GNU Linux-libre 5.10.153-gnu1
[releases.git] / drivers / usb / host / xhci-mem.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10
11 #include <linux/usb.h>
12 #include <linux/pci.h>
13 #include <linux/slab.h>
14 #include <linux/dmapool.h>
15 #include <linux/dma-mapping.h>
16
17 #include "xhci.h"
18 #include "xhci-trace.h"
19 #include "xhci-debugfs.h"
20
21 /*
22  * Allocates a generic ring segment from the ring pool, sets the dma address,
23  * initializes the segment to zero, and sets the private next pointer to NULL.
24  *
25  * Section 4.11.1.1:
26  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
27  */
28 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
29                                                unsigned int cycle_state,
30                                                unsigned int max_packet,
31                                                gfp_t flags)
32 {
33         struct xhci_segment *seg;
34         dma_addr_t      dma;
35         int             i;
36         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
37
38         seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev));
39         if (!seg)
40                 return NULL;
41
42         seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
43         if (!seg->trbs) {
44                 kfree(seg);
45                 return NULL;
46         }
47
48         if (max_packet) {
49                 seg->bounce_buf = kzalloc_node(max_packet, flags,
50                                         dev_to_node(dev));
51                 if (!seg->bounce_buf) {
52                         dma_pool_free(xhci->segment_pool, seg->trbs, dma);
53                         kfree(seg);
54                         return NULL;
55                 }
56         }
57         /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
58         if (cycle_state == 0) {
59                 for (i = 0; i < TRBS_PER_SEGMENT; i++)
60                         seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
61         }
62         seg->dma = dma;
63         seg->next = NULL;
64
65         return seg;
66 }
67
68 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
69 {
70         if (seg->trbs) {
71                 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
72                 seg->trbs = NULL;
73         }
74         kfree(seg->bounce_buf);
75         kfree(seg);
76 }
77
78 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
79                                 struct xhci_segment *first)
80 {
81         struct xhci_segment *seg;
82
83         seg = first->next;
84         while (seg != first) {
85                 struct xhci_segment *next = seg->next;
86                 xhci_segment_free(xhci, seg);
87                 seg = next;
88         }
89         xhci_segment_free(xhci, first);
90 }
91
92 /*
93  * Make the prev segment point to the next segment.
94  *
95  * Change the last TRB in the prev segment to be a Link TRB which points to the
96  * DMA address of the next segment.  The caller needs to set any Link TRB
97  * related flags, such as End TRB, Toggle Cycle, and no snoop.
98  */
99 static void xhci_link_segments(struct xhci_segment *prev,
100                                struct xhci_segment *next,
101                                enum xhci_ring_type type, bool chain_links)
102 {
103         u32 val;
104
105         if (!prev || !next)
106                 return;
107         prev->next = next;
108         if (type != TYPE_EVENT) {
109                 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
110                         cpu_to_le64(next->dma);
111
112                 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
113                 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
114                 val &= ~TRB_TYPE_BITMASK;
115                 val |= TRB_TYPE(TRB_LINK);
116                 if (chain_links)
117                         val |= TRB_CHAIN;
118                 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
119         }
120 }
121
122 /*
123  * Link the ring to the new segments.
124  * Set Toggle Cycle for the new ring if needed.
125  */
126 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
127                 struct xhci_segment *first, struct xhci_segment *last,
128                 unsigned int num_segs)
129 {
130         struct xhci_segment *next;
131         bool chain_links;
132
133         if (!ring || !first || !last)
134                 return;
135
136         /* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
137         chain_links = !!(xhci_link_trb_quirk(xhci) ||
138                          (ring->type == TYPE_ISOC &&
139                           (xhci->quirks & XHCI_AMD_0x96_HOST)));
140
141         next = ring->enq_seg->next;
142         xhci_link_segments(ring->enq_seg, first, ring->type, chain_links);
143         xhci_link_segments(last, next, ring->type, chain_links);
144         ring->num_segs += num_segs;
145         ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
146
147         if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
148                 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
149                         &= ~cpu_to_le32(LINK_TOGGLE);
150                 last->trbs[TRBS_PER_SEGMENT-1].link.control
151                         |= cpu_to_le32(LINK_TOGGLE);
152                 ring->last_seg = last;
153         }
154 }
155
156 /*
157  * We need a radix tree for mapping physical addresses of TRBs to which stream
158  * ID they belong to.  We need to do this because the host controller won't tell
159  * us which stream ring the TRB came from.  We could store the stream ID in an
160  * event data TRB, but that doesn't help us for the cancellation case, since the
161  * endpoint may stop before it reaches that event data TRB.
162  *
163  * The radix tree maps the upper portion of the TRB DMA address to a ring
164  * segment that has the same upper portion of DMA addresses.  For example, say I
165  * have segments of size 1KB, that are always 1KB aligned.  A segment may
166  * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
167  * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
168  * pass the radix tree a key to get the right stream ID:
169  *
170  *      0x10c90fff >> 10 = 0x43243
171  *      0x10c912c0 >> 10 = 0x43244
172  *      0x10c91400 >> 10 = 0x43245
173  *
174  * Obviously, only those TRBs with DMA addresses that are within the segment
175  * will make the radix tree return the stream ID for that ring.
176  *
177  * Caveats for the radix tree:
178  *
179  * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
180  * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
181  * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
182  * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
183  * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
184  * extended systems (where the DMA address can be bigger than 32-bits),
185  * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
186  */
187 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
188                 struct xhci_ring *ring,
189                 struct xhci_segment *seg,
190                 gfp_t mem_flags)
191 {
192         unsigned long key;
193         int ret;
194
195         key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
196         /* Skip any segments that were already added. */
197         if (radix_tree_lookup(trb_address_map, key))
198                 return 0;
199
200         ret = radix_tree_maybe_preload(mem_flags);
201         if (ret)
202                 return ret;
203         ret = radix_tree_insert(trb_address_map,
204                         key, ring);
205         radix_tree_preload_end();
206         return ret;
207 }
208
209 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
210                 struct xhci_segment *seg)
211 {
212         unsigned long key;
213
214         key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
215         if (radix_tree_lookup(trb_address_map, key))
216                 radix_tree_delete(trb_address_map, key);
217 }
218
219 static int xhci_update_stream_segment_mapping(
220                 struct radix_tree_root *trb_address_map,
221                 struct xhci_ring *ring,
222                 struct xhci_segment *first_seg,
223                 struct xhci_segment *last_seg,
224                 gfp_t mem_flags)
225 {
226         struct xhci_segment *seg;
227         struct xhci_segment *failed_seg;
228         int ret;
229
230         if (WARN_ON_ONCE(trb_address_map == NULL))
231                 return 0;
232
233         seg = first_seg;
234         do {
235                 ret = xhci_insert_segment_mapping(trb_address_map,
236                                 ring, seg, mem_flags);
237                 if (ret)
238                         goto remove_streams;
239                 if (seg == last_seg)
240                         return 0;
241                 seg = seg->next;
242         } while (seg != first_seg);
243
244         return 0;
245
246 remove_streams:
247         failed_seg = seg;
248         seg = first_seg;
249         do {
250                 xhci_remove_segment_mapping(trb_address_map, seg);
251                 if (seg == failed_seg)
252                         return ret;
253                 seg = seg->next;
254         } while (seg != first_seg);
255
256         return ret;
257 }
258
259 static void xhci_remove_stream_mapping(struct xhci_ring *ring)
260 {
261         struct xhci_segment *seg;
262
263         if (WARN_ON_ONCE(ring->trb_address_map == NULL))
264                 return;
265
266         seg = ring->first_seg;
267         do {
268                 xhci_remove_segment_mapping(ring->trb_address_map, seg);
269                 seg = seg->next;
270         } while (seg != ring->first_seg);
271 }
272
273 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
274 {
275         return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
276                         ring->first_seg, ring->last_seg, mem_flags);
277 }
278
279 /* XXX: Do we need the hcd structure in all these functions? */
280 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
281 {
282         if (!ring)
283                 return;
284
285         trace_xhci_ring_free(ring);
286
287         if (ring->first_seg) {
288                 if (ring->type == TYPE_STREAM)
289                         xhci_remove_stream_mapping(ring);
290                 xhci_free_segments_for_ring(xhci, ring->first_seg);
291         }
292
293         kfree(ring);
294 }
295
296 void xhci_initialize_ring_info(struct xhci_ring *ring,
297                                unsigned int cycle_state)
298 {
299         /* The ring is empty, so the enqueue pointer == dequeue pointer */
300         ring->enqueue = ring->first_seg->trbs;
301         ring->enq_seg = ring->first_seg;
302         ring->dequeue = ring->enqueue;
303         ring->deq_seg = ring->first_seg;
304         /* The ring is initialized to 0. The producer must write 1 to the cycle
305          * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
306          * compare CCS to the cycle bit to check ownership, so CCS = 1.
307          *
308          * New rings are initialized with cycle state equal to 1; if we are
309          * handling ring expansion, set the cycle state equal to the old ring.
310          */
311         ring->cycle_state = cycle_state;
312
313         /*
314          * Each segment has a link TRB, and leave an extra TRB for SW
315          * accounting purpose
316          */
317         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
318 }
319
320 /* Allocate segments and link them for a ring */
321 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
322                 struct xhci_segment **first, struct xhci_segment **last,
323                 unsigned int num_segs, unsigned int cycle_state,
324                 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
325 {
326         struct xhci_segment *prev;
327         bool chain_links;
328
329         /* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
330         chain_links = !!(xhci_link_trb_quirk(xhci) ||
331                          (type == TYPE_ISOC &&
332                           (xhci->quirks & XHCI_AMD_0x96_HOST)));
333
334         prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
335         if (!prev)
336                 return -ENOMEM;
337         num_segs--;
338
339         *first = prev;
340         while (num_segs > 0) {
341                 struct xhci_segment     *next;
342
343                 next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
344                 if (!next) {
345                         prev = *first;
346                         while (prev) {
347                                 next = prev->next;
348                                 xhci_segment_free(xhci, prev);
349                                 prev = next;
350                         }
351                         return -ENOMEM;
352                 }
353                 xhci_link_segments(prev, next, type, chain_links);
354
355                 prev = next;
356                 num_segs--;
357         }
358         xhci_link_segments(prev, *first, type, chain_links);
359         *last = prev;
360
361         return 0;
362 }
363
364 /*
365  * Create a new ring with zero or more segments.
366  *
367  * Link each segment together into a ring.
368  * Set the end flag and the cycle toggle bit on the last segment.
369  * See section 4.9.1 and figures 15 and 16.
