         spin_unlock_irqrestore(&xhci->lock, flags);
965 }
966
967 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
968 {
969         struct xhci_port        **ports;
970         int                     port_index;
971         u32                     status;
972         u32                     portsc;
973
974         status = readl(&xhci->op_regs->status);
975         if (status & STS_EINT)
976                 return true;
977         /*
978          * Checking STS_EINT is not enough as there is a lag between a change
979          * bit being set and the Port Status Change Event that it generated
980          * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
981          */
982
983         port_index = xhci->usb2_rhub.num_ports;
984         ports = xhci->usb2_rhub.ports;
985         while (port_index--) {
986                 portsc = readl(ports[port_index]->addr);
987                 if (portsc & PORT_CHANGE_MASK ||
988                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
989                         return true;
990         }
991         port_index = xhci->usb3_rhub.num_ports;
992         ports = xhci->usb3_rhub.ports;
993         while (port_index--) {
994                 portsc = readl(ports[port_index]->addr);
995                 if (portsc & PORT_CHANGE_MASK ||
996                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
997                         return true;
998         }
999         return false;
1000 }
1001
1002 /*
1003  * Stop HC (not bus-specific)
1004  *
1005  * This is called when the machine transition into S3/S4 mode.
1006  *
1007  */
1008 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
1009 {
1010         int                     rc = 0;
1011         unsigned int            delay = XHCI_MAX_HALT_USEC * 2;
1012         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
1013         u32                     command;
1014         u32                     res;
1015
1016         if (!hcd->state)
1017                 return 0;
1018
1019         if (hcd->state != HC_STATE_SUSPENDED ||
1020             (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED))
1021                 return -EINVAL;
1022
1023         /* Clear root port wake on bits if wakeup not allowed. */
1024         xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
1025         xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
1026
1027         if (!HCD_HW_ACCESSIBLE(hcd))
1028                 return 0;
1029
1030         xhci_dbc_suspend(xhci);
1031
1032         /* Don't poll the roothubs on bus suspend. */
1033         xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
1034                  __func__, hcd->self.busnum);
1035         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1036         del_timer_sync(&hcd->rh_timer);
1037         if (xhci->shared_hcd) {
1038                 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1039                 del_timer_sync(&xhci->shared_hcd->rh_timer);
1040         }
1041
1042         if (xhci->quirks & XHCI_SUSPEND_DELAY)
1043                 usleep_range(1000, 1500);
1044
1045         spin_lock_irq(&xhci->lock);
1046         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1047         if (xhci->shared_hcd)
1048                 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1049         /* step 1: stop endpoint */
1050         /* skipped assuming that port suspend has done */
1051
1052         /* step 2: clear Run/Stop bit */
1053         command = readl(&xhci->op_regs->command);
1054         command &= ~CMD_RUN;
1055         writel(command, &xhci->op_regs->command);
1056
1057         /* Some chips from Fresco Logic need an extraordinary delay */
1058         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1059
1060         if (xhci_handshake(&xhci->op_regs->status,
1061                       STS_HALT, STS_HALT, delay)) {
1062                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1063                 spin_unlock_irq(&xhci->lock);
1064                 return -ETIMEDOUT;
1065         }
1066         xhci_clear_command_ring(xhci);
1067
1068         /* step 3: save registers */
1069         xhci_save_registers(xhci);
1070
1071         /* step 4: set CSS flag */
1072         command = readl(&xhci->op_regs->command);
1073         command |= CMD_CSS;
1074         writel(command, &xhci->op_regs->command);
1075         xhci->broken_suspend = 0;
1076         if (xhci_handshake(&xhci->op_regs->status,
1077                                 STS_SAVE, 0, 20 * 1000)) {
1078         /*
1079          * AMD SNPS xHC 3.0 occasionally does not clear the
1080          * SSS bit of USBSTS and when driver tries to poll
1081          * to see if the xHC clears BIT(8) which never happens
1082          * and driver assumes that controller is not responding
1083          * and times out. To workaround this, its good to check
1084          * if SRE and HCE bits are not set (as per xhci
1085          * Section 5.4.2) and bypass the timeout.
1086          */
1087                 res = readl(&xhci->op_regs->status);
1088                 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1089                     (((res & STS_SRE) == 0) &&
1090                                 ((res & STS_HCE) == 0))) {
1091                         xhci->broken_suspend = 1;
1092                 } else {
1093                         xhci_warn(xhci, "WARN: xHC save state timeout\n");
1094                         spin_unlock_irq(&xhci->lock);
1095                         return -ETIMEDOUT;
1096                 }
1097         }
1098         spin_unlock_irq(&xhci->lock);
1099
1100         /*
1101          * Deleting Compliance Mode Recovery Timer because the xHCI Host
1102          * is about to be suspended.
1103          */
1104         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1105                         (!(xhci_all_ports_seen_u0(xhci)))) {
1106                 del_timer_sync(&xhci->comp_mode_recovery_timer);
1107                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1108                                 "%s: compliance mode recovery timer deleted",
1109                                 __func__);
1110         }
1111
1112         /* step 5: remove core well power */
1113         /* synchronize irq when using MSI-X */
1114         xhci_msix_sync_irqs(xhci);
1115
1116         return rc;
1117 }
1118 EXPORT_SYMBOL_GPL(xhci_suspend);
1119
1120 /*
1121  * start xHC (not bus-specific)
1122  *
1123  * This is called when the machine transition from S3/S4 mode.
1124  *
1125  */
1126 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1127 {
1128         u32                     command, temp = 0;
1129         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
1130         int                     retval = 0;
1131         bool                    comp_timer_running = false;
1132         bool                    pending_portevent = false;
1133         bool                    reinit_xhc = false;
1134
1135         if (!hcd->state)
1136                 return 0;
1137
1138         /* Wait a bit if either of the roothubs need to settle from the
1139          * transition into bus suspend.
1140          */
1141
1142         if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1143             time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1144                 msleep(100);
1145
1146         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1147         if (xhci->shared_hcd)
1148                 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1149
1150         spin_lock_irq(&xhci->lock);
1151
1152         if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
1153                 reinit_xhc = true;
1154
1155         if (!reinit_xhc) {
1156                 /*
1157                  * Some controllers might lose power during suspend, so wait
1158                  * for controller not ready bit to clear, just as in xHC init.
1159                  */
1160                 retval = xhci_handshake(&xhci->op_regs->status,
1161                                         STS_CNR, 0, 10 * 1000 * 1000);
1162                 if (retval) {
1163                         xhci_warn(xhci, "Controller not ready at resume %d\n",
1164                                   retval);
1165                         spin_unlock_irq(&xhci->lock);
1166                         return retval;
1167                 }
1168                 /* step 1: restore register */
1169                 xhci_restore_registers(xhci);
1170                 /* step 2: initialize command ring buffer */
1171                 xhci_set_cmd_ring_deq(xhci);
1172                 /* step 3: restore state and start state*/
1173                 /* step 3: set CRS flag */
1174                 command = readl(&xhci->op_regs->command);
1175                 command |= CMD_CRS;
1176                 writel(command, &xhci->op_regs->command);
1177                 /*
1178                  * Some controllers take up to 55+ ms to complete the controller
1179                  * restore so setting the timeout to 100ms. Xhci specification
1180                  * doesn't mention any timeout value.
1181                  */
1182                 if (xhci_handshake(&xhci->op_regs->status,
1183                               STS_RESTORE, 0, 100 * 1000)) {
1184                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1185                         spin_unlock_irq(&xhci->lock);
1186                         return -ETIMEDOUT;
1187                 }
1188         }
1189
1190         temp = readl(&xhci->op_regs->status);
1191
1192         /* re-initialize the HC on Restore Error, or Host Controller Error */
1193         if (temp & (STS_SRE | STS_HCE)) {
1194                 reinit_xhc = true;
1195                 xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1196         }
1197
1198         if (reinit_xhc) {
1199                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1200                                 !(xhci_all_ports_seen_u0(xhci))) {
1201                         del_timer_sync(&xhci->comp_mode_recovery_timer);
1202                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1203                                 "Compliance Mode Recovery Timer deleted!");
1204                 }
1205
1206                 /* Let the USB core know _both_ roothubs lost power. */
1207                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1208                 if (xhci->shared_hcd)
1209                         usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1210
1211                 xhci_dbg(xhci, "Stop HCD\n");
1212                 xhci_halt(xhci);
1213                 xhci_zero_64b_regs(xhci);
1214                 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
1215                 spin_unlock_irq(&xhci->lock);
1216                 if (retval)
1217                         return retval;
1218                 xhci_cleanup_msix(xhci);
1219
1220                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1221                 temp = readl(&xhci->op_regs->status);
1222                 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1223                 temp = readl(&xhci->ir_set->irq_pending);
1224                 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1225
1226                 xhci_dbg(xhci, "cleaning up memory\n");
1227                 xhci_mem_cleanup(xhci);
1228                 xhci_debugfs_exit(xhci);
1229                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1230                             readl(&xhci->op_regs->status));
1231
1232                 /* USB core calls the PCI reinit and start functions twice:
1233                  * first with the primary HCD, and then with the secondary HCD.
1234                  * If we don't do the same, the host will never be started.
1235                  */
1236                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1237                 retval = xhci_init(hcd);
1238                 if (retval)
1239                         return retval;
1240                 comp_timer_running = true;
1241
1242                 xhci_dbg(xhci, "Start the primary HCD\n");
1243                 retval = xhci_run(hcd);
1244                 if (!retval && xhci->shared_hcd) {
1245                         xhci_dbg(xhci, "Start the secondary HCD\n");
1246                         retval = xhci_run(xhci->shared_hcd);
1247                 }
1248
1249                 hcd->state = HC_STATE_SUSPENDED;
1250                 if (xhci->shared_hcd)
1251                         xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1252                 goto done;
1253         }
1254
1255         /* step 4: set Run/Stop bit */
1256         command = readl(&xhci->op_regs->command);
1257         command |= CMD_RUN;
1258         writel(command, &xhci->op_regs->command);
1259         xhci_handshake(&xhci->op_regs->status, STS_HALT,
1260                   0, 250 * 1000);
1261
1262         /* step 5: walk topology and initialize portsc,
1263          * portpmsc and portli
1264          */
1265         /* this is done in bus_resume */
1266
1267         /* step 6: restart each of the previously
1268          * Running endpoints by ringing their doorbells
1269          */
1270
1271         spin_unlock_irq(&xhci->lock);
1272
1273         xhci_dbc_resume(xhci);
1274
1275  done:
1276         if (retval == 0) {
1277                 /*
1278                  * Resume roothubs only if there are pending events.
1279                  * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1280                  * the first wake signalling failed, give it that chance.
1281                  */
1282                 pending_portevent = xhci_pending_portevent(xhci);
1283                 if (!pending_portevent) {
1284                         msleep(120);
1285                         pending_portevent = xhci_pending_portevent(xhci);
1286                 }
1287
1288                 if (pending_portevent) {
1289                         if (xhci->shared_hcd)
1290                                 usb_hcd_resume_root_hub(xhci->shared_hcd);
1291                         usb_hcd_resume_root_hub(hcd);
1292                 }
1293         }
1294         /*
1295          * If system is subject to the Quirk, Compliance Mode Timer needs to
1296          * be re-initialized Always after a system resume. Ports are subject
1297          * to suffer the Compliance Mode issue again. It doesn't matter if
1298          * ports have entered previously to U0 before system's suspension.
1299          */
1300         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1301                 compliance_mode_recovery_timer_init(xhci);
1302
1303         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1304                 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1305
1306         /* Re-enable port polling. */
1307         xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1308                  __func__, hcd->self.busnum);
1309         if (xhci->shared_hcd) {
1310                 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1311                 usb_hcd_poll_rh_status(xhci->shared_hcd);
1312         }
1313         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1314         usb_hcd_poll_rh_status(hcd);
1315
1316         return retval;
1317 }
1318 EXPORT_SYMBOL_GPL(xhci_resume);
1319 #endif  /* CONFIG_PM */
1320
1321 /*-------------------------------------------------------------------------*/
1322
1323 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1324 {
1325         void *temp;
1326         int ret = 0;
1327         unsigned int buf_len;
1328         enum dma_data_direction dir;
1329
1330         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1331         buf_len = urb->transfer_buffer_length;
1332
1333         temp = kzalloc_node(buf_len, GFP_ATOMIC,
1334                             dev_to_node(hcd->self.sysdev));
1335
1336         if (usb_urb_dir_out(urb))
1337                 sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1338                                    temp, buf_len, 0);
1339
1340         urb->transfer_buffer = temp;
1341         urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1342                                            urb->transfer_buffer,
1343                                            urb->transfer_buffer_length,
1344                                            dir);
1345
1346         if (dma_mapping_error(hcd->self.sysdev,
1347                               urb->transfer_dma)) {
1348                 ret = -EAGAIN;
1349                 kfree(temp);
1350         } else {
1351                 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1352         }
1353
1354         return ret;
1355 }
1356
1357 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1358                                           struct urb *urb)
1359 {
1360         bool ret = false;
1361         unsigned int i;
1362         unsigned int len = 0;
1363         unsigned int trb_size;
1364         unsigned int max_pkt;
1365         struct scatterlist *sg;
1366         struct scatterlist *tail_sg;
1367
1368         tail_sg = urb->sg;
1369         max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1370
1371         if (!urb->num_sgs)
1372                 return ret;
1373
1374         if (urb->dev->speed >= USB_SPEED_SUPER)
1375                 trb_size = TRB_CACHE_SIZE_SS;
1376         else
1377                 trb_size = TRB_CACHE_SIZE_HS;
1378
1379         if (urb->transfer_buffer_length != 0 &&
1380             !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1381                 for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1382                         len = len + sg->length;
1383                         if (i > trb_size - 2) {
1384                                 len = len - tail_sg->length;
1385                                 if (len < max_pkt) {
1386                                         ret = true;
1387                                         break;
1388                                 }
1389
1390                                 tail_sg = sg_next(tail_sg);
1391                         }
1392                 }
1393         }
1394         return ret;
1395 }
1396
1397 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1398 {
1399         unsigned int len;
1400         unsigned int buf_len;
1401         enum dma_data_direction dir;
1402
1403         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1404
1405         buf_len = urb->transfer_buffer_length;
1406
1407         if (IS_ENABLED(CONFIG_HAS_DMA) &&
1408             (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1409                 dma_unmap_single(hcd->self.sysdev,
1410                                  urb->transfer_dma,
1411                                  urb->transfer_buffer_length,
1412                                  dir);
1413
1414         if (usb_urb_dir_in(urb)) {
1415                 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1416                                            urb->transfer_buffer,
1417                                            buf_len,
1418                                            0);
1419                 if (len != buf_len) {
1420                         xhci_dbg(hcd_to_xhci(hcd),
1421                                  "Copy from tmp buf to urb sg list failed\n");
1422                         urb->actual_length = len;
1423                 }
1424         }
1425         urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1426         kfree(urb->transfer_buffer);
1427         urb->transfer_buffer = NULL;
1428 }
1429
1430 /*
1431  * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1432  * we'll copy the actual data into the TRB address register. This is limited to
1433  * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1434  * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1435  */
1436 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1437                                 gfp_t mem_flags)
1438 {
1439         struct xhci_hcd *xhci;
1440
1441         xhci = hcd_to_xhci(hcd);
1442
1443         if (xhci_urb_suitable_for_idt(urb))
1444                 return 0;
1445
1446         if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1447                 if (xhci_urb_temp_buffer_required(hcd, urb))
1448                         return xhci_map_temp_buffer(hcd, urb);
1449         }
1450         return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1451 }
1452
1453 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1454 {
1455         struct xhci_hcd *xhci;
1456         bool unmap_temp_buf = false;
1457
1458         xhci = hcd_to_xhci(hcd);
1459
1460         if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1461                 unmap_temp_buf = true;
1462
1463         if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1464                 xhci_unmap_temp_buf(hcd, urb);
1465         else
1466                 usb_hcd_unmap_urb_for_dma(hcd, urb);
1467 }
1468
1469 /**
1470  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1471  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1472  * value to right shift 1 for the bitmask.
1473  *
1474  * Index  = (epnum * 2) + direction - 1,
1475  * where direction = 0 for OUT, 1 for IN.
1476  * For control endpoints, the IN index is used (OUT index is unused), so
1477  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1478  */
1479 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1480 {
1481         unsigned int index;
1482         if (usb_endpoint_xfer_control(desc))
1483                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1484         else
1485                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1486                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1487         return index;
1488 }
1489 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1490
1491 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1492  * address from the XHCI endpoint index.
1493  */
1494 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1495 {
1496         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1497         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1498         return direction | number;
1499 }
1500
1501 /* Find the flag for this endpoint (for use in the control context).  Use the
1502  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1503  * bit 1, etc.
1504  */
1505 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1506 {
1507         return 1 << (xhci_get_endpoint_index(desc) + 1);
1508 }
1509
1510 /* Compute the last valid endpoint context index.  Basically, this is the
1511  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1512  * we find the most significant bit set in the added contexts flags.
1513  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1514  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1515  */
1516 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1517 {
1518         return fls(added_ctxs) - 1;
1519 }
1520
1521 /* Returns 1 if the arguments are OK;
1522  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1523  */
1524 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1525                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1526                 const char *func) {
1527         struct xhci_hcd *xhci;
1528         struct xhci_virt_device *virt_dev;
1529
1530         if (!hcd || (check_ep && !ep) || !udev) {
1531                 pr_debug("xHCI %s called with invalid args\n", func);
1532                 return -EINVAL;
1533         }
1534         if (!udev->parent) {
1535                 pr_debug("xHCI %s called for root hub\n", func);
1536                 return 0;
1537         }
1538
1539         xhci = hcd_to_xhci(hcd);
1540         if (check_virt_dev) {
1541                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1542                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1543                                         func);
1544                         return -EINVAL;
1545                 }
1546
1547                 virt_dev = xhci->devs[udev->slot_id];
1548                 if (virt_dev->udev != udev) {
1549                         xhci_dbg(xhci, "xHCI %s called with udev and "
1550                                           "virt_dev does not match\n", func);
1551                         return -EINVAL;
1552                 }
1553         }
1554
1555         if (xhci->xhc_state & XHCI_STATE_HALTED)
1556                 return -ENODEV;
1557
1558         return 1;
1559 }
1560
1561 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1562                 struct usb_device *udev, struct xhci_command *command,
1563                 bool ctx_change, bool must_succeed);
1564
1565 /*
1566  * Full speed devices may have a max packet size greater than 8 bytes, but the
1567  * USB core doesn't know that until it reads the first 8 bytes of the
1568  * descriptor.  If the usb_device's max packet size changes after that point,
1569  * we need to issue an evaluate context command and wait on it.
