GNU Linux-libre 4.9.297-gnu1
[releases.git] / drivers / usb / host / xhci.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/iopoll.h>
25 #include <linux/irq.h>
26 #include <linux/log2.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/slab.h>
30 #include <linux/dmi.h>
31 #include <linux/dma-mapping.h>
32
33 #include "xhci.h"
34 #include "xhci-trace.h"
35 #include "xhci-mtk.h"
36
37 #define DRIVER_AUTHOR "Sarah Sharp"
38 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
39
40 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
41
42 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
43 static int link_quirk;
44 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
45 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
46
47 static unsigned int quirks;
48 module_param(quirks, uint, S_IRUGO);
49 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
50
51 /*
52  * xhci_handshake - spin reading hc until handshake completes or fails
53  * @ptr: address of hc register to be read
54  * @mask: bits to look at in result of read
55  * @done: value of those bits when handshake succeeds
56  * @usec: timeout in microseconds
57  *
58  * Returns negative errno, or zero on success
59  *
60  * Success happens when the "mask" bits have the specified value (hardware
61  * handshake done).  There are two failure modes:  "usec" have passed (major
62  * hardware flakeout), or the register reads as all-ones (hardware removed).
63  */
64 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
65 {
66         u32     result;
67         int     ret;
68
69         ret = readl_poll_timeout_atomic(ptr, result,
70                                         (result & mask) == done ||
71                                         result == U32_MAX,
72                                         1, usec);
73         if (result == U32_MAX)          /* card removed */
74                 return -ENODEV;
75
76         return ret;
77 }
78
79 /*
80  * Disable interrupts and begin the xHCI halting process.
81  */
82 void xhci_quiesce(struct xhci_hcd *xhci)
83 {
84         u32 halted;
85         u32 cmd;
86         u32 mask;
87
88         mask = ~(XHCI_IRQS);
89         halted = readl(&xhci->op_regs->status) & STS_HALT;
90         if (!halted)
91                 mask &= ~CMD_RUN;
92
93         cmd = readl(&xhci->op_regs->command);
94         cmd &= mask;
95         writel(cmd, &xhci->op_regs->command);
96 }
97
98 /*
99  * Force HC into halt state.
100  *
101  * Disable any IRQs and clear the run/stop bit.
102  * HC will complete any current and actively pipelined transactions, and
103  * should halt within 16 ms of the run/stop bit being cleared.
104  * Read HC Halted bit in the status register to see when the HC is finished.
105  */
106 int xhci_halt(struct xhci_hcd *xhci)
107 {
108         int ret;
109         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
110         xhci_quiesce(xhci);
111
112         ret = xhci_handshake(&xhci->op_regs->status,
113                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
114         if (!ret) {
115                 xhci->xhc_state |= XHCI_STATE_HALTED;
116                 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
117         } else
118                 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
119                                 XHCI_MAX_HALT_USEC);
120         return ret;
121 }
122
123 /*
124  * Set the run bit and wait for the host to be running.
125  */
126 static int xhci_start(struct xhci_hcd *xhci)
127 {
128         u32 temp;
129         int ret;
130
131         temp = readl(&xhci->op_regs->command);
132         temp |= (CMD_RUN);
133         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
134                         temp);
135         writel(temp, &xhci->op_regs->command);
136
137         /*
138          * Wait for the HCHalted Status bit to be 0 to indicate the host is
139          * running.
140          */
141         ret = xhci_handshake(&xhci->op_regs->status,
142                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
143         if (ret == -ETIMEDOUT)
144                 xhci_err(xhci, "Host took too long to start, "
145                                 "waited %u microseconds.\n",
146                                 XHCI_MAX_HALT_USEC);
147         if (!ret)
148                 /* clear state flags. Including dying, halted or removing */
149                 xhci->xhc_state = 0;
150
151         return ret;
152 }
153
154 /*
155  * Reset a halted HC.
156  *
157  * This resets pipelines, timers, counters, state machines, etc.
158  * Transactions will be terminated immediately, and operational registers
159  * will be set to their defaults.
160  */
161 int xhci_reset(struct xhci_hcd *xhci)
162 {
163         u32 command;
164         u32 state;
165         int ret, i;
166
167         state = readl(&xhci->op_regs->status);
168         if ((state & STS_HALT) == 0) {
169                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
170                 return 0;
171         }
172
173         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
174         command = readl(&xhci->op_regs->command);
175         command |= CMD_RESET;
176         writel(command, &xhci->op_regs->command);
177
178         /* Existing Intel xHCI controllers require a delay of 1 mS,
179          * after setting the CMD_RESET bit, and before accessing any
180          * HC registers. This allows the HC to complete the
181          * reset operation and be ready for HC register access.
182          * Without this delay, the subsequent HC register access,
183          * may result in a system hang very rarely.
184          */
185         if (xhci->quirks & XHCI_INTEL_HOST)
186                 udelay(1000);
187
188         ret = xhci_handshake(&xhci->op_regs->command,
189                         CMD_RESET, 0, 10 * 1000 * 1000);
190         if (ret)
191                 return ret;
192
193         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
194                 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
195
196         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
197                          "Wait for controller to be ready for doorbell rings");
198         /*
199          * xHCI cannot write to any doorbells or operational registers other
200          * than status until the "Controller Not Ready" flag is cleared.
201          */
202         ret = xhci_handshake(&xhci->op_regs->status,
203                         STS_CNR, 0, 10 * 1000 * 1000);
204
205         for (i = 0; i < 2; ++i) {
206                 xhci->bus_state[i].port_c_suspend = 0;
207                 xhci->bus_state[i].suspended_ports = 0;
208                 xhci->bus_state[i].resuming_ports = 0;
209         }
210
211         return ret;
212 }
213
214 #ifdef CONFIG_PCI
215 static int xhci_free_msi(struct xhci_hcd *xhci)
216 {
217         int i;
218
219         if (!xhci->msix_entries)
220                 return -EINVAL;
221
222         for (i = 0; i < xhci->msix_count; i++)
223                 if (xhci->msix_entries[i].vector)
224                         free_irq(xhci->msix_entries[i].vector,
225                                         xhci_to_hcd(xhci));
226         return 0;
227 }
228
229 /*
230  * Set up MSI
231  */
232 static int xhci_setup_msi(struct xhci_hcd *xhci)
233 {
234         int ret;
235         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
236
237         ret = pci_enable_msi(pdev);
238         if (ret) {
239                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
240                                 "failed to allocate MSI entry");
241                 return ret;
242         }
243
244         ret = request_irq(pdev->irq, xhci_msi_irq,
245                                 0, "xhci_hcd", xhci_to_hcd(xhci));
246         if (ret) {
247                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
248                                 "disable MSI interrupt");
249                 pci_disable_msi(pdev);
250         }
251
252         return ret;
253 }
254
255 /*
256  * Free IRQs
257  * free all IRQs request
258  */
259 static void xhci_free_irq(struct xhci_hcd *xhci)
260 {
261         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
262         int ret;
263
264         /* return if using legacy interrupt */
265         if (xhci_to_hcd(xhci)->irq > 0)
266                 return;
267
268         ret = xhci_free_msi(xhci);
269         if (!ret)
270                 return;
271         if (pdev->irq > 0)
272                 free_irq(pdev->irq, xhci_to_hcd(xhci));
273
274         return;
275 }
276
277 /*
278  * Set up MSI-X
279  */
280 static int xhci_setup_msix(struct xhci_hcd *xhci)
281 {
282         int i, ret = 0;
283         struct usb_hcd *hcd = xhci_to_hcd(xhci);
284         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
285
286         /*
287          * calculate number of msi-x vectors supported.
288          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
289          *   with max number of interrupters based on the xhci HCSPARAMS1.
290          * - num_online_cpus: maximum msi-x vectors per CPUs core.
291          *   Add additional 1 vector to ensure always available interrupt.
292          */
293         xhci->msix_count = min(num_online_cpus() + 1,
294                                 HCS_MAX_INTRS(xhci->hcs_params1));
295
296         xhci->msix_entries =
297                 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
298                                 GFP_KERNEL);
299         if (!xhci->msix_entries)
300                 return -ENOMEM;
301
302         for (i = 0; i < xhci->msix_count; i++) {
303                 xhci->msix_entries[i].entry = i;
304                 xhci->msix_entries[i].vector = 0;
305         }
306
307         ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count);
308         if (ret) {
309                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
310                                 "Failed to enable MSI-X");
311                 goto free_entries;
312         }
313
314         for (i = 0; i < xhci->msix_count; i++) {
315                 ret = request_irq(xhci->msix_entries[i].vector,
316                                 xhci_msi_irq,
317                                 0, "xhci_hcd", xhci_to_hcd(xhci));
318                 if (ret)
319                         goto disable_msix;
320         }
321
322         hcd->msix_enabled = 1;
323         return ret;
324
325 disable_msix:
326         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
327         xhci_free_irq(xhci);
328         pci_disable_msix(pdev);
329 free_entries:
330         kfree(xhci->msix_entries);
331         xhci->msix_entries = NULL;
332         return ret;
333 }
334
335 /* Free any IRQs and disable MSI-X */
336 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
337 {
338         struct usb_hcd *hcd = xhci_to_hcd(xhci);
339         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
340
341         if (xhci->quirks & XHCI_PLAT)
342                 return;
343
344         xhci_free_irq(xhci);
345
346         if (xhci->msix_entries) {
347                 pci_disable_msix(pdev);
348                 kfree(xhci->msix_entries);
349                 xhci->msix_entries = NULL;
350         } else {
351                 pci_disable_msi(pdev);
352         }
353
354         hcd->msix_enabled = 0;
355         return;
356 }
357
358 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
359 {
360         int i;
361
362         if (xhci->msix_entries) {
363                 for (i = 0; i < xhci->msix_count; i++)
364                         synchronize_irq(xhci->msix_entries[i].vector);
365         }
366 }
367
368 static int xhci_try_enable_msi(struct usb_hcd *hcd)
369 {
370         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
371         struct pci_dev  *pdev;
372         int ret;
373
374         /* The xhci platform device has set up IRQs through usb_add_hcd. */
375         if (xhci->quirks & XHCI_PLAT)
376                 return 0;
377
378         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
379         /*
380          * Some Fresco Logic host controllers advertise MSI, but fail to
381          * generate interrupts.  Don't even try to enable MSI.
382          */
383         if (xhci->quirks & XHCI_BROKEN_MSI)
384                 goto legacy_irq;
385
386         /* unregister the legacy interrupt */
387         if (hcd->irq)
388                 free_irq(hcd->irq, hcd);
389         hcd->irq = 0;
390
391         ret = xhci_setup_msix(xhci);
392         if (ret)
393                 /* fall back to msi*/
394                 ret = xhci_setup_msi(xhci);
395
396         if (!ret)
397                 /* hcd->irq is 0, we have MSI */
398                 return 0;
399
400         if (!pdev->irq) {
401                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
402                 return -EINVAL;
403         }
404
405  legacy_irq:
406         if (!strlen(hcd->irq_descr))
407                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
408                          hcd->driver->description, hcd->self.busnum);
409
410         /* fall back to legacy interrupt*/
411         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
412                         hcd->irq_descr, hcd);
413         if (ret) {
414                 xhci_err(xhci, "request interrupt %d failed\n",
415                                 pdev->irq);
416                 return ret;
417         }
418         hcd->irq = pdev->irq;
419         return 0;
420 }
421
422 #else
423
424 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
425 {
426         return 0;
427 }
428
429 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
430 {
431 }
432
433 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
434 {
435 }
436
437 #endif
438
439 static void compliance_mode_recovery(unsigned long arg)
440 {
441         struct xhci_hcd *xhci;
442         struct usb_hcd *hcd;
443         u32 temp;
444         int i;
445
446         xhci = (struct xhci_hcd *)arg;
447
448         for (i = 0; i < xhci->num_usb3_ports; i++) {
449                 temp = readl(xhci->usb3_ports[i]);
450                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
451                         /*
452                          * Compliance Mode Detected. Letting USB Core
453                          * handle the Warm Reset
454                          */
455                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
456                                         "Compliance mode detected->port %d",
457                                         i + 1);
458                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
459                                         "Attempting compliance mode recovery");
460                         hcd = xhci->shared_hcd;
461
462                         if (hcd->state == HC_STATE_SUSPENDED)
463                                 usb_hcd_resume_root_hub(hcd);
464
465                         usb_hcd_poll_rh_status(hcd);
466                 }
467         }
468
469         if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
470                 mod_timer(&xhci->comp_mode_recovery_timer,
471                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
472 }
473
474 /*
475  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
476  * that causes ports behind that hardware to enter compliance mode sometimes.
477  * The quirk creates a timer that polls every 2 seconds the link state of
478  * each host controller's port and recovers it by issuing a Warm reset
479  * if Compliance mode is detected, otherwise the port will become "dead" (no
480  * device connections or disconnections will be detected anymore). Becasue no
481  * status event is generated when entering compliance mode (per xhci spec),
482  * this quirk is needed on systems that have the failing hardware installed.
483  */
484 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
485 {
486         xhci->port_status_u0 = 0;
487         setup_timer(&xhci->comp_mode_recovery_timer,
488                     compliance_mode_recovery, (unsigned long)xhci);
489         xhci->comp_mode_recovery_timer.expires = jiffies +
490                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
491
492         add_timer(&xhci->comp_mode_recovery_timer);
493         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
494                         "Compliance mode recovery timer initialized");
495 }
496
497 /*
498  * This function identifies the systems that have installed the SN65LVPE502CP
499  * USB3.0 re-driver and that need the Compliance Mode Quirk.
500  * Systems:
501  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
502  */
503 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
504 {
505         const char *dmi_product_name, *dmi_sys_vendor;
506
507         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
508         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
509         if (!dmi_product_name || !dmi_sys_vendor)
510                 return false;
511
512         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
513                 return false;
514
515         if (strstr(dmi_product_name, "Z420") ||
516                         strstr(dmi_product_name, "Z620") ||
517                         strstr(dmi_product_name, "Z820") ||
518                         strstr(dmi_product_name, "Z1 Workstation"))
519                 return true;
520
521         return false;
522 }
523
524 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
525 {
526         return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
527 }
528
529
530 /*
531  * Initialize memory for HCD and xHC (one-time init).
532  *
533  * Program the PAGESIZE register, initialize the device context array, create
534  * device contexts (?), set up a command ring segment (or two?), create event
535  * ring (one for now).
536  */
537 int xhci_init(struct usb_hcd *hcd)
538 {
539         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
540         int retval = 0;
541
542         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
543         spin_lock_init(&xhci->lock);
544         if (xhci->hci_version == 0x95 && link_quirk) {
545                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
546                                 "QUIRK: Not clearing Link TRB chain bits.");
547                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
548         } else {
549                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
550                                 "xHCI doesn't need link TRB QUIRK");
551         }
552         retval = xhci_mem_init(xhci, GFP_KERNEL);
553         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
554
555         /* Initializing Compliance Mode Recovery Data If Needed */
556         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
557                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
558                 compliance_mode_recovery_timer_init(xhci);
559         }
560
561         return retval;
562 }
563
564 /*-------------------------------------------------------------------------*/
565
566
567 static int xhci_run_finished(struct xhci_hcd *xhci)
568 {
569         if (xhci_start(xhci)) {
570                 xhci_halt(xhci);
571                 return -ENODEV;
572         }
573         xhci->shared_hcd->state = HC_STATE_RUNNING;
574         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
575
576         if (xhci->quirks & XHCI_NEC_HOST)
577                 xhci_ring_cmd_db(xhci);
578
579         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
580                         "Finished xhci_run for USB3 roothub");
581         return 0;
582 }
583
584 /*
585  * Start the HC after it was halted.
586  *
587  * This function is called by the USB core when the HC driver is added.
588  * Its opposite is xhci_stop().
589  *
590  * xhci_init() must be called once before this function can be called.
591  * Reset the HC, enable device slot contexts, program DCBAAP, and
592  * set command ring pointer and event ring pointer.
593  *
594  * Setup MSI-X vectors and enable interrupts.
595  */
596 int xhci_run(struct usb_hcd *hcd)
597 {
598         u32 temp;
599         u64 temp_64;
600         int ret;
601         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
602
603         /* Start the xHCI host controller running only after the USB 2.0 roothub
604          * is setup.
605          */
606
607         hcd->uses_new_polling = 1;
608         if (!usb_hcd_is_primary_hcd(hcd))
609                 return xhci_run_finished(xhci);
610
611         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
612
613         ret = xhci_try_enable_msi(hcd);
614         if (ret)
615                 return ret;
616
617         xhci_dbg(xhci, "Command ring memory map follows:\n");
618         xhci_debug_ring(xhci, xhci->cmd_ring);
619         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
620         xhci_dbg_cmd_ptrs(xhci);
621
622         xhci_dbg(xhci, "ERST memory map follows:\n");
623         xhci_dbg_erst(xhci, &xhci->erst);
624         xhci_dbg(xhci, "Event ring:\n");
625         xhci_debug_ring(xhci, xhci->event_ring);
626         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
627         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
628         temp_64 &= ~ERST_PTR_MASK;
629         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
630                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
631
632         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
633                         "// Set the interrupt modulation register");
634         temp = readl(&xhci->ir_set->irq_control);
635         temp &= ~ER_IRQ_INTERVAL_MASK;
636         /*
637          * the increment interval is 8 times as much as that defined
638          * in xHCI spec on MTK's controller
639          */
640         temp |= (u32) ((xhci->quirks & XHCI_MTK_HOST) ? 20 : 160);
641         writel(temp, &xhci->ir_set->irq_control);
642
643         /* Set the HCD state before we enable the irqs */
644         temp = readl(&xhci->op_regs->command);
645         temp |= (CMD_EIE);
646         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
647                         "// Enable interrupts, cmd = 0x%x.", temp);
648         writel(temp, &xhci->op_regs->command);
649
650         temp = readl(&xhci->ir_set->irq_pending);
651         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
652                         "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
653                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
654         writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
655         xhci_print_ir_set(xhci, 0);
656
657         if (xhci->quirks & XHCI_NEC_HOST) {
658                 struct xhci_command *command;
659                 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
660                 if (!command)
661                         return -ENOMEM;
662                 xhci_queue_vendor_command(xhci, command, 0, 0, 0,
663                                 TRB_TYPE(TRB_NEC_GET_FW));
664         }
665         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
666                         "Finished xhci_run for USB2 roothub");
667         return 0;
668 }
669 EXPORT_SYMBOL_GPL(xhci_run);
670
671 /*
672  * Stop xHCI driver.
673  *
674  * This function is called by the USB core when the HC driver is removed.
675  * Its opposite is xhci_run().
676  *
677  * Disable device contexts, disable IRQs, and quiesce the HC.
678  * Reset the HC, finish any completed transactions, and cleanup memory.
679  */
680 void xhci_stop(struct usb_hcd *hcd)
681 {
682         u32 temp;
683         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
684
685         mutex_lock(&xhci->mutex);
686
687         if (!(xhci->xhc_state & XHCI_STATE_HALTED)) {
688                 spin_lock_irq(&xhci->lock);
689
690                 xhci->xhc_state |= XHCI_STATE_HALTED;
691                 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
692                 xhci_halt(xhci);
693                 xhci_reset(xhci);
694
695                 spin_unlock_irq(&xhci->lock);
696         }
697
698         if (!usb_hcd_is_primary_hcd(hcd)) {
699                 mutex_unlock(&xhci->mutex);
700                 return;
701         }
702
703         xhci_cleanup_msix(xhci);
704
705         /* Deleting Compliance Mode Recovery Timer */
706         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
707                         (!(xhci_all_ports_seen_u0(xhci)))) {
708                 del_timer_sync(&xhci->comp_mode_recovery_timer);
709                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
710                                 "%s: compliance mode recovery timer deleted",
711                                 __func__);
712         }
713
714         if (xhci->quirks & XHCI_AMD_PLL_FIX)
715                 usb_amd_dev_put();
716
717         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
718                         "// Disabling event ring interrupts");
719         temp = readl(&xhci->op_regs->status);
720         writel(temp & ~STS_EINT, &xhci->op_regs->status);
721         temp = readl(&xhci->ir_set->irq_pending);
722         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
723         xhci_print_ir_set(xhci, 0);
724
725         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
726         xhci_mem_cleanup(xhci);
727         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
728                         "xhci_stop completed - status = %x",
729                         readl(&xhci->op_regs->status));
730         mutex_unlock(&xhci->mutex);
731 }
732
733 /*
734  * Shutdown HC (not bus-specific)
735  *
736  * This is called when the machine is rebooting or halting.  We assume that the
737  * machine will be powered off, and the HC's internal state will be reset.