370  */
371 struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
372                 unsigned int num_segs, unsigned int cycle_state,
373                 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
374 {
375         struct xhci_ring        *ring;
376         int ret;
377         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
378
379         ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev));
380         if (!ring)
381                 return NULL;
382
383         ring->num_segs = num_segs;
384         ring->bounce_buf_len = max_packet;
385         INIT_LIST_HEAD(&ring->td_list);
386         ring->type = type;
387         if (num_segs == 0)
388                 return ring;
389
390         ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
391                         &ring->last_seg, num_segs, cycle_state, type,
392                         max_packet, flags);
393         if (ret)
394                 goto fail;
395
396         /* Only event ring does not use link TRB */
397         if (type != TYPE_EVENT) {
398                 /* See section 4.9.2.1 and 6.4.4.1 */
399                 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
400                         cpu_to_le32(LINK_TOGGLE);
401         }
402         xhci_initialize_ring_info(ring, cycle_state);
403         trace_xhci_ring_alloc(ring);
404         return ring;
405
406 fail:
407         kfree(ring);
408         return NULL;
409 }
410
411 void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
412                 struct xhci_virt_device *virt_dev,
413                 unsigned int ep_index)
414 {
415         xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
416         virt_dev->eps[ep_index].ring = NULL;
417 }
418
419 /*
420  * Expand an existing ring.
421  * Allocate a new ring which has same segment numbers and link the two rings.
422  */
423 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
424                                 unsigned int num_trbs, gfp_t flags)
425 {
426         struct xhci_segment     *first;
427         struct xhci_segment     *last;
428         unsigned int            num_segs;
429         unsigned int            num_segs_needed;
430         int                     ret;
431
432         num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
433                                 (TRBS_PER_SEGMENT - 1);
434
435         /* Allocate number of segments we needed, or double the ring size */
436         num_segs = ring->num_segs > num_segs_needed ?
437                         ring->num_segs : num_segs_needed;
438
439         ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
440                         num_segs, ring->cycle_state, ring->type,
441                         ring->bounce_buf_len, flags);
442         if (ret)
443                 return -ENOMEM;
444
445         if (ring->type == TYPE_STREAM)
446                 ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
447                                                 ring, first, last, flags);
448         if (ret) {
449                 struct xhci_segment *next;
450                 do {
451                         next = first->next;
452                         xhci_segment_free(xhci, first);
453                         if (first == last)
454                                 break;
455                         first = next;
456                 } while (true);
457                 return ret;
458         }
459
460         xhci_link_rings(xhci, ring, first, last, num_segs);
461         trace_xhci_ring_expansion(ring);
462         xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
463                         "ring expansion succeed, now has %d segments",
464                         ring->num_segs);
465
466         return 0;
467 }
468
469 struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
470                                                     int type, gfp_t flags)
471 {
472         struct xhci_container_ctx *ctx;
473         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
474
475         if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
476                 return NULL;
477
478         ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev));
479         if (!ctx)
480                 return NULL;
481
482         ctx->type = type;
483         ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
484         if (type == XHCI_CTX_TYPE_INPUT)
485                 ctx->size += CTX_SIZE(xhci->hcc_params);
486
487         ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
488         if (!ctx->bytes) {
489                 kfree(ctx);
490                 return NULL;
491         }
492         return ctx;
493 }
494
495 void xhci_free_container_ctx(struct xhci_hcd *xhci,
496                              struct xhci_container_ctx *ctx)
497 {
498         if (!ctx)
499                 return;
500         dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
501         kfree(ctx);
502 }
503
504 struct xhci_input_control_ctx *xhci_get_input_control_ctx(
505                                               struct xhci_container_ctx *ctx)
506 {
507         if (ctx->type != XHCI_CTX_TYPE_INPUT)
508                 return NULL;
509
510         return (struct xhci_input_control_ctx *)ctx->bytes;
511 }
512
513 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
514                                         struct xhci_container_ctx *ctx)
515 {
516         if (ctx->type == XHCI_CTX_TYPE_DEVICE)
517                 return (struct xhci_slot_ctx *)ctx->bytes;
518
519         return (struct xhci_slot_ctx *)
520                 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
521 }
522
523 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
524                                     struct xhci_container_ctx *ctx,
525                                     unsigned int ep_index)
526 {
527         /* increment ep index by offset of start of ep ctx array */
528         ep_index++;
529         if (ctx->type == XHCI_CTX_TYPE_INPUT)
530                 ep_index++;
531
532         return (struct xhci_ep_ctx *)
533                 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
534 }
535
536
537 /***************** Streams structures manipulation *************************/
538
539 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
540                 unsigned int num_stream_ctxs,
541                 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
542 {
543         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
544         size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
545
546         if (size > MEDIUM_STREAM_ARRAY_SIZE)
547                 dma_free_coherent(dev, size,
548                                 stream_ctx, dma);
549         else if (size <= SMALL_STREAM_ARRAY_SIZE)
550                 return dma_pool_free(xhci->small_streams_pool,
551                                 stream_ctx, dma);
552         else
553                 return dma_pool_free(xhci->medium_streams_pool,
554                                 stream_ctx, dma);
555 }
556
557 /*
558  * The stream context array for each endpoint with bulk streams enabled can
559  * vary in size, based on:
560  *  - how many streams the endpoint supports,
561  *  - the maximum primary stream array size the host controller supports,
562  *  - and how many streams the device driver asks for.
563  *
564  * The stream context array must be a power of 2, and can be as small as
565  * 64 bytes or as large as 1MB.
566  */
567 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
568                 unsigned int num_stream_ctxs, dma_addr_t *dma,
569                 gfp_t mem_flags)
570 {
571         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
572         size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
573
574         if (size > MEDIUM_STREAM_ARRAY_SIZE)
575                 return dma_alloc_coherent(dev, size,
576                                 dma, mem_flags);
577         else if (size <= SMALL_STREAM_ARRAY_SIZE)
578                 return dma_pool_alloc(xhci->small_streams_pool,
579                                 mem_flags, dma);
580         else
581                 return dma_pool_alloc(xhci->medium_streams_pool,
582                                 mem_flags, dma);
583 }
584
585 struct xhci_ring *xhci_dma_to_transfer_ring(
586                 struct xhci_virt_ep *ep,
587                 u64 address)
588 {
589         if (ep->ep_state & EP_HAS_STREAMS)
590                 return radix_tree_lookup(&ep->stream_info->trb_address_map,
591                                 address >> TRB_SEGMENT_SHIFT);
592         return ep->ring;
593 }
594
595 struct xhci_ring *xhci_stream_id_to_ring(
596                 struct xhci_virt_device *dev,
597                 unsigned int ep_index,
598                 unsigned int stream_id)
599 {
600         struct xhci_virt_ep *ep = &dev->eps[ep_index];
601
602         if (stream_id == 0)
603                 return ep->ring;
604         if (!ep->stream_info)
605                 return NULL;
606
607         if (stream_id >= ep->stream_info->num_streams)
608                 return NULL;
609         return ep->stream_info->stream_rings[stream_id];
610 }
611
612 /*
613  * Change an endpoint's internal structure so it supports stream IDs.  The
614  * number of requested streams includes stream 0, which cannot be used by device
615  * drivers.
616  *
617  * The number of stream contexts in the stream context array may be bigger than
618  * the number of streams the driver wants to use.  This is because the number of
619  * stream context array entries must be a power of two.
620  */
621 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
622                 unsigned int num_stream_ctxs,
623                 unsigned int num_streams,
624                 unsigned int max_packet, gfp_t mem_flags)
625 {
626         struct xhci_stream_info *stream_info;
627         u32 cur_stream;
628         struct xhci_ring *cur_ring;
629         u64 addr;
630         int ret;
631         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
632
633         xhci_dbg(xhci, "Allocating %u streams and %u "
634                         "stream context array entries.\n",
635                         num_streams, num_stream_ctxs);
636         if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
637                 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
638                 return NULL;
639         }
640         xhci->cmd_ring_reserved_trbs++;
641
642         stream_info = kzalloc_node(sizeof(*stream_info), mem_flags,
643                         dev_to_node(dev));
644         if (!stream_info)
645                 goto cleanup_trbs;
646
647         stream_info->num_streams = num_streams;
648         stream_info->num_stream_ctxs = num_stream_ctxs;
649
650         /* Initialize the array of virtual pointers to stream rings. */
651         stream_info->stream_rings = kcalloc_node(
652                         num_streams, sizeof(struct xhci_ring *), mem_flags,
653                         dev_to_node(dev));
654         if (!stream_info->stream_rings)
655                 goto cleanup_info;
656
657         /* Initialize the array of DMA addresses for stream rings for the HW. */
658         stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
659                         num_stream_ctxs, &stream_info->ctx_array_dma,
660                         mem_flags);
661         if (!stream_info->stream_ctx_array)
662                 goto cleanup_ring_array;
663         memset(stream_info->stream_ctx_array, 0,
664                         sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
665
666         /* Allocate everything needed to free the stream rings later */
667         stream_info->free_streams_command =
668                 xhci_alloc_command_with_ctx(xhci, true, mem_flags);
669         if (!stream_info->free_streams_command)
670                 goto cleanup_ctx;
671
672         INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
673
674         /* Allocate rings for all the streams that the driver will use,
675          * and add their segment DMA addresses to the radix tree.
676          * Stream 0 is reserved.
677          */
678
679         for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
680                 stream_info->stream_rings[cur_stream] =
681                         xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
682                                         mem_flags);
683                 cur_ring = stream_info->stream_rings[cur_stream];
684                 if (!cur_ring)
685                         goto cleanup_rings;
686                 cur_ring->stream_id = cur_stream;
687                 cur_ring->trb_address_map = &stream_info->trb_address_map;
688                 /* Set deq ptr, cycle bit, and stream context type */
689                 addr = cur_ring->first_seg->dma |
690                         SCT_FOR_CTX(SCT_PRI_TR) |
691                         cur_ring->cycle_state;
692                 stream_info->stream_ctx_array[cur_stream].stream_ring =
693                         cpu_to_le64(addr);
694                 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
695                                 cur_stream, (unsigned long long) addr);
696
697                 ret = xhci_update_stream_mapping(cur_ring, mem_flags);
698                 if (ret) {
699                         xhci_ring_free(xhci, cur_ring);
700                         stream_info->stream_rings[cur_stream] = NULL;
701                         goto cleanup_rings;
702                 }
703         }
704         /* Leave the other unused stream ring pointers in the stream context
705          * array initialized to zero.  This will cause the xHC to give us an
706          * error if the device asks for a stream ID we don't have setup (if it
707          * was any other way, the host controller would assume the ring is
708          * "empty" and wait forever for data to be queued to that stream ID).
