GNU Linux-libre 5.16.19-gnu
[releases.git] / drivers / usb / host / xhci-mem.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10
11 #include <linux/usb.h>
12 #include <linux/pci.h>
13 #include <linux/slab.h>
14 #include <linux/dmapool.h>
15 #include <linux/dma-mapping.h>
16
17 #include "xhci.h"
18 #include "xhci-trace.h"
19 #include "xhci-debugfs.h"
20
21 /*
22  * Allocates a generic ring segment from the ring pool, sets the dma address,
23  * initializes the segment to zero, and sets the private next pointer to NULL.
24  *
25  * Section 4.11.1.1:
26  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
27  */
28 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
29                                                unsigned int cycle_state,
30                                                unsigned int max_packet,
31                                                gfp_t flags)
32 {
33         struct xhci_segment *seg;
34         dma_addr_t      dma;
35         int             i;
36         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
37
38         seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev));
39         if (!seg)
40                 return NULL;
41
42         seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
43         if (!seg->trbs) {
44                 kfree(seg);
45                 return NULL;
46         }
47
48         if (max_packet) {
49                 seg->bounce_buf = kzalloc_node(max_packet, flags,
50                                         dev_to_node(dev));
51                 if (!seg->bounce_buf) {
52                         dma_pool_free(xhci->segment_pool, seg->trbs, dma);
53                         kfree(seg);
54                         return NULL;
55                 }
56         }
57         /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
58         if (cycle_state == 0) {
59                 for (i = 0; i < TRBS_PER_SEGMENT; i++)
60                         seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
61         }
62         seg->dma = dma;
63         seg->next = NULL;
64
65         return seg;
66 }
67
68 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
69 {
70         if (seg->trbs) {
71                 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
72                 seg->trbs = NULL;
73         }
74         kfree(seg->bounce_buf);
75         kfree(seg);
76 }
77
78 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
79                                 struct xhci_segment *first)
80 {
81         struct xhci_segment *seg;
82
83         seg = first->next;
84         while (seg != first) {
85                 struct xhci_segment *next = seg->next;
86                 xhci_segment_free(xhci, seg);
87                 seg = next;
88         }
89         xhci_segment_free(xhci, first);
90 }
91
92 /*
93  * Make the prev segment point to the next segment.
94  *
95  * Change the last TRB in the prev segment to be a Link TRB which points to the
96  * DMA address of the next segment.  The caller needs to set any Link TRB
97  * related flags, such as End TRB, Toggle Cycle, and no snoop.
98  */
99 static void xhci_link_segments(struct xhci_segment *prev,
100                                struct xhci_segment *next,
101                                enum xhci_ring_type type, bool chain_links)
102 {
103         u32 val;
104
105         if (!prev || !next)
106                 return;
107         prev->next = next;
108         if (type != TYPE_EVENT) {
109                 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
110                         cpu_to_le64(next->dma);
111
112                 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
113                 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
114                 val &= ~TRB_TYPE_BITMASK;
115                 val |= TRB_TYPE(TRB_LINK);
116                 if (chain_links)
117                         val |= TRB_CHAIN;
118                 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
119         }
120 }
121
122 /*
123  * Link the ring to the new segments.
124  * Set Toggle Cycle for the new ring if needed.
125  */
126 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
127                 struct xhci_segment *first, struct xhci_segment *last,
128                 unsigned int num_segs)
129 {
130         struct xhci_segment *next;
131         bool chain_links;
132
133         if (!ring || !first || !last)
134                 return;
135
136         /* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
137         chain_links = !!(xhci_link_trb_quirk(xhci) ||
138                          (ring->type == TYPE_ISOC &&
139                           (xhci->quirks & XHCI_AMD_0x96_HOST)));
140
141         next = ring->enq_seg->next;
142         xhci_link_segments(ring->enq_seg, first, ring->type, chain_links);
143         xhci_link_segments(last, next, ring->type, chain_links);
144         ring->num_segs += num_segs;
145         ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
146
147         if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
148                 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
149                         &= ~cpu_to_le32(LINK_TOGGLE);
150                 last->trbs[TRBS_PER_SEGMENT-1].link.control
151                         |= cpu_to_le32(LINK_TOGGLE);
152                 ring->last_seg = last;
153         }
154 }
155
156 /*
157  * We need a radix tree for mapping physical addresses of TRBs to which stream
158  * ID they belong to.  We need to do this because the host controller won't tell
159  * us which stream ring the TRB came from.  We could store the stream ID in an
160  * event data TRB, but that doesn't help us for the cancellation case, since the
161  * endpoint may stop before it reaches that event data TRB.
162  *
163  * The radix tree maps the upper portion of the TRB DMA address to a ring
164  * segment that has the same upper portion of DMA addresses.  For example, say I
165  * have segments of size 1KB, that are always 1KB aligned.  A segment may
166  * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
167  * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
168  * pass the radix tree a key to get the right stream ID:
169  *
170  *      0x10c90fff >> 10 = 0x43243
171  *      0x10c912c0 >> 10 = 0x43244
172  *      0x10c91400 >> 10 = 0x43245
173  *
174  * Obviously, only those TRBs with DMA addresses that are within the segment
175  * will make the radix tree return the stream ID for that ring.
176  *
177  * Caveats for the radix tree:
178  *
179  * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
180  * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
181  * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
182  * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
183  * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
184  * extended systems (where the DMA address can be bigger than 32-bits),
185  * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
186  */
187 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
188                 struct xhci_ring *ring,
189                 struct xhci_segment *seg,
190                 gfp_t mem_flags)
191 {
192         unsigned long key;
193         int ret;
194
195         key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
196         /* Skip any segments that were already added. */
197         if (radix_tree_lookup(trb_address_map, key))
198                 return 0;
199
200         ret = radix_tree_maybe_preload(mem_flags);
201         if (ret)
202                 return ret;
203         ret = radix_tree_insert(trb_address_map,
204                         key, ring);
205         radix_tree_preload_end();
206         return ret;
207 }
208
209 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
210                 struct xhci_segment *seg)
211 {
212         unsigned long key;
213
214         key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
215         if (radix_tree_lookup(trb_address_map, key))
216                 radix_tree_delete(trb_address_map, key);
217 }
218
219 static int xhci_update_stream_segment_mapping(
220                 struct radix_tree_root *trb_address_map,
221                 struct xhci_ring *ring,
222                 struct xhci_segment *first_seg,
223                 struct xhci_segment *last_seg,
224                 gfp_t mem_flags)
225 {
226         struct xhci_segment *seg;
227         struct xhci_segment *failed_seg;
228         int ret;
229
230         if (WARN_ON_ONCE(trb_address_map == NULL))
231                 return 0;
232
233         seg = first_seg;
234         do {
235                 ret = xhci_insert_segment_mapping(trb_address_map,
236                                 ring, seg, mem_flags);
237                 if (ret)
238                         goto remove_streams;
239                 if (seg == last_seg)
240                         return 0;
241                 seg = seg->next;
242         } while (seg != first_seg);
243
244         return 0;
245
246 remove_streams:
247         failed_seg = seg;
248         seg = first_seg;
249         do {
250                 xhci_remove_segment_mapping(trb_address_map, seg);
251                 if (seg == failed_seg)
252                         return ret;
253                 seg = seg->next;
254         } while (seg != first_seg);
255
256         return ret;
257 }
258
259 static void xhci_remove_stream_mapping(struct xhci_ring *ring)
260 {
261         struct xhci_segment *seg;
262
263         if (WARN_ON_ONCE(ring->trb_address_map == NULL))
264                 return;
265
266         seg = ring->first_seg;
267         do {
268                 xhci_remove_segment_mapping(ring->trb_address_map, seg);
269                 seg = seg->next;
270         } while (seg != ring->first_seg);
271 }
272
273 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
274 {
275         return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
276                         ring->first_seg, ring->last_seg, mem_flags);
277 }
278
279 /* XXX: Do we need the hcd structure in all these functions? */
280 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
281 {
282         if (!ring)
283                 return;
284
285         trace_xhci_ring_free(ring);
286
287         if (ring->first_seg) {
288                 if (ring->type == TYPE_STREAM)
289                         xhci_remove_stream_mapping(ring);
290                 xhci_free_segments_for_ring(xhci, ring->first_seg);
291         }
292
293         kfree(ring);
294 }
295
296 void xhci_initialize_ring_info(struct xhci_ring *ring,
297                                unsigned int cycle_state)
298 {
299         /* The ring is empty, so the enqueue pointer == dequeue pointer */
300         ring->enqueue = ring->first_seg->trbs;
301         ring->enq_seg = ring->first_seg;
302         ring->dequeue = ring->enqueue;
303         ring->deq_seg = ring->first_seg;
304         /* The ring is initialized to 0. The producer must write 1 to the cycle
305          * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
306          * compare CCS to the cycle bit to check ownership, so CCS = 1.
307          *
308          * New rings are initialized with cycle state equal to 1; if we are
309          * handling ring expansion, set the cycle state equal to the old ring.
310          */
311         ring->cycle_state = cycle_state;
312
313         /*
314          * Each segment has a link TRB, and leave an extra TRB for SW
315          * accounting purpose
316          */
317         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
318 }
319
320 /* Allocate segments and link them for a ring */
321 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
322                 struct xhci_segment **first, struct xhci_segment **last,
323                 unsigned int num_segs, unsigned int cycle_state,
324                 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
325 {
326         struct xhci_segment *prev;
327         bool chain_links;
328
329         /* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
330         chain_links = !!(xhci_link_trb_quirk(xhci) ||
331                          (type == TYPE_ISOC &&
332                           (xhci->quirks & XHCI_AMD_0x96_HOST)));
333
334         prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
335         if (!prev)
336                 return -ENOMEM;
337         num_segs--;
338
339         *first = prev;
340         while (num_segs > 0) {
341                 struct xhci_segment     *next;
342
343                 next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
344                 if (!next) {
345                         prev = *first;
346                         while (prev) {
347                                 next = prev->next;
348                                 xhci_segment_free(xhci, prev);
349                                 prev = next;
350                         }
351                         return -ENOMEM;
352                 }
353                 xhci_link_segments(prev, next, type, chain_links);
354
355                 prev = next;
356                 num_segs--;
357         }
358         xhci_link_segments(prev, *first, type, chain_links);
359         *last = prev;
360
361         return 0;
362 }
363
364 /*
365  * Create a new ring with zero or more segments.
366  *
367  * Link each segment together into a ring.
368  * Set the end flag and the cycle toggle bit on the last segment.
369  * See section 4.9.1 and figures 15 and 16.
