GNU Linux-libre 4.14.313-gnu1
[releases.git] / drivers / usb / host / xhci.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/iopoll.h>
25 #include <linux/irq.h>
26 #include <linux/log2.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/slab.h>
30 #include <linux/dmi.h>
31 #include <linux/dma-mapping.h>
32
33 #include "xhci.h"
34 #include "xhci-trace.h"
35 #include "xhci-mtk.h"
36
37 #define DRIVER_AUTHOR "Sarah Sharp"
38 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
39
40 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
41
42 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
43 static int link_quirk;
44 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
45 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
46
47 static unsigned long long quirks;
48 module_param(quirks, ullong, S_IRUGO);
49 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
50
51 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
52 {
53         struct xhci_segment *seg = ring->first_seg;
54
55         if (!td || !td->start_seg)
56                 return false;
57         do {
58                 if (seg == td->start_seg)
59                         return true;
60                 seg = seg->next;
61         } while (seg && seg != ring->first_seg);
62
63         return false;
64 }
65
66 /*
67  * xhci_handshake - spin reading hc until handshake completes or fails
68  * @ptr: address of hc register to be read
69  * @mask: bits to look at in result of read
70  * @done: value of those bits when handshake succeeds
71  * @usec: timeout in microseconds
72  *
73  * Returns negative errno, or zero on success
74  *
75  * Success happens when the "mask" bits have the specified value (hardware
76  * handshake done).  There are two failure modes:  "usec" have passed (major
77  * hardware flakeout), or the register reads as all-ones (hardware removed).
78  */
79 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us)
80 {
81         u32     result;
82         int     ret;
83
84         ret = readl_poll_timeout_atomic(ptr, result,
85                                         (result & mask) == done ||
86                                         result == U32_MAX,
87                                         1, timeout_us);
88         if (result == U32_MAX)          /* card removed */
89                 return -ENODEV;
90
91         return ret;
92 }
93
94 /*
95  * Disable interrupts and begin the xHCI halting process.
96  */
97 void xhci_quiesce(struct xhci_hcd *xhci)
98 {
99         u32 halted;
100         u32 cmd;
101         u32 mask;
102
103         mask = ~(XHCI_IRQS);
104         halted = readl(&xhci->op_regs->status) & STS_HALT;
105         if (!halted)
106                 mask &= ~CMD_RUN;
107
108         cmd = readl(&xhci->op_regs->command);
109         cmd &= mask;
110         writel(cmd, &xhci->op_regs->command);
111 }
112
113 /*
114  * Force HC into halt state.
115  *
116  * Disable any IRQs and clear the run/stop bit.
117  * HC will complete any current and actively pipelined transactions, and
118  * should halt within 16 ms of the run/stop bit being cleared.
119  * Read HC Halted bit in the status register to see when the HC is finished.
120  */
121 int xhci_halt(struct xhci_hcd *xhci)
122 {
123         int ret;
124         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
125         xhci_quiesce(xhci);
126
127         ret = xhci_handshake(&xhci->op_regs->status,
128                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
129         if (ret) {
130                 xhci_warn(xhci, "Host halt failed, %d\n", ret);
131                 return ret;
132         }
133         xhci->xhc_state |= XHCI_STATE_HALTED;
134         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
135         return ret;
136 }
137
138 /*
139  * Set the run bit and wait for the host to be running.
140  */
141 int xhci_start(struct xhci_hcd *xhci)
142 {
143         u32 temp;
144         int ret;
145
146         temp = readl(&xhci->op_regs->command);
147         temp |= (CMD_RUN);
148         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
149                         temp);
150         writel(temp, &xhci->op_regs->command);
151
152         /*
153          * Wait for the HCHalted Status bit to be 0 to indicate the host is
154          * running.
155          */
156         ret = xhci_handshake(&xhci->op_regs->status,
157                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
158         if (ret == -ETIMEDOUT)
159                 xhci_err(xhci, "Host took too long to start, "
160                                 "waited %u microseconds.\n",
161                                 XHCI_MAX_HALT_USEC);
162         if (!ret) {
163                 /* clear state flags. Including dying, halted or removing */
164                 xhci->xhc_state = 0;
165                 xhci->run_graceperiod = jiffies + msecs_to_jiffies(500);
166         }
167
168         return ret;
169 }
170
171 /*
172  * Reset a halted HC.
173  *
174  * This resets pipelines, timers, counters, state machines, etc.
175  * Transactions will be terminated immediately, and operational registers
176  * will be set to their defaults.
177  */
178 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us)
179 {
180         u32 command;
181         u32 state;
182         int ret, i;
183
184         state = readl(&xhci->op_regs->status);
185
186         if (state == ~(u32)0) {
187                 xhci_warn(xhci, "Host not accessible, reset failed.\n");
188                 return -ENODEV;
189         }
190
191         if ((state & STS_HALT) == 0) {
192                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
193                 return 0;
194         }
195
196         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
197         command = readl(&xhci->op_regs->command);
198         command |= CMD_RESET;
199         writel(command, &xhci->op_regs->command);
200
201         /* Existing Intel xHCI controllers require a delay of 1 mS,
202          * after setting the CMD_RESET bit, and before accessing any
203          * HC registers. This allows the HC to complete the
204          * reset operation and be ready for HC register access.
205          * Without this delay, the subsequent HC register access,
206          * may result in a system hang very rarely.
207          */
208         if (xhci->quirks & XHCI_INTEL_HOST)
209                 udelay(1000);
210
211         ret = xhci_handshake(&xhci->op_regs->command, CMD_RESET, 0, timeout_us);
212         if (ret)
213                 return ret;
214
215         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
216                 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
217
218         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
219                          "Wait for controller to be ready for doorbell rings");
220         /*
221          * xHCI cannot write to any doorbells or operational registers other
222          * than status until the "Controller Not Ready" flag is cleared.
223          */
224         ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us);
225
226         for (i = 0; i < 2; i++) {
227                 xhci->bus_state[i].port_c_suspend = 0;
228                 xhci->bus_state[i].suspended_ports = 0;
229                 xhci->bus_state[i].resuming_ports = 0;
230         }
231
232         return ret;
233 }
234
235
236 #ifdef CONFIG_USB_PCI
237 /*
238  * Set up MSI
239  */
240 static int xhci_setup_msi(struct xhci_hcd *xhci)
241 {
242         int ret;
243         /*
244          * TODO:Check with MSI Soc for sysdev
245          */
246         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
247
248         ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
249         if (ret < 0) {
250                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
251                                 "failed to allocate MSI entry");
252                 return ret;
253         }
254
255         ret = request_irq(pdev->irq, xhci_msi_irq,
256                                 0, "xhci_hcd", xhci_to_hcd(xhci));
257         if (ret) {
258                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
259                                 "disable MSI interrupt");
260                 pci_free_irq_vectors(pdev);
261         }
262
263         return ret;
264 }
265
266 /*
267  * Set up MSI-X
268  */
269 static int xhci_setup_msix(struct xhci_hcd *xhci)
270 {
271         int i, ret = 0;
272         struct usb_hcd *hcd = xhci_to_hcd(xhci);
273         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
274
275         /*
276          * calculate number of msi-x vectors supported.
277          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
278          *   with max number of interrupters based on the xhci HCSPARAMS1.
279          * - num_online_cpus: maximum msi-x vectors per CPUs core.
280          *   Add additional 1 vector to ensure always available interrupt.
281          */
282         xhci->msix_count = min(num_online_cpus() + 1,
283                                 HCS_MAX_INTRS(xhci->hcs_params1));
284
285         ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
286                         PCI_IRQ_MSIX);
287         if (ret < 0) {
288                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
289                                 "Failed to enable MSI-X");
290                 return ret;
291         }
292
293         for (i = 0; i < xhci->msix_count; i++) {
294                 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
295                                 "xhci_hcd", xhci_to_hcd(xhci));
296                 if (ret)
297                         goto disable_msix;
298         }
299
300         hcd->msix_enabled = 1;
301         return ret;
302
303 disable_msix:
304         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
305         while (--i >= 0)
306                 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
307         pci_free_irq_vectors(pdev);
308         return ret;
309 }
310
311 /* Free any IRQs and disable MSI-X */
312 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
313 {
314         struct usb_hcd *hcd = xhci_to_hcd(xhci);
315         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
316
317         if (xhci->quirks & XHCI_PLAT)
318                 return;
319
320         /* return if using legacy interrupt */
321         if (hcd->irq > 0)
322                 return;
323
324         if (hcd->msix_enabled) {
325                 int i;
326
327                 for (i = 0; i < xhci->msix_count; i++)
328                         free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
329         } else {
330                 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
331         }
332
333         pci_free_irq_vectors(pdev);
334         hcd->msix_enabled = 0;
335 }
336
337 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
338 {
339         struct usb_hcd *hcd = xhci_to_hcd(xhci);
340
341         if (hcd->msix_enabled) {
342                 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
343                 int i;
344
345                 for (i = 0; i < xhci->msix_count; i++)
346                         synchronize_irq(pci_irq_vector(pdev, i));
347         }
348 }
349
350 static int xhci_try_enable_msi(struct usb_hcd *hcd)
351 {
352         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
353         struct pci_dev  *pdev;
354         int ret;
355
356         /* The xhci platform device has set up IRQs through usb_add_hcd. */
357         if (xhci->quirks & XHCI_PLAT)
358                 return 0;
359
360         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
361         /*
362          * Some Fresco Logic host controllers advertise MSI, but fail to
363          * generate interrupts.  Don't even try to enable MSI.
364          */
365         if (xhci->quirks & XHCI_BROKEN_MSI)
366                 goto legacy_irq;
367
368         /* unregister the legacy interrupt */
369         if (hcd->irq)
370                 free_irq(hcd->irq, hcd);
371         hcd->irq = 0;
372
373         ret = xhci_setup_msix(xhci);
374         if (ret)
375                 /* fall back to msi*/
376                 ret = xhci_setup_msi(xhci);
377
378         if (!ret) {
379                 hcd->msi_enabled = 1;
380                 return 0;
381         }
382
383         if (!pdev->irq) {
384                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
385                 return -EINVAL;
386         }
387
388  legacy_irq:
389         if (!strlen(hcd->irq_descr))
390                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
391                          hcd->driver->description, hcd->self.busnum);
392
393         /* fall back to legacy interrupt*/
394         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
395                         hcd->irq_descr, hcd);
396         if (ret) {
397                 xhci_err(xhci, "request interrupt %d failed\n",
398                                 pdev->irq);
399                 return ret;
400         }
401         hcd->irq = pdev->irq;
402         return 0;
403 }
404
405 #else
406
407 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
408 {
409         return 0;
410 }
411
412 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
413 {
414 }
415
416 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
417 {
418 }
419
420 #endif
421
422 static void compliance_mode_recovery(unsigned long arg)
423 {
424         struct xhci_hcd *xhci;
425         struct usb_hcd *hcd;
426         u32 temp;
427         int i;
428
429         xhci = (struct xhci_hcd *)arg;
430
431         for (i = 0; i < xhci->num_usb3_ports; i++) {
432                 temp = readl(xhci->usb3_ports[i]);
433                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
434                         /*
435                          * Compliance Mode Detected. Letting USB Core
436                          * handle the Warm Reset
437                          */
438                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
439                                         "Compliance mode detected->port %d",
440                                         i + 1);
441                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
442                                         "Attempting compliance mode recovery");
443                         hcd = xhci->shared_hcd;
444
445                         if (hcd->state == HC_STATE_SUSPENDED)
446                                 usb_hcd_resume_root_hub(hcd);
447
448                         usb_hcd_poll_rh_status(hcd);
449                 }
450         }
451
452         if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
453                 mod_timer(&xhci->comp_mode_recovery_timer,
454                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
455 }
456
457 /*
458  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
459  * that causes ports behind that hardware to enter compliance mode sometimes.
460  * The quirk creates a timer that polls every 2 seconds the link state of
461  * each host controller's port and recovers it by issuing a Warm reset
462  * if Compliance mode is detected, otherwise the port will become "dead" (no
463  * device connections or disconnections will be detected anymore). Becasue no
464  * status event is generated when entering compliance mode (per xhci spec),
465  * this quirk is needed on systems that have the failing hardware installed.
466  */
467 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
468 {
469         xhci->port_status_u0 = 0;
470         setup_timer(&xhci->comp_mode_recovery_timer,
471                     compliance_mode_recovery, (unsigned long)xhci);
472         xhci->comp_mode_recovery_timer.expires = jiffies +
473                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
474
475         add_timer(&xhci->comp_mode_recovery_timer);
476         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
477                         "Compliance mode recovery timer initialized");
478 }
479
480 /*
481  * This function identifies the systems that have installed the SN65LVPE502CP
482  * USB3.0 re-driver and that need the Compliance Mode Quirk.
483  * Systems:
484  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
485  */
486 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
487 {
488         const char *dmi_product_name, *dmi_sys_vendor;
489
490         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
491         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
492         if (!dmi_product_name || !dmi_sys_vendor)
493                 return false;
494
495         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
496                 return false;
497
498         if (strstr(dmi_product_name, "Z420") ||
499                         strstr(dmi_product_name, "Z620") ||
500                         strstr(dmi_product_name, "Z820") ||
501                         strstr(dmi_product_name, "Z1 Workstation"))
502                 return true;
503
504         return false;
505 }
506
507 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
508 {
509         return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
510 }
511
512
513 /*
514  * Initialize memory for HCD and xHC (one-time init).
515  *
516  * Program the PAGESIZE register, initialize the device context array, create
517  * device contexts (?), set up a command ring segment (or two?), create event
518  * ring (one for now).
519  */
520 static int xhci_init(struct usb_hcd *hcd)
521 {
522         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
523         int retval = 0;
524
525         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
526         spin_lock_init(&xhci->lock);
527         if (xhci->hci_version == 0x95 && link_quirk) {
528                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
529                                 "QUIRK: Not clearing Link TRB chain bits.");
530                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
531         } else {
532                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
533                                 "xHCI doesn't need link TRB QUIRK");
534         }
535         retval = xhci_mem_init(xhci, GFP_KERNEL);
536         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
537
538         /* Initializing Compliance Mode Recovery Data If Needed */
539         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
540                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
541                 compliance_mode_recovery_timer_init(xhci);
542         }
543
544         return retval;
545 }
546
547 /*-------------------------------------------------------------------------*/
548
549
550 static int xhci_run_finished(struct xhci_hcd *xhci)
551 {
552         if (xhci_start(xhci)) {
553                 xhci_halt(xhci);
554                 return -ENODEV;
555         }
556         xhci->shared_hcd->state = HC_STATE_RUNNING;
557         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
558
559         if (xhci->quirks & XHCI_NEC_HOST)
560                 xhci_ring_cmd_db(xhci);
561
562         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
563                         "Finished xhci_run for USB3 roothub");
564         return 0;
565 }
566
567 /*
568  * Start the HC after it was halted.
569  *
570  * This function is called by the USB core when the HC driver is added.
571  * Its opposite is xhci_stop().
572  *
573  * xhci_init() must be called once before this function can be called.
574  * Reset the HC, enable device slot contexts, program DCBAAP, and
575  * set command ring pointer and event ring pointer.
576  *
577  * Setup MSI-X vectors and enable interrupts.
578  */
579 int xhci_run(struct usb_hcd *hcd)
580 {
581         u32 temp;
582         u64 temp_64;
583         int ret;
584         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
585
586         /* Start the xHCI host controller running only after the USB 2.0 roothub
587          * is setup.
588          */
589
590         hcd->uses_new_polling = 1;
591         if (!usb_hcd_is_primary_hcd(hcd))
592                 return xhci_run_finished(xhci);
593
594         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
595
596         ret = xhci_try_enable_msi(hcd);
597         if (ret)
598                 return ret;
599
600         xhci_dbg_cmd_ptrs(xhci);
601
602         xhci_dbg(xhci, "ERST memory map follows:\n");
603         xhci_dbg_erst(xhci, &xhci->erst);
604         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
605         temp_64 &= ~ERST_PTR_MASK;
606         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
607                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
608
609         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
610                         "// Set the interrupt modulation register");
611         temp = readl(&xhci->ir_set->irq_control);
612         temp &= ~ER_IRQ_INTERVAL_MASK;
613         /*
614          * the increment interval is 8 times as much as that defined
615          * in xHCI spec on MTK's controller
616          */
617         temp |= (u32) ((xhci->quirks & XHCI_MTK_HOST) ? 20 : 160);
618         writel(temp, &xhci->ir_set->irq_control);
619
620         /* Set the HCD state before we enable the irqs */
621         temp = readl(&xhci->op_regs->command);
622         temp |= (CMD_EIE);
623         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
624                         "// Enable interrupts, cmd = 0x%x.", temp);
625         writel(temp, &xhci->op_regs->command);
626
627         temp = readl(&xhci->ir_set->irq_pending);
628         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
629                         "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
630                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
631         writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
632         xhci_print_ir_set(xhci, 0);
633
634         if (xhci->quirks & XHCI_NEC_HOST) {
635                 struct xhci_command *command;
636
637                 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
638                 if (!command)
639                         return -ENOMEM;
640
641                 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
642                                 TRB_TYPE(TRB_NEC_GET_FW));
643                 if (ret)
644                         xhci_free_command(xhci, command);
645         }
646         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
647                         "Finished xhci_run for USB2 roothub");
648         return 0;
649 }
650 EXPORT_SYMBOL_GPL(xhci_run);
651
652 /*
653  * Stop xHCI driver.
654  *
655  * This function is called by the USB core when the HC driver is removed.
656  * Its opposite is xhci_run().
657  *
658  * Disable device contexts, disable IRQs, and quiesce the HC.
659  * Reset the HC, finish any completed transactions, and cleanup memory.
660  */
661 static void xhci_stop(struct usb_hcd *hcd)
662 {
663         u32 temp;
664         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
665
666         mutex_lock(&xhci->mutex);
667
668         /* Only halt host and free memory after both hcds are removed */
669         if (!usb_hcd_is_primary_hcd(hcd)) {
670                 mutex_unlock(&xhci->mutex);
671                 return;
672         }
673
674         spin_lock_irq(&xhci->lock);
675         xhci->xhc_state |= XHCI_STATE_HALTED;
676         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
677         xhci_halt(xhci);
678         xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
679         spin_unlock_irq(&xhci->lock);
680
681         xhci_cleanup_msix(xhci);
682
683         /* Deleting Compliance Mode Recovery Timer */
684         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
685                         (!(xhci_all_ports_seen_u0(xhci)))) {
686                 del_timer_sync(&xhci->comp_mode_recovery_timer);
687                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
688                                 "%s: compliance mode recovery timer deleted",
689                                 __func__);
690         }
691
692         if (xhci->quirks & XHCI_AMD_PLL_FIX)
693                 usb_amd_dev_put();
694
695         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
696                         "// Disabling event ring interrupts");
697         temp = readl(&xhci->op_regs->status);
698         writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
699         temp = readl(&xhci->ir_set->irq_pending);
700         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
701         xhci_print_ir_set(xhci, 0);
702
703         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
704         xhci_mem_cleanup(xhci);
705         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
706                         "xhci_stop completed - status = %x",
707                         readl(&xhci->op_regs->status));
708         mutex_unlock(&xhci->mutex);
709 }
710
711 /*
712  * Shutdown HC (not bus-specific)
713  *
714  * This is called when the machine is rebooting or halting.  We assume that the
715  * machine will be powered off, and the HC's internal state will be reset.
716  * Don't bother to free memory.
717  *
718  * This will only ever be called with the main usb_hcd (the USB3 roothub).