1570  */
1571 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1572                 unsigned int ep_index, struct urb *urb, gfp_t mem_flags)
1573 {
1574         struct xhci_container_ctx *out_ctx;
1575         struct xhci_input_control_ctx *ctrl_ctx;
1576         struct xhci_ep_ctx *ep_ctx;
1577         struct xhci_command *command;
1578         int max_packet_size;
1579         int hw_max_packet_size;
1580         int ret = 0;
1581
1582         out_ctx = xhci->devs[slot_id]->out_ctx;
1583         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1584         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1585         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1586         if (hw_max_packet_size != max_packet_size) {
1587                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1588                                 "Max Packet Size for ep 0 changed.");
1589                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1590                                 "Max packet size in usb_device = %d",
1591                                 max_packet_size);
1592                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1593                                 "Max packet size in xHCI HW = %d",
1594                                 hw_max_packet_size);
1595                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1596                                 "Issuing evaluate context command.");
1597
1598                 /* Set up the input context flags for the command */
1599                 /* FIXME: This won't work if a non-default control endpoint
1600                  * changes max packet sizes.
1601                  */
1602
1603                 command = xhci_alloc_command(xhci, true, mem_flags);
1604                 if (!command)
1605                         return -ENOMEM;
1606
1607                 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1608                 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1609                 if (!ctrl_ctx) {
1610                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1611                                         __func__);
1612                         ret = -ENOMEM;
1613                         goto command_cleanup;
1614                 }
1615                 /* Set up the modified control endpoint 0 */
1616                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1617                                 xhci->devs[slot_id]->out_ctx, ep_index);
1618
1619                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1620                 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1621                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1622                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1623
1624                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1625                 ctrl_ctx->drop_flags = 0;
1626
1627                 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1628                                 true, false);
1629
1630                 /* Clean up the input context for later use by bandwidth
1631                  * functions.
1632                  */
1633                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1634 command_cleanup:
1635                 kfree(command->completion);
1636                 kfree(command);
1637         }
1638         return ret;
1639 }
1640
1641 /*
1642  * non-error returns are a promise to giveback() the urb later
1643  * we drop ownership so next owner (or urb unlink) can get it
1644  */
1645 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1646 {
1647         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1648         unsigned long flags;
1649         int ret = 0;
1650         unsigned int slot_id, ep_index;
1651         unsigned int *ep_state;
1652         struct urb_priv *urb_priv;
1653         int num_tds;
1654
1655         if (!urb)
1656                 return -EINVAL;
1657         ret = xhci_check_args(hcd, urb->dev, urb->ep,
1658                                         true, true, __func__);
1659         if (ret <= 0)
1660                 return ret ? ret : -EINVAL;
1661
1662         slot_id = urb->dev->slot_id;
1663         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1664         ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1665
1666         if (!HCD_HW_ACCESSIBLE(hcd))
1667                 return -ESHUTDOWN;
1668
1669         if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1670                 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1671                 return -ENODEV;
1672         }
1673
1674         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1675                 num_tds = urb->number_of_packets;
1676         else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1677             urb->transfer_buffer_length > 0 &&
1678             urb->transfer_flags & URB_ZERO_PACKET &&
1679             !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1680                 num_tds = 2;
1681         else
1682                 num_tds = 1;
1683
1684         urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1685         if (!urb_priv)
1686                 return -ENOMEM;
1687
1688         urb_priv->num_tds = num_tds;
1689         urb_priv->num_tds_done = 0;
1690         urb->hcpriv = urb_priv;
1691
1692         trace_xhci_urb_enqueue(urb);
1693
1694         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1695                 /* Check to see if the max packet size for the default control
1696                  * endpoint changed during FS device enumeration
1697                  */
1698                 if (urb->dev->speed == USB_SPEED_FULL) {
1699                         ret = xhci_check_maxpacket(xhci, slot_id,
1700                                         ep_index, urb, mem_flags);
1701                         if (ret < 0) {
1702                                 xhci_urb_free_priv(urb_priv);
1703                                 urb->hcpriv = NULL;
1704                                 return ret;
1705                         }
1706                 }
1707         }
1708
1709         spin_lock_irqsave(&xhci->lock, flags);
1710
1711         if (xhci->xhc_state & XHCI_STATE_DYING) {
1712                 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1713                          urb->ep->desc.bEndpointAddress, urb);
1714                 ret = -ESHUTDOWN;
1715                 goto free_priv;
1716         }
1717         if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1718                 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1719                           *ep_state);
1720                 ret = -EINVAL;
1721                 goto free_priv;
1722         }
1723         if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1724                 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1725                 ret = -EINVAL;
1726                 goto free_priv;
1727         }
1728
1729         switch (usb_endpoint_type(&urb->ep->desc)) {
1730
1731         case USB_ENDPOINT_XFER_CONTROL:
1732                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1733                                          slot_id, ep_index);
1734                 break;
1735         case USB_ENDPOINT_XFER_BULK:
1736                 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1737                                          slot_id, ep_index);
1738                 break;
1739         case USB_ENDPOINT_XFER_INT:
1740                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1741                                 slot_id, ep_index);
1742                 break;
1743         case USB_ENDPOINT_XFER_ISOC:
1744                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1745                                 slot_id, ep_index);
1746         }
1747
1748         if (ret) {
1749 free_priv:
1750                 xhci_urb_free_priv(urb_priv);
1751                 urb->hcpriv = NULL;
1752         }
1753         spin_unlock_irqrestore(&xhci->lock, flags);
1754         return ret;
1755 }
1756
1757 /*
1758  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1759  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1760  * should pick up where it left off in the TD, unless a Set Transfer Ring
1761  * Dequeue Pointer is issued.
1762  *
1763  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1764  * the ring.  Since the ring is a contiguous structure, they can't be physically
1765  * removed.  Instead, there are two options:
1766  *
1767  *  1) If the HC is in the middle of processing the URB to be canceled, we
1768  *     simply move the ring's dequeue pointer past those TRBs using the Set
1769  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1770  *     when drivers timeout on the last submitted URB and attempt to cancel.
1771  *
1772  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1773  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1774  *     HC will need to invalidate the any TRBs it has cached after the stop
1775  *     endpoint command, as noted in the xHCI 0.95 errata.
1776  *
1777  *  3) The TD may have completed by the time the Stop Endpoint Command
1778  *     completes, so software needs to handle that case too.
1779  *
1780  * This function should protect against the TD enqueueing code ringing the
1781  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1782  * It also needs to account for multiple cancellations on happening at the same
1783  * time for the same endpoint.
1784  *
1785  * Note that this function can be called in any context, or so says
1786  * usb_hcd_unlink_urb()
1787  */
1788 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1789 {
1790         unsigned long flags;
1791         int ret, i;
1792         u32 temp;
1793         struct xhci_hcd *xhci;
1794         struct urb_priv *urb_priv;
1795         struct xhci_td *td;
1796         unsigned int ep_index;
1797         struct xhci_ring *ep_ring;
1798         struct xhci_virt_ep *ep;
1799         struct xhci_command *command;
1800         struct xhci_virt_device *vdev;
1801
1802         xhci = hcd_to_xhci(hcd);
1803         spin_lock_irqsave(&xhci->lock, flags);
1804
1805         trace_xhci_urb_dequeue(urb);
1806
1807         /* Make sure the URB hasn't completed or been unlinked already */
1808         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1809         if (ret)
1810                 goto done;
1811
1812         /* give back URB now if we can't queue it for cancel */
1813         vdev = xhci->devs[urb->dev->slot_id];
1814         urb_priv = urb->hcpriv;
1815         if (!vdev || !urb_priv)
1816                 goto err_giveback;
1817
1818         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1819         ep = &vdev->eps[ep_index];
1820         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1821         if (!ep || !ep_ring)
1822                 goto err_giveback;
1823
1824         /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1825         temp = readl(&xhci->op_regs->status);
1826         if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1827                 xhci_hc_died(xhci);
1828                 goto done;
1829         }
1830
1831         /*
1832          * check ring is not re-allocated since URB was enqueued. If it is, then
1833          * make sure none of the ring related pointers in this URB private data
1834          * are touched, such as td_list, otherwise we overwrite freed data
1835          */
1836         if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1837                 xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1838                 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1839                         td = &urb_priv->td[i];
1840                         if (!list_empty(&td->cancelled_td_list))
1841                                 list_del_init(&td->cancelled_td_list);
1842                 }
1843                 goto err_giveback;
1844         }
1845
1846         if (xhci->xhc_state & XHCI_STATE_HALTED) {
1847                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1848                                 "HC halted, freeing TD manually.");
1849                 for (i = urb_priv->num_tds_done;
1850                      i < urb_priv->num_tds;
1851                      i++) {
1852                         td = &urb_priv->td[i];
1853                         if (!list_empty(&td->td_list))
1854                                 list_del_init(&td->td_list);
1855                         if (!list_empty(&td->cancelled_td_list))
1856                                 list_del_init(&td->cancelled_td_list);
1857                 }
1858                 goto err_giveback;
1859         }
1860
1861         i = urb_priv->num_tds_done;
1862         if (i < urb_priv->num_tds)
1863                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1864                                 "Cancel URB %p, dev %s, ep 0x%x, "
1865                                 "starting at offset 0x%llx",
1866                                 urb, urb->dev->devpath,
1867                                 urb->ep->desc.bEndpointAddress,
1868                                 (unsigned long long) xhci_trb_virt_to_dma(
1869                                         urb_priv->td[i].start_seg,
1870                                         urb_priv->td[i].first_trb));
1871
1872         for (; i < urb_priv->num_tds; i++) {
1873                 td = &urb_priv->td[i];
1874                 /* TD can already be on cancelled list if ep halted on it */
1875                 if (list_empty(&td->cancelled_td_list)) {
1876                         td->cancel_status = TD_DIRTY;
1877                         list_add_tail(&td->cancelled_td_list,
1878                                       &ep->cancelled_td_list);
1879                 }
1880         }
1881
1882         /* Queue a stop endpoint command, but only if this is
1883          * the first cancellation to be handled.
1884          */
1885         if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1886                 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1887                 if (!command) {
1888                         ret = -ENOMEM;
1889                         goto done;
1890                 }
1891                 ep->ep_state |= EP_STOP_CMD_PENDING;
1892                 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1893                                          ep_index, 0);
1894                 xhci_ring_cmd_db(xhci);
1895         }
1896 done:
1897         spin_unlock_irqrestore(&xhci->lock, flags);
1898         return ret;
1899
1900 err_giveback:
1901         if (urb_priv)
1902                 xhci_urb_free_priv(urb_priv);
1903         usb_hcd_unlink_urb_from_ep(hcd, urb);
1904         spin_unlock_irqrestore(&xhci->lock, flags);
1905         usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1906         return ret;
1907 }
1908
1909 /* Drop an endpoint from a new bandwidth configuration for this device.
1910  * Only one call to this function is allowed per endpoint before
1911  * check_bandwidth() or reset_bandwidth() must be called.
1912  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1913  * add the endpoint to the schedule with possibly new parameters denoted by a
1914  * different endpoint descriptor in usb_host_endpoint.
1915  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1916  * not allowed.
1917  *
1918  * The USB core will not allow URBs to be queued to an endpoint that is being
1919  * disabled, so there's no need for mutual exclusion to protect
1920  * the xhci->devs[slot_id] structure.
1921  */
1922 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1923                        struct usb_host_endpoint *ep)
1924 {
1925         struct xhci_hcd *xhci;
1926         struct xhci_container_ctx *in_ctx, *out_ctx;
1927         struct xhci_input_control_ctx *ctrl_ctx;
1928         unsigned int ep_index;
1929         struct xhci_ep_ctx *ep_ctx;
1930         u32 drop_flag;
1931         u32 new_add_flags, new_drop_flags;
1932         int ret;
1933
1934         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1935         if (ret <= 0)
1936                 return ret;
1937         xhci = hcd_to_xhci(hcd);
1938         if (xhci->xhc_state & XHCI_STATE_DYING)
1939                 return -ENODEV;
1940
1941         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1942         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1943         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1944                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1945                                 __func__, drop_flag);
1946                 return 0;
1947         }
1948
1949         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1950         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1951         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1952         if (!ctrl_ctx) {
1953                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1954                                 __func__);
1955                 return 0;
1956         }
1957
1958         ep_index = xhci_get_endpoint_index(&ep->desc);
1959         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1960         /* If the HC already knows the endpoint is disabled,
1961          * or the HCD has noted it is disabled, ignore this request
1962          */
1963         if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1964             le32_to_cpu(ctrl_ctx->drop_flags) &
1965             xhci_get_endpoint_flag(&ep->desc)) {
1966                 /* Do not warn when called after a usb_device_reset */
1967                 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1968                         xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1969                                   __func__, ep);
1970                 return 0;
1971         }
1972
1973         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1974         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1975
1976         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1977         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1978
1979         xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1980
1981         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1982
1983         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1984                         (unsigned int) ep->desc.bEndpointAddress,
1985                         udev->slot_id,
1986                         (unsigned int) new_drop_flags,
1987                         (unsigned int) new_add_flags);
1988         return 0;
1989 }
1990 EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1991
1992 /* Add an endpoint to a new possible bandwidth configuration for this device.
1993  * Only one call to this function is allowed per endpoint before
1994  * check_bandwidth() or reset_bandwidth() must be called.
1995  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1996  * add the endpoint to the schedule with possibly new parameters denoted by a
1997  * different endpoint descriptor in usb_host_endpoint.
1998  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1999  * not allowed.
2000  *
2001  * The USB core will not allow URBs to be queued to an endpoint until the
2002  * configuration or alt setting is installed in the device, so there's no need
2003  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
2004  */
2005 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
2006                       struct usb_host_endpoint *ep)
2007 {
2008         struct xhci_hcd *xhci;
2009         struct xhci_container_ctx *in_ctx;
2010         unsigned int ep_index;
2011         struct xhci_input_control_ctx *ctrl_ctx;
2012         struct xhci_ep_ctx *ep_ctx;
2013         u32 added_ctxs;
2014         u32 new_add_flags, new_drop_flags;
2015         struct xhci_virt_device *virt_dev;
2016         int ret = 0;
2017
2018         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
2019         if (ret <= 0) {
2020                 /* So we won't queue a reset ep command for a root hub */
2021                 ep->hcpriv = NULL;
2022                 return ret;
2023         }
2024         xhci = hcd_to_xhci(hcd);
2025         if (xhci->xhc_state & XHCI_STATE_DYING)
2026                 return -ENODEV;
2027
2028         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
2029         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
2030                 /* FIXME when we have to issue an evaluate endpoint command to
2031                  * deal with ep0 max packet size changing once we get the
2032                  * descriptors
2033                  */
2034                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
2035                                 __func__, added_ctxs);
2036                 return 0;
2037         }
2038
2039         virt_dev = xhci->devs[udev->slot_id];
2040         in_ctx = virt_dev->in_ctx;
2041         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2042         if (!ctrl_ctx) {
2043                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2044                                 __func__);
2045                 return 0;
2046         }
2047
2048         ep_index = xhci_get_endpoint_index(&ep->desc);
2049         /* If this endpoint is already in use, and the upper layers are trying
2050          * to add it again without dropping it, reject the addition.
2051          */
2052         if (virt_dev->eps[ep_index].ring &&
2053                         !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
2054                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
2055                                 "without dropping it.\n",
2056                                 (unsigned int) ep->desc.bEndpointAddress);
2057                 return -EINVAL;
2058         }
2059
2060         /* If the HCD has already noted the endpoint is enabled,
2061          * ignore this request.
2062          */
2063         if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
2064                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
2065                                 __func__, ep);
2066                 return 0;
2067         }
2068
2069         /*
2070          * Configuration and alternate setting changes must be done in
2071          * process context, not interrupt context (or so documenation
2072          * for usb_set_interface() and usb_set_configuration() claim).
2073          */
2074         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
2075                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
2076                                 __func__, ep->desc.bEndpointAddress);
2077                 return -ENOMEM;
2078         }
2079
2080         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
2081         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
2082
2083         /* If xhci_endpoint_disable() was called for this endpoint, but the
2084          * xHC hasn't been notified yet through the check_bandwidth() call,
2085          * this re-adds a new state for the endpoint from the new endpoint
2086          * descriptors.  We must drop and re-add this endpoint, so we leave the
2087          * drop flags alone.
2088          */
2089         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
2090
2091         /* Store the usb_device pointer for later use */
2092         ep->hcpriv = udev;
2093
2094         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
2095         trace_xhci_add_endpoint(ep_ctx);
2096
2097         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
2098                         (unsigned int) ep->desc.bEndpointAddress,
2099                         udev->slot_id,
2100                         (unsigned int) new_drop_flags,
2101                         (unsigned int) new_add_flags);
2102         return 0;
2103 }
2104 EXPORT_SYMBOL_GPL(xhci_add_endpoint);
2105
2106 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
2107 {
2108         struct xhci_input_control_ctx *ctrl_ctx;
2109         struct xhci_ep_ctx *ep_ctx;
2110         struct xhci_slot_ctx *slot_ctx;
2111         int i;
2112
2113         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
2114         if (!ctrl_ctx) {
2115                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2116                                 __func__);
2117                 return;
2118         }
2119
2120         /* When a device's add flag and drop flag are zero, any subsequent
2121          * configure endpoint command will leave that endpoint's state
2122          * untouched.  Make sure we don't leave any old state in the input
2123          * endpoint contexts.