738  * Don't bother to free memory.
739  *
740  * This will only ever be called with the main usb_hcd (the USB3 roothub).
741  */
742 void xhci_shutdown(struct usb_hcd *hcd)
743 {
744         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
745
746         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
747                 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
748
749         spin_lock_irq(&xhci->lock);
750         xhci_halt(xhci);
751         /* Workaround for spurious wakeups at shutdown with HSW */
752         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
753                 xhci_reset(xhci);
754         spin_unlock_irq(&xhci->lock);
755
756         xhci_cleanup_msix(xhci);
757
758         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
759                         "xhci_shutdown completed - status = %x",
760                         readl(&xhci->op_regs->status));
761 }
762 EXPORT_SYMBOL_GPL(xhci_shutdown);
763
764 #ifdef CONFIG_PM
765 static void xhci_save_registers(struct xhci_hcd *xhci)
766 {
767         xhci->s3.command = readl(&xhci->op_regs->command);
768         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
769         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
770         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
771         xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
772         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
773         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
774         xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
775         xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
776 }
777
778 static void xhci_restore_registers(struct xhci_hcd *xhci)
779 {
780         writel(xhci->s3.command, &xhci->op_regs->command);
781         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
782         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
783         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
784         writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
785         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
786         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
787         writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
788         writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
789 }
790
791 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
792 {
793         u64     val_64;
794
795         /* step 2: initialize command ring buffer */
796         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
797         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
798                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
799                                       xhci->cmd_ring->dequeue) &
800                  (u64) ~CMD_RING_RSVD_BITS) |
801                 xhci->cmd_ring->cycle_state;
802         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
803                         "// Setting command ring address to 0x%llx",
804                         (long unsigned long) val_64);
805         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
806 }
807
808 /*
809  * The whole command ring must be cleared to zero when we suspend the host.
810  *
811  * The host doesn't save the command ring pointer in the suspend well, so we
812  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
813  * aligned, because of the reserved bits in the command ring dequeue pointer
814  * register.  Therefore, we can't just set the dequeue pointer back in the
815  * middle of the ring (TRBs are 16-byte aligned).
816  */
817 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
818 {
819         struct xhci_ring *ring;
820         struct xhci_segment *seg;
821
822         ring = xhci->cmd_ring;
823         seg = ring->deq_seg;
824         do {
825                 memset(seg->trbs, 0,
826                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
827                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
828                         cpu_to_le32(~TRB_CYCLE);
829                 seg = seg->next;
830         } while (seg != ring->deq_seg);
831
832         /* Reset the software enqueue and dequeue pointers */
833         ring->deq_seg = ring->first_seg;
834         ring->dequeue = ring->first_seg->trbs;
835         ring->enq_seg = ring->deq_seg;
836         ring->enqueue = ring->dequeue;
837
838         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
839         /*
840          * Ring is now zeroed, so the HW should look for change of ownership
841          * when the cycle bit is set to 1.
842          */
843         ring->cycle_state = 1;
844
845         /*
846          * Reset the hardware dequeue pointer.
847          * Yes, this will need to be re-written after resume, but we're paranoid
848          * and want to make sure the hardware doesn't access bogus memory
849          * because, say, the BIOS or an SMI started the host without changing
850          * the command ring pointers.
851          */
852         xhci_set_cmd_ring_deq(xhci);
853 }
854
855 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
856 {
857         int port_index;
858         __le32 __iomem **port_array;
859         unsigned long flags;
860         u32 t1, t2;
861
862         spin_lock_irqsave(&xhci->lock, flags);
863
864         /* disble usb3 ports Wake bits*/
865         port_index = xhci->num_usb3_ports;
866         port_array = xhci->usb3_ports;
867         while (port_index--) {
868                 t1 = readl(port_array[port_index]);
869                 t1 = xhci_port_state_to_neutral(t1);
870                 t2 = t1 & ~PORT_WAKE_BITS;
871                 if (t1 != t2)
872                         writel(t2, port_array[port_index]);
873         }
874
875         /* disble usb2 ports Wake bits*/
876         port_index = xhci->num_usb2_ports;
877         port_array = xhci->usb2_ports;
878         while (port_index--) {
879                 t1 = readl(port_array[port_index]);
880                 t1 = xhci_port_state_to_neutral(t1);
881                 t2 = t1 & ~PORT_WAKE_BITS;
882                 if (t1 != t2)
883                         writel(t2, port_array[port_index]);
884         }
885
886         spin_unlock_irqrestore(&xhci->lock, flags);
887 }
888
889 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
890 {
891         __le32 __iomem          **port_array;
892         int                     port_index;
893         u32                     status;
894         u32                     portsc;
895
896         status = readl(&xhci->op_regs->status);
897         if (status & STS_EINT)
898                 return true;
899         /*
900          * Checking STS_EINT is not enough as there is a lag between a change
901          * bit being set and the Port Status Change Event that it generated
902          * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
903          */
904
905         port_index = xhci->num_usb2_ports;
906         port_array = xhci->usb2_ports;
907         while (port_index--) {
908                 portsc = readl(port_array[port_index]);
909                 if (portsc & PORT_CHANGE_MASK ||
910                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
911                         return true;
912         }
913         port_index = xhci->num_usb3_ports;
914         port_array = xhci->usb3_ports;
915         while (port_index--) {
916                 portsc = readl(port_array[port_index]);
917                 if (portsc & PORT_CHANGE_MASK ||
918                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
919                         return true;
920         }
921         return false;
922 }
923
924 /*
925  * Stop HC (not bus-specific)
926  *
927  * This is called when the machine transition into S3/S4 mode.
928  *
929  */
930 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
931 {
932         int                     rc = 0;
933         unsigned int            delay = XHCI_MAX_HALT_USEC * 2;
934         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
935         u32                     command;
936
937         if (!hcd->state)
938                 return 0;
939
940         if (hcd->state != HC_STATE_SUSPENDED ||
941                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
942                 return -EINVAL;
943
944         /* Clear root port wake on bits if wakeup not allowed. */
945         if (!do_wakeup)
946                 xhci_disable_port_wake_on_bits(xhci);
947
948         /* Don't poll the roothubs on bus suspend. */
949         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
950         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
951         del_timer_sync(&hcd->rh_timer);
952         clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
953         del_timer_sync(&xhci->shared_hcd->rh_timer);
954
955         spin_lock_irq(&xhci->lock);
956         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
957         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
958         /* step 1: stop endpoint */
959         /* skipped assuming that port suspend has done */
960
961         /* step 2: clear Run/Stop bit */
962         command = readl(&xhci->op_regs->command);
963         command &= ~CMD_RUN;
964         writel(command, &xhci->op_regs->command);
965
966         /* Some chips from Fresco Logic need an extraordinary delay */
967         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
968
969         if (xhci_handshake(&xhci->op_regs->status,
970                       STS_HALT, STS_HALT, delay)) {
971                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
972                 spin_unlock_irq(&xhci->lock);
973                 return -ETIMEDOUT;
974         }
975         xhci_clear_command_ring(xhci);
976
977         /* step 3: save registers */
978         xhci_save_registers(xhci);
979
980         /* step 4: set CSS flag */
981         command = readl(&xhci->op_regs->command);
982         command |= CMD_CSS;
983         writel(command, &xhci->op_regs->command);
984         if (xhci_handshake(&xhci->op_regs->status,
985                                 STS_SAVE, 0, 20 * 1000)) {
986                 xhci_warn(xhci, "WARN: xHC save state timeout\n");
987                 spin_unlock_irq(&xhci->lock);
988                 return -ETIMEDOUT;
989         }
990         spin_unlock_irq(&xhci->lock);
991
992         /*
993          * Deleting Compliance Mode Recovery Timer because the xHCI Host
994          * is about to be suspended.
995          */
996         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
997                         (!(xhci_all_ports_seen_u0(xhci)))) {
998                 del_timer_sync(&xhci->comp_mode_recovery_timer);
999                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1000                                 "%s: compliance mode recovery timer deleted",
1001                                 __func__);
1002         }
1003
1004         /* step 5: remove core well power */
1005         /* synchronize irq when using MSI-X */
1006         xhci_msix_sync_irqs(xhci);
1007
1008         return rc;
1009 }
1010 EXPORT_SYMBOL_GPL(xhci_suspend);
1011
1012 /*
1013  * start xHC (not bus-specific)
1014  *
1015  * This is called when the machine transition from S3/S4 mode.
1016  *
1017  */
1018 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1019 {
1020         u32                     command, temp = 0;
1021         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
1022         struct usb_hcd          *secondary_hcd;
1023         int                     retval = 0;
1024         bool                    comp_timer_running = false;
1025         bool                    pending_portevent = false;
1026
1027         if (!hcd->state)
1028                 return 0;
1029
1030         /* Wait a bit if either of the roothubs need to settle from the
1031          * transition into bus suspend.
1032          */
1033         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
1034                         time_before(jiffies,
1035                                 xhci->bus_state[1].next_statechange))
1036                 msleep(100);
1037
1038         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1039         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1040
1041         spin_lock_irq(&xhci->lock);
1042         if (xhci->quirks & XHCI_RESET_ON_RESUME)
1043                 hibernated = true;
1044
1045         if (!hibernated) {
1046                 /*
1047                  * Some controllers might lose power during suspend, so wait
1048                  * for controller not ready bit to clear, just as in xHC init.
1049                  */
1050                 retval = xhci_handshake(&xhci->op_regs->status,
1051                                         STS_CNR, 0, 10 * 1000 * 1000);
1052                 if (retval) {
1053                         xhci_warn(xhci, "Controller not ready at resume %d\n",
1054                                   retval);
1055                         spin_unlock_irq(&xhci->lock);
1056                         return retval;
1057                 }
1058                 /* step 1: restore register */
1059                 xhci_restore_registers(xhci);
1060                 /* step 2: initialize command ring buffer */
1061                 xhci_set_cmd_ring_deq(xhci);
1062                 /* step 3: restore state and start state*/
1063                 /* step 3: set CRS flag */
1064                 command = readl(&xhci->op_regs->command);
1065                 command |= CMD_CRS;
1066                 writel(command, &xhci->op_regs->command);
1067                 /*
1068                  * Some controllers take up to 55+ ms to complete the controller
1069                  * restore so setting the timeout to 100ms. Xhci specification
1070                  * doesn't mention any timeout value.
1071                  */
1072                 if (xhci_handshake(&xhci->op_regs->status,
1073                               STS_RESTORE, 0, 100 * 1000)) {
1074                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1075                         spin_unlock_irq(&xhci->lock);
1076                         return -ETIMEDOUT;
1077                 }
1078                 temp = readl(&xhci->op_regs->status);
1079         }
1080
1081         /* If restore operation fails, re-initialize the HC during resume */
1082         if ((temp & STS_SRE) || hibernated) {
1083
1084                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1085                                 !(xhci_all_ports_seen_u0(xhci))) {
1086                         del_timer_sync(&xhci->comp_mode_recovery_timer);
1087                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1088                                 "Compliance Mode Recovery Timer deleted!");
1089                 }
1090
1091                 /* Let the USB core know _both_ roothubs lost power. */
1092                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1093                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1094
1095                 xhci_dbg(xhci, "Stop HCD\n");
1096                 xhci_halt(xhci);
1097                 xhci_reset(xhci);
1098                 spin_unlock_irq(&xhci->lock);
1099                 xhci_cleanup_msix(xhci);
1100
1101                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1102                 temp = readl(&xhci->op_regs->status);
1103                 writel(temp & ~STS_EINT, &xhci->op_regs->status);
1104                 temp = readl(&xhci->ir_set->irq_pending);
1105                 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1106                 xhci_print_ir_set(xhci, 0);
1107
1108                 xhci_dbg(xhci, "cleaning up memory\n");
1109                 xhci_mem_cleanup(xhci);
1110                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1111                             readl(&xhci->op_regs->status));
1112
1113                 /* USB core calls the PCI reinit and start functions twice:
1114                  * first with the primary HCD, and then with the secondary HCD.
1115                  * If we don't do the same, the host will never be started.
1116                  */
1117                 if (!usb_hcd_is_primary_hcd(hcd))
1118                         secondary_hcd = hcd;
1119                 else
1120                         secondary_hcd = xhci->shared_hcd;
1121
1122                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1123                 retval = xhci_init(hcd->primary_hcd);
1124                 if (retval)
1125                         return retval;
1126                 comp_timer_running = true;
1127
1128                 xhci_dbg(xhci, "Start the primary HCD\n");
1129                 retval = xhci_run(hcd->primary_hcd);
1130                 if (!retval) {
1131                         xhci_dbg(xhci, "Start the secondary HCD\n");
1132                         retval = xhci_run(secondary_hcd);
1133                 }
1134                 hcd->state = HC_STATE_SUSPENDED;
1135                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1136                 goto done;
1137         }
1138
1139         /* step 4: set Run/Stop bit */
1140         command = readl(&xhci->op_regs->command);
1141         command |= CMD_RUN;
1142         writel(command, &xhci->op_regs->command);
1143         xhci_handshake(&xhci->op_regs->status, STS_HALT,
1144                   0, 250 * 1000);
1145
1146         /* step 5: walk topology and initialize portsc,
1147          * portpmsc and portli
1148          */
1149         /* this is done in bus_resume */
1150
1151         /* step 6: restart each of the previously
1152          * Running endpoints by ringing their doorbells
1153          */
1154
1155         spin_unlock_irq(&xhci->lock);
1156
1157  done:
1158         if (retval == 0) {
1159                 /*
1160                  * Resume roothubs only if there are pending events.
1161                  * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1162                  * the first wake signalling failed, give it that chance.
1163                  */
1164                 pending_portevent = xhci_pending_portevent(xhci);
1165                 if (!pending_portevent) {
1166                         msleep(120);
1167                         pending_portevent = xhci_pending_portevent(xhci);
1168                 }
1169
1170                 if (pending_portevent) {
1171                         usb_hcd_resume_root_hub(xhci->shared_hcd);
1172                         usb_hcd_resume_root_hub(hcd);
1173                 }
1174         }
1175         /*
1176          * If system is subject to the Quirk, Compliance Mode Timer needs to
1177          * be re-initialized Always after a system resume. Ports are subject
1178          * to suffer the Compliance Mode issue again. It doesn't matter if
1179          * ports have entered previously to U0 before system's suspension.
1180          */
1181         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1182                 compliance_mode_recovery_timer_init(xhci);
1183
1184         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1185                 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1186
1187         /* Re-enable port polling. */
1188         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1189         set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1190         usb_hcd_poll_rh_status(xhci->shared_hcd);
1191         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1192         usb_hcd_poll_rh_status(hcd);
1193
1194         return retval;
1195 }
1196 EXPORT_SYMBOL_GPL(xhci_resume);
1197 #endif  /* CONFIG_PM */
1198
1199 /*-------------------------------------------------------------------------*/
1200
1201 /**
1202  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1203  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1204  * value to right shift 1 for the bitmask.
1205  *
1206  * Index  = (epnum * 2) + direction - 1,
1207  * where direction = 0 for OUT, 1 for IN.
1208  * For control endpoints, the IN index is used (OUT index is unused), so
1209  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1210  */
1211 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1212 {
1213         unsigned int index;
1214         if (usb_endpoint_xfer_control(desc))
1215                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1216         else
1217                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1218                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1219         return index;
1220 }
1221
1222 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1223  * address from the XHCI endpoint index.
1224  */
1225 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1226 {
1227         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1228         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1229         return direction | number;
1230 }
1231
1232 /* Find the flag for this endpoint (for use in the control context).  Use the
1233  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1234  * bit 1, etc.
1235  */
1236 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1237 {
1238         return 1 << (xhci_get_endpoint_index(desc) + 1);
1239 }
1240
1241 /* Find the flag for this endpoint (for use in the control context).  Use the
1242  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1243  * bit 1, etc.
1244  */
1245 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1246 {
1247         return 1 << (ep_index + 1);
1248 }
1249
1250 /* Compute the last valid endpoint context index.  Basically, this is the
1251  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1252  * we find the most significant bit set in the added contexts flags.
1253  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1254  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1255  */
1256 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1257 {
1258         return fls(added_ctxs) - 1;
1259 }
1260
1261 /* Returns 1 if the arguments are OK;
1262  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1263  */
1264 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1265                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1266                 const char *func) {
1267         struct xhci_hcd *xhci;
1268         struct xhci_virt_device *virt_dev;
1269
1270         if (!hcd || (check_ep && !ep) || !udev) {
1271                 pr_debug("xHCI %s called with invalid args\n", func);
1272                 return -EINVAL;
1273         }
1274         if (!udev->parent) {
1275                 pr_debug("xHCI %s called for root hub\n", func);
1276                 return 0;
1277         }
1278
1279         xhci = hcd_to_xhci(hcd);
1280         if (check_virt_dev) {
1281                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1282                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1283                                         func);
1284                         return -EINVAL;
1285                 }
1286
1287                 virt_dev = xhci->devs[udev->slot_id];
1288                 if (virt_dev->udev != udev) {
1289                         xhci_dbg(xhci, "xHCI %s called with udev and "
1290                                           "virt_dev does not match\n", func);
1291                         return -EINVAL;
1292                 }
1293         }
1294
1295         if (xhci->xhc_state & XHCI_STATE_HALTED)
1296                 return -ENODEV;
1297
1298         return 1;
1299 }
1300
1301 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1302                 struct usb_device *udev, struct xhci_command *command,
1303                 bool ctx_change, bool must_succeed);
1304
1305 /*
1306  * Full speed devices may have a max packet size greater than 8 bytes, but the
1307  * USB core doesn't know that until it reads the first 8 bytes of the
1308  * descriptor.  If the usb_device's max packet size changes after that point,
1309  * we need to issue an evaluate context command and wait on it.
1310  */
1311 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1312                 unsigned int ep_index, struct urb *urb, gfp_t mem_flags)
1313 {
1314         struct xhci_container_ctx *out_ctx;
1315         struct xhci_input_control_ctx *ctrl_ctx;
1316         struct xhci_ep_ctx *ep_ctx;
1317         struct xhci_command *command;
1318         int max_packet_size;
1319         int hw_max_packet_size;
1320         int ret = 0;
1321
1322         out_ctx = xhci->devs[slot_id]->out_ctx;
1323         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1324         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1325         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1326         if (hw_max_packet_size != max_packet_size) {
1327                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1328                                 "Max Packet Size for ep 0 changed.");
1329                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1330                                 "Max packet size in usb_device = %d",
1331                                 max_packet_size);
1332                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1333                                 "Max packet size in xHCI HW = %d",
1334                                 hw_max_packet_size);
1335                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1336                                 "Issuing evaluate context command.");
1337
1338                 /* Set up the input context flags for the command */
1339                 /* FIXME: This won't work if a non-default control endpoint
1340                  * changes max packet sizes.
1341                  */
1342
1343                 command = xhci_alloc_command(xhci, false, true, mem_flags);
1344                 if (!command)
1345                         return -ENOMEM;
1346
1347                 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1348                 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1349                 if (!ctrl_ctx) {
1350                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1351                                         __func__);
1352                         ret = -ENOMEM;
1353                         goto command_cleanup;
1354                 }
1355                 /* Set up the modified control endpoint 0 */
1356                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1357                                 xhci->devs[slot_id]->out_ctx, ep_index);
1358
1359                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1360                 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1361                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1362                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1363
1364                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1365                 ctrl_ctx->drop_flags = 0;
1366
1367                 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1368                 xhci_dbg_ctx(xhci, command->in_ctx, ep_index);
1369                 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1370                 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1371
1372                 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1373                                 true, false);
1374
1375                 /* Clean up the input context for later use by bandwidth
1376                  * functions.