719  */
720 void xhci_shutdown(struct usb_hcd *hcd)
721 {
722         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
723
724         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
725                 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
726
727         /* Don't poll the roothubs after shutdown. */
728         xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
729                         __func__, hcd->self.busnum);
730         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
731         del_timer_sync(&hcd->rh_timer);
732
733         if (xhci->shared_hcd) {
734                 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
735                 del_timer_sync(&xhci->shared_hcd->rh_timer);
736         }
737
738         spin_lock_irq(&xhci->lock);
739         xhci_halt(xhci);
740         /* Workaround for spurious wakeups at shutdown with HSW */
741         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
742                 xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
743         spin_unlock_irq(&xhci->lock);
744
745         xhci_cleanup_msix(xhci);
746
747         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
748                         "xhci_shutdown completed - status = %x",
749                         readl(&xhci->op_regs->status));
750 }
751 EXPORT_SYMBOL_GPL(xhci_shutdown);
752
753 #ifdef CONFIG_PM
754 static void xhci_save_registers(struct xhci_hcd *xhci)
755 {
756         xhci->s3.command = readl(&xhci->op_regs->command);
757         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
758         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
759         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
760         xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
761         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
762         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
763         xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
764         xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
765 }
766
767 static void xhci_restore_registers(struct xhci_hcd *xhci)
768 {
769         writel(xhci->s3.command, &xhci->op_regs->command);
770         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
771         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
772         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
773         writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
774         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
775         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
776         writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
777         writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
778 }
779
780 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
781 {
782         u64     val_64;
783
784         /* step 2: initialize command ring buffer */
785         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
786         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
787                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
788                                       xhci->cmd_ring->dequeue) &
789                  (u64) ~CMD_RING_RSVD_BITS) |
790                 xhci->cmd_ring->cycle_state;
791         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
792                         "// Setting command ring address to 0x%llx",
793                         (long unsigned long) val_64);
794         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
795 }
796
797 /*
798  * The whole command ring must be cleared to zero when we suspend the host.
799  *
800  * The host doesn't save the command ring pointer in the suspend well, so we
801  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
802  * aligned, because of the reserved bits in the command ring dequeue pointer
803  * register.  Therefore, we can't just set the dequeue pointer back in the
804  * middle of the ring (TRBs are 16-byte aligned).
805  */
806 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
807 {
808         struct xhci_ring *ring;
809         struct xhci_segment *seg;
810
811         ring = xhci->cmd_ring;
812         seg = ring->deq_seg;
813         do {
814                 memset(seg->trbs, 0,
815                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
816                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
817                         cpu_to_le32(~TRB_CYCLE);
818                 seg = seg->next;
819         } while (seg != ring->deq_seg);
820
821         /* Reset the software enqueue and dequeue pointers */
822         ring->deq_seg = ring->first_seg;
823         ring->dequeue = ring->first_seg->trbs;
824         ring->enq_seg = ring->deq_seg;
825         ring->enqueue = ring->dequeue;
826
827         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
828         /*
829          * Ring is now zeroed, so the HW should look for change of ownership
830          * when the cycle bit is set to 1.
831          */
832         ring->cycle_state = 1;
833
834         /*
835          * Reset the hardware dequeue pointer.
836          * Yes, this will need to be re-written after resume, but we're paranoid
837          * and want to make sure the hardware doesn't access bogus memory
838          * because, say, the BIOS or an SMI started the host without changing
839          * the command ring pointers.
840          */
841         xhci_set_cmd_ring_deq(xhci);
842 }
843
844 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
845 {
846         int port_index;
847         __le32 __iomem **port_array;
848         unsigned long flags;
849         u32 t1, t2;
850
851         spin_lock_irqsave(&xhci->lock, flags);
852
853         /* disable usb3 ports Wake bits */
854         port_index = xhci->num_usb3_ports;
855         port_array = xhci->usb3_ports;
856         while (port_index--) {
857                 t1 = readl(port_array[port_index]);
858                 t1 = xhci_port_state_to_neutral(t1);
859                 t2 = t1 & ~PORT_WAKE_BITS;
860                 if (t1 != t2)
861                         writel(t2, port_array[port_index]);
862         }
863
864         /* disable usb2 ports Wake bits */
865         port_index = xhci->num_usb2_ports;
866         port_array = xhci->usb2_ports;
867         while (port_index--) {
868                 t1 = readl(port_array[port_index]);
869                 t1 = xhci_port_state_to_neutral(t1);
870                 t2 = t1 & ~PORT_WAKE_BITS;
871                 if (t1 != t2)
872                         writel(t2, port_array[port_index]);
873         }
874
875         spin_unlock_irqrestore(&xhci->lock, flags);
876 }
877
878 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
879 {
880         __le32 __iomem          **port_array;
881         int                     port_index;
882         u32                     status;
883         u32                     portsc;
884
885         status = readl(&xhci->op_regs->status);
886         if (status & STS_EINT)
887                 return true;
888         /*
889          * Checking STS_EINT is not enough as there is a lag between a change
890          * bit being set and the Port Status Change Event that it generated
891          * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
892          */
893
894         port_index = xhci->num_usb2_ports;
895         port_array = xhci->usb2_ports;
896         while (port_index--) {
897                 portsc = readl(port_array[port_index]);
898                 if (portsc & PORT_CHANGE_MASK ||
899                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
900                         return true;
901         }
902         port_index = xhci->num_usb3_ports;
903         port_array = xhci->usb3_ports;
904         while (port_index--) {
905                 portsc = readl(port_array[port_index]);
906                 if (portsc & PORT_CHANGE_MASK ||
907                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
908                         return true;
909         }
910         return false;
911 }
912
913 /*
914  * Stop HC (not bus-specific)
915  *
916  * This is called when the machine transition into S3/S4 mode.
917  *
918  */
919 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
920 {
921         int                     rc = 0;
922         unsigned int            delay = XHCI_MAX_HALT_USEC * 2;
923         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
924         u32                     command;
925         u32                     res;
926
927         if (!hcd->state)
928                 return 0;
929
930         if (hcd->state != HC_STATE_SUSPENDED ||
931                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
932                 return -EINVAL;
933
934         /* Clear root port wake on bits if wakeup not allowed. */
935         if (!do_wakeup)
936                 xhci_disable_port_wake_on_bits(xhci);
937
938         /* Don't poll the roothubs on bus suspend. */
939         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
940         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
941         del_timer_sync(&hcd->rh_timer);
942         clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
943         del_timer_sync(&xhci->shared_hcd->rh_timer);
944
945         if (xhci->quirks & XHCI_SUSPEND_DELAY)
946                 usleep_range(1000, 1500);
947
948         spin_lock_irq(&xhci->lock);
949         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
950         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
951         /* step 1: stop endpoint */
952         /* skipped assuming that port suspend has done */
953
954         /* step 2: clear Run/Stop bit */
955         command = readl(&xhci->op_regs->command);
956         command &= ~CMD_RUN;
957         writel(command, &xhci->op_regs->command);
958
959         /* Some chips from Fresco Logic need an extraordinary delay */
960         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
961
962         if (xhci_handshake(&xhci->op_regs->status,
963                       STS_HALT, STS_HALT, delay)) {
964                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
965                 spin_unlock_irq(&xhci->lock);
966                 return -ETIMEDOUT;
967         }
968         xhci_clear_command_ring(xhci);
969
970         /* step 3: save registers */
971         xhci_save_registers(xhci);
972
973         /* step 4: set CSS flag */
974         command = readl(&xhci->op_regs->command);
975         command |= CMD_CSS;
976         writel(command, &xhci->op_regs->command);
977         xhci->broken_suspend = 0;
978         if (xhci_handshake(&xhci->op_regs->status,
979                                 STS_SAVE, 0, 20 * 1000)) {
980         /*
981          * AMD SNPS xHC 3.0 occasionally does not clear the
982          * SSS bit of USBSTS and when driver tries to poll
983          * to see if the xHC clears BIT(8) which never happens
984          * and driver assumes that controller is not responding
985          * and times out. To workaround this, its good to check
986          * if SRE and HCE bits are not set (as per xhci
987          * Section 5.4.2) and bypass the timeout.
988          */
989                 res = readl(&xhci->op_regs->status);
990                 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
991                     (((res & STS_SRE) == 0) &&
992                                 ((res & STS_HCE) == 0))) {
993                         xhci->broken_suspend = 1;
994                 } else {
995                         xhci_warn(xhci, "WARN: xHC save state timeout\n");
996                         spin_unlock_irq(&xhci->lock);
997                         return -ETIMEDOUT;
998                 }
999         }
1000         spin_unlock_irq(&xhci->lock);
1001
1002         /*
1003          * Deleting Compliance Mode Recovery Timer because the xHCI Host
1004          * is about to be suspended.
1005          */
1006         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1007                         (!(xhci_all_ports_seen_u0(xhci)))) {
1008                 del_timer_sync(&xhci->comp_mode_recovery_timer);
1009                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1010                                 "%s: compliance mode recovery timer deleted",
1011                                 __func__);
1012         }
1013
1014         /* step 5: remove core well power */
1015         /* synchronize irq when using MSI-X */
1016         xhci_msix_sync_irqs(xhci);
1017
1018         return rc;
1019 }
1020 EXPORT_SYMBOL_GPL(xhci_suspend);
1021
1022 /*
1023  * start xHC (not bus-specific)
1024  *
1025  * This is called when the machine transition from S3/S4 mode.
1026  *
1027  */
1028 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1029 {
1030         u32                     command, temp = 0;
1031         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
1032         struct usb_hcd          *secondary_hcd;
1033         int                     retval = 0;
1034         bool                    comp_timer_running = false;
1035         bool                    pending_portevent = false;
1036         bool                    reinit_xhc = false;
1037
1038         if (!hcd->state)
1039                 return 0;
1040
1041         /* Wait a bit if either of the roothubs need to settle from the
1042          * transition into bus suspend.
1043          */
1044         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
1045                         time_before(jiffies,
1046                                 xhci->bus_state[1].next_statechange))
1047                 msleep(100);
1048
1049         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1050         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1051
1052         spin_lock_irq(&xhci->lock);
1053
1054         if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
1055                 reinit_xhc = true;
1056
1057         if (!reinit_xhc) {
1058                 /*
1059                  * Some controllers might lose power during suspend, so wait
1060                  * for controller not ready bit to clear, just as in xHC init.
1061                  */
1062                 retval = xhci_handshake(&xhci->op_regs->status,
1063                                         STS_CNR, 0, 10 * 1000 * 1000);
1064                 if (retval) {
1065                         xhci_warn(xhci, "Controller not ready at resume %d\n",
1066                                   retval);
1067                         spin_unlock_irq(&xhci->lock);
1068                         return retval;
1069                 }
1070                 /* step 1: restore register */
1071                 xhci_restore_registers(xhci);
1072                 /* step 2: initialize command ring buffer */
1073                 xhci_set_cmd_ring_deq(xhci);
1074                 /* step 3: restore state and start state*/
1075                 /* step 3: set CRS flag */
1076                 command = readl(&xhci->op_regs->command);
1077                 command |= CMD_CRS;
1078                 writel(command, &xhci->op_regs->command);
1079                 /*
1080                  * Some controllers take up to 55+ ms to complete the controller
1081                  * restore so setting the timeout to 100ms. Xhci specification
1082                  * doesn't mention any timeout value.
1083                  */
1084                 if (xhci_handshake(&xhci->op_regs->status,
1085                               STS_RESTORE, 0, 100 * 1000)) {
1086                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1087                         spin_unlock_irq(&xhci->lock);
1088                         return -ETIMEDOUT;
1089                 }
1090         }
1091
1092         temp = readl(&xhci->op_regs->status);
1093
1094         /* re-initialize the HC on Restore Error, or Host Controller Error */
1095         if (temp & (STS_SRE | STS_HCE)) {
1096                 reinit_xhc = true;
1097                 if (!xhci->broken_suspend)
1098                         xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1099         }
1100
1101         if (reinit_xhc) {
1102                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1103                                 !(xhci_all_ports_seen_u0(xhci))) {
1104                         del_timer_sync(&xhci->comp_mode_recovery_timer);
1105                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1106                                 "Compliance Mode Recovery Timer deleted!");
1107                 }
1108
1109                 /* Let the USB core know _both_ roothubs lost power. */
1110                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1111                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1112
1113                 xhci_dbg(xhci, "Stop HCD\n");
1114                 xhci_halt(xhci);
1115                 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
1116                 spin_unlock_irq(&xhci->lock);
1117                 if (retval)
1118                         return retval;
1119                 xhci_cleanup_msix(xhci);
1120
1121                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1122                 temp = readl(&xhci->op_regs->status);
1123                 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1124                 temp = readl(&xhci->ir_set->irq_pending);
1125                 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1126                 xhci_print_ir_set(xhci, 0);
1127
1128                 xhci_dbg(xhci, "cleaning up memory\n");
1129                 xhci_mem_cleanup(xhci);
1130                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1131                             readl(&xhci->op_regs->status));
1132
1133                 /* USB core calls the PCI reinit and start functions twice:
1134                  * first with the primary HCD, and then with the secondary HCD.
1135                  * If we don't do the same, the host will never be started.
1136                  */
1137                 if (!usb_hcd_is_primary_hcd(hcd))
1138                         secondary_hcd = hcd;
1139                 else
1140                         secondary_hcd = xhci->shared_hcd;
1141
1142                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1143                 retval = xhci_init(hcd->primary_hcd);
1144                 if (retval)
1145                         return retval;
1146                 comp_timer_running = true;
1147
1148                 xhci_dbg(xhci, "Start the primary HCD\n");
1149                 retval = xhci_run(hcd->primary_hcd);
1150                 if (!retval) {
1151                         xhci_dbg(xhci, "Start the secondary HCD\n");
1152                         retval = xhci_run(secondary_hcd);
1153                 }
1154                 hcd->state = HC_STATE_SUSPENDED;
1155                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1156                 goto done;
1157         }
1158
1159         /* step 4: set Run/Stop bit */
1160         command = readl(&xhci->op_regs->command);
1161         command |= CMD_RUN;
1162         writel(command, &xhci->op_regs->command);
1163         xhci_handshake(&xhci->op_regs->status, STS_HALT,
1164                   0, 250 * 1000);
1165
1166         /* step 5: walk topology and initialize portsc,
1167          * portpmsc and portli
1168          */
1169         /* this is done in bus_resume */
1170
1171         /* step 6: restart each of the previously
1172          * Running endpoints by ringing their doorbells
1173          */
1174
1175         spin_unlock_irq(&xhci->lock);
1176
1177  done:
1178         if (retval == 0) {
1179                 /*
1180                  * Resume roothubs only if there are pending events.
1181                  * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1182                  * the first wake signalling failed, give it that chance.
1183                  */
1184                 pending_portevent = xhci_pending_portevent(xhci);
1185                 if (!pending_portevent) {
1186                         msleep(120);
1187                         pending_portevent = xhci_pending_portevent(xhci);
1188                 }
1189
1190                 if (pending_portevent) {
1191                         usb_hcd_resume_root_hub(xhci->shared_hcd);
1192                         usb_hcd_resume_root_hub(hcd);
1193                 }
1194         }
1195         /*
1196          * If system is subject to the Quirk, Compliance Mode Timer needs to
1197          * be re-initialized Always after a system resume. Ports are subject
1198          * to suffer the Compliance Mode issue again. It doesn't matter if
1199          * ports have entered previously to U0 before system's suspension.
1200          */
1201         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1202                 compliance_mode_recovery_timer_init(xhci);
1203
1204         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1205                 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1206
1207         /* Re-enable port polling. */
1208         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1209         set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1210         usb_hcd_poll_rh_status(xhci->shared_hcd);
1211         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1212         usb_hcd_poll_rh_status(hcd);
1213
1214         return retval;
1215 }
1216 EXPORT_SYMBOL_GPL(xhci_resume);
1217 #endif  /* CONFIG_PM */
1218
1219 /*-------------------------------------------------------------------------*/
1220
1221 /**
1222  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1223  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1224  * value to right shift 1 for the bitmask.
1225  *
1226  * Index  = (epnum * 2) + direction - 1,
1227  * where direction = 0 for OUT, 1 for IN.
1228  * For control endpoints, the IN index is used (OUT index is unused), so
1229  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1230  */
1231 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1232 {
1233         unsigned int index;
1234         if (usb_endpoint_xfer_control(desc))
1235                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1236         else
1237                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1238                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1239         return index;
1240 }
1241
1242 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1243  * address from the XHCI endpoint index.
1244  */
1245 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1246 {
1247         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1248         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1249         return direction | number;
1250 }
1251
1252 /* Find the flag for this endpoint (for use in the control context).  Use the
1253  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1254  * bit 1, etc.
1255  */
1256 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1257 {
1258         return 1 << (xhci_get_endpoint_index(desc) + 1);
1259 }
1260
1261 /* Find the flag for this endpoint (for use in the control context).  Use the
1262  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1263  * bit 1, etc.
1264  */
1265 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1266 {
1267         return 1 << (ep_index + 1);
1268 }
1269
1270 /* Compute the last valid endpoint context index.  Basically, this is the
1271  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1272  * we find the most significant bit set in the added contexts flags.
1273  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1274  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1275  */
1276 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1277 {
1278         return fls(added_ctxs) - 1;
1279 }
1280
1281 /* Returns 1 if the arguments are OK;
1282  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1283  */
1284 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1285                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1286                 const char *func) {
1287         struct xhci_hcd *xhci;
1288         struct xhci_virt_device *virt_dev;
1289
1290         if (!hcd || (check_ep && !ep) || !udev) {
1291                 pr_debug("xHCI %s called with invalid args\n", func);
1292                 return -EINVAL;
1293         }
1294         if (!udev->parent) {
1295                 pr_debug("xHCI %s called for root hub\n", func);
1296                 return 0;
1297         }
1298
1299         xhci = hcd_to_xhci(hcd);
1300         if (check_virt_dev) {
1301                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1302                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1303                                         func);
1304                         return -EINVAL;
1305                 }
1306
1307                 virt_dev = xhci->devs[udev->slot_id];
1308                 if (virt_dev->udev != udev) {
1309                         xhci_dbg(xhci, "xHCI %s called with udev and "
1310                                           "virt_dev does not match\n", func);
1311                         return -EINVAL;
1312                 }
1313         }
1314
1315         if (xhci->xhc_state & XHCI_STATE_HALTED)
1316                 return -ENODEV;
1317
1318         return 1;
1319 }
1320
1321 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1322                 struct usb_device *udev, struct xhci_command *command,
1323                 bool ctx_change, bool must_succeed);
1324
1325 /*
1326  * Full speed devices may have a max packet size greater than 8 bytes, but the
1327  * USB core doesn't know that until it reads the first 8 bytes of the
1328  * descriptor.  If the usb_device's max packet size changes after that point,
1329  * we need to issue an evaluate context command and wait on it.
1330  */
1331 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1332                 unsigned int ep_index, struct urb *urb, gfp_t mem_flags)
1333 {
1334         struct xhci_container_ctx *out_ctx;
1335         struct xhci_input_control_ctx *ctrl_ctx;
1336         struct xhci_ep_ctx *ep_ctx;
1337         struct xhci_command *command;
1338         int max_packet_size;
1339         int hw_max_packet_size;
1340         int ret = 0;
1341
1342         out_ctx = xhci->devs[slot_id]->out_ctx;
1343         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1344         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1345         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1346         if (hw_max_packet_size != max_packet_size) {
1347                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1348                                 "Max Packet Size for ep 0 changed.");
1349                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1350                                 "Max packet size in usb_device = %d",
1351                                 max_packet_size);
1352                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1353                                 "Max packet size in xHCI HW = %d",
1354                                 hw_max_packet_size);
1355                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1356                                 "Issuing evaluate context command.");
1357
1358                 /* Set up the input context flags for the command */
1359                 /* FIXME: This won't work if a non-default control endpoint
1360                  * changes max packet sizes.
1361                  */
1362
1363                 command = xhci_alloc_command(xhci, false, true, mem_flags);
1364                 if (!command)
1365                         return -ENOMEM;
1366
1367                 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1368                 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1369                 if (!ctrl_ctx) {
1370                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1371                                         __func__);
1372                         ret = -ENOMEM;
1373                         goto command_cleanup;
1374                 }
1375                 /* Set up the modified control endpoint 0 */
1376                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1377                                 xhci->devs[slot_id]->out_ctx, ep_index);
1378
1379                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1380                 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1381                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1382                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1383
1384                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1385                 ctrl_ctx->drop_flags = 0;
1386
1387                 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1388                                 true, false);
1389
1390                 /* Clean up the input context for later use by bandwidth
1391                  * functions.