2124          */
2125         ctrl_ctx->drop_flags = 0;
2126         ctrl_ctx->add_flags = 0;
2127         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2128         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2129         /* Endpoint 0 is always valid */
2130         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2131         for (i = 1; i < 31; i++) {
2132                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2133                 ep_ctx->ep_info = 0;
2134                 ep_ctx->ep_info2 = 0;
2135                 ep_ctx->deq = 0;
2136                 ep_ctx->tx_info = 0;
2137         }
2138 }
2139
2140 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2141                 struct usb_device *udev, u32 *cmd_status)
2142 {
2143         int ret;
2144
2145         switch (*cmd_status) {
2146         case COMP_COMMAND_ABORTED:
2147         case COMP_COMMAND_RING_STOPPED:
2148                 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2149                 ret = -ETIME;
2150                 break;
2151         case COMP_RESOURCE_ERROR:
2152                 dev_warn(&udev->dev,
2153                          "Not enough host controller resources for new device state.\n");
2154                 ret = -ENOMEM;
2155                 /* FIXME: can we allocate more resources for the HC? */
2156                 break;
2157         case COMP_BANDWIDTH_ERROR:
2158         case COMP_SECONDARY_BANDWIDTH_ERROR:
2159                 dev_warn(&udev->dev,
2160                          "Not enough bandwidth for new device state.\n");
2161                 ret = -ENOSPC;
2162                 /* FIXME: can we go back to the old state? */
2163                 break;
2164         case COMP_TRB_ERROR:
2165                 /* the HCD set up something wrong */
2166                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2167                                 "add flag = 1, "
2168                                 "and endpoint is not disabled.\n");
2169                 ret = -EINVAL;
2170                 break;
2171         case COMP_INCOMPATIBLE_DEVICE_ERROR:
2172                 dev_warn(&udev->dev,
2173                          "ERROR: Incompatible device for endpoint configure command.\n");
2174                 ret = -ENODEV;
2175                 break;
2176         case COMP_SUCCESS:
2177                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2178                                 "Successful Endpoint Configure command");
2179                 ret = 0;
2180                 break;
2181         default:
2182                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2183                                 *cmd_status);
2184                 ret = -EINVAL;
2185                 break;
2186         }
2187         return ret;
2188 }
2189
2190 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2191                 struct usb_device *udev, u32 *cmd_status)
2192 {
2193         int ret;
2194
2195         switch (*cmd_status) {
2196         case COMP_COMMAND_ABORTED:
2197         case COMP_COMMAND_RING_STOPPED:
2198                 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2199                 ret = -ETIME;
2200                 break;
2201         case COMP_PARAMETER_ERROR:
2202                 dev_warn(&udev->dev,
2203                          "WARN: xHCI driver setup invalid evaluate context command.\n");
2204                 ret = -EINVAL;
2205                 break;
2206         case COMP_SLOT_NOT_ENABLED_ERROR:
2207                 dev_warn(&udev->dev,
2208                         "WARN: slot not enabled for evaluate context command.\n");
2209                 ret = -EINVAL;
2210                 break;
2211         case COMP_CONTEXT_STATE_ERROR:
2212                 dev_warn(&udev->dev,
2213                         "WARN: invalid context state for evaluate context command.\n");
2214                 ret = -EINVAL;
2215                 break;
2216         case COMP_INCOMPATIBLE_DEVICE_ERROR:
2217                 dev_warn(&udev->dev,
2218                         "ERROR: Incompatible device for evaluate context command.\n");
2219                 ret = -ENODEV;
2220                 break;
2221         case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2222                 /* Max Exit Latency too large error */
2223                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2224                 ret = -EINVAL;
2225                 break;
2226         case COMP_SUCCESS:
2227                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2228                                 "Successful evaluate context command");
2229                 ret = 0;
2230                 break;
2231         default:
2232                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2233                         *cmd_status);
2234                 ret = -EINVAL;
2235                 break;
2236         }
2237         return ret;
2238 }
2239
2240 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2241                 struct xhci_input_control_ctx *ctrl_ctx)
2242 {
2243         u32 valid_add_flags;
2244         u32 valid_drop_flags;
2245
2246         /* Ignore the slot flag (bit 0), and the default control endpoint flag
2247          * (bit 1).  The default control endpoint is added during the Address
2248          * Device command and is never removed until the slot is disabled.
2249          */
2250         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2251         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2252
2253         /* Use hweight32 to count the number of ones in the add flags, or
2254          * number of endpoints added.  Don't count endpoints that are changed
2255          * (both added and dropped).
2256          */
2257         return hweight32(valid_add_flags) -
2258                 hweight32(valid_add_flags & valid_drop_flags);
2259 }
2260
2261 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2262                 struct xhci_input_control_ctx *ctrl_ctx)
2263 {
2264         u32 valid_add_flags;
2265         u32 valid_drop_flags;
2266
2267         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2268         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2269
2270         return hweight32(valid_drop_flags) -
2271                 hweight32(valid_add_flags & valid_drop_flags);
2272 }
2273
2274 /*
2275  * We need to reserve the new number of endpoints before the configure endpoint
2276  * command completes.  We can't subtract the dropped endpoints from the number
2277  * of active endpoints until the command completes because we can oversubscribe
2278  * the host in this case:
2279  *
2280  *  - the first configure endpoint command drops more endpoints than it adds
2281  *  - a second configure endpoint command that adds more endpoints is queued
2282  *  - the first configure endpoint command fails, so the config is unchanged
2283  *  - the second command may succeed, even though there isn't enough resources
2284  *
2285  * Must be called with xhci->lock held.
2286  */
2287 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2288                 struct xhci_input_control_ctx *ctrl_ctx)
2289 {
2290         u32 added_eps;
2291
2292         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2293         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2294                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2295                                 "Not enough ep ctxs: "
2296                                 "%u active, need to add %u, limit is %u.",
2297                                 xhci->num_active_eps, added_eps,
2298                                 xhci->limit_active_eps);
2299                 return -ENOMEM;
2300         }
2301         xhci->num_active_eps += added_eps;
2302         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2303                         "Adding %u ep ctxs, %u now active.", added_eps,
2304                         xhci->num_active_eps);
2305         return 0;
2306 }
2307
2308 /*
2309  * The configure endpoint was failed by the xHC for some other reason, so we
2310  * need to revert the resources that failed configuration would have used.
2311  *
2312  * Must be called with xhci->lock held.
2313  */
2314 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2315                 struct xhci_input_control_ctx *ctrl_ctx)
2316 {
2317         u32 num_failed_eps;
2318
2319         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2320         xhci->num_active_eps -= num_failed_eps;
2321         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2322                         "Removing %u failed ep ctxs, %u now active.",
2323                         num_failed_eps,
2324                         xhci->num_active_eps);
2325 }
2326
2327 /*
2328  * Now that the command has completed, clean up the active endpoint count by
2329  * subtracting out the endpoints that were dropped (but not changed).
2330  *
2331  * Must be called with xhci->lock held.
2332  */
2333 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2334                 struct xhci_input_control_ctx *ctrl_ctx)
2335 {
2336         u32 num_dropped_eps;
2337
2338         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2339         xhci->num_active_eps -= num_dropped_eps;
2340         if (num_dropped_eps)
2341                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2342                                 "Removing %u dropped ep ctxs, %u now active.",
2343                                 num_dropped_eps,
2344                                 xhci->num_active_eps);
2345 }
2346
2347 static unsigned int xhci_get_block_size(struct usb_device *udev)
2348 {
2349         switch (udev->speed) {
2350         case USB_SPEED_LOW:
2351         case USB_SPEED_FULL:
2352                 return FS_BLOCK;
2353         case USB_SPEED_HIGH:
2354                 return HS_BLOCK;
2355         case USB_SPEED_SUPER:
2356         case USB_SPEED_SUPER_PLUS:
2357                 return SS_BLOCK;
2358         case USB_SPEED_UNKNOWN:
2359         case USB_SPEED_WIRELESS:
2360         default:
2361                 /* Should never happen */
2362                 return 1;
2363         }
2364 }
2365
2366 static unsigned int
2367 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2368 {
2369         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2370                 return LS_OVERHEAD;
2371         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2372                 return FS_OVERHEAD;
2373         return HS_OVERHEAD;
2374 }
2375
2376 /* If we are changing a LS/FS device under a HS hub,
2377  * make sure (if we are activating a new TT) that the HS bus has enough
2378  * bandwidth for this new TT.
2379  */
2380 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2381                 struct xhci_virt_device *virt_dev,
2382                 int old_active_eps)
2383 {
2384         struct xhci_interval_bw_table *bw_table;
2385         struct xhci_tt_bw_info *tt_info;
2386
2387         /* Find the bandwidth table for the root port this TT is attached to. */
2388         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2389         tt_info = virt_dev->tt_info;
2390         /* If this TT already had active endpoints, the bandwidth for this TT
2391          * has already been added.  Removing all periodic endpoints (and thus
2392          * making the TT enactive) will only decrease the bandwidth used.
2393          */
2394         if (old_active_eps)
2395                 return 0;
2396         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2397                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2398                         return -ENOMEM;
2399                 return 0;
2400         }
2401         /* Not sure why we would have no new active endpoints...
2402          *
2403          * Maybe because of an Evaluate Context change for a hub update or a
2404          * control endpoint 0 max packet size change?
2405          * FIXME: skip the bandwidth calculation in that case.
2406          */
2407         return 0;
2408 }
2409
2410 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2411                 struct xhci_virt_device *virt_dev)
2412 {
2413         unsigned int bw_reserved;
2414
2415         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2416         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2417                 return -ENOMEM;
2418
2419         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2420         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2421                 return -ENOMEM;
2422
2423         return 0;
2424 }
2425
2426 /*
2427  * This algorithm is a very conservative estimate of the worst-case scheduling
2428  * scenario for any one interval.  The hardware dynamically schedules the
2429  * packets, so we can't tell which microframe could be the limiting factor in
2430  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2431  *
2432  * Obviously, we can't solve an NP complete problem to find the minimum worst
2433  * case scenario.  Instead, we come up with an estimate that is no less than
2434  * the worst case bandwidth used for any one microframe, but may be an
2435  * over-estimate.
2436  *
2437  * We walk the requirements for each endpoint by interval, starting with the
2438  * smallest interval, and place packets in the schedule where there is only one
2439  * possible way to schedule packets for that interval.  In order to simplify
2440  * this algorithm, we record the largest max packet size for each interval, and
2441  * assume all packets will be that size.
2442  *
2443  * For interval 0, we obviously must schedule all packets for each interval.
2444  * The bandwidth for interval 0 is just the amount of data to be transmitted
2445  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2446  * the number of packets).
2447  *
2448  * For interval 1, we have two possible microframes to schedule those packets
2449  * in.  For this algorithm, if we can schedule the same number of packets for
2450  * each possible scheduling opportunity (each microframe), we will do so.  The
2451  * remaining number of packets will be saved to be transmitted in the gaps in
2452  * the next interval's scheduling sequence.
2453  *
2454  * As we move those remaining packets to be scheduled with interval 2 packets,
2455  * we have to double the number of remaining packets to transmit.  This is
2456  * because the intervals are actually powers of 2, and we would be transmitting
2457  * the previous interval's packets twice in this interval.  We also have to be
2458  * sure that when we look at the largest max packet size for this interval, we
2459  * also look at the largest max packet size for the remaining packets and take
2460  * the greater of the two.
2461  *
2462  * The algorithm continues to evenly distribute packets in each scheduling
2463  * opportunity, and push the remaining packets out, until we get to the last
2464  * interval.  Then those packets and their associated overhead are just added
2465  * to the bandwidth used.
2466  */
2467 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2468                 struct xhci_virt_device *virt_dev,
2469                 int old_active_eps)
2470 {
2471         unsigned int bw_reserved;
2472         unsigned int max_bandwidth;
2473         unsigned int bw_used;
2474         unsigned int block_size;
2475         struct xhci_interval_bw_table *bw_table;
2476         unsigned int packet_size = 0;
2477         unsigned int overhead = 0;
2478         unsigned int packets_transmitted = 0;
2479         unsigned int packets_remaining = 0;
2480         unsigned int i;
2481
2482         if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2483                 return xhci_check_ss_bw(xhci, virt_dev);
2484
2485         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2486                 max_bandwidth = HS_BW_LIMIT;
2487                 /* Convert percent of bus BW reserved to blocks reserved */
2488                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2489         } else {
2490                 max_bandwidth = FS_BW_LIMIT;
2491                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2492         }
2493
2494         bw_table = virt_dev->bw_table;
2495         /* We need to translate the max packet size and max ESIT payloads into
2496          * the units the hardware uses.
2497          */
2498         block_size = xhci_get_block_size(virt_dev->udev);
2499
2500         /* If we are manipulating a LS/FS device under a HS hub, double check
2501          * that the HS bus has enough bandwidth if we are activing a new TT.
2502          */
2503         if (virt_dev->tt_info) {
2504                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2505                                 "Recalculating BW for rootport %u",
2506                                 virt_dev->real_port);
2507                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2508                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2509                                         "newly activated TT.\n");
2510                         return -ENOMEM;
2511                 }
2512                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2513                                 "Recalculating BW for TT slot %u port %u",
2514                                 virt_dev->tt_info->slot_id,
2515                                 virt_dev->tt_info->ttport);
2516         } else {
2517                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2518                                 "Recalculating BW for rootport %u",
2519                                 virt_dev->real_port);
2520         }
2521
2522         /* Add in how much bandwidth will be used for interval zero, or the
2523          * rounded max ESIT payload + number of packets * largest overhead.
2524          */
2525         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2526                 bw_table->interval_bw[0].num_packets *
2527                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2528
2529         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2530                 unsigned int bw_added;
2531                 unsigned int largest_mps;
2532                 unsigned int interval_overhead;
2533
2534                 /*
2535                  * How many packets could we transmit in this interval?
2536                  * If packets didn't fit in the previous interval, we will need
2537                  * to transmit that many packets twice within this interval.
2538                  */
2539                 packets_remaining = 2 * packets_remaining +
2540                         bw_table->interval_bw[i].num_packets;
2541
2542                 /* Find the largest max packet size of this or the previous
2543                  * interval.
2544                  */
2545                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2546                         largest_mps = 0;
2547                 else {
2548                         struct xhci_virt_ep *virt_ep;
2549                         struct list_head *ep_entry;
2550
2551                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2552                         virt_ep = list_entry(ep_entry,
2553                                         struct xhci_virt_ep, bw_endpoint_list);
2554                         /* Convert to blocks, rounding up */
2555                         largest_mps = DIV_ROUND_UP(
2556                                         virt_ep->bw_info.max_packet_size,
2557                                         block_size);
2558                 }
2559                 if (largest_mps > packet_size)
2560                         packet_size = largest_mps;
2561
2562                 /* Use the larger overhead of this or the previous interval. */
2563                 interval_overhead = xhci_get_largest_overhead(
2564                                 &bw_table->interval_bw[i]);
2565                 if (interval_overhead > overhead)
2566                         overhead = interval_overhead;
2567
2568                 /* How many packets can we evenly distribute across
2569                  * (1 << (i + 1)) possible scheduling opportunities?
2570                  */
2571                 packets_transmitted = packets_remaining >> (i + 1);
2572
2573                 /* Add in the bandwidth used for those scheduled packets */
2574                 bw_added = packets_transmitted * (overhead + packet_size);
2575
2576                 /* How many packets do we have remaining to transmit? */
2577                 packets_remaining = packets_remaining % (1 << (i + 1));
2578
2579                 /* What largest max packet size should those packets have? */
2580                 /* If we've transmitted all packets, don't carry over the
2581                  * largest packet size.
2582                  */
2583                 if (packets_remaining == 0) {
2584                         packet_size = 0;
2585                         overhead = 0;
2586                 } else if (packets_transmitted > 0) {
2587                         /* Otherwise if we do have remaining packets, and we've
2588                          * scheduled some packets in this interval, take the
2589                          * largest max packet size from endpoints with this
2590                          * interval.
2591                          */
2592                         packet_size = largest_mps;
2593                         overhead = interval_overhead;
2594                 }
2595                 /* Otherwise carry over packet_size and overhead from the last
2596                  * time we had a remainder.
2597                  */
2598                 bw_used += bw_added;
2599                 if (bw_used > max_bandwidth) {
2600                         xhci_warn(xhci, "Not enough bandwidth. "
2601                                         "Proposed: %u, Max: %u\n",
2602                                 bw_used, max_bandwidth);
2603                         return -ENOMEM;
2604                 }
2605         }
2606         /*
2607          * Ok, we know we have some packets left over after even-handedly
2608          * scheduling interval 15.  We don't know which microframes they will
2609          * fit into, so we over-schedule and say they will be scheduled every
2610          * microframe.
2611          */
2612         if (packets_remaining > 0)
2613                 bw_used += overhead + packet_size;
2614
2615         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2616                 unsigned int port_index = virt_dev->real_port - 1;
2617
2618                 /* OK, we're manipulating a HS device attached to a
2619                  * root port bandwidth domain.  Include the number of active TTs
2620                  * in the bandwidth used.
2621                  */
2622                 bw_used += TT_HS_OVERHEAD *
2623                         xhci->rh_bw[port_index].num_active_tts;
2624         }
2625
2626         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2627                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2628                 "Available: %u " "percent",
2629                 bw_used, max_bandwidth, bw_reserved,
2630                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2631                 max_bandwidth);
2632
2633         bw_used += bw_reserved;
2634         if (bw_used > max_bandwidth) {
2635                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2636                                 bw_used, max_bandwidth);
2637                 return -ENOMEM;
2638         }
2639
2640         bw_table->bw_used = bw_used;
2641         return 0;
2642 }
2643
2644 static bool xhci_is_async_ep(unsigned int ep_type)
2645 {
2646         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2647                                         ep_type != ISOC_IN_EP &&
2648                                         ep_type != INT_IN_EP);
2649 }
2650
2651 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2652 {
2653         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2654 }
2655
2656 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2657 {
2658         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2659
2660         if (ep_bw->ep_interval == 0)
2661                 return SS_OVERHEAD_BURST +
2662                         (ep_bw->mult * ep_bw->num_packets *
2663                                         (SS_OVERHEAD + mps));
2664         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2665                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2666                                 1 << ep_bw->ep_interval);
2667
2668 }
2669
2670 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2671                 struct xhci_bw_info *ep_bw,
2672                 struct xhci_interval_bw_table *bw_table,
2673                 struct usb_device *udev,
2674                 struct xhci_virt_ep *virt_ep,
2675                 struct xhci_tt_bw_info *tt_info)
2676 {
2677         struct xhci_interval_bw *interval_bw;
2678         int normalized_interval;
2679
2680         if (xhci_is_async_ep(ep_bw->type))
2681                 return;
2682
2683         if (udev->speed >= USB_SPEED_SUPER) {
2684                 if (xhci_is_sync_in_ep(ep_bw->type))
2685                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2686                                 xhci_get_ss_bw_consumed(ep_bw);
2687                 else
2688                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2689                                 xhci_get_ss_bw_consumed(ep_bw);
2690                 return;
2691         }
2692
2693         /* SuperSpeed endpoints never get added to intervals in the table, so
2694          * this check is only valid for HS/FS/LS devices.