709          */
710
711         return stream_info;
712
713 cleanup_rings:
714         for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
715                 cur_ring = stream_info->stream_rings[cur_stream];
716                 if (cur_ring) {
717                         xhci_ring_free(xhci, cur_ring);
718                         stream_info->stream_rings[cur_stream] = NULL;
719                 }
720         }
721         xhci_free_command(xhci, stream_info->free_streams_command);
722 cleanup_ctx:
723         xhci_free_stream_ctx(xhci,
724                 stream_info->num_stream_ctxs,
725                 stream_info->stream_ctx_array,
726                 stream_info->ctx_array_dma);
727 cleanup_ring_array:
728         kfree(stream_info->stream_rings);
729 cleanup_info:
730         kfree(stream_info);
731 cleanup_trbs:
732         xhci->cmd_ring_reserved_trbs--;
733         return NULL;
734 }
735 /*
736  * Sets the MaxPStreams field and the Linear Stream Array field.
737  * Sets the dequeue pointer to the stream context array.
738  */
739 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
740                 struct xhci_ep_ctx *ep_ctx,
741                 struct xhci_stream_info *stream_info)
742 {
743         u32 max_primary_streams;
744         /* MaxPStreams is the number of stream context array entries, not the
745          * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
746          * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
747          */
748         max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
749         xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
750                         "Setting number of stream ctx array entries to %u",
751                         1 << (max_primary_streams + 1));
752         ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
753         ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
754                                        | EP_HAS_LSA);
755         ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
756 }
757
758 /*
759  * Sets the MaxPStreams field and the Linear Stream Array field to 0.
760  * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
761  * not at the beginning of the ring).
762  */
763 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
764                 struct xhci_virt_ep *ep)
765 {
766         dma_addr_t addr;
767         ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
768         addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
769         ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
770 }
771
772 /* Frees all stream contexts associated with the endpoint,
773  *
774  * Caller should fix the endpoint context streams fields.
775  */
776 void xhci_free_stream_info(struct xhci_hcd *xhci,
777                 struct xhci_stream_info *stream_info)
778 {
779         int cur_stream;
780         struct xhci_ring *cur_ring;
781
782         if (!stream_info)
783                 return;
784
785         for (cur_stream = 1; cur_stream < stream_info->num_streams;
786                         cur_stream++) {
787                 cur_ring = stream_info->stream_rings[cur_stream];
788                 if (cur_ring) {
789                         xhci_ring_free(xhci, cur_ring);
790                         stream_info->stream_rings[cur_stream] = NULL;
791                 }
792         }
793         xhci_free_command(xhci, stream_info->free_streams_command);
794         xhci->cmd_ring_reserved_trbs--;
795         if (stream_info->stream_ctx_array)
796                 xhci_free_stream_ctx(xhci,
797                                 stream_info->num_stream_ctxs,
798                                 stream_info->stream_ctx_array,
799                                 stream_info->ctx_array_dma);
800
801         kfree(stream_info->stream_rings);
802         kfree(stream_info);
803 }
804
805
806 /***************** Device context manipulation *************************/
807
808 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
809                 struct xhci_virt_ep *ep)
810 {
811         timer_setup(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog,
812                     0);
813         ep->xhci = xhci;
814 }
815
816 static void xhci_free_tt_info(struct xhci_hcd *xhci,
817                 struct xhci_virt_device *virt_dev,
818                 int slot_id)
819 {
820         struct list_head *tt_list_head;
821         struct xhci_tt_bw_info *tt_info, *next;
822         bool slot_found = false;
823
824         /* If the device never made it past the Set Address stage,
825          * it may not have the real_port set correctly.
826          */
827         if (virt_dev->real_port == 0 ||
828                         virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
829                 xhci_dbg(xhci, "Bad real port.\n");
830                 return;
831         }
832
833         tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
834         list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
835                 /* Multi-TT hubs will have more than one entry */
836                 if (tt_info->slot_id == slot_id) {
837                         slot_found = true;
838                         list_del(&tt_info->tt_list);
839                         kfree(tt_info);
840                 } else if (slot_found) {
841                         break;
842                 }
843         }
844 }
845
846 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
847                 struct xhci_virt_device *virt_dev,
848                 struct usb_device *hdev,
849                 struct usb_tt *tt, gfp_t mem_flags)
850 {
851         struct xhci_tt_bw_info          *tt_info;
852         unsigned int                    num_ports;
853         int                             i, j;
854         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
855
856         if (!tt->multi)
857                 num_ports = 1;
858         else
859                 num_ports = hdev->maxchild;
860
861         for (i = 0; i < num_ports; i++, tt_info++) {
862                 struct xhci_interval_bw_table *bw_table;
863
864                 tt_info = kzalloc_node(sizeof(*tt_info), mem_flags,
865                                 dev_to_node(dev));
866                 if (!tt_info)
867                         goto free_tts;
868                 INIT_LIST_HEAD(&tt_info->tt_list);
869                 list_add(&tt_info->tt_list,
870                                 &xhci->rh_bw[virt_dev->real_port - 1].tts);
871                 tt_info->slot_id = virt_dev->udev->slot_id;
872                 if (tt->multi)
873                         tt_info->ttport = i+1;
874                 bw_table = &tt_info->bw_table;
875                 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
876                         INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
877         }
878         return 0;
879
880 free_tts:
881         xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
882         return -ENOMEM;
883 }
884
885
886 /* All the xhci_tds in the ring's TD list should be freed at this point.
887  * Should be called with xhci->lock held if there is any chance the TT lists
888  * will be manipulated by the configure endpoint, allocate device, or update
889  * hub functions while this function is removing the TT entries from the list.
890  */
891 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
892 {
893         struct xhci_virt_device *dev;
894         int i;
895         int old_active_eps = 0;
896
897         /* Slot ID 0 is reserved */
898         if (slot_id == 0 || !xhci->devs[slot_id])
899                 return;
900
901         dev = xhci->devs[slot_id];
902
903         xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
904         if (!dev)
905                 return;
906
907         trace_xhci_free_virt_device(dev);
908
909         if (dev->tt_info)
910                 old_active_eps = dev->tt_info->active_eps;
911
912         for (i = 0; i < 31; i++) {
913                 if (dev->eps[i].ring)
914                         xhci_ring_free(xhci, dev->eps[i].ring);
915                 if (dev->eps[i].stream_info)
916                         xhci_free_stream_info(xhci,
917                                         dev->eps[i].stream_info);
918                 /*
919                  * Endpoints are normally deleted from the bandwidth list when
920                  * endpoints are dropped, before device is freed.
921                  * If host is dying or being removed then endpoints aren't
922                  * dropped cleanly, so delete the endpoint from list here.
923                  * Only applicable for hosts with software bandwidth checking.
924                  */
925
926                 if (!list_empty(&dev->eps[i].bw_endpoint_list)) {
927                         list_del_init(&dev->eps[i].bw_endpoint_list);
928                         xhci_dbg(xhci, "Slot %u endpoint %u not removed from BW list!\n",
929                                  slot_id, i);
930                 }
931         }
932         /* If this is a hub, free the TT(s) from the TT list */
933         xhci_free_tt_info(xhci, dev, slot_id);
934         /* If necessary, update the number of active TTs on this root port */
935         xhci_update_tt_active_eps(xhci, dev, old_active_eps);
936
937         if (dev->in_ctx)
938                 xhci_free_container_ctx(xhci, dev->in_ctx);
939         if (dev->out_ctx)
940                 xhci_free_container_ctx(xhci, dev->out_ctx);
941
942         if (dev->udev && dev->udev->slot_id)
943                 dev->udev->slot_id = 0;
944         kfree(xhci->devs[slot_id]);
945         xhci->devs[slot_id] = NULL;
946 }
947
948 /*
949  * Free a virt_device structure.
950  * If the virt_device added a tt_info (a hub) and has children pointing to
951  * that tt_info, then free the child first. Recursive.
952  * We can't rely on udev at this point to find child-parent relationships.
953  */
954 static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
955 {
956         struct xhci_virt_device *vdev;
957         struct list_head *tt_list_head;
958         struct xhci_tt_bw_info *tt_info, *next;
959         int i;
960
961         vdev = xhci->devs[slot_id];
962         if (!vdev)
963                 return;
964
965         if (vdev->real_port == 0 ||
966                         vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
967                 xhci_dbg(xhci, "Bad vdev->real_port.\n");
968                 goto out;
969         }
970
971         tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
972         list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
973                 /* is this a hub device that added a tt_info to the tts list */
974                 if (tt_info->slot_id == slot_id) {
975                         /* are any devices using this tt_info? */
976                         for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
977                                 vdev = xhci->devs[i];
978                                 if (vdev && (vdev->tt_info == tt_info))
979                                         xhci_free_virt_devices_depth_first(
980                                                 xhci, i);
981                         }
982                 }
983         }
984 out:
985         /* we are now at a leaf device */
986         xhci_debugfs_remove_slot(xhci, slot_id);
987         xhci_free_virt_device(xhci, slot_id);
988 }
989
990 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
991                 struct usb_device *udev, gfp_t flags)
992 {
993         struct xhci_virt_device *dev;
994         int i;
995
996         /* Slot ID 0 is reserved */
997         if (slot_id == 0 || xhci->devs[slot_id]) {
998                 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
999                 return 0;
1000         }
1001
1002         dev = kzalloc(sizeof(*dev), flags);
1003         if (!dev)
1004                 return 0;
1005
1006         /* Allocate the (output) device context that will be used in the HC. */
1007         dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
1008         if (!dev->out_ctx)
1009                 goto fail;
1010
1011         xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
1012                         (unsigned long long)dev->out_ctx->dma);
1013
1014         /* Allocate the (input) device context for address device command */
1015         dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
1016         if (!dev->in_ctx)
1017                 goto fail;
1018
1019         xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
1020                         (unsigned long long)dev->in_ctx->dma);
1021
1022         /* Initialize the cancellation list and watchdog timers for each ep */
1023         for (i = 0; i < 31; i++) {
1024                 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
1025                 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1026                 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1027         }
1028
1029         /* Allocate endpoint 0 ring */
1030         dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
1031         if (!dev->eps[0].ring)
1032                 goto fail;
1033
1034         dev->udev = udev;
1035
1036         /* Point to output device context in dcbaa. */
1037         xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1038         xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1039                  slot_id,
1040                  &xhci->dcbaa->dev_context_ptrs[slot_id],
1041                  le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1042
1043         trace_xhci_alloc_virt_device(dev);
1044
1045         xhci->devs[slot_id] = dev;
1046
1047         return 1;
1048 fail:
1049
1050         if (dev->in_ctx)
1051                 xhci_free_container_ctx(xhci, dev->in_ctx);
1052         if (dev->out_ctx)
1053                 xhci_free_container_ctx(xhci, dev->out_ctx);
1054         kfree(dev);
1055
1056         return 0;
1057 }
1058
1059 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1060                 struct usb_device *udev)
1061 {
1062         struct xhci_virt_device *virt_dev;
1063         struct xhci_ep_ctx      *ep0_ctx;
1064         struct xhci_ring        *ep_ring;
1065
1066         virt_dev = xhci->devs[udev->slot_id];
1067         ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1068         ep_ring = virt_dev->eps[0].ring;
1069         /*
1070          * FIXME we don't keep track of the dequeue pointer very well after a
1071          * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1072          * host to our enqueue pointer.  This should only be called after a
1073          * configured device has reset, so all control transfers should have
1074          * been completed or cancelled before the reset.