1392                  */
1393                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1394 command_cleanup:
1395                 kfree(command->completion);
1396                 kfree(command);
1397         }
1398         return ret;
1399 }
1400
1401 /*
1402  * non-error returns are a promise to giveback() the urb later
1403  * we drop ownership so next owner (or urb unlink) can get it
1404  */
1405 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1406 {
1407         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1408         unsigned long flags;
1409         int ret = 0;
1410         unsigned int slot_id, ep_index, ep_state;
1411         struct urb_priv *urb_priv;
1412         int num_tds;
1413
1414         if (!urb)
1415                 return -EINVAL;
1416         ret = xhci_check_args(hcd, urb->dev, urb->ep,
1417                                         true, true, __func__);
1418         if (ret <= 0)
1419                 return ret ? ret : -EINVAL;
1420
1421         slot_id = urb->dev->slot_id;
1422         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1423
1424         if (!HCD_HW_ACCESSIBLE(hcd)) {
1425                 if (!in_interrupt())
1426                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1427                 return -ESHUTDOWN;
1428         }
1429
1430         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1431                 num_tds = urb->number_of_packets;
1432         else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1433             urb->transfer_buffer_length > 0 &&
1434             urb->transfer_flags & URB_ZERO_PACKET &&
1435             !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1436                 num_tds = 2;
1437         else
1438                 num_tds = 1;
1439
1440         urb_priv = kzalloc(sizeof(struct urb_priv) +
1441                            num_tds * sizeof(struct xhci_td), mem_flags);
1442         if (!urb_priv)
1443                 return -ENOMEM;
1444
1445         urb_priv->num_tds = num_tds;
1446         urb_priv->num_tds_done = 0;
1447         urb->hcpriv = urb_priv;
1448
1449         trace_xhci_urb_enqueue(urb);
1450
1451         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1452                 /* Check to see if the max packet size for the default control
1453                  * endpoint changed during FS device enumeration
1454                  */
1455                 if (urb->dev->speed == USB_SPEED_FULL) {
1456                         ret = xhci_check_maxpacket(xhci, slot_id,
1457                                         ep_index, urb, mem_flags);
1458                         if (ret < 0) {
1459                                 xhci_urb_free_priv(urb_priv);
1460                                 urb->hcpriv = NULL;
1461                                 return ret;
1462                         }
1463                 }
1464         }
1465
1466         spin_lock_irqsave(&xhci->lock, flags);
1467
1468         if (xhci->xhc_state & XHCI_STATE_DYING) {
1469                 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1470                          urb->ep->desc.bEndpointAddress, urb);
1471                 ret = -ESHUTDOWN;
1472                 goto free_priv;
1473         }
1474
1475         switch (usb_endpoint_type(&urb->ep->desc)) {
1476
1477         case USB_ENDPOINT_XFER_CONTROL:
1478                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1479                                          slot_id, ep_index);
1480                 break;
1481         case USB_ENDPOINT_XFER_BULK:
1482                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
1483                 if (ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1484                         xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1485                                   ep_state);
1486                         ret = -EINVAL;
1487                         break;
1488                 }
1489                 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1490                                          slot_id, ep_index);
1491                 break;
1492
1493
1494         case USB_ENDPOINT_XFER_INT:
1495                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1496                                 slot_id, ep_index);
1497                 break;
1498
1499         case USB_ENDPOINT_XFER_ISOC:
1500                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1501                                 slot_id, ep_index);
1502         }
1503
1504         if (ret) {
1505 free_priv:
1506                 xhci_urb_free_priv(urb_priv);
1507                 urb->hcpriv = NULL;
1508         }
1509         spin_unlock_irqrestore(&xhci->lock, flags);
1510         return ret;
1511 }
1512
1513 /*
1514  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1515  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1516  * should pick up where it left off in the TD, unless a Set Transfer Ring
1517  * Dequeue Pointer is issued.
1518  *
1519  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1520  * the ring.  Since the ring is a contiguous structure, they can't be physically
1521  * removed.  Instead, there are two options:
1522  *
1523  *  1) If the HC is in the middle of processing the URB to be canceled, we
1524  *     simply move the ring's dequeue pointer past those TRBs using the Set
1525  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1526  *     when drivers timeout on the last submitted URB and attempt to cancel.
1527  *
1528  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1529  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1530  *     HC will need to invalidate the any TRBs it has cached after the stop
1531  *     endpoint command, as noted in the xHCI 0.95 errata.
1532  *
1533  *  3) The TD may have completed by the time the Stop Endpoint Command
1534  *     completes, so software needs to handle that case too.
1535  *
1536  * This function should protect against the TD enqueueing code ringing the
1537  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1538  * It also needs to account for multiple cancellations on happening at the same
1539  * time for the same endpoint.
1540  *
1541  * Note that this function can be called in any context, or so says
1542  * usb_hcd_unlink_urb()
1543  */
1544 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1545 {
1546         unsigned long flags;
1547         int ret, i;
1548         u32 temp;
1549         struct xhci_hcd *xhci;
1550         struct urb_priv *urb_priv;
1551         struct xhci_td *td;
1552         unsigned int ep_index;
1553         struct xhci_ring *ep_ring;
1554         struct xhci_virt_ep *ep;
1555         struct xhci_command *command;
1556         struct xhci_virt_device *vdev;
1557
1558         xhci = hcd_to_xhci(hcd);
1559         spin_lock_irqsave(&xhci->lock, flags);
1560
1561         trace_xhci_urb_dequeue(urb);
1562
1563         /* Make sure the URB hasn't completed or been unlinked already */
1564         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1565         if (ret)
1566                 goto done;
1567
1568         /* give back URB now if we can't queue it for cancel */
1569         vdev = xhci->devs[urb->dev->slot_id];
1570         urb_priv = urb->hcpriv;
1571         if (!vdev || !urb_priv)
1572                 goto err_giveback;
1573
1574         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1575         ep = &vdev->eps[ep_index];
1576         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1577         if (!ep || !ep_ring)
1578                 goto err_giveback;
1579
1580         /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1581         temp = readl(&xhci->op_regs->status);
1582         if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1583                 xhci_hc_died(xhci);
1584                 goto done;
1585         }
1586
1587         /*
1588          * check ring is not re-allocated since URB was enqueued. If it is, then
1589          * make sure none of the ring related pointers in this URB private data
1590          * are touched, such as td_list, otherwise we overwrite freed data
1591          */
1592         if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1593                 xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1594                 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1595                         td = &urb_priv->td[i];
1596                         if (!list_empty(&td->cancelled_td_list))
1597                                 list_del_init(&td->cancelled_td_list);
1598                 }
1599                 goto err_giveback;
1600         }
1601
1602         if (xhci->xhc_state & XHCI_STATE_HALTED) {
1603                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1604                                 "HC halted, freeing TD manually.");
1605                 for (i = urb_priv->num_tds_done;
1606                      i < urb_priv->num_tds;
1607                      i++) {
1608                         td = &urb_priv->td[i];
1609                         if (!list_empty(&td->td_list))
1610                                 list_del_init(&td->td_list);
1611                         if (!list_empty(&td->cancelled_td_list))
1612                                 list_del_init(&td->cancelled_td_list);
1613                 }
1614                 goto err_giveback;
1615         }
1616
1617         i = urb_priv->num_tds_done;
1618         if (i < urb_priv->num_tds)
1619                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1620                                 "Cancel URB %p, dev %s, ep 0x%x, "
1621                                 "starting at offset 0x%llx",
1622                                 urb, urb->dev->devpath,
1623                                 urb->ep->desc.bEndpointAddress,
1624                                 (unsigned long long) xhci_trb_virt_to_dma(
1625                                         urb_priv->td[i].start_seg,
1626                                         urb_priv->td[i].first_trb));
1627
1628         for (; i < urb_priv->num_tds; i++) {
1629                 td = &urb_priv->td[i];
1630                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1631         }
1632
1633         /* Queue a stop endpoint command, but only if this is
1634          * the first cancellation to be handled.
1635          */
1636         if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1637                 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1638                 if (!command) {
1639                         ret = -ENOMEM;
1640                         goto done;
1641                 }
1642                 ep->ep_state |= EP_STOP_CMD_PENDING;
1643                 ep->stop_cmd_timer.expires = jiffies +
1644                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1645                 add_timer(&ep->stop_cmd_timer);
1646                 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1647                                          ep_index, 0);
1648                 xhci_ring_cmd_db(xhci);
1649         }
1650 done:
1651         spin_unlock_irqrestore(&xhci->lock, flags);
1652         return ret;
1653
1654 err_giveback:
1655         if (urb_priv)
1656                 xhci_urb_free_priv(urb_priv);
1657         usb_hcd_unlink_urb_from_ep(hcd, urb);
1658         spin_unlock_irqrestore(&xhci->lock, flags);
1659         usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1660         return ret;
1661 }
1662
1663 /* Drop an endpoint from a new bandwidth configuration for this device.
1664  * Only one call to this function is allowed per endpoint before
1665  * check_bandwidth() or reset_bandwidth() must be called.
1666  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1667  * add the endpoint to the schedule with possibly new parameters denoted by a
1668  * different endpoint descriptor in usb_host_endpoint.
1669  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1670  * not allowed.
1671  *
1672  * The USB core will not allow URBs to be queued to an endpoint that is being
1673  * disabled, so there's no need for mutual exclusion to protect
1674  * the xhci->devs[slot_id] structure.
1675  */
1676 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1677                 struct usb_host_endpoint *ep)
1678 {
1679         struct xhci_hcd *xhci;
1680         struct xhci_container_ctx *in_ctx, *out_ctx;
1681         struct xhci_input_control_ctx *ctrl_ctx;
1682         unsigned int ep_index;
1683         struct xhci_ep_ctx *ep_ctx;
1684         u32 drop_flag;
1685         u32 new_add_flags, new_drop_flags;
1686         int ret;
1687
1688         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1689         if (ret <= 0)
1690                 return ret;
1691         xhci = hcd_to_xhci(hcd);
1692         if (xhci->xhc_state & XHCI_STATE_DYING)
1693                 return -ENODEV;
1694
1695         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1696         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1697         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1698                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1699                                 __func__, drop_flag);
1700                 return 0;
1701         }
1702
1703         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1704         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1705         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1706         if (!ctrl_ctx) {
1707                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1708                                 __func__);
1709                 return 0;
1710         }
1711
1712         ep_index = xhci_get_endpoint_index(&ep->desc);
1713         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1714         /* If the HC already knows the endpoint is disabled,
1715          * or the HCD has noted it is disabled, ignore this request
1716          */
1717         if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1718             le32_to_cpu(ctrl_ctx->drop_flags) &
1719             xhci_get_endpoint_flag(&ep->desc)) {
1720                 /* Do not warn when called after a usb_device_reset */
1721                 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1722                         xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1723                                   __func__, ep);
1724                 return 0;
1725         }
1726
1727         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1728         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1729
1730         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1731         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1732
1733         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1734
1735         if (xhci->quirks & XHCI_MTK_HOST)
1736                 xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1737
1738         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1739                         (unsigned int) ep->desc.bEndpointAddress,
1740                         udev->slot_id,
1741                         (unsigned int) new_drop_flags,
1742                         (unsigned int) new_add_flags);
1743         return 0;
1744 }
1745
1746 /* Add an endpoint to a new possible bandwidth configuration for this device.
1747  * Only one call to this function is allowed per endpoint before
1748  * check_bandwidth() or reset_bandwidth() must be called.
1749  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1750  * add the endpoint to the schedule with possibly new parameters denoted by a
1751  * different endpoint descriptor in usb_host_endpoint.
1752  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1753  * not allowed.
1754  *
1755  * The USB core will not allow URBs to be queued to an endpoint until the
1756  * configuration or alt setting is installed in the device, so there's no need
1757  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1758  */
1759 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1760                 struct usb_host_endpoint *ep)
1761 {
1762         struct xhci_hcd *xhci;
1763         struct xhci_container_ctx *in_ctx;
1764         unsigned int ep_index;
1765         struct xhci_input_control_ctx *ctrl_ctx;
1766         u32 added_ctxs;
1767         u32 new_add_flags, new_drop_flags;
1768         struct xhci_virt_device *virt_dev;
1769         int ret = 0;
1770
1771         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1772         if (ret <= 0) {
1773                 /* So we won't queue a reset ep command for a root hub */
1774                 ep->hcpriv = NULL;
1775                 return ret;
1776         }
1777         xhci = hcd_to_xhci(hcd);
1778         if (xhci->xhc_state & XHCI_STATE_DYING)
1779                 return -ENODEV;
1780
1781         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1782         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1783                 /* FIXME when we have to issue an evaluate endpoint command to
1784                  * deal with ep0 max packet size changing once we get the
1785                  * descriptors
1786                  */
1787                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1788                                 __func__, added_ctxs);
1789                 return 0;
1790         }
1791
1792         virt_dev = xhci->devs[udev->slot_id];
1793         in_ctx = virt_dev->in_ctx;
1794         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1795         if (!ctrl_ctx) {
1796                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1797                                 __func__);
1798                 return 0;
1799         }
1800
1801         ep_index = xhci_get_endpoint_index(&ep->desc);
1802         /* If this endpoint is already in use, and the upper layers are trying
1803          * to add it again without dropping it, reject the addition.
1804          */
1805         if (virt_dev->eps[ep_index].ring &&
1806                         !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1807                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1808                                 "without dropping it.\n",
1809                                 (unsigned int) ep->desc.bEndpointAddress);
1810                 return -EINVAL;
1811         }
1812
1813         /* If the HCD has already noted the endpoint is enabled,
1814          * ignore this request.
1815          */
1816         if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1817                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1818                                 __func__, ep);
1819                 return 0;
1820         }
1821
1822         /*
1823          * Configuration and alternate setting changes must be done in
1824          * process context, not interrupt context (or so documenation
1825          * for usb_set_interface() and usb_set_configuration() claim).
1826          */
1827         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1828                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1829                                 __func__, ep->desc.bEndpointAddress);
1830                 return -ENOMEM;
1831         }
1832
1833         if (xhci->quirks & XHCI_MTK_HOST) {
1834                 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1835                 if (ret < 0) {
1836                         xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring);
1837                         virt_dev->eps[ep_index].new_ring = NULL;
1838                         return ret;
1839                 }
1840         }
1841
1842         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1843         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1844
1845         /* If xhci_endpoint_disable() was called for this endpoint, but the
1846          * xHC hasn't been notified yet through the check_bandwidth() call,
1847          * this re-adds a new state for the endpoint from the new endpoint
1848          * descriptors.  We must drop and re-add this endpoint, so we leave the
1849          * drop flags alone.
1850          */
1851         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1852
1853         /* Store the usb_device pointer for later use */
1854         ep->hcpriv = udev;
1855
1856         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1857                         (unsigned int) ep->desc.bEndpointAddress,
1858                         udev->slot_id,
1859                         (unsigned int) new_drop_flags,
1860                         (unsigned int) new_add_flags);
1861         return 0;
1862 }
1863
1864 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1865 {
1866         struct xhci_input_control_ctx *ctrl_ctx;
1867         struct xhci_ep_ctx *ep_ctx;
1868         struct xhci_slot_ctx *slot_ctx;
1869         int i;
1870
1871         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1872         if (!ctrl_ctx) {
1873                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1874                                 __func__);
1875                 return;
1876         }
1877
1878         /* When a device's add flag and drop flag are zero, any subsequent
1879          * configure endpoint command will leave that endpoint's state
1880          * untouched.  Make sure we don't leave any old state in the input
1881          * endpoint contexts.
1882          */
1883         ctrl_ctx->drop_flags = 0;
1884         ctrl_ctx->add_flags = 0;
1885         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1886         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1887         /* Endpoint 0 is always valid */
1888         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1889         for (i = 1; i < 31; i++) {
1890                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1891                 ep_ctx->ep_info = 0;
1892                 ep_ctx->ep_info2 = 0;
1893                 ep_ctx->deq = 0;
1894                 ep_ctx->tx_info = 0;
1895         }
1896 }
1897
1898 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1899                 struct usb_device *udev, u32 *cmd_status)
1900 {
1901         int ret;
1902
1903         switch (*cmd_status) {
1904         case COMP_COMMAND_ABORTED:
1905         case COMP_COMMAND_RING_STOPPED:
1906                 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1907                 ret = -ETIME;
1908                 break;
1909         case COMP_RESOURCE_ERROR:
1910                 dev_warn(&udev->dev,
1911                          "Not enough host controller resources for new device state.\n");
1912                 ret = -ENOMEM;
1913                 /* FIXME: can we allocate more resources for the HC? */
1914                 break;
1915         case COMP_BANDWIDTH_ERROR:
1916         case COMP_SECONDARY_BANDWIDTH_ERROR:
1917                 dev_warn(&udev->dev,
1918                          "Not enough bandwidth for new device state.\n");
1919                 ret = -ENOSPC;
1920                 /* FIXME: can we go back to the old state? */
1921                 break;
1922         case COMP_TRB_ERROR:
1923                 /* the HCD set up something wrong */
1924                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1925                                 "add flag = 1, "
1926                                 "and endpoint is not disabled.\n");
1927                 ret = -EINVAL;
1928                 break;
1929         case COMP_INCOMPATIBLE_DEVICE_ERROR:
1930                 dev_warn(&udev->dev,
1931                          "ERROR: Incompatible device for endpoint configure command.\n");
1932                 ret = -ENODEV;
1933                 break;
1934         case COMP_SUCCESS:
1935                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1936                                 "Successful Endpoint Configure command");
1937                 ret = 0;
1938                 break;
1939         default:
1940                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1941                                 *cmd_status);
1942                 ret = -EINVAL;
1943                 break;
1944         }
1945         return ret;
1946 }
1947
1948 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1949                 struct usb_device *udev, u32 *cmd_status)
1950 {
1951         int ret;
1952
1953         switch (*cmd_status) {
1954         case COMP_COMMAND_ABORTED:
1955         case COMP_COMMAND_RING_STOPPED:
1956                 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1957                 ret = -ETIME;
1958                 break;
1959         case COMP_PARAMETER_ERROR:
1960                 dev_warn(&udev->dev,
1961                          "WARN: xHCI driver setup invalid evaluate context command.\n");
1962                 ret = -EINVAL;
1963                 break;
1964         case COMP_SLOT_NOT_ENABLED_ERROR:
1965                 dev_warn(&udev->dev,
1966                         "WARN: slot not enabled for evaluate context command.\n");
1967                 ret = -EINVAL;
1968                 break;
1969         case COMP_CONTEXT_STATE_ERROR:
1970                 dev_warn(&udev->dev,
1971                         "WARN: invalid context state for evaluate context command.\n");
1972                 ret = -EINVAL;
1973                 break;
1974         case COMP_INCOMPATIBLE_DEVICE_ERROR:
1975                 dev_warn(&udev->dev,
1976                         "ERROR: Incompatible device for evaluate context command.\n");
1977                 ret = -ENODEV;
1978                 break;
1979         case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
1980                 /* Max Exit Latency too large error */
1981                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1982                 ret = -EINVAL;
1983                 break;
1984         case COMP_SUCCESS:
1985                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1986                                 "Successful evaluate context command");
1987                 ret = 0;
1988                 break;
1989         default:
1990                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1991                         *cmd_status);
1992                 ret = -EINVAL;
1993                 break;
1994         }
1995         return ret;
1996 }
1997
1998 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1999                 struct xhci_input_control_ctx *ctrl_ctx)
2000 {
2001         u32 valid_add_flags;
2002         u32 valid_drop_flags;
2003
2004         /* Ignore the slot flag (bit 0), and the default control endpoint flag
2005          * (bit 1).  The default control endpoint is added during the Address
2006          * Device command and is never removed until the slot is disabled.
2007          */
2008         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2009         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2010
2011         /* Use hweight32 to count the number of ones in the add flags, or
2012          * number of endpoints added.  Don't count endpoints that are changed
2013          * (both added and dropped).