1377                  */
1378                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1379 command_cleanup:
1380                 kfree(command->completion);
1381                 kfree(command);
1382         }
1383         return ret;
1384 }
1385
1386 /*
1387  * non-error returns are a promise to giveback() the urb later
1388  * we drop ownership so next owner (or urb unlink) can get it
1389  */
1390 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1391 {
1392         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1393         struct xhci_td *buffer;
1394         unsigned long flags;
1395         int ret = 0;
1396         unsigned int slot_id, ep_index;
1397         struct urb_priv *urb_priv;
1398         int size, i;
1399
1400         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1401                                         true, true, __func__) <= 0)
1402                 return -EINVAL;
1403
1404         slot_id = urb->dev->slot_id;
1405         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1406
1407         if (!HCD_HW_ACCESSIBLE(hcd)) {
1408                 if (!in_interrupt())
1409                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1410                 ret = -ESHUTDOWN;
1411                 goto exit;
1412         }
1413
1414         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1415                 size = urb->number_of_packets;
1416         else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1417             urb->transfer_buffer_length > 0 &&
1418             urb->transfer_flags & URB_ZERO_PACKET &&
1419             !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1420                 size = 2;
1421         else
1422                 size = 1;
1423
1424         urb_priv = kzalloc(sizeof(struct urb_priv) +
1425                                   size * sizeof(struct xhci_td *), mem_flags);
1426         if (!urb_priv)
1427                 return -ENOMEM;
1428
1429         buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1430         if (!buffer) {
1431                 kfree(urb_priv);
1432                 return -ENOMEM;
1433         }
1434
1435         for (i = 0; i < size; i++) {
1436                 urb_priv->td[i] = buffer;
1437                 buffer++;
1438         }
1439
1440         urb_priv->length = size;
1441         urb_priv->td_cnt = 0;
1442         urb->hcpriv = urb_priv;
1443
1444         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1445                 /* Check to see if the max packet size for the default control
1446                  * endpoint changed during FS device enumeration
1447                  */
1448                 if (urb->dev->speed == USB_SPEED_FULL) {
1449                         ret = xhci_check_maxpacket(xhci, slot_id,
1450                                         ep_index, urb, mem_flags);
1451                         if (ret < 0) {
1452                                 xhci_urb_free_priv(urb_priv);
1453                                 urb->hcpriv = NULL;
1454                                 return ret;
1455                         }
1456                 }
1457
1458                 /* We have a spinlock and interrupts disabled, so we must pass
1459                  * atomic context to this function, which may allocate memory.
1460                  */
1461                 spin_lock_irqsave(&xhci->lock, flags);
1462                 if (xhci->xhc_state & XHCI_STATE_DYING)
1463                         goto dying;
1464                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1465                                 slot_id, ep_index);
1466                 if (ret)
1467                         goto free_priv;
1468                 spin_unlock_irqrestore(&xhci->lock, flags);
1469         } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1470                 spin_lock_irqsave(&xhci->lock, flags);
1471                 if (xhci->xhc_state & XHCI_STATE_DYING)
1472                         goto dying;
1473                 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1474                                 EP_GETTING_STREAMS) {
1475                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1476                                         "is transitioning to using streams.\n");
1477                         ret = -EINVAL;
1478                 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1479                                 EP_GETTING_NO_STREAMS) {
1480                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1481                                         "is transitioning to "
1482                                         "not having streams.\n");
1483                         ret = -EINVAL;
1484                 } else {
1485                         ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1486                                         slot_id, ep_index);
1487                 }
1488                 if (ret)
1489                         goto free_priv;
1490                 spin_unlock_irqrestore(&xhci->lock, flags);
1491         } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1492                 spin_lock_irqsave(&xhci->lock, flags);
1493                 if (xhci->xhc_state & XHCI_STATE_DYING)
1494                         goto dying;
1495                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1496                                 slot_id, ep_index);
1497                 if (ret)
1498                         goto free_priv;
1499                 spin_unlock_irqrestore(&xhci->lock, flags);
1500         } else {
1501                 spin_lock_irqsave(&xhci->lock, flags);
1502                 if (xhci->xhc_state & XHCI_STATE_DYING)
1503                         goto dying;
1504                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1505                                 slot_id, ep_index);
1506                 if (ret)
1507                         goto free_priv;
1508                 spin_unlock_irqrestore(&xhci->lock, flags);
1509         }
1510 exit:
1511         return ret;
1512 dying:
1513         xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1514                         "non-responsive xHCI host.\n",
1515                         urb->ep->desc.bEndpointAddress, urb);
1516         ret = -ESHUTDOWN;
1517 free_priv:
1518         xhci_urb_free_priv(urb_priv);
1519         urb->hcpriv = NULL;
1520         spin_unlock_irqrestore(&xhci->lock, flags);
1521         return ret;
1522 }
1523
1524 /*
1525  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1526  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1527  * should pick up where it left off in the TD, unless a Set Transfer Ring
1528  * Dequeue Pointer is issued.
1529  *
1530  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1531  * the ring.  Since the ring is a contiguous structure, they can't be physically
1532  * removed.  Instead, there are two options:
1533  *
1534  *  1) If the HC is in the middle of processing the URB to be canceled, we
1535  *     simply move the ring's dequeue pointer past those TRBs using the Set
1536  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1537  *     when drivers timeout on the last submitted URB and attempt to cancel.
1538  *
1539  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1540  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1541  *     HC will need to invalidate the any TRBs it has cached after the stop
1542  *     endpoint command, as noted in the xHCI 0.95 errata.
1543  *
1544  *  3) The TD may have completed by the time the Stop Endpoint Command
1545  *     completes, so software needs to handle that case too.
1546  *
1547  * This function should protect against the TD enqueueing code ringing the
1548  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1549  * It also needs to account for multiple cancellations on happening at the same
1550  * time for the same endpoint.
1551  *
1552  * Note that this function can be called in any context, or so says
1553  * usb_hcd_unlink_urb()
1554  */
1555 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1556 {
1557         unsigned long flags;
1558         int ret, i;
1559         u32 temp;
1560         struct xhci_hcd *xhci;
1561         struct urb_priv *urb_priv;
1562         struct xhci_td *td;
1563         unsigned int ep_index;
1564         struct xhci_ring *ep_ring;
1565         struct xhci_virt_ep *ep;
1566         struct xhci_command *command;
1567
1568         xhci = hcd_to_xhci(hcd);
1569         spin_lock_irqsave(&xhci->lock, flags);
1570         /* Make sure the URB hasn't completed or been unlinked already */
1571         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1572         if (ret || !urb->hcpriv)
1573                 goto done;
1574         temp = readl(&xhci->op_regs->status);
1575         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1576                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1577                                 "HW died, freeing TD.");
1578                 urb_priv = urb->hcpriv;
1579                 for (i = urb_priv->td_cnt;
1580                      i < urb_priv->length && xhci->devs[urb->dev->slot_id];
1581                      i++) {
1582                         td = urb_priv->td[i];
1583                         if (!list_empty(&td->td_list))
1584                                 list_del_init(&td->td_list);
1585                         if (!list_empty(&td->cancelled_td_list))
1586                                 list_del_init(&td->cancelled_td_list);
1587                 }
1588
1589                 usb_hcd_unlink_urb_from_ep(hcd, urb);
1590                 spin_unlock_irqrestore(&xhci->lock, flags);
1591                 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1592                 xhci_urb_free_priv(urb_priv);
1593                 return ret;
1594         }
1595
1596         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1597         ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1598         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1599         if (!ep_ring) {
1600                 ret = -EINVAL;
1601                 goto done;
1602         }
1603
1604         urb_priv = urb->hcpriv;
1605         i = urb_priv->td_cnt;
1606         if (i < urb_priv->length)
1607                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1608                                 "Cancel URB %p, dev %s, ep 0x%x, "
1609                                 "starting at offset 0x%llx",
1610                                 urb, urb->dev->devpath,
1611                                 urb->ep->desc.bEndpointAddress,
1612                                 (unsigned long long) xhci_trb_virt_to_dma(
1613                                         urb_priv->td[i]->start_seg,
1614                                         urb_priv->td[i]->first_trb));
1615
1616         for (; i < urb_priv->length; i++) {
1617                 td = urb_priv->td[i];
1618                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1619         }
1620
1621         /* Queue a stop endpoint command, but only if this is
1622          * the first cancellation to be handled.
1623          */
1624         if (!(ep->ep_state & EP_HALT_PENDING)) {
1625                 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1626                 if (!command) {
1627                         ret = -ENOMEM;
1628                         goto done;
1629                 }
1630                 ep->ep_state |= EP_HALT_PENDING;
1631                 ep->stop_cmds_pending++;
1632                 ep->stop_cmd_timer.expires = jiffies +
1633                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1634                 add_timer(&ep->stop_cmd_timer);
1635                 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1636                                          ep_index, 0);
1637                 xhci_ring_cmd_db(xhci);
1638         }
1639 done:
1640         spin_unlock_irqrestore(&xhci->lock, flags);
1641         return ret;
1642 }
1643
1644 /* Drop an endpoint from a new bandwidth configuration for this device.
1645  * Only one call to this function is allowed per endpoint before
1646  * check_bandwidth() or reset_bandwidth() must be called.
1647  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1648  * add the endpoint to the schedule with possibly new parameters denoted by a
1649  * different endpoint descriptor in usb_host_endpoint.
1650  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1651  * not allowed.
1652  *
1653  * The USB core will not allow URBs to be queued to an endpoint that is being
1654  * disabled, so there's no need for mutual exclusion to protect
1655  * the xhci->devs[slot_id] structure.
1656  */
1657 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1658                 struct usb_host_endpoint *ep)
1659 {
1660         struct xhci_hcd *xhci;
1661         struct xhci_container_ctx *in_ctx, *out_ctx;
1662         struct xhci_input_control_ctx *ctrl_ctx;
1663         unsigned int ep_index;
1664         struct xhci_ep_ctx *ep_ctx;
1665         u32 drop_flag;
1666         u32 new_add_flags, new_drop_flags;
1667         int ret;
1668
1669         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1670         if (ret <= 0)
1671                 return ret;
1672         xhci = hcd_to_xhci(hcd);
1673         if (xhci->xhc_state & XHCI_STATE_DYING)
1674                 return -ENODEV;
1675
1676         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1677         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1678         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1679                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1680                                 __func__, drop_flag);
1681                 return 0;
1682         }
1683
1684         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1685         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1686         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1687         if (!ctrl_ctx) {
1688                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1689                                 __func__);
1690                 return 0;
1691         }
1692
1693         ep_index = xhci_get_endpoint_index(&ep->desc);
1694         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1695         /* If the HC already knows the endpoint is disabled,
1696          * or the HCD has noted it is disabled, ignore this request
1697          */
1698         if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1699              cpu_to_le32(EP_STATE_DISABLED)) ||
1700             le32_to_cpu(ctrl_ctx->drop_flags) &
1701             xhci_get_endpoint_flag(&ep->desc)) {
1702                 /* Do not warn when called after a usb_device_reset */
1703                 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1704                         xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1705                                   __func__, ep);
1706                 return 0;
1707         }
1708
1709         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1710         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1711
1712         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1713         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1714
1715         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1716
1717         if (xhci->quirks & XHCI_MTK_HOST)
1718                 xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1719
1720         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1721                         (unsigned int) ep->desc.bEndpointAddress,
1722                         udev->slot_id,
1723                         (unsigned int) new_drop_flags,
1724                         (unsigned int) new_add_flags);
1725         return 0;
1726 }
1727
1728 /* Add an endpoint to a new possible bandwidth configuration for this device.
1729  * Only one call to this function is allowed per endpoint before
1730  * check_bandwidth() or reset_bandwidth() must be called.
1731  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1732  * add the endpoint to the schedule with possibly new parameters denoted by a
1733  * different endpoint descriptor in usb_host_endpoint.
1734  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1735  * not allowed.
1736  *
1737  * The USB core will not allow URBs to be queued to an endpoint until the
1738  * configuration or alt setting is installed in the device, so there's no need
1739  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1740  */
1741 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1742                 struct usb_host_endpoint *ep)
1743 {
1744         struct xhci_hcd *xhci;
1745         struct xhci_container_ctx *in_ctx;
1746         unsigned int ep_index;
1747         struct xhci_input_control_ctx *ctrl_ctx;
1748         u32 added_ctxs;
1749         u32 new_add_flags, new_drop_flags;
1750         struct xhci_virt_device *virt_dev;
1751         int ret = 0;
1752
1753         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1754         if (ret <= 0) {
1755                 /* So we won't queue a reset ep command for a root hub */
1756                 ep->hcpriv = NULL;
1757                 return ret;
1758         }
1759         xhci = hcd_to_xhci(hcd);
1760         if (xhci->xhc_state & XHCI_STATE_DYING)
1761                 return -ENODEV;
1762
1763         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1764         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1765                 /* FIXME when we have to issue an evaluate endpoint command to
1766                  * deal with ep0 max packet size changing once we get the
1767                  * descriptors
1768                  */
1769                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1770                                 __func__, added_ctxs);
1771                 return 0;
1772         }
1773
1774         virt_dev = xhci->devs[udev->slot_id];
1775         in_ctx = virt_dev->in_ctx;
1776         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1777         if (!ctrl_ctx) {
1778                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1779                                 __func__);
1780                 return 0;
1781         }
1782
1783         ep_index = xhci_get_endpoint_index(&ep->desc);
1784         /* If this endpoint is already in use, and the upper layers are trying
1785          * to add it again without dropping it, reject the addition.
1786          */
1787         if (virt_dev->eps[ep_index].ring &&
1788                         !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1789                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1790                                 "without dropping it.\n",
1791                                 (unsigned int) ep->desc.bEndpointAddress);
1792                 return -EINVAL;
1793         }
1794
1795         /* If the HCD has already noted the endpoint is enabled,
1796          * ignore this request.
1797          */
1798         if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1799                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1800                                 __func__, ep);
1801                 return 0;
1802         }
1803
1804         /*
1805          * Configuration and alternate setting changes must be done in
1806          * process context, not interrupt context (or so documenation
1807          * for usb_set_interface() and usb_set_configuration() claim).
1808          */
1809         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1810                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1811                                 __func__, ep->desc.bEndpointAddress);
1812                 return -ENOMEM;
1813         }
1814
1815         if (xhci->quirks & XHCI_MTK_HOST) {
1816                 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1817                 if (ret < 0) {
1818                         xhci_free_or_cache_endpoint_ring(xhci,
1819                                 virt_dev, ep_index);
1820                         return ret;
1821                 }
1822         }
1823
1824         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1825         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1826
1827         /* If xhci_endpoint_disable() was called for this endpoint, but the
1828          * xHC hasn't been notified yet through the check_bandwidth() call,
1829          * this re-adds a new state for the endpoint from the new endpoint
1830          * descriptors.  We must drop and re-add this endpoint, so we leave the
1831          * drop flags alone.
1832          */
1833         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1834
1835         /* Store the usb_device pointer for later use */
1836         ep->hcpriv = udev;
1837
1838         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1839                         (unsigned int) ep->desc.bEndpointAddress,
1840                         udev->slot_id,
1841                         (unsigned int) new_drop_flags,
1842                         (unsigned int) new_add_flags);
1843         return 0;
1844 }
1845
1846 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1847 {
1848         struct xhci_input_control_ctx *ctrl_ctx;
1849         struct xhci_ep_ctx *ep_ctx;
1850         struct xhci_slot_ctx *slot_ctx;
1851         int i;
1852
1853         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1854         if (!ctrl_ctx) {
1855                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1856                                 __func__);
1857                 return;
1858         }
1859
1860         /* When a device's add flag and drop flag are zero, any subsequent
1861          * configure endpoint command will leave that endpoint's state
1862          * untouched.  Make sure we don't leave any old state in the input
1863          * endpoint contexts.
1864          */
1865         ctrl_ctx->drop_flags = 0;
1866         ctrl_ctx->add_flags = 0;
1867         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1868         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1869         /* Endpoint 0 is always valid */
1870         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1871         for (i = 1; i < 31; ++i) {
1872                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1873                 ep_ctx->ep_info = 0;
1874                 ep_ctx->ep_info2 = 0;
1875                 ep_ctx->deq = 0;
1876                 ep_ctx->tx_info = 0;
1877         }
1878 }
1879
1880 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1881                 struct usb_device *udev, u32 *cmd_status)
1882 {
1883         int ret;
1884
1885         switch (*cmd_status) {
1886         case COMP_CMD_ABORT:
1887         case COMP_CMD_STOP:
1888                 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1889                 ret = -ETIME;
1890                 break;
1891         case COMP_ENOMEM:
1892                 dev_warn(&udev->dev,
1893                          "Not enough host controller resources for new device state.\n");
1894                 ret = -ENOMEM;
1895                 /* FIXME: can we allocate more resources for the HC? */
1896                 break;
1897         case COMP_BW_ERR:
1898         case COMP_2ND_BW_ERR:
1899                 dev_warn(&udev->dev,
1900                          "Not enough bandwidth for new device state.\n");
1901                 ret = -ENOSPC;
1902                 /* FIXME: can we go back to the old state? */
1903                 break;
1904         case COMP_TRB_ERR:
1905                 /* the HCD set up something wrong */
1906                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1907                                 "add flag = 1, "
1908                                 "and endpoint is not disabled.\n");
1909                 ret = -EINVAL;
1910                 break;
1911         case COMP_DEV_ERR:
1912                 dev_warn(&udev->dev,
1913                          "ERROR: Incompatible device for endpoint configure command.\n");
1914                 ret = -ENODEV;
1915                 break;
1916         case COMP_SUCCESS:
1917                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1918                                 "Successful Endpoint Configure command");
1919                 ret = 0;
1920                 break;
1921         default:
1922                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1923                                 *cmd_status);
1924                 ret = -EINVAL;
1925                 break;
1926         }
1927         return ret;
1928 }
1929
1930 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1931                 struct usb_device *udev, u32 *cmd_status)
1932 {
1933         int ret;
1934         struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1935
1936         switch (*cmd_status) {
1937         case COMP_CMD_ABORT:
1938         case COMP_CMD_STOP:
1939                 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1940                 ret = -ETIME;
1941                 break;
1942         case COMP_EINVAL:
1943                 dev_warn(&udev->dev,
1944                          "WARN: xHCI driver setup invalid evaluate context command.\n");
1945                 ret = -EINVAL;
1946                 break;
1947         case COMP_EBADSLT:
1948                 dev_warn(&udev->dev,
1949                         "WARN: slot not enabled for evaluate context command.\n");
1950                 ret = -EINVAL;
1951                 break;
1952         case COMP_CTX_STATE:
1953                 dev_warn(&udev->dev,
1954                         "WARN: invalid context state for evaluate context command.\n");
1955                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1956                 ret = -EINVAL;
1957                 break;
1958         case COMP_DEV_ERR:
1959                 dev_warn(&udev->dev,
1960                         "ERROR: Incompatible device for evaluate context command.\n");
1961                 ret = -ENODEV;
1962                 break;
1963         case COMP_MEL_ERR:
1964                 /* Max Exit Latency too large error */
1965                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1966                 ret = -EINVAL;
1967                 break;
1968         case COMP_SUCCESS:
1969                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1970                                 "Successful evaluate context command");
1971                 ret = 0;
1972                 break;
1973         default:
1974                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1975                         *cmd_status);
1976                 ret = -EINVAL;
1977                 break;
1978         }
1979         return ret;
1980 }
1981
1982 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1983                 struct xhci_input_control_ctx *ctrl_ctx)
1984 {
1985         u32 valid_add_flags;
1986         u32 valid_drop_flags;
1987
1988         /* Ignore the slot flag (bit 0), and the default control endpoint flag
1989          * (bit 1).  The default control endpoint is added during the Address
1990          * Device command and is never removed until the slot is disabled.