370  */
371 struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
372                 unsigned int num_segs, unsigned int cycle_state,
373                 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
374 {
375         struct xhci_ring        *ring;
376         int ret;
377         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
378
379         ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev));
380         if (!ring)
381                 return NULL;
382
383         ring->num_segs = num_segs;
384         ring->bounce_buf_len = max_packet;
385         INIT_LIST_HEAD(&ring->td_list);
386         ring->type = type;
387         if (num_segs == 0)
388                 return ring;
389
390         ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
391                         &ring->last_seg, num_segs, cycle_state, type,
392                         max_packet, flags);
393         if (ret)
394                 goto fail;
395
396         /* Only event ring does not use link TRB */
397         if (type != TYPE_EVENT) {
398                 /* See section 4.9.2.1 and 6.4.4.1 */
399                 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
400                         cpu_to_le32(LINK_TOGGLE);
401         }
402         xhci_initialize_ring_info(ring, cycle_state);
403         trace_xhci_ring_alloc(ring);
404         return ring;
405
406 fail:
407         kfree(ring);
408         return NULL;
409 }
410
411 void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
412                 struct xhci_virt_device *virt_dev,
413                 unsigned int ep_index)
414 {
415         xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
416         virt_dev->eps[ep_index].ring = NULL;
417 }
418
419 /*
420  * Expand an existing ring.
421  * Allocate a new ring which has same segment numbers and link the two rings.
422  */
423 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
424                                 unsigned int num_trbs, gfp_t flags)
425 {
426         struct xhci_segment     *first;
427         struct xhci_segment     *last;
428         unsigned int            num_segs;
429         unsigned int            num_segs_needed;
430         int                     ret;
431
432         num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
433                                 (TRBS_PER_SEGMENT - 1);
434
435         /* Allocate number of segments we needed, or double the ring size */
436         num_segs = ring->num_segs > num_segs_needed ?
437                         ring->num_segs : num_segs_needed;
438
439         ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
440                         num_segs, ring->cycle_state, ring->type,
441                         ring->bounce_buf_len, flags);
442         if (ret)
443                 return -ENOMEM;
444
445         if (ring->type == TYPE_STREAM)
446                 ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
447                                                 ring, first, last, flags);
448         if (ret) {
449                 struct xhci_segment *next;
450                 do {
451                         next = first->next;
452                         xhci_segment_free(xhci, first);
453                         if (first == last)
454                                 break;
455                         first = next;
456                 } while (true);
457                 return ret;
458         }
459
460         xhci_link_rings(xhci, ring, first, last, num_segs);
461         trace_xhci_ring_expansion(ring);
462         xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
463                         "ring expansion succeed, now has %d segments",
464                         ring->num_segs);
465
466         return 0;
467 }
468
469 struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
470                                                     int type, gfp_t flags)
471 {
472         struct xhci_container_ctx *ctx;
473         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
474
475         if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
476                 return NULL;
477
478         ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev));
479         if (!ctx)
480                 return NULL;
481
482         ctx->type = type;
483         ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
484         if (type == XHCI_CTX_TYPE_INPUT)
485                 ctx->size += CTX_SIZE(xhci->hcc_params);
486
487         ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
488         if (!ctx->bytes) {
489                 kfree(ctx);
490                 return NULL;
491         }
492         return ctx;
493 }
494
495 void xhci_free_container_ctx(struct xhci_hcd *xhci,
496                              struct xhci_container_ctx *ctx)
497 {
498         if (!ctx)
499                 return;
500         dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
501         kfree(ctx);
502 }
503
504 struct xhci_input_control_ctx *xhci_get_input_control_ctx(
505                                               struct xhci_container_ctx *ctx)
506 {
507         if (ctx->type != XHCI_CTX_TYPE_INPUT)
508                 return NULL;
509
510         return (struct xhci_input_control_ctx *)ctx->bytes;
511 }
512
513 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
514                                         struct xhci_container_ctx *ctx)
515 {
516         if (ctx->type == XHCI_CTX_TYPE_DEVICE)
517                 return (struct xhci_slot_ctx *)ctx->bytes;
518
519         return (struct xhci_slot_ctx *)
520                 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
521 }
522
523 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
524                                     struct xhci_container_ctx *ctx,
525                                     unsigned int ep_index)
526 {
527         /* increment ep index by offset of start of ep ctx array */
528         ep_index++;
529         if (ctx->type == XHCI_CTX_TYPE_INPUT)
530                 ep_index++;
531
532         return (struct xhci_ep_ctx *)
533                 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
534 }
535 EXPORT_SYMBOL_GPL(xhci_get_ep_ctx);
536
537 /***************** Streams structures manipulation *************************/
538
539 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
540                 unsigned int num_stream_ctxs,
541                 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
542 {
543         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
544         size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
545
546         if (size > MEDIUM_STREAM_ARRAY_SIZE)
547                 dma_free_coherent(dev, size,
548                                 stream_ctx, dma);
549         else if (size <= SMALL_STREAM_ARRAY_SIZE)
550                 return dma_pool_free(xhci->small_streams_pool,
551                                 stream_ctx, dma);
552         else
553                 return dma_pool_free(xhci->medium_streams_pool,
554                                 stream_ctx, dma);
555 }
556
557 /*
558  * The stream context array for each endpoint with bulk streams enabled can
559  * vary in size, based on:
560  *  - how many streams the endpoint supports,
561  *  - the maximum primary stream array size the host controller supports,
562  *  - and how many streams the device driver asks for.
563  *
564  * The stream context array must be a power of 2, and can be as small as
565  * 64 bytes or as large as 1MB.
566  */
567 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
568                 unsigned int num_stream_ctxs, dma_addr_t *dma,
569                 gfp_t mem_flags)
570 {
571         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
572         size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
573
574         if (size > MEDIUM_STREAM_ARRAY_SIZE)
575                 return dma_alloc_coherent(dev, size,
576                                 dma, mem_flags);
577         else if (size <= SMALL_STREAM_ARRAY_SIZE)
578                 return dma_pool_alloc(xhci->small_streams_pool,
579                                 mem_flags, dma);
580         else
581                 return dma_pool_alloc(xhci->medium_streams_pool,
582                                 mem_flags, dma);
583 }
584
585 struct xhci_ring *xhci_dma_to_transfer_ring(
586                 struct xhci_virt_ep *ep,
587                 u64 address)
588 {
589         if (ep->ep_state & EP_HAS_STREAMS)
590                 return radix_tree_lookup(&ep->stream_info->trb_address_map,
591                                 address >> TRB_SEGMENT_SHIFT);
592         return ep->ring;
593 }
594
595 /*
596  * Change an endpoint's internal structure so it supports stream IDs.  The
597  * number of requested streams includes stream 0, which cannot be used by device
598  * drivers.
599  *
600  * The number of stream contexts in the stream context array may be bigger than
601  * the number of streams the driver wants to use.  This is because the number of
602  * stream context array entries must be a power of two.
603  */
604 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
605                 unsigned int num_stream_ctxs,
606                 unsigned int num_streams,
607                 unsigned int max_packet, gfp_t mem_flags)
608 {
609         struct xhci_stream_info *stream_info;
610         u32 cur_stream;
611         struct xhci_ring *cur_ring;
612         u64 addr;
613         int ret;
614         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
615
616         xhci_dbg(xhci, "Allocating %u streams and %u "
617                         "stream context array entries.\n",
618                         num_streams, num_stream_ctxs);
619         if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
620                 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
621                 return NULL;
622         }
623         xhci->cmd_ring_reserved_trbs++;
624
625         stream_info = kzalloc_node(sizeof(*stream_info), mem_flags,
626                         dev_to_node(dev));
627         if (!stream_info)
628                 goto cleanup_trbs;
629
630         stream_info->num_streams = num_streams;
631         stream_info->num_stream_ctxs = num_stream_ctxs;
632
633         /* Initialize the array of virtual pointers to stream rings. */
634         stream_info->stream_rings = kcalloc_node(
635                         num_streams, sizeof(struct xhci_ring *), mem_flags,
636                         dev_to_node(dev));
637         if (!stream_info->stream_rings)
638                 goto cleanup_info;
639
640         /* Initialize the array of DMA addresses for stream rings for the HW. */
641         stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
642                         num_stream_ctxs, &stream_info->ctx_array_dma,
643                         mem_flags);
644         if (!stream_info->stream_ctx_array)
645                 goto cleanup_ctx;
646         memset(stream_info->stream_ctx_array, 0,
647                         sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
648
649         /* Allocate everything needed to free the stream rings later */
650         stream_info->free_streams_command =
651                 xhci_alloc_command_with_ctx(xhci, true, mem_flags);
652         if (!stream_info->free_streams_command)
653                 goto cleanup_ctx;
654
655         INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
656
657         /* Allocate rings for all the streams that the driver will use,
658          * and add their segment DMA addresses to the radix tree.
659          * Stream 0 is reserved.
660          */
661
662         for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
663                 stream_info->stream_rings[cur_stream] =
664                         xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
665                                         mem_flags);
666                 cur_ring = stream_info->stream_rings[cur_stream];
667                 if (!cur_ring)
668                         goto cleanup_rings;
669                 cur_ring->stream_id = cur_stream;
670                 cur_ring->trb_address_map = &stream_info->trb_address_map;
671                 /* Set deq ptr, cycle bit, and stream context type */
672                 addr = cur_ring->first_seg->dma |
673                         SCT_FOR_CTX(SCT_PRI_TR) |
674                         cur_ring->cycle_state;
675                 stream_info->stream_ctx_array[cur_stream].stream_ring =
676                         cpu_to_le64(addr);
677                 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
678                                 cur_stream, (unsigned long long) addr);
679
680                 ret = xhci_update_stream_mapping(cur_ring, mem_flags);
681                 if (ret) {
682                         xhci_ring_free(xhci, cur_ring);
683                         stream_info->stream_rings[cur_stream] = NULL;
684                         goto cleanup_rings;
685                 }
686         }
687         /* Leave the other unused stream ring pointers in the stream context
688          * array initialized to zero.  This will cause the xHC to give us an
689          * error if the device asks for a stream ID we don't have setup (if it
690          * was any other way, the host controller would assume the ring is
691          * "empty" and wait forever for data to be queued to that stream ID).
692          */
693
694         return stream_info;
695
696 cleanup_rings:
697         for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
698                 cur_ring = stream_info->stream_rings[cur_stream];
699                 if (cur_ring) {
700                         xhci_ring_free(xhci, cur_ring);
701                         stream_info->stream_rings[cur_stream] = NULL;
702                 }
703         }
704         xhci_free_command(xhci, stream_info->free_streams_command);
705 cleanup_ctx:
706         kfree(stream_info->stream_rings);
707 cleanup_info:
708         kfree(stream_info);
709 cleanup_trbs:
710         xhci->cmd_ring_reserved_trbs--;
711         return NULL;
712 }
713 /*
714  * Sets the MaxPStreams field and the Linear Stream Array field.