1075          */
1076         ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1077                                                         ep_ring->enqueue)
1078                                    | ep_ring->cycle_state);
1079 }
1080
1081 /*
1082  * The xHCI roothub may have ports of differing speeds in any order in the port
1083  * status registers.
1084  *
1085  * The xHCI hardware wants to know the roothub port number that the USB device
1086  * is attached to (or the roothub port its ancestor hub is attached to).  All we
1087  * know is the index of that port under either the USB 2.0 or the USB 3.0
1088  * roothub, but that doesn't give us the real index into the HW port status
1089  * registers. Call xhci_find_raw_port_number() to get real index.
1090  */
1091 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1092                 struct usb_device *udev)
1093 {
1094         struct usb_device *top_dev;
1095         struct usb_hcd *hcd;
1096
1097         if (udev->speed >= USB_SPEED_SUPER)
1098                 hcd = xhci->shared_hcd;
1099         else
1100                 hcd = xhci->main_hcd;
1101
1102         for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1103                         top_dev = top_dev->parent)
1104                 /* Found device below root hub */;
1105
1106         return  xhci_find_raw_port_number(hcd, top_dev->portnum);
1107 }
1108
1109 /* Setup an xHCI virtual device for a Set Address command */
1110 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1111 {
1112         struct xhci_virt_device *dev;
1113         struct xhci_ep_ctx      *ep0_ctx;
1114         struct xhci_slot_ctx    *slot_ctx;
1115         u32                     port_num;
1116         u32                     max_packets;
1117         struct usb_device *top_dev;
1118
1119         dev = xhci->devs[udev->slot_id];
1120         /* Slot ID 0 is reserved */
1121         if (udev->slot_id == 0 || !dev) {
1122                 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1123                                 udev->slot_id);
1124                 return -EINVAL;
1125         }
1126         ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1127         slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1128
1129         /* 3) Only the control endpoint is valid - one endpoint context */
1130         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1131         switch (udev->speed) {
1132         case USB_SPEED_SUPER_PLUS:
1133                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1134                 max_packets = MAX_PACKET(512);
1135                 break;
1136         case USB_SPEED_SUPER:
1137                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1138                 max_packets = MAX_PACKET(512);
1139                 break;
1140         case USB_SPEED_HIGH:
1141                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1142                 max_packets = MAX_PACKET(64);
1143                 break;
1144         /* USB core guesses at a 64-byte max packet first for FS devices */
1145         case USB_SPEED_FULL:
1146                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1147                 max_packets = MAX_PACKET(64);
1148                 break;
1149         case USB_SPEED_LOW:
1150                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1151                 max_packets = MAX_PACKET(8);
1152                 break;
1153         case USB_SPEED_WIRELESS:
1154                 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1155                 return -EINVAL;
1156                 break;
1157         default:
1158                 /* Speed was set earlier, this shouldn't happen. */
1159                 return -EINVAL;
1160         }
1161         /* Find the root hub port this device is under */
1162         port_num = xhci_find_real_port_number(xhci, udev);
1163         if (!port_num)
1164                 return -EINVAL;
1165         slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1166         /* Set the port number in the virtual_device to the faked port number */
1167         for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1168                         top_dev = top_dev->parent)
1169                 /* Found device below root hub */;
1170         dev->fake_port = top_dev->portnum;
1171         dev->real_port = port_num;
1172         xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1173         xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1174
1175         /* Find the right bandwidth table that this device will be a part of.
1176          * If this is a full speed device attached directly to a root port (or a
1177          * decendent of one), it counts as a primary bandwidth domain, not a
1178          * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1179          * will never be created for the HS root hub.
1180          */
1181         if (!udev->tt || !udev->tt->hub->parent) {
1182                 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1183         } else {
1184                 struct xhci_root_port_bw_info *rh_bw;
1185                 struct xhci_tt_bw_info *tt_bw;
1186
1187                 rh_bw = &xhci->rh_bw[port_num - 1];
1188                 /* Find the right TT. */
1189                 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1190                         if (tt_bw->slot_id != udev->tt->hub->slot_id)
1191                                 continue;
1192
1193                         if (!dev->udev->tt->multi ||
1194                                         (udev->tt->multi &&
1195                                          tt_bw->ttport == dev->udev->ttport)) {
1196                                 dev->bw_table = &tt_bw->bw_table;
1197                                 dev->tt_info = tt_bw;
1198                                 break;
1199                         }
1200                 }
1201                 if (!dev->tt_info)
1202                         xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1203         }
1204
1205         /* Is this a LS/FS device under an external HS hub? */
1206         if (udev->tt && udev->tt->hub->parent) {
1207                 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1208                                                 (udev->ttport << 8));
1209                 if (udev->tt->multi)
1210                         slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1211         }
1212         xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1213         xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1214
1215         /* Step 4 - ring already allocated */
1216         /* Step 5 */
1217         ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1218
1219         /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1220         ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1221                                          max_packets);
1222
1223         ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1224                                    dev->eps[0].ring->cycle_state);
1225
1226         trace_xhci_setup_addressable_virt_device(dev);
1227
1228         /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1229
1230         return 0;
1231 }
1232
1233 /*
1234  * Convert interval expressed as 2^(bInterval - 1) == interval into
1235  * straight exponent value 2^n == interval.
1236  *
1237  */
1238 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1239                 struct usb_host_endpoint *ep)
1240 {
1241         unsigned int interval;
1242
1243         interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1244         if (interval != ep->desc.bInterval - 1)
1245                 dev_warn(&udev->dev,
1246                          "ep %#x - rounding interval to %d %sframes\n",
1247                          ep->desc.bEndpointAddress,
1248                          1 << interval,
1249                          udev->speed == USB_SPEED_FULL ? "" : "micro");
1250
1251         if (udev->speed == USB_SPEED_FULL) {
1252                 /*
1253                  * Full speed isoc endpoints specify interval in frames,
1254                  * not microframes. We are using microframes everywhere,
1255                  * so adjust accordingly.
1256                  */
1257                 interval += 3;  /* 1 frame = 2^3 uframes */
1258         }
1259
1260         return interval;
1261 }
1262
1263 /*
1264  * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1265  * microframes, rounded down to nearest power of 2.
1266  */
1267 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1268                 struct usb_host_endpoint *ep, unsigned int desc_interval,
1269                 unsigned int min_exponent, unsigned int max_exponent)
1270 {
1271         unsigned int interval;
1272
1273         interval = fls(desc_interval) - 1;
1274         interval = clamp_val(interval, min_exponent, max_exponent);
1275         if ((1 << interval) != desc_interval)
1276                 dev_dbg(&udev->dev,
1277                          "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1278                          ep->desc.bEndpointAddress,
1279                          1 << interval,
1280                          desc_interval);
1281
1282         return interval;
1283 }
1284
1285 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1286                 struct usb_host_endpoint *ep)
1287 {
1288         if (ep->desc.bInterval == 0)
1289                 return 0;
1290         return xhci_microframes_to_exponent(udev, ep,
1291                         ep->desc.bInterval, 0, 15);
1292 }
1293
1294
1295 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1296                 struct usb_host_endpoint *ep)
1297 {
1298         return xhci_microframes_to_exponent(udev, ep,
1299                         ep->desc.bInterval * 8, 3, 10);
1300 }
1301
1302 /* Return the polling or NAK interval.
1303  *
1304  * The polling interval is expressed in "microframes".  If xHCI's Interval field
1305  * is set to N, it will service the endpoint every 2^(Interval)*125us.
1306  *
1307  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1308  * is set to 0.
1309  */
1310 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1311                 struct usb_host_endpoint *ep)
1312 {
1313         unsigned int interval = 0;
1314
1315         switch (udev->speed) {
1316         case USB_SPEED_HIGH:
1317                 /* Max NAK rate */
1318                 if (usb_endpoint_xfer_control(&ep->desc) ||
1319                     usb_endpoint_xfer_bulk(&ep->desc)) {
1320                         interval = xhci_parse_microframe_interval(udev, ep);
1321                         break;
1322                 }
1323                 fallthrough;    /* SS and HS isoc/int have same decoding */
1324
1325         case USB_SPEED_SUPER_PLUS:
1326         case USB_SPEED_SUPER:
1327                 if (usb_endpoint_xfer_int(&ep->desc) ||
1328                     usb_endpoint_xfer_isoc(&ep->desc)) {
1329                         interval = xhci_parse_exponent_interval(udev, ep);
1330                 }
1331                 break;
1332
1333         case USB_SPEED_FULL:
1334                 if (usb_endpoint_xfer_isoc(&ep->desc)) {
1335                         interval = xhci_parse_exponent_interval(udev, ep);
1336                         break;
1337                 }
1338                 /*
1339                  * Fall through for interrupt endpoint interval decoding
1340                  * since it uses the same rules as low speed interrupt
1341                  * endpoints.
1342                  */
1343                 fallthrough;
1344
1345         case USB_SPEED_LOW:
1346                 if (usb_endpoint_xfer_int(&ep->desc) ||
1347                     usb_endpoint_xfer_isoc(&ep->desc)) {
1348
1349                         interval = xhci_parse_frame_interval(udev, ep);
1350                 }
1351                 break;
1352
1353         default:
1354                 BUG();
1355         }
1356         return interval;
1357 }
1358
1359 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1360  * High speed endpoint descriptors can define "the number of additional
1361  * transaction opportunities per microframe", but that goes in the Max Burst
1362  * endpoint context field.
1363  */
1364 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1365                 struct usb_host_endpoint *ep)
1366 {
1367         if (udev->speed < USB_SPEED_SUPER ||
1368                         !usb_endpoint_xfer_isoc(&ep->desc))
1369                 return 0;
1370         return ep->ss_ep_comp.bmAttributes;
1371 }
1372
1373 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1374                                        struct usb_host_endpoint *ep)
1375 {
1376         /* Super speed and Plus have max burst in ep companion desc */
1377         if (udev->speed >= USB_SPEED_SUPER)
1378                 return ep->ss_ep_comp.bMaxBurst;
1379
1380         if (udev->speed == USB_SPEED_HIGH &&
1381             (usb_endpoint_xfer_isoc(&ep->desc) ||
1382              usb_endpoint_xfer_int(&ep->desc)))
1383                 return usb_endpoint_maxp_mult(&ep->desc) - 1;
1384
1385         return 0;
1386 }
1387
1388 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1389 {
1390         int in;
1391
1392         in = usb_endpoint_dir_in(&ep->desc);
1393
1394         switch (usb_endpoint_type(&ep->desc)) {
1395         case USB_ENDPOINT_XFER_CONTROL:
1396                 return CTRL_EP;
1397         case USB_ENDPOINT_XFER_BULK:
1398                 return in ? BULK_IN_EP : BULK_OUT_EP;
1399         case USB_ENDPOINT_XFER_ISOC:
1400                 return in ? ISOC_IN_EP : ISOC_OUT_EP;
1401         case USB_ENDPOINT_XFER_INT:
1402                 return in ? INT_IN_EP : INT_OUT_EP;
1403         }
1404         return 0;
1405 }
1406
1407 /* Return the maximum endpoint service interval time (ESIT) payload.