1991          */
1992         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1993         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1994
1995         /* Use hweight32 to count the number of ones in the add flags, or
1996          * number of endpoints added.  Don't count endpoints that are changed
1997          * (both added and dropped).
1998          */
1999         return hweight32(valid_add_flags) -
2000                 hweight32(valid_add_flags & valid_drop_flags);
2001 }
2002
2003 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2004                 struct xhci_input_control_ctx *ctrl_ctx)
2005 {
2006         u32 valid_add_flags;
2007         u32 valid_drop_flags;
2008
2009         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2010         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2011
2012         return hweight32(valid_drop_flags) -
2013                 hweight32(valid_add_flags & valid_drop_flags);
2014 }
2015
2016 /*
2017  * We need to reserve the new number of endpoints before the configure endpoint
2018  * command completes.  We can't subtract the dropped endpoints from the number
2019  * of active endpoints until the command completes because we can oversubscribe
2020  * the host in this case:
2021  *
2022  *  - the first configure endpoint command drops more endpoints than it adds
2023  *  - a second configure endpoint command that adds more endpoints is queued
2024  *  - the first configure endpoint command fails, so the config is unchanged
2025  *  - the second command may succeed, even though there isn't enough resources
2026  *
2027  * Must be called with xhci->lock held.
2028  */
2029 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2030                 struct xhci_input_control_ctx *ctrl_ctx)
2031 {
2032         u32 added_eps;
2033
2034         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2035         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2036                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2037                                 "Not enough ep ctxs: "
2038                                 "%u active, need to add %u, limit is %u.",
2039                                 xhci->num_active_eps, added_eps,
2040                                 xhci->limit_active_eps);
2041                 return -ENOMEM;
2042         }
2043         xhci->num_active_eps += added_eps;
2044         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2045                         "Adding %u ep ctxs, %u now active.", added_eps,
2046                         xhci->num_active_eps);
2047         return 0;
2048 }
2049
2050 /*
2051  * The configure endpoint was failed by the xHC for some other reason, so we
2052  * need to revert the resources that failed configuration would have used.
2053  *
2054  * Must be called with xhci->lock held.
2055  */
2056 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2057                 struct xhci_input_control_ctx *ctrl_ctx)
2058 {
2059         u32 num_failed_eps;
2060
2061         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2062         xhci->num_active_eps -= num_failed_eps;
2063         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2064                         "Removing %u failed ep ctxs, %u now active.",
2065                         num_failed_eps,
2066                         xhci->num_active_eps);
2067 }
2068
2069 /*
2070  * Now that the command has completed, clean up the active endpoint count by
2071  * subtracting out the endpoints that were dropped (but not changed).
2072  *
2073  * Must be called with xhci->lock held.
2074  */
2075 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2076                 struct xhci_input_control_ctx *ctrl_ctx)
2077 {
2078         u32 num_dropped_eps;
2079
2080         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2081         xhci->num_active_eps -= num_dropped_eps;
2082         if (num_dropped_eps)
2083                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2084                                 "Removing %u dropped ep ctxs, %u now active.",
2085                                 num_dropped_eps,
2086                                 xhci->num_active_eps);
2087 }
2088
2089 static unsigned int xhci_get_block_size(struct usb_device *udev)
2090 {
2091         switch (udev->speed) {
2092         case USB_SPEED_LOW:
2093         case USB_SPEED_FULL:
2094                 return FS_BLOCK;
2095         case USB_SPEED_HIGH:
2096                 return HS_BLOCK;
2097         case USB_SPEED_SUPER:
2098         case USB_SPEED_SUPER_PLUS:
2099                 return SS_BLOCK;
2100         case USB_SPEED_UNKNOWN:
2101         case USB_SPEED_WIRELESS:
2102         default:
2103                 /* Should never happen */
2104                 return 1;
2105         }
2106 }
2107
2108 static unsigned int
2109 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2110 {
2111         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2112                 return LS_OVERHEAD;
2113         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2114                 return FS_OVERHEAD;
2115         return HS_OVERHEAD;
2116 }
2117
2118 /* If we are changing a LS/FS device under a HS hub,
2119  * make sure (if we are activating a new TT) that the HS bus has enough
2120  * bandwidth for this new TT.
2121  */
2122 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2123                 struct xhci_virt_device *virt_dev,
2124                 int old_active_eps)
2125 {
2126         struct xhci_interval_bw_table *bw_table;
2127         struct xhci_tt_bw_info *tt_info;
2128
2129         /* Find the bandwidth table for the root port this TT is attached to. */
2130         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2131         tt_info = virt_dev->tt_info;
2132         /* If this TT already had active endpoints, the bandwidth for this TT
2133          * has already been added.  Removing all periodic endpoints (and thus
2134          * making the TT enactive) will only decrease the bandwidth used.
2135          */
2136         if (old_active_eps)
2137                 return 0;
2138         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2139                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2140                         return -ENOMEM;
2141                 return 0;
2142         }
2143         /* Not sure why we would have no new active endpoints...
2144          *
2145          * Maybe because of an Evaluate Context change for a hub update or a
2146          * control endpoint 0 max packet size change?
2147          * FIXME: skip the bandwidth calculation in that case.
2148          */
2149         return 0;
2150 }
2151
2152 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2153                 struct xhci_virt_device *virt_dev)
2154 {
2155         unsigned int bw_reserved;
2156
2157         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2158         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2159                 return -ENOMEM;
2160
2161         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2162         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2163                 return -ENOMEM;
2164
2165         return 0;
2166 }
2167
2168 /*
2169  * This algorithm is a very conservative estimate of the worst-case scheduling
2170  * scenario for any one interval.  The hardware dynamically schedules the
2171  * packets, so we can't tell which microframe could be the limiting factor in
2172  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2173  *
2174  * Obviously, we can't solve an NP complete problem to find the minimum worst
2175  * case scenario.  Instead, we come up with an estimate that is no less than
2176  * the worst case bandwidth used for any one microframe, but may be an
2177  * over-estimate.
2178  *
2179  * We walk the requirements for each endpoint by interval, starting with the
2180  * smallest interval, and place packets in the schedule where there is only one
2181  * possible way to schedule packets for that interval.  In order to simplify
2182  * this algorithm, we record the largest max packet size for each interval, and
2183  * assume all packets will be that size.
2184  *
2185  * For interval 0, we obviously must schedule all packets for each interval.
2186  * The bandwidth for interval 0 is just the amount of data to be transmitted
2187  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2188  * the number of packets).
2189  *
2190  * For interval 1, we have two possible microframes to schedule those packets
2191  * in.  For this algorithm, if we can schedule the same number of packets for
2192  * each possible scheduling opportunity (each microframe), we will do so.  The
2193  * remaining number of packets will be saved to be transmitted in the gaps in
2194  * the next interval's scheduling sequence.
2195  *
2196  * As we move those remaining packets to be scheduled with interval 2 packets,
2197  * we have to double the number of remaining packets to transmit.  This is
2198  * because the intervals are actually powers of 2, and we would be transmitting
2199  * the previous interval's packets twice in this interval.  We also have to be
2200  * sure that when we look at the largest max packet size for this interval, we
2201  * also look at the largest max packet size for the remaining packets and take
2202  * the greater of the two.
2203  *
2204  * The algorithm continues to evenly distribute packets in each scheduling
2205  * opportunity, and push the remaining packets out, until we get to the last
2206  * interval.  Then those packets and their associated overhead are just added
2207  * to the bandwidth used.
2208  */
2209 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2210                 struct xhci_virt_device *virt_dev,
2211                 int old_active_eps)
2212 {
2213         unsigned int bw_reserved;
2214         unsigned int max_bandwidth;
2215         unsigned int bw_used;
2216         unsigned int block_size;
2217         struct xhci_interval_bw_table *bw_table;
2218         unsigned int packet_size = 0;
2219         unsigned int overhead = 0;
2220         unsigned int packets_transmitted = 0;
2221         unsigned int packets_remaining = 0;
2222         unsigned int i;
2223
2224         if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2225                 return xhci_check_ss_bw(xhci, virt_dev);
2226
2227         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2228                 max_bandwidth = HS_BW_LIMIT;
2229                 /* Convert percent of bus BW reserved to blocks reserved */
2230                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2231         } else {
2232                 max_bandwidth = FS_BW_LIMIT;
2233                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2234         }
2235
2236         bw_table = virt_dev->bw_table;
2237         /* We need to translate the max packet size and max ESIT payloads into
2238          * the units the hardware uses.
2239          */
2240         block_size = xhci_get_block_size(virt_dev->udev);
2241
2242         /* If we are manipulating a LS/FS device under a HS hub, double check
2243          * that the HS bus has enough bandwidth if we are activing a new TT.
2244          */
2245         if (virt_dev->tt_info) {
2246                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2247                                 "Recalculating BW for rootport %u",
2248                                 virt_dev->real_port);
2249                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2250                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2251                                         "newly activated TT.\n");
2252                         return -ENOMEM;
2253                 }
2254                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2255                                 "Recalculating BW for TT slot %u port %u",
2256                                 virt_dev->tt_info->slot_id,
2257                                 virt_dev->tt_info->ttport);
2258         } else {
2259                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2260                                 "Recalculating BW for rootport %u",
2261                                 virt_dev->real_port);
2262         }
2263
2264         /* Add in how much bandwidth will be used for interval zero, or the
2265          * rounded max ESIT payload + number of packets * largest overhead.
2266          */
2267         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2268                 bw_table->interval_bw[0].num_packets *
2269                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2270
2271         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2272                 unsigned int bw_added;
2273                 unsigned int largest_mps;
2274                 unsigned int interval_overhead;
2275
2276                 /*
2277                  * How many packets could we transmit in this interval?
2278                  * If packets didn't fit in the previous interval, we will need
2279                  * to transmit that many packets twice within this interval.
2280                  */
2281                 packets_remaining = 2 * packets_remaining +
2282                         bw_table->interval_bw[i].num_packets;
2283
2284                 /* Find the largest max packet size of this or the previous
2285                  * interval.
2286                  */
2287                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2288                         largest_mps = 0;
2289                 else {
2290                         struct xhci_virt_ep *virt_ep;
2291                         struct list_head *ep_entry;
2292
2293                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2294                         virt_ep = list_entry(ep_entry,
2295                                         struct xhci_virt_ep, bw_endpoint_list);
2296                         /* Convert to blocks, rounding up */
2297                         largest_mps = DIV_ROUND_UP(
2298                                         virt_ep->bw_info.max_packet_size,
2299                                         block_size);
2300                 }
2301                 if (largest_mps > packet_size)
2302                         packet_size = largest_mps;
2303
2304                 /* Use the larger overhead of this or the previous interval. */
2305                 interval_overhead = xhci_get_largest_overhead(
2306                                 &bw_table->interval_bw[i]);
2307                 if (interval_overhead > overhead)
2308                         overhead = interval_overhead;
2309
2310                 /* How many packets can we evenly distribute across
2311                  * (1 << (i + 1)) possible scheduling opportunities?
2312                  */
2313                 packets_transmitted = packets_remaining >> (i + 1);
2314
2315                 /* Add in the bandwidth used for those scheduled packets */
2316                 bw_added = packets_transmitted * (overhead + packet_size);
2317
2318                 /* How many packets do we have remaining to transmit? */
2319                 packets_remaining = packets_remaining % (1 << (i + 1));
2320
2321                 /* What largest max packet size should those packets have? */
2322                 /* If we've transmitted all packets, don't carry over the
2323                  * largest packet size.
2324                  */
2325                 if (packets_remaining == 0) {
2326                         packet_size = 0;
2327                         overhead = 0;
2328                 } else if (packets_transmitted > 0) {
2329                         /* Otherwise if we do have remaining packets, and we've
2330                          * scheduled some packets in this interval, take the
2331                          * largest max packet size from endpoints with this
2332                          * interval.
2333                          */
2334                         packet_size = largest_mps;
2335                         overhead = interval_overhead;
2336                 }
2337                 /* Otherwise carry over packet_size and overhead from the last
2338                  * time we had a remainder.
2339                  */
2340                 bw_used += bw_added;
2341                 if (bw_used > max_bandwidth) {
2342                         xhci_warn(xhci, "Not enough bandwidth. "
2343                                         "Proposed: %u, Max: %u\n",
2344                                 bw_used, max_bandwidth);
2345                         return -ENOMEM;
2346                 }
2347         }
2348         /*
2349          * Ok, we know we have some packets left over after even-handedly
2350          * scheduling interval 15.  We don't know which microframes they will
2351          * fit into, so we over-schedule and say they will be scheduled every
2352          * microframe.
2353          */
2354         if (packets_remaining > 0)
2355                 bw_used += overhead + packet_size;
2356
2357         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2358                 unsigned int port_index = virt_dev->real_port - 1;
2359
2360                 /* OK, we're manipulating a HS device attached to a
2361                  * root port bandwidth domain.  Include the number of active TTs
2362                  * in the bandwidth used.
2363                  */
2364                 bw_used += TT_HS_OVERHEAD *
2365                         xhci->rh_bw[port_index].num_active_tts;
2366         }
2367
2368         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2369                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2370                 "Available: %u " "percent",
2371                 bw_used, max_bandwidth, bw_reserved,
2372                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2373                 max_bandwidth);
2374
2375         bw_used += bw_reserved;
2376         if (bw_used > max_bandwidth) {
2377                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2378                                 bw_used, max_bandwidth);
2379                 return -ENOMEM;
2380         }
2381
2382         bw_table->bw_used = bw_used;
2383         return 0;
2384 }
2385
2386 static bool xhci_is_async_ep(unsigned int ep_type)
2387 {
2388         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2389                                         ep_type != ISOC_IN_EP &&
2390                                         ep_type != INT_IN_EP);
2391 }
2392
2393 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2394 {
2395         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2396 }
2397
2398 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2399 {
2400         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2401
2402         if (ep_bw->ep_interval == 0)
2403                 return SS_OVERHEAD_BURST +
2404                         (ep_bw->mult * ep_bw->num_packets *
2405                                         (SS_OVERHEAD + mps));
2406         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2407                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2408                                 1 << ep_bw->ep_interval);
2409
2410 }
2411
2412 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2413                 struct xhci_bw_info *ep_bw,
2414                 struct xhci_interval_bw_table *bw_table,
2415                 struct usb_device *udev,
2416                 struct xhci_virt_ep *virt_ep,
2417                 struct xhci_tt_bw_info *tt_info)
2418 {
2419         struct xhci_interval_bw *interval_bw;
2420         int normalized_interval;
2421
2422         if (xhci_is_async_ep(ep_bw->type))
2423                 return;
2424
2425         if (udev->speed >= USB_SPEED_SUPER) {
2426                 if (xhci_is_sync_in_ep(ep_bw->type))
2427                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2428                                 xhci_get_ss_bw_consumed(ep_bw);
2429                 else
2430                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2431                                 xhci_get_ss_bw_consumed(ep_bw);
2432                 return;
2433         }
2434
2435         /* SuperSpeed endpoints never get added to intervals in the table, so
2436          * this check is only valid for HS/FS/LS devices.
2437          */
2438         if (list_empty(&virt_ep->bw_endpoint_list))
2439                 return;
2440         /* For LS/FS devices, we need to translate the interval expressed in
2441          * microframes to frames.
2442          */
2443         if (udev->speed == USB_SPEED_HIGH)
2444                 normalized_interval = ep_bw->ep_interval;
2445         else
2446                 normalized_interval = ep_bw->ep_interval - 3;
2447
2448         if (normalized_interval == 0)
2449                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2450         interval_bw = &bw_table->interval_bw[normalized_interval];
2451         interval_bw->num_packets -= ep_bw->num_packets;
2452         switch (udev->speed) {
2453         case USB_SPEED_LOW:
2454                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2455                 break;
2456         case USB_SPEED_FULL:
2457                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2458                 break;
2459         case USB_SPEED_HIGH:
2460                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2461                 break;
2462         case USB_SPEED_SUPER:
2463         case USB_SPEED_SUPER_PLUS:
2464         case USB_SPEED_UNKNOWN:
2465         case USB_SPEED_WIRELESS:
2466                 /* Should never happen because only LS/FS/HS endpoints will get
2467                  * added to the endpoint list.
2468                  */
2469                 return;
2470         }
2471         if (tt_info)
2472                 tt_info->active_eps -= 1;
2473         list_del_init(&virt_ep->bw_endpoint_list);
2474 }
2475
2476 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2477                 struct xhci_bw_info *ep_bw,
2478                 struct xhci_interval_bw_table *bw_table,
2479                 struct usb_device *udev,
2480                 struct xhci_virt_ep *virt_ep,
2481                 struct xhci_tt_bw_info *tt_info)
2482 {
2483         struct xhci_interval_bw *interval_bw;
2484         struct xhci_virt_ep *smaller_ep;
2485         int normalized_interval;
2486
2487         if (xhci_is_async_ep(ep_bw->type))
2488                 return;
2489
2490         if (udev->speed == USB_SPEED_SUPER) {
2491                 if (xhci_is_sync_in_ep(ep_bw->type))
2492                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2493                                 xhci_get_ss_bw_consumed(ep_bw);
2494                 else
2495                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2496                                 xhci_get_ss_bw_consumed(ep_bw);
2497                 return;
2498         }
2499
2500         /* For LS/FS devices, we need to translate the interval expressed in
2501          * microframes to frames.
2502          */
2503         if (udev->speed == USB_SPEED_HIGH)
2504                 normalized_interval = ep_bw->ep_interval;
2505         else
2506                 normalized_interval = ep_bw->ep_interval - 3;
2507
2508         if (normalized_interval == 0)
2509                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2510         interval_bw = &bw_table->interval_bw[normalized_interval];
2511         interval_bw->num_packets += ep_bw->num_packets;
2512         switch (udev->speed) {
2513         case USB_SPEED_LOW:
2514                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2515                 break;
2516         case USB_SPEED_FULL:
2517                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2518                 break;
2519         case USB_SPEED_HIGH:
2520                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2521                 break;
2522         case USB_SPEED_SUPER:
2523         case USB_SPEED_SUPER_PLUS:
2524         case USB_SPEED_UNKNOWN:
2525         case USB_SPEED_WIRELESS:
2526                 /* Should never happen because only LS/FS/HS endpoints will get
2527                  * added to the endpoint list.
2528                  */
2529                 return;
2530         }
2531
2532         if (tt_info)
2533                 tt_info->active_eps += 1;
2534         /* Insert the endpoint into the list, largest max packet size first. */
2535         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2536                         bw_endpoint_list) {
2537                 if (ep_bw->max_packet_size >=
2538                                 smaller_ep->bw_info.max_packet_size) {
2539                         /* Add the new ep before the smaller endpoint */
2540                         list_add_tail(&virt_ep->bw_endpoint_list,
2541                                         &smaller_ep->bw_endpoint_list);
2542                         return;
2543                 }
2544         }
2545         /* Add the new endpoint at the end of the list. */
2546         list_add_tail(&virt_ep->bw_endpoint_list,
2547                         &interval_bw->endpoints);
2548 }
2549
2550 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2551                 struct xhci_virt_device *virt_dev,
2552                 int old_active_eps)
2553 {
2554         struct xhci_root_port_bw_info *rh_bw_info;
2555         if (!virt_dev->tt_info)
2556                 return;
2557
2558         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2559         if (old_active_eps == 0 &&
2560                                 virt_dev->tt_info->active_eps != 0) {
2561                 rh_bw_info->num_active_tts += 1;
2562                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2563         } else if (old_active_eps != 0 &&
2564                                 virt_dev->tt_info->active_eps == 0) {
2565                 rh_bw_info->num_active_tts -= 1;
2566                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2567         }
2568 }
2569
2570 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2571                 struct xhci_virt_device *virt_dev,
2572                 struct xhci_container_ctx *in_ctx)
2573 {
2574         struct xhci_bw_info ep_bw_info[31];
2575         int i;
2576         struct xhci_input_control_ctx *ctrl_ctx;
2577         int old_active_eps = 0;
2578
2579         if (virt_dev->tt_info)
2580                 old_active_eps = virt_dev->tt_info->active_eps;
2581
2582         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2583         if (!ctrl_ctx) {
2584                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2585                                 __func__);
2586                 return -ENOMEM;
2587         }
2588
2589         for (i = 0; i < 31; i++) {
2590                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2591                         continue;
2592
2593                 /* Make a copy of the BW info in case we need to revert this */
2594                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2595                                 sizeof(ep_bw_info[i]));
2596                 /* Drop the endpoint from the interval table if the endpoint is
2597                  * being dropped or changed.