2014          */
2015         return hweight32(valid_add_flags) -
2016                 hweight32(valid_add_flags & valid_drop_flags);
2017 }
2018
2019 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2020                 struct xhci_input_control_ctx *ctrl_ctx)
2021 {
2022         u32 valid_add_flags;
2023         u32 valid_drop_flags;
2024
2025         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2026         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2027
2028         return hweight32(valid_drop_flags) -
2029                 hweight32(valid_add_flags & valid_drop_flags);
2030 }
2031
2032 /*
2033  * We need to reserve the new number of endpoints before the configure endpoint
2034  * command completes.  We can't subtract the dropped endpoints from the number
2035  * of active endpoints until the command completes because we can oversubscribe
2036  * the host in this case:
2037  *
2038  *  - the first configure endpoint command drops more endpoints than it adds
2039  *  - a second configure endpoint command that adds more endpoints is queued
2040  *  - the first configure endpoint command fails, so the config is unchanged
2041  *  - the second command may succeed, even though there isn't enough resources
2042  *
2043  * Must be called with xhci->lock held.
2044  */
2045 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2046                 struct xhci_input_control_ctx *ctrl_ctx)
2047 {
2048         u32 added_eps;
2049
2050         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2051         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2052                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2053                                 "Not enough ep ctxs: "
2054                                 "%u active, need to add %u, limit is %u.",
2055                                 xhci->num_active_eps, added_eps,
2056                                 xhci->limit_active_eps);
2057                 return -ENOMEM;
2058         }
2059         xhci->num_active_eps += added_eps;
2060         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2061                         "Adding %u ep ctxs, %u now active.", added_eps,
2062                         xhci->num_active_eps);
2063         return 0;
2064 }
2065
2066 /*
2067  * The configure endpoint was failed by the xHC for some other reason, so we
2068  * need to revert the resources that failed configuration would have used.
2069  *
2070  * Must be called with xhci->lock held.
2071  */
2072 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2073                 struct xhci_input_control_ctx *ctrl_ctx)
2074 {
2075         u32 num_failed_eps;
2076
2077         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2078         xhci->num_active_eps -= num_failed_eps;
2079         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2080                         "Removing %u failed ep ctxs, %u now active.",
2081                         num_failed_eps,
2082                         xhci->num_active_eps);
2083 }
2084
2085 /*
2086  * Now that the command has completed, clean up the active endpoint count by
2087  * subtracting out the endpoints that were dropped (but not changed).
2088  *
2089  * Must be called with xhci->lock held.
2090  */
2091 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2092                 struct xhci_input_control_ctx *ctrl_ctx)
2093 {
2094         u32 num_dropped_eps;
2095
2096         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2097         xhci->num_active_eps -= num_dropped_eps;
2098         if (num_dropped_eps)
2099                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2100                                 "Removing %u dropped ep ctxs, %u now active.",
2101                                 num_dropped_eps,
2102                                 xhci->num_active_eps);
2103 }
2104
2105 static unsigned int xhci_get_block_size(struct usb_device *udev)
2106 {
2107         switch (udev->speed) {
2108         case USB_SPEED_LOW:
2109         case USB_SPEED_FULL:
2110                 return FS_BLOCK;
2111         case USB_SPEED_HIGH:
2112                 return HS_BLOCK;
2113         case USB_SPEED_SUPER:
2114         case USB_SPEED_SUPER_PLUS:
2115                 return SS_BLOCK;
2116         case USB_SPEED_UNKNOWN:
2117         case USB_SPEED_WIRELESS:
2118         default:
2119                 /* Should never happen */
2120                 return 1;
2121         }
2122 }
2123
2124 static unsigned int
2125 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2126 {
2127         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2128                 return LS_OVERHEAD;
2129         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2130                 return FS_OVERHEAD;
2131         return HS_OVERHEAD;
2132 }
2133
2134 /* If we are changing a LS/FS device under a HS hub,
2135  * make sure (if we are activating a new TT) that the HS bus has enough
2136  * bandwidth for this new TT.
2137  */
2138 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2139                 struct xhci_virt_device *virt_dev,
2140                 int old_active_eps)
2141 {
2142         struct xhci_interval_bw_table *bw_table;
2143         struct xhci_tt_bw_info *tt_info;
2144
2145         /* Find the bandwidth table for the root port this TT is attached to. */
2146         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2147         tt_info = virt_dev->tt_info;
2148         /* If this TT already had active endpoints, the bandwidth for this TT
2149          * has already been added.  Removing all periodic endpoints (and thus
2150          * making the TT enactive) will only decrease the bandwidth used.
2151          */
2152         if (old_active_eps)
2153                 return 0;
2154         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2155                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2156                         return -ENOMEM;
2157                 return 0;
2158         }
2159         /* Not sure why we would have no new active endpoints...
2160          *
2161          * Maybe because of an Evaluate Context change for a hub update or a
2162          * control endpoint 0 max packet size change?
2163          * FIXME: skip the bandwidth calculation in that case.
2164          */
2165         return 0;
2166 }
2167
2168 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2169                 struct xhci_virt_device *virt_dev)
2170 {
2171         unsigned int bw_reserved;
2172
2173         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2174         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2175                 return -ENOMEM;
2176
2177         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2178         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2179                 return -ENOMEM;
2180
2181         return 0;
2182 }
2183
2184 /*
2185  * This algorithm is a very conservative estimate of the worst-case scheduling
2186  * scenario for any one interval.  The hardware dynamically schedules the
2187  * packets, so we can't tell which microframe could be the limiting factor in
2188  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2189  *
2190  * Obviously, we can't solve an NP complete problem to find the minimum worst
2191  * case scenario.  Instead, we come up with an estimate that is no less than
2192  * the worst case bandwidth used for any one microframe, but may be an
2193  * over-estimate.
2194  *
2195  * We walk the requirements for each endpoint by interval, starting with the
2196  * smallest interval, and place packets in the schedule where there is only one
2197  * possible way to schedule packets for that interval.  In order to simplify
2198  * this algorithm, we record the largest max packet size for each interval, and
2199  * assume all packets will be that size.
2200  *
2201  * For interval 0, we obviously must schedule all packets for each interval.
2202  * The bandwidth for interval 0 is just the amount of data to be transmitted
2203  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2204  * the number of packets).
2205  *
2206  * For interval 1, we have two possible microframes to schedule those packets
2207  * in.  For this algorithm, if we can schedule the same number of packets for
2208  * each possible scheduling opportunity (each microframe), we will do so.  The
2209  * remaining number of packets will be saved to be transmitted in the gaps in
2210  * the next interval's scheduling sequence.
2211  *
2212  * As we move those remaining packets to be scheduled with interval 2 packets,
2213  * we have to double the number of remaining packets to transmit.  This is
2214  * because the intervals are actually powers of 2, and we would be transmitting
2215  * the previous interval's packets twice in this interval.  We also have to be
2216  * sure that when we look at the largest max packet size for this interval, we
2217  * also look at the largest max packet size for the remaining packets and take
2218  * the greater of the two.
2219  *
2220  * The algorithm continues to evenly distribute packets in each scheduling
2221  * opportunity, and push the remaining packets out, until we get to the last
2222  * interval.  Then those packets and their associated overhead are just added
2223  * to the bandwidth used.
2224  */
2225 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2226                 struct xhci_virt_device *virt_dev,
2227                 int old_active_eps)
2228 {
2229         unsigned int bw_reserved;
2230         unsigned int max_bandwidth;
2231         unsigned int bw_used;
2232         unsigned int block_size;
2233         struct xhci_interval_bw_table *bw_table;
2234         unsigned int packet_size = 0;
2235         unsigned int overhead = 0;
2236         unsigned int packets_transmitted = 0;
2237         unsigned int packets_remaining = 0;
2238         unsigned int i;
2239
2240         if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2241                 return xhci_check_ss_bw(xhci, virt_dev);
2242
2243         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2244                 max_bandwidth = HS_BW_LIMIT;
2245                 /* Convert percent of bus BW reserved to blocks reserved */
2246                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2247         } else {
2248                 max_bandwidth = FS_BW_LIMIT;
2249                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2250         }
2251
2252         bw_table = virt_dev->bw_table;
2253         /* We need to translate the max packet size and max ESIT payloads into
2254          * the units the hardware uses.
2255          */
2256         block_size = xhci_get_block_size(virt_dev->udev);
2257
2258         /* If we are manipulating a LS/FS device under a HS hub, double check
2259          * that the HS bus has enough bandwidth if we are activing a new TT.
2260          */
2261         if (virt_dev->tt_info) {
2262                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2263                                 "Recalculating BW for rootport %u",
2264                                 virt_dev->real_port);
2265                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2266                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2267                                         "newly activated TT.\n");
2268                         return -ENOMEM;
2269                 }
2270                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2271                                 "Recalculating BW for TT slot %u port %u",
2272                                 virt_dev->tt_info->slot_id,
2273                                 virt_dev->tt_info->ttport);
2274         } else {
2275                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2276                                 "Recalculating BW for rootport %u",
2277                                 virt_dev->real_port);
2278         }
2279
2280         /* Add in how much bandwidth will be used for interval zero, or the
2281          * rounded max ESIT payload + number of packets * largest overhead.
2282          */
2283         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2284                 bw_table->interval_bw[0].num_packets *
2285                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2286
2287         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2288                 unsigned int bw_added;
2289                 unsigned int largest_mps;
2290                 unsigned int interval_overhead;
2291
2292                 /*
2293                  * How many packets could we transmit in this interval?
2294                  * If packets didn't fit in the previous interval, we will need
2295                  * to transmit that many packets twice within this interval.
2296                  */
2297                 packets_remaining = 2 * packets_remaining +
2298                         bw_table->interval_bw[i].num_packets;
2299
2300                 /* Find the largest max packet size of this or the previous
2301                  * interval.
2302                  */
2303                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2304                         largest_mps = 0;
2305                 else {
2306                         struct xhci_virt_ep *virt_ep;
2307                         struct list_head *ep_entry;
2308
2309                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2310                         virt_ep = list_entry(ep_entry,
2311                                         struct xhci_virt_ep, bw_endpoint_list);
2312                         /* Convert to blocks, rounding up */
2313                         largest_mps = DIV_ROUND_UP(
2314                                         virt_ep->bw_info.max_packet_size,
2315                                         block_size);
2316                 }
2317                 if (largest_mps > packet_size)
2318                         packet_size = largest_mps;
2319
2320                 /* Use the larger overhead of this or the previous interval. */
2321                 interval_overhead = xhci_get_largest_overhead(
2322                                 &bw_table->interval_bw[i]);
2323                 if (interval_overhead > overhead)
2324                         overhead = interval_overhead;
2325
2326                 /* How many packets can we evenly distribute across
2327                  * (1 << (i + 1)) possible scheduling opportunities?
2328                  */
2329                 packets_transmitted = packets_remaining >> (i + 1);
2330
2331                 /* Add in the bandwidth used for those scheduled packets */
2332                 bw_added = packets_transmitted * (overhead + packet_size);
2333
2334                 /* How many packets do we have remaining to transmit? */
2335                 packets_remaining = packets_remaining % (1 << (i + 1));
2336
2337                 /* What largest max packet size should those packets have? */
2338                 /* If we've transmitted all packets, don't carry over the
2339                  * largest packet size.
2340                  */
2341                 if (packets_remaining == 0) {
2342                         packet_size = 0;
2343                         overhead = 0;
2344                 } else if (packets_transmitted > 0) {
2345                         /* Otherwise if we do have remaining packets, and we've
2346                          * scheduled some packets in this interval, take the
2347                          * largest max packet size from endpoints with this
2348                          * interval.
2349                          */
2350                         packet_size = largest_mps;
2351                         overhead = interval_overhead;
2352                 }
2353                 /* Otherwise carry over packet_size and overhead from the last
2354                  * time we had a remainder.
2355                  */
2356                 bw_used += bw_added;
2357                 if (bw_used > max_bandwidth) {
2358                         xhci_warn(xhci, "Not enough bandwidth. "
2359                                         "Proposed: %u, Max: %u\n",
2360                                 bw_used, max_bandwidth);
2361                         return -ENOMEM;
2362                 }
2363         }
2364         /*
2365          * Ok, we know we have some packets left over after even-handedly
2366          * scheduling interval 15.  We don't know which microframes they will
2367          * fit into, so we over-schedule and say they will be scheduled every
2368          * microframe.
2369          */
2370         if (packets_remaining > 0)
2371                 bw_used += overhead + packet_size;
2372
2373         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2374                 unsigned int port_index = virt_dev->real_port - 1;
2375
2376                 /* OK, we're manipulating a HS device attached to a
2377                  * root port bandwidth domain.  Include the number of active TTs
2378                  * in the bandwidth used.
2379                  */
2380                 bw_used += TT_HS_OVERHEAD *
2381                         xhci->rh_bw[port_index].num_active_tts;
2382         }
2383
2384         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2385                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2386                 "Available: %u " "percent",
2387                 bw_used, max_bandwidth, bw_reserved,
2388                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2389                 max_bandwidth);
2390
2391         bw_used += bw_reserved;
2392         if (bw_used > max_bandwidth) {
2393                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2394                                 bw_used, max_bandwidth);
2395                 return -ENOMEM;
2396         }
2397
2398         bw_table->bw_used = bw_used;
2399         return 0;
2400 }
2401
2402 static bool xhci_is_async_ep(unsigned int ep_type)
2403 {
2404         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2405                                         ep_type != ISOC_IN_EP &&
2406                                         ep_type != INT_IN_EP);
2407 }
2408
2409 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2410 {
2411         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2412 }
2413
2414 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2415 {
2416         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2417
2418         if (ep_bw->ep_interval == 0)
2419                 return SS_OVERHEAD_BURST +
2420                         (ep_bw->mult * ep_bw->num_packets *
2421                                         (SS_OVERHEAD + mps));
2422         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2423                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2424                                 1 << ep_bw->ep_interval);
2425
2426 }
2427
2428 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2429                 struct xhci_bw_info *ep_bw,
2430                 struct xhci_interval_bw_table *bw_table,
2431                 struct usb_device *udev,
2432                 struct xhci_virt_ep *virt_ep,
2433                 struct xhci_tt_bw_info *tt_info)
2434 {
2435         struct xhci_interval_bw *interval_bw;
2436         int normalized_interval;
2437
2438         if (xhci_is_async_ep(ep_bw->type))
2439                 return;
2440
2441         if (udev->speed >= USB_SPEED_SUPER) {
2442                 if (xhci_is_sync_in_ep(ep_bw->type))
2443                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2444                                 xhci_get_ss_bw_consumed(ep_bw);
2445                 else
2446                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2447                                 xhci_get_ss_bw_consumed(ep_bw);
2448                 return;
2449         }
2450
2451         /* SuperSpeed endpoints never get added to intervals in the table, so
2452          * this check is only valid for HS/FS/LS devices.
2453          */
2454         if (list_empty(&virt_ep->bw_endpoint_list))
2455                 return;
2456         /* For LS/FS devices, we need to translate the interval expressed in
2457          * microframes to frames.
2458          */
2459         if (udev->speed == USB_SPEED_HIGH)
2460                 normalized_interval = ep_bw->ep_interval;
2461         else
2462                 normalized_interval = ep_bw->ep_interval - 3;
2463
2464         if (normalized_interval == 0)
2465                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2466         interval_bw = &bw_table->interval_bw[normalized_interval];
2467         interval_bw->num_packets -= ep_bw->num_packets;
2468         switch (udev->speed) {
2469         case USB_SPEED_LOW:
2470                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2471                 break;
2472         case USB_SPEED_FULL:
2473                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2474                 break;
2475         case USB_SPEED_HIGH:
2476                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2477                 break;
2478         case USB_SPEED_SUPER:
2479         case USB_SPEED_SUPER_PLUS:
2480         case USB_SPEED_UNKNOWN:
2481         case USB_SPEED_WIRELESS:
2482                 /* Should never happen because only LS/FS/HS endpoints will get
2483                  * added to the endpoint list.
2484                  */
2485                 return;
2486         }
2487         if (tt_info)
2488                 tt_info->active_eps -= 1;
2489         list_del_init(&virt_ep->bw_endpoint_list);
2490 }
2491
2492 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2493                 struct xhci_bw_info *ep_bw,
2494                 struct xhci_interval_bw_table *bw_table,
2495                 struct usb_device *udev,
2496                 struct xhci_virt_ep *virt_ep,
2497                 struct xhci_tt_bw_info *tt_info)
2498 {
2499         struct xhci_interval_bw *interval_bw;
2500         struct xhci_virt_ep *smaller_ep;
2501         int normalized_interval;
2502
2503         if (xhci_is_async_ep(ep_bw->type))
2504                 return;
2505
2506         if (udev->speed == USB_SPEED_SUPER) {
2507                 if (xhci_is_sync_in_ep(ep_bw->type))
2508                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2509                                 xhci_get_ss_bw_consumed(ep_bw);
2510                 else
2511                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2512                                 xhci_get_ss_bw_consumed(ep_bw);
2513                 return;
2514         }
2515
2516         /* For LS/FS devices, we need to translate the interval expressed in
2517          * microframes to frames.
2518          */
2519         if (udev->speed == USB_SPEED_HIGH)
2520                 normalized_interval = ep_bw->ep_interval;
2521         else
2522                 normalized_interval = ep_bw->ep_interval - 3;
2523
2524         if (normalized_interval == 0)
2525                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2526         interval_bw = &bw_table->interval_bw[normalized_interval];
2527         interval_bw->num_packets += ep_bw->num_packets;
2528         switch (udev->speed) {
2529         case USB_SPEED_LOW:
2530                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2531                 break;
2532         case USB_SPEED_FULL:
2533                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2534                 break;
2535         case USB_SPEED_HIGH:
2536                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2537                 break;
2538         case USB_SPEED_SUPER:
2539         case USB_SPEED_SUPER_PLUS:
2540         case USB_SPEED_UNKNOWN:
2541         case USB_SPEED_WIRELESS:
2542                 /* Should never happen because only LS/FS/HS endpoints will get
2543                  * added to the endpoint list.
2544                  */
2545                 return;
2546         }
2547
2548         if (tt_info)
2549                 tt_info->active_eps += 1;
2550         /* Insert the endpoint into the list, largest max packet size first. */
2551         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2552                         bw_endpoint_list) {
2553                 if (ep_bw->max_packet_size >=
2554                                 smaller_ep->bw_info.max_packet_size) {
2555                         /* Add the new ep before the smaller endpoint */
2556                         list_add_tail(&virt_ep->bw_endpoint_list,
2557                                         &smaller_ep->bw_endpoint_list);
2558                         return;
2559                 }
2560         }
2561         /* Add the new endpoint at the end of the list. */
2562         list_add_tail(&virt_ep->bw_endpoint_list,
2563                         &interval_bw->endpoints);
2564 }
2565
2566 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2567                 struct xhci_virt_device *virt_dev,
2568                 int old_active_eps)
2569 {
2570         struct xhci_root_port_bw_info *rh_bw_info;
2571         if (!virt_dev->tt_info)
2572                 return;
2573
2574         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2575         if (old_active_eps == 0 &&
2576                                 virt_dev->tt_info->active_eps != 0) {
2577                 rh_bw_info->num_active_tts += 1;
2578                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2579         } else if (old_active_eps != 0 &&
2580                                 virt_dev->tt_info->active_eps == 0) {
2581                 rh_bw_info->num_active_tts -= 1;
2582                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2583         }
2584 }
2585
2586 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2587                 struct xhci_virt_device *virt_dev,
2588                 struct xhci_container_ctx *in_ctx)
2589 {
2590         struct xhci_bw_info ep_bw_info[31];
2591         int i;
2592         struct xhci_input_control_ctx *ctrl_ctx;
2593         int old_active_eps = 0;
2594
2595         if (virt_dev->tt_info)
2596                 old_active_eps = virt_dev->tt_info->active_eps;
2597
2598         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2599         if (!ctrl_ctx) {
2600                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2601                                 __func__);
2602                 return -ENOMEM;
2603         }
2604
2605         for (i = 0; i < 31; i++) {
2606                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2607                         continue;
2608
2609                 /* Make a copy of the BW info in case we need to revert this */
2610                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2611                                 sizeof(ep_bw_info[i]));
2612                 /* Drop the endpoint from the interval table if the endpoint is
2613                  * being dropped or changed.