1408  * Basically, this is the maxpacket size, multiplied by the burst size
1409  * and mult size.
1410  */
1411 static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1412                 struct usb_host_endpoint *ep)
1413 {
1414         int max_burst;
1415         int max_packet;
1416
1417         /* Only applies for interrupt or isochronous endpoints */
1418         if (usb_endpoint_xfer_control(&ep->desc) ||
1419                         usb_endpoint_xfer_bulk(&ep->desc))
1420                 return 0;
1421
1422         /* SuperSpeedPlus Isoc ep sending over 48k per esit */
1423         if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1424             USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1425                 return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1426         /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1427         else if (udev->speed >= USB_SPEED_SUPER)
1428                 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1429
1430         max_packet = usb_endpoint_maxp(&ep->desc);
1431         max_burst = usb_endpoint_maxp_mult(&ep->desc);
1432         /* A 0 in max burst means 1 transfer per ESIT */
1433         return max_packet * max_burst;
1434 }
1435
1436 /* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1437  * Drivers will have to call usb_alloc_streams() to do that.
1438  */
1439 int xhci_endpoint_init(struct xhci_hcd *xhci,
1440                 struct xhci_virt_device *virt_dev,
1441                 struct usb_device *udev,
1442                 struct usb_host_endpoint *ep,
1443                 gfp_t mem_flags)
1444 {
1445         unsigned int ep_index;
1446         struct xhci_ep_ctx *ep_ctx;
1447         struct xhci_ring *ep_ring;
1448         unsigned int max_packet;
1449         enum xhci_ring_type ring_type;
1450         u32 max_esit_payload;
1451         u32 endpoint_type;
1452         unsigned int max_burst;
1453         unsigned int interval;
1454         unsigned int mult;
1455         unsigned int avg_trb_len;
1456         unsigned int err_count = 0;
1457
1458         ep_index = xhci_get_endpoint_index(&ep->desc);
1459         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1460
1461         endpoint_type = xhci_get_endpoint_type(ep);
1462         if (!endpoint_type)
1463                 return -EINVAL;
1464
1465         ring_type = usb_endpoint_type(&ep->desc);
1466
1467         /*
1468          * Get values to fill the endpoint context, mostly from ep descriptor.
1469          * The average TRB buffer lengt for bulk endpoints is unclear as we
1470          * have no clue on scatter gather list entry size. For Isoc and Int,
1471          * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1472          */
1473         max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1474         interval = xhci_get_endpoint_interval(udev, ep);
1475
1476         /* Periodic endpoint bInterval limit quirk */
1477         if (usb_endpoint_xfer_int(&ep->desc) ||
1478             usb_endpoint_xfer_isoc(&ep->desc)) {
1479                 if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1480                     udev->speed >= USB_SPEED_HIGH &&
1481                     interval >= 7) {
1482                         interval = 6;
1483                 }
1484         }
1485
1486         mult = xhci_get_endpoint_mult(udev, ep);
1487         max_packet = usb_endpoint_maxp(&ep->desc);
1488         max_burst = xhci_get_endpoint_max_burst(udev, ep);
1489         avg_trb_len = max_esit_payload;
1490
1491         /* FIXME dig Mult and streams info out of ep companion desc */
1492
1493         /* Allow 3 retries for everything but isoc, set CErr = 3 */
1494         if (!usb_endpoint_xfer_isoc(&ep->desc))
1495                 err_count = 3;
1496         /* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */
1497         if (usb_endpoint_xfer_bulk(&ep->desc)) {
1498                 if (udev->speed == USB_SPEED_HIGH)
1499                         max_packet = 512;
1500                 if (udev->speed == USB_SPEED_FULL) {
1501                         max_packet = rounddown_pow_of_two(max_packet);
1502                         max_packet = clamp_val(max_packet, 8, 64);
1503                 }
1504         }
1505         /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1506         if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1507                 avg_trb_len = 8;
1508         /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1509         if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1510                 mult = 0;
1511
1512         /* Set up the endpoint ring */
1513         virt_dev->eps[ep_index].new_ring =
1514                 xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1515         if (!virt_dev->eps[ep_index].new_ring)
1516                 return -ENOMEM;
1517
1518         virt_dev->eps[ep_index].skip = false;
1519         ep_ring = virt_dev->eps[ep_index].new_ring;
1520
1521         /* Fill the endpoint context */
1522         ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1523                                       EP_INTERVAL(interval) |
1524                                       EP_MULT(mult));
1525         ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1526                                        MAX_PACKET(max_packet) |
1527                                        MAX_BURST(max_burst) |
1528                                        ERROR_COUNT(err_count));
1529         ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1530                                   ep_ring->cycle_state);
1531
1532         ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1533                                       EP_AVG_TRB_LENGTH(avg_trb_len));
1534
1535         return 0;
1536 }
1537
1538 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1539                 struct xhci_virt_device *virt_dev,
1540                 struct usb_host_endpoint *ep)
1541 {
1542         unsigned int ep_index;
1543         struct xhci_ep_ctx *ep_ctx;
1544
1545         ep_index = xhci_get_endpoint_index(&ep->desc);
1546         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1547
1548         ep_ctx->ep_info = 0;
1549         ep_ctx->ep_info2 = 0;
1550         ep_ctx->deq = 0;
1551         ep_ctx->tx_info = 0;
1552         /* Don't free the endpoint ring until the set interface or configuration
1553          * request succeeds.
1554          */
1555 }
1556
1557 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1558 {
1559         bw_info->ep_interval = 0;
1560         bw_info->mult = 0;
1561         bw_info->num_packets = 0;
1562         bw_info->max_packet_size = 0;
1563         bw_info->type = 0;
1564         bw_info->max_esit_payload = 0;
1565 }
1566
1567 void xhci_update_bw_info(struct xhci_hcd *xhci,
1568                 struct xhci_container_ctx *in_ctx,
1569                 struct xhci_input_control_ctx *ctrl_ctx,
1570                 struct xhci_virt_device *virt_dev)
1571 {
1572         struct xhci_bw_info *bw_info;
1573         struct xhci_ep_ctx *ep_ctx;
1574         unsigned int ep_type;
1575         int i;
1576
1577         for (i = 1; i < 31; i++) {
1578                 bw_info = &virt_dev->eps[i].bw_info;
1579
1580                 /* We can't tell what endpoint type is being dropped, but
1581                  * unconditionally clearing the bandwidth info for non-periodic
1582                  * endpoints should be harmless because the info will never be
1583                  * set in the first place.
1584                  */
1585                 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1586                         /* Dropped endpoint */
1587                         xhci_clear_endpoint_bw_info(bw_info);
1588                         continue;
1589                 }
1590
1591                 if (EP_IS_ADDED(ctrl_ctx, i)) {
1592                         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1593                         ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1594
1595                         /* Ignore non-periodic endpoints */
1596                         if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1597                                         ep_type != ISOC_IN_EP &&
1598                                         ep_type != INT_IN_EP)
1599                                 continue;
1600
1601                         /* Added or changed endpoint */
1602                         bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1603                                         le32_to_cpu(ep_ctx->ep_info));
1604                         /* Number of packets and mult are zero-based in the
1605                          * input context, but we want one-based for the
1606                          * interval table.
1607                          */
1608                         bw_info->mult = CTX_TO_EP_MULT(
1609                                         le32_to_cpu(ep_ctx->ep_info)) + 1;
1610                         bw_info->num_packets = CTX_TO_MAX_BURST(
1611                                         le32_to_cpu(ep_ctx->ep_info2)) + 1;
1612                         bw_info->max_packet_size = MAX_PACKET_DECODED(
1613                                         le32_to_cpu(ep_ctx->ep_info2));
1614                         bw_info->type = ep_type;
1615                         bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1616                                         le32_to_cpu(ep_ctx->tx_info));
1617                 }
1618         }
1619 }
1620
1621 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1622  * Useful when you want to change one particular aspect of the endpoint and then
1623  * issue a configure endpoint command.
1624  */
1625 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1626                 struct xhci_container_ctx *in_ctx,
1627                 struct xhci_container_ctx *out_ctx,
1628                 unsigned int ep_index)
1629 {
1630         struct xhci_ep_ctx *out_ep_ctx;
1631         struct xhci_ep_ctx *in_ep_ctx;
1632
1633         out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1634         in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1635
1636         in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1637         in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1638         in_ep_ctx->deq = out_ep_ctx->deq;
1639         in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1640         if (xhci->quirks & XHCI_MTK_HOST) {
1641                 in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0];
1642                 in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1];
1643         }
1644 }
1645
1646 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1647  * Useful when you want to change one particular aspect of the endpoint and then
1648  * issue a configure endpoint command.  Only the context entries field matters,
1649  * but we'll copy the whole thing anyway.