715  * Sets the dequeue pointer to the stream context array.
716  */
717 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
718                 struct xhci_ep_ctx *ep_ctx,
719                 struct xhci_stream_info *stream_info)
720 {
721         u32 max_primary_streams;
722         /* MaxPStreams is the number of stream context array entries, not the
723          * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
724          * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
725          */
726         max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
727         xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
728                         "Setting number of stream ctx array entries to %u",
729                         1 << (max_primary_streams + 1));
730         ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
731         ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
732                                        | EP_HAS_LSA);
733         ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
734 }
735
736 /*
737  * Sets the MaxPStreams field and the Linear Stream Array field to 0.
738  * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
739  * not at the beginning of the ring).
740  */
741 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
742                 struct xhci_virt_ep *ep)
743 {
744         dma_addr_t addr;
745         ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
746         addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
747         ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
748 }
749
750 /* Frees all stream contexts associated with the endpoint,
751  *
752  * Caller should fix the endpoint context streams fields.
753  */
754 void xhci_free_stream_info(struct xhci_hcd *xhci,
755                 struct xhci_stream_info *stream_info)
756 {
757         int cur_stream;
758         struct xhci_ring *cur_ring;
759
760         if (!stream_info)
761                 return;
762
763         for (cur_stream = 1; cur_stream < stream_info->num_streams;
764                         cur_stream++) {
765                 cur_ring = stream_info->stream_rings[cur_stream];
766                 if (cur_ring) {
767                         xhci_ring_free(xhci, cur_ring);
768                         stream_info->stream_rings[cur_stream] = NULL;
769                 }
770         }
771         xhci_free_command(xhci, stream_info->free_streams_command);
772         xhci->cmd_ring_reserved_trbs--;
773         if (stream_info->stream_ctx_array)
774                 xhci_free_stream_ctx(xhci,
775                                 stream_info->num_stream_ctxs,
776                                 stream_info->stream_ctx_array,
777                                 stream_info->ctx_array_dma);
778
779         kfree(stream_info->stream_rings);
780         kfree(stream_info);
781 }
782
783
784 /***************** Device context manipulation *************************/
785
786 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
787                 struct xhci_virt_ep *ep)
788 {
789         timer_setup(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog,
790                     0);
791         ep->xhci = xhci;
792 }
793
794 static void xhci_free_tt_info(struct xhci_hcd *xhci,
795                 struct xhci_virt_device *virt_dev,
796                 int slot_id)
797 {
798         struct list_head *tt_list_head;
799         struct xhci_tt_bw_info *tt_info, *next;
800         bool slot_found = false;
801
802         /* If the device never made it past the Set Address stage,
803          * it may not have the real_port set correctly.
804          */
805         if (virt_dev->real_port == 0 ||
806                         virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
807                 xhci_dbg(xhci, "Bad real port.\n");
808                 return;
809         }
810
811         tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
812         list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
813                 /* Multi-TT hubs will have more than one entry */
814                 if (tt_info->slot_id == slot_id) {
815                         slot_found = true;
816                         list_del(&tt_info->tt_list);
817                         kfree(tt_info);
818                 } else if (slot_found) {
819                         break;
820                 }
821         }
822 }
823
824 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
825                 struct xhci_virt_device *virt_dev,
826                 struct usb_device *hdev,
827                 struct usb_tt *tt, gfp_t mem_flags)
828 {
829         struct xhci_tt_bw_info          *tt_info;
830         unsigned int                    num_ports;
831         int                             i, j;
832         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
833
834         if (!tt->multi)
835                 num_ports = 1;
836         else
837                 num_ports = hdev->maxchild;
838
839         for (i = 0; i < num_ports; i++, tt_info++) {
840                 struct xhci_interval_bw_table *bw_table;
841
842                 tt_info = kzalloc_node(sizeof(*tt_info), mem_flags,
843                                 dev_to_node(dev));
844                 if (!tt_info)
845                         goto free_tts;
846                 INIT_LIST_HEAD(&tt_info->tt_list);
847                 list_add(&tt_info->tt_list,
848                                 &xhci->rh_bw[virt_dev->real_port - 1].tts);
849                 tt_info->slot_id = virt_dev->udev->slot_id;
850                 if (tt->multi)
851                         tt_info->ttport = i+1;
852                 bw_table = &tt_info->bw_table;
853                 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
854                         INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
855         }
856         return 0;
857
858 free_tts:
859         xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
860         return -ENOMEM;
861 }
862
863
864 /* All the xhci_tds in the ring's TD list should be freed at this point.
865  * Should be called with xhci->lock held if there is any chance the TT lists
866  * will be manipulated by the configure endpoint, allocate device, or update
867  * hub functions while this function is removing the TT entries from the list.
868  */
869 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
870 {
871         struct xhci_virt_device *dev;
872         int i;
873         int old_active_eps = 0;
874
875         /* Slot ID 0 is reserved */
876         if (slot_id == 0 || !xhci->devs[slot_id])
877                 return;
878
879         dev = xhci->devs[slot_id];
880
881         xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
882         if (!dev)
883                 return;
884
885         trace_xhci_free_virt_device(dev);
886
887         if (dev->tt_info)
888                 old_active_eps = dev->tt_info->active_eps;
889
890         for (i = 0; i < 31; i++) {
891                 if (dev->eps[i].ring)
892                         xhci_ring_free(xhci, dev->eps[i].ring);
893                 if (dev->eps[i].stream_info)
894                         xhci_free_stream_info(xhci,
895                                         dev->eps[i].stream_info);
896                 /* Endpoints on the TT/root port lists should have been removed
897                  * when usb_disable_device() was called for the device.
898                  * We can't drop them anyway, because the udev might have gone
899                  * away by this point, and we can't tell what speed it was.
900                  */
901                 if (!list_empty(&dev->eps[i].bw_endpoint_list))
902                         xhci_warn(xhci, "Slot %u endpoint %u "
903                                         "not removed from BW list!\n",
904                                         slot_id, i);
905         }
906         /* If this is a hub, free the TT(s) from the TT list */
907         xhci_free_tt_info(xhci, dev, slot_id);
908         /* If necessary, update the number of active TTs on this root port */
909         xhci_update_tt_active_eps(xhci, dev, old_active_eps);
910
911         if (dev->in_ctx)
912                 xhci_free_container_ctx(xhci, dev->in_ctx);
913         if (dev->out_ctx)
914                 xhci_free_container_ctx(xhci, dev->out_ctx);
915
916         if (dev->udev && dev->udev->slot_id)
917                 dev->udev->slot_id = 0;
918         kfree(xhci->devs[slot_id]);
919         xhci->devs[slot_id] = NULL;
920 }
921
922 /*
923  * Free a virt_device structure.
924  * If the virt_device added a tt_info (a hub) and has children pointing to
925  * that tt_info, then free the child first. Recursive.
926  * We can't rely on udev at this point to find child-parent relationships.
927  */
928 static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
929 {
930         struct xhci_virt_device *vdev;
931         struct list_head *tt_list_head;
932         struct xhci_tt_bw_info *tt_info, *next;
933         int i;
934
935         vdev = xhci->devs[slot_id];
936         if (!vdev)
937                 return;
938
939         if (vdev->real_port == 0 ||
940                         vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
941                 xhci_dbg(xhci, "Bad vdev->real_port.\n");
942                 goto out;
943         }
944
945         tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
946         list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
947                 /* is this a hub device that added a tt_info to the tts list */
948                 if (tt_info->slot_id == slot_id) {
949                         /* are any devices using this tt_info? */
950                         for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
951                                 vdev = xhci->devs[i];
952                                 if (vdev && (vdev->tt_info == tt_info))
953                                         xhci_free_virt_devices_depth_first(
954                                                 xhci, i);
955                         }
956                 }
957         }
958 out:
959         /* we are now at a leaf device */
960         xhci_debugfs_remove_slot(xhci, slot_id);
961         xhci_free_virt_device(xhci, slot_id);
962 }
963
964 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
965                 struct usb_device *udev, gfp_t flags)
966 {
967         struct xhci_virt_device *dev;
968         int i;
969
970         /* Slot ID 0 is reserved */
971         if (slot_id == 0 || xhci->devs[slot_id]) {
972                 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
973                 return 0;
974         }
975
976         dev = kzalloc(sizeof(*dev), flags);
977         if (!dev)
978                 return 0;
979
980         dev->slot_id = slot_id;
981
982         /* Allocate the (output) device context that will be used in the HC. */
983         dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
984         if (!dev->out_ctx)
985                 goto fail;
986
987         xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
988                         (unsigned long long)dev->out_ctx->dma);
989
990         /* Allocate the (input) device context for address device command */
991         dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
992         if (!dev->in_ctx)
993                 goto fail;
994
995         xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
996                         (unsigned long long)dev->in_ctx->dma);
997
998         /* Initialize the cancellation list and watchdog timers for each ep */
999         for (i = 0; i < 31; i++) {
1000                 dev->eps[i].ep_index = i;
1001                 dev->eps[i].vdev = dev;
1002                 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
1003                 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1004                 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1005         }
1006
1007         /* Allocate endpoint 0 ring */
1008         dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
1009         if (!dev->eps[0].ring)
1010                 goto fail;
1011
1012         dev->udev = udev;
1013
1014         /* Point to output device context in dcbaa. */
1015         xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1016         xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1017                  slot_id,
1018                  &xhci->dcbaa->dev_context_ptrs[slot_id],
1019                  le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1020
1021         trace_xhci_alloc_virt_device(dev);
1022
1023         xhci->devs[slot_id] = dev;
1024
1025         return 1;
1026 fail:
1027
1028         if (dev->in_ctx)
1029                 xhci_free_container_ctx(xhci, dev->in_ctx);
1030         if (dev->out_ctx)
1031                 xhci_free_container_ctx(xhci, dev->out_ctx);
1032         kfree(dev);
1033
1034         return 0;
1035 }
1036
1037 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1038                 struct usb_device *udev)
1039 {
1040         struct xhci_virt_device *virt_dev;
1041         struct xhci_ep_ctx      *ep0_ctx;
1042         struct xhci_ring        *ep_ring;
1043
1044         virt_dev = xhci->devs[udev->slot_id];
1045         ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1046         ep_ring = virt_dev->eps[0].ring;
1047         /*
1048          * FIXME we don't keep track of the dequeue pointer very well after a
1049          * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1050          * host to our enqueue pointer.  This should only be called after a
1051          * configured device has reset, so all control transfers should have
1052          * been completed or cancelled before the reset.
1053          */
1054         ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1055                                                         ep_ring->enqueue)
1056                                    | ep_ring->cycle_state);
1057 }
1058
1059 /*
1060  * The xHCI roothub may have ports of differing speeds in any order in the port
1061  * status registers.