2614                  */
2615                 if (EP_IS_DROPPED(ctrl_ctx, i))
2616                         xhci_drop_ep_from_interval_table(xhci,
2617                                         &virt_dev->eps[i].bw_info,
2618                                         virt_dev->bw_table,
2619                                         virt_dev->udev,
2620                                         &virt_dev->eps[i],
2621                                         virt_dev->tt_info);
2622         }
2623         /* Overwrite the information stored in the endpoints' bw_info */
2624         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2625         for (i = 0; i < 31; i++) {
2626                 /* Add any changed or added endpoints to the interval table */
2627                 if (EP_IS_ADDED(ctrl_ctx, i))
2628                         xhci_add_ep_to_interval_table(xhci,
2629                                         &virt_dev->eps[i].bw_info,
2630                                         virt_dev->bw_table,
2631                                         virt_dev->udev,
2632                                         &virt_dev->eps[i],
2633                                         virt_dev->tt_info);
2634         }
2635
2636         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2637                 /* Ok, this fits in the bandwidth we have.
2638                  * Update the number of active TTs.
2639                  */
2640                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2641                 return 0;
2642         }
2643
2644         /* We don't have enough bandwidth for this, revert the stored info. */
2645         for (i = 0; i < 31; i++) {
2646                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2647                         continue;
2648
2649                 /* Drop the new copies of any added or changed endpoints from
2650                  * the interval table.
2651                  */
2652                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2653                         xhci_drop_ep_from_interval_table(xhci,
2654                                         &virt_dev->eps[i].bw_info,
2655                                         virt_dev->bw_table,
2656                                         virt_dev->udev,
2657                                         &virt_dev->eps[i],
2658                                         virt_dev->tt_info);
2659                 }
2660                 /* Revert the endpoint back to its old information */
2661                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2662                                 sizeof(ep_bw_info[i]));
2663                 /* Add any changed or dropped endpoints back into the table */
2664                 if (EP_IS_DROPPED(ctrl_ctx, i))
2665                         xhci_add_ep_to_interval_table(xhci,
2666                                         &virt_dev->eps[i].bw_info,
2667                                         virt_dev->bw_table,
2668                                         virt_dev->udev,
2669                                         &virt_dev->eps[i],
2670                                         virt_dev->tt_info);
2671         }
2672         return -ENOMEM;
2673 }
2674
2675
2676 /* Issue a configure endpoint command or evaluate context command
2677  * and wait for it to finish.
2678  */
2679 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2680                 struct usb_device *udev,
2681                 struct xhci_command *command,
2682                 bool ctx_change, bool must_succeed)
2683 {
2684         int ret;
2685         unsigned long flags;
2686         struct xhci_input_control_ctx *ctrl_ctx;
2687         struct xhci_virt_device *virt_dev;
2688
2689         if (!command)
2690                 return -EINVAL;
2691
2692         spin_lock_irqsave(&xhci->lock, flags);
2693
2694         if (xhci->xhc_state & XHCI_STATE_DYING) {
2695                 spin_unlock_irqrestore(&xhci->lock, flags);
2696                 return -ESHUTDOWN;
2697         }
2698
2699         virt_dev = xhci->devs[udev->slot_id];
2700
2701         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2702         if (!ctrl_ctx) {
2703                 spin_unlock_irqrestore(&xhci->lock, flags);
2704                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2705                                 __func__);
2706                 return -ENOMEM;
2707         }
2708
2709         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2710                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2711                 spin_unlock_irqrestore(&xhci->lock, flags);
2712                 xhci_warn(xhci, "Not enough host resources, "
2713                                 "active endpoint contexts = %u\n",
2714                                 xhci->num_active_eps);
2715                 return -ENOMEM;
2716         }
2717         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2718             xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2719                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2720                         xhci_free_host_resources(xhci, ctrl_ctx);
2721                 spin_unlock_irqrestore(&xhci->lock, flags);
2722                 xhci_warn(xhci, "Not enough bandwidth\n");
2723                 return -ENOMEM;
2724         }
2725
2726         if (!ctx_change)
2727                 ret = xhci_queue_configure_endpoint(xhci, command,
2728                                 command->in_ctx->dma,
2729                                 udev->slot_id, must_succeed);
2730         else
2731                 ret = xhci_queue_evaluate_context(xhci, command,
2732                                 command->in_ctx->dma,
2733                                 udev->slot_id, must_succeed);
2734         if (ret < 0) {
2735                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2736                         xhci_free_host_resources(xhci, ctrl_ctx);
2737                 spin_unlock_irqrestore(&xhci->lock, flags);
2738                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2739                                 "FIXME allocate a new ring segment");
2740                 return -ENOMEM;
2741         }
2742         xhci_ring_cmd_db(xhci);
2743         spin_unlock_irqrestore(&xhci->lock, flags);
2744
2745         /* Wait for the configure endpoint command to complete */
2746         wait_for_completion(command->completion);
2747
2748         if (!ctx_change)
2749                 ret = xhci_configure_endpoint_result(xhci, udev,
2750                                                      &command->status);
2751         else
2752                 ret = xhci_evaluate_context_result(xhci, udev,
2753                                                    &command->status);
2754
2755         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2756                 spin_lock_irqsave(&xhci->lock, flags);
2757                 /* If the command failed, remove the reserved resources.
2758                  * Otherwise, clean up the estimate to include dropped eps.
2759                  */
2760                 if (ret)
2761                         xhci_free_host_resources(xhci, ctrl_ctx);
2762                 else
2763                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2764                 spin_unlock_irqrestore(&xhci->lock, flags);
2765         }
2766         return ret;
2767 }
2768
2769 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2770         struct xhci_virt_device *vdev, int i)
2771 {
2772         struct xhci_virt_ep *ep = &vdev->eps[i];
2773
2774         if (ep->ep_state & EP_HAS_STREAMS) {
2775                 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2776                                 xhci_get_endpoint_address(i));
2777                 xhci_free_stream_info(xhci, ep->stream_info);
2778                 ep->stream_info = NULL;
2779                 ep->ep_state &= ~EP_HAS_STREAMS;
2780         }
2781 }
2782
2783 /* Called after one or more calls to xhci_add_endpoint() or
2784  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2785  * to call xhci_reset_bandwidth().
2786  *
2787  * Since we are in the middle of changing either configuration or
2788  * installing a new alt setting, the USB core won't allow URBs to be
2789  * enqueued for any endpoint on the old config or interface.  Nothing
2790  * else should be touching the xhci->devs[slot_id] structure, so we
2791  * don't need to take the xhci->lock for manipulating that.
2792  */
2793 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2794 {
2795         int i;
2796         int ret = 0;
2797         struct xhci_hcd *xhci;
2798         struct xhci_virt_device *virt_dev;
2799         struct xhci_input_control_ctx *ctrl_ctx;
2800         struct xhci_slot_ctx *slot_ctx;
2801         struct xhci_command *command;
2802
2803         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2804         if (ret <= 0)
2805                 return ret;
2806         xhci = hcd_to_xhci(hcd);
2807         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2808                 (xhci->xhc_state & XHCI_STATE_REMOVING))
2809                 return -ENODEV;
2810
2811         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2812         virt_dev = xhci->devs[udev->slot_id];
2813
2814         command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2815         if (!command)
2816                 return -ENOMEM;
2817
2818         command->in_ctx = virt_dev->in_ctx;
2819
2820         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2821         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2822         if (!ctrl_ctx) {
2823                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2824                                 __func__);
2825                 ret = -ENOMEM;
2826                 goto command_cleanup;
2827         }
2828         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2829         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2830         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2831
2832         /* Don't issue the command if there's no endpoints to update. */
2833         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2834             ctrl_ctx->drop_flags == 0) {
2835                 ret = 0;
2836                 goto command_cleanup;
2837         }
2838         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2839         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2840         for (i = 31; i >= 1; i--) {
2841                 __le32 le32 = cpu_to_le32(BIT(i));
2842
2843                 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2844                     || (ctrl_ctx->add_flags & le32) || i == 1) {
2845                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2846                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2847                         break;
2848                 }
2849         }
2850
2851         ret = xhci_configure_endpoint(xhci, udev, command,
2852                         false, false);
2853         if (ret)
2854                 /* Callee should call reset_bandwidth() */
2855                 goto command_cleanup;
2856
2857         /* Free any rings that were dropped, but not changed. */
2858         for (i = 1; i < 31; i++) {
2859                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2860                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2861                         xhci_free_endpoint_ring(xhci, virt_dev, i);
2862                         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2863                 }
2864         }
2865         xhci_zero_in_ctx(xhci, virt_dev);
2866         /*
2867          * Install any rings for completely new endpoints or changed endpoints,
2868          * and free any old rings from changed endpoints.
2869          */
2870         for (i = 1; i < 31; i++) {
2871                 if (!virt_dev->eps[i].new_ring)
2872                         continue;
2873                 /* Only free the old ring if it exists.
2874                  * It may not if this is the first add of an endpoint.
2875                  */
2876                 if (virt_dev->eps[i].ring) {
2877                         xhci_free_endpoint_ring(xhci, virt_dev, i);
2878                 }
2879                 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2880                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2881                 virt_dev->eps[i].new_ring = NULL;
2882         }
2883 command_cleanup:
2884         kfree(command->completion);
2885         kfree(command);
2886
2887         return ret;
2888 }
2889
2890 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2891 {
2892         struct xhci_hcd *xhci;
2893         struct xhci_virt_device *virt_dev;
2894         int i, ret;
2895
2896         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2897         if (ret <= 0)
2898                 return;
2899         xhci = hcd_to_xhci(hcd);
2900
2901         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2902         virt_dev = xhci->devs[udev->slot_id];
2903         /* Free any rings allocated for added endpoints */
2904         for (i = 0; i < 31; i++) {
2905                 if (virt_dev->eps[i].new_ring) {
2906                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2907                         virt_dev->eps[i].new_ring = NULL;
2908                 }
2909         }
2910         xhci_zero_in_ctx(xhci, virt_dev);
2911 }
2912
2913 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2914                 struct xhci_container_ctx *in_ctx,
2915                 struct xhci_container_ctx *out_ctx,
2916                 struct xhci_input_control_ctx *ctrl_ctx,
2917                 u32 add_flags, u32 drop_flags)
2918 {
2919         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2920         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2921         xhci_slot_copy(xhci, in_ctx, out_ctx);
2922         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2923 }
2924
2925 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2926                 unsigned int slot_id, unsigned int ep_index,
2927                 struct xhci_dequeue_state *deq_state)
2928 {
2929         struct xhci_input_control_ctx *ctrl_ctx;
2930         struct xhci_container_ctx *in_ctx;
2931         struct xhci_ep_ctx *ep_ctx;
2932         u32 added_ctxs;
2933         dma_addr_t addr;
2934
2935         in_ctx = xhci->devs[slot_id]->in_ctx;
2936         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2937         if (!ctrl_ctx) {
2938                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2939                                 __func__);
2940                 return;
2941         }
2942
2943         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2944                         xhci->devs[slot_id]->out_ctx, ep_index);
2945         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2946         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2947                         deq_state->new_deq_ptr);
2948         if (addr == 0) {
2949                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2950                                 "reset ep command\n");
2951                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2952                                 deq_state->new_deq_seg,
2953                                 deq_state->new_deq_ptr);
2954                 return;
2955         }
2956         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2957
2958         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2959         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2960                         xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2961                         added_ctxs, added_ctxs);
2962 }
2963
2964 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int ep_index,
2965                                unsigned int stream_id, struct xhci_td *td)
2966 {
2967         struct xhci_dequeue_state deq_state;
2968         struct xhci_virt_ep *ep;
2969         struct usb_device *udev = td->urb->dev;
2970
2971         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2972                         "Cleaning up stalled endpoint ring");
2973         ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2974         /* We need to move the HW's dequeue pointer past this TD,
2975          * or it will attempt to resend it on the next doorbell ring.
2976          */
2977         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2978                         ep_index, stream_id, td, &deq_state);
2979
2980         if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2981                 return;
2982
2983         /* HW with the reset endpoint quirk will use the saved dequeue state to
2984          * issue a configure endpoint command later.
2985          */
2986         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2987                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2988                                 "Queueing new dequeue state");
2989                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2990                                 ep_index, &deq_state);
2991         } else {
2992                 /* Better hope no one uses the input context between now and the
2993                  * reset endpoint completion!
2994                  * XXX: No idea how this hardware will react when stream rings
2995                  * are enabled.
2996                  */
2997                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2998                                 "Setting up input context for "
2999                                 "configure endpoint command");
3000                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
3001                                 ep_index, &deq_state);
3002         }
3003 }
3004
3005 /* Called when clearing halted device. The core should have sent the control
3006  * message to clear the device halt condition. The host side of the halt should
3007  * already be cleared with a reset endpoint command issued when the STALL tx
3008  * event was received.
3009  *
3010  * Context: in_interrupt
3011  */
3012
3013 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3014                 struct usb_host_endpoint *ep)
3015 {
3016         struct xhci_hcd *xhci;
3017
3018         xhci = hcd_to_xhci(hcd);
3019
3020         /*
3021          * We might need to implement the config ep cmd in xhci 4.8.1 note:
3022          * The Reset Endpoint Command may only be issued to endpoints in the
3023          * Halted state. If software wishes reset the Data Toggle or Sequence
3024          * Number of an endpoint that isn't in the Halted state, then software
3025          * may issue a Configure Endpoint Command with the Drop and Add bits set
3026          * for the target endpoint. that is in the Stopped state.
3027          */
3028
3029         /* For now just print debug to follow the situation */
3030         xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
3031                  ep->desc.bEndpointAddress);
3032 }
3033
3034 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3035                 struct usb_device *udev, struct usb_host_endpoint *ep,
3036                 unsigned int slot_id)
3037 {
3038         int ret;
3039         unsigned int ep_index;
3040         unsigned int ep_state;
3041
3042         if (!ep)
3043                 return -EINVAL;
3044         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3045         if (ret <= 0)
3046                 return ret ? ret : -EINVAL;
3047         if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3048                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3049                                 " descriptor for ep 0x%x does not support streams\n",
3050                                 ep->desc.bEndpointAddress);
3051                 return -EINVAL;
3052         }
3053
3054         ep_index = xhci_get_endpoint_index(&ep->desc);
3055         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3056         if (ep_state & EP_HAS_STREAMS ||
3057                         ep_state & EP_GETTING_STREAMS) {
3058                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3059                                 "already has streams set up.\n",
3060                                 ep->desc.bEndpointAddress);
3061                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3062                                 "dynamic stream context array reallocation.\n");
3063                 return -EINVAL;
3064         }
3065         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3066                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3067                                 "endpoint 0x%x; URBs are pending.\n",
3068                                 ep->desc.bEndpointAddress);
3069                 return -EINVAL;
3070         }
3071         return 0;
3072 }
3073
3074 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3075                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3076 {
3077         unsigned int max_streams;
3078
3079         /* The stream context array size must be a power of two */
3080         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3081         /*
3082          * Find out how many primary stream array entries the host controller
3083          * supports.  Later we may use secondary stream arrays (similar to 2nd
3084          * level page entries), but that's an optional feature for xHCI host
3085          * controllers. xHCs must support at least 4 stream IDs.
3086          */
3087         max_streams = HCC_MAX_PSA(xhci->hcc_params);
3088         if (*num_stream_ctxs > max_streams) {
3089                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3090                                 max_streams);
3091                 *num_stream_ctxs = max_streams;
3092                 *num_streams = max_streams;
3093         }
3094 }
3095
3096 /* Returns an error code if one of the endpoint already has streams.
3097  * This does not change any data structures, it only checks and gathers
3098  * information.
3099  */
3100 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3101                 struct usb_device *udev,
3102                 struct usb_host_endpoint **eps, unsigned int num_eps,
3103                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3104 {
3105         unsigned int max_streams;
3106         unsigned int endpoint_flag;
3107         int i;
3108         int ret;
3109
3110         for (i = 0; i < num_eps; i++) {
3111                 ret = xhci_check_streams_endpoint(xhci, udev,
3112                                 eps[i], udev->slot_id);
3113                 if (ret < 0)
3114                         return ret;
3115
3116                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3117                 if (max_streams < (*num_streams - 1)) {
3118                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3119                                         eps[i]->desc.bEndpointAddress,
3120                                         max_streams);
3121                         *num_streams = max_streams+1;
3122                 }
3123
3124                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3125                 if (*changed_ep_bitmask & endpoint_flag)
3126                         return -EINVAL;
3127                 *changed_ep_bitmask |= endpoint_flag;
3128         }
3129         return 0;
3130 }
3131
3132 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3133                 struct usb_device *udev,
3134                 struct usb_host_endpoint **eps, unsigned int num_eps)
3135 {
3136         u32 changed_ep_bitmask = 0;
3137         unsigned int slot_id;
3138         unsigned int ep_index;
3139         unsigned int ep_state;
3140         int i;
3141
3142         slot_id = udev->slot_id;
3143         if (!xhci->devs[slot_id])
3144                 return 0;
3145
3146         for (i = 0; i < num_eps; i++) {
3147                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3148                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3149                 /* Are streams already being freed for the endpoint? */
3150                 if (ep_state & EP_GETTING_NO_STREAMS) {
3151                         xhci_warn(xhci, "WARN Can't disable streams for "
3152                                         "endpoint 0x%x, "
3153                                         "streams are being disabled already\n",
3154                                         eps[i]->desc.bEndpointAddress);
3155                         return 0;
3156                 }
3157                 /* Are there actually any streams to free? */
3158                 if (!(ep_state & EP_HAS_STREAMS) &&
3159                                 !(ep_state & EP_GETTING_STREAMS)) {
3160                         xhci_warn(xhci, "WARN Can't disable streams for "
3161                                         "endpoint 0x%x, "
3162                                         "streams are already disabled!\n",
3163                                         eps[i]->desc.bEndpointAddress);
3164                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3165                                         "with non-streams endpoint\n");
3166                         return 0;
3167                 }
3168                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3169         }
3170         return changed_ep_bitmask;
3171 }
3172
3173 /*
3174  * The USB device drivers use this function (through the HCD interface in USB
3175  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3176  * coordinate mass storage command queueing across multiple endpoints (basically
3177  * a stream ID == a task ID).
3178  *
3179  * Setting up streams involves allocating the same size stream context array
3180  * for each endpoint and issuing a configure endpoint command for all endpoints.
3181  *
3182  * Don't allow the call to succeed if one endpoint only supports one stream
3183  * (which means it doesn't support streams at all).
3184  *
3185  * Drivers may get less stream IDs than they asked for, if the host controller
3186  * hardware or endpoints claim they can't support the number of requested
3187  * stream IDs.
3188  */
3189 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3190                 struct usb_host_endpoint **eps, unsigned int num_eps,
3191                 unsigned int num_streams, gfp_t mem_flags)
3192 {
3193         int i, ret;
3194         struct xhci_hcd *xhci;
3195         struct xhci_virt_device *vdev;
3196         struct xhci_command *config_cmd;
3197         struct xhci_input_control_ctx *ctrl_ctx;
3198         unsigned int ep_index;
3199         unsigned int num_stream_ctxs;
3200         unsigned int max_packet;
3201         unsigned long flags;
3202         u32 changed_ep_bitmask = 0;
3203
3204         if (!eps)
3205                 return -EINVAL;
3206
3207         /* Add one to the number of streams requested to account for
3208          * stream 0 that is reserved for xHCI usage.