1650  */
1651 void xhci_slot_copy(struct xhci_hcd *xhci,
1652                 struct xhci_container_ctx *in_ctx,
1653                 struct xhci_container_ctx *out_ctx)
1654 {
1655         struct xhci_slot_ctx *in_slot_ctx;
1656         struct xhci_slot_ctx *out_slot_ctx;
1657
1658         in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1659         out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1660
1661         in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1662         in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1663         in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1664         in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1665 }
1666
1667 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1668 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1669 {
1670         int i;
1671         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1672         int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1673
1674         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1675                         "Allocating %d scratchpad buffers", num_sp);
1676
1677         if (!num_sp)
1678                 return 0;
1679
1680         xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags,
1681                                 dev_to_node(dev));
1682         if (!xhci->scratchpad)
1683                 goto fail_sp;
1684
1685         xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1686                                      num_sp * sizeof(u64),
1687                                      &xhci->scratchpad->sp_dma, flags);
1688         if (!xhci->scratchpad->sp_array)
1689                 goto fail_sp2;
1690
1691         xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *),
1692                                         flags, dev_to_node(dev));
1693         if (!xhci->scratchpad->sp_buffers)
1694                 goto fail_sp3;
1695
1696         xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1697         for (i = 0; i < num_sp; i++) {
1698                 dma_addr_t dma;
1699                 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1700                                                flags);
1701                 if (!buf)
1702                         goto fail_sp4;
1703
1704                 xhci->scratchpad->sp_array[i] = dma;
1705                 xhci->scratchpad->sp_buffers[i] = buf;
1706         }
1707
1708         return 0;
1709
1710  fail_sp4:
1711         for (i = i - 1; i >= 0; i--) {
1712                 dma_free_coherent(dev, xhci->page_size,
1713                                     xhci->scratchpad->sp_buffers[i],
1714                                     xhci->scratchpad->sp_array[i]);
1715         }
1716
1717         kfree(xhci->scratchpad->sp_buffers);
1718
1719  fail_sp3:
1720         dma_free_coherent(dev, num_sp * sizeof(u64),
1721                             xhci->scratchpad->sp_array,
1722                             xhci->scratchpad->sp_dma);
1723
1724  fail_sp2:
1725         kfree(xhci->scratchpad);
1726         xhci->scratchpad = NULL;
1727
1728  fail_sp:
1729         return -ENOMEM;
1730 }
1731
1732 static void scratchpad_free(struct xhci_hcd *xhci)
1733 {
1734         int num_sp;
1735         int i;
1736         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1737
1738         if (!xhci->scratchpad)
1739                 return;
1740
1741         num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1742
1743         for (i = 0; i < num_sp; i++) {
1744                 dma_free_coherent(dev, xhci->page_size,
1745                                     xhci->scratchpad->sp_buffers[i],
1746                                     xhci->scratchpad->sp_array[i]);
1747         }
1748         kfree(xhci->scratchpad->sp_buffers);
1749         dma_free_coherent(dev, num_sp * sizeof(u64),
1750                             xhci->scratchpad->sp_array,
1751                             xhci->scratchpad->sp_dma);
1752         kfree(xhci->scratchpad);
1753         xhci->scratchpad = NULL;
1754 }
1755
1756 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1757                 bool allocate_completion, gfp_t mem_flags)
1758 {
1759         struct xhci_command *command;
1760         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1761
1762         command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev));
1763         if (!command)
1764                 return NULL;
1765
1766         if (allocate_completion) {
1767                 command->completion =
1768                         kzalloc_node(sizeof(struct completion), mem_flags,
1769                                 dev_to_node(dev));
1770                 if (!command->completion) {
1771                         kfree(command);
1772                         return NULL;
1773                 }
1774                 init_completion(command->completion);
1775         }
1776
1777         command->status = 0;
1778         INIT_LIST_HEAD(&command->cmd_list);
1779         return command;
1780 }
1781
1782 struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci,
1783                 bool allocate_completion, gfp_t mem_flags)
1784 {
1785         struct xhci_command *command;
1786
1787         command = xhci_alloc_command(xhci, allocate_completion, mem_flags);
1788         if (!command)
1789                 return NULL;
1790
1791         command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1792                                                    mem_flags);
1793         if (!command->in_ctx) {
1794                 kfree(command->completion);
1795                 kfree(command);
1796                 return NULL;
1797         }
1798         return command;
1799 }
1800
1801 void xhci_urb_free_priv(struct urb_priv *urb_priv)
1802 {
1803         kfree(urb_priv);
1804 }
1805
1806 void xhci_free_command(struct xhci_hcd *xhci,
1807                 struct xhci_command *command)
1808 {
1809         xhci_free_container_ctx(xhci,
1810                         command->in_ctx);
1811         kfree(command->completion);
1812         kfree(command);
1813 }
1814
1815 int xhci_alloc_erst(struct xhci_hcd *xhci,
1816                     struct xhci_ring *evt_ring,
1817                     struct xhci_erst *erst,
1818                     gfp_t flags)
1819 {
1820         size_t size;
1821         unsigned int val;
1822         struct xhci_segment *seg;
1823         struct xhci_erst_entry *entry;
1824
1825         size = sizeof(struct xhci_erst_entry) * evt_ring->num_segs;
1826         erst->entries = dma_alloc_coherent(xhci_to_hcd(xhci)->self.sysdev,
1827                                            size, &erst->erst_dma_addr, flags);
1828         if (!erst->entries)
1829                 return -ENOMEM;
1830
1831         erst->num_entries = evt_ring->num_segs;
1832
1833         seg = evt_ring->first_seg;
1834         for (val = 0; val < evt_ring->num_segs; val++) {
1835                 entry = &erst->entries[val];
1836                 entry->seg_addr = cpu_to_le64(seg->dma);
1837                 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
1838                 entry->rsvd = 0;
1839                 seg = seg->next;
1840         }
1841
1842         return 0;
1843 }
1844
1845 void xhci_free_erst(struct xhci_hcd *xhci, struct xhci_erst *erst)
1846 {
1847         size_t size;
1848         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1849
1850         size = sizeof(struct xhci_erst_entry) * (erst->num_entries);
1851         if (erst->entries)
1852                 dma_free_coherent(dev, size,
1853                                 erst->entries,
1854                                 erst->erst_dma_addr);
1855         erst->entries = NULL;
1856 }
1857
1858 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1859 {
1860         struct device   *dev = xhci_to_hcd(xhci)->self.sysdev;
1861         int i, j, num_ports;
1862
1863         cancel_delayed_work_sync(&xhci->cmd_timer);
1864
1865         xhci_free_erst(xhci, &xhci->erst);
1866
1867         if (xhci->event_ring)
1868                 xhci_ring_free(xhci, xhci->event_ring);
1869         xhci->event_ring = NULL;
1870         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1871
1872         if (xhci->lpm_command)
1873                 xhci_free_command(xhci, xhci->lpm_command);
1874         xhci->lpm_command = NULL;
1875         if (xhci->cmd_ring)
1876                 xhci_ring_free(xhci, xhci->cmd_ring);
1877         xhci->cmd_ring = NULL;
1878         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1879         xhci_cleanup_command_queue(xhci);
1880
1881         num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1882         for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1883                 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1884                 for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1885                         struct list_head *ep = &bwt->interval_bw[j].endpoints;
1886                         while (!list_empty(ep))
1887                                 list_del_init(ep->next);
1888                 }
1889         }
1890
1891         for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1892                 xhci_free_virt_devices_depth_first(xhci, i);
1893
1894         dma_pool_destroy(xhci->segment_pool);
1895         xhci->segment_pool = NULL;
1896         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1897
1898         dma_pool_destroy(xhci->device_pool);
1899         xhci->device_pool = NULL;
1900         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1901
1902         dma_pool_destroy(xhci->small_streams_pool);
1903         xhci->small_streams_pool = NULL;
1904         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1905                         "Freed small stream array pool");
1906
1907         dma_pool_destroy(xhci->medium_streams_pool);
1908         xhci->medium_streams_pool = NULL;
1909         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1910                         "Freed medium stream array pool");
1911
1912         if (xhci->dcbaa)
1913                 dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1914                                 xhci->dcbaa, xhci->dcbaa->dma);
1915         xhci->dcbaa = NULL;
1916
1917         scratchpad_free(xhci);
1918
1919         if (!xhci->rh_bw)
1920                 goto no_bw;
1921
1922         for (i = 0; i < num_ports; i++) {
1923                 struct xhci_tt_bw_info *tt, *n;
1924                 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1925                         list_del(&tt->tt_list);
1926                         kfree(tt);
1927                 }
1928         }
1929
1930 no_bw:
1931         xhci->cmd_ring_reserved_trbs = 0;
1932         xhci->usb2_rhub.num_ports = 0;
1933         xhci->usb3_rhub.num_ports = 0;
1934         xhci->num_active_eps = 0;
1935         kfree(xhci->usb2_rhub.ports);
1936         kfree(xhci->usb3_rhub.ports);
1937         kfree(xhci->hw_ports);
1938         kfree(xhci->rh_bw);
1939         kfree(xhci->ext_caps);
1940         for (i = 0; i < xhci->num_port_caps; i++)
1941                 kfree(xhci->port_caps[i].psi);
1942         kfree(xhci->port_caps);
1943         xhci->num_port_caps = 0;
1944
1945         xhci->usb2_rhub.ports = NULL;
1946         xhci->usb3_rhub.ports = NULL;
1947         xhci->hw_ports = NULL;
1948         xhci->rh_bw = NULL;
1949         xhci->ext_caps = NULL;
1950         xhci->port_caps = NULL;
1951
1952         xhci->page_size = 0;
1953         xhci->page_shift = 0;
1954         xhci->usb2_rhub.bus_state.bus_suspended = 0;
1955         xhci->usb3_rhub.bus_state.bus_suspended = 0;
1956 }
1957
1958 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1959                 struct xhci_segment *input_seg,
1960                 union xhci_trb *start_trb,
1961                 union xhci_trb *end_trb,
1962                 dma_addr_t input_dma,
1963                 struct xhci_segment *result_seg,
1964                 char *test_name, int test_number)
1965 {
1966         unsigned long long start_dma;
1967         unsigned long long end_dma;
1968         struct xhci_segment *seg;
1969
1970         start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1971         end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1972
1973         seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1974         if (seg != result_seg) {
1975                 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1976                                 test_name, test_number);
1977                 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1978                                 "input DMA 0x%llx\n",
1979                                 input_seg,
1980                                 (unsigned long long) input_dma);
1981                 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1982                                 "ending TRB %p (0x%llx DMA)\n",
1983                                 start_trb, start_dma,
1984                                 end_trb, end_dma);
1985                 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1986                                 result_seg, seg);
1987                 trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
1988                           true);
1989                 return -1;
1990         }
1991         return 0;
1992 }
1993
1994 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1995 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
1996 {
1997         struct {
1998                 dma_addr_t              input_dma;
1999                 struct xhci_segment     *result_seg;
2000         } simple_test_vector [] = {
2001                 /* A zeroed DMA field should fail */
2002                 { 0, NULL },
2003                 /* One TRB before the ring start should fail */
2004                 { xhci->event_ring->first_seg->dma - 16, NULL },
2005                 /* One byte before the ring start should fail */
2006                 { xhci->event_ring->first_seg->dma - 1, NULL },
2007                 /* Starting TRB should succeed */
2008                 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
2009                 /* Ending TRB should succeed */
2010                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
2011                         xhci->event_ring->first_seg },
2012                 /* One byte after the ring end should fail */
2013                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
2014                 /* One TRB after the ring end should fail */