1062  *
1063  * The xHCI hardware wants to know the roothub port number that the USB device
1064  * is attached to (or the roothub port its ancestor hub is attached to).  All we
1065  * know is the index of that port under either the USB 2.0 or the USB 3.0
1066  * roothub, but that doesn't give us the real index into the HW port status
1067  * registers. Call xhci_find_raw_port_number() to get real index.
1068  */
1069 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1070                 struct usb_device *udev)
1071 {
1072         struct usb_device *top_dev;
1073         struct usb_hcd *hcd;
1074
1075         if (udev->speed >= USB_SPEED_SUPER)
1076                 hcd = xhci->shared_hcd;
1077         else
1078                 hcd = xhci->main_hcd;
1079
1080         for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1081                         top_dev = top_dev->parent)
1082                 /* Found device below root hub */;
1083
1084         return  xhci_find_raw_port_number(hcd, top_dev->portnum);
1085 }
1086
1087 /* Setup an xHCI virtual device for a Set Address command */
1088 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1089 {
1090         struct xhci_virt_device *dev;
1091         struct xhci_ep_ctx      *ep0_ctx;
1092         struct xhci_slot_ctx    *slot_ctx;
1093         u32                     port_num;
1094         u32                     max_packets;
1095         struct usb_device *top_dev;
1096
1097         dev = xhci->devs[udev->slot_id];
1098         /* Slot ID 0 is reserved */
1099         if (udev->slot_id == 0 || !dev) {
1100                 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1101                                 udev->slot_id);
1102                 return -EINVAL;
1103         }
1104         ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1105         slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1106
1107         /* 3) Only the control endpoint is valid - one endpoint context */
1108         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1109         switch (udev->speed) {
1110         case USB_SPEED_SUPER_PLUS:
1111                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1112                 max_packets = MAX_PACKET(512);
1113                 break;
1114         case USB_SPEED_SUPER:
1115                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1116                 max_packets = MAX_PACKET(512);
1117                 break;
1118         case USB_SPEED_HIGH:
1119                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1120                 max_packets = MAX_PACKET(64);
1121                 break;
1122         /* USB core guesses at a 64-byte max packet first for FS devices */
1123         case USB_SPEED_FULL:
1124                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1125                 max_packets = MAX_PACKET(64);
1126                 break;
1127         case USB_SPEED_LOW:
1128                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1129                 max_packets = MAX_PACKET(8);
1130                 break;
1131         case USB_SPEED_WIRELESS:
1132                 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1133                 return -EINVAL;
1134         default:
1135                 /* Speed was set earlier, this shouldn't happen. */
1136                 return -EINVAL;
1137         }
1138         /* Find the root hub port this device is under */
1139         port_num = xhci_find_real_port_number(xhci, udev);
1140         if (!port_num)
1141                 return -EINVAL;
1142         slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1143         /* Set the port number in the virtual_device to the faked port number */
1144         for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1145                         top_dev = top_dev->parent)
1146                 /* Found device below root hub */;
1147         dev->fake_port = top_dev->portnum;
1148         dev->real_port = port_num;
1149         xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1150         xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1151
1152         /* Find the right bandwidth table that this device will be a part of.
1153          * If this is a full speed device attached directly to a root port (or a
1154          * decendent of one), it counts as a primary bandwidth domain, not a
1155          * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1156          * will never be created for the HS root hub.
1157          */
1158         if (!udev->tt || !udev->tt->hub->parent) {
1159                 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1160         } else {
1161                 struct xhci_root_port_bw_info *rh_bw;
1162                 struct xhci_tt_bw_info *tt_bw;
1163
1164                 rh_bw = &xhci->rh_bw[port_num - 1];
1165                 /* Find the right TT. */
1166                 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1167                         if (tt_bw->slot_id != udev->tt->hub->slot_id)
1168                                 continue;
1169
1170                         if (!dev->udev->tt->multi ||
1171                                         (udev->tt->multi &&
1172                                          tt_bw->ttport == dev->udev->ttport)) {
1173                                 dev->bw_table = &tt_bw->bw_table;
1174                                 dev->tt_info = tt_bw;
1175                                 break;
1176                         }
1177                 }
1178                 if (!dev->tt_info)
1179                         xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1180         }
1181
1182         /* Is this a LS/FS device under an external HS hub? */
1183         if (udev->tt && udev->tt->hub->parent) {
1184                 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1185                                                 (udev->ttport << 8));
1186                 if (udev->tt->multi)
1187                         slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1188         }
1189         xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1190         xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1191
1192         /* Step 4 - ring already allocated */
1193         /* Step 5 */
1194         ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1195
1196         /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1197         ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1198                                          max_packets);
1199
1200         ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1201                                    dev->eps[0].ring->cycle_state);
1202
1203         trace_xhci_setup_addressable_virt_device(dev);
1204
1205         /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1206
1207         return 0;
1208 }
1209
1210 /*
1211  * Convert interval expressed as 2^(bInterval - 1) == interval into
1212  * straight exponent value 2^n == interval.
1213  *
1214  */
1215 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1216                 struct usb_host_endpoint *ep)
1217 {
1218         unsigned int interval;
1219
1220         interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1221         if (interval != ep->desc.bInterval - 1)
1222                 dev_warn(&udev->dev,
1223                          "ep %#x - rounding interval to %d %sframes\n",
1224                          ep->desc.bEndpointAddress,
1225                          1 << interval,
1226                          udev->speed == USB_SPEED_FULL ? "" : "micro");
1227
1228         if (udev->speed == USB_SPEED_FULL) {
1229                 /*
1230                  * Full speed isoc endpoints specify interval in frames,
1231                  * not microframes. We are using microframes everywhere,
1232                  * so adjust accordingly.
1233                  */
1234                 interval += 3;  /* 1 frame = 2^3 uframes */
1235         }
1236
1237         return interval;
1238 }
1239
1240 /*
1241  * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1242  * microframes, rounded down to nearest power of 2.
1243  */
1244 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1245                 struct usb_host_endpoint *ep, unsigned int desc_interval,
1246                 unsigned int min_exponent, unsigned int max_exponent)
1247 {
1248         unsigned int interval;
1249
1250         interval = fls(desc_interval) - 1;
1251         interval = clamp_val(interval, min_exponent, max_exponent);
1252         if ((1 << interval) != desc_interval)
1253                 dev_dbg(&udev->dev,
1254                          "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1255                          ep->desc.bEndpointAddress,
1256                          1 << interval,
1257                          desc_interval);
1258
1259         return interval;
1260 }
1261
1262 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1263                 struct usb_host_endpoint *ep)
1264 {
1265         if (ep->desc.bInterval == 0)
1266                 return 0;
1267         return xhci_microframes_to_exponent(udev, ep,
1268                         ep->desc.bInterval, 0, 15);
1269 }
1270
1271
1272 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1273                 struct usb_host_endpoint *ep)
1274 {
1275         return xhci_microframes_to_exponent(udev, ep,
1276                         ep->desc.bInterval * 8, 3, 10);
1277 }
1278
1279 /* Return the polling or NAK interval.
1280  *
1281  * The polling interval is expressed in "microframes".  If xHCI's Interval field
1282  * is set to N, it will service the endpoint every 2^(Interval)*125us.
1283  *
1284  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1285  * is set to 0.
1286  */
1287 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1288                 struct usb_host_endpoint *ep)
1289 {
1290         unsigned int interval = 0;
1291
1292         switch (udev->speed) {
1293         case USB_SPEED_HIGH:
1294                 /* Max NAK rate */
1295                 if (usb_endpoint_xfer_control(&ep->desc) ||
1296                     usb_endpoint_xfer_bulk(&ep->desc)) {
1297                         interval = xhci_parse_microframe_interval(udev, ep);
1298                         break;
1299                 }
1300                 fallthrough;    /* SS and HS isoc/int have same decoding */
1301
1302         case USB_SPEED_SUPER_PLUS:
1303         case USB_SPEED_SUPER:
1304                 if (usb_endpoint_xfer_int(&ep->desc) ||
1305                     usb_endpoint_xfer_isoc(&ep->desc)) {
1306                         interval = xhci_parse_exponent_interval(udev, ep);
1307                 }
1308                 break;
1309
1310         case USB_SPEED_FULL:
1311                 if (usb_endpoint_xfer_isoc(&ep->desc)) {
1312                         interval = xhci_parse_exponent_interval(udev, ep);
1313                         break;
1314                 }
1315                 /*
1316                  * Fall through for interrupt endpoint interval decoding
1317                  * since it uses the same rules as low speed interrupt
1318                  * endpoints.
1319                  */
1320                 fallthrough;
1321
1322         case USB_SPEED_LOW:
1323                 if (usb_endpoint_xfer_int(&ep->desc) ||
1324                     usb_endpoint_xfer_isoc(&ep->desc)) {
1325
1326                         interval = xhci_parse_frame_interval(udev, ep);
1327                 }
1328                 break;
1329
1330         default:
1331                 BUG();
1332         }
1333         return interval;
1334 }
1335
1336 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1337  * High speed endpoint descriptors can define "the number of additional
1338  * transaction opportunities per microframe", but that goes in the Max Burst
1339  * endpoint context field.
1340  */
1341 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1342                 struct usb_host_endpoint *ep)
1343 {
1344         if (udev->speed < USB_SPEED_SUPER ||
1345                         !usb_endpoint_xfer_isoc(&ep->desc))
1346                 return 0;
1347         return ep->ss_ep_comp.bmAttributes;
1348 }
1349
1350 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1351                                        struct usb_host_endpoint *ep)
1352 {
1353         /* Super speed and Plus have max burst in ep companion desc */
1354         if (udev->speed >= USB_SPEED_SUPER)
1355                 return ep->ss_ep_comp.bMaxBurst;
1356
1357         if (udev->speed == USB_SPEED_HIGH &&
1358             (usb_endpoint_xfer_isoc(&ep->desc) ||
1359              usb_endpoint_xfer_int(&ep->desc)))
1360                 return usb_endpoint_maxp_mult(&ep->desc) - 1;
1361
1362         return 0;
1363 }
1364
1365 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1366 {
1367         int in;
1368
1369         in = usb_endpoint_dir_in(&ep->desc);
1370
1371         switch (usb_endpoint_type(&ep->desc)) {
1372         case USB_ENDPOINT_XFER_CONTROL:
1373                 return CTRL_EP;
1374         case USB_ENDPOINT_XFER_BULK:
1375                 return in ? BULK_IN_EP : BULK_OUT_EP;
1376         case USB_ENDPOINT_XFER_ISOC:
1377                 return in ? ISOC_IN_EP : ISOC_OUT_EP;
1378         case USB_ENDPOINT_XFER_INT:
1379                 return in ? INT_IN_EP : INT_OUT_EP;
1380         }
1381         return 0;
1382 }
1383
1384 /* Return the maximum endpoint service interval time (ESIT) payload.