3209          */
3210         num_streams += 1;
3211         xhci = hcd_to_xhci(hcd);
3212         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3213                         num_streams);
3214
3215         /* MaxPSASize value 0 (2 streams) means streams are not supported */
3216         if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3217                         HCC_MAX_PSA(xhci->hcc_params) < 4) {
3218                 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3219                 return -ENOSYS;
3220         }
3221
3222         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3223         if (!config_cmd)
3224                 return -ENOMEM;
3225
3226         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3227         if (!ctrl_ctx) {
3228                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3229                                 __func__);
3230                 xhci_free_command(xhci, config_cmd);
3231                 return -ENOMEM;
3232         }
3233
3234         /* Check to make sure all endpoints are not already configured for
3235          * streams.  While we're at it, find the maximum number of streams that
3236          * all the endpoints will support and check for duplicate endpoints.
3237          */
3238         spin_lock_irqsave(&xhci->lock, flags);
3239         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3240                         num_eps, &num_streams, &changed_ep_bitmask);
3241         if (ret < 0) {
3242                 xhci_free_command(xhci, config_cmd);
3243                 spin_unlock_irqrestore(&xhci->lock, flags);
3244                 return ret;
3245         }
3246         if (num_streams <= 1) {
3247                 xhci_warn(xhci, "WARN: endpoints can't handle "
3248                                 "more than one stream.\n");
3249                 xhci_free_command(xhci, config_cmd);
3250                 spin_unlock_irqrestore(&xhci->lock, flags);
3251                 return -EINVAL;
3252         }
3253         vdev = xhci->devs[udev->slot_id];
3254         /* Mark each endpoint as being in transition, so
3255          * xhci_urb_enqueue() will reject all URBs.
3256          */
3257         for (i = 0; i < num_eps; i++) {
3258                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3259                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3260         }
3261         spin_unlock_irqrestore(&xhci->lock, flags);
3262
3263         /* Setup internal data structures and allocate HW data structures for
3264          * streams (but don't install the HW structures in the input context
3265          * until we're sure all memory allocation succeeded).
3266          */
3267         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3268         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3269                         num_stream_ctxs, num_streams);
3270
3271         for (i = 0; i < num_eps; i++) {
3272                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3273                 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3274                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3275                                 num_stream_ctxs,
3276                                 num_streams,
3277                                 max_packet, mem_flags);
3278                 if (!vdev->eps[ep_index].stream_info)
3279                         goto cleanup;
3280                 /* Set maxPstreams in endpoint context and update deq ptr to
3281                  * point to stream context array. FIXME
3282                  */
3283         }
3284
3285         /* Set up the input context for a configure endpoint command. */
3286         for (i = 0; i < num_eps; i++) {
3287                 struct xhci_ep_ctx *ep_ctx;
3288
3289                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3290                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3291
3292                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3293                                 vdev->out_ctx, ep_index);
3294                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3295                                 vdev->eps[ep_index].stream_info);
3296         }
3297         /* Tell the HW to drop its old copy of the endpoint context info
3298          * and add the updated copy from the input context.
3299          */
3300         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3301                         vdev->out_ctx, ctrl_ctx,
3302                         changed_ep_bitmask, changed_ep_bitmask);
3303
3304         /* Issue and wait for the configure endpoint command */
3305         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3306                         false, false);
3307
3308         /* xHC rejected the configure endpoint command for some reason, so we
3309          * leave the old ring intact and free our internal streams data
3310          * structure.
3311          */
3312         if (ret < 0)
3313                 goto cleanup;
3314
3315         spin_lock_irqsave(&xhci->lock, flags);
3316         for (i = 0; i < num_eps; i++) {
3317                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3318                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3319                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3320                          udev->slot_id, ep_index);
3321                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3322         }
3323         xhci_free_command(xhci, config_cmd);
3324         spin_unlock_irqrestore(&xhci->lock, flags);
3325
3326         /* Subtract 1 for stream 0, which drivers can't use */
3327         return num_streams - 1;
3328
3329 cleanup:
3330         /* If it didn't work, free the streams! */
3331         for (i = 0; i < num_eps; i++) {
3332                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3333                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3334                 vdev->eps[ep_index].stream_info = NULL;
3335                 /* FIXME Unset maxPstreams in endpoint context and
3336                  * update deq ptr to point to normal string ring.
3337                  */
3338                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3339                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3340                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3341         }
3342         xhci_free_command(xhci, config_cmd);
3343         return -ENOMEM;
3344 }
3345
3346 /* Transition the endpoint from using streams to being a "normal" endpoint
3347  * without streams.
3348  *
3349  * Modify the endpoint context state, submit a configure endpoint command,
3350  * and free all endpoint rings for streams if that completes successfully.
3351  */
3352 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3353                 struct usb_host_endpoint **eps, unsigned int num_eps,
3354                 gfp_t mem_flags)
3355 {
3356         int i, ret;
3357         struct xhci_hcd *xhci;
3358         struct xhci_virt_device *vdev;
3359         struct xhci_command *command;
3360         struct xhci_input_control_ctx *ctrl_ctx;
3361         unsigned int ep_index;
3362         unsigned long flags;
3363         u32 changed_ep_bitmask;
3364
3365         xhci = hcd_to_xhci(hcd);
3366         vdev = xhci->devs[udev->slot_id];
3367
3368         /* Set up a configure endpoint command to remove the streams rings */
3369         spin_lock_irqsave(&xhci->lock, flags);
3370         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3371                         udev, eps, num_eps);
3372         if (changed_ep_bitmask == 0) {
3373                 spin_unlock_irqrestore(&xhci->lock, flags);
3374                 return -EINVAL;
3375         }
3376
3377         /* Use the xhci_command structure from the first endpoint.  We may have
3378          * allocated too many, but the driver may call xhci_free_streams() for
3379          * each endpoint it grouped into one call to xhci_alloc_streams().
3380          */
3381         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3382         command = vdev->eps[ep_index].stream_info->free_streams_command;
3383         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3384         if (!ctrl_ctx) {
3385                 spin_unlock_irqrestore(&xhci->lock, flags);
3386                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3387                                 __func__);
3388                 return -EINVAL;
3389         }
3390
3391         for (i = 0; i < num_eps; i++) {
3392                 struct xhci_ep_ctx *ep_ctx;
3393
3394                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3395                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3396                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3397                         EP_GETTING_NO_STREAMS;
3398
3399                 xhci_endpoint_copy(xhci, command->in_ctx,
3400                                 vdev->out_ctx, ep_index);
3401                 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3402                                 &vdev->eps[ep_index]);
3403         }
3404         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3405                         vdev->out_ctx, ctrl_ctx,
3406                         changed_ep_bitmask, changed_ep_bitmask);
3407         spin_unlock_irqrestore(&xhci->lock, flags);
3408
3409         /* Issue and wait for the configure endpoint command,
3410          * which must succeed.
3411          */
3412         ret = xhci_configure_endpoint(xhci, udev, command,
3413                         false, true);
3414
3415         /* xHC rejected the configure endpoint command for some reason, so we
3416          * leave the streams rings intact.
3417          */
3418         if (ret < 0)
3419                 return ret;
3420
3421         spin_lock_irqsave(&xhci->lock, flags);
3422         for (i = 0; i < num_eps; i++) {
3423                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3424                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3425                 vdev->eps[ep_index].stream_info = NULL;
3426                 /* FIXME Unset maxPstreams in endpoint context and
3427                  * update deq ptr to point to normal string ring.
3428                  */
3429                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3430                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3431         }
3432         spin_unlock_irqrestore(&xhci->lock, flags);
3433
3434         return 0;
3435 }
3436
3437 /*
3438  * Deletes endpoint resources for endpoints that were active before a Reset
3439  * Device command, or a Disable Slot command.  The Reset Device command leaves
3440  * the control endpoint intact, whereas the Disable Slot command deletes it.
3441  *
3442  * Must be called with xhci->lock held.
3443  */
3444 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3445         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3446 {
3447         int i;
3448         unsigned int num_dropped_eps = 0;
3449         unsigned int drop_flags = 0;
3450
3451         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3452                 if (virt_dev->eps[i].ring) {
3453                         drop_flags |= 1 << i;
3454                         num_dropped_eps++;
3455                 }
3456         }
3457         xhci->num_active_eps -= num_dropped_eps;
3458         if (num_dropped_eps)
3459                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3460                                 "Dropped %u ep ctxs, flags = 0x%x, "
3461                                 "%u now active.",
3462                                 num_dropped_eps, drop_flags,
3463                                 xhci->num_active_eps);
3464 }
3465
3466 /*
3467  * This submits a Reset Device Command, which will set the device state to 0,
3468  * set the device address to 0, and disable all the endpoints except the default
3469  * control endpoint.  The USB core should come back and call
3470  * xhci_address_device(), and then re-set up the configuration.  If this is
3471  * called because of a usb_reset_and_verify_device(), then the old alternate
3472  * settings will be re-installed through the normal bandwidth allocation
3473  * functions.
3474  *
3475  * Wait for the Reset Device command to finish.  Remove all structures
3476  * associated with the endpoints that were disabled.  Clear the input device
3477  * structure? Reset the control endpoint 0 max packet size?
3478  *
3479  * If the virt_dev to be reset does not exist or does not match the udev,
3480  * it means the device is lost, possibly due to the xHC restore error and
3481  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3482  * re-allocate the device.
3483  */
3484 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3485                 struct usb_device *udev)
3486 {
3487         int ret, i;
3488         unsigned long flags;
3489         struct xhci_hcd *xhci;
3490         unsigned int slot_id;
3491         struct xhci_virt_device *virt_dev;
3492         struct xhci_command *reset_device_cmd;
3493         int last_freed_endpoint;
3494         struct xhci_slot_ctx *slot_ctx;
3495         int old_active_eps = 0;
3496
3497         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3498         if (ret <= 0)
3499                 return ret;
3500         xhci = hcd_to_xhci(hcd);
3501         slot_id = udev->slot_id;
3502         virt_dev = xhci->devs[slot_id];
3503         if (!virt_dev) {
3504                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3505                                 "not exist. Re-allocate the device\n", slot_id);
3506                 ret = xhci_alloc_dev(hcd, udev);
3507                 if (ret == 1)
3508                         return 0;
3509                 else
3510                         return -EINVAL;
3511         }
3512
3513         if (virt_dev->tt_info)
3514                 old_active_eps = virt_dev->tt_info->active_eps;
3515
3516         if (virt_dev->udev != udev) {
3517                 /* If the virt_dev and the udev does not match, this virt_dev
3518                  * may belong to another udev.
3519                  * Re-allocate the device.
3520                  */
3521                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3522                                 "not match the udev. Re-allocate the device\n",
3523                                 slot_id);
3524                 ret = xhci_alloc_dev(hcd, udev);
3525                 if (ret == 1)
3526                         return 0;
3527                 else
3528                         return -EINVAL;
3529         }
3530
3531         /* If device is not setup, there is no point in resetting it */
3532         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3533         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3534                                                 SLOT_STATE_DISABLED)
3535                 return 0;
3536
3537         trace_xhci_discover_or_reset_device(slot_ctx);
3538
3539         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3540         /* Allocate the command structure that holds the struct completion.
3541          * Assume we're in process context, since the normal device reset
3542          * process has to wait for the device anyway.  Storage devices are
3543          * reset as part of error handling, so use GFP_NOIO instead of
3544          * GFP_KERNEL.
3545          */
3546         reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3547         if (!reset_device_cmd) {
3548                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3549                 return -ENOMEM;
3550         }
3551
3552         /* Attempt to submit the Reset Device command to the command ring */
3553         spin_lock_irqsave(&xhci->lock, flags);
3554
3555         ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3556         if (ret) {
3557                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3558                 spin_unlock_irqrestore(&xhci->lock, flags);
3559                 goto command_cleanup;
3560         }
3561         xhci_ring_cmd_db(xhci);
3562         spin_unlock_irqrestore(&xhci->lock, flags);
3563
3564         /* Wait for the Reset Device command to finish */
3565         wait_for_completion(reset_device_cmd->completion);
3566
3567         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3568          * unless we tried to reset a slot ID that wasn't enabled,
3569          * or the device wasn't in the addressed or configured state.
3570          */
3571         ret = reset_device_cmd->status;
3572         switch (ret) {
3573         case COMP_COMMAND_ABORTED:
3574         case COMP_COMMAND_RING_STOPPED:
3575                 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3576                 ret = -ETIME;
3577                 goto command_cleanup;
3578         case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3579         case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3580                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3581                                 slot_id,
3582                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3583                 xhci_dbg(xhci, "Not freeing device rings.\n");
3584                 /* Don't treat this as an error.  May change my mind later. */
3585                 ret = 0;
3586                 goto command_cleanup;
3587         case COMP_SUCCESS:
3588                 xhci_dbg(xhci, "Successful reset device command.\n");
3589                 break;
3590         default:
3591                 if (xhci_is_vendor_info_code(xhci, ret))
3592                         break;
3593                 xhci_warn(xhci, "Unknown completion code %u for "
3594                                 "reset device command.\n", ret);
3595                 ret = -EINVAL;
3596                 goto command_cleanup;
3597         }
3598
3599         /* Free up host controller endpoint resources */
3600         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3601                 spin_lock_irqsave(&xhci->lock, flags);
3602                 /* Don't delete the default control endpoint resources */
3603                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3604                 spin_unlock_irqrestore(&xhci->lock, flags);
3605         }
3606
3607         /* Everything but endpoint 0 is disabled, so free the rings. */
3608         last_freed_endpoint = 1;
3609         for (i = 1; i < 31; i++) {
3610                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3611
3612                 if (ep->ep_state & EP_HAS_STREAMS) {
3613                         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3614                                         xhci_get_endpoint_address(i));
3615                         xhci_free_stream_info(xhci, ep->stream_info);
3616                         ep->stream_info = NULL;
3617                         ep->ep_state &= ~EP_HAS_STREAMS;
3618                 }
3619
3620                 if (ep->ring) {
3621                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3622                         last_freed_endpoint = i;
3623                 }
3624                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3625                         xhci_drop_ep_from_interval_table(xhci,
3626                                         &virt_dev->eps[i].bw_info,
3627                                         virt_dev->bw_table,
3628                                         udev,
3629                                         &virt_dev->eps[i],
3630                                         virt_dev->tt_info);
3631                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3632         }
3633         /* If necessary, update the number of active TTs on this root port */
3634         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3635         ret = 0;
3636
3637 command_cleanup:
3638         xhci_free_command(xhci, reset_device_cmd);
3639         return ret;
3640 }
3641
3642 /*
3643  * At this point, the struct usb_device is about to go away, the device has
3644  * disconnected, and all traffic has been stopped and the endpoints have been
3645  * disabled.  Free any HC data structures associated with that device.
3646  */
3647 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3648 {
3649         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3650         struct xhci_virt_device *virt_dev;
3651         struct xhci_slot_ctx *slot_ctx;
3652         int i, ret;
3653
3654         /*
3655          * We called pm_runtime_get_noresume when the device was attached.
3656          * Decrement the counter here to allow controller to runtime suspend
3657          * if no devices remain.
3658          */
3659         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3660                 pm_runtime_put_noidle(hcd->self.controller);
3661
3662         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3663         /* If the host is halted due to driver unload, we still need to free the
3664          * device.
3665          */
3666         if (ret <= 0 && ret != -ENODEV)
3667                 return;
3668
3669         virt_dev = xhci->devs[udev->slot_id];
3670         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3671         trace_xhci_free_dev(slot_ctx);
3672
3673         /* Stop any wayward timer functions (which may grab the lock) */
3674         for (i = 0; i < 31; i++) {
3675                 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3676                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3677         }
3678
3679         virt_dev->udev = NULL;
3680         xhci_disable_slot(xhci, udev->slot_id);
3681         /*
3682          * Event command completion handler will free any data structures
3683          * associated with the slot.  XXX Can free sleep?
3684          */
3685 }
3686
3687 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3688 {
3689         struct xhci_command *command;
3690         unsigned long flags;
3691         u32 state;
3692         int ret = 0;
3693
3694         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3695         if (!command)
3696                 return -ENOMEM;
3697
3698         spin_lock_irqsave(&xhci->lock, flags);
3699         /* Don't disable the slot if the host controller is dead. */
3700         state = readl(&xhci->op_regs->status);
3701         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3702                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3703                 spin_unlock_irqrestore(&xhci->lock, flags);
3704                 kfree(command);
3705                 return -ENODEV;
3706         }
3707
3708         ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3709                                 slot_id);
3710         if (ret) {
3711                 spin_unlock_irqrestore(&xhci->lock, flags);
3712                 kfree(command);
3713                 return ret;
3714         }
3715         xhci_ring_cmd_db(xhci);
3716         spin_unlock_irqrestore(&xhci->lock, flags);
3717         return ret;
3718 }
3719
3720 /*
3721  * Checks if we have enough host controller resources for the default control
3722  * endpoint.
3723  *
3724  * Must be called with xhci->lock held.
3725  */
3726 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3727 {
3728         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3729                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3730                                 "Not enough ep ctxs: "
3731                                 "%u active, need to add 1, limit is %u.",
3732                                 xhci->num_active_eps, xhci->limit_active_eps);
3733                 return -ENOMEM;
3734         }
3735         xhci->num_active_eps += 1;
3736         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3737                         "Adding 1 ep ctx, %u now active.",
3738                         xhci->num_active_eps);
3739         return 0;
3740 }
3741
3742
3743 /*
3744  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3745  * timed out, or allocating memory failed.  Returns 1 on success.
3746  */
3747 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3748 {
3749         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3750         struct xhci_virt_device *vdev;
3751         struct xhci_slot_ctx *slot_ctx;
3752         unsigned long flags;
3753         int ret, slot_id;
3754         struct xhci_command *command;
3755
3756         command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
3757         if (!command)
3758                 return 0;
3759
3760         /* xhci->slot_id and xhci->addr_dev are not thread-safe */
3761         mutex_lock(&xhci->mutex);
3762         spin_lock_irqsave(&xhci->lock, flags);
3763         ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3764         if (ret) {
3765                 spin_unlock_irqrestore(&xhci->lock, flags);
3766                 mutex_unlock(&xhci->mutex);
3767                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3768                 xhci_free_command(xhci, command);
3769                 return 0;
3770         }
3771         xhci_ring_cmd_db(xhci);
3772         spin_unlock_irqrestore(&xhci->lock, flags);
3773
3774         wait_for_completion(command->completion);
3775         slot_id = command->slot_id;
3776         mutex_unlock(&xhci->mutex);
3777
3778         if (!slot_id || command->status != COMP_SUCCESS) {
3779                 xhci_err(xhci, "Error while assigning device slot ID\n");
3780                 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3781                                 HCS_MAX_SLOTS(
3782                                         readl(&xhci->cap_regs->hcs_params1)));
3783                 xhci_free_command(xhci, command);
3784                 return 0;
3785         }
3786
3787         xhci_free_command(xhci, command);
3788
3789         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3790                 spin_lock_irqsave(&xhci->lock, flags);
3791                 ret = xhci_reserve_host_control_ep_resources(xhci);
3792                 if (ret) {
3793                         spin_unlock_irqrestore(&xhci->lock, flags);
3794                         xhci_warn(xhci, "Not enough host resources, "
3795                                         "active endpoint contexts = %u\n",
3796                                         xhci->num_active_eps);
3797                         goto disable_slot;
3798                 }
3799                 spin_unlock_irqrestore(&xhci->lock, flags);
3800         }
3801         /* Use GFP_NOIO, since this function can be called from
3802          * xhci_discover_or_reset_device(), which may be called as part of
3803          * mass storage driver error handling.
3804          */
3805         if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3806                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3807                 goto disable_slot;
3808         }
3809         vdev = xhci->devs[slot_id];
3810         slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
3811         trace_xhci_alloc_dev(slot_ctx);
3812
3813         udev->slot_id = slot_id;
3814
3815         /*
3816          * If resetting upon resume, we can't put the controller into runtime
3817          * suspend if there is a device attached.
3818          */
3819         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3820                 pm_runtime_get_noresume(hcd->self.controller);
3821
3822         /* Is this a LS or FS device under a HS hub? */
3823         /* Hub or peripherial? */
3824         return 1;
3825
3826 disable_slot:
3827         return xhci_disable_slot(xhci, udev->slot_id);
3828 }
3829
3830 /*
3831  * Issue an Address Device command and optionally send a corresponding
3832  * SetAddress request to the device.