2598                  */
2599                 if (EP_IS_DROPPED(ctrl_ctx, i))
2600                         xhci_drop_ep_from_interval_table(xhci,
2601                                         &virt_dev->eps[i].bw_info,
2602                                         virt_dev->bw_table,
2603                                         virt_dev->udev,
2604                                         &virt_dev->eps[i],
2605                                         virt_dev->tt_info);
2606         }
2607         /* Overwrite the information stored in the endpoints' bw_info */
2608         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2609         for (i = 0; i < 31; i++) {
2610                 /* Add any changed or added endpoints to the interval table */
2611                 if (EP_IS_ADDED(ctrl_ctx, i))
2612                         xhci_add_ep_to_interval_table(xhci,
2613                                         &virt_dev->eps[i].bw_info,
2614                                         virt_dev->bw_table,
2615                                         virt_dev->udev,
2616                                         &virt_dev->eps[i],
2617                                         virt_dev->tt_info);
2618         }
2619
2620         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2621                 /* Ok, this fits in the bandwidth we have.
2622                  * Update the number of active TTs.
2623                  */
2624                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2625                 return 0;
2626         }
2627
2628         /* We don't have enough bandwidth for this, revert the stored info. */
2629         for (i = 0; i < 31; i++) {
2630                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2631                         continue;
2632
2633                 /* Drop the new copies of any added or changed endpoints from
2634                  * the interval table.
2635                  */
2636                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2637                         xhci_drop_ep_from_interval_table(xhci,
2638                                         &virt_dev->eps[i].bw_info,
2639                                         virt_dev->bw_table,
2640                                         virt_dev->udev,
2641                                         &virt_dev->eps[i],
2642                                         virt_dev->tt_info);
2643                 }
2644                 /* Revert the endpoint back to its old information */
2645                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2646                                 sizeof(ep_bw_info[i]));
2647                 /* Add any changed or dropped endpoints back into the table */
2648                 if (EP_IS_DROPPED(ctrl_ctx, i))
2649                         xhci_add_ep_to_interval_table(xhci,
2650                                         &virt_dev->eps[i].bw_info,
2651                                         virt_dev->bw_table,
2652                                         virt_dev->udev,
2653                                         &virt_dev->eps[i],
2654                                         virt_dev->tt_info);
2655         }
2656         return -ENOMEM;
2657 }
2658
2659
2660 /* Issue a configure endpoint command or evaluate context command
2661  * and wait for it to finish.
2662  */
2663 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2664                 struct usb_device *udev,
2665                 struct xhci_command *command,
2666                 bool ctx_change, bool must_succeed)
2667 {
2668         int ret;
2669         unsigned long flags;
2670         struct xhci_input_control_ctx *ctrl_ctx;
2671         struct xhci_virt_device *virt_dev;
2672
2673         if (!command)
2674                 return -EINVAL;
2675
2676         spin_lock_irqsave(&xhci->lock, flags);
2677         virt_dev = xhci->devs[udev->slot_id];
2678
2679         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2680         if (!ctrl_ctx) {
2681                 spin_unlock_irqrestore(&xhci->lock, flags);
2682                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2683                                 __func__);
2684                 return -ENOMEM;
2685         }
2686
2687         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2688                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2689                 spin_unlock_irqrestore(&xhci->lock, flags);
2690                 xhci_warn(xhci, "Not enough host resources, "
2691                                 "active endpoint contexts = %u\n",
2692                                 xhci->num_active_eps);
2693                 return -ENOMEM;
2694         }
2695         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2696             xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2697                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2698                         xhci_free_host_resources(xhci, ctrl_ctx);
2699                 spin_unlock_irqrestore(&xhci->lock, flags);
2700                 xhci_warn(xhci, "Not enough bandwidth\n");
2701                 return -ENOMEM;
2702         }
2703
2704         if (!ctx_change)
2705                 ret = xhci_queue_configure_endpoint(xhci, command,
2706                                 command->in_ctx->dma,
2707                                 udev->slot_id, must_succeed);
2708         else
2709                 ret = xhci_queue_evaluate_context(xhci, command,
2710                                 command->in_ctx->dma,
2711                                 udev->slot_id, must_succeed);
2712         if (ret < 0) {
2713                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2714                         xhci_free_host_resources(xhci, ctrl_ctx);
2715                 spin_unlock_irqrestore(&xhci->lock, flags);
2716                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2717                                 "FIXME allocate a new ring segment");
2718                 return -ENOMEM;
2719         }
2720         xhci_ring_cmd_db(xhci);
2721         spin_unlock_irqrestore(&xhci->lock, flags);
2722
2723         /* Wait for the configure endpoint command to complete */
2724         wait_for_completion(command->completion);
2725
2726         if (!ctx_change)
2727                 ret = xhci_configure_endpoint_result(xhci, udev,
2728                                                      &command->status);
2729         else
2730                 ret = xhci_evaluate_context_result(xhci, udev,
2731                                                    &command->status);
2732
2733         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2734                 spin_lock_irqsave(&xhci->lock, flags);
2735                 /* If the command failed, remove the reserved resources.
2736                  * Otherwise, clean up the estimate to include dropped eps.
2737                  */
2738                 if (ret)
2739                         xhci_free_host_resources(xhci, ctrl_ctx);
2740                 else
2741                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2742                 spin_unlock_irqrestore(&xhci->lock, flags);
2743         }
2744         return ret;
2745 }
2746
2747 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2748         struct xhci_virt_device *vdev, int i)
2749 {
2750         struct xhci_virt_ep *ep = &vdev->eps[i];
2751
2752         if (ep->ep_state & EP_HAS_STREAMS) {
2753                 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2754                                 xhci_get_endpoint_address(i));
2755                 xhci_free_stream_info(xhci, ep->stream_info);
2756                 ep->stream_info = NULL;
2757                 ep->ep_state &= ~EP_HAS_STREAMS;
2758         }
2759 }
2760
2761 /* Called after one or more calls to xhci_add_endpoint() or
2762  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2763  * to call xhci_reset_bandwidth().
2764  *
2765  * Since we are in the middle of changing either configuration or
2766  * installing a new alt setting, the USB core won't allow URBs to be
2767  * enqueued for any endpoint on the old config or interface.  Nothing
2768  * else should be touching the xhci->devs[slot_id] structure, so we
2769  * don't need to take the xhci->lock for manipulating that.
2770  */
2771 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2772 {
2773         int i;
2774         int ret = 0;
2775         struct xhci_hcd *xhci;
2776         struct xhci_virt_device *virt_dev;
2777         struct xhci_input_control_ctx *ctrl_ctx;
2778         struct xhci_slot_ctx *slot_ctx;
2779         struct xhci_command *command;
2780
2781         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2782         if (ret <= 0)
2783                 return ret;
2784         xhci = hcd_to_xhci(hcd);
2785         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2786                 (xhci->xhc_state & XHCI_STATE_REMOVING))
2787                 return -ENODEV;
2788
2789         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2790         virt_dev = xhci->devs[udev->slot_id];
2791
2792         command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2793         if (!command)
2794                 return -ENOMEM;
2795
2796         command->in_ctx = virt_dev->in_ctx;
2797
2798         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2799         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2800         if (!ctrl_ctx) {
2801                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2802                                 __func__);
2803                 ret = -ENOMEM;
2804                 goto command_cleanup;
2805         }
2806         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2807         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2808         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2809
2810         /* Don't issue the command if there's no endpoints to update. */
2811         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2812             ctrl_ctx->drop_flags == 0) {
2813                 ret = 0;
2814                 goto command_cleanup;
2815         }
2816         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2817         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2818         for (i = 31; i >= 1; i--) {
2819                 __le32 le32 = cpu_to_le32(BIT(i));
2820
2821                 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2822                     || (ctrl_ctx->add_flags & le32) || i == 1) {
2823                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2824                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2825                         break;
2826                 }
2827         }
2828         xhci_dbg(xhci, "New Input Control Context:\n");
2829         xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2830                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2831
2832         ret = xhci_configure_endpoint(xhci, udev, command,
2833                         false, false);
2834         if (ret)
2835                 /* Callee should call reset_bandwidth() */
2836                 goto command_cleanup;
2837
2838         xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2839         xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2840                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2841
2842         /* Free any rings that were dropped, but not changed. */
2843         for (i = 1; i < 31; ++i) {
2844                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2845                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2846                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2847                         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2848                 }
2849         }
2850         xhci_zero_in_ctx(xhci, virt_dev);
2851         /*
2852          * Install any rings for completely new endpoints or changed endpoints,
2853          * and free or cache any old rings from changed endpoints.
2854          */
2855         for (i = 1; i < 31; ++i) {
2856                 if (!virt_dev->eps[i].new_ring)
2857                         continue;
2858                 /* Only cache or free the old ring if it exists.
2859                  * It may not if this is the first add of an endpoint.
2860                  */
2861                 if (virt_dev->eps[i].ring) {
2862                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2863                 }
2864                 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2865                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2866                 virt_dev->eps[i].new_ring = NULL;
2867         }
2868 command_cleanup:
2869         kfree(command->completion);
2870         kfree(command);
2871
2872         return ret;
2873 }
2874
2875 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2876 {
2877         struct xhci_hcd *xhci;
2878         struct xhci_virt_device *virt_dev;
2879         int i, ret;
2880
2881         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2882         if (ret <= 0)
2883                 return;
2884         xhci = hcd_to_xhci(hcd);
2885
2886         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2887         virt_dev = xhci->devs[udev->slot_id];
2888         /* Free any rings allocated for added endpoints */
2889         for (i = 0; i < 31; ++i) {
2890                 if (virt_dev->eps[i].new_ring) {
2891                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2892                         virt_dev->eps[i].new_ring = NULL;
2893                 }
2894         }
2895         xhci_zero_in_ctx(xhci, virt_dev);
2896 }
2897
2898 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2899                 struct xhci_container_ctx *in_ctx,
2900                 struct xhci_container_ctx *out_ctx,
2901                 struct xhci_input_control_ctx *ctrl_ctx,
2902                 u32 add_flags, u32 drop_flags)
2903 {
2904         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2905         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2906         xhci_slot_copy(xhci, in_ctx, out_ctx);
2907         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2908
2909         xhci_dbg(xhci, "Input Context:\n");
2910         xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2911 }
2912
2913 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2914                 unsigned int slot_id, unsigned int ep_index,
2915                 struct xhci_dequeue_state *deq_state)
2916 {
2917         struct xhci_input_control_ctx *ctrl_ctx;
2918         struct xhci_container_ctx *in_ctx;
2919         struct xhci_ep_ctx *ep_ctx;
2920         u32 added_ctxs;
2921         dma_addr_t addr;
2922
2923         in_ctx = xhci->devs[slot_id]->in_ctx;
2924         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2925         if (!ctrl_ctx) {
2926                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2927                                 __func__);
2928                 return;
2929         }
2930
2931         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2932                         xhci->devs[slot_id]->out_ctx, ep_index);
2933         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2934         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2935                         deq_state->new_deq_ptr);
2936         if (addr == 0) {
2937                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2938                                 "reset ep command\n");
2939                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2940                                 deq_state->new_deq_seg,
2941                                 deq_state->new_deq_ptr);
2942                 return;
2943         }
2944         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2945
2946         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2947         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2948                         xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2949                         added_ctxs, added_ctxs);
2950 }
2951
2952 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2953                         unsigned int ep_index, struct xhci_td *td)
2954 {
2955         struct xhci_dequeue_state deq_state;
2956         struct xhci_virt_ep *ep;
2957         struct usb_device *udev = td->urb->dev;
2958
2959         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2960                         "Cleaning up stalled endpoint ring");
2961         ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2962         /* We need to move the HW's dequeue pointer past this TD,
2963          * or it will attempt to resend it on the next doorbell ring.
2964          */
2965         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2966                         ep_index, ep->stopped_stream, td, &deq_state);
2967
2968         if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2969                 return;
2970
2971         /* HW with the reset endpoint quirk will use the saved dequeue state to
2972          * issue a configure endpoint command later.
2973          */
2974         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2975                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2976                                 "Queueing new dequeue state");
2977                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2978                                 ep_index, ep->stopped_stream, &deq_state);
2979         } else {
2980                 /* Better hope no one uses the input context between now and the
2981                  * reset endpoint completion!
2982                  * XXX: No idea how this hardware will react when stream rings
2983                  * are enabled.
2984                  */
2985                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2986                                 "Setting up input context for "
2987                                 "configure endpoint command");
2988                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2989                                 ep_index, &deq_state);
2990         }
2991 }
2992
2993 /* Called when clearing halted device. The core should have sent the control
2994  * message to clear the device halt condition. The host side of the halt should
2995  * already be cleared with a reset endpoint command issued when the STALL tx
2996  * event was received.
2997  *
2998  * Context: in_interrupt
2999  */
3000
3001 void xhci_endpoint_reset(struct usb_hcd *hcd,
3002                 struct usb_host_endpoint *ep)
3003 {
3004         struct xhci_hcd *xhci;
3005
3006         xhci = hcd_to_xhci(hcd);
3007
3008         /*
3009          * We might need to implement the config ep cmd in xhci 4.8.1 note:
3010          * The Reset Endpoint Command may only be issued to endpoints in the
3011          * Halted state. If software wishes reset the Data Toggle or Sequence
3012          * Number of an endpoint that isn't in the Halted state, then software
3013          * may issue a Configure Endpoint Command with the Drop and Add bits set
3014          * for the target endpoint. that is in the Stopped state.
3015          */
3016
3017         /* For now just print debug to follow the situation */
3018         xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
3019                  ep->desc.bEndpointAddress);
3020 }
3021
3022 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3023                 struct usb_device *udev, struct usb_host_endpoint *ep,
3024                 unsigned int slot_id)
3025 {
3026         int ret;
3027         unsigned int ep_index;
3028         unsigned int ep_state;
3029
3030         if (!ep)
3031                 return -EINVAL;
3032         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3033         if (ret <= 0)
3034                 return -EINVAL;
3035         if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3036                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3037                                 " descriptor for ep 0x%x does not support streams\n",
3038                                 ep->desc.bEndpointAddress);
3039                 return -EINVAL;
3040         }
3041
3042         ep_index = xhci_get_endpoint_index(&ep->desc);
3043         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3044         if (ep_state & EP_HAS_STREAMS ||
3045                         ep_state & EP_GETTING_STREAMS) {
3046                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3047                                 "already has streams set up.\n",
3048                                 ep->desc.bEndpointAddress);
3049                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3050                                 "dynamic stream context array reallocation.\n");
3051                 return -EINVAL;
3052         }
3053         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3054                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3055                                 "endpoint 0x%x; URBs are pending.\n",
3056                                 ep->desc.bEndpointAddress);
3057                 return -EINVAL;
3058         }
3059         return 0;
3060 }
3061
3062 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3063                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3064 {
3065         unsigned int max_streams;
3066
3067         /* The stream context array size must be a power of two */
3068         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3069         /*
3070          * Find out how many primary stream array entries the host controller
3071          * supports.  Later we may use secondary stream arrays (similar to 2nd
3072          * level page entries), but that's an optional feature for xHCI host
3073          * controllers. xHCs must support at least 4 stream IDs.
3074          */
3075         max_streams = HCC_MAX_PSA(xhci->hcc_params);
3076         if (*num_stream_ctxs > max_streams) {
3077                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3078                                 max_streams);
3079                 *num_stream_ctxs = max_streams;
3080                 *num_streams = max_streams;
3081         }
3082 }
3083
3084 /* Returns an error code if one of the endpoint already has streams.
3085  * This does not change any data structures, it only checks and gathers
3086  * information.
3087  */
3088 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3089                 struct usb_device *udev,
3090                 struct usb_host_endpoint **eps, unsigned int num_eps,
3091                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3092 {
3093         unsigned int max_streams;
3094         unsigned int endpoint_flag;
3095         int i;
3096         int ret;
3097
3098         for (i = 0; i < num_eps; i++) {
3099                 ret = xhci_check_streams_endpoint(xhci, udev,
3100                                 eps[i], udev->slot_id);
3101                 if (ret < 0)
3102                         return ret;
3103
3104                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3105                 if (max_streams < (*num_streams - 1)) {
3106                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3107                                         eps[i]->desc.bEndpointAddress,
3108                                         max_streams);
3109                         *num_streams = max_streams+1;
3110                 }
3111
3112                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3113                 if (*changed_ep_bitmask & endpoint_flag)
3114                         return -EINVAL;
3115                 *changed_ep_bitmask |= endpoint_flag;
3116         }
3117         return 0;
3118 }
3119
3120 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3121                 struct usb_device *udev,
3122                 struct usb_host_endpoint **eps, unsigned int num_eps)
3123 {
3124         u32 changed_ep_bitmask = 0;
3125         unsigned int slot_id;
3126         unsigned int ep_index;
3127         unsigned int ep_state;
3128         int i;
3129
3130         slot_id = udev->slot_id;
3131         if (!xhci->devs[slot_id])
3132                 return 0;
3133
3134         for (i = 0; i < num_eps; i++) {
3135                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3136                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3137                 /* Are streams already being freed for the endpoint? */
3138                 if (ep_state & EP_GETTING_NO_STREAMS) {
3139                         xhci_warn(xhci, "WARN Can't disable streams for "
3140                                         "endpoint 0x%x, "
3141                                         "streams are being disabled already\n",
3142                                         eps[i]->desc.bEndpointAddress);
3143                         return 0;
3144                 }
3145                 /* Are there actually any streams to free? */
3146                 if (!(ep_state & EP_HAS_STREAMS) &&
3147                                 !(ep_state & EP_GETTING_STREAMS)) {
3148                         xhci_warn(xhci, "WARN Can't disable streams for "
3149                                         "endpoint 0x%x, "
3150                                         "streams are already disabled!\n",
3151                                         eps[i]->desc.bEndpointAddress);
3152                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3153                                         "with non-streams endpoint\n");
3154                         return 0;
3155                 }
3156                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3157         }
3158         return changed_ep_bitmask;
3159 }
3160
3161 /*
3162  * The USB device drivers use this function (through the HCD interface in USB
3163  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3164  * coordinate mass storage command queueing across multiple endpoints (basically
3165  * a stream ID == a task ID).
3166  *
3167  * Setting up streams involves allocating the same size stream context array
3168  * for each endpoint and issuing a configure endpoint command for all endpoints.
3169  *
3170  * Don't allow the call to succeed if one endpoint only supports one stream
3171  * (which means it doesn't support streams at all).
3172  *
3173  * Drivers may get less stream IDs than they asked for, if the host controller
3174  * hardware or endpoints claim they can't support the number of requested
3175  * stream IDs.
3176  */
3177 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3178                 struct usb_host_endpoint **eps, unsigned int num_eps,
3179                 unsigned int num_streams, gfp_t mem_flags)
3180 {
3181         int i, ret;
3182         struct xhci_hcd *xhci;
3183         struct xhci_virt_device *vdev;
3184         struct xhci_command *config_cmd;
3185         struct xhci_input_control_ctx *ctrl_ctx;
3186         unsigned int ep_index;
3187         unsigned int num_stream_ctxs;
3188         unsigned int max_packet;
3189         unsigned long flags;
3190         u32 changed_ep_bitmask = 0;
3191
3192         if (!eps)
3193                 return -EINVAL;
3194
3195         /* Add one to the number of streams requested to account for
3196          * stream 0 that is reserved for xHCI usage.