1385  * Basically, this is the maxpacket size, multiplied by the burst size
1386  * and mult size.
1387  */
1388 static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1389                 struct usb_host_endpoint *ep)
1390 {
1391         int max_burst;
1392         int max_packet;
1393
1394         /* Only applies for interrupt or isochronous endpoints */
1395         if (usb_endpoint_xfer_control(&ep->desc) ||
1396                         usb_endpoint_xfer_bulk(&ep->desc))
1397                 return 0;
1398
1399         /* SuperSpeedPlus Isoc ep sending over 48k per esit */
1400         if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1401             USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1402                 return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1403         /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1404         else if (udev->speed >= USB_SPEED_SUPER)
1405                 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1406
1407         max_packet = usb_endpoint_maxp(&ep->desc);
1408         max_burst = usb_endpoint_maxp_mult(&ep->desc);
1409         /* A 0 in max burst means 1 transfer per ESIT */
1410         return max_packet * max_burst;
1411 }
1412
1413 /* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1414  * Drivers will have to call usb_alloc_streams() to do that.
1415  */
1416 int xhci_endpoint_init(struct xhci_hcd *xhci,
1417                 struct xhci_virt_device *virt_dev,
1418                 struct usb_device *udev,
1419                 struct usb_host_endpoint *ep,
1420                 gfp_t mem_flags)
1421 {
1422         unsigned int ep_index;
1423         struct xhci_ep_ctx *ep_ctx;
1424         struct xhci_ring *ep_ring;
1425         unsigned int max_packet;
1426         enum xhci_ring_type ring_type;
1427         u32 max_esit_payload;
1428         u32 endpoint_type;
1429         unsigned int max_burst;
1430         unsigned int interval;
1431         unsigned int mult;
1432         unsigned int avg_trb_len;
1433         unsigned int err_count = 0;
1434
1435         ep_index = xhci_get_endpoint_index(&ep->desc);
1436         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1437
1438         endpoint_type = xhci_get_endpoint_type(ep);
1439         if (!endpoint_type)
1440                 return -EINVAL;
1441
1442         ring_type = usb_endpoint_type(&ep->desc);
1443
1444         /*
1445          * Get values to fill the endpoint context, mostly from ep descriptor.
1446          * The average TRB buffer lengt for bulk endpoints is unclear as we
1447          * have no clue on scatter gather list entry size. For Isoc and Int,
1448          * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1449          */
1450         max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1451         interval = xhci_get_endpoint_interval(udev, ep);
1452
1453         /* Periodic endpoint bInterval limit quirk */
1454         if (usb_endpoint_xfer_int(&ep->desc) ||
1455             usb_endpoint_xfer_isoc(&ep->desc)) {
1456                 if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1457                     udev->speed >= USB_SPEED_HIGH &&
1458                     interval >= 7) {
1459                         interval = 6;
1460                 }
1461         }
1462
1463         mult = xhci_get_endpoint_mult(udev, ep);
1464         max_packet = usb_endpoint_maxp(&ep->desc);
1465         max_burst = xhci_get_endpoint_max_burst(udev, ep);
1466         avg_trb_len = max_esit_payload;
1467
1468         /* FIXME dig Mult and streams info out of ep companion desc */
1469
1470         /* Allow 3 retries for everything but isoc, set CErr = 3 */
1471         if (!usb_endpoint_xfer_isoc(&ep->desc))
1472                 err_count = 3;
1473         /* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */
1474         if (usb_endpoint_xfer_bulk(&ep->desc)) {
1475                 if (udev->speed == USB_SPEED_HIGH)
1476                         max_packet = 512;
1477                 if (udev->speed == USB_SPEED_FULL) {
1478                         max_packet = rounddown_pow_of_two(max_packet);
1479                         max_packet = clamp_val(max_packet, 8, 64);
1480                 }
1481         }
1482         /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1483         if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1484                 avg_trb_len = 8;
1485         /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1486         if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1487                 mult = 0;
1488
1489         /* Set up the endpoint ring */
1490         virt_dev->eps[ep_index].new_ring =
1491                 xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1492         if (!virt_dev->eps[ep_index].new_ring)
1493                 return -ENOMEM;
1494
1495         virt_dev->eps[ep_index].skip = false;
1496         ep_ring = virt_dev->eps[ep_index].new_ring;
1497
1498         /* Fill the endpoint context */
1499         ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1500                                       EP_INTERVAL(interval) |
1501                                       EP_MULT(mult));
1502         ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1503                                        MAX_PACKET(max_packet) |
1504                                        MAX_BURST(max_burst) |
1505                                        ERROR_COUNT(err_count));
1506         ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1507                                   ep_ring->cycle_state);
1508
1509         ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1510                                       EP_AVG_TRB_LENGTH(avg_trb_len));
1511
1512         return 0;
1513 }
1514
1515 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1516                 struct xhci_virt_device *virt_dev,
1517                 struct usb_host_endpoint *ep)
1518 {
1519         unsigned int ep_index;
1520         struct xhci_ep_ctx *ep_ctx;
1521
1522         ep_index = xhci_get_endpoint_index(&ep->desc);
1523         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1524
1525         ep_ctx->ep_info = 0;
1526         ep_ctx->ep_info2 = 0;
1527         ep_ctx->deq = 0;
1528         ep_ctx->tx_info = 0;
1529         /* Don't free the endpoint ring until the set interface or configuration
1530          * request succeeds.
1531          */
1532 }
1533
1534 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1535 {
1536         bw_info->ep_interval = 0;
1537         bw_info->mult = 0;
1538         bw_info->num_packets = 0;
1539         bw_info->max_packet_size = 0;
1540         bw_info->type = 0;
1541         bw_info->max_esit_payload = 0;
1542 }
1543
1544 void xhci_update_bw_info(struct xhci_hcd *xhci,
1545                 struct xhci_container_ctx *in_ctx,
1546                 struct xhci_input_control_ctx *ctrl_ctx,
1547                 struct xhci_virt_device *virt_dev)
1548 {
1549         struct xhci_bw_info *bw_info;
1550         struct xhci_ep_ctx *ep_ctx;
1551         unsigned int ep_type;
1552         int i;
1553
1554         for (i = 1; i < 31; i++) {
1555                 bw_info = &virt_dev->eps[i].bw_info;
1556
1557                 /* We can't tell what endpoint type is being dropped, but
1558                  * unconditionally clearing the bandwidth info for non-periodic
1559                  * endpoints should be harmless because the info will never be
1560                  * set in the first place.
1561                  */
1562                 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1563                         /* Dropped endpoint */
1564                         xhci_clear_endpoint_bw_info(bw_info);
1565                         continue;
1566                 }
1567
1568                 if (EP_IS_ADDED(ctrl_ctx, i)) {
1569                         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1570                         ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1571
1572                         /* Ignore non-periodic endpoints */
1573                         if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1574                                         ep_type != ISOC_IN_EP &&
1575                                         ep_type != INT_IN_EP)
1576                                 continue;
1577
1578                         /* Added or changed endpoint */
1579                         bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1580                                         le32_to_cpu(ep_ctx->ep_info));
1581                         /* Number of packets and mult are zero-based in the
1582                          * input context, but we want one-based for the
1583                          * interval table.
1584                          */
1585                         bw_info->mult = CTX_TO_EP_MULT(
1586                                         le32_to_cpu(ep_ctx->ep_info)) + 1;
1587                         bw_info->num_packets = CTX_TO_MAX_BURST(
1588                                         le32_to_cpu(ep_ctx->ep_info2)) + 1;
1589                         bw_info->max_packet_size = MAX_PACKET_DECODED(
1590                                         le32_to_cpu(ep_ctx->ep_info2));
1591                         bw_info->type = ep_type;
1592                         bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1593                                         le32_to_cpu(ep_ctx->tx_info));
1594                 }
1595         }
1596 }
1597
1598 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1599  * Useful when you want to change one particular aspect of the endpoint and then
1600  * issue a configure endpoint command.
1601  */
1602 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1603                 struct xhci_container_ctx *in_ctx,
1604                 struct xhci_container_ctx *out_ctx,
1605                 unsigned int ep_index)
1606 {
1607         struct xhci_ep_ctx *out_ep_ctx;
1608         struct xhci_ep_ctx *in_ep_ctx;
1609
1610         out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1611         in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1612
1613         in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1614         in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1615         in_ep_ctx->deq = out_ep_ctx->deq;
1616         in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1617         if (xhci->quirks & XHCI_MTK_HOST) {
1618                 in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0];
1619                 in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1];
1620         }
1621 }
1622
1623 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1624  * Useful when you want to change one particular aspect of the endpoint and then
1625  * issue a configure endpoint command.  Only the context entries field matters,
1626  * but we'll copy the whole thing anyway.