3833  */
3834 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3835                              enum xhci_setup_dev setup)
3836 {
3837         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3838         unsigned long flags;
3839         struct xhci_virt_device *virt_dev;
3840         int ret = 0;
3841         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3842         struct xhci_slot_ctx *slot_ctx;
3843         struct xhci_input_control_ctx *ctrl_ctx;
3844         u64 temp_64;
3845         struct xhci_command *command = NULL;
3846
3847         mutex_lock(&xhci->mutex);
3848
3849         if (xhci->xhc_state) {  /* dying, removing or halted */
3850                 ret = -ESHUTDOWN;
3851                 goto out;
3852         }
3853
3854         if (!udev->slot_id) {
3855                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3856                                 "Bad Slot ID %d", udev->slot_id);
3857                 ret = -EINVAL;
3858                 goto out;
3859         }
3860
3861         virt_dev = xhci->devs[udev->slot_id];
3862
3863         if (WARN_ON(!virt_dev)) {
3864                 /*
3865                  * In plug/unplug torture test with an NEC controller,
3866                  * a zero-dereference was observed once due to virt_dev = 0.
3867                  * Print useful debug rather than crash if it is observed again!
3868                  */
3869                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3870                         udev->slot_id);
3871                 ret = -EINVAL;
3872                 goto out;
3873         }
3874         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3875         trace_xhci_setup_device_slot(slot_ctx);
3876
3877         if (setup == SETUP_CONTEXT_ONLY) {
3878                 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3879                     SLOT_STATE_DEFAULT) {
3880                         xhci_dbg(xhci, "Slot already in default state\n");
3881                         goto out;
3882                 }
3883         }
3884
3885         command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
3886         if (!command) {
3887                 ret = -ENOMEM;
3888                 goto out;
3889         }
3890
3891         command->in_ctx = virt_dev->in_ctx;
3892
3893         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3894         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3895         if (!ctrl_ctx) {
3896                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3897                                 __func__);
3898                 ret = -EINVAL;
3899                 goto out;
3900         }
3901         /*
3902          * If this is the first Set Address since device plug-in or
3903          * virt_device realloaction after a resume with an xHCI power loss,
3904          * then set up the slot context.
3905          */
3906         if (!slot_ctx->dev_info)
3907                 xhci_setup_addressable_virt_dev(xhci, udev);
3908         /* Otherwise, update the control endpoint ring enqueue pointer. */
3909         else
3910                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3911         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3912         ctrl_ctx->drop_flags = 0;
3913
3914         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3915                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3916
3917         spin_lock_irqsave(&xhci->lock, flags);
3918         trace_xhci_setup_device(virt_dev);
3919         ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3920                                         udev->slot_id, setup);
3921         if (ret) {
3922                 spin_unlock_irqrestore(&xhci->lock, flags);
3923                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3924                                 "FIXME: allocate a command ring segment");
3925                 goto out;
3926         }
3927         xhci_ring_cmd_db(xhci);
3928         spin_unlock_irqrestore(&xhci->lock, flags);
3929
3930         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3931         wait_for_completion(command->completion);
3932
3933         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3934          * the SetAddress() "recovery interval" required by USB and aborting the
3935          * command on a timeout.
3936          */
3937         switch (command->status) {
3938         case COMP_COMMAND_ABORTED:
3939         case COMP_COMMAND_RING_STOPPED:
3940                 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3941                 ret = -ETIME;
3942                 break;
3943         case COMP_CONTEXT_STATE_ERROR:
3944         case COMP_SLOT_NOT_ENABLED_ERROR:
3945                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3946                          act, udev->slot_id);
3947                 ret = -EINVAL;
3948                 break;
3949         case COMP_USB_TRANSACTION_ERROR:
3950                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3951                 ret = -EPROTO;
3952                 break;
3953         case COMP_INCOMPATIBLE_DEVICE_ERROR:
3954                 dev_warn(&udev->dev,
3955                          "ERROR: Incompatible device for setup %s command\n", act);
3956                 ret = -ENODEV;
3957                 break;
3958         case COMP_SUCCESS:
3959                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3960                                "Successful setup %s command", act);
3961                 break;
3962         default:
3963                 xhci_err(xhci,
3964                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
3965                          act, command->status);
3966                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3967                 ret = -EINVAL;
3968                 break;
3969         }
3970         if (ret)
3971                 goto out;
3972         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3973         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3974                         "Op regs DCBAA ptr = %#016llx", temp_64);
3975         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3976                 "Slot ID %d dcbaa entry @%p = %#016llx",
3977                 udev->slot_id,
3978                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3979                 (unsigned long long)
3980                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3981         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3982                         "Output Context DMA address = %#08llx",
3983                         (unsigned long long)virt_dev->out_ctx->dma);
3984         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3985                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3986         /*
3987          * USB core uses address 1 for the roothubs, so we add one to the
3988          * address given back to us by the HC.
3989          */
3990         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3991                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3992         /* Zero the input context control for later use */
3993         ctrl_ctx->add_flags = 0;
3994         ctrl_ctx->drop_flags = 0;
3995
3996         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3997                        "Internal device address = %d",
3998                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3999 out:
4000         mutex_unlock(&xhci->mutex);
4001         if (command) {
4002                 kfree(command->completion);
4003                 kfree(command);
4004         }
4005         return ret;
4006 }
4007
4008 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4009 {
4010         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4011 }
4012
4013 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4014 {
4015         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4016 }
4017
4018 /*
4019  * Transfer the port index into real index in the HW port status
4020  * registers. Caculate offset between the port's PORTSC register
4021  * and port status base. Divide the number of per port register
4022  * to get the real index. The raw port number bases 1.
4023  */
4024 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4025 {
4026         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4027         __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
4028         __le32 __iomem *addr;
4029         int raw_port;
4030
4031         if (hcd->speed < HCD_USB3)
4032                 addr = xhci->usb2_ports[port1 - 1];
4033         else
4034                 addr = xhci->usb3_ports[port1 - 1];
4035
4036         raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
4037         return raw_port;
4038 }
4039
4040 /*
4041  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4042  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4043  */
4044 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4045                         struct usb_device *udev, u16 max_exit_latency)
4046 {
4047         struct xhci_virt_device *virt_dev;
4048         struct xhci_command *command;
4049         struct xhci_input_control_ctx *ctrl_ctx;
4050         struct xhci_slot_ctx *slot_ctx;
4051         unsigned long flags;
4052         int ret;
4053
4054         spin_lock_irqsave(&xhci->lock, flags);
4055
4056         virt_dev = xhci->devs[udev->slot_id];
4057
4058         /*
4059          * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4060          * xHC was re-initialized. Exit latency will be set later after
4061          * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4062          */
4063
4064         if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4065                 spin_unlock_irqrestore(&xhci->lock, flags);
4066                 return 0;
4067         }
4068
4069         /* Attempt to issue an Evaluate Context command to change the MEL. */
4070         command = xhci->lpm_command;
4071         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4072         if (!ctrl_ctx) {
4073                 spin_unlock_irqrestore(&xhci->lock, flags);
4074                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4075                                 __func__);
4076                 return -ENOMEM;
4077         }
4078
4079         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4080         spin_unlock_irqrestore(&xhci->lock, flags);
4081
4082         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4083         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4084         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4085         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4086         slot_ctx->dev_state = 0;
4087
4088         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4089                         "Set up evaluate context for LPM MEL change.");
4090
4091         /* Issue and wait for the evaluate context command. */
4092         ret = xhci_configure_endpoint(xhci, udev, command,
4093                         true, true);
4094
4095         if (!ret) {
4096                 spin_lock_irqsave(&xhci->lock, flags);
4097                 virt_dev->current_mel = max_exit_latency;
4098                 spin_unlock_irqrestore(&xhci->lock, flags);
4099         }
4100         return ret;
4101 }
4102
4103 #ifdef CONFIG_PM
4104
4105 /* BESL to HIRD Encoding array for USB2 LPM */
4106 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4107         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4108
4109 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4110 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4111                                         struct usb_device *udev)
4112 {
4113         int u2del, besl, besl_host;
4114         int besl_device = 0;
4115         u32 field;
4116
4117         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4118         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4119
4120         if (field & USB_BESL_SUPPORT) {
4121                 for (besl_host = 0; besl_host < 16; besl_host++) {
4122                         if (xhci_besl_encoding[besl_host] >= u2del)
4123                                 break;
4124                 }
4125                 /* Use baseline BESL value as default */
4126                 if (field & USB_BESL_BASELINE_VALID)
4127                         besl_device = USB_GET_BESL_BASELINE(field);
4128                 else if (field & USB_BESL_DEEP_VALID)
4129                         besl_device = USB_GET_BESL_DEEP(field);
4130         } else {
4131                 if (u2del <= 50)
4132                         besl_host = 0;
4133                 else
4134                         besl_host = (u2del - 51) / 75 + 1;
4135         }
4136
4137         besl = besl_host + besl_device;
4138         if (besl > 15)
4139                 besl = 15;
4140
4141         return besl;
4142 }
4143
4144 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4145 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4146 {
4147         u32 field;
4148         int l1;
4149         int besld = 0;
4150         int hirdm = 0;
4151
4152         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4153
4154         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4155         l1 = udev->l1_params.timeout / 256;
4156
4157         /* device has preferred BESLD */
4158         if (field & USB_BESL_DEEP_VALID) {
4159                 besld = USB_GET_BESL_DEEP(field);
4160                 hirdm = 1;
4161         }
4162
4163         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4164 }
4165
4166 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4167                         struct usb_device *udev, int enable)
4168 {
4169         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4170         __le32 __iomem  **port_array;
4171         __le32 __iomem  *pm_addr, *hlpm_addr;
4172         u32             pm_val, hlpm_val, field;
4173         unsigned int    port_num;
4174         unsigned long   flags;
4175         int             hird, exit_latency;
4176         int             ret;
4177
4178         if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4179                         !udev->lpm_capable)
4180                 return -EPERM;
4181
4182         if (!udev->parent || udev->parent->parent ||
4183                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4184                 return -EPERM;
4185
4186         if (udev->usb2_hw_lpm_capable != 1)
4187                 return -EPERM;
4188
4189         spin_lock_irqsave(&xhci->lock, flags);
4190
4191         port_array = xhci->usb2_ports;
4192         port_num = udev->portnum - 1;
4193         pm_addr = port_array[port_num] + PORTPMSC;
4194         pm_val = readl(pm_addr);
4195         hlpm_addr = port_array[port_num] + PORTHLPMC;
4196
4197         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4198                         enable ? "enable" : "disable", port_num + 1);
4199
4200         if (enable) {
4201                 /* Host supports BESL timeout instead of HIRD */
4202                 if (udev->usb2_hw_lpm_besl_capable) {
4203                         /* if device doesn't have a preferred BESL value use a
4204                          * default one which works with mixed HIRD and BESL
4205                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4206                          */
4207                         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4208                         if ((field & USB_BESL_SUPPORT) &&
4209                             (field & USB_BESL_BASELINE_VALID))
4210                                 hird = USB_GET_BESL_BASELINE(field);
4211                         else
4212                                 hird = udev->l1_params.besl;
4213
4214                         exit_latency = xhci_besl_encoding[hird];
4215                         spin_unlock_irqrestore(&xhci->lock, flags);
4216
4217                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4218                          * input context for link powermanagement evaluate
4219                          * context commands. It is protected by hcd->bandwidth
4220                          * mutex and is shared by all devices. We need to set
4221                          * the max ext latency in USB 2 BESL LPM as well, so
4222                          * use the same mutex and xhci_change_max_exit_latency()
4223                          */
4224                         mutex_lock(hcd->bandwidth_mutex);
4225                         ret = xhci_change_max_exit_latency(xhci, udev,
4226                                                            exit_latency);
4227                         mutex_unlock(hcd->bandwidth_mutex);
4228
4229                         if (ret < 0)
4230                                 return ret;
4231                         spin_lock_irqsave(&xhci->lock, flags);
4232
4233                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4234                         writel(hlpm_val, hlpm_addr);
4235                         /* flush write */
4236                         readl(hlpm_addr);
4237                 } else {
4238                         hird = xhci_calculate_hird_besl(xhci, udev);
4239                 }
4240
4241                 pm_val &= ~PORT_HIRD_MASK;
4242                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4243                 writel(pm_val, pm_addr);
4244                 pm_val = readl(pm_addr);
4245                 pm_val |= PORT_HLE;
4246                 writel(pm_val, pm_addr);
4247                 /* flush write */
4248                 readl(pm_addr);
4249         } else {
4250                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4251                 writel(pm_val, pm_addr);
4252                 /* flush write */
4253                 readl(pm_addr);
4254                 if (udev->usb2_hw_lpm_besl_capable) {
4255                         spin_unlock_irqrestore(&xhci->lock, flags);
4256                         mutex_lock(hcd->bandwidth_mutex);
4257                         xhci_change_max_exit_latency(xhci, udev, 0);
4258                         mutex_unlock(hcd->bandwidth_mutex);
4259                         readl_poll_timeout(port_array[port_num], pm_val,
4260                                            (pm_val & PORT_PLS_MASK) == XDEV_U0,
4261                                            100, 10000);
4262                         return 0;
4263                 }
4264         }
4265
4266         spin_unlock_irqrestore(&xhci->lock, flags);
4267         return 0;
4268 }
4269
4270 /* check if a usb2 port supports a given extened capability protocol
4271  * only USB2 ports extended protocol capability values are cached.
4272  * Return 1 if capability is supported
4273  */
4274 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4275                                            unsigned capability)
4276 {
4277         u32 port_offset, port_count;
4278         int i;
4279
4280         for (i = 0; i < xhci->num_ext_caps; i++) {
4281                 if (xhci->ext_caps[i] & capability) {
4282                         /* port offsets starts at 1 */
4283                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4284                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4285                         if (port >= port_offset &&
4286                             port < port_offset + port_count)
4287                                 return 1;
4288                 }
4289         }
4290         return 0;
4291 }
4292
4293 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4294 {
4295         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4296         int             portnum = udev->portnum - 1;
4297
4298         if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4299                         !udev->lpm_capable)
4300                 return 0;
4301
4302         /* we only support lpm for non-hub device connected to root hub yet */
4303         if (!udev->parent || udev->parent->parent ||
4304                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4305                 return 0;
4306
4307         if (xhci->hw_lpm_support == 1 &&
4308                         xhci_check_usb2_port_capability(
4309                                 xhci, portnum, XHCI_HLC)) {
4310                 udev->usb2_hw_lpm_capable = 1;
4311                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4312                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4313                 if (xhci_check_usb2_port_capability(xhci, portnum,
4314                                         XHCI_BLC))
4315                         udev->usb2_hw_lpm_besl_capable = 1;
4316         }
4317
4318         return 0;
4319 }
4320
4321 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4322
4323 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4324 static unsigned long long xhci_service_interval_to_ns(
4325                 struct usb_endpoint_descriptor *desc)
4326 {
4327         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4328 }
4329
4330 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4331                 enum usb3_link_state state)
4332 {
4333         unsigned long long sel;
4334         unsigned long long pel;
4335         unsigned int max_sel_pel;
4336         char *state_name;
4337
4338         switch (state) {
4339         case USB3_LPM_U1:
4340                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4341                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4342                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4343                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4344                 state_name = "U1";
4345                 break;
4346         case USB3_LPM_U2:
4347                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4348                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4349                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4350                 state_name = "U2";
4351                 break;
4352         default:
4353                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4354                                 __func__);
4355                 return USB3_LPM_DISABLED;
4356         }
4357
4358         if (sel <= max_sel_pel && pel <= max_sel_pel)
4359                 return USB3_LPM_DEVICE_INITIATED;
4360
4361         if (sel > max_sel_pel)
4362                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4363                                 "due to long SEL %llu ms\n",
4364                                 state_name, sel);
4365         else
4366                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4367                                 "due to long PEL %llu ms\n",
4368                                 state_name, pel);
4369         return USB3_LPM_DISABLED;
4370 }
4371
4372 /* The U1 timeout should be the maximum of the following values:
4373  *  - For control endpoints, U1 system exit latency (SEL) * 3
4374  *  - For bulk endpoints, U1 SEL * 5
4375  *  - For interrupt endpoints:
4376  *    - Notification EPs, U1 SEL * 3
4377  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4378  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4379  */
4380 static unsigned long long xhci_calculate_intel_u1_timeout(
4381                 struct usb_device *udev,
4382                 struct usb_endpoint_descriptor *desc)
4383 {
4384         unsigned long long timeout_ns;
4385         int ep_type;
4386         int intr_type;
4387
4388         ep_type = usb_endpoint_type(desc);
4389         switch (ep_type) {
4390         case USB_ENDPOINT_XFER_CONTROL:
4391                 timeout_ns = udev->u1_params.sel * 3;
4392                 break;
4393         case USB_ENDPOINT_XFER_BULK:
4394                 timeout_ns = udev->u1_params.sel * 5;
4395                 break;
4396         case USB_ENDPOINT_XFER_INT:
4397                 intr_type = usb_endpoint_interrupt_type(desc);
4398                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4399                         timeout_ns = udev->u1_params.sel * 3;
4400                         break;
4401                 }
4402                 /* Otherwise the calculation is the same as isoc eps */
4403         case USB_ENDPOINT_XFER_ISOC:
4404                 timeout_ns = xhci_service_interval_to_ns(desc);
4405                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4406                 if (timeout_ns < udev->u1_params.sel * 2)
4407                         timeout_ns = udev->u1_params.sel * 2;
4408                 break;
4409         default:
4410                 return 0;
4411         }
4412
4413         return timeout_ns;
4414 }
4415
4416 /* Returns the hub-encoded U1 timeout value. */
4417 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4418                 struct usb_device *udev,
4419                 struct usb_endpoint_descriptor *desc)
4420 {
4421         unsigned long long timeout_ns;
4422
4423         /* Prevent U1 if service interval is shorter than U1 exit latency */
4424         if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4425                 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4426                         dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4427                         return USB3_LPM_DISABLED;
4428                 }
4429         }
4430
4431         if (xhci->quirks & XHCI_INTEL_HOST)
4432                 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4433         else
4434                 timeout_ns = udev->u1_params.sel;
4435
4436         /* The U1 timeout is encoded in 1us intervals.
4437          * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4438          */
4439         if (timeout_ns == USB3_LPM_DISABLED)
4440                 timeout_ns = 1;
4441         else
4442                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4443
4444         /* If the necessary timeout value is bigger than what we can set in the
4445          * USB 3.0 hub, we have to disable hub-initiated U1.
4446          */
4447         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4448                 return timeout_ns;
4449         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4450                         "due to long timeout %llu ms\n", timeout_ns);
4451         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4452 }
4453
4454 /* The U2 timeout should be the maximum of:
4455  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4456  *  - largest bInterval of any active periodic endpoint (to avoid going
4457  *    into lower power link states between intervals).
4458  *  - the U2 Exit Latency of the device
4459  */
4460 static unsigned long long xhci_calculate_intel_u2_timeout(
4461                 struct usb_device *udev,
4462                 struct usb_endpoint_descriptor *desc)
4463 {
4464         unsigned long long timeout_ns;
4465         unsigned long long u2_del_ns;
4466
4467         timeout_ns = 10 * 1000 * 1000;
4468
4469         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4470                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4471                 timeout_ns = xhci_service_interval_to_ns(desc);
4472
4473         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4474         if (u2_del_ns > timeout_ns)
4475                 timeout_ns = u2_del_ns;
4476
4477         return timeout_ns;
4478 }
4479
4480 /* Returns the hub-encoded U2 timeout value. */
4481 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4482                 struct usb_device *udev,
4483                 struct usb_endpoint_descriptor *desc)
4484 {
4485         unsigned long long timeout_ns;
4486
4487         /* Prevent U2 if service interval is shorter than U2 exit latency */
4488         if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4489                 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4490                         dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4491                         return USB3_LPM_DISABLED;
4492                 }
4493         }
4494
4495         if (xhci->quirks & XHCI_INTEL_HOST)
4496                 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4497         else
4498                 timeout_ns = udev->u2_params.sel;
4499
4500         /* The U2 timeout is encoded in 256us intervals */
4501         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4502         /* If the necessary timeout value is bigger than what we can set in the
4503          * USB 3.0 hub, we have to disable hub-initiated U2.