2695          */
2696         if (list_empty(&virt_ep->bw_endpoint_list))
2697                 return;
2698         /* For LS/FS devices, we need to translate the interval expressed in
2699          * microframes to frames.
2700          */
2701         if (udev->speed == USB_SPEED_HIGH)
2702                 normalized_interval = ep_bw->ep_interval;
2703         else
2704                 normalized_interval = ep_bw->ep_interval - 3;
2705
2706         if (normalized_interval == 0)
2707                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2708         interval_bw = &bw_table->interval_bw[normalized_interval];
2709         interval_bw->num_packets -= ep_bw->num_packets;
2710         switch (udev->speed) {
2711         case USB_SPEED_LOW:
2712                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2713                 break;
2714         case USB_SPEED_FULL:
2715                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2716                 break;
2717         case USB_SPEED_HIGH:
2718                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2719                 break;
2720         case USB_SPEED_SUPER:
2721         case USB_SPEED_SUPER_PLUS:
2722         case USB_SPEED_UNKNOWN:
2723         case USB_SPEED_WIRELESS:
2724                 /* Should never happen because only LS/FS/HS endpoints will get
2725                  * added to the endpoint list.
2726                  */
2727                 return;
2728         }
2729         if (tt_info)
2730                 tt_info->active_eps -= 1;
2731         list_del_init(&virt_ep->bw_endpoint_list);
2732 }
2733
2734 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2735                 struct xhci_bw_info *ep_bw,
2736                 struct xhci_interval_bw_table *bw_table,
2737                 struct usb_device *udev,
2738                 struct xhci_virt_ep *virt_ep,
2739                 struct xhci_tt_bw_info *tt_info)
2740 {
2741         struct xhci_interval_bw *interval_bw;
2742         struct xhci_virt_ep *smaller_ep;
2743         int normalized_interval;
2744
2745         if (xhci_is_async_ep(ep_bw->type))
2746                 return;
2747
2748         if (udev->speed == USB_SPEED_SUPER) {
2749                 if (xhci_is_sync_in_ep(ep_bw->type))
2750                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2751                                 xhci_get_ss_bw_consumed(ep_bw);
2752                 else
2753                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2754                                 xhci_get_ss_bw_consumed(ep_bw);
2755                 return;
2756         }
2757
2758         /* For LS/FS devices, we need to translate the interval expressed in
2759          * microframes to frames.
2760          */
2761         if (udev->speed == USB_SPEED_HIGH)
2762                 normalized_interval = ep_bw->ep_interval;
2763         else
2764                 normalized_interval = ep_bw->ep_interval - 3;
2765
2766         if (normalized_interval == 0)
2767                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2768         interval_bw = &bw_table->interval_bw[normalized_interval];
2769         interval_bw->num_packets += ep_bw->num_packets;
2770         switch (udev->speed) {
2771         case USB_SPEED_LOW:
2772                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2773                 break;
2774         case USB_SPEED_FULL:
2775                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2776                 break;
2777         case USB_SPEED_HIGH:
2778                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2779                 break;
2780         case USB_SPEED_SUPER:
2781         case USB_SPEED_SUPER_PLUS:
2782         case USB_SPEED_UNKNOWN:
2783         case USB_SPEED_WIRELESS:
2784                 /* Should never happen because only LS/FS/HS endpoints will get
2785                  * added to the endpoint list.
2786                  */
2787                 return;
2788         }
2789
2790         if (tt_info)
2791                 tt_info->active_eps += 1;
2792         /* Insert the endpoint into the list, largest max packet size first. */
2793         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2794                         bw_endpoint_list) {
2795                 if (ep_bw->max_packet_size >=
2796                                 smaller_ep->bw_info.max_packet_size) {
2797                         /* Add the new ep before the smaller endpoint */
2798                         list_add_tail(&virt_ep->bw_endpoint_list,
2799                                         &smaller_ep->bw_endpoint_list);
2800                         return;
2801                 }
2802         }
2803         /* Add the new endpoint at the end of the list. */
2804         list_add_tail(&virt_ep->bw_endpoint_list,
2805                         &interval_bw->endpoints);
2806 }
2807
2808 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2809                 struct xhci_virt_device *virt_dev,
2810                 int old_active_eps)
2811 {
2812         struct xhci_root_port_bw_info *rh_bw_info;
2813         if (!virt_dev->tt_info)
2814                 return;
2815
2816         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2817         if (old_active_eps == 0 &&
2818                                 virt_dev->tt_info->active_eps != 0) {
2819                 rh_bw_info->num_active_tts += 1;
2820                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2821         } else if (old_active_eps != 0 &&
2822                                 virt_dev->tt_info->active_eps == 0) {
2823                 rh_bw_info->num_active_tts -= 1;
2824                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2825         }
2826 }
2827
2828 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2829                 struct xhci_virt_device *virt_dev,
2830                 struct xhci_container_ctx *in_ctx)
2831 {
2832         struct xhci_bw_info ep_bw_info[31];
2833         int i;
2834         struct xhci_input_control_ctx *ctrl_ctx;
2835         int old_active_eps = 0;
2836
2837         if (virt_dev->tt_info)
2838                 old_active_eps = virt_dev->tt_info->active_eps;
2839
2840         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2841         if (!ctrl_ctx) {
2842                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2843                                 __func__);
2844                 return -ENOMEM;
2845         }
2846
2847         for (i = 0; i < 31; i++) {
2848                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2849                         continue;
2850
2851                 /* Make a copy of the BW info in case we need to revert this */
2852                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2853                                 sizeof(ep_bw_info[i]));
2854                 /* Drop the endpoint from the interval table if the endpoint is
2855                  * being dropped or changed.
2856                  */
2857                 if (EP_IS_DROPPED(ctrl_ctx, i))
2858                         xhci_drop_ep_from_interval_table(xhci,
2859                                         &virt_dev->eps[i].bw_info,
2860                                         virt_dev->bw_table,
2861                                         virt_dev->udev,
2862                                         &virt_dev->eps[i],
2863                                         virt_dev->tt_info);
2864         }
2865         /* Overwrite the information stored in the endpoints' bw_info */
2866         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2867         for (i = 0; i < 31; i++) {
2868                 /* Add any changed or added endpoints to the interval table */
2869                 if (EP_IS_ADDED(ctrl_ctx, i))
2870                         xhci_add_ep_to_interval_table(xhci,
2871                                         &virt_dev->eps[i].bw_info,
2872                                         virt_dev->bw_table,
2873                                         virt_dev->udev,
2874                                         &virt_dev->eps[i],
2875                                         virt_dev->tt_info);
2876         }
2877
2878         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2879                 /* Ok, this fits in the bandwidth we have.
2880                  * Update the number of active TTs.
2881                  */
2882                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2883                 return 0;
2884         }
2885
2886         /* We don't have enough bandwidth for this, revert the stored info. */
2887         for (i = 0; i < 31; i++) {
2888                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2889                         continue;
2890
2891                 /* Drop the new copies of any added or changed endpoints from
2892                  * the interval table.
2893                  */
2894                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2895                         xhci_drop_ep_from_interval_table(xhci,
2896                                         &virt_dev->eps[i].bw_info,
2897                                         virt_dev->bw_table,
2898                                         virt_dev->udev,
2899                                         &virt_dev->eps[i],
2900                                         virt_dev->tt_info);
2901                 }
2902                 /* Revert the endpoint back to its old information */
2903                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2904                                 sizeof(ep_bw_info[i]));
2905                 /* Add any changed or dropped endpoints back into the table */
2906                 if (EP_IS_DROPPED(ctrl_ctx, i))
2907                         xhci_add_ep_to_interval_table(xhci,
2908                                         &virt_dev->eps[i].bw_info,
2909                                         virt_dev->bw_table,
2910                                         virt_dev->udev,
2911                                         &virt_dev->eps[i],
2912                                         virt_dev->tt_info);
2913         }
2914         return -ENOMEM;
2915 }
2916
2917
2918 /* Issue a configure endpoint command or evaluate context command
2919  * and wait for it to finish.
2920  */
2921 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2922                 struct usb_device *udev,
2923                 struct xhci_command *command,
2924                 bool ctx_change, bool must_succeed)
2925 {
2926         int ret;
2927         unsigned long flags;
2928         struct xhci_input_control_ctx *ctrl_ctx;
2929         struct xhci_virt_device *virt_dev;
2930         struct xhci_slot_ctx *slot_ctx;
2931
2932         if (!command)
2933                 return -EINVAL;
2934
2935         spin_lock_irqsave(&xhci->lock, flags);
2936
2937         if (xhci->xhc_state & XHCI_STATE_DYING) {
2938                 spin_unlock_irqrestore(&xhci->lock, flags);
2939                 return -ESHUTDOWN;
2940         }
2941
2942         virt_dev = xhci->devs[udev->slot_id];
2943
2944         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2945         if (!ctrl_ctx) {
2946                 spin_unlock_irqrestore(&xhci->lock, flags);
2947                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2948                                 __func__);
2949                 return -ENOMEM;
2950         }
2951
2952         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2953                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2954                 spin_unlock_irqrestore(&xhci->lock, flags);
2955                 xhci_warn(xhci, "Not enough host resources, "
2956                                 "active endpoint contexts = %u\n",
2957                                 xhci->num_active_eps);
2958                 return -ENOMEM;
2959         }
2960         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2961             xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2962                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2963                         xhci_free_host_resources(xhci, ctrl_ctx);
2964                 spin_unlock_irqrestore(&xhci->lock, flags);
2965                 xhci_warn(xhci, "Not enough bandwidth\n");
2966                 return -ENOMEM;
2967         }
2968
2969         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2970
2971         trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2972         trace_xhci_configure_endpoint(slot_ctx);
2973
2974         if (!ctx_change)
2975                 ret = xhci_queue_configure_endpoint(xhci, command,
2976                                 command->in_ctx->dma,
2977                                 udev->slot_id, must_succeed);
2978         else
2979                 ret = xhci_queue_evaluate_context(xhci, command,
2980                                 command->in_ctx->dma,
2981                                 udev->slot_id, must_succeed);
2982         if (ret < 0) {
2983                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2984                         xhci_free_host_resources(xhci, ctrl_ctx);
2985                 spin_unlock_irqrestore(&xhci->lock, flags);
2986                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2987                                 "FIXME allocate a new ring segment");
2988                 return -ENOMEM;
2989         }
2990         xhci_ring_cmd_db(xhci);
2991         spin_unlock_irqrestore(&xhci->lock, flags);
2992
2993         /* Wait for the configure endpoint command to complete */
2994         wait_for_completion(command->completion);
2995
2996         if (!ctx_change)
2997                 ret = xhci_configure_endpoint_result(xhci, udev,
2998                                                      &command->status);
2999         else
3000                 ret = xhci_evaluate_context_result(xhci, udev,
3001                                                    &command->status);
3002
3003         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3004                 spin_lock_irqsave(&xhci->lock, flags);
3005                 /* If the command failed, remove the reserved resources.
3006                  * Otherwise, clean up the estimate to include dropped eps.
3007                  */
3008                 if (ret)
3009                         xhci_free_host_resources(xhci, ctrl_ctx);
3010                 else
3011                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
3012                 spin_unlock_irqrestore(&xhci->lock, flags);
3013         }
3014         return ret;
3015 }
3016
3017 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
3018         struct xhci_virt_device *vdev, int i)
3019 {
3020         struct xhci_virt_ep *ep = &vdev->eps[i];
3021
3022         if (ep->ep_state & EP_HAS_STREAMS) {
3023                 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
3024                                 xhci_get_endpoint_address(i));
3025                 xhci_free_stream_info(xhci, ep->stream_info);
3026                 ep->stream_info = NULL;
3027                 ep->ep_state &= ~EP_HAS_STREAMS;
3028         }
3029 }
3030
3031 /* Called after one or more calls to xhci_add_endpoint() or
3032  * xhci_drop_endpoint().  If this call fails, the USB core is expected
3033  * to call xhci_reset_bandwidth().
3034  *
3035  * Since we are in the middle of changing either configuration or
3036  * installing a new alt setting, the USB core won't allow URBs to be
3037  * enqueued for any endpoint on the old config or interface.  Nothing
3038  * else should be touching the xhci->devs[slot_id] structure, so we
3039  * don't need to take the xhci->lock for manipulating that.
3040  */
3041 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3042 {
3043         int i;
3044         int ret = 0;
3045         struct xhci_hcd *xhci;
3046         struct xhci_virt_device *virt_dev;
3047         struct xhci_input_control_ctx *ctrl_ctx;
3048         struct xhci_slot_ctx *slot_ctx;
3049         struct xhci_command *command;
3050
3051         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3052         if (ret <= 0)
3053                 return ret;
3054         xhci = hcd_to_xhci(hcd);
3055         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
3056                 (xhci->xhc_state & XHCI_STATE_REMOVING))
3057                 return -ENODEV;
3058
3059         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3060         virt_dev = xhci->devs[udev->slot_id];
3061
3062         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3063         if (!command)
3064                 return -ENOMEM;
3065
3066         command->in_ctx = virt_dev->in_ctx;
3067
3068         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
3069         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3070         if (!ctrl_ctx) {
3071                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3072                                 __func__);
3073                 ret = -ENOMEM;
3074                 goto command_cleanup;
3075         }
3076         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3077         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
3078         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
3079
3080         /* Don't issue the command if there's no endpoints to update. */
3081         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
3082             ctrl_ctx->drop_flags == 0) {
3083                 ret = 0;
3084                 goto command_cleanup;
3085         }
3086         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
3087         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3088         for (i = 31; i >= 1; i--) {
3089                 __le32 le32 = cpu_to_le32(BIT(i));
3090
3091                 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
3092                     || (ctrl_ctx->add_flags & le32) || i == 1) {
3093                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
3094                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
3095                         break;
3096                 }
3097         }
3098
3099         ret = xhci_configure_endpoint(xhci, udev, command,
3100                         false, false);
3101         if (ret)
3102                 /* Callee should call reset_bandwidth() */
3103                 goto command_cleanup;
3104
3105         /* Free any rings that were dropped, but not changed. */
3106         for (i = 1; i < 31; i++) {
3107                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
3108                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
3109                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3110                         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3111                 }
3112         }
3113         xhci_zero_in_ctx(xhci, virt_dev);
3114         /*
3115          * Install any rings for completely new endpoints or changed endpoints,
3116          * and free any old rings from changed endpoints.
3117          */
3118         for (i = 1; i < 31; i++) {
3119                 if (!virt_dev->eps[i].new_ring)
3120                         continue;
3121                 /* Only free the old ring if it exists.
3122                  * It may not if this is the first add of an endpoint.
3123                  */
3124                 if (virt_dev->eps[i].ring) {
3125                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3126                 }
3127                 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3128                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
3129                 virt_dev->eps[i].new_ring = NULL;
3130                 xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3131         }
3132 command_cleanup:
3133         kfree(command->completion);
3134         kfree(command);
3135
3136         return ret;
3137 }
3138 EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3139
3140 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3141 {
3142         struct xhci_hcd *xhci;
3143         struct xhci_virt_device *virt_dev;
3144         int i, ret;
3145
3146         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3147         if (ret <= 0)
3148                 return;
3149         xhci = hcd_to_xhci(hcd);
3150
3151         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3152         virt_dev = xhci->devs[udev->slot_id];
3153         /* Free any rings allocated for added endpoints */
3154         for (i = 0; i < 31; i++) {
3155                 if (virt_dev->eps[i].new_ring) {
3156                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3157                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3158                         virt_dev->eps[i].new_ring = NULL;
3159                 }
3160         }
3161         xhci_zero_in_ctx(xhci, virt_dev);
3162 }
3163 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3164
3165 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3166                 struct xhci_container_ctx *in_ctx,
3167                 struct xhci_container_ctx *out_ctx,
3168                 struct xhci_input_control_ctx *ctrl_ctx,
3169                 u32 add_flags, u32 drop_flags)
3170 {
3171         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3172         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3173         xhci_slot_copy(xhci, in_ctx, out_ctx);
3174         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3175 }
3176
3177 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3178                                   struct usb_host_endpoint *host_ep)
3179 {
3180         struct xhci_hcd         *xhci;
3181         struct xhci_virt_device *vdev;
3182         struct xhci_virt_ep     *ep;
3183         struct usb_device       *udev;
3184         unsigned long           flags;
3185         unsigned int            ep_index;
3186
3187         xhci = hcd_to_xhci(hcd);
3188 rescan:
3189         spin_lock_irqsave(&xhci->lock, flags);
3190
3191         udev = (struct usb_device *)host_ep->hcpriv;
3192         if (!udev || !udev->slot_id)
3193                 goto done;
3194
3195         vdev = xhci->devs[udev->slot_id];
3196         if (!vdev)
3197                 goto done;
3198
3199         ep_index = xhci_get_endpoint_index(&host_ep->desc);
3200         ep = &vdev->eps[ep_index];
3201
3202         /* wait for hub_tt_work to finish clearing hub TT */
3203         if (ep->ep_state & EP_CLEARING_TT) {
3204                 spin_unlock_irqrestore(&xhci->lock, flags);
3205                 schedule_timeout_uninterruptible(1);
3206                 goto rescan;
3207         }
3208
3209         if (ep->ep_state)
3210                 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3211                          ep->ep_state);
3212 done:
3213         host_ep->hcpriv = NULL;
3214         spin_unlock_irqrestore(&xhci->lock, flags);
3215 }
3216
3217 /*
3218  * Called after usb core issues a clear halt control message.
3219  * The host side of the halt should already be cleared by a reset endpoint
3220  * command issued when the STALL event was received.