2015                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
2016                 /* An address of all ones should fail */
2017                 { (dma_addr_t) (~0), NULL },
2018         };
2019         struct {
2020                 struct xhci_segment     *input_seg;
2021                 union xhci_trb          *start_trb;
2022                 union xhci_trb          *end_trb;
2023                 dma_addr_t              input_dma;
2024                 struct xhci_segment     *result_seg;
2025         } complex_test_vector [] = {
2026                 /* Test feeding a valid DMA address from a different ring */
2027                 {       .input_seg = xhci->event_ring->first_seg,
2028                         .start_trb = xhci->event_ring->first_seg->trbs,
2029                         .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2030                         .input_dma = xhci->cmd_ring->first_seg->dma,
2031                         .result_seg = NULL,
2032                 },
2033                 /* Test feeding a valid end TRB from a different ring */
2034                 {       .input_seg = xhci->event_ring->first_seg,
2035                         .start_trb = xhci->event_ring->first_seg->trbs,
2036                         .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2037                         .input_dma = xhci->cmd_ring->first_seg->dma,
2038                         .result_seg = NULL,
2039                 },
2040                 /* Test feeding a valid start and end TRB from a different ring */
2041                 {       .input_seg = xhci->event_ring->first_seg,
2042                         .start_trb = xhci->cmd_ring->first_seg->trbs,
2043                         .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2044                         .input_dma = xhci->cmd_ring->first_seg->dma,
2045                         .result_seg = NULL,
2046                 },
2047                 /* TRB in this ring, but after this TD */
2048                 {       .input_seg = xhci->event_ring->first_seg,
2049                         .start_trb = &xhci->event_ring->first_seg->trbs[0],
2050                         .end_trb = &xhci->event_ring->first_seg->trbs[3],
2051                         .input_dma = xhci->event_ring->first_seg->dma + 4*16,
2052                         .result_seg = NULL,
2053                 },
2054                 /* TRB in this ring, but before this TD */
2055                 {       .input_seg = xhci->event_ring->first_seg,
2056                         .start_trb = &xhci->event_ring->first_seg->trbs[3],
2057                         .end_trb = &xhci->event_ring->first_seg->trbs[6],
2058                         .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2059                         .result_seg = NULL,
2060                 },
2061                 /* TRB in this ring, but after this wrapped TD */
2062                 {       .input_seg = xhci->event_ring->first_seg,
2063                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2064                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
2065                         .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2066                         .result_seg = NULL,
2067                 },
2068                 /* TRB in this ring, but before this wrapped TD */
2069                 {       .input_seg = xhci->event_ring->first_seg,
2070                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2071                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
2072                         .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
2073                         .result_seg = NULL,
2074                 },
2075                 /* TRB not in this ring, and we have a wrapped TD */
2076                 {       .input_seg = xhci->event_ring->first_seg,
2077                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2078                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
2079                         .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
2080                         .result_seg = NULL,
2081                 },
2082         };
2083
2084         unsigned int num_tests;
2085         int i, ret;
2086
2087         num_tests = ARRAY_SIZE(simple_test_vector);
2088         for (i = 0; i < num_tests; i++) {
2089                 ret = xhci_test_trb_in_td(xhci,
2090                                 xhci->event_ring->first_seg,
2091                                 xhci->event_ring->first_seg->trbs,
2092                                 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2093                                 simple_test_vector[i].input_dma,
2094                                 simple_test_vector[i].result_seg,
2095                                 "Simple", i);
2096                 if (ret < 0)
2097                         return ret;
2098         }
2099
2100         num_tests = ARRAY_SIZE(complex_test_vector);
2101         for (i = 0; i < num_tests; i++) {
2102                 ret = xhci_test_trb_in_td(xhci,
2103                                 complex_test_vector[i].input_seg,
2104                                 complex_test_vector[i].start_trb,
2105                                 complex_test_vector[i].end_trb,
2106                                 complex_test_vector[i].input_dma,
2107                                 complex_test_vector[i].result_seg,
2108                                 "Complex", i);
2109                 if (ret < 0)
2110                         return ret;
2111         }
2112         xhci_dbg(xhci, "TRB math tests passed.\n");
2113         return 0;
2114 }
2115
2116 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2117 {
2118         u64 temp;
2119         dma_addr_t deq;
2120
2121         deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2122                         xhci->event_ring->dequeue);
2123         if (deq == 0 && !in_interrupt())
2124                 xhci_warn(xhci, "WARN something wrong with SW event ring "
2125                                 "dequeue ptr.\n");
2126         /* Update HC event ring dequeue pointer */
2127         temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2128         temp &= ERST_PTR_MASK;
2129         /* Don't clear the EHB bit (which is RW1C) because
2130          * there might be more events to service.
2131          */
2132         temp &= ~ERST_EHB;
2133         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2134                         "// Write event ring dequeue pointer, "
2135                         "preserving EHB bit");
2136         xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2137                         &xhci->ir_set->erst_dequeue);
2138 }
2139
2140 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2141                 __le32 __iomem *addr, int max_caps)
2142 {
2143         u32 temp, port_offset, port_count;
2144         int i;
2145         u8 major_revision, minor_revision;
2146         struct xhci_hub *rhub;
2147         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2148         struct xhci_port_cap *port_cap;
2149
2150         temp = readl(addr);
2151         major_revision = XHCI_EXT_PORT_MAJOR(temp);
2152         minor_revision = XHCI_EXT_PORT_MINOR(temp);
2153
2154         if (major_revision == 0x03) {
2155                 rhub = &xhci->usb3_rhub;
2156                 /*
2157                  * Some hosts incorrectly use sub-minor version for minor
2158                  * version (i.e. 0x02 instead of 0x20 for bcdUSB 0x320 and 0x01
2159                  * for bcdUSB 0x310). Since there is no USB release with sub
2160                  * minor version 0x301 to 0x309, we can assume that they are
2161                  * incorrect and fix it here.
2162                  */
2163                 if (minor_revision > 0x00 && minor_revision < 0x10)
2164                         minor_revision <<= 4;
2165         } else if (major_revision <= 0x02) {
2166                 rhub = &xhci->usb2_rhub;
2167         } else {
2168                 xhci_warn(xhci, "Ignoring unknown port speed, "
2169                                 "Ext Cap %p, revision = 0x%x\n",
2170                                 addr, major_revision);
2171                 /* Ignoring port protocol we can't understand. FIXME */
2172                 return;
2173         }
2174         rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp);
2175
2176         if (rhub->min_rev < minor_revision)
2177                 rhub->min_rev = minor_revision;
2178
2179         /* Port offset and count in the third dword, see section 7.2 */
2180         temp = readl(addr + 2);
2181         port_offset = XHCI_EXT_PORT_OFF(temp);
2182         port_count = XHCI_EXT_PORT_COUNT(temp);
2183         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2184                         "Ext Cap %p, port offset = %u, "
2185                         "count = %u, revision = 0x%x",
2186                         addr, port_offset, port_count, major_revision);
2187         /* Port count includes the current port offset */
2188         if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2189                 /* WTF? "Valid values are â€˜1’ to MaxPorts" */
2190                 return;
2191
2192         port_cap = &xhci->port_caps[xhci->num_port_caps++];
2193         if (xhci->num_port_caps > max_caps)
2194                 return;
2195
2196         port_cap->maj_rev = major_revision;
2197         port_cap->min_rev = minor_revision;
2198         port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp);
2199
2200         if (port_cap->psi_count) {
2201                 port_cap->psi = kcalloc_node(port_cap->psi_count,
2202                                              sizeof(*port_cap->psi),
2203                                              GFP_KERNEL, dev_to_node(dev));
2204                 if (!port_cap->psi)
2205                         port_cap->psi_count = 0;
2206
2207                 port_cap->psi_uid_count++;
2208                 for (i = 0; i < port_cap->psi_count; i++) {
2209                         port_cap->psi[i] = readl(addr + 4 + i);
2210
2211                         /* count unique ID values, two consecutive entries can
2212                          * have the same ID if link is assymetric
2213                          */
2214                         if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) !=
2215                                   XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1])))
2216                                 port_cap->psi_uid_count++;
2217
2218                         xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2219                                   XHCI_EXT_PORT_PSIV(port_cap->psi[i]),
2220                                   XHCI_EXT_PORT_PSIE(port_cap->psi[i]),
2221                                   XHCI_EXT_PORT_PLT(port_cap->psi[i]),
2222                                   XHCI_EXT_PORT_PFD(port_cap->psi[i]),
2223                                   XHCI_EXT_PORT_LP(port_cap->psi[i]),
2224                                   XHCI_EXT_PORT_PSIM(port_cap->psi[i]));
2225                 }
2226         }
2227         /* cache usb2 port capabilities */
2228         if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2229                 xhci->ext_caps[xhci->num_ext_caps++] = temp;
2230
2231         if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) &&
2232                  (temp & XHCI_HLC)) {
2233                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2234                                "xHCI 1.0: support USB2 hardware lpm");
2235                 xhci->hw_lpm_support = 1;
2236         }
2237
2238         port_offset--;
2239         for (i = port_offset; i < (port_offset + port_count); i++) {
2240                 struct xhci_port *hw_port = &xhci->hw_ports[i];
2241                 /* Duplicate entry.  Ignore the port if the revisions differ. */
2242                 if (hw_port->rhub) {
2243                         xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2244                                         " port %u\n", addr, i);
2245                         xhci_warn(xhci, "Port was marked as USB %u, "
2246                                         "duplicated as USB %u\n",
2247                                         hw_port->rhub->maj_rev, major_revision);
2248                         /* Only adjust the roothub port counts if we haven't
2249                          * found a similar duplicate.
2250                          */
2251                         if (hw_port->rhub != rhub &&
2252                                  hw_port->hcd_portnum != DUPLICATE_ENTRY) {
2253                                 hw_port->rhub->num_ports--;
2254                                 hw_port->hcd_portnum = DUPLICATE_ENTRY;
2255                         }
2256                         continue;
2257                 }
2258                 hw_port->rhub = rhub;
2259                 hw_port->port_cap = port_cap;
2260                 rhub->num_ports++;
2261         }
2262         /* FIXME: Should we disable ports not in the Extended Capabilities? */
2263 }
2264
2265 static void xhci_create_rhub_port_array(struct xhci_hcd *xhci,
2266                                         struct xhci_hub *rhub, gfp_t flags)
2267 {
2268         int port_index = 0;
2269         int i;
2270         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2271
2272         if (!rhub->num_ports)
2273                 return;
2274         rhub->ports = kcalloc_node(rhub->num_ports, sizeof(*rhub->ports),
2275                         flags, dev_to_node(dev));
2276         if (!rhub->ports)
2277                 return;
2278
2279         for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
2280                 if (xhci->hw_ports[i].rhub != rhub ||
2281                     xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY)
2282                         continue;
2283                 xhci->hw_ports[i].hcd_portnum = port_index;
2284                 rhub->ports[port_index] = &xhci->hw_ports[i];
2285                 port_index++;
2286                 if (port_index == rhub->num_ports)
2287                         break;
2288         }
2289 }
2290
2291 /*
2292  * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2293  * specify what speeds each port is supposed to be.  We can't count on the port
2294  * speed bits in the PORTSC register being correct until a device is connected,
2295  * but we need to set up the two fake roothubs with the correct number of USB
2296  * 3.0 and USB 2.0 ports at host controller initialization time.