4504          */
4505         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4506                 return timeout_ns;
4507         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4508                         "due to long timeout %llu ms\n", timeout_ns);
4509         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4510 }
4511
4512 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4513                 struct usb_device *udev,
4514                 struct usb_endpoint_descriptor *desc,
4515                 enum usb3_link_state state,
4516                 u16 *timeout)
4517 {
4518         if (state == USB3_LPM_U1)
4519                 return xhci_calculate_u1_timeout(xhci, udev, desc);
4520         else if (state == USB3_LPM_U2)
4521                 return xhci_calculate_u2_timeout(xhci, udev, desc);
4522
4523         return USB3_LPM_DISABLED;
4524 }
4525
4526 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4527                 struct usb_device *udev,
4528                 struct usb_endpoint_descriptor *desc,
4529                 enum usb3_link_state state,
4530                 u16 *timeout)
4531 {
4532         u16 alt_timeout;
4533
4534         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4535                 desc, state, timeout);
4536
4537         /* If we found we can't enable hub-initiated LPM, and
4538          * the U1 or U2 exit latency was too high to allow
4539          * device-initiated LPM as well, then we will disable LPM
4540          * for this device, so stop searching any further.
4541          */
4542         if (alt_timeout == USB3_LPM_DISABLED) {
4543                 *timeout = alt_timeout;
4544                 return -E2BIG;
4545         }
4546         if (alt_timeout > *timeout)
4547                 *timeout = alt_timeout;
4548         return 0;
4549 }
4550
4551 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4552                 struct usb_device *udev,
4553                 struct usb_host_interface *alt,
4554                 enum usb3_link_state state,
4555                 u16 *timeout)
4556 {
4557         int j;
4558
4559         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4560                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4561                                         &alt->endpoint[j].desc, state, timeout))
4562                         return -E2BIG;
4563                 continue;
4564         }
4565         return 0;
4566 }
4567
4568 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4569                 enum usb3_link_state state)
4570 {
4571         struct usb_device *parent;
4572         unsigned int num_hubs;
4573
4574         if (state == USB3_LPM_U2)
4575                 return 0;
4576
4577         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4578         for (parent = udev->parent, num_hubs = 0; parent->parent;
4579                         parent = parent->parent)
4580                 num_hubs++;
4581
4582         if (num_hubs < 2)
4583                 return 0;
4584
4585         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4586                         " below second-tier hub.\n");
4587         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4588                         "to decrease power consumption.\n");
4589         return -E2BIG;
4590 }
4591
4592 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4593                 struct usb_device *udev,
4594                 enum usb3_link_state state)
4595 {
4596         if (xhci->quirks & XHCI_INTEL_HOST)
4597                 return xhci_check_intel_tier_policy(udev, state);
4598         else
4599                 return 0;
4600 }
4601
4602 /* Returns the U1 or U2 timeout that should be enabled.
4603  * If the tier check or timeout setting functions return with a non-zero exit
4604  * code, that means the timeout value has been finalized and we shouldn't look
4605  * at any more endpoints.
4606  */
4607 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4608                         struct usb_device *udev, enum usb3_link_state state)
4609 {
4610         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4611         struct usb_host_config *config;
4612         char *state_name;
4613         int i;
4614         u16 timeout = USB3_LPM_DISABLED;
4615
4616         if (state == USB3_LPM_U1)
4617                 state_name = "U1";
4618         else if (state == USB3_LPM_U2)
4619                 state_name = "U2";
4620         else {
4621                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4622                                 state);
4623                 return timeout;
4624         }
4625
4626         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4627                 return timeout;
4628
4629         /* Gather some information about the currently installed configuration
4630          * and alternate interface settings.
4631          */
4632         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4633                         state, &timeout))
4634                 return timeout;
4635
4636         config = udev->actconfig;
4637         if (!config)
4638                 return timeout;
4639
4640         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4641                 struct usb_driver *driver;
4642                 struct usb_interface *intf = config->interface[i];
4643
4644                 if (!intf)
4645                         continue;
4646
4647                 /* Check if any currently bound drivers want hub-initiated LPM
4648                  * disabled.
4649                  */
4650                 if (intf->dev.driver) {
4651                         driver = to_usb_driver(intf->dev.driver);
4652                         if (driver && driver->disable_hub_initiated_lpm) {
4653                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4654                                         state_name, driver->name);
4655                                 timeout = xhci_get_timeout_no_hub_lpm(udev,
4656                                                                       state);
4657                                 if (timeout == USB3_LPM_DISABLED)
4658                                         return timeout;
4659                         }
4660                 }
4661
4662                 /* Not sure how this could happen... */
4663                 if (!intf->cur_altsetting)
4664                         continue;
4665
4666                 if (xhci_update_timeout_for_interface(xhci, udev,
4667                                         intf->cur_altsetting,
4668                                         state, &timeout))
4669                         return timeout;
4670         }
4671         return timeout;
4672 }
4673
4674 static int calculate_max_exit_latency(struct usb_device *udev,
4675                 enum usb3_link_state state_changed,
4676                 u16 hub_encoded_timeout)
4677 {
4678         unsigned long long u1_mel_us = 0;
4679         unsigned long long u2_mel_us = 0;
4680         unsigned long long mel_us = 0;
4681         bool disabling_u1;
4682         bool disabling_u2;
4683         bool enabling_u1;
4684         bool enabling_u2;
4685
4686         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4687                         hub_encoded_timeout == USB3_LPM_DISABLED);
4688         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4689                         hub_encoded_timeout == USB3_LPM_DISABLED);
4690
4691         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4692                         hub_encoded_timeout != USB3_LPM_DISABLED);
4693         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4694                         hub_encoded_timeout != USB3_LPM_DISABLED);
4695
4696         /* If U1 was already enabled and we're not disabling it,
4697          * or we're going to enable U1, account for the U1 max exit latency.
4698          */
4699         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4700                         enabling_u1)
4701                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4702         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4703                         enabling_u2)
4704                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4705
4706         if (u1_mel_us > u2_mel_us)
4707                 mel_us = u1_mel_us;
4708         else
4709                 mel_us = u2_mel_us;
4710         /* xHCI host controller max exit latency field is only 16 bits wide. */
4711         if (mel_us > MAX_EXIT) {
4712                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4713                                 "is too big.\n", mel_us);
4714                 return -E2BIG;
4715         }
4716         return mel_us;
4717 }
4718
4719 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4720 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4721                         struct usb_device *udev, enum usb3_link_state state)
4722 {
4723         struct xhci_hcd *xhci;
4724         u16 hub_encoded_timeout;
4725         int mel;
4726         int ret;
4727
4728         xhci = hcd_to_xhci(hcd);
4729         /* The LPM timeout values are pretty host-controller specific, so don't
4730          * enable hub-initiated timeouts unless the vendor has provided
4731          * information about their timeout algorithm.
4732          */
4733         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4734                         !xhci->devs[udev->slot_id])
4735                 return USB3_LPM_DISABLED;
4736
4737         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4738         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4739         if (mel < 0) {
4740                 /* Max Exit Latency is too big, disable LPM. */
4741                 hub_encoded_timeout = USB3_LPM_DISABLED;
4742                 mel = 0;
4743         }
4744
4745         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4746         if (ret)
4747                 return ret;
4748         return hub_encoded_timeout;
4749 }
4750
4751 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4752                         struct usb_device *udev, enum usb3_link_state state)
4753 {
4754         struct xhci_hcd *xhci;
4755         u16 mel;
4756
4757         xhci = hcd_to_xhci(hcd);
4758         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4759                         !xhci->devs[udev->slot_id])
4760                 return 0;
4761
4762         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4763         return xhci_change_max_exit_latency(xhci, udev, mel);
4764 }
4765 #else /* CONFIG_PM */
4766
4767 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4768                                 struct usb_device *udev, int enable)
4769 {
4770         return 0;
4771 }
4772
4773 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4774 {
4775         return 0;
4776 }
4777
4778 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4779                         struct usb_device *udev, enum usb3_link_state state)
4780 {
4781         return USB3_LPM_DISABLED;
4782 }
4783
4784 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4785                         struct usb_device *udev, enum usb3_link_state state)
4786 {
4787         return 0;
4788 }
4789 #endif  /* CONFIG_PM */
4790
4791 /*-------------------------------------------------------------------------*/
4792
4793 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4794  * internal data structures for the device.
4795  */
4796 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4797                         struct usb_tt *tt, gfp_t mem_flags)
4798 {
4799         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4800         struct xhci_virt_device *vdev;
4801         struct xhci_command *config_cmd;
4802         struct xhci_input_control_ctx *ctrl_ctx;
4803         struct xhci_slot_ctx *slot_ctx;
4804         unsigned long flags;
4805         unsigned think_time;
4806         int ret;
4807
4808         /* Ignore root hubs */
4809         if (!hdev->parent)
4810                 return 0;
4811
4812         vdev = xhci->devs[hdev->slot_id];
4813         if (!vdev) {
4814                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4815                 return -EINVAL;
4816         }
4817
4818         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4819         if (!config_cmd)
4820                 return -ENOMEM;
4821
4822         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4823         if (!ctrl_ctx) {
4824                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4825                                 __func__);
4826                 xhci_free_command(xhci, config_cmd);
4827                 return -ENOMEM;
4828         }
4829
4830         spin_lock_irqsave(&xhci->lock, flags);
4831         if (hdev->speed == USB_SPEED_HIGH &&
4832                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4833                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4834                 xhci_free_command(xhci, config_cmd);
4835                 spin_unlock_irqrestore(&xhci->lock, flags);
4836                 return -ENOMEM;
4837         }
4838
4839         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4840         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4841         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4842         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4843         /*
4844          * refer to section 6.2.2: MTT should be 0 for full speed hub,
4845          * but it may be already set to 1 when setup an xHCI virtual
4846          * device, so clear it anyway.
4847          */
4848         if (tt->multi)
4849                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4850         else if (hdev->speed == USB_SPEED_FULL)
4851                 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4852
4853         if (xhci->hci_version > 0x95) {
4854                 xhci_dbg(xhci, "xHCI version %x needs hub "
4855                                 "TT think time and number of ports\n",
4856                                 (unsigned int) xhci->hci_version);
4857                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4858                 /* Set TT think time - convert from ns to FS bit times.
4859                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
4860                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
4861                  *
4862                  * xHCI 1.0: this field shall be 0 if the device is not a
4863                  * High-spped hub.
4864                  */
4865                 think_time = tt->think_time;
4866                 if (think_time != 0)
4867                         think_time = (think_time / 666) - 1;
4868                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4869                         slot_ctx->tt_info |=
4870                                 cpu_to_le32(TT_THINK_TIME(think_time));
4871         } else {
4872                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4873                                 "TT think time or number of ports\n",
4874                                 (unsigned int) xhci->hci_version);
4875         }
4876         slot_ctx->dev_state = 0;
4877         spin_unlock_irqrestore(&xhci->lock, flags);
4878
4879         xhci_dbg(xhci, "Set up %s for hub device.\n",
4880                         (xhci->hci_version > 0x95) ?
4881                         "configure endpoint" : "evaluate context");
4882
4883         /* Issue and wait for the configure endpoint or
4884          * evaluate context command.
4885          */
4886         if (xhci->hci_version > 0x95)
4887                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4888                                 false, false);
4889         else
4890                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4891                                 true, false);
4892
4893         xhci_free_command(xhci, config_cmd);
4894         return ret;
4895 }
4896
4897 static int xhci_get_frame(struct usb_hcd *hcd)
4898 {
4899         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4900         /* EHCI mods by the periodic size.  Why? */
4901         return readl(&xhci->run_regs->microframe_index) >> 3;
4902 }
4903
4904 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4905 {
4906         struct xhci_hcd         *xhci;
4907         /*
4908          * TODO: Check with DWC3 clients for sysdev according to
4909          * quirks
4910          */
4911         struct device           *dev = hcd->self.sysdev;
4912         unsigned int            minor_rev;
4913         int                     retval;
4914
4915         /* Accept arbitrarily long scatter-gather lists */
4916         hcd->self.sg_tablesize = ~0;
4917
4918         /* support to build packet from discontinuous buffers */
4919         hcd->self.no_sg_constraint = 1;
4920
4921         /* XHCI controllers don't stop the ep queue on short packets :| */
4922         hcd->self.no_stop_on_short = 1;
4923
4924         xhci = hcd_to_xhci(hcd);
4925
4926         if (usb_hcd_is_primary_hcd(hcd)) {
4927                 xhci->main_hcd = hcd;
4928                 /* Mark the first roothub as being USB 2.0.
4929                  * The xHCI driver will register the USB 3.0 roothub.
4930                  */
4931                 hcd->speed = HCD_USB2;
4932                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4933                 /*
4934                  * USB 2.0 roothub under xHCI has an integrated TT,
4935                  * (rate matching hub) as opposed to having an OHCI/UHCI
4936                  * companion controller.
4937                  */
4938                 hcd->has_tt = 1;
4939         } else {
4940                 /*
4941                  * Some 3.1 hosts return sbrn 0x30, use xhci supported protocol
4942                  * minor revision instead of sbrn
4943                  */
4944                 minor_rev = xhci->usb3_rhub.min_rev;
4945                 if (minor_rev) {
4946                         hcd->speed = HCD_USB31;
4947                         hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
4948                 }
4949                 xhci_info(xhci, "Host supports USB 3.%x %s SuperSpeed\n",
4950                           minor_rev,
4951                           minor_rev ? "Enhanced" : "");
4952
4953                 /* xHCI private pointer was set in xhci_pci_probe for the second
4954                  * registered roothub.
4955                  */
4956                 return 0;
4957         }
4958
4959         mutex_init(&xhci->mutex);
4960         xhci->cap_regs = hcd->regs;
4961         xhci->op_regs = hcd->regs +
4962                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4963         xhci->run_regs = hcd->regs +
4964                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4965         /* Cache read-only capability registers */
4966         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4967         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4968         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4969         xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4970         xhci->hci_version = HC_VERSION(xhci->hcc_params);
4971         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4972         if (xhci->hci_version > 0x100)
4973                 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4974         xhci_print_registers(xhci);
4975
4976         xhci->quirks |= quirks;
4977
4978         get_quirks(dev, xhci);
4979
4980         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4981          * success event after a short transfer. This quirk will ignore such
4982          * spurious event.
4983          */
4984         if (xhci->hci_version > 0x96)
4985                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4986
4987         /* Make sure the HC is halted. */
4988         retval = xhci_halt(xhci);
4989         if (retval)
4990                 return retval;
4991
4992         xhci_dbg(xhci, "Resetting HCD\n");
4993         /* Reset the internal HC memory state and registers. */
4994         retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
4995         if (retval)
4996                 return retval;
4997         xhci_dbg(xhci, "Reset complete\n");
4998
4999         /*
5000          * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5001          * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5002          * address memory pointers actually. So, this driver clears the AC64
5003          * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5004          * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5005          */
5006         if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5007                 xhci->hcc_params &= ~BIT(0);
5008
5009         /* Set dma_mask and coherent_dma_mask to 64-bits,
5010          * if xHC supports 64-bit addressing */
5011         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5012                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5013                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5014                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5015         } else {
5016                 /*
5017                  * This is to avoid error in cases where a 32-bit USB
5018                  * controller is used on a 64-bit capable system.
5019                  */
5020                 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5021                 if (retval)
5022                         return retval;
5023                 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5024                 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5025         }
5026
5027         xhci_dbg(xhci, "Calling HCD init\n");
5028         /* Initialize HCD and host controller data structures. */
5029         retval = xhci_init(hcd);
5030         if (retval)
5031                 return retval;
5032         xhci_dbg(xhci, "Called HCD init\n");
5033
5034         xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5035                   xhci->hcc_params, xhci->hci_version, xhci->quirks);
5036
5037         return 0;
5038 }
5039 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5040
5041 static const struct hc_driver xhci_hc_driver = {
5042         .description =          "xhci-hcd",
5043         .product_desc =         "xHCI Host Controller",
5044         .hcd_priv_size =        sizeof(struct xhci_hcd),
5045
5046         /*
5047          * generic hardware linkage
5048          */
5049         .irq =                  xhci_irq,
5050         .flags =                HCD_MEMORY | HCD_USB3 | HCD_SHARED,
5051
5052         /*
5053          * basic lifecycle operations
5054          */
5055         .reset =                NULL, /* set in xhci_init_driver() */
5056         .start =                xhci_run,
5057         .stop =                 xhci_stop,
5058         .shutdown =             xhci_shutdown,
5059
5060         /*
5061          * managing i/o requests and associated device resources
5062          */
5063         .urb_enqueue =          xhci_urb_enqueue,
5064         .urb_dequeue =          xhci_urb_dequeue,
5065         .alloc_dev =            xhci_alloc_dev,
5066         .free_dev =             xhci_free_dev,
5067         .alloc_streams =        xhci_alloc_streams,
5068         .free_streams =         xhci_free_streams,
5069         .add_endpoint =         xhci_add_endpoint,
5070         .drop_endpoint =        xhci_drop_endpoint,
5071         .endpoint_reset =       xhci_endpoint_reset,
5072         .check_bandwidth =      xhci_check_bandwidth,
5073         .reset_bandwidth =      xhci_reset_bandwidth,
5074         .address_device =       xhci_address_device,
5075         .enable_device =        xhci_enable_device,
5076         .update_hub_device =    xhci_update_hub_device,
5077         .reset_device =         xhci_discover_or_reset_device,
5078
5079         /*
5080          * scheduling support
5081          */
5082         .get_frame_number =     xhci_get_frame,
5083
5084         /*
5085          * root hub support
5086          */
5087         .hub_control =          xhci_hub_control,
5088         .hub_status_data =      xhci_hub_status_data,
5089         .bus_suspend =          xhci_bus_suspend,
5090         .bus_resume =           xhci_bus_resume,
5091
5092         /*
5093          * call back when device connected and addressed
5094          */
5095         .update_device =        xhci_update_device,
5096         .set_usb2_hw_lpm =      xhci_set_usb2_hardware_lpm,
5097         .enable_usb3_lpm_timeout =      xhci_enable_usb3_lpm_timeout,
5098         .disable_usb3_lpm_timeout =     xhci_disable_usb3_lpm_timeout,
5099         .find_raw_port_number = xhci_find_raw_port_number,
5100 };
5101
5102 void xhci_init_driver(struct hc_driver *drv,
5103                       const struct xhci_driver_overrides *over)
5104 {
5105         BUG_ON(!over);
5106
5107         /* Copy the generic table to drv then apply the overrides */
5108         *drv = xhci_hc_driver;
5109
5110         if (over) {
5111                 drv->hcd_priv_size += over->extra_priv_size;
5112                 if (over->reset)
5113                         drv->reset = over->reset;
5114                 if (over->start)
5115                         drv->start = over->start;
5116         }
5117 }
5118 EXPORT_SYMBOL_GPL(xhci_init_driver);
5119
5120 MODULE_DESCRIPTION(DRIVER_DESC);
5121 MODULE_AUTHOR(DRIVER_AUTHOR);
5122 MODULE_LICENSE("GPL");
5123
5124 static int __init xhci_hcd_init(void)
5125 {
5126         /*
5127          * Check the compiler generated sizes of structures that must be laid
5128          * out in specific ways for hardware access.
5129          */
5130         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5131         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5132         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5133         /* xhci_device_control has eight fields, and also
5134          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5135          */
5136         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5137         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5138         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5139         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5140         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5141         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5142         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5143
5144         if (usb_disabled())
5145                 return -ENODEV;
5146
5147         return 0;
5148 }
5149
5150 /*
5151  * If an init function is provided, an exit function must also be provided
5152  * to allow module unload.
5153  */
5154 static void __exit xhci_hcd_fini(void) { }
5155
5156 module_init(xhci_hcd_init);
5157 module_exit(xhci_hcd_fini);