3221  *
3222  * The reset endpoint command may only be issued to endpoints in the halted
3223  * state. For software that wishes to reset the data toggle or sequence number
3224  * of an endpoint that isn't in the halted state this function will issue a
3225  * configure endpoint command with the Drop and Add bits set for the target
3226  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3227  */
3228
3229 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3230                 struct usb_host_endpoint *host_ep)
3231 {
3232         struct xhci_hcd *xhci;
3233         struct usb_device *udev;
3234         struct xhci_virt_device *vdev;
3235         struct xhci_virt_ep *ep;
3236         struct xhci_input_control_ctx *ctrl_ctx;
3237         struct xhci_command *stop_cmd, *cfg_cmd;
3238         unsigned int ep_index;
3239         unsigned long flags;
3240         u32 ep_flag;
3241         int err;
3242
3243         xhci = hcd_to_xhci(hcd);
3244         if (!host_ep->hcpriv)
3245                 return;
3246         udev = (struct usb_device *) host_ep->hcpriv;
3247         vdev = xhci->devs[udev->slot_id];
3248
3249         /*
3250          * vdev may be lost due to xHC restore error and re-initialization
3251          * during S3/S4 resume. A new vdev will be allocated later by
3252          * xhci_discover_or_reset_device()
3253          */
3254         if (!udev->slot_id || !vdev)
3255                 return;
3256         ep_index = xhci_get_endpoint_index(&host_ep->desc);
3257         ep = &vdev->eps[ep_index];
3258
3259         /* Bail out if toggle is already being cleared by a endpoint reset */
3260         spin_lock_irqsave(&xhci->lock, flags);
3261         if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3262                 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3263                 spin_unlock_irqrestore(&xhci->lock, flags);
3264                 return;
3265         }
3266         spin_unlock_irqrestore(&xhci->lock, flags);
3267         /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3268         if (usb_endpoint_xfer_control(&host_ep->desc) ||
3269             usb_endpoint_xfer_isoc(&host_ep->desc))
3270                 return;
3271
3272         ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3273
3274         if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3275                 return;
3276
3277         stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3278         if (!stop_cmd)
3279                 return;
3280
3281         cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3282         if (!cfg_cmd)
3283                 goto cleanup;
3284
3285         spin_lock_irqsave(&xhci->lock, flags);
3286
3287         /* block queuing new trbs and ringing ep doorbell */
3288         ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3289
3290         /*
3291          * Make sure endpoint ring is empty before resetting the toggle/seq.
3292          * Driver is required to synchronously cancel all transfer request.
3293          * Stop the endpoint to force xHC to update the output context
3294          */
3295
3296         if (!list_empty(&ep->ring->td_list)) {
3297                 dev_err(&udev->dev, "EP not empty, refuse reset\n");
3298                 spin_unlock_irqrestore(&xhci->lock, flags);
3299                 xhci_free_command(xhci, cfg_cmd);
3300                 goto cleanup;
3301         }
3302
3303         err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3304                                         ep_index, 0);
3305         if (err < 0) {
3306                 spin_unlock_irqrestore(&xhci->lock, flags);
3307                 xhci_free_command(xhci, cfg_cmd);
3308                 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3309                                 __func__, err);
3310                 goto cleanup;
3311         }
3312
3313         xhci_ring_cmd_db(xhci);
3314         spin_unlock_irqrestore(&xhci->lock, flags);
3315
3316         wait_for_completion(stop_cmd->completion);
3317
3318         spin_lock_irqsave(&xhci->lock, flags);
3319
3320         /* config ep command clears toggle if add and drop ep flags are set */
3321         ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3322         if (!ctrl_ctx) {
3323                 spin_unlock_irqrestore(&xhci->lock, flags);
3324                 xhci_free_command(xhci, cfg_cmd);
3325                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3326                                 __func__);
3327                 goto cleanup;
3328         }
3329
3330         xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3331                                            ctrl_ctx, ep_flag, ep_flag);
3332         xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3333
3334         err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3335                                       udev->slot_id, false);
3336         if (err < 0) {
3337                 spin_unlock_irqrestore(&xhci->lock, flags);
3338                 xhci_free_command(xhci, cfg_cmd);
3339                 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3340                                 __func__, err);
3341                 goto cleanup;
3342         }
3343
3344         xhci_ring_cmd_db(xhci);
3345         spin_unlock_irqrestore(&xhci->lock, flags);
3346
3347         wait_for_completion(cfg_cmd->completion);
3348
3349         xhci_free_command(xhci, cfg_cmd);
3350 cleanup:
3351         xhci_free_command(xhci, stop_cmd);
3352         spin_lock_irqsave(&xhci->lock, flags);
3353         if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3354                 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3355         spin_unlock_irqrestore(&xhci->lock, flags);
3356 }
3357
3358 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3359                 struct usb_device *udev, struct usb_host_endpoint *ep,
3360                 unsigned int slot_id)
3361 {
3362         int ret;
3363         unsigned int ep_index;
3364         unsigned int ep_state;
3365
3366         if (!ep)
3367                 return -EINVAL;
3368         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3369         if (ret <= 0)
3370                 return ret ? ret : -EINVAL;
3371         if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3372                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3373                                 " descriptor for ep 0x%x does not support streams\n",
3374                                 ep->desc.bEndpointAddress);
3375                 return -EINVAL;
3376         }
3377
3378         ep_index = xhci_get_endpoint_index(&ep->desc);
3379         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3380         if (ep_state & EP_HAS_STREAMS ||
3381                         ep_state & EP_GETTING_STREAMS) {
3382                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3383                                 "already has streams set up.\n",
3384                                 ep->desc.bEndpointAddress);
3385                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3386                                 "dynamic stream context array reallocation.\n");
3387                 return -EINVAL;
3388         }
3389         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3390                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3391                                 "endpoint 0x%x; URBs are pending.\n",
3392                                 ep->desc.bEndpointAddress);
3393                 return -EINVAL;
3394         }
3395         return 0;
3396 }
3397
3398 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3399                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3400 {
3401         unsigned int max_streams;
3402
3403         /* The stream context array size must be a power of two */
3404         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3405         /*
3406          * Find out how many primary stream array entries the host controller
3407          * supports.  Later we may use secondary stream arrays (similar to 2nd
3408          * level page entries), but that's an optional feature for xHCI host
3409          * controllers. xHCs must support at least 4 stream IDs.
3410          */
3411         max_streams = HCC_MAX_PSA(xhci->hcc_params);
3412         if (*num_stream_ctxs > max_streams) {
3413                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3414                                 max_streams);
3415                 *num_stream_ctxs = max_streams;
3416                 *num_streams = max_streams;
3417         }
3418 }
3419
3420 /* Returns an error code if one of the endpoint already has streams.
3421  * This does not change any data structures, it only checks and gathers
3422  * information.
3423  */
3424 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3425                 struct usb_device *udev,
3426                 struct usb_host_endpoint **eps, unsigned int num_eps,
3427                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3428 {
3429         unsigned int max_streams;
3430         unsigned int endpoint_flag;
3431         int i;
3432         int ret;
3433
3434         for (i = 0; i < num_eps; i++) {
3435                 ret = xhci_check_streams_endpoint(xhci, udev,
3436                                 eps[i], udev->slot_id);
3437                 if (ret < 0)
3438                         return ret;
3439
3440                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3441                 if (max_streams < (*num_streams - 1)) {
3442                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3443                                         eps[i]->desc.bEndpointAddress,
3444                                         max_streams);
3445                         *num_streams = max_streams+1;
3446                 }
3447
3448                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3449                 if (*changed_ep_bitmask & endpoint_flag)
3450                         return -EINVAL;
3451                 *changed_ep_bitmask |= endpoint_flag;
3452         }
3453         return 0;
3454 }
3455
3456 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3457                 struct usb_device *udev,
3458                 struct usb_host_endpoint **eps, unsigned int num_eps)
3459 {
3460         u32 changed_ep_bitmask = 0;
3461         unsigned int slot_id;
3462         unsigned int ep_index;
3463         unsigned int ep_state;
3464         int i;
3465
3466         slot_id = udev->slot_id;
3467         if (!xhci->devs[slot_id])
3468                 return 0;
3469
3470         for (i = 0; i < num_eps; i++) {
3471                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3472                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3473                 /* Are streams already being freed for the endpoint? */
3474                 if (ep_state & EP_GETTING_NO_STREAMS) {
3475                         xhci_warn(xhci, "WARN Can't disable streams for "
3476                                         "endpoint 0x%x, "
3477                                         "streams are being disabled already\n",
3478                                         eps[i]->desc.bEndpointAddress);
3479                         return 0;
3480                 }
3481                 /* Are there actually any streams to free? */
3482                 if (!(ep_state & EP_HAS_STREAMS) &&
3483                                 !(ep_state & EP_GETTING_STREAMS)) {
3484                         xhci_warn(xhci, "WARN Can't disable streams for "
3485                                         "endpoint 0x%x, "
3486                                         "streams are already disabled!\n",
3487                                         eps[i]->desc.bEndpointAddress);
3488                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3489                                         "with non-streams endpoint\n");
3490                         return 0;
3491                 }
3492                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3493         }
3494         return changed_ep_bitmask;
3495 }
3496
3497 /*
3498  * The USB device drivers use this function (through the HCD interface in USB
3499  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3500  * coordinate mass storage command queueing across multiple endpoints (basically
3501  * a stream ID == a task ID).
3502  *
3503  * Setting up streams involves allocating the same size stream context array
3504  * for each endpoint and issuing a configure endpoint command for all endpoints.
3505  *
3506  * Don't allow the call to succeed if one endpoint only supports one stream
3507  * (which means it doesn't support streams at all).
3508  *
3509  * Drivers may get less stream IDs than they asked for, if the host controller
3510  * hardware or endpoints claim they can't support the number of requested
3511  * stream IDs.
3512  */
3513 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3514                 struct usb_host_endpoint **eps, unsigned int num_eps,
3515                 unsigned int num_streams, gfp_t mem_flags)
3516 {
3517         int i, ret;
3518         struct xhci_hcd *xhci;
3519         struct xhci_virt_device *vdev;
3520         struct xhci_command *config_cmd;
3521         struct xhci_input_control_ctx *ctrl_ctx;
3522         unsigned int ep_index;
3523         unsigned int num_stream_ctxs;
3524         unsigned int max_packet;
3525         unsigned long flags;
3526         u32 changed_ep_bitmask = 0;
3527
3528         if (!eps)
3529                 return -EINVAL;
3530
3531         /* Add one to the number of streams requested to account for
3532          * stream 0 that is reserved for xHCI usage.
3533          */
3534         num_streams += 1;
3535         xhci = hcd_to_xhci(hcd);
3536         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3537                         num_streams);
3538
3539         /* MaxPSASize value 0 (2 streams) means streams are not supported */
3540         if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3541                         HCC_MAX_PSA(xhci->hcc_params) < 4) {
3542                 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3543                 return -ENOSYS;
3544         }
3545
3546         config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3547         if (!config_cmd)
3548                 return -ENOMEM;
3549
3550         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3551         if (!ctrl_ctx) {
3552                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3553                                 __func__);
3554                 xhci_free_command(xhci, config_cmd);
3555                 return -ENOMEM;
3556         }
3557
3558         /* Check to make sure all endpoints are not already configured for
3559          * streams.  While we're at it, find the maximum number of streams that
3560          * all the endpoints will support and check for duplicate endpoints.
3561          */
3562         spin_lock_irqsave(&xhci->lock, flags);
3563         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3564                         num_eps, &num_streams, &changed_ep_bitmask);
3565         if (ret < 0) {
3566                 xhci_free_command(xhci, config_cmd);
3567                 spin_unlock_irqrestore(&xhci->lock, flags);
3568                 return ret;
3569         }
3570         if (num_streams <= 1) {
3571                 xhci_warn(xhci, "WARN: endpoints can't handle "
3572                                 "more than one stream.\n");
3573                 xhci_free_command(xhci, config_cmd);
3574                 spin_unlock_irqrestore(&xhci->lock, flags);
3575                 return -EINVAL;
3576         }
3577         vdev = xhci->devs[udev->slot_id];
3578         /* Mark each endpoint as being in transition, so
3579          * xhci_urb_enqueue() will reject all URBs.
3580          */
3581         for (i = 0; i < num_eps; i++) {
3582                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3583                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3584         }
3585         spin_unlock_irqrestore(&xhci->lock, flags);
3586
3587         /* Setup internal data structures and allocate HW data structures for
3588          * streams (but don't install the HW structures in the input context
3589          * until we're sure all memory allocation succeeded).
3590          */
3591         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3592         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3593                         num_stream_ctxs, num_streams);
3594
3595         for (i = 0; i < num_eps; i++) {
3596                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3597                 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3598                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3599                                 num_stream_ctxs,
3600                                 num_streams,
3601                                 max_packet, mem_flags);
3602                 if (!vdev->eps[ep_index].stream_info)
3603                         goto cleanup;
3604                 /* Set maxPstreams in endpoint context and update deq ptr to
3605                  * point to stream context array. FIXME
3606                  */
3607         }
3608
3609         /* Set up the input context for a configure endpoint command. */
3610         for (i = 0; i < num_eps; i++) {
3611                 struct xhci_ep_ctx *ep_ctx;
3612
3613                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3614                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3615
3616                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3617                                 vdev->out_ctx, ep_index);
3618                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3619                                 vdev->eps[ep_index].stream_info);
3620         }
3621         /* Tell the HW to drop its old copy of the endpoint context info
3622          * and add the updated copy from the input context.
3623          */
3624         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3625                         vdev->out_ctx, ctrl_ctx,
3626                         changed_ep_bitmask, changed_ep_bitmask);
3627
3628         /* Issue and wait for the configure endpoint command */
3629         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3630                         false, false);
3631
3632         /* xHC rejected the configure endpoint command for some reason, so we
3633          * leave the old ring intact and free our internal streams data
3634          * structure.
3635          */
3636         if (ret < 0)
3637                 goto cleanup;
3638
3639         spin_lock_irqsave(&xhci->lock, flags);
3640         for (i = 0; i < num_eps; i++) {
3641                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3642                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3643                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3644                          udev->slot_id, ep_index);
3645                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3646         }
3647         xhci_free_command(xhci, config_cmd);
3648         spin_unlock_irqrestore(&xhci->lock, flags);
3649
3650         for (i = 0; i < num_eps; i++) {
3651                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3652                 xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3653         }
3654         /* Subtract 1 for stream 0, which drivers can't use */
3655         return num_streams - 1;
3656
3657 cleanup:
3658         /* If it didn't work, free the streams! */
3659         for (i = 0; i < num_eps; i++) {
3660                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3661                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3662                 vdev->eps[ep_index].stream_info = NULL;
3663                 /* FIXME Unset maxPstreams in endpoint context and
3664                  * update deq ptr to point to normal string ring.
3665                  */
3666                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3667                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3668                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3669         }
3670         xhci_free_command(xhci, config_cmd);
3671         return -ENOMEM;
3672 }
3673
3674 /* Transition the endpoint from using streams to being a "normal" endpoint
3675  * without streams.
3676  *
3677  * Modify the endpoint context state, submit a configure endpoint command,
3678  * and free all endpoint rings for streams if that completes successfully.
3679  */
3680 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3681                 struct usb_host_endpoint **eps, unsigned int num_eps,
3682                 gfp_t mem_flags)
3683 {
3684         int i, ret;
3685         struct xhci_hcd *xhci;
3686         struct xhci_virt_device *vdev;
3687         struct xhci_command *command;
3688         struct xhci_input_control_ctx *ctrl_ctx;
3689         unsigned int ep_index;
3690         unsigned long flags;
3691         u32 changed_ep_bitmask;
3692
3693         xhci = hcd_to_xhci(hcd);
3694         vdev = xhci->devs[udev->slot_id];
3695
3696         /* Set up a configure endpoint command to remove the streams rings */
3697         spin_lock_irqsave(&xhci->lock, flags);
3698         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3699                         udev, eps, num_eps);
3700         if (changed_ep_bitmask == 0) {
3701                 spin_unlock_irqrestore(&xhci->lock, flags);
3702                 return -EINVAL;
3703         }
3704
3705         /* Use the xhci_command structure from the first endpoint.  We may have
3706          * allocated too many, but the driver may call xhci_free_streams() for
3707          * each endpoint it grouped into one call to xhci_alloc_streams().
3708          */
3709         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3710         command = vdev->eps[ep_index].stream_info->free_streams_command;
3711         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3712         if (!ctrl_ctx) {
3713                 spin_unlock_irqrestore(&xhci->lock, flags);
3714                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3715                                 __func__);
3716                 return -EINVAL;
3717         }
3718
3719         for (i = 0; i < num_eps; i++) {
3720                 struct xhci_ep_ctx *ep_ctx;
3721
3722                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3723                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3724                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3725                         EP_GETTING_NO_STREAMS;
3726
3727                 xhci_endpoint_copy(xhci, command->in_ctx,
3728                                 vdev->out_ctx, ep_index);
3729                 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3730                                 &vdev->eps[ep_index]);
3731         }
3732         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3733                         vdev->out_ctx, ctrl_ctx,
3734                         changed_ep_bitmask, changed_ep_bitmask);
3735         spin_unlock_irqrestore(&xhci->lock, flags);
3736
3737         /* Issue and wait for the configure endpoint command,
3738          * which must succeed.
3739          */
3740         ret = xhci_configure_endpoint(xhci, udev, command,
3741                         false, true);
3742
3743         /* xHC rejected the configure endpoint command for some reason, so we
3744          * leave the streams rings intact.
3745          */
3746         if (ret < 0)
3747                 return ret;
3748
3749         spin_lock_irqsave(&xhci->lock, flags);
3750         for (i = 0; i < num_eps; i++) {
3751                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3752                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3753                 vdev->eps[ep_index].stream_info = NULL;
3754                 /* FIXME Unset maxPstreams in endpoint context and
3755                  * update deq ptr to point to normal string ring.
3756                  */
3757                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3758                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3759         }
3760         spin_unlock_irqrestore(&xhci->lock, flags);
3761
3762         return 0;
3763 }
3764
3765 /*
3766  * Deletes endpoint resources for endpoints that were active before a Reset
3767  * Device command, or a Disable Slot command.  The Reset Device command leaves
3768  * the control endpoint intact, whereas the Disable Slot command deletes it.
3769  *
3770  * Must be called with xhci->lock held.