1627  */
1628 void xhci_slot_copy(struct xhci_hcd *xhci,
1629                 struct xhci_container_ctx *in_ctx,
1630                 struct xhci_container_ctx *out_ctx)
1631 {
1632         struct xhci_slot_ctx *in_slot_ctx;
1633         struct xhci_slot_ctx *out_slot_ctx;
1634
1635         in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1636         out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1637
1638         in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1639         in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1640         in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1641         in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1642 }
1643
1644 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1645 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1646 {
1647         int i;
1648         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1649         int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1650
1651         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1652                         "Allocating %d scratchpad buffers", num_sp);
1653
1654         if (!num_sp)
1655                 return 0;
1656
1657         xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags,
1658                                 dev_to_node(dev));
1659         if (!xhci->scratchpad)
1660                 goto fail_sp;
1661
1662         xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1663                                      num_sp * sizeof(u64),
1664                                      &xhci->scratchpad->sp_dma, flags);
1665         if (!xhci->scratchpad->sp_array)
1666                 goto fail_sp2;
1667
1668         xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *),
1669                                         flags, dev_to_node(dev));
1670         if (!xhci->scratchpad->sp_buffers)
1671                 goto fail_sp3;
1672
1673         xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1674         for (i = 0; i < num_sp; i++) {
1675                 dma_addr_t dma;
1676                 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1677                                                flags);
1678                 if (!buf)
1679                         goto fail_sp4;
1680
1681                 xhci->scratchpad->sp_array[i] = dma;
1682                 xhci->scratchpad->sp_buffers[i] = buf;
1683         }
1684
1685         return 0;
1686
1687  fail_sp4:
1688         for (i = i - 1; i >= 0; i--) {
1689                 dma_free_coherent(dev, xhci->page_size,
1690                                     xhci->scratchpad->sp_buffers[i],
1691                                     xhci->scratchpad->sp_array[i]);
1692         }
1693
1694         kfree(xhci->scratchpad->sp_buffers);
1695
1696  fail_sp3:
1697         dma_free_coherent(dev, num_sp * sizeof(u64),
1698                             xhci->scratchpad->sp_array,
1699                             xhci->scratchpad->sp_dma);
1700
1701  fail_sp2:
1702         kfree(xhci->scratchpad);
1703         xhci->scratchpad = NULL;
1704
1705  fail_sp:
1706         return -ENOMEM;
1707 }
1708
1709 static void scratchpad_free(struct xhci_hcd *xhci)
1710 {
1711         int num_sp;
1712         int i;
1713         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1714
1715         if (!xhci->scratchpad)
1716                 return;
1717
1718         num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1719
1720         for (i = 0; i < num_sp; i++) {
1721                 dma_free_coherent(dev, xhci->page_size,
1722                                     xhci->scratchpad->sp_buffers[i],
1723                                     xhci->scratchpad->sp_array[i]);
1724         }
1725         kfree(xhci->scratchpad->sp_buffers);
1726         dma_free_coherent(dev, num_sp * sizeof(u64),
1727                             xhci->scratchpad->sp_array,
1728                             xhci->scratchpad->sp_dma);
1729         kfree(xhci->scratchpad);
1730         xhci->scratchpad = NULL;
1731 }
1732
1733 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1734                 bool allocate_completion, gfp_t mem_flags)
1735 {
1736         struct xhci_command *command;
1737         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1738
1739         command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev));
1740         if (!command)
1741                 return NULL;
1742
1743         if (allocate_completion) {
1744                 command->completion =
1745                         kzalloc_node(sizeof(struct completion), mem_flags,
1746                                 dev_to_node(dev));
1747                 if (!command->completion) {
1748                         kfree(command);
1749                         return NULL;
1750                 }
1751                 init_completion(command->completion);
1752         }
1753
1754         command->status = 0;
1755         INIT_LIST_HEAD(&command->cmd_list);
1756         return command;
1757 }
1758
1759 struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci,
1760                 bool allocate_completion, gfp_t mem_flags)
1761 {
1762         struct xhci_command *command;
1763
1764         command = xhci_alloc_command(xhci, allocate_completion, mem_flags);
1765         if (!command)
1766                 return NULL;
1767
1768         command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1769                                                    mem_flags);
1770         if (!command->in_ctx) {
1771                 kfree(command->completion);
1772                 kfree(command);
1773                 return NULL;
1774         }
1775         return command;
1776 }
1777
1778 void xhci_urb_free_priv(struct urb_priv *urb_priv)
1779 {
1780         kfree(urb_priv);
1781 }
1782
1783 void xhci_free_command(struct xhci_hcd *xhci,
1784                 struct xhci_command *command)
1785 {
1786         xhci_free_container_ctx(xhci,
1787                         command->in_ctx);
1788         kfree(command->completion);
1789         kfree(command);
1790 }
1791
1792 int xhci_alloc_erst(struct xhci_hcd *xhci,
1793                     struct xhci_ring *evt_ring,
1794                     struct xhci_erst *erst,
1795                     gfp_t flags)
1796 {
1797         size_t size;
1798         unsigned int val;
1799         struct xhci_segment *seg;
1800         struct xhci_erst_entry *entry;
1801
1802         size = sizeof(struct xhci_erst_entry) * evt_ring->num_segs;
1803         erst->entries = dma_alloc_coherent(xhci_to_hcd(xhci)->self.sysdev,
1804                                            size, &erst->erst_dma_addr, flags);
1805         if (!erst->entries)
1806                 return -ENOMEM;
1807
1808         erst->num_entries = evt_ring->num_segs;
1809
1810         seg = evt_ring->first_seg;
1811         for (val = 0; val < evt_ring->num_segs; val++) {
1812                 entry = &erst->entries[val];
1813                 entry->seg_addr = cpu_to_le64(seg->dma);
1814                 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
1815                 entry->rsvd = 0;
1816                 seg = seg->next;
1817         }
1818
1819         return 0;
1820 }
1821
1822 void xhci_free_erst(struct xhci_hcd *xhci, struct xhci_erst *erst)
1823 {
1824         size_t size;
1825         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1826
1827         size = sizeof(struct xhci_erst_entry) * (erst->num_entries);
1828         if (erst->entries)
1829                 dma_free_coherent(dev, size,
1830                                 erst->entries,
1831                                 erst->erst_dma_addr);
1832         erst->entries = NULL;
1833 }
1834
1835 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1836 {
1837         struct device   *dev = xhci_to_hcd(xhci)->self.sysdev;
1838         int i, j, num_ports;
1839
1840         cancel_delayed_work_sync(&xhci->cmd_timer);
1841
1842         xhci_free_erst(xhci, &xhci->erst);
1843
1844         if (xhci->event_ring)
1845                 xhci_ring_free(xhci, xhci->event_ring);
1846         xhci->event_ring = NULL;
1847         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1848
1849         if (xhci->lpm_command)
1850                 xhci_free_command(xhci, xhci->lpm_command);
1851         xhci->lpm_command = NULL;
1852         if (xhci->cmd_ring)
1853                 xhci_ring_free(xhci, xhci->cmd_ring);
1854         xhci->cmd_ring = NULL;
1855         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1856         xhci_cleanup_command_queue(xhci);
1857
1858         num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1859         for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1860                 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1861                 for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1862                         struct list_head *ep = &bwt->interval_bw[j].endpoints;
1863                         while (!list_empty(ep))
1864                                 list_del_init(ep->next);
1865                 }
1866         }
1867
1868         for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1869                 xhci_free_virt_devices_depth_first(xhci, i);
1870
1871         dma_pool_destroy(xhci->segment_pool);
1872         xhci->segment_pool = NULL;
1873         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1874
1875         dma_pool_destroy(xhci->device_pool);
1876         xhci->device_pool = NULL;
1877         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1878
1879         dma_pool_destroy(xhci->small_streams_pool);
1880         xhci->small_streams_pool = NULL;
1881         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1882                         "Freed small stream array pool");
1883
1884         dma_pool_destroy(xhci->medium_streams_pool);
1885         xhci->medium_streams_pool = NULL;
1886         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1887                         "Freed medium stream array pool");
1888
1889         if (xhci->dcbaa)
1890                 dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1891                                 xhci->dcbaa, xhci->dcbaa->dma);
1892         xhci->dcbaa = NULL;
1893
1894         scratchpad_free(xhci);
1895
1896         if (!xhci->rh_bw)
1897                 goto no_bw;
1898
1899         for (i = 0; i < num_ports; i++) {
1900                 struct xhci_tt_bw_info *tt, *n;
1901                 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1902                         list_del(&tt->tt_list);
1903                         kfree(tt);
1904                 }
1905         }
1906
1907 no_bw:
1908         xhci->cmd_ring_reserved_trbs = 0;
1909         xhci->usb2_rhub.num_ports = 0;
1910         xhci->usb3_rhub.num_ports = 0;
1911         xhci->num_active_eps = 0;
1912         kfree(xhci->usb2_rhub.ports);
1913         kfree(xhci->usb3_rhub.ports);
1914         kfree(xhci->hw_ports);
1915         kfree(xhci->rh_bw);
1916         kfree(xhci->ext_caps);
1917         for (i = 0; i < xhci->num_port_caps; i++)
1918                 kfree(xhci->port_caps[i].psi);
1919         kfree(xhci->port_caps);
1920         xhci->num_port_caps = 0;
1921
1922         xhci->usb2_rhub.ports = NULL;
1923         xhci->usb3_rhub.ports = NULL;
1924         xhci->hw_ports = NULL;
1925         xhci->rh_bw = NULL;
1926         xhci->ext_caps = NULL;
1927         xhci->port_caps = NULL;
1928
1929         xhci->page_size = 0;
1930         xhci->page_shift = 0;
1931         xhci->usb2_rhub.bus_state.bus_suspended = 0;
1932         xhci->usb3_rhub.bus_state.bus_suspended = 0;
1933 }
1934
1935 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1936                 struct xhci_segment *input_seg,
1937                 union xhci_trb *start_trb,
1938                 union xhci_trb *end_trb,
1939                 dma_addr_t input_dma,
1940                 struct xhci_segment *result_seg,
1941                 char *test_name, int test_number)
1942 {
1943         unsigned long long start_dma;
1944         unsigned long long end_dma;
1945         struct xhci_segment *seg;
1946
1947         start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1948         end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1949
1950         seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1951         if (seg != result_seg) {
1952                 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1953                                 test_name, test_number);
1954                 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1955                                 "input DMA 0x%llx\n",
1956                                 input_seg,
1957                                 (unsigned long long) input_dma);
1958                 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1959                                 "ending TRB %p (0x%llx DMA)\n",
1960                                 start_trb, start_dma,
1961                                 end_trb, end_dma);
1962                 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1963                                 result_seg, seg);
1964                 trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
1965                           true);
1966                 return -1;
1967         }
1968         return 0;
1969 }
1970
1971 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1972 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
1973 {
1974         struct {
1975                 dma_addr_t              input_dma;
1976                 struct xhci_segment     *result_seg;
1977         } simple_test_vector [] = {
1978                 /* A zeroed DMA field should fail */
1979                 { 0, NULL },
1980                 /* One TRB before the ring start should fail */
1981                 { xhci->event_ring->first_seg->dma - 16, NULL },
1982                 /* One byte before the ring start should fail */
1983                 { xhci->event_ring->first_seg->dma - 1, NULL },
1984                 /* Starting TRB should succeed */
1985                 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1986                 /* Ending TRB should succeed */
1987                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1988                         xhci->event_ring->first_seg },
1989                 /* One byte after the ring end should fail */
1990                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1991                 /* One TRB after the ring end should fail */