3197          */
3198         num_streams += 1;
3199         xhci = hcd_to_xhci(hcd);
3200         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3201                         num_streams);
3202
3203         /* MaxPSASize value 0 (2 streams) means streams are not supported */
3204         if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3205                         HCC_MAX_PSA(xhci->hcc_params) < 4) {
3206                 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3207                 return -ENOSYS;
3208         }
3209
3210         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3211         if (!config_cmd) {
3212                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3213                 return -ENOMEM;
3214         }
3215         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3216         if (!ctrl_ctx) {
3217                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3218                                 __func__);
3219                 xhci_free_command(xhci, config_cmd);
3220                 return -ENOMEM;
3221         }
3222
3223         /* Check to make sure all endpoints are not already configured for
3224          * streams.  While we're at it, find the maximum number of streams that
3225          * all the endpoints will support and check for duplicate endpoints.
3226          */
3227         spin_lock_irqsave(&xhci->lock, flags);
3228         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3229                         num_eps, &num_streams, &changed_ep_bitmask);
3230         if (ret < 0) {
3231                 xhci_free_command(xhci, config_cmd);
3232                 spin_unlock_irqrestore(&xhci->lock, flags);
3233                 return ret;
3234         }
3235         if (num_streams <= 1) {
3236                 xhci_warn(xhci, "WARN: endpoints can't handle "
3237                                 "more than one stream.\n");
3238                 xhci_free_command(xhci, config_cmd);
3239                 spin_unlock_irqrestore(&xhci->lock, flags);
3240                 return -EINVAL;
3241         }
3242         vdev = xhci->devs[udev->slot_id];
3243         /* Mark each endpoint as being in transition, so
3244          * xhci_urb_enqueue() will reject all URBs.
3245          */
3246         for (i = 0; i < num_eps; i++) {
3247                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3248                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3249         }
3250         spin_unlock_irqrestore(&xhci->lock, flags);
3251
3252         /* Setup internal data structures and allocate HW data structures for
3253          * streams (but don't install the HW structures in the input context
3254          * until we're sure all memory allocation succeeded).
3255          */
3256         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3257         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3258                         num_stream_ctxs, num_streams);
3259
3260         for (i = 0; i < num_eps; i++) {
3261                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3262                 max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&eps[i]->desc));
3263                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3264                                 num_stream_ctxs,
3265                                 num_streams,
3266                                 max_packet, mem_flags);
3267                 if (!vdev->eps[ep_index].stream_info)
3268                         goto cleanup;
3269                 /* Set maxPstreams in endpoint context and update deq ptr to
3270                  * point to stream context array. FIXME
3271                  */
3272         }
3273
3274         /* Set up the input context for a configure endpoint command. */
3275         for (i = 0; i < num_eps; i++) {
3276                 struct xhci_ep_ctx *ep_ctx;
3277
3278                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3279                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3280
3281                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3282                                 vdev->out_ctx, ep_index);
3283                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3284                                 vdev->eps[ep_index].stream_info);
3285         }
3286         /* Tell the HW to drop its old copy of the endpoint context info
3287          * and add the updated copy from the input context.
3288          */
3289         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3290                         vdev->out_ctx, ctrl_ctx,
3291                         changed_ep_bitmask, changed_ep_bitmask);
3292
3293         /* Issue and wait for the configure endpoint command */
3294         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3295                         false, false);
3296
3297         /* xHC rejected the configure endpoint command for some reason, so we
3298          * leave the old ring intact and free our internal streams data
3299          * structure.
3300          */
3301         if (ret < 0)
3302                 goto cleanup;
3303
3304         spin_lock_irqsave(&xhci->lock, flags);
3305         for (i = 0; i < num_eps; i++) {
3306                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3307                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3308                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3309                          udev->slot_id, ep_index);
3310                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3311         }
3312         xhci_free_command(xhci, config_cmd);
3313         spin_unlock_irqrestore(&xhci->lock, flags);
3314
3315         /* Subtract 1 for stream 0, which drivers can't use */
3316         return num_streams - 1;
3317
3318 cleanup:
3319         /* If it didn't work, free the streams! */
3320         for (i = 0; i < num_eps; i++) {
3321                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3322                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3323                 vdev->eps[ep_index].stream_info = NULL;
3324                 /* FIXME Unset maxPstreams in endpoint context and
3325                  * update deq ptr to point to normal string ring.
3326                  */
3327                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3328                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3329                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3330         }
3331         xhci_free_command(xhci, config_cmd);
3332         return -ENOMEM;
3333 }
3334
3335 /* Transition the endpoint from using streams to being a "normal" endpoint
3336  * without streams.
3337  *
3338  * Modify the endpoint context state, submit a configure endpoint command,
3339  * and free all endpoint rings for streams if that completes successfully.
3340  */
3341 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3342                 struct usb_host_endpoint **eps, unsigned int num_eps,
3343                 gfp_t mem_flags)
3344 {
3345         int i, ret;
3346         struct xhci_hcd *xhci;
3347         struct xhci_virt_device *vdev;
3348         struct xhci_command *command;
3349         struct xhci_input_control_ctx *ctrl_ctx;
3350         unsigned int ep_index;
3351         unsigned long flags;
3352         u32 changed_ep_bitmask;
3353
3354         xhci = hcd_to_xhci(hcd);
3355         vdev = xhci->devs[udev->slot_id];
3356
3357         /* Set up a configure endpoint command to remove the streams rings */
3358         spin_lock_irqsave(&xhci->lock, flags);
3359         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3360                         udev, eps, num_eps);
3361         if (changed_ep_bitmask == 0) {
3362                 spin_unlock_irqrestore(&xhci->lock, flags);
3363                 return -EINVAL;
3364         }
3365
3366         /* Use the xhci_command structure from the first endpoint.  We may have
3367          * allocated too many, but the driver may call xhci_free_streams() for
3368          * each endpoint it grouped into one call to xhci_alloc_streams().
3369          */
3370         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3371         command = vdev->eps[ep_index].stream_info->free_streams_command;
3372         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3373         if (!ctrl_ctx) {
3374                 spin_unlock_irqrestore(&xhci->lock, flags);
3375                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3376                                 __func__);
3377                 return -EINVAL;
3378         }
3379
3380         for (i = 0; i < num_eps; i++) {
3381                 struct xhci_ep_ctx *ep_ctx;
3382
3383                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3384                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3385                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3386                         EP_GETTING_NO_STREAMS;
3387
3388                 xhci_endpoint_copy(xhci, command->in_ctx,
3389                                 vdev->out_ctx, ep_index);
3390                 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3391                                 &vdev->eps[ep_index]);
3392         }
3393         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3394                         vdev->out_ctx, ctrl_ctx,
3395                         changed_ep_bitmask, changed_ep_bitmask);
3396         spin_unlock_irqrestore(&xhci->lock, flags);
3397
3398         /* Issue and wait for the configure endpoint command,
3399          * which must succeed.
3400          */
3401         ret = xhci_configure_endpoint(xhci, udev, command,
3402                         false, true);
3403
3404         /* xHC rejected the configure endpoint command for some reason, so we
3405          * leave the streams rings intact.
3406          */
3407         if (ret < 0)
3408                 return ret;
3409
3410         spin_lock_irqsave(&xhci->lock, flags);
3411         for (i = 0; i < num_eps; i++) {
3412                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3413                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3414                 vdev->eps[ep_index].stream_info = NULL;
3415                 /* FIXME Unset maxPstreams in endpoint context and
3416                  * update deq ptr to point to normal string ring.
3417                  */
3418                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3419                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3420         }
3421         spin_unlock_irqrestore(&xhci->lock, flags);
3422
3423         return 0;
3424 }
3425
3426 /*
3427  * Deletes endpoint resources for endpoints that were active before a Reset
3428  * Device command, or a Disable Slot command.  The Reset Device command leaves
3429  * the control endpoint intact, whereas the Disable Slot command deletes it.
3430  *
3431  * Must be called with xhci->lock held.
3432  */
3433 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3434         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3435 {
3436         int i;
3437         unsigned int num_dropped_eps = 0;
3438         unsigned int drop_flags = 0;
3439
3440         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3441                 if (virt_dev->eps[i].ring) {
3442                         drop_flags |= 1 << i;
3443                         num_dropped_eps++;
3444                 }
3445         }
3446         xhci->num_active_eps -= num_dropped_eps;
3447         if (num_dropped_eps)
3448                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3449                                 "Dropped %u ep ctxs, flags = 0x%x, "
3450                                 "%u now active.",
3451                                 num_dropped_eps, drop_flags,
3452                                 xhci->num_active_eps);
3453 }
3454
3455 /*
3456  * This submits a Reset Device Command, which will set the device state to 0,
3457  * set the device address to 0, and disable all the endpoints except the default
3458  * control endpoint.  The USB core should come back and call
3459  * xhci_address_device(), and then re-set up the configuration.  If this is
3460  * called because of a usb_reset_and_verify_device(), then the old alternate
3461  * settings will be re-installed through the normal bandwidth allocation
3462  * functions.
3463  *
3464  * Wait for the Reset Device command to finish.  Remove all structures
3465  * associated with the endpoints that were disabled.  Clear the input device
3466  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3467  *
3468  * If the virt_dev to be reset does not exist or does not match the udev,
3469  * it means the device is lost, possibly due to the xHC restore error and
3470  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3471  * re-allocate the device.
3472  */
3473 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3474 {
3475         int ret, i;
3476         unsigned long flags;
3477         struct xhci_hcd *xhci;
3478         unsigned int slot_id;
3479         struct xhci_virt_device *virt_dev;
3480         struct xhci_command *reset_device_cmd;
3481         int last_freed_endpoint;
3482         struct xhci_slot_ctx *slot_ctx;
3483         int old_active_eps = 0;
3484
3485         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3486         if (ret <= 0)
3487                 return ret;
3488         xhci = hcd_to_xhci(hcd);
3489         slot_id = udev->slot_id;
3490         virt_dev = xhci->devs[slot_id];
3491         if (!virt_dev) {
3492                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3493                                 "not exist. Re-allocate the device\n", slot_id);
3494                 ret = xhci_alloc_dev(hcd, udev);
3495                 if (ret == 1)
3496                         return 0;
3497                 else
3498                         return -EINVAL;
3499         }
3500
3501         if (virt_dev->tt_info)
3502                 old_active_eps = virt_dev->tt_info->active_eps;
3503
3504         if (virt_dev->udev != udev) {
3505                 /* If the virt_dev and the udev does not match, this virt_dev
3506                  * may belong to another udev.
3507                  * Re-allocate the device.
3508                  */
3509                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3510                                 "not match the udev. Re-allocate the device\n",
3511                                 slot_id);
3512                 ret = xhci_alloc_dev(hcd, udev);
3513                 if (ret == 1)
3514                         return 0;
3515                 else
3516                         return -EINVAL;
3517         }
3518
3519         /* If device is not setup, there is no point in resetting it */
3520         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3521         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3522                                                 SLOT_STATE_DISABLED)
3523                 return 0;
3524
3525         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3526         /* Allocate the command structure that holds the struct completion.
3527          * Assume we're in process context, since the normal device reset
3528          * process has to wait for the device anyway.  Storage devices are
3529          * reset as part of error handling, so use GFP_NOIO instead of
3530          * GFP_KERNEL.
3531          */
3532         reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3533         if (!reset_device_cmd) {
3534                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3535                 return -ENOMEM;
3536         }
3537
3538         /* Attempt to submit the Reset Device command to the command ring */
3539         spin_lock_irqsave(&xhci->lock, flags);
3540
3541         ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3542         if (ret) {
3543                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3544                 spin_unlock_irqrestore(&xhci->lock, flags);
3545                 goto command_cleanup;
3546         }
3547         xhci_ring_cmd_db(xhci);
3548         spin_unlock_irqrestore(&xhci->lock, flags);
3549
3550         /* Wait for the Reset Device command to finish */
3551         wait_for_completion(reset_device_cmd->completion);
3552
3553         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3554          * unless we tried to reset a slot ID that wasn't enabled,
3555          * or the device wasn't in the addressed or configured state.
3556          */
3557         ret = reset_device_cmd->status;
3558         switch (ret) {
3559         case COMP_CMD_ABORT:
3560         case COMP_CMD_STOP:
3561                 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3562                 ret = -ETIME;
3563                 goto command_cleanup;
3564         case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3565         case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3566                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3567                                 slot_id,
3568                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3569                 xhci_dbg(xhci, "Not freeing device rings.\n");
3570                 /* Don't treat this as an error.  May change my mind later. */
3571                 ret = 0;
3572                 goto command_cleanup;
3573         case COMP_SUCCESS:
3574                 xhci_dbg(xhci, "Successful reset device command.\n");
3575                 break;
3576         default:
3577                 if (xhci_is_vendor_info_code(xhci, ret))
3578                         break;
3579                 xhci_warn(xhci, "Unknown completion code %u for "
3580                                 "reset device command.\n", ret);
3581                 ret = -EINVAL;
3582                 goto command_cleanup;
3583         }
3584
3585         /* Free up host controller endpoint resources */
3586         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3587                 spin_lock_irqsave(&xhci->lock, flags);
3588                 /* Don't delete the default control endpoint resources */
3589                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3590                 spin_unlock_irqrestore(&xhci->lock, flags);
3591         }
3592
3593         /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3594         last_freed_endpoint = 1;
3595         for (i = 1; i < 31; ++i) {
3596                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3597
3598                 if (ep->ep_state & EP_HAS_STREAMS) {
3599                         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3600                                         xhci_get_endpoint_address(i));
3601                         xhci_free_stream_info(xhci, ep->stream_info);
3602                         ep->stream_info = NULL;
3603                         ep->ep_state &= ~EP_HAS_STREAMS;
3604                 }
3605
3606                 if (ep->ring) {
3607                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3608                         last_freed_endpoint = i;
3609                 }
3610                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3611                         xhci_drop_ep_from_interval_table(xhci,
3612                                         &virt_dev->eps[i].bw_info,
3613                                         virt_dev->bw_table,
3614                                         udev,
3615                                         &virt_dev->eps[i],
3616                                         virt_dev->tt_info);
3617                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3618         }
3619         /* If necessary, update the number of active TTs on this root port */
3620         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3621
3622         xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3623         xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3624         ret = 0;
3625
3626 command_cleanup:
3627         xhci_free_command(xhci, reset_device_cmd);
3628         return ret;
3629 }
3630
3631 /*
3632  * At this point, the struct usb_device is about to go away, the device has
3633  * disconnected, and all traffic has been stopped and the endpoints have been
3634  * disabled.  Free any HC data structures associated with that device.
3635  */
3636 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3637 {
3638         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3639         struct xhci_virt_device *virt_dev;
3640         unsigned long flags;
3641         u32 state;
3642         int i, ret;
3643         struct xhci_command *command;
3644
3645         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3646         if (!command)
3647                 return;
3648
3649 #ifndef CONFIG_USB_DEFAULT_PERSIST
3650         /*
3651          * We called pm_runtime_get_noresume when the device was attached.
3652          * Decrement the counter here to allow controller to runtime suspend
3653          * if no devices remain.
3654          */
3655         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3656                 pm_runtime_put_noidle(hcd->self.controller);
3657 #endif
3658
3659         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3660         /* If the host is halted due to driver unload, we still need to free the
3661          * device.
3662          */
3663         if (ret <= 0 && ret != -ENODEV) {
3664                 kfree(command);
3665                 return;
3666         }
3667
3668         virt_dev = xhci->devs[udev->slot_id];
3669
3670         /* Stop any wayward timer functions (which may grab the lock) */
3671         for (i = 0; i < 31; ++i) {
3672                 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3673                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3674         }
3675
3676         spin_lock_irqsave(&xhci->lock, flags);
3677
3678         virt_dev->udev = NULL;
3679
3680         /* Don't disable the slot if the host controller is dead. */
3681         state = readl(&xhci->op_regs->status);
3682         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3683                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3684                 xhci_free_virt_device(xhci, udev->slot_id);
3685                 spin_unlock_irqrestore(&xhci->lock, flags);
3686                 kfree(command);
3687                 return;
3688         }
3689
3690         if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3691                                     udev->slot_id)) {
3692                 spin_unlock_irqrestore(&xhci->lock, flags);
3693                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3694                 return;
3695         }
3696         xhci_ring_cmd_db(xhci);
3697         spin_unlock_irqrestore(&xhci->lock, flags);
3698
3699         /*
3700          * Event command completion handler will free any data structures
3701          * associated with the slot.  XXX Can free sleep?
3702          */
3703 }
3704
3705 /*
3706  * Checks if we have enough host controller resources for the default control
3707  * endpoint.
3708  *
3709  * Must be called with xhci->lock held.
3710  */
3711 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3712 {
3713         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3714                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3715                                 "Not enough ep ctxs: "
3716                                 "%u active, need to add 1, limit is %u.",
3717                                 xhci->num_active_eps, xhci->limit_active_eps);
3718                 return -ENOMEM;
3719         }
3720         xhci->num_active_eps += 1;
3721         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3722                         "Adding 1 ep ctx, %u now active.",
3723                         xhci->num_active_eps);
3724         return 0;
3725 }
3726
3727
3728 /*
3729  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3730  * timed out, or allocating memory failed.  Returns 1 on success.
3731  */
3732 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3733 {
3734         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3735         unsigned long flags;
3736         int ret, slot_id;
3737         struct xhci_command *command;
3738
3739         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3740         if (!command)
3741                 return 0;
3742
3743         /* xhci->slot_id and xhci->addr_dev are not thread-safe */
3744         mutex_lock(&xhci->mutex);
3745         spin_lock_irqsave(&xhci->lock, flags);
3746         command->completion = &xhci->addr_dev;
3747         ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3748         if (ret) {
3749                 spin_unlock_irqrestore(&xhci->lock, flags);
3750                 mutex_unlock(&xhci->mutex);
3751                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3752                 kfree(command);
3753                 return 0;
3754         }
3755         xhci_ring_cmd_db(xhci);
3756         spin_unlock_irqrestore(&xhci->lock, flags);
3757
3758         wait_for_completion(command->completion);
3759         slot_id = xhci->slot_id;
3760         mutex_unlock(&xhci->mutex);
3761
3762         if (!slot_id || command->status != COMP_SUCCESS) {
3763                 xhci_err(xhci, "Error while assigning device slot ID\n");
3764                 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3765                                 HCS_MAX_SLOTS(
3766                                         readl(&xhci->cap_regs->hcs_params1)));
3767                 kfree(command);
3768                 return 0;
3769         }
3770
3771         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3772                 spin_lock_irqsave(&xhci->lock, flags);
3773                 ret = xhci_reserve_host_control_ep_resources(xhci);
3774                 if (ret) {
3775                         spin_unlock_irqrestore(&xhci->lock, flags);
3776                         xhci_warn(xhci, "Not enough host resources, "
3777                                         "active endpoint contexts = %u\n",
3778                                         xhci->num_active_eps);
3779                         goto disable_slot;
3780                 }
3781                 spin_unlock_irqrestore(&xhci->lock, flags);
3782         }
3783         /* Use GFP_NOIO, since this function can be called from
3784          * xhci_discover_or_reset_device(), which may be called as part of
3785          * mass storage driver error handling.
3786          */
3787         if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3788                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3789                 goto disable_slot;
3790         }
3791         udev->slot_id = slot_id;
3792
3793 #ifndef CONFIG_USB_DEFAULT_PERSIST
3794         /*
3795          * If resetting upon resume, we can't put the controller into runtime
3796          * suspend if there is a device attached.
3797          */
3798         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3799                 pm_runtime_get_noresume(hcd->self.controller);
3800 #endif
3801
3802
3803         kfree(command);
3804         /* Is this a LS or FS device under a HS hub? */
3805         /* Hub or peripherial? */
3806         return 1;
3807
3808 disable_slot:
3809         /* Disable slot, if we can do it without mem alloc */
3810         spin_lock_irqsave(&xhci->lock, flags);
3811         command->completion = NULL;
3812         command->status = 0;
3813         if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3814                                      udev->slot_id))
3815                 xhci_ring_cmd_db(xhci);
3816         spin_unlock_irqrestore(&xhci->lock, flags);
3817         return 0;
3818 }
3819
3820 /*
3821  * Issue an Address Device command and optionally send a corresponding
3822  * SetAddress request to the device.