3771  */
3772 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3773         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3774 {
3775         int i;
3776         unsigned int num_dropped_eps = 0;
3777         unsigned int drop_flags = 0;
3778
3779         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3780                 if (virt_dev->eps[i].ring) {
3781                         drop_flags |= 1 << i;
3782                         num_dropped_eps++;
3783                 }
3784         }
3785         xhci->num_active_eps -= num_dropped_eps;
3786         if (num_dropped_eps)
3787                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3788                                 "Dropped %u ep ctxs, flags = 0x%x, "
3789                                 "%u now active.",
3790                                 num_dropped_eps, drop_flags,
3791                                 xhci->num_active_eps);
3792 }
3793
3794 /*
3795  * This submits a Reset Device Command, which will set the device state to 0,
3796  * set the device address to 0, and disable all the endpoints except the default
3797  * control endpoint.  The USB core should come back and call
3798  * xhci_address_device(), and then re-set up the configuration.  If this is
3799  * called because of a usb_reset_and_verify_device(), then the old alternate
3800  * settings will be re-installed through the normal bandwidth allocation
3801  * functions.
3802  *
3803  * Wait for the Reset Device command to finish.  Remove all structures
3804  * associated with the endpoints that were disabled.  Clear the input device
3805  * structure? Reset the control endpoint 0 max packet size?
3806  *
3807  * If the virt_dev to be reset does not exist or does not match the udev,
3808  * it means the device is lost, possibly due to the xHC restore error and
3809  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3810  * re-allocate the device.
3811  */
3812 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3813                 struct usb_device *udev)
3814 {
3815         int ret, i;
3816         unsigned long flags;
3817         struct xhci_hcd *xhci;
3818         unsigned int slot_id;
3819         struct xhci_virt_device *virt_dev;
3820         struct xhci_command *reset_device_cmd;
3821         struct xhci_slot_ctx *slot_ctx;
3822         int old_active_eps = 0;
3823
3824         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3825         if (ret <= 0)
3826                 return ret;
3827         xhci = hcd_to_xhci(hcd);
3828         slot_id = udev->slot_id;
3829         virt_dev = xhci->devs[slot_id];
3830         if (!virt_dev) {
3831                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3832                                 "not exist. Re-allocate the device\n", slot_id);
3833                 ret = xhci_alloc_dev(hcd, udev);
3834                 if (ret == 1)
3835                         return 0;
3836                 else
3837                         return -EINVAL;
3838         }
3839
3840         if (virt_dev->tt_info)
3841                 old_active_eps = virt_dev->tt_info->active_eps;
3842
3843         if (virt_dev->udev != udev) {
3844                 /* If the virt_dev and the udev does not match, this virt_dev
3845                  * may belong to another udev.
3846                  * Re-allocate the device.
3847                  */
3848                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3849                                 "not match the udev. Re-allocate the device\n",
3850                                 slot_id);
3851                 ret = xhci_alloc_dev(hcd, udev);
3852                 if (ret == 1)
3853                         return 0;
3854                 else
3855                         return -EINVAL;
3856         }
3857
3858         /* If device is not setup, there is no point in resetting it */
3859         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3860         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3861                                                 SLOT_STATE_DISABLED)
3862                 return 0;
3863
3864         trace_xhci_discover_or_reset_device(slot_ctx);
3865
3866         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3867         /* Allocate the command structure that holds the struct completion.
3868          * Assume we're in process context, since the normal device reset
3869          * process has to wait for the device anyway.  Storage devices are
3870          * reset as part of error handling, so use GFP_NOIO instead of
3871          * GFP_KERNEL.
3872          */
3873         reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3874         if (!reset_device_cmd) {
3875                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3876                 return -ENOMEM;
3877         }
3878
3879         /* Attempt to submit the Reset Device command to the command ring */
3880         spin_lock_irqsave(&xhci->lock, flags);
3881
3882         ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3883         if (ret) {
3884                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3885                 spin_unlock_irqrestore(&xhci->lock, flags);
3886                 goto command_cleanup;
3887         }
3888         xhci_ring_cmd_db(xhci);
3889         spin_unlock_irqrestore(&xhci->lock, flags);
3890
3891         /* Wait for the Reset Device command to finish */
3892         wait_for_completion(reset_device_cmd->completion);
3893
3894         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3895          * unless we tried to reset a slot ID that wasn't enabled,
3896          * or the device wasn't in the addressed or configured state.
3897          */
3898         ret = reset_device_cmd->status;
3899         switch (ret) {
3900         case COMP_COMMAND_ABORTED:
3901         case COMP_COMMAND_RING_STOPPED:
3902                 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3903                 ret = -ETIME;
3904                 goto command_cleanup;
3905         case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3906         case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3907                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3908                                 slot_id,
3909                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3910                 xhci_dbg(xhci, "Not freeing device rings.\n");
3911                 /* Don't treat this as an error.  May change my mind later. */
3912                 ret = 0;
3913                 goto command_cleanup;
3914         case COMP_SUCCESS:
3915                 xhci_dbg(xhci, "Successful reset device command.\n");
3916                 break;
3917         default:
3918                 if (xhci_is_vendor_info_code(xhci, ret))
3919                         break;
3920                 xhci_warn(xhci, "Unknown completion code %u for "
3921                                 "reset device command.\n", ret);
3922                 ret = -EINVAL;
3923                 goto command_cleanup;
3924         }
3925
3926         /* Free up host controller endpoint resources */
3927         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3928                 spin_lock_irqsave(&xhci->lock, flags);
3929                 /* Don't delete the default control endpoint resources */
3930                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3931                 spin_unlock_irqrestore(&xhci->lock, flags);
3932         }
3933
3934         /* Everything but endpoint 0 is disabled, so free the rings. */
3935         for (i = 1; i < 31; i++) {
3936                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3937
3938                 if (ep->ep_state & EP_HAS_STREAMS) {
3939                         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3940                                         xhci_get_endpoint_address(i));
3941                         xhci_free_stream_info(xhci, ep->stream_info);
3942                         ep->stream_info = NULL;
3943                         ep->ep_state &= ~EP_HAS_STREAMS;
3944                 }
3945
3946                 if (ep->ring) {
3947                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3948                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3949                 }
3950                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3951                         xhci_drop_ep_from_interval_table(xhci,
3952                                         &virt_dev->eps[i].bw_info,
3953                                         virt_dev->bw_table,
3954                                         udev,
3955                                         &virt_dev->eps[i],
3956                                         virt_dev->tt_info);
3957                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3958         }
3959         /* If necessary, update the number of active TTs on this root port */
3960         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3961         virt_dev->flags = 0;
3962         ret = 0;
3963
3964 command_cleanup:
3965         xhci_free_command(xhci, reset_device_cmd);
3966         return ret;
3967 }
3968
3969 /*
3970  * At this point, the struct usb_device is about to go away, the device has
3971  * disconnected, and all traffic has been stopped and the endpoints have been
3972  * disabled.  Free any HC data structures associated with that device.
3973  */
3974 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3975 {
3976         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3977         struct xhci_virt_device *virt_dev;
3978         struct xhci_slot_ctx *slot_ctx;
3979         int i, ret;
3980
3981         /*
3982          * We called pm_runtime_get_noresume when the device was attached.
3983          * Decrement the counter here to allow controller to runtime suspend
3984          * if no devices remain.
3985          */
3986         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3987                 pm_runtime_put_noidle(hcd->self.controller);
3988
3989         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3990         /* If the host is halted due to driver unload, we still need to free the
3991          * device.
3992          */
3993         if (ret <= 0 && ret != -ENODEV)
3994                 return;
3995
3996         virt_dev = xhci->devs[udev->slot_id];
3997         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3998         trace_xhci_free_dev(slot_ctx);
3999
4000         /* Stop any wayward timer functions (which may grab the lock) */
4001         for (i = 0; i < 31; i++)
4002                 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
4003         virt_dev->udev = NULL;
4004         xhci_disable_slot(xhci, udev->slot_id);
4005         xhci_free_virt_device(xhci, udev->slot_id);
4006 }
4007
4008 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
4009 {
4010         struct xhci_command *command;
4011         unsigned long flags;
4012         u32 state;
4013         int ret;
4014
4015         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4016         if (!command)
4017                 return -ENOMEM;
4018
4019         xhci_debugfs_remove_slot(xhci, slot_id);
4020
4021         spin_lock_irqsave(&xhci->lock, flags);
4022         /* Don't disable the slot if the host controller is dead. */
4023         state = readl(&xhci->op_regs->status);
4024         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
4025                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
4026                 spin_unlock_irqrestore(&xhci->lock, flags);
4027                 kfree(command);
4028                 return -ENODEV;
4029         }
4030
4031         ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
4032                                 slot_id);
4033         if (ret) {
4034                 spin_unlock_irqrestore(&xhci->lock, flags);
4035                 kfree(command);
4036                 return ret;
4037         }
4038         xhci_ring_cmd_db(xhci);
4039         spin_unlock_irqrestore(&xhci->lock, flags);
4040
4041         wait_for_completion(command->completion);
4042
4043         if (command->status != COMP_SUCCESS)
4044                 xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
4045                           slot_id, command->status);
4046
4047         xhci_free_command(xhci, command);
4048
4049         return 0;
4050 }
4051
4052 /*
4053  * Checks if we have enough host controller resources for the default control
4054  * endpoint.
4055  *
4056  * Must be called with xhci->lock held.
4057  */
4058 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
4059 {
4060         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
4061                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4062                                 "Not enough ep ctxs: "
4063                                 "%u active, need to add 1, limit is %u.",
4064                                 xhci->num_active_eps, xhci->limit_active_eps);
4065                 return -ENOMEM;
4066         }
4067         xhci->num_active_eps += 1;
4068         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4069                         "Adding 1 ep ctx, %u now active.",
4070                         xhci->num_active_eps);
4071         return 0;
4072 }
4073
4074
4075 /*
4076  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
4077  * timed out, or allocating memory failed.  Returns 1 on success.
4078  */
4079 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
4080 {
4081         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4082         struct xhci_virt_device *vdev;
4083         struct xhci_slot_ctx *slot_ctx;
4084         unsigned long flags;
4085         int ret, slot_id;
4086         struct xhci_command *command;
4087
4088         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4089         if (!command)
4090                 return 0;
4091
4092         spin_lock_irqsave(&xhci->lock, flags);
4093         ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
4094         if (ret) {
4095                 spin_unlock_irqrestore(&xhci->lock, flags);
4096                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
4097                 xhci_free_command(xhci, command);
4098                 return 0;
4099         }
4100         xhci_ring_cmd_db(xhci);
4101         spin_unlock_irqrestore(&xhci->lock, flags);
4102
4103         wait_for_completion(command->completion);
4104         slot_id = command->slot_id;
4105
4106         if (!slot_id || command->status != COMP_SUCCESS) {
4107                 xhci_err(xhci, "Error while assigning device slot ID\n");
4108                 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4109                                 HCS_MAX_SLOTS(
4110                                         readl(&xhci->cap_regs->hcs_params1)));
4111                 xhci_free_command(xhci, command);
4112                 return 0;
4113         }
4114
4115         xhci_free_command(xhci, command);
4116
4117         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4118                 spin_lock_irqsave(&xhci->lock, flags);
4119                 ret = xhci_reserve_host_control_ep_resources(xhci);
4120                 if (ret) {
4121                         spin_unlock_irqrestore(&xhci->lock, flags);
4122                         xhci_warn(xhci, "Not enough host resources, "
4123                                         "active endpoint contexts = %u\n",
4124                                         xhci->num_active_eps);
4125                         goto disable_slot;
4126                 }
4127                 spin_unlock_irqrestore(&xhci->lock, flags);
4128         }
4129         /* Use GFP_NOIO, since this function can be called from
4130          * xhci_discover_or_reset_device(), which may be called as part of
4131          * mass storage driver error handling.
4132          */
4133         if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4134                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4135                 goto disable_slot;
4136         }
4137         vdev = xhci->devs[slot_id];
4138         slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4139         trace_xhci_alloc_dev(slot_ctx);
4140
4141         udev->slot_id = slot_id;
4142
4143         xhci_debugfs_create_slot(xhci, slot_id);
4144
4145         /*
4146          * If resetting upon resume, we can't put the controller into runtime
4147          * suspend if there is a device attached.
4148          */
4149         if (xhci->quirks & XHCI_RESET_ON_RESUME)
4150                 pm_runtime_get_noresume(hcd->self.controller);
4151
4152         /* Is this a LS or FS device under a HS hub? */
4153         /* Hub or peripherial? */
4154         return 1;
4155
4156 disable_slot:
4157         xhci_disable_slot(xhci, udev->slot_id);
4158         xhci_free_virt_device(xhci, udev->slot_id);
4159
4160         return 0;
4161 }
4162
4163 /*
4164  * Issue an Address Device command and optionally send a corresponding
4165  * SetAddress request to the device.
4166  */
4167 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4168                              enum xhci_setup_dev setup)
4169 {
4170         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4171         unsigned long flags;
4172         struct xhci_virt_device *virt_dev;
4173         int ret = 0;
4174         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4175         struct xhci_slot_ctx *slot_ctx;
4176         struct xhci_input_control_ctx *ctrl_ctx;
4177         u64 temp_64;
4178         struct xhci_command *command = NULL;
4179
4180         mutex_lock(&xhci->mutex);
4181
4182         if (xhci->xhc_state) {  /* dying, removing or halted */
4183                 ret = -ESHUTDOWN;
4184                 goto out;
4185         }
4186
4187         if (!udev->slot_id) {
4188                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4189                                 "Bad Slot ID %d", udev->slot_id);
4190                 ret = -EINVAL;
4191                 goto out;
4192         }
4193
4194         virt_dev = xhci->devs[udev->slot_id];
4195
4196         if (WARN_ON(!virt_dev)) {
4197                 /*
4198                  * In plug/unplug torture test with an NEC controller,
4199                  * a zero-dereference was observed once due to virt_dev = 0.
4200                  * Print useful debug rather than crash if it is observed again!
4201                  */
4202                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4203                         udev->slot_id);
4204                 ret = -EINVAL;
4205                 goto out;
4206         }
4207         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4208         trace_xhci_setup_device_slot(slot_ctx);
4209
4210         if (setup == SETUP_CONTEXT_ONLY) {
4211                 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4212                     SLOT_STATE_DEFAULT) {
4213                         xhci_dbg(xhci, "Slot already in default state\n");
4214                         goto out;
4215                 }
4216         }
4217
4218         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4219         if (!command) {
4220                 ret = -ENOMEM;
4221                 goto out;
4222         }
4223
4224         command->in_ctx = virt_dev->in_ctx;
4225
4226         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4227         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4228         if (!ctrl_ctx) {
4229                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4230                                 __func__);
4231                 ret = -EINVAL;
4232                 goto out;
4233         }
4234         /*
4235          * If this is the first Set Address since device plug-in or
4236          * virt_device realloaction after a resume with an xHCI power loss,
4237          * then set up the slot context.
4238          */
4239         if (!slot_ctx->dev_info)
4240                 xhci_setup_addressable_virt_dev(xhci, udev);
4241         /* Otherwise, update the control endpoint ring enqueue pointer. */
4242         else
4243                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4244         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4245         ctrl_ctx->drop_flags = 0;
4246
4247         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4248                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4249
4250         trace_xhci_address_ctrl_ctx(ctrl_ctx);
4251         spin_lock_irqsave(&xhci->lock, flags);
4252         trace_xhci_setup_device(virt_dev);
4253         ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4254                                         udev->slot_id, setup);
4255         if (ret) {
4256                 spin_unlock_irqrestore(&xhci->lock, flags);
4257                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4258                                 "FIXME: allocate a command ring segment");
4259                 goto out;
4260         }
4261         xhci_ring_cmd_db(xhci);
4262         spin_unlock_irqrestore(&xhci->lock, flags);
4263
4264         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4265         wait_for_completion(command->completion);
4266
4267         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
4268          * the SetAddress() "recovery interval" required by USB and aborting the
4269          * command on a timeout.
4270          */
4271         switch (command->status) {
4272         case COMP_COMMAND_ABORTED:
4273         case COMP_COMMAND_RING_STOPPED:
4274                 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4275                 ret = -ETIME;
4276                 break;
4277         case COMP_CONTEXT_STATE_ERROR:
4278         case COMP_SLOT_NOT_ENABLED_ERROR:
4279                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4280                          act, udev->slot_id);
4281                 ret = -EINVAL;
4282                 break;
4283         case COMP_USB_TRANSACTION_ERROR:
4284                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4285
4286                 mutex_unlock(&xhci->mutex);
4287                 ret = xhci_disable_slot(xhci, udev->slot_id);
4288                 xhci_free_virt_device(xhci, udev->slot_id);
4289                 if (!ret)
4290                         xhci_alloc_dev(hcd, udev);
4291                 kfree(command->completion);
4292                 kfree(command);
4293                 return -EPROTO;
4294         case COMP_INCOMPATIBLE_DEVICE_ERROR:
4295                 dev_warn(&udev->dev,
4296                          "ERROR: Incompatible device for setup %s command\n", act);
4297                 ret = -ENODEV;
4298                 break;
4299         case COMP_SUCCESS:
4300                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4301                                "Successful setup %s command", act);
4302                 break;
4303         default:
4304                 xhci_err(xhci,
4305                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
4306                          act, command->status);
4307                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4308                 ret = -EINVAL;
4309                 break;
4310         }
4311         if (ret)
4312                 goto out;
4313         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4314         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4315                         "Op regs DCBAA ptr = %#016llx", temp_64);
4316         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4317                 "Slot ID %d dcbaa entry @%p = %#016llx",
4318                 udev->slot_id,
4319                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4320                 (unsigned long long)
4321                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4322         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4323                         "Output Context DMA address = %#08llx",
4324                         (unsigned long long)virt_dev->out_ctx->dma);
4325         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4326                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4327         /*
4328          * USB core uses address 1 for the roothubs, so we add one to the
4329          * address given back to us by the HC.
4330          */
4331         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4332                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4333         /* Zero the input context control for later use */
4334         ctrl_ctx->add_flags = 0;
4335         ctrl_ctx->drop_flags = 0;
4336         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4337         udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4338
4339         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4340                        "Internal device address = %d",
4341                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4342 out:
4343         mutex_unlock(&xhci->mutex);
4344         if (command) {
4345                 kfree(command->completion);
4346                 kfree(command);
4347         }
4348         return ret;
4349 }
4350
4351 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4352 {
4353         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4354 }
4355
4356 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4357 {
4358         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4359 }
4360
4361 /*
4362  * Transfer the port index into real index in the HW port status
4363  * registers. Caculate offset between the port's PORTSC register
4364  * and port status base. Divide the number of per port register
4365  * to get the real index. The raw port number bases 1.