1992                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1993                 /* An address of all ones should fail */
1994                 { (dma_addr_t) (~0), NULL },
1995         };
1996         struct {
1997                 struct xhci_segment     *input_seg;
1998                 union xhci_trb          *start_trb;
1999                 union xhci_trb          *end_trb;
2000                 dma_addr_t              input_dma;
2001                 struct xhci_segment     *result_seg;
2002         } complex_test_vector [] = {
2003                 /* Test feeding a valid DMA address from a different ring */
2004                 {       .input_seg = xhci->event_ring->first_seg,
2005                         .start_trb = xhci->event_ring->first_seg->trbs,
2006                         .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2007                         .input_dma = xhci->cmd_ring->first_seg->dma,
2008                         .result_seg = NULL,
2009                 },
2010                 /* Test feeding a valid end TRB from a different ring */
2011                 {       .input_seg = xhci->event_ring->first_seg,
2012                         .start_trb = xhci->event_ring->first_seg->trbs,
2013                         .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2014                         .input_dma = xhci->cmd_ring->first_seg->dma,
2015                         .result_seg = NULL,
2016                 },
2017                 /* Test feeding a valid start and end TRB from a different ring */
2018                 {       .input_seg = xhci->event_ring->first_seg,
2019                         .start_trb = xhci->cmd_ring->first_seg->trbs,
2020                         .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2021                         .input_dma = xhci->cmd_ring->first_seg->dma,
2022                         .result_seg = NULL,
2023                 },
2024                 /* TRB in this ring, but after this TD */
2025                 {       .input_seg = xhci->event_ring->first_seg,
2026                         .start_trb = &xhci->event_ring->first_seg->trbs[0],
2027                         .end_trb = &xhci->event_ring->first_seg->trbs[3],
2028                         .input_dma = xhci->event_ring->first_seg->dma + 4*16,
2029                         .result_seg = NULL,
2030                 },
2031                 /* TRB in this ring, but before this TD */
2032                 {       .input_seg = xhci->event_ring->first_seg,
2033                         .start_trb = &xhci->event_ring->first_seg->trbs[3],
2034                         .end_trb = &xhci->event_ring->first_seg->trbs[6],
2035                         .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2036                         .result_seg = NULL,
2037                 },
2038                 /* TRB in this ring, but after this wrapped TD */
2039                 {       .input_seg = xhci->event_ring->first_seg,
2040                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2041                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
2042                         .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2043                         .result_seg = NULL,
2044                 },
2045                 /* TRB in this ring, but before this wrapped TD */
2046                 {       .input_seg = xhci->event_ring->first_seg,
2047                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2048                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
2049                         .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
2050                         .result_seg = NULL,
2051                 },
2052                 /* TRB not in this ring, and we have a wrapped TD */
2053                 {       .input_seg = xhci->event_ring->first_seg,
2054                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2055                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
2056                         .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
2057                         .result_seg = NULL,
2058                 },
2059         };
2060
2061         unsigned int num_tests;
2062         int i, ret;
2063
2064         num_tests = ARRAY_SIZE(simple_test_vector);
2065         for (i = 0; i < num_tests; i++) {
2066                 ret = xhci_test_trb_in_td(xhci,
2067                                 xhci->event_ring->first_seg,
2068                                 xhci->event_ring->first_seg->trbs,
2069                                 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2070                                 simple_test_vector[i].input_dma,
2071                                 simple_test_vector[i].result_seg,
2072                                 "Simple", i);
2073                 if (ret < 0)
2074                         return ret;
2075         }
2076
2077         num_tests = ARRAY_SIZE(complex_test_vector);
2078         for (i = 0; i < num_tests; i++) {
2079                 ret = xhci_test_trb_in_td(xhci,
2080                                 complex_test_vector[i].input_seg,
2081                                 complex_test_vector[i].start_trb,
2082                                 complex_test_vector[i].end_trb,
2083                                 complex_test_vector[i].input_dma,
2084                                 complex_test_vector[i].result_seg,
2085                                 "Complex", i);
2086                 if (ret < 0)
2087                         return ret;
2088         }
2089         xhci_dbg(xhci, "TRB math tests passed.\n");
2090         return 0;
2091 }
2092
2093 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2094 {
2095         u64 temp;
2096         dma_addr_t deq;
2097
2098         deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2099                         xhci->event_ring->dequeue);
2100         if (!deq)
2101                 xhci_warn(xhci, "WARN something wrong with SW event ring "
2102                                 "dequeue ptr.\n");
2103         /* Update HC event ring dequeue pointer */
2104         temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2105         temp &= ERST_PTR_MASK;
2106         /* Don't clear the EHB bit (which is RW1C) because
2107          * there might be more events to service.
2108          */
2109         temp &= ~ERST_EHB;
2110         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2111                         "// Write event ring dequeue pointer, "
2112                         "preserving EHB bit");
2113         xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2114                         &xhci->ir_set->erst_dequeue);
2115 }
2116
2117 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2118                 __le32 __iomem *addr, int max_caps)
2119 {
2120         u32 temp, port_offset, port_count;
2121         int i;
2122         u8 major_revision, minor_revision;
2123         struct xhci_hub *rhub;
2124         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2125         struct xhci_port_cap *port_cap;
2126
2127         temp = readl(addr);
2128         major_revision = XHCI_EXT_PORT_MAJOR(temp);
2129         minor_revision = XHCI_EXT_PORT_MINOR(temp);
2130
2131         if (major_revision == 0x03) {
2132                 rhub = &xhci->usb3_rhub;
2133                 /*
2134                  * Some hosts incorrectly use sub-minor version for minor
2135                  * version (i.e. 0x02 instead of 0x20 for bcdUSB 0x320 and 0x01
2136                  * for bcdUSB 0x310). Since there is no USB release with sub
2137                  * minor version 0x301 to 0x309, we can assume that they are
2138                  * incorrect and fix it here.
2139                  */
2140                 if (minor_revision > 0x00 && minor_revision < 0x10)
2141                         minor_revision <<= 4;
2142         } else if (major_revision <= 0x02) {
2143                 rhub = &xhci->usb2_rhub;
2144         } else {
2145                 xhci_warn(xhci, "Ignoring unknown port speed, "
2146                                 "Ext Cap %p, revision = 0x%x\n",
2147                                 addr, major_revision);
2148                 /* Ignoring port protocol we can't understand. FIXME */
2149                 return;
2150         }
2151         rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp);
2152
2153         if (rhub->min_rev < minor_revision)
2154                 rhub->min_rev = minor_revision;
2155
2156         /* Port offset and count in the third dword, see section 7.2 */
2157         temp = readl(addr + 2);
2158         port_offset = XHCI_EXT_PORT_OFF(temp);
2159         port_count = XHCI_EXT_PORT_COUNT(temp);
2160         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2161                         "Ext Cap %p, port offset = %u, "
2162                         "count = %u, revision = 0x%x",
2163                         addr, port_offset, port_count, major_revision);
2164         /* Port count includes the current port offset */
2165         if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2166                 /* WTF? "Valid values are â€˜1’ to MaxPorts" */
2167                 return;
2168
2169         port_cap = &xhci->port_caps[xhci->num_port_caps++];
2170         if (xhci->num_port_caps > max_caps)
2171                 return;
2172
2173         port_cap->maj_rev = major_revision;
2174         port_cap->min_rev = minor_revision;
2175         port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp);
2176
2177         if (port_cap->psi_count) {
2178                 port_cap->psi = kcalloc_node(port_cap->psi_count,
2179                                              sizeof(*port_cap->psi),
2180                                              GFP_KERNEL, dev_to_node(dev));
2181                 if (!port_cap->psi)
2182                         port_cap->psi_count = 0;
2183
2184                 port_cap->psi_uid_count++;
2185                 for (i = 0; i < port_cap->psi_count; i++) {
2186                         port_cap->psi[i] = readl(addr + 4 + i);
2187
2188                         /* count unique ID values, two consecutive entries can
2189                          * have the same ID if link is assymetric
2190                          */
2191                         if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) !=
2192                                   XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1])))
2193                                 port_cap->psi_uid_count++;
2194
2195                         xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2196                                   XHCI_EXT_PORT_PSIV(port_cap->psi[i]),
2197                                   XHCI_EXT_PORT_PSIE(port_cap->psi[i]),
2198                                   XHCI_EXT_PORT_PLT(port_cap->psi[i]),
2199                                   XHCI_EXT_PORT_PFD(port_cap->psi[i]),
2200                                   XHCI_EXT_PORT_LP(port_cap->psi[i]),
2201                                   XHCI_EXT_PORT_PSIM(port_cap->psi[i]));
2202                 }
2203         }
2204         /* cache usb2 port capabilities */
2205         if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2206                 xhci->ext_caps[xhci->num_ext_caps++] = temp;
2207
2208         if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) &&
2209                  (temp & XHCI_HLC)) {
2210                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2211                                "xHCI 1.0: support USB2 hardware lpm");
2212                 xhci->hw_lpm_support = 1;
2213         }
2214
2215         port_offset--;
2216         for (i = port_offset; i < (port_offset + port_count); i++) {
2217                 struct xhci_port *hw_port = &xhci->hw_ports[i];
2218                 /* Duplicate entry.  Ignore the port if the revisions differ. */
2219                 if (hw_port->rhub) {
2220                         xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2221                                         " port %u\n", addr, i);
2222                         xhci_warn(xhci, "Port was marked as USB %u, "
2223                                         "duplicated as USB %u\n",
2224                                         hw_port->rhub->maj_rev, major_revision);
2225                         /* Only adjust the roothub port counts if we haven't
2226                          * found a similar duplicate.
2227                          */
2228                         if (hw_port->rhub != rhub &&
2229                                  hw_port->hcd_portnum != DUPLICATE_ENTRY) {
2230                                 hw_port->rhub->num_ports--;
2231                                 hw_port->hcd_portnum = DUPLICATE_ENTRY;
2232                         }
2233                         continue;
2234                 }
2235                 hw_port->rhub = rhub;
2236                 hw_port->port_cap = port_cap;
2237                 rhub->num_ports++;
2238         }
2239         /* FIXME: Should we disable ports not in the Extended Capabilities? */
2240 }
2241
2242 static void xhci_create_rhub_port_array(struct xhci_hcd *xhci,
2243                                         struct xhci_hub *rhub, gfp_t flags)
2244 {
2245         int port_index = 0;
2246         int i;
2247         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2248
2249         if (!rhub->num_ports)
2250                 return;
2251         rhub->ports = kcalloc_node(rhub->num_ports, sizeof(*rhub->ports),
2252                         flags, dev_to_node(dev));
2253         if (!rhub->ports)
2254                 return;
2255
2256         for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
2257                 if (xhci->hw_ports[i].rhub != rhub ||
2258                     xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY)
2259                         continue;
2260                 xhci->hw_ports[i].hcd_portnum = port_index;
2261                 rhub->ports[port_index] = &xhci->hw_ports[i];
2262                 port_index++;
2263                 if (port_index == rhub->num_ports)
2264                         break;
2265         }
2266 }
2267
2268 /*
2269  * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2270  * specify what speeds each port is supposed to be.  We can't count on the port
2271  * speed bits in the PORTSC register being correct until a device is connected,
2272  * but we need to set up the two fake roothubs with the correct number of USB
2273  * 3.0 and USB 2.0 ports at host controller initialization time.