3823  */
3824 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3825                              enum xhci_setup_dev setup)
3826 {
3827         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3828         unsigned long flags;
3829         struct xhci_virt_device *virt_dev;
3830         int ret = 0;
3831         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3832         struct xhci_slot_ctx *slot_ctx;
3833         struct xhci_input_control_ctx *ctrl_ctx;
3834         u64 temp_64;
3835         struct xhci_command *command = NULL;
3836
3837         mutex_lock(&xhci->mutex);
3838
3839         if (xhci->xhc_state) {  /* dying, removing or halted */
3840                 ret = -ESHUTDOWN;
3841                 goto out;
3842         }
3843
3844         if (!udev->slot_id) {
3845                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3846                                 "Bad Slot ID %d", udev->slot_id);
3847                 ret = -EINVAL;
3848                 goto out;
3849         }
3850
3851         virt_dev = xhci->devs[udev->slot_id];
3852
3853         if (WARN_ON(!virt_dev)) {
3854                 /*
3855                  * In plug/unplug torture test with an NEC controller,
3856                  * a zero-dereference was observed once due to virt_dev = 0.
3857                  * Print useful debug rather than crash if it is observed again!
3858                  */
3859                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3860                         udev->slot_id);
3861                 ret = -EINVAL;
3862                 goto out;
3863         }
3864
3865         if (setup == SETUP_CONTEXT_ONLY) {
3866                 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3867                 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3868                     SLOT_STATE_DEFAULT) {
3869                         xhci_dbg(xhci, "Slot already in default state\n");
3870                         goto out;
3871                 }
3872         }
3873
3874         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3875         if (!command) {
3876                 ret = -ENOMEM;
3877                 goto out;
3878         }
3879
3880         command->in_ctx = virt_dev->in_ctx;
3881         command->completion = &xhci->addr_dev;
3882
3883         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3884         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3885         if (!ctrl_ctx) {
3886                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3887                                 __func__);
3888                 ret = -EINVAL;
3889                 goto out;
3890         }
3891         /*
3892          * If this is the first Set Address since device plug-in or
3893          * virt_device realloaction after a resume with an xHCI power loss,
3894          * then set up the slot context.
3895          */
3896         if (!slot_ctx->dev_info)
3897                 xhci_setup_addressable_virt_dev(xhci, udev);
3898         /* Otherwise, update the control endpoint ring enqueue pointer. */
3899         else
3900                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3901         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3902         ctrl_ctx->drop_flags = 0;
3903
3904         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3905         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3906         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3907                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3908
3909         spin_lock_irqsave(&xhci->lock, flags);
3910         ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3911                                         udev->slot_id, setup);
3912         if (ret) {
3913                 spin_unlock_irqrestore(&xhci->lock, flags);
3914                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3915                                 "FIXME: allocate a command ring segment");
3916                 goto out;
3917         }
3918         xhci_ring_cmd_db(xhci);
3919         spin_unlock_irqrestore(&xhci->lock, flags);
3920
3921         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3922         wait_for_completion(command->completion);
3923
3924         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3925          * the SetAddress() "recovery interval" required by USB and aborting the
3926          * command on a timeout.
3927          */
3928         switch (command->status) {
3929         case COMP_CMD_ABORT:
3930         case COMP_CMD_STOP:
3931                 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3932                 ret = -ETIME;
3933                 break;
3934         case COMP_CTX_STATE:
3935         case COMP_EBADSLT:
3936                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3937                          act, udev->slot_id);
3938                 ret = -EINVAL;
3939                 break;
3940         case COMP_TX_ERR:
3941                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3942                 ret = -EPROTO;
3943                 break;
3944         case COMP_DEV_ERR:
3945                 dev_warn(&udev->dev,
3946                          "ERROR: Incompatible device for setup %s command\n", act);
3947                 ret = -ENODEV;
3948                 break;
3949         case COMP_SUCCESS:
3950                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3951                                "Successful setup %s command", act);
3952                 break;
3953         default:
3954                 xhci_err(xhci,
3955                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
3956                          act, command->status);
3957                 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3958                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3959                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3960                 ret = -EINVAL;
3961                 break;
3962         }
3963         if (ret)
3964                 goto out;
3965         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3966         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3967                         "Op regs DCBAA ptr = %#016llx", temp_64);
3968         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3969                 "Slot ID %d dcbaa entry @%p = %#016llx",
3970                 udev->slot_id,
3971                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3972                 (unsigned long long)
3973                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3974         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3975                         "Output Context DMA address = %#08llx",
3976                         (unsigned long long)virt_dev->out_ctx->dma);
3977         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3978         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3979         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3980                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3981         xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3982         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3983         /*
3984          * USB core uses address 1 for the roothubs, so we add one to the
3985          * address given back to us by the HC.
3986          */
3987         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3988         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3989                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3990         /* Zero the input context control for later use */
3991         ctrl_ctx->add_flags = 0;
3992         ctrl_ctx->drop_flags = 0;
3993
3994         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3995                        "Internal device address = %d",
3996                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3997 out:
3998         mutex_unlock(&xhci->mutex);
3999         kfree(command);
4000         return ret;
4001 }
4002
4003 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4004 {
4005         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4006 }
4007
4008 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4009 {
4010         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4011 }
4012
4013 /*
4014  * Transfer the port index into real index in the HW port status
4015  * registers. Caculate offset between the port's PORTSC register
4016  * and port status base. Divide the number of per port register
4017  * to get the real index. The raw port number bases 1.
4018  */
4019 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4020 {
4021         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4022         __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
4023         __le32 __iomem *addr;
4024         int raw_port;
4025
4026         if (hcd->speed < HCD_USB3)
4027                 addr = xhci->usb2_ports[port1 - 1];
4028         else
4029                 addr = xhci->usb3_ports[port1 - 1];
4030
4031         raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
4032         return raw_port;
4033 }
4034
4035 /*
4036  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4037  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4038  */
4039 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4040                         struct usb_device *udev, u16 max_exit_latency)
4041 {
4042         struct xhci_virt_device *virt_dev;
4043         struct xhci_command *command;
4044         struct xhci_input_control_ctx *ctrl_ctx;
4045         struct xhci_slot_ctx *slot_ctx;
4046         unsigned long flags;
4047         int ret;
4048
4049         spin_lock_irqsave(&xhci->lock, flags);
4050
4051         virt_dev = xhci->devs[udev->slot_id];
4052
4053         /*
4054          * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4055          * xHC was re-initialized. Exit latency will be set later after
4056          * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4057          */
4058
4059         if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4060                 spin_unlock_irqrestore(&xhci->lock, flags);
4061                 return 0;
4062         }
4063
4064         /* Attempt to issue an Evaluate Context command to change the MEL. */
4065         command = xhci->lpm_command;
4066         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4067         if (!ctrl_ctx) {
4068                 spin_unlock_irqrestore(&xhci->lock, flags);
4069                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4070                                 __func__);
4071                 return -ENOMEM;
4072         }
4073
4074         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4075         spin_unlock_irqrestore(&xhci->lock, flags);
4076
4077         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4078         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4079         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4080         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4081         slot_ctx->dev_state = 0;
4082
4083         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4084                         "Set up evaluate context for LPM MEL change.");
4085         xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4086         xhci_dbg_ctx(xhci, command->in_ctx, 0);
4087
4088         /* Issue and wait for the evaluate context command. */
4089         ret = xhci_configure_endpoint(xhci, udev, command,
4090                         true, true);
4091         xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4092         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4093
4094         if (!ret) {
4095                 spin_lock_irqsave(&xhci->lock, flags);
4096                 virt_dev->current_mel = max_exit_latency;
4097                 spin_unlock_irqrestore(&xhci->lock, flags);
4098         }
4099         return ret;
4100 }
4101
4102 #ifdef CONFIG_PM
4103
4104 /* BESL to HIRD Encoding array for USB2 LPM */
4105 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4106         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4107
4108 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4109 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4110                                         struct usb_device *udev)
4111 {
4112         int u2del, besl, besl_host;
4113         int besl_device = 0;
4114         u32 field;
4115
4116         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4117         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4118
4119         if (field & USB_BESL_SUPPORT) {
4120                 for (besl_host = 0; besl_host < 16; besl_host++) {
4121                         if (xhci_besl_encoding[besl_host] >= u2del)
4122                                 break;
4123                 }
4124                 /* Use baseline BESL value as default */
4125                 if (field & USB_BESL_BASELINE_VALID)
4126                         besl_device = USB_GET_BESL_BASELINE(field);
4127                 else if (field & USB_BESL_DEEP_VALID)
4128                         besl_device = USB_GET_BESL_DEEP(field);
4129         } else {
4130                 if (u2del <= 50)
4131                         besl_host = 0;
4132                 else
4133                         besl_host = (u2del - 51) / 75 + 1;
4134         }
4135
4136         besl = besl_host + besl_device;
4137         if (besl > 15)
4138                 besl = 15;
4139
4140         return besl;
4141 }
4142
4143 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4144 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4145 {
4146         u32 field;
4147         int l1;
4148         int besld = 0;
4149         int hirdm = 0;
4150
4151         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4152
4153         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4154         l1 = udev->l1_params.timeout / 256;
4155
4156         /* device has preferred BESLD */
4157         if (field & USB_BESL_DEEP_VALID) {
4158                 besld = USB_GET_BESL_DEEP(field);
4159                 hirdm = 1;
4160         }
4161
4162         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4163 }
4164
4165 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4166                         struct usb_device *udev, int enable)
4167 {
4168         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4169         __le32 __iomem  **port_array;
4170         __le32 __iomem  *pm_addr, *hlpm_addr;
4171         u32             pm_val, hlpm_val, field;
4172         unsigned int    port_num;
4173         unsigned long   flags;
4174         int             hird, exit_latency;
4175         int             ret;
4176
4177         if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4178                         !udev->lpm_capable)
4179                 return -EPERM;
4180
4181         if (!udev->parent || udev->parent->parent ||
4182                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4183                 return -EPERM;
4184
4185         if (udev->usb2_hw_lpm_capable != 1)
4186                 return -EPERM;
4187
4188         spin_lock_irqsave(&xhci->lock, flags);
4189
4190         port_array = xhci->usb2_ports;
4191         port_num = udev->portnum - 1;
4192         pm_addr = port_array[port_num] + PORTPMSC;
4193         pm_val = readl(pm_addr);
4194         hlpm_addr = port_array[port_num] + PORTHLPMC;
4195
4196         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4197                         enable ? "enable" : "disable", port_num + 1);
4198
4199         if (enable) {
4200                 /* Host supports BESL timeout instead of HIRD */
4201                 if (udev->usb2_hw_lpm_besl_capable) {
4202                         /* if device doesn't have a preferred BESL value use a
4203                          * default one which works with mixed HIRD and BESL
4204                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4205                          */
4206                         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4207                         if ((field & USB_BESL_SUPPORT) &&
4208                             (field & USB_BESL_BASELINE_VALID))
4209                                 hird = USB_GET_BESL_BASELINE(field);
4210                         else
4211                                 hird = udev->l1_params.besl;
4212
4213                         exit_latency = xhci_besl_encoding[hird];
4214                         spin_unlock_irqrestore(&xhci->lock, flags);
4215
4216                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4217                          * input context for link powermanagement evaluate
4218                          * context commands. It is protected by hcd->bandwidth
4219                          * mutex and is shared by all devices. We need to set
4220                          * the max ext latency in USB 2 BESL LPM as well, so
4221                          * use the same mutex and xhci_change_max_exit_latency()
4222                          */
4223                         mutex_lock(hcd->bandwidth_mutex);
4224                         ret = xhci_change_max_exit_latency(xhci, udev,
4225                                                            exit_latency);
4226                         mutex_unlock(hcd->bandwidth_mutex);
4227
4228                         if (ret < 0)
4229                                 return ret;
4230                         spin_lock_irqsave(&xhci->lock, flags);
4231
4232                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4233                         writel(hlpm_val, hlpm_addr);
4234                         /* flush write */
4235                         readl(hlpm_addr);
4236                 } else {
4237                         hird = xhci_calculate_hird_besl(xhci, udev);
4238                 }
4239
4240                 pm_val &= ~PORT_HIRD_MASK;
4241                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4242                 writel(pm_val, pm_addr);
4243                 pm_val = readl(pm_addr);
4244                 pm_val |= PORT_HLE;
4245                 writel(pm_val, pm_addr);
4246                 /* flush write */
4247                 readl(pm_addr);
4248         } else {
4249                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4250                 writel(pm_val, pm_addr);
4251                 /* flush write */
4252                 readl(pm_addr);
4253                 if (udev->usb2_hw_lpm_besl_capable) {
4254                         spin_unlock_irqrestore(&xhci->lock, flags);
4255                         mutex_lock(hcd->bandwidth_mutex);
4256                         xhci_change_max_exit_latency(xhci, udev, 0);
4257                         mutex_unlock(hcd->bandwidth_mutex);
4258                         readl_poll_timeout(port_array[port_num], pm_val,
4259                                            (pm_val & PORT_PLS_MASK) == XDEV_U0,
4260                                            100, 10000);
4261                         return 0;
4262                 }
4263         }
4264
4265         spin_unlock_irqrestore(&xhci->lock, flags);
4266         return 0;
4267 }
4268
4269 /* check if a usb2 port supports a given extened capability protocol
4270  * only USB2 ports extended protocol capability values are cached.
4271  * Return 1 if capability is supported
4272  */
4273 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4274                                            unsigned capability)
4275 {
4276         u32 port_offset, port_count;
4277         int i;
4278
4279         for (i = 0; i < xhci->num_ext_caps; i++) {
4280                 if (xhci->ext_caps[i] & capability) {
4281                         /* port offsets starts at 1 */
4282                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4283                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4284                         if (port >= port_offset &&
4285                             port < port_offset + port_count)
4286                                 return 1;
4287                 }
4288         }
4289         return 0;
4290 }
4291
4292 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4293 {
4294         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4295         int             portnum = udev->portnum - 1;
4296
4297         if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4298                         !udev->lpm_capable)
4299                 return 0;
4300
4301         /* we only support lpm for non-hub device connected to root hub yet */
4302         if (!udev->parent || udev->parent->parent ||
4303                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4304                 return 0;
4305
4306         if (xhci->hw_lpm_support == 1 &&
4307                         xhci_check_usb2_port_capability(
4308                                 xhci, portnum, XHCI_HLC)) {
4309                 udev->usb2_hw_lpm_capable = 1;
4310                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4311                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4312                 if (xhci_check_usb2_port_capability(xhci, portnum,
4313                                         XHCI_BLC))
4314                         udev->usb2_hw_lpm_besl_capable = 1;
4315         }
4316
4317         return 0;
4318 }
4319
4320 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4321
4322 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4323 static unsigned long long xhci_service_interval_to_ns(
4324                 struct usb_endpoint_descriptor *desc)
4325 {
4326         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4327 }
4328
4329 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4330                 enum usb3_link_state state)
4331 {
4332         unsigned long long sel;
4333         unsigned long long pel;
4334         unsigned int max_sel_pel;
4335         char *state_name;
4336
4337         switch (state) {
4338         case USB3_LPM_U1:
4339                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4340                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4341                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4342                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4343                 state_name = "U1";
4344                 break;
4345         case USB3_LPM_U2:
4346                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4347                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4348                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4349                 state_name = "U2";
4350                 break;
4351         default:
4352                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4353                                 __func__);
4354                 return USB3_LPM_DISABLED;
4355         }
4356
4357         if (sel <= max_sel_pel && pel <= max_sel_pel)
4358                 return USB3_LPM_DEVICE_INITIATED;
4359
4360         if (sel > max_sel_pel)
4361                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4362                                 "due to long SEL %llu ms\n",
4363                                 state_name, sel);
4364         else
4365                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4366                                 "due to long PEL %llu ms\n",
4367                                 state_name, pel);
4368         return USB3_LPM_DISABLED;
4369 }
4370
4371 /* The U1 timeout should be the maximum of the following values:
4372  *  - For control endpoints, U1 system exit latency (SEL) * 3
4373  *  - For bulk endpoints, U1 SEL * 5
4374  *  - For interrupt endpoints:
4375  *    - Notification EPs, U1 SEL * 3
4376  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4377  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4378  */
4379 static unsigned long long xhci_calculate_intel_u1_timeout(
4380                 struct usb_device *udev,
4381                 struct usb_endpoint_descriptor *desc)
4382 {
4383         unsigned long long timeout_ns;
4384         int ep_type;
4385         int intr_type;
4386
4387         ep_type = usb_endpoint_type(desc);
4388         switch (ep_type) {
4389         case USB_ENDPOINT_XFER_CONTROL:
4390                 timeout_ns = udev->u1_params.sel * 3;
4391                 break;
4392         case USB_ENDPOINT_XFER_BULK:
4393                 timeout_ns = udev->u1_params.sel * 5;
4394                 break;
4395         case USB_ENDPOINT_XFER_INT:
4396                 intr_type = usb_endpoint_interrupt_type(desc);
4397                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4398                         timeout_ns = udev->u1_params.sel * 3;
4399                         break;
4400                 }
4401                 /* Otherwise the calculation is the same as isoc eps */
4402         case USB_ENDPOINT_XFER_ISOC:
4403                 timeout_ns = xhci_service_interval_to_ns(desc);
4404                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4405                 if (timeout_ns < udev->u1_params.sel * 2)
4406                         timeout_ns = udev->u1_params.sel * 2;
4407                 break;
4408         default:
4409                 return 0;
4410         }
4411
4412         return timeout_ns;
4413 }
4414
4415 /* Returns the hub-encoded U1 timeout value. */
4416 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4417                 struct usb_device *udev,
4418                 struct usb_endpoint_descriptor *desc)
4419 {
4420         unsigned long long timeout_ns;
4421
4422         /* Prevent U1 if service interval is shorter than U1 exit latency */
4423         if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4424                 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4425                         dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4426                         return USB3_LPM_DISABLED;
4427                 }
4428         }
4429
4430         if (xhci->quirks & XHCI_INTEL_HOST)
4431                 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4432         else
4433                 timeout_ns = udev->u1_params.sel;
4434
4435         /* The U1 timeout is encoded in 1us intervals.
4436          * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4437          */
4438         if (timeout_ns == USB3_LPM_DISABLED)
4439                 timeout_ns = 1;
4440         else
4441                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4442
4443         /* If the necessary timeout value is bigger than what we can set in the
4444          * USB 3.0 hub, we have to disable hub-initiated U1.
4445          */
4446         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4447                 return timeout_ns;
4448         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4449                         "due to long timeout %llu ms\n", timeout_ns);
4450         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4451 }
4452
4453 /* The U2 timeout should be the maximum of:
4454  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4455  *  - largest bInterval of any active periodic endpoint (to avoid going
4456  *    into lower power link states between intervals).
4457  *  - the U2 Exit Latency of the device
4458  */
4459 static unsigned long long xhci_calculate_intel_u2_timeout(
4460                 struct usb_device *udev,
4461                 struct usb_endpoint_descriptor *desc)
4462 {
4463         unsigned long long timeout_ns;
4464         unsigned long long u2_del_ns;
4465
4466         timeout_ns = 10 * 1000 * 1000;
4467
4468         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4469                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4470                 timeout_ns = xhci_service_interval_to_ns(desc);
4471
4472         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4473         if (u2_del_ns > timeout_ns)
4474                 timeout_ns = u2_del_ns;
4475
4476         return timeout_ns;
4477 }
4478
4479 /* Returns the hub-encoded U2 timeout value. */
4480 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4481                 struct usb_device *udev,
4482                 struct usb_endpoint_descriptor *desc)
4483 {
4484         unsigned long long timeout_ns;
4485
4486         /* Prevent U2 if service interval is shorter than U2 exit latency */
4487         if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4488                 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4489                         dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4490                         return USB3_LPM_DISABLED;
4491                 }
4492         }
4493
4494         if (xhci->quirks & XHCI_INTEL_HOST)
4495                 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4496         else
4497                 timeout_ns = udev->u2_params.sel;
4498
4499         /* The U2 timeout is encoded in 256us intervals */
4500         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4501         /* If the necessary timeout value is bigger than what we can set in the
4502          * USB 3.0 hub, we have to disable hub-initiated U2.