4366  */
4367 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4368 {
4369         struct xhci_hub *rhub;
4370
4371         rhub = xhci_get_rhub(hcd);
4372         return rhub->ports[port1 - 1]->hw_portnum + 1;
4373 }
4374
4375 /*
4376  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4377  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4378  */
4379 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4380                         struct usb_device *udev, u16 max_exit_latency)
4381 {
4382         struct xhci_virt_device *virt_dev;
4383         struct xhci_command *command;
4384         struct xhci_input_control_ctx *ctrl_ctx;
4385         struct xhci_slot_ctx *slot_ctx;
4386         unsigned long flags;
4387         int ret;
4388
4389         command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL);
4390         if (!command)
4391                 return -ENOMEM;
4392
4393         spin_lock_irqsave(&xhci->lock, flags);
4394
4395         virt_dev = xhci->devs[udev->slot_id];
4396
4397         /*
4398          * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4399          * xHC was re-initialized. Exit latency will be set later after
4400          * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4401          */
4402
4403         if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4404                 spin_unlock_irqrestore(&xhci->lock, flags);
4405                 return 0;
4406         }
4407
4408         /* Attempt to issue an Evaluate Context command to change the MEL. */
4409         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4410         if (!ctrl_ctx) {
4411                 spin_unlock_irqrestore(&xhci->lock, flags);
4412                 xhci_free_command(xhci, command);
4413                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4414                                 __func__);
4415                 return -ENOMEM;
4416         }
4417
4418         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4419         spin_unlock_irqrestore(&xhci->lock, flags);
4420
4421         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4422         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4423         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4424         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4425         slot_ctx->dev_state = 0;
4426
4427         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4428                         "Set up evaluate context for LPM MEL change.");
4429
4430         /* Issue and wait for the evaluate context command. */
4431         ret = xhci_configure_endpoint(xhci, udev, command,
4432                         true, true);
4433
4434         if (!ret) {
4435                 spin_lock_irqsave(&xhci->lock, flags);
4436                 virt_dev->current_mel = max_exit_latency;
4437                 spin_unlock_irqrestore(&xhci->lock, flags);
4438         }
4439
4440         xhci_free_command(xhci, command);
4441
4442         return ret;
4443 }
4444
4445 #ifdef CONFIG_PM
4446
4447 /* BESL to HIRD Encoding array for USB2 LPM */
4448 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4449         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4450
4451 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4452 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4453                                         struct usb_device *udev)
4454 {
4455         int u2del, besl, besl_host;
4456         int besl_device = 0;
4457         u32 field;
4458
4459         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4460         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4461
4462         if (field & USB_BESL_SUPPORT) {
4463                 for (besl_host = 0; besl_host < 16; besl_host++) {
4464                         if (xhci_besl_encoding[besl_host] >= u2del)
4465                                 break;
4466                 }
4467                 /* Use baseline BESL value as default */
4468                 if (field & USB_BESL_BASELINE_VALID)
4469                         besl_device = USB_GET_BESL_BASELINE(field);
4470                 else if (field & USB_BESL_DEEP_VALID)
4471                         besl_device = USB_GET_BESL_DEEP(field);
4472         } else {
4473                 if (u2del <= 50)
4474                         besl_host = 0;
4475                 else
4476                         besl_host = (u2del - 51) / 75 + 1;
4477         }
4478
4479         besl = besl_host + besl_device;
4480         if (besl > 15)
4481                 besl = 15;
4482
4483         return besl;
4484 }
4485
4486 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4487 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4488 {
4489         u32 field;
4490         int l1;
4491         int besld = 0;
4492         int hirdm = 0;
4493
4494         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4495
4496         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4497         l1 = udev->l1_params.timeout / 256;
4498
4499         /* device has preferred BESLD */
4500         if (field & USB_BESL_DEEP_VALID) {
4501                 besld = USB_GET_BESL_DEEP(field);
4502                 hirdm = 1;
4503         }
4504
4505         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4506 }
4507
4508 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4509                         struct usb_device *udev, int enable)
4510 {
4511         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4512         struct xhci_port **ports;
4513         __le32 __iomem  *pm_addr, *hlpm_addr;
4514         u32             pm_val, hlpm_val, field;
4515         unsigned int    port_num;
4516         unsigned long   flags;
4517         int             hird, exit_latency;
4518         int             ret;
4519
4520         if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4521                 return -EPERM;
4522
4523         if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4524                         !udev->lpm_capable)
4525                 return -EPERM;
4526
4527         if (!udev->parent || udev->parent->parent ||
4528                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4529                 return -EPERM;
4530
4531         if (udev->usb2_hw_lpm_capable != 1)
4532                 return -EPERM;
4533
4534         spin_lock_irqsave(&xhci->lock, flags);
4535
4536         ports = xhci->usb2_rhub.ports;
4537         port_num = udev->portnum - 1;
4538         pm_addr = ports[port_num]->addr + PORTPMSC;
4539         pm_val = readl(pm_addr);
4540         hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4541
4542         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4543                         enable ? "enable" : "disable", port_num + 1);
4544
4545         if (enable) {
4546                 /* Host supports BESL timeout instead of HIRD */
4547                 if (udev->usb2_hw_lpm_besl_capable) {
4548                         /* if device doesn't have a preferred BESL value use a
4549                          * default one which works with mixed HIRD and BESL
4550                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4551                          */
4552                         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4553                         if ((field & USB_BESL_SUPPORT) &&
4554                             (field & USB_BESL_BASELINE_VALID))
4555                                 hird = USB_GET_BESL_BASELINE(field);
4556                         else
4557                                 hird = udev->l1_params.besl;
4558
4559                         exit_latency = xhci_besl_encoding[hird];
4560                         spin_unlock_irqrestore(&xhci->lock, flags);
4561
4562                         ret = xhci_change_max_exit_latency(xhci, udev,
4563                                                            exit_latency);
4564                         if (ret < 0)
4565                                 return ret;
4566                         spin_lock_irqsave(&xhci->lock, flags);
4567
4568                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4569                         writel(hlpm_val, hlpm_addr);
4570                         /* flush write */
4571                         readl(hlpm_addr);
4572                 } else {
4573                         hird = xhci_calculate_hird_besl(xhci, udev);
4574                 }
4575
4576                 pm_val &= ~PORT_HIRD_MASK;
4577                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4578                 writel(pm_val, pm_addr);
4579                 pm_val = readl(pm_addr);
4580                 pm_val |= PORT_HLE;
4581                 writel(pm_val, pm_addr);
4582                 /* flush write */
4583                 readl(pm_addr);
4584         } else {
4585                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4586                 writel(pm_val, pm_addr);
4587                 /* flush write */
4588                 readl(pm_addr);
4589                 if (udev->usb2_hw_lpm_besl_capable) {
4590                         spin_unlock_irqrestore(&xhci->lock, flags);
4591                         xhci_change_max_exit_latency(xhci, udev, 0);
4592                         readl_poll_timeout(ports[port_num]->addr, pm_val,
4593                                            (pm_val & PORT_PLS_MASK) == XDEV_U0,
4594                                            100, 10000);
4595                         return 0;
4596                 }
4597         }
4598
4599         spin_unlock_irqrestore(&xhci->lock, flags);
4600         return 0;
4601 }
4602
4603 /* check if a usb2 port supports a given extened capability protocol
4604  * only USB2 ports extended protocol capability values are cached.
4605  * Return 1 if capability is supported
4606  */
4607 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4608                                            unsigned capability)
4609 {
4610         u32 port_offset, port_count;
4611         int i;
4612
4613         for (i = 0; i < xhci->num_ext_caps; i++) {
4614                 if (xhci->ext_caps[i] & capability) {
4615                         /* port offsets starts at 1 */
4616                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4617                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4618                         if (port >= port_offset &&
4619                             port < port_offset + port_count)
4620                                 return 1;
4621                 }
4622         }
4623         return 0;
4624 }
4625
4626 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4627 {
4628         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4629         int             portnum = udev->portnum - 1;
4630
4631         if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4632                 return 0;
4633
4634         /* we only support lpm for non-hub device connected to root hub yet */
4635         if (!udev->parent || udev->parent->parent ||
4636                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4637                 return 0;
4638
4639         if (xhci->hw_lpm_support == 1 &&
4640                         xhci_check_usb2_port_capability(
4641                                 xhci, portnum, XHCI_HLC)) {
4642                 udev->usb2_hw_lpm_capable = 1;
4643                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4644                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4645                 if (xhci_check_usb2_port_capability(xhci, portnum,
4646                                         XHCI_BLC))
4647                         udev->usb2_hw_lpm_besl_capable = 1;
4648         }
4649
4650         return 0;
4651 }
4652
4653 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4654
4655 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4656 static unsigned long long xhci_service_interval_to_ns(
4657                 struct usb_endpoint_descriptor *desc)
4658 {
4659         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4660 }
4661
4662 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4663                 enum usb3_link_state state)
4664 {
4665         unsigned long long sel;
4666         unsigned long long pel;
4667         unsigned int max_sel_pel;
4668         char *state_name;
4669
4670         switch (state) {
4671         case USB3_LPM_U1:
4672                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4673                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4674                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4675                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4676                 state_name = "U1";
4677                 break;
4678         case USB3_LPM_U2:
4679                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4680                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4681                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4682                 state_name = "U2";
4683                 break;
4684         default:
4685                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4686                                 __func__);
4687                 return USB3_LPM_DISABLED;
4688         }
4689
4690         if (sel <= max_sel_pel && pel <= max_sel_pel)
4691                 return USB3_LPM_DEVICE_INITIATED;
4692
4693         if (sel > max_sel_pel)
4694                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4695                                 "due to long SEL %llu ms\n",
4696                                 state_name, sel);
4697         else
4698                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4699                                 "due to long PEL %llu ms\n",
4700                                 state_name, pel);
4701         return USB3_LPM_DISABLED;
4702 }
4703
4704 /* The U1 timeout should be the maximum of the following values:
4705  *  - For control endpoints, U1 system exit latency (SEL) * 3
4706  *  - For bulk endpoints, U1 SEL * 5
4707  *  - For interrupt endpoints:
4708  *    - Notification EPs, U1 SEL * 3
4709  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4710  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4711  */
4712 static unsigned long long xhci_calculate_intel_u1_timeout(
4713                 struct usb_device *udev,
4714                 struct usb_endpoint_descriptor *desc)
4715 {
4716         unsigned long long timeout_ns;
4717         int ep_type;
4718         int intr_type;
4719
4720         ep_type = usb_endpoint_type(desc);
4721         switch (ep_type) {
4722         case USB_ENDPOINT_XFER_CONTROL:
4723                 timeout_ns = udev->u1_params.sel * 3;
4724                 break;
4725         case USB_ENDPOINT_XFER_BULK:
4726                 timeout_ns = udev->u1_params.sel * 5;
4727                 break;
4728         case USB_ENDPOINT_XFER_INT:
4729                 intr_type = usb_endpoint_interrupt_type(desc);
4730                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4731                         timeout_ns = udev->u1_params.sel * 3;
4732                         break;
4733                 }
4734                 /* Otherwise the calculation is the same as isoc eps */
4735                 fallthrough;
4736         case USB_ENDPOINT_XFER_ISOC:
4737                 timeout_ns = xhci_service_interval_to_ns(desc);
4738                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4739                 if (timeout_ns < udev->u1_params.sel * 2)
4740                         timeout_ns = udev->u1_params.sel * 2;
4741                 break;
4742         default:
4743                 return 0;
4744         }
4745
4746         return timeout_ns;
4747 }
4748
4749 /* Returns the hub-encoded U1 timeout value. */
4750 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4751                 struct usb_device *udev,
4752                 struct usb_endpoint_descriptor *desc)
4753 {
4754         unsigned long long timeout_ns;
4755
4756         /* Prevent U1 if service interval is shorter than U1 exit latency */
4757         if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4758                 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4759                         dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4760                         return USB3_LPM_DISABLED;
4761                 }
4762         }
4763
4764         if (xhci->quirks & XHCI_INTEL_HOST)
4765                 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4766         else
4767                 timeout_ns = udev->u1_params.sel;
4768
4769         /* The U1 timeout is encoded in 1us intervals.
4770          * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4771          */
4772         if (timeout_ns == USB3_LPM_DISABLED)
4773                 timeout_ns = 1;
4774         else
4775                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4776
4777         /* If the necessary timeout value is bigger than what we can set in the
4778          * USB 3.0 hub, we have to disable hub-initiated U1.
4779          */
4780         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4781                 return timeout_ns;
4782         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4783                         "due to long timeout %llu ms\n", timeout_ns);
4784         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4785 }
4786
4787 /* The U2 timeout should be the maximum of:
4788  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4789  *  - largest bInterval of any active periodic endpoint (to avoid going
4790  *    into lower power link states between intervals).
4791  *  - the U2 Exit Latency of the device
4792  */
4793 static unsigned long long xhci_calculate_intel_u2_timeout(
4794                 struct usb_device *udev,
4795                 struct usb_endpoint_descriptor *desc)
4796 {
4797         unsigned long long timeout_ns;
4798         unsigned long long u2_del_ns;
4799
4800         timeout_ns = 10 * 1000 * 1000;
4801
4802         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4803                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4804                 timeout_ns = xhci_service_interval_to_ns(desc);
4805
4806         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4807         if (u2_del_ns > timeout_ns)
4808                 timeout_ns = u2_del_ns;
4809
4810         return timeout_ns;
4811 }
4812
4813 /* Returns the hub-encoded U2 timeout value. */
4814 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4815                 struct usb_device *udev,
4816                 struct usb_endpoint_descriptor *desc)
4817 {
4818         unsigned long long timeout_ns;
4819
4820         /* Prevent U2 if service interval is shorter than U2 exit latency */
4821         if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4822                 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4823                         dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4824                         return USB3_LPM_DISABLED;
4825                 }
4826         }
4827
4828         if (xhci->quirks & XHCI_INTEL_HOST)
4829                 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4830         else
4831                 timeout_ns = udev->u2_params.sel;
4832
4833         /* The U2 timeout is encoded in 256us intervals */
4834         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4835         /* If the necessary timeout value is bigger than what we can set in the
4836          * USB 3.0 hub, we have to disable hub-initiated U2.
4837          */
4838         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4839                 return timeout_ns;
4840         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4841                         "due to long timeout %llu ms\n", timeout_ns);
4842         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4843 }
4844
4845 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4846                 struct usb_device *udev,
4847                 struct usb_endpoint_descriptor *desc,
4848                 enum usb3_link_state state,
4849                 u16 *timeout)
4850 {
4851         if (state == USB3_LPM_U1)
4852                 return xhci_calculate_u1_timeout(xhci, udev, desc);
4853         else if (state == USB3_LPM_U2)
4854                 return xhci_calculate_u2_timeout(xhci, udev, desc);
4855
4856         return USB3_LPM_DISABLED;
4857 }
4858
4859 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4860                 struct usb_device *udev,
4861                 struct usb_endpoint_descriptor *desc,
4862                 enum usb3_link_state state,
4863                 u16 *timeout)
4864 {
4865         u16 alt_timeout;
4866
4867         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4868                 desc, state, timeout);
4869
4870         /* If we found we can't enable hub-initiated LPM, and
4871          * the U1 or U2 exit latency was too high to allow
4872          * device-initiated LPM as well, then we will disable LPM
4873          * for this device, so stop searching any further.
4874          */
4875         if (alt_timeout == USB3_LPM_DISABLED) {
4876                 *timeout = alt_timeout;
4877                 return -E2BIG;
4878         }
4879         if (alt_timeout > *timeout)
4880                 *timeout = alt_timeout;
4881         return 0;
4882 }
4883
4884 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4885                 struct usb_device *udev,
4886                 struct usb_host_interface *alt,
4887                 enum usb3_link_state state,
4888                 u16 *timeout)
4889 {
4890         int j;
4891
4892         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4893                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4894                                         &alt->endpoint[j].desc, state, timeout))
4895                         return -E2BIG;
4896         }
4897         return 0;
4898 }
4899
4900 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4901                 enum usb3_link_state state)
4902 {
4903         struct usb_device *parent;
4904         unsigned int num_hubs;
4905
4906         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4907         for (parent = udev->parent, num_hubs = 0; parent->parent;
4908                         parent = parent->parent)
4909                 num_hubs++;
4910
4911         if (num_hubs < 2)
4912                 return 0;
4913
4914         dev_dbg(&udev->dev, "Disabling U1/U2 link state for device"
4915                         " below second-tier hub.\n");
4916         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4917                         "to decrease power consumption.\n");
4918         return -E2BIG;
4919 }
4920
4921 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4922                 struct usb_device *udev,
4923                 enum usb3_link_state state)
4924 {
4925         if (xhci->quirks & XHCI_INTEL_HOST)
4926                 return xhci_check_intel_tier_policy(udev, state);
4927         else
4928                 return 0;
4929 }
4930
4931 /* Returns the U1 or U2 timeout that should be enabled.
4932  * If the tier check or timeout setting functions return with a non-zero exit
4933  * code, that means the timeout value has been finalized and we shouldn't look
4934  * at any more endpoints.
4935  */
4936 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4937                         struct usb_device *udev, enum usb3_link_state state)
4938 {
4939         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4940         struct usb_host_config *config;
4941         char *state_name;
4942         int i;
4943         u16 timeout = USB3_LPM_DISABLED;
4944
4945         if (state == USB3_LPM_U1)
4946                 state_name = "U1";
4947         else if (state == USB3_LPM_U2)
4948                 state_name = "U2";
4949         else {
4950                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4951                                 state);
4952                 return timeout;
4953         }
4954
4955         /* Gather some information about the currently installed configuration
4956          * and alternate interface settings.
4957          */
4958         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4959                         state, &timeout))
4960                 return timeout;
4961
4962         config = udev->actconfig;
4963         if (!config)
4964                 return timeout;
4965
4966         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4967                 struct usb_driver *driver;
4968                 struct usb_interface *intf = config->interface[i];
4969
4970                 if (!intf)
4971                         continue;
4972
4973                 /* Check if any currently bound drivers want hub-initiated LPM
4974                  * disabled.