2274  */
2275 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2276 {
2277         void __iomem *base;
2278         u32 offset;
2279         unsigned int num_ports;
2280         int i, j;
2281         int cap_count = 0;
2282         u32 cap_start;
2283         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2284
2285         num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2286         xhci->hw_ports = kcalloc_node(num_ports, sizeof(*xhci->hw_ports),
2287                                 flags, dev_to_node(dev));
2288         if (!xhci->hw_ports)
2289                 return -ENOMEM;
2290
2291         for (i = 0; i < num_ports; i++) {
2292                 xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base +
2293                         NUM_PORT_REGS * i;
2294                 xhci->hw_ports[i].hw_portnum = i;
2295         }
2296
2297         xhci->rh_bw = kcalloc_node(num_ports, sizeof(*xhci->rh_bw), flags,
2298                                    dev_to_node(dev));
2299         if (!xhci->rh_bw)
2300                 return -ENOMEM;
2301         for (i = 0; i < num_ports; i++) {
2302                 struct xhci_interval_bw_table *bw_table;
2303
2304                 INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2305                 bw_table = &xhci->rh_bw[i].bw_table;
2306                 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2307                         INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2308         }
2309         base = &xhci->cap_regs->hc_capbase;
2310
2311         cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2312         if (!cap_start) {
2313                 xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2314                 return -ENODEV;
2315         }
2316
2317         offset = cap_start;
2318         /* count extended protocol capability entries for later caching */
2319         while (offset) {
2320                 cap_count++;
2321                 offset = xhci_find_next_ext_cap(base, offset,
2322                                                       XHCI_EXT_CAPS_PROTOCOL);
2323         }
2324
2325         xhci->ext_caps = kcalloc_node(cap_count, sizeof(*xhci->ext_caps),
2326                                 flags, dev_to_node(dev));
2327         if (!xhci->ext_caps)
2328                 return -ENOMEM;
2329
2330         xhci->port_caps = kcalloc_node(cap_count, sizeof(*xhci->port_caps),
2331                                 flags, dev_to_node(dev));
2332         if (!xhci->port_caps)
2333                 return -ENOMEM;
2334
2335         offset = cap_start;
2336
2337         while (offset) {
2338                 xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2339                 if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports ==
2340                     num_ports)
2341                         break;
2342                 offset = xhci_find_next_ext_cap(base, offset,
2343                                                 XHCI_EXT_CAPS_PROTOCOL);
2344         }
2345         if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) {
2346                 xhci_warn(xhci, "No ports on the roothubs?\n");
2347                 return -ENODEV;
2348         }
2349         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2350                        "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2351                        xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports);
2352
2353         /* Place limits on the number of roothub ports so that the hub
2354          * descriptors aren't longer than the USB core will allocate.
2355          */
2356         if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) {
2357                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2358                                 "Limiting USB 3.0 roothub ports to %u.",
2359                                 USB_SS_MAXPORTS);
2360                 xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS;
2361         }
2362         if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) {
2363                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2364                                 "Limiting USB 2.0 roothub ports to %u.",
2365                                 USB_MAXCHILDREN);
2366                 xhci->usb2_rhub.num_ports = USB_MAXCHILDREN;
2367         }
2368
2369         /*
2370          * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2371          * Not sure how the USB core will handle a hub with no ports...
2372          */
2373
2374         xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags);
2375         xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags);
2376
2377         return 0;
2378 }
2379
2380 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2381 {
2382         dma_addr_t      dma;
2383         struct device   *dev = xhci_to_hcd(xhci)->self.sysdev;
2384         unsigned int    val, val2;
2385         u64             val_64;
2386         u32             page_size, temp;
2387         int             i, ret;
2388
2389         INIT_LIST_HEAD(&xhci->cmd_list);
2390
2391         /* init command timeout work */
2392         INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2393         init_completion(&xhci->cmd_ring_stop_completion);
2394
2395         page_size = readl(&xhci->op_regs->page_size);
2396         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2397                         "Supported page size register = 0x%x", page_size);
2398         for (i = 0; i < 16; i++) {
2399                 if ((0x1 & page_size) != 0)
2400                         break;
2401                 page_size = page_size >> 1;
2402         }
2403         if (i < 16)
2404                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2405                         "Supported page size of %iK", (1 << (i+12)) / 1024);
2406         else
2407                 xhci_warn(xhci, "WARN: no supported page size\n");
2408         /* Use 4K pages, since that's common and the minimum the HC supports */
2409         xhci->page_shift = 12;
2410         xhci->page_size = 1 << xhci->page_shift;
2411         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2412                         "HCD page size set to %iK", xhci->page_size / 1024);
2413
2414         /*
2415          * Program the Number of Device Slots Enabled field in the CONFIG
2416          * register with the max value of slots the HC can handle.
2417          */
2418         val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2419         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2420                         "// xHC can handle at most %d device slots.", val);
2421         val2 = readl(&xhci->op_regs->config_reg);
2422         val |= (val2 & ~HCS_SLOTS_MASK);
2423         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2424                         "// Setting Max device slots reg = 0x%x.", val);
2425         writel(val, &xhci->op_regs->config_reg);
2426
2427         /*
2428          * xHCI section 5.4.6 - doorbell array must be
2429          * "physically contiguous and 64-byte (cache line) aligned".
2430          */
2431         xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2432                         flags);
2433         if (!xhci->dcbaa)
2434                 goto fail;
2435         xhci->dcbaa->dma = dma;
2436         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2437                         "// Device context base array address = 0x%llx (DMA), %p (virt)",
2438                         (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2439         xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2440
2441         /*
2442          * Initialize the ring segment pool.  The ring must be a contiguous
2443          * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2444          * however, the command ring segment needs 64-byte aligned segments
2445          * and our use of dma addresses in the trb_address_map radix tree needs
2446          * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2447          */
2448         xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2449                         TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2450
2451         /* See Table 46 and Note on Figure 55 */
2452         xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2453                         2112, 64, xhci->page_size);
2454         if (!xhci->segment_pool || !xhci->device_pool)
2455                 goto fail;
2456
2457         /* Linear stream context arrays don't have any boundary restrictions,
2458          * and only need to be 16-byte aligned.
2459          */
2460         xhci->small_streams_pool =
2461                 dma_pool_create("xHCI 256 byte stream ctx arrays",
2462                         dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2463         xhci->medium_streams_pool =
2464                 dma_pool_create("xHCI 1KB stream ctx arrays",
2465                         dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2466         /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2467          * will be allocated with dma_alloc_coherent()
2468          */
2469
2470         if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2471                 goto fail;
2472
2473         /* Set up the command ring to have one segments for now. */
2474         xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2475         if (!xhci->cmd_ring)
2476                 goto fail;
2477         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2478                         "Allocated command ring at %p", xhci->cmd_ring);
2479         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2480                         (unsigned long long)xhci->cmd_ring->first_seg->dma);
2481
2482         /* Set the address in the Command Ring Control register */
2483         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2484         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2485                 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2486                 xhci->cmd_ring->cycle_state;
2487         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2488                         "// Setting command ring address to 0x%016llx", val_64);
2489         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2490
2491         xhci->lpm_command = xhci_alloc_command_with_ctx(xhci, true, flags);
2492         if (!xhci->lpm_command)
2493                 goto fail;
2494
2495         /* Reserve one command ring TRB for disabling LPM.
2496          * Since the USB core grabs the shared usb_bus bandwidth mutex before
2497          * disabling LPM, we only need to reserve one TRB for all devices.
2498          */
2499         xhci->cmd_ring_reserved_trbs++;
2500
2501         val = readl(&xhci->cap_regs->db_off);
2502         val &= DBOFF_MASK;
2503         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2504                         "// Doorbell array is located at offset 0x%x"
2505                         " from cap regs base addr", val);
2506         xhci->dba = (void __iomem *) xhci->cap_regs + val;
2507         /* Set ir_set to interrupt register set 0 */
2508         xhci->ir_set = &xhci->run_regs->ir_set[0];
2509
2510         /*
2511          * Event ring setup: Allocate a normal ring, but also setup
2512          * the event ring segment table (ERST).  Section 4.9.3.
2513          */
2514         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2515         xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2516                                         0, flags);
2517         if (!xhci->event_ring)
2518                 goto fail;
2519         if (xhci_check_trb_in_td_math(xhci) < 0)
2520                 goto fail;
2521
2522         ret = xhci_alloc_erst(xhci, xhci->event_ring, &xhci->erst, flags);
2523         if (ret)
2524                 goto fail;
2525
2526         /* set ERST count with the number of entries in the segment table */
2527         val = readl(&xhci->ir_set->erst_size);
2528         val &= ERST_SIZE_MASK;
2529         val |= ERST_NUM_SEGS;
2530         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2531                         "// Write ERST size = %i to ir_set 0 (some bits preserved)",
2532                         val);
2533         writel(val, &xhci->ir_set->erst_size);
2534
2535         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2536                         "// Set ERST entries to point to event ring.");
2537         /* set the segment table base address */
2538         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2539                         "// Set ERST base address for ir_set 0 = 0x%llx",
2540                         (unsigned long long)xhci->erst.erst_dma_addr);
2541         val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2542         val_64 &= ERST_PTR_MASK;
2543         val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2544         xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2545
2546         /* Set the event ring dequeue address */
2547         xhci_set_hc_event_deq(xhci);
2548         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2549                         "Wrote ERST address to ir_set 0.");
2550
2551         xhci->isoc_bei_interval = AVOID_BEI_INTERVAL_MAX;
2552
2553         /*
2554          * XXX: Might need to set the Interrupter Moderation Register to
2555          * something other than the default (~1ms minimum between interrupts).
2556          * See section 5.5.1.2.
2557          */
2558         for (i = 0; i < MAX_HC_SLOTS; i++)
2559                 xhci->devs[i] = NULL;
2560         for (i = 0; i < USB_MAXCHILDREN; i++) {
2561                 xhci->usb2_rhub.bus_state.resume_done[i] = 0;
2562                 xhci->usb3_rhub.bus_state.resume_done[i] = 0;
2563                 /* Only the USB 2.0 completions will ever be used. */
2564                 init_completion(&xhci->usb2_rhub.bus_state.rexit_done[i]);
2565                 init_completion(&xhci->usb3_rhub.bus_state.u3exit_done[i]);
2566         }
2567
2568         if (scratchpad_alloc(xhci, flags))
2569                 goto fail;
2570         if (xhci_setup_port_arrays(xhci, flags))
2571                 goto fail;
2572
2573         /* Enable USB 3.0 device notifications for function remote wake, which
2574          * is necessary for allowing USB 3.0 devices to do remote wakeup from
2575          * U3 (device suspend).
2576          */
2577         temp = readl(&xhci->op_regs->dev_notification);
2578         temp &= ~DEV_NOTE_MASK;
2579         temp |= DEV_NOTE_FWAKE;
2580         writel(temp, &xhci->op_regs->dev_notification);
2581
2582         return 0;
2583
2584 fail:
2585         xhci_halt(xhci);
2586         xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
2587         xhci_mem_cleanup(xhci);
2588         return -ENOMEM;
2589 }