4503          */
4504         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4505                 return timeout_ns;
4506         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4507                         "due to long timeout %llu ms\n", timeout_ns);
4508         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4509 }
4510
4511 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4512                 struct usb_device *udev,
4513                 struct usb_endpoint_descriptor *desc,
4514                 enum usb3_link_state state,
4515                 u16 *timeout)
4516 {
4517         if (state == USB3_LPM_U1)
4518                 return xhci_calculate_u1_timeout(xhci, udev, desc);
4519         else if (state == USB3_LPM_U2)
4520                 return xhci_calculate_u2_timeout(xhci, udev, desc);
4521
4522         return USB3_LPM_DISABLED;
4523 }
4524
4525 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4526                 struct usb_device *udev,
4527                 struct usb_endpoint_descriptor *desc,
4528                 enum usb3_link_state state,
4529                 u16 *timeout)
4530 {
4531         u16 alt_timeout;
4532
4533         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4534                 desc, state, timeout);
4535
4536         /* If we found we can't enable hub-initiated LPM, and
4537          * the U1 or U2 exit latency was too high to allow
4538          * device-initiated LPM as well, then we will disable LPM
4539          * for this device, so stop searching any further.
4540          */
4541         if (alt_timeout == USB3_LPM_DISABLED) {
4542                 *timeout = alt_timeout;
4543                 return -E2BIG;
4544         }
4545         if (alt_timeout > *timeout)
4546                 *timeout = alt_timeout;
4547         return 0;
4548 }
4549
4550 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4551                 struct usb_device *udev,
4552                 struct usb_host_interface *alt,
4553                 enum usb3_link_state state,
4554                 u16 *timeout)
4555 {
4556         int j;
4557
4558         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4559                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4560                                         &alt->endpoint[j].desc, state, timeout))
4561                         return -E2BIG;
4562                 continue;
4563         }
4564         return 0;
4565 }
4566
4567 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4568                 enum usb3_link_state state)
4569 {
4570         struct usb_device *parent;
4571         unsigned int num_hubs;
4572
4573         if (state == USB3_LPM_U2)
4574                 return 0;
4575
4576         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4577         for (parent = udev->parent, num_hubs = 0; parent->parent;
4578                         parent = parent->parent)
4579                 num_hubs++;
4580
4581         if (num_hubs < 2)
4582                 return 0;
4583
4584         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4585                         " below second-tier hub.\n");
4586         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4587                         "to decrease power consumption.\n");
4588         return -E2BIG;
4589 }
4590
4591 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4592                 struct usb_device *udev,
4593                 enum usb3_link_state state)
4594 {
4595         if (xhci->quirks & XHCI_INTEL_HOST)
4596                 return xhci_check_intel_tier_policy(udev, state);
4597         else
4598                 return 0;
4599 }
4600
4601 /* Returns the U1 or U2 timeout that should be enabled.
4602  * If the tier check or timeout setting functions return with a non-zero exit
4603  * code, that means the timeout value has been finalized and we shouldn't look
4604  * at any more endpoints.
4605  */
4606 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4607                         struct usb_device *udev, enum usb3_link_state state)
4608 {
4609         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4610         struct usb_host_config *config;
4611         char *state_name;
4612         int i;
4613         u16 timeout = USB3_LPM_DISABLED;
4614
4615         if (state == USB3_LPM_U1)
4616                 state_name = "U1";
4617         else if (state == USB3_LPM_U2)
4618                 state_name = "U2";
4619         else {
4620                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4621                                 state);
4622                 return timeout;
4623         }
4624
4625         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4626                 return timeout;
4627
4628         /* Gather some information about the currently installed configuration
4629          * and alternate interface settings.
4630          */
4631         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4632                         state, &timeout))
4633                 return timeout;
4634
4635         config = udev->actconfig;
4636         if (!config)
4637                 return timeout;
4638
4639         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4640                 struct usb_driver *driver;
4641                 struct usb_interface *intf = config->interface[i];
4642
4643                 if (!intf)
4644                         continue;
4645
4646                 /* Check if any currently bound drivers want hub-initiated LPM
4647                  * disabled.
4648                  */
4649                 if (intf->dev.driver) {
4650                         driver = to_usb_driver(intf->dev.driver);
4651                         if (driver && driver->disable_hub_initiated_lpm) {
4652                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4653                                         state_name, driver->name);
4654                                 timeout = xhci_get_timeout_no_hub_lpm(udev,
4655                                                                       state);
4656                                 if (timeout == USB3_LPM_DISABLED)
4657                                         return timeout;
4658                         }
4659                 }
4660
4661                 /* Not sure how this could happen... */
4662                 if (!intf->cur_altsetting)
4663                         continue;
4664
4665                 if (xhci_update_timeout_for_interface(xhci, udev,
4666                                         intf->cur_altsetting,
4667                                         state, &timeout))
4668                         return timeout;
4669         }
4670         return timeout;
4671 }
4672
4673 static int calculate_max_exit_latency(struct usb_device *udev,
4674                 enum usb3_link_state state_changed,
4675                 u16 hub_encoded_timeout)
4676 {
4677         unsigned long long u1_mel_us = 0;
4678         unsigned long long u2_mel_us = 0;
4679         unsigned long long mel_us = 0;
4680         bool disabling_u1;
4681         bool disabling_u2;
4682         bool enabling_u1;
4683         bool enabling_u2;
4684
4685         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4686                         hub_encoded_timeout == USB3_LPM_DISABLED);
4687         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4688                         hub_encoded_timeout == USB3_LPM_DISABLED);
4689
4690         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4691                         hub_encoded_timeout != USB3_LPM_DISABLED);
4692         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4693                         hub_encoded_timeout != USB3_LPM_DISABLED);
4694
4695         /* If U1 was already enabled and we're not disabling it,
4696          * or we're going to enable U1, account for the U1 max exit latency.
4697          */
4698         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4699                         enabling_u1)
4700                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4701         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4702                         enabling_u2)
4703                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4704
4705         if (u1_mel_us > u2_mel_us)
4706                 mel_us = u1_mel_us;
4707         else
4708                 mel_us = u2_mel_us;
4709         /* xHCI host controller max exit latency field is only 16 bits wide. */
4710         if (mel_us > MAX_EXIT) {
4711                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4712                                 "is too big.\n", mel_us);
4713                 return -E2BIG;
4714         }
4715         return mel_us;
4716 }
4717
4718 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4719 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4720                         struct usb_device *udev, enum usb3_link_state state)
4721 {
4722         struct xhci_hcd *xhci;
4723         u16 hub_encoded_timeout;
4724         int mel;
4725         int ret;
4726
4727         xhci = hcd_to_xhci(hcd);
4728         /* The LPM timeout values are pretty host-controller specific, so don't
4729          * enable hub-initiated timeouts unless the vendor has provided
4730          * information about their timeout algorithm.
4731          */
4732         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4733                         !xhci->devs[udev->slot_id])
4734                 return USB3_LPM_DISABLED;
4735
4736         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4737         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4738         if (mel < 0) {
4739                 /* Max Exit Latency is too big, disable LPM. */
4740                 hub_encoded_timeout = USB3_LPM_DISABLED;
4741                 mel = 0;
4742         }
4743
4744         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4745         if (ret)
4746                 return ret;
4747         return hub_encoded_timeout;
4748 }
4749
4750 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4751                         struct usb_device *udev, enum usb3_link_state state)
4752 {
4753         struct xhci_hcd *xhci;
4754         u16 mel;
4755
4756         xhci = hcd_to_xhci(hcd);
4757         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4758                         !xhci->devs[udev->slot_id])
4759                 return 0;
4760
4761         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4762         return xhci_change_max_exit_latency(xhci, udev, mel);
4763 }
4764 #else /* CONFIG_PM */
4765
4766 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4767                                 struct usb_device *udev, int enable)
4768 {
4769         return 0;
4770 }
4771
4772 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4773 {
4774         return 0;
4775 }
4776
4777 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4778                         struct usb_device *udev, enum usb3_link_state state)
4779 {
4780         return USB3_LPM_DISABLED;
4781 }
4782
4783 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4784                         struct usb_device *udev, enum usb3_link_state state)
4785 {
4786         return 0;
4787 }
4788 #endif  /* CONFIG_PM */
4789
4790 /*-------------------------------------------------------------------------*/
4791
4792 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4793  * internal data structures for the device.
4794  */
4795 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4796                         struct usb_tt *tt, gfp_t mem_flags)
4797 {
4798         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4799         struct xhci_virt_device *vdev;
4800         struct xhci_command *config_cmd;
4801         struct xhci_input_control_ctx *ctrl_ctx;
4802         struct xhci_slot_ctx *slot_ctx;
4803         unsigned long flags;
4804         unsigned think_time;
4805         int ret;
4806
4807         /* Ignore root hubs */
4808         if (!hdev->parent)
4809                 return 0;
4810
4811         vdev = xhci->devs[hdev->slot_id];
4812         if (!vdev) {
4813                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4814                 return -EINVAL;
4815         }
4816         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4817         if (!config_cmd) {
4818                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4819                 return -ENOMEM;
4820         }
4821         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4822         if (!ctrl_ctx) {
4823                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4824                                 __func__);
4825                 xhci_free_command(xhci, config_cmd);
4826                 return -ENOMEM;
4827         }
4828
4829         spin_lock_irqsave(&xhci->lock, flags);
4830         if (hdev->speed == USB_SPEED_HIGH &&
4831                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4832                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4833                 xhci_free_command(xhci, config_cmd);
4834                 spin_unlock_irqrestore(&xhci->lock, flags);
4835                 return -ENOMEM;
4836         }
4837
4838         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4839         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4840         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4841         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4842         /*
4843          * refer to section 6.2.2: MTT should be 0 for full speed hub,
4844          * but it may be already set to 1 when setup an xHCI virtual
4845          * device, so clear it anyway.
4846          */
4847         if (tt->multi)
4848                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4849         else if (hdev->speed == USB_SPEED_FULL)
4850                 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4851
4852         if (xhci->hci_version > 0x95) {
4853                 xhci_dbg(xhci, "xHCI version %x needs hub "
4854                                 "TT think time and number of ports\n",
4855                                 (unsigned int) xhci->hci_version);
4856                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4857                 /* Set TT think time - convert from ns to FS bit times.
4858                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
4859                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
4860                  *
4861                  * xHCI 1.0: this field shall be 0 if the device is not a
4862                  * High-spped hub.
4863                  */
4864                 think_time = tt->think_time;
4865                 if (think_time != 0)
4866                         think_time = (think_time / 666) - 1;
4867                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4868                         slot_ctx->tt_info |=
4869                                 cpu_to_le32(TT_THINK_TIME(think_time));
4870         } else {
4871                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4872                                 "TT think time or number of ports\n",
4873                                 (unsigned int) xhci->hci_version);
4874         }
4875         slot_ctx->dev_state = 0;
4876         spin_unlock_irqrestore(&xhci->lock, flags);
4877
4878         xhci_dbg(xhci, "Set up %s for hub device.\n",
4879                         (xhci->hci_version > 0x95) ?
4880                         "configure endpoint" : "evaluate context");
4881         xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4882         xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4883
4884         /* Issue and wait for the configure endpoint or
4885          * evaluate context command.
4886          */
4887         if (xhci->hci_version > 0x95)
4888                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4889                                 false, false);
4890         else
4891                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4892                                 true, false);
4893
4894         xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4895         xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4896
4897         xhci_free_command(xhci, config_cmd);
4898         return ret;
4899 }
4900
4901 int xhci_get_frame(struct usb_hcd *hcd)
4902 {
4903         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4904         /* EHCI mods by the periodic size.  Why? */
4905         return readl(&xhci->run_regs->microframe_index) >> 3;
4906 }
4907
4908 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4909 {
4910         struct xhci_hcd         *xhci;
4911         struct device           *dev = hcd->self.controller;
4912         int                     retval;
4913
4914         /* Accept arbitrarily long scatter-gather lists */
4915         hcd->self.sg_tablesize = ~0;
4916
4917         /* support to build packet from discontinuous buffers */
4918         hcd->self.no_sg_constraint = 1;
4919
4920         /* XHCI controllers don't stop the ep queue on short packets :| */
4921         hcd->self.no_stop_on_short = 1;
4922
4923         xhci = hcd_to_xhci(hcd);
4924
4925         if (usb_hcd_is_primary_hcd(hcd)) {
4926                 xhci->main_hcd = hcd;
4927                 /* Mark the first roothub as being USB 2.0.
4928                  * The xHCI driver will register the USB 3.0 roothub.
4929                  */
4930                 hcd->speed = HCD_USB2;
4931                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4932                 /*
4933                  * USB 2.0 roothub under xHCI has an integrated TT,
4934                  * (rate matching hub) as opposed to having an OHCI/UHCI
4935                  * companion controller.
4936                  */
4937                 hcd->has_tt = 1;
4938         } else {
4939                 /* Some 3.1 hosts return sbrn 0x30, can't rely on sbrn alone */
4940                 if (xhci->sbrn == 0x31 || xhci->usb3_rhub.min_rev >= 1) {
4941                         xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n");
4942                         hcd->speed = HCD_USB31;
4943                         hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
4944                 }
4945                 /* xHCI private pointer was set in xhci_pci_probe for the second
4946                  * registered roothub.
4947                  */
4948                 return 0;
4949         }
4950
4951         mutex_init(&xhci->mutex);
4952         xhci->cap_regs = hcd->regs;
4953         xhci->op_regs = hcd->regs +
4954                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4955         xhci->run_regs = hcd->regs +
4956                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4957         /* Cache read-only capability registers */
4958         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4959         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4960         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4961         xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4962         xhci->hci_version = HC_VERSION(xhci->hcc_params);
4963         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4964         if (xhci->hci_version > 0x100)
4965                 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4966         xhci_print_registers(xhci);
4967
4968         xhci->quirks |= quirks;
4969
4970         get_quirks(dev, xhci);
4971
4972         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4973          * success event after a short transfer. This quirk will ignore such
4974          * spurious event.
4975          */
4976         if (xhci->hci_version > 0x96)
4977                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4978
4979         /* Make sure the HC is halted. */
4980         retval = xhci_halt(xhci);
4981         if (retval)
4982                 return retval;
4983
4984         xhci_dbg(xhci, "Resetting HCD\n");
4985         /* Reset the internal HC memory state and registers. */
4986         retval = xhci_reset(xhci);
4987         if (retval)
4988                 return retval;
4989         xhci_dbg(xhci, "Reset complete\n");
4990
4991         /*
4992          * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
4993          * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
4994          * address memory pointers actually. So, this driver clears the AC64
4995          * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
4996          * DMA_BIT_MASK(32)) in this xhci_gen_setup().
4997          */
4998         if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
4999                 xhci->hcc_params &= ~BIT(0);
5000
5001         /* Set dma_mask and coherent_dma_mask to 64-bits,
5002          * if xHC supports 64-bit addressing */
5003         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5004                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5005                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5006                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5007         } else {
5008                 /*
5009                  * This is to avoid error in cases where a 32-bit USB
5010                  * controller is used on a 64-bit capable system.
5011                  */
5012                 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5013                 if (retval)
5014                         return retval;
5015                 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5016                 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5017         }
5018
5019         xhci_dbg(xhci, "Calling HCD init\n");
5020         /* Initialize HCD and host controller data structures. */
5021         retval = xhci_init(hcd);
5022         if (retval)
5023                 return retval;
5024         xhci_dbg(xhci, "Called HCD init\n");
5025
5026         xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
5027                   xhci->hcc_params, xhci->hci_version, xhci->quirks);
5028
5029         return 0;
5030 }
5031 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5032
5033 static const struct hc_driver xhci_hc_driver = {
5034         .description =          "xhci-hcd",
5035         .product_desc =         "xHCI Host Controller",
5036         .hcd_priv_size =        sizeof(struct xhci_hcd),
5037
5038         /*
5039          * generic hardware linkage
5040          */
5041         .irq =                  xhci_irq,
5042         .flags =                HCD_MEMORY | HCD_USB3 | HCD_SHARED,
5043
5044         /*
5045          * basic lifecycle operations
5046          */
5047         .reset =                NULL, /* set in xhci_init_driver() */
5048         .start =                xhci_run,
5049         .stop =                 xhci_stop,
5050         .shutdown =             xhci_shutdown,
5051
5052         /*
5053          * managing i/o requests and associated device resources
5054          */
5055         .urb_enqueue =          xhci_urb_enqueue,
5056         .urb_dequeue =          xhci_urb_dequeue,
5057         .alloc_dev =            xhci_alloc_dev,
5058         .free_dev =             xhci_free_dev,
5059         .alloc_streams =        xhci_alloc_streams,
5060         .free_streams =         xhci_free_streams,
5061         .add_endpoint =         xhci_add_endpoint,
5062         .drop_endpoint =        xhci_drop_endpoint,
5063         .endpoint_reset =       xhci_endpoint_reset,
5064         .check_bandwidth =      xhci_check_bandwidth,
5065         .reset_bandwidth =      xhci_reset_bandwidth,
5066         .address_device =       xhci_address_device,
5067         .enable_device =        xhci_enable_device,
5068         .update_hub_device =    xhci_update_hub_device,
5069         .reset_device =         xhci_discover_or_reset_device,
5070
5071         /*
5072          * scheduling support
5073          */
5074         .get_frame_number =     xhci_get_frame,
5075
5076         /*
5077          * root hub support
5078          */
5079         .hub_control =          xhci_hub_control,
5080         .hub_status_data =      xhci_hub_status_data,
5081         .bus_suspend =          xhci_bus_suspend,
5082         .bus_resume =           xhci_bus_resume,
5083
5084         /*
5085          * call back when device connected and addressed
5086          */
5087         .update_device =        xhci_update_device,
5088         .set_usb2_hw_lpm =      xhci_set_usb2_hardware_lpm,
5089         .enable_usb3_lpm_timeout =      xhci_enable_usb3_lpm_timeout,
5090         .disable_usb3_lpm_timeout =     xhci_disable_usb3_lpm_timeout,
5091         .find_raw_port_number = xhci_find_raw_port_number,
5092 };
5093
5094 void xhci_init_driver(struct hc_driver *drv,
5095                       const struct xhci_driver_overrides *over)
5096 {
5097         BUG_ON(!over);
5098
5099         /* Copy the generic table to drv then apply the overrides */
5100         *drv = xhci_hc_driver;
5101
5102         if (over) {
5103                 drv->hcd_priv_size += over->extra_priv_size;
5104                 if (over->reset)
5105                         drv->reset = over->reset;
5106                 if (over->start)
5107                         drv->start = over->start;
5108         }
5109 }
5110 EXPORT_SYMBOL_GPL(xhci_init_driver);
5111
5112 MODULE_DESCRIPTION(DRIVER_DESC);
5113 MODULE_AUTHOR(DRIVER_AUTHOR);
5114 MODULE_LICENSE("GPL");
5115
5116 static int __init xhci_hcd_init(void)
5117 {
5118         /*
5119          * Check the compiler generated sizes of structures that must be laid
5120          * out in specific ways for hardware access.
5121          */
5122         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5123         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5124         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5125         /* xhci_device_control has eight fields, and also
5126          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5127          */
5128         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5129         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5130         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5131         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5132         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5133         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5134         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5135
5136         if (usb_disabled())
5137                 return -ENODEV;
5138
5139         return 0;
5140 }
5141
5142 /*
5143  * If an init function is provided, an exit function must also be provided
5144  * to allow module unload.
5145  */
5146 static void __exit xhci_hcd_fini(void) { }
5147
5148 module_init(xhci_hcd_init);
5149 module_exit(xhci_hcd_fini);