2297  */
2298 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2299 {
2300         void __iomem *base;
2301         u32 offset;
2302         unsigned int num_ports;
2303         int i, j;
2304         int cap_count = 0;
2305         u32 cap_start;
2306         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2307
2308         num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2309         xhci->hw_ports = kcalloc_node(num_ports, sizeof(*xhci->hw_ports),
2310                                 flags, dev_to_node(dev));
2311         if (!xhci->hw_ports)
2312                 return -ENOMEM;
2313
2314         for (i = 0; i < num_ports; i++) {
2315                 xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base +
2316                         NUM_PORT_REGS * i;
2317                 xhci->hw_ports[i].hw_portnum = i;
2318         }
2319
2320         xhci->rh_bw = kcalloc_node(num_ports, sizeof(*xhci->rh_bw), flags,
2321                                    dev_to_node(dev));
2322         if (!xhci->rh_bw)
2323                 return -ENOMEM;
2324         for (i = 0; i < num_ports; i++) {
2325                 struct xhci_interval_bw_table *bw_table;
2326
2327                 INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2328                 bw_table = &xhci->rh_bw[i].bw_table;
2329                 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2330                         INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2331         }
2332         base = &xhci->cap_regs->hc_capbase;
2333
2334         cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2335         if (!cap_start) {
2336                 xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2337                 return -ENODEV;
2338         }
2339
2340         offset = cap_start;
2341         /* count extended protocol capability entries for later caching */
2342         while (offset) {
2343                 cap_count++;
2344                 offset = xhci_find_next_ext_cap(base, offset,
2345                                                       XHCI_EXT_CAPS_PROTOCOL);
2346         }
2347
2348         xhci->ext_caps = kcalloc_node(cap_count, sizeof(*xhci->ext_caps),
2349                                 flags, dev_to_node(dev));
2350         if (!xhci->ext_caps)
2351                 return -ENOMEM;
2352
2353         xhci->port_caps = kcalloc_node(cap_count, sizeof(*xhci->port_caps),
2354                                 flags, dev_to_node(dev));
2355         if (!xhci->port_caps)
2356                 return -ENOMEM;
2357
2358         offset = cap_start;
2359
2360         while (offset) {
2361                 xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2362                 if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports ==
2363                     num_ports)
2364                         break;
2365                 offset = xhci_find_next_ext_cap(base, offset,
2366                                                 XHCI_EXT_CAPS_PROTOCOL);
2367         }
2368         if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) {
2369                 xhci_warn(xhci, "No ports on the roothubs?\n");
2370                 return -ENODEV;
2371         }
2372         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2373                        "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2374                        xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports);
2375
2376         /* Place limits on the number of roothub ports so that the hub
2377          * descriptors aren't longer than the USB core will allocate.
2378          */
2379         if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) {
2380                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2381                                 "Limiting USB 3.0 roothub ports to %u.",
2382                                 USB_SS_MAXPORTS);
2383                 xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS;
2384         }
2385         if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) {
2386                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2387                                 "Limiting USB 2.0 roothub ports to %u.",
2388                                 USB_MAXCHILDREN);
2389                 xhci->usb2_rhub.num_ports = USB_MAXCHILDREN;
2390         }
2391
2392         /*
2393          * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2394          * Not sure how the USB core will handle a hub with no ports...
2395          */
2396
2397         xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags);
2398         xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags);
2399
2400         return 0;
2401 }
2402
2403 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2404 {
2405         dma_addr_t      dma;
2406         struct device   *dev = xhci_to_hcd(xhci)->self.sysdev;
2407         unsigned int    val, val2;
2408         u64             val_64;
2409         u32             page_size, temp;
2410         int             i, ret;
2411
2412         INIT_LIST_HEAD(&xhci->cmd_list);
2413
2414         /* init command timeout work */
2415         INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2416         init_completion(&xhci->cmd_ring_stop_completion);
2417
2418         page_size = readl(&xhci->op_regs->page_size);
2419         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2420                         "Supported page size register = 0x%x", page_size);
2421         for (i = 0; i < 16; i++) {
2422                 if ((0x1 & page_size) != 0)
2423                         break;
2424                 page_size = page_size >> 1;
2425         }
2426         if (i < 16)
2427                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2428                         "Supported page size of %iK", (1 << (i+12)) / 1024);
2429         else
2430                 xhci_warn(xhci, "WARN: no supported page size\n");
2431         /* Use 4K pages, since that's common and the minimum the HC supports */
2432         xhci->page_shift = 12;
2433         xhci->page_size = 1 << xhci->page_shift;
2434         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2435                         "HCD page size set to %iK", xhci->page_size / 1024);
2436
2437         /*
2438          * Program the Number of Device Slots Enabled field in the CONFIG
2439          * register with the max value of slots the HC can handle.
2440          */
2441         val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2442         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2443                         "// xHC can handle at most %d device slots.", val);
2444         val2 = readl(&xhci->op_regs->config_reg);
2445         val |= (val2 & ~HCS_SLOTS_MASK);
2446         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2447                         "// Setting Max device slots reg = 0x%x.", val);
2448         writel(val, &xhci->op_regs->config_reg);
2449
2450         /*
2451          * xHCI section 5.4.6 - doorbell array must be
2452          * "physically contiguous and 64-byte (cache line) aligned".
2453          */
2454         xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2455                         flags);
2456         if (!xhci->dcbaa)
2457                 goto fail;
2458         xhci->dcbaa->dma = dma;
2459         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2460                         "// Device context base array address = 0x%llx (DMA), %p (virt)",
2461                         (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2462         xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2463
2464         /*
2465          * Initialize the ring segment pool.  The ring must be a contiguous
2466          * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2467          * however, the command ring segment needs 64-byte aligned segments
2468          * and our use of dma addresses in the trb_address_map radix tree needs
2469          * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2470          */
2471         xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2472                         TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2473
2474         /* See Table 46 and Note on Figure 55 */
2475         xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2476                         2112, 64, xhci->page_size);
2477         if (!xhci->segment_pool || !xhci->device_pool)
2478                 goto fail;
2479
2480         /* Linear stream context arrays don't have any boundary restrictions,
2481          * and only need to be 16-byte aligned.
2482          */
2483         xhci->small_streams_pool =
2484                 dma_pool_create("xHCI 256 byte stream ctx arrays",
2485                         dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2486         xhci->medium_streams_pool =
2487                 dma_pool_create("xHCI 1KB stream ctx arrays",
2488                         dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2489         /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2490          * will be allocated with dma_alloc_coherent()
2491          */
2492
2493         if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2494                 goto fail;
2495
2496         /* Set up the command ring to have one segments for now. */
2497         xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2498         if (!xhci->cmd_ring)
2499                 goto fail;
2500         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2501                         "Allocated command ring at %p", xhci->cmd_ring);
2502         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2503                         (unsigned long long)xhci->cmd_ring->first_seg->dma);
2504
2505         /* Set the address in the Command Ring Control register */
2506         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2507         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2508                 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2509                 xhci->cmd_ring->cycle_state;
2510         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2511                         "// Setting command ring address to 0x%016llx", val_64);
2512         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2513
2514         xhci->lpm_command = xhci_alloc_command_with_ctx(xhci, true, flags);
2515         if (!xhci->lpm_command)
2516                 goto fail;
2517
2518         /* Reserve one command ring TRB for disabling LPM.
2519          * Since the USB core grabs the shared usb_bus bandwidth mutex before
2520          * disabling LPM, we only need to reserve one TRB for all devices.
2521          */
2522         xhci->cmd_ring_reserved_trbs++;
2523
2524         val = readl(&xhci->cap_regs->db_off);
2525         val &= DBOFF_MASK;
2526         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2527                         "// Doorbell array is located at offset 0x%x"
2528                         " from cap regs base addr", val);
2529         xhci->dba = (void __iomem *) xhci->cap_regs + val;
2530         /* Set ir_set to interrupt register set 0 */
2531         xhci->ir_set = &xhci->run_regs->ir_set[0];
2532
2533         /*
2534          * Event ring setup: Allocate a normal ring, but also setup
2535          * the event ring segment table (ERST).  Section 4.9.3.
2536          */
2537         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2538         xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2539                                         0, flags);
2540         if (!xhci->event_ring)
2541                 goto fail;
2542         if (xhci_check_trb_in_td_math(xhci) < 0)
2543                 goto fail;
2544
2545         ret = xhci_alloc_erst(xhci, xhci->event_ring, &xhci->erst, flags);
2546         if (ret)
2547                 goto fail;
2548
2549         /* set ERST count with the number of entries in the segment table */
2550         val = readl(&xhci->ir_set->erst_size);
2551         val &= ERST_SIZE_MASK;
2552         val |= ERST_NUM_SEGS;
2553         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2554                         "// Write ERST size = %i to ir_set 0 (some bits preserved)",
2555                         val);
2556         writel(val, &xhci->ir_set->erst_size);
2557
2558         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2559                         "// Set ERST entries to point to event ring.");
2560         /* set the segment table base address */
2561         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2562                         "// Set ERST base address for ir_set 0 = 0x%llx",
2563                         (unsigned long long)xhci->erst.erst_dma_addr);
2564         val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2565         val_64 &= ERST_PTR_MASK;
2566         val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2567         xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2568
2569         /* Set the event ring dequeue address */
2570         xhci_set_hc_event_deq(xhci);
2571         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2572                         "Wrote ERST address to ir_set 0.");
2573
2574         /*
2575          * XXX: Might need to set the Interrupter Moderation Register to
2576          * something other than the default (~1ms minimum between interrupts).
2577          * See section 5.5.1.2.
2578          */
2579         for (i = 0; i < MAX_HC_SLOTS; i++)
2580                 xhci->devs[i] = NULL;
2581         for (i = 0; i < USB_MAXCHILDREN; i++) {
2582                 xhci->usb2_rhub.bus_state.resume_done[i] = 0;
2583                 xhci->usb3_rhub.bus_state.resume_done[i] = 0;
2584                 /* Only the USB 2.0 completions will ever be used. */
2585                 init_completion(&xhci->usb2_rhub.bus_state.rexit_done[i]);
2586                 init_completion(&xhci->usb3_rhub.bus_state.u3exit_done[i]);
2587         }
2588
2589         if (scratchpad_alloc(xhci, flags))
2590                 goto fail;
2591         if (xhci_setup_port_arrays(xhci, flags))
2592                 goto fail;
2593
2594         /* Enable USB 3.0 device notifications for function remote wake, which
2595          * is necessary for allowing USB 3.0 devices to do remote wakeup from
2596          * U3 (device suspend).
2597          */
2598         temp = readl(&xhci->op_regs->dev_notification);
2599         temp &= ~DEV_NOTE_MASK;
2600         temp |= DEV_NOTE_FWAKE;
2601         writel(temp, &xhci->op_regs->dev_notification);
2602
2603         return 0;
2604
2605 fail:
2606         xhci_halt(xhci);
2607         xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
2608         xhci_mem_cleanup(xhci);
2609         return -ENOMEM;
2610 }