4975                  */
4976                 if (intf->dev.driver) {
4977                         driver = to_usb_driver(intf->dev.driver);
4978                         if (driver && driver->disable_hub_initiated_lpm) {
4979                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4980                                         state_name, driver->name);
4981                                 timeout = xhci_get_timeout_no_hub_lpm(udev,
4982                                                                       state);
4983                                 if (timeout == USB3_LPM_DISABLED)
4984                                         return timeout;
4985                         }
4986                 }
4987
4988                 /* Not sure how this could happen... */
4989                 if (!intf->cur_altsetting)
4990                         continue;
4991
4992                 if (xhci_update_timeout_for_interface(xhci, udev,
4993                                         intf->cur_altsetting,
4994                                         state, &timeout))
4995                         return timeout;
4996         }
4997         return timeout;
4998 }
4999
5000 static int calculate_max_exit_latency(struct usb_device *udev,
5001                 enum usb3_link_state state_changed,
5002                 u16 hub_encoded_timeout)
5003 {
5004         unsigned long long u1_mel_us = 0;
5005         unsigned long long u2_mel_us = 0;
5006         unsigned long long mel_us = 0;
5007         bool disabling_u1;
5008         bool disabling_u2;
5009         bool enabling_u1;
5010         bool enabling_u2;
5011
5012         disabling_u1 = (state_changed == USB3_LPM_U1 &&
5013                         hub_encoded_timeout == USB3_LPM_DISABLED);
5014         disabling_u2 = (state_changed == USB3_LPM_U2 &&
5015                         hub_encoded_timeout == USB3_LPM_DISABLED);
5016
5017         enabling_u1 = (state_changed == USB3_LPM_U1 &&
5018                         hub_encoded_timeout != USB3_LPM_DISABLED);
5019         enabling_u2 = (state_changed == USB3_LPM_U2 &&
5020                         hub_encoded_timeout != USB3_LPM_DISABLED);
5021
5022         /* If U1 was already enabled and we're not disabling it,
5023          * or we're going to enable U1, account for the U1 max exit latency.
5024          */
5025         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
5026                         enabling_u1)
5027                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
5028         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
5029                         enabling_u2)
5030                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
5031
5032         mel_us = max(u1_mel_us, u2_mel_us);
5033
5034         /* xHCI host controller max exit latency field is only 16 bits wide. */
5035         if (mel_us > MAX_EXIT) {
5036                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
5037                                 "is too big.\n", mel_us);
5038                 return -E2BIG;
5039         }
5040         return mel_us;
5041 }
5042
5043 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
5044 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5045                         struct usb_device *udev, enum usb3_link_state state)
5046 {
5047         struct xhci_hcd *xhci;
5048         u16 hub_encoded_timeout;
5049         int mel;
5050         int ret;
5051
5052         xhci = hcd_to_xhci(hcd);
5053         /* The LPM timeout values are pretty host-controller specific, so don't
5054          * enable hub-initiated timeouts unless the vendor has provided
5055          * information about their timeout algorithm.
5056          */
5057         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5058                         !xhci->devs[udev->slot_id])
5059                 return USB3_LPM_DISABLED;
5060
5061         if (xhci_check_tier_policy(xhci, udev, state) < 0)
5062                 return USB3_LPM_DISABLED;
5063
5064         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
5065         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
5066         if (mel < 0) {
5067                 /* Max Exit Latency is too big, disable LPM. */
5068                 hub_encoded_timeout = USB3_LPM_DISABLED;
5069                 mel = 0;
5070         }
5071
5072         ret = xhci_change_max_exit_latency(xhci, udev, mel);
5073         if (ret)
5074                 return ret;
5075         return hub_encoded_timeout;
5076 }
5077
5078 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5079                         struct usb_device *udev, enum usb3_link_state state)
5080 {
5081         struct xhci_hcd *xhci;
5082         u16 mel;
5083
5084         xhci = hcd_to_xhci(hcd);
5085         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5086                         !xhci->devs[udev->slot_id])
5087                 return 0;
5088
5089         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5090         return xhci_change_max_exit_latency(xhci, udev, mel);
5091 }
5092 #else /* CONFIG_PM */
5093
5094 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5095                                 struct usb_device *udev, int enable)
5096 {
5097         return 0;
5098 }
5099
5100 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5101 {
5102         return 0;
5103 }
5104
5105 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5106                         struct usb_device *udev, enum usb3_link_state state)
5107 {
5108         return USB3_LPM_DISABLED;
5109 }
5110
5111 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5112                         struct usb_device *udev, enum usb3_link_state state)
5113 {
5114         return 0;
5115 }
5116 #endif  /* CONFIG_PM */
5117
5118 /*-------------------------------------------------------------------------*/
5119
5120 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5121  * internal data structures for the device.
5122  */
5123 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5124                         struct usb_tt *tt, gfp_t mem_flags)
5125 {
5126         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5127         struct xhci_virt_device *vdev;
5128         struct xhci_command *config_cmd;
5129         struct xhci_input_control_ctx *ctrl_ctx;
5130         struct xhci_slot_ctx *slot_ctx;
5131         unsigned long flags;
5132         unsigned think_time;
5133         int ret;
5134
5135         /* Ignore root hubs */
5136         if (!hdev->parent)
5137                 return 0;
5138
5139         vdev = xhci->devs[hdev->slot_id];
5140         if (!vdev) {
5141                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5142                 return -EINVAL;
5143         }
5144
5145         config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5146         if (!config_cmd)
5147                 return -ENOMEM;
5148
5149         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5150         if (!ctrl_ctx) {
5151                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5152                                 __func__);
5153                 xhci_free_command(xhci, config_cmd);
5154                 return -ENOMEM;
5155         }
5156
5157         spin_lock_irqsave(&xhci->lock, flags);
5158         if (hdev->speed == USB_SPEED_HIGH &&
5159                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5160                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5161                 xhci_free_command(xhci, config_cmd);
5162                 spin_unlock_irqrestore(&xhci->lock, flags);
5163                 return -ENOMEM;
5164         }
5165
5166         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5167         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5168         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5169         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5170         /*
5171          * refer to section 6.2.2: MTT should be 0 for full speed hub,
5172          * but it may be already set to 1 when setup an xHCI virtual
5173          * device, so clear it anyway.
5174          */
5175         if (tt->multi)
5176                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5177         else if (hdev->speed == USB_SPEED_FULL)
5178                 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5179
5180         if (xhci->hci_version > 0x95) {
5181                 xhci_dbg(xhci, "xHCI version %x needs hub "
5182                                 "TT think time and number of ports\n",
5183                                 (unsigned int) xhci->hci_version);
5184                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5185                 /* Set TT think time - convert from ns to FS bit times.
5186                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
5187                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
5188                  *
5189                  * xHCI 1.0: this field shall be 0 if the device is not a
5190                  * High-spped hub.
5191                  */
5192                 think_time = tt->think_time;
5193                 if (think_time != 0)
5194                         think_time = (think_time / 666) - 1;
5195                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5196                         slot_ctx->tt_info |=
5197                                 cpu_to_le32(TT_THINK_TIME(think_time));
5198         } else {
5199                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5200                                 "TT think time or number of ports\n",
5201                                 (unsigned int) xhci->hci_version);
5202         }
5203         slot_ctx->dev_state = 0;
5204         spin_unlock_irqrestore(&xhci->lock, flags);
5205
5206         xhci_dbg(xhci, "Set up %s for hub device.\n",
5207                         (xhci->hci_version > 0x95) ?
5208                         "configure endpoint" : "evaluate context");
5209
5210         /* Issue and wait for the configure endpoint or
5211          * evaluate context command.
5212          */
5213         if (xhci->hci_version > 0x95)
5214                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5215                                 false, false);
5216         else
5217                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5218                                 true, false);
5219
5220         xhci_free_command(xhci, config_cmd);
5221         return ret;
5222 }
5223
5224 static int xhci_get_frame(struct usb_hcd *hcd)
5225 {
5226         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5227         /* EHCI mods by the periodic size.  Why? */
5228         return readl(&xhci->run_regs->microframe_index) >> 3;
5229 }
5230
5231 static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5232 {
5233         xhci->usb2_rhub.hcd = hcd;
5234         hcd->speed = HCD_USB2;
5235         hcd->self.root_hub->speed = USB_SPEED_HIGH;
5236         /*
5237          * USB 2.0 roothub under xHCI has an integrated TT,
5238          * (rate matching hub) as opposed to having an OHCI/UHCI
5239          * companion controller.
5240          */
5241         hcd->has_tt = 1;
5242 }
5243
5244 static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5245 {
5246         unsigned int minor_rev;
5247
5248         /*
5249          * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5250          * should return 0x31 for sbrn, or that the minor revision
5251          * is a two digit BCD containig minor and sub-minor numbers.
5252          * This was later clarified in xHCI 1.2.
5253          *
5254          * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5255          * minor revision set to 0x1 instead of 0x10.
5256          */
5257         if (xhci->usb3_rhub.min_rev == 0x1)
5258                 minor_rev = 1;
5259         else
5260                 minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5261
5262         switch (minor_rev) {
5263         case 2:
5264                 hcd->speed = HCD_USB32;
5265                 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5266                 hcd->self.root_hub->rx_lanes = 2;
5267                 hcd->self.root_hub->tx_lanes = 2;
5268                 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5269                 break;
5270         case 1:
5271                 hcd->speed = HCD_USB31;
5272                 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5273                 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5274                 break;
5275         }
5276         xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5277                   minor_rev, minor_rev ? "Enhanced " : "");
5278
5279         xhci->usb3_rhub.hcd = hcd;
5280 }
5281
5282 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5283 {
5284         struct xhci_hcd         *xhci;
5285         /*
5286          * TODO: Check with DWC3 clients for sysdev according to
5287          * quirks
5288          */
5289         struct device           *dev = hcd->self.sysdev;
5290         int                     retval;
5291
5292         /* Accept arbitrarily long scatter-gather lists */
5293         hcd->self.sg_tablesize = ~0;
5294
5295         /* support to build packet from discontinuous buffers */
5296         hcd->self.no_sg_constraint = 1;
5297
5298         /* XHCI controllers don't stop the ep queue on short packets :| */
5299         hcd->self.no_stop_on_short = 1;
5300
5301         xhci = hcd_to_xhci(hcd);
5302
5303         if (!usb_hcd_is_primary_hcd(hcd)) {
5304                 xhci_hcd_init_usb3_data(xhci, hcd);
5305                 return 0;
5306         }
5307
5308         mutex_init(&xhci->mutex);
5309         xhci->main_hcd = hcd;
5310         xhci->cap_regs = hcd->regs;
5311         xhci->op_regs = hcd->regs +
5312                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5313         xhci->run_regs = hcd->regs +
5314                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5315         /* Cache read-only capability registers */
5316         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5317         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5318         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5319         xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase));
5320         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5321         if (xhci->hci_version > 0x100)
5322                 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5323
5324         xhci->quirks |= quirks;
5325
5326         get_quirks(dev, xhci);
5327
5328         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
5329          * success event after a short transfer. This quirk will ignore such
5330          * spurious event.
5331          */
5332         if (xhci->hci_version > 0x96)
5333                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5334
5335         /* Make sure the HC is halted. */
5336         retval = xhci_halt(xhci);
5337         if (retval)
5338                 return retval;
5339
5340         xhci_zero_64b_regs(xhci);
5341
5342         xhci_dbg(xhci, "Resetting HCD\n");
5343         /* Reset the internal HC memory state and registers. */
5344         retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
5345         if (retval)
5346                 return retval;
5347         xhci_dbg(xhci, "Reset complete\n");
5348
5349         /*
5350          * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5351          * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5352          * address memory pointers actually. So, this driver clears the AC64
5353          * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5354          * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5355          */
5356         if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5357                 xhci->hcc_params &= ~BIT(0);
5358
5359         /* Set dma_mask and coherent_dma_mask to 64-bits,
5360          * if xHC supports 64-bit addressing */
5361         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5362                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5363                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5364                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5365         } else {
5366                 /*
5367                  * This is to avoid error in cases where a 32-bit USB
5368                  * controller is used on a 64-bit capable system.
5369                  */
5370                 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5371                 if (retval)
5372                         return retval;
5373                 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5374                 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5375         }
5376
5377         xhci_dbg(xhci, "Calling HCD init\n");
5378         /* Initialize HCD and host controller data structures. */
5379         retval = xhci_init(hcd);
5380         if (retval)
5381                 return retval;
5382         xhci_dbg(xhci, "Called HCD init\n");
5383
5384         if (xhci_hcd_is_usb3(hcd))
5385                 xhci_hcd_init_usb3_data(xhci, hcd);
5386         else
5387                 xhci_hcd_init_usb2_data(xhci, hcd);
5388
5389         xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5390                   xhci->hcc_params, xhci->hci_version, xhci->quirks);
5391
5392         return 0;
5393 }
5394 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5395
5396 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5397                 struct usb_host_endpoint *ep)
5398 {
5399         struct xhci_hcd *xhci;
5400         struct usb_device *udev;
5401         unsigned int slot_id;
5402         unsigned int ep_index;
5403         unsigned long flags;
5404
5405         xhci = hcd_to_xhci(hcd);
5406
5407         spin_lock_irqsave(&xhci->lock, flags);
5408         udev = (struct usb_device *)ep->hcpriv;
5409         slot_id = udev->slot_id;
5410         ep_index = xhci_get_endpoint_index(&ep->desc);
5411
5412         xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5413         xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5414         spin_unlock_irqrestore(&xhci->lock, flags);
5415 }
5416
5417 static const struct hc_driver xhci_hc_driver = {
5418         .description =          "xhci-hcd",
5419         .product_desc =         "xHCI Host Controller",
5420         .hcd_priv_size =        sizeof(struct xhci_hcd),
5421
5422         /*
5423          * generic hardware linkage
5424          */
5425         .irq =                  xhci_irq,
5426         .flags =                HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5427                                 HCD_BH,
5428
5429         /*
5430          * basic lifecycle operations
5431          */
5432         .reset =                NULL, /* set in xhci_init_driver() */
5433         .start =                xhci_run,
5434         .stop =                 xhci_stop,
5435         .shutdown =             xhci_shutdown,
5436
5437         /*
5438          * managing i/o requests and associated device resources
5439          */
5440         .map_urb_for_dma =      xhci_map_urb_for_dma,
5441         .unmap_urb_for_dma =    xhci_unmap_urb_for_dma,
5442         .urb_enqueue =          xhci_urb_enqueue,
5443         .urb_dequeue =          xhci_urb_dequeue,
5444         .alloc_dev =            xhci_alloc_dev,
5445         .free_dev =             xhci_free_dev,
5446         .alloc_streams =        xhci_alloc_streams,
5447         .free_streams =         xhci_free_streams,
5448         .add_endpoint =         xhci_add_endpoint,
5449         .drop_endpoint =        xhci_drop_endpoint,
5450         .endpoint_disable =     xhci_endpoint_disable,
5451         .endpoint_reset =       xhci_endpoint_reset,
5452         .check_bandwidth =      xhci_check_bandwidth,
5453         .reset_bandwidth =      xhci_reset_bandwidth,
5454         .address_device =       xhci_address_device,
5455         .enable_device =        xhci_enable_device,
5456         .update_hub_device =    xhci_update_hub_device,
5457         .reset_device =         xhci_discover_or_reset_device,
5458
5459         /*
5460          * scheduling support
5461          */
5462         .get_frame_number =     xhci_get_frame,
5463
5464         /*
5465          * root hub support
5466          */
5467         .hub_control =          xhci_hub_control,
5468         .hub_status_data =      xhci_hub_status_data,
5469         .bus_suspend =          xhci_bus_suspend,
5470         .bus_resume =           xhci_bus_resume,
5471         .get_resuming_ports =   xhci_get_resuming_ports,
5472
5473         /*
5474          * call back when device connected and addressed
5475          */
5476         .update_device =        xhci_update_device,
5477         .set_usb2_hw_lpm =      xhci_set_usb2_hardware_lpm,
5478         .enable_usb3_lpm_timeout =      xhci_enable_usb3_lpm_timeout,
5479         .disable_usb3_lpm_timeout =     xhci_disable_usb3_lpm_timeout,
5480         .find_raw_port_number = xhci_find_raw_port_number,
5481         .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5482 };
5483
5484 void xhci_init_driver(struct hc_driver *drv,
5485                       const struct xhci_driver_overrides *over)
5486 {
5487         BUG_ON(!over);
5488
5489         /* Copy the generic table to drv then apply the overrides */
5490         *drv = xhci_hc_driver;
5491
5492         if (over) {
5493                 drv->hcd_priv_size += over->extra_priv_size;
5494                 if (over->reset)
5495                         drv->reset = over->reset;
5496                 if (over->start)
5497                         drv->start = over->start;
5498                 if (over->add_endpoint)
5499                         drv->add_endpoint = over->add_endpoint;
5500                 if (over->drop_endpoint)
5501                         drv->drop_endpoint = over->drop_endpoint;
5502                 if (over->check_bandwidth)
5503                         drv->check_bandwidth = over->check_bandwidth;
5504                 if (over->reset_bandwidth)
5505                         drv->reset_bandwidth = over->reset_bandwidth;
5506         }
5507 }
5508 EXPORT_SYMBOL_GPL(xhci_init_driver);
5509
5510 MODULE_DESCRIPTION(DRIVER_DESC);
5511 MODULE_AUTHOR(DRIVER_AUTHOR);
5512 MODULE_LICENSE("GPL");
5513
5514 static int __init xhci_hcd_init(void)
5515 {
5516         /*
5517          * Check the compiler generated sizes of structures that must be laid
5518          * out in specific ways for hardware access.
5519          */
5520         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5521         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5522         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5523         /* xhci_device_control has eight fields, and also
5524          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5525          */
5526         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5527         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5528         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5529         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5530         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5531         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5532         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5533
5534         if (usb_disabled())
5535                 return -ENODEV;
5536
5537         xhci_debugfs_create_root();
5538         xhci_dbc_init();
5539
5540         return 0;
5541 }
5542
5543 /*
5544  * If an init function is provided, an exit function must also be provided
5545  * to allow module unload.
5546  */
5547 static void __exit xhci_hcd_fini(void)
5548 {
5549         xhci_debugfs_remove_root();
5550         xhci_dbc_exit();
5551 }
5552
5553 module_init(xhci_hcd_init);
5554 module_exit(xhci_hcd_fini);