GNU Linux-libre 4.9.328-gnu1
[releases.git] / drivers / usb / host / xhci-mem.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/dmapool.h>
27 #include <linux/dma-mapping.h>
28
29 #include "xhci.h"
30 #include "xhci-trace.h"
31
32 /*
33  * Allocates a generic ring segment from the ring pool, sets the dma address,
34  * initializes the segment to zero, and sets the private next pointer to NULL.
35  *
36  * Section 4.11.1.1:
37  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
38  */
39 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
40                                                unsigned int cycle_state,
41                                                unsigned int max_packet,
42                                                gfp_t flags)
43 {
44         struct xhci_segment *seg;
45         dma_addr_t      dma;
46         int             i;
47
48         seg = kzalloc(sizeof *seg, flags);
49         if (!seg)
50                 return NULL;
51
52         seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
53         if (!seg->trbs) {
54                 kfree(seg);
55                 return NULL;
56         }
57
58         if (max_packet) {
59                 seg->bounce_buf = kzalloc(max_packet, flags);
60                 if (!seg->bounce_buf) {
61                         dma_pool_free(xhci->segment_pool, seg->trbs, dma);
62                         kfree(seg);
63                         return NULL;
64                 }
65         }
66         /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
67         if (cycle_state == 0) {
68                 for (i = 0; i < TRBS_PER_SEGMENT; i++)
69                         seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
70         }
71         seg->dma = dma;
72         seg->next = NULL;
73
74         return seg;
75 }
76
77 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
78 {
79         if (seg->trbs) {
80                 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
81                 seg->trbs = NULL;
82         }
83         kfree(seg->bounce_buf);
84         kfree(seg);
85 }
86
87 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
88                                 struct xhci_segment *first)
89 {
90         struct xhci_segment *seg;
91
92         seg = first->next;
93         while (seg != first) {
94                 struct xhci_segment *next = seg->next;
95                 xhci_segment_free(xhci, seg);
96                 seg = next;
97         }
98         xhci_segment_free(xhci, first);
99 }
100
101 /*
102  * Make the prev segment point to the next segment.
103  *
104  * Change the last TRB in the prev segment to be a Link TRB which points to the
105  * DMA address of the next segment.  The caller needs to set any Link TRB
106  * related flags, such as End TRB, Toggle Cycle, and no snoop.
107  */
108 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
109                 struct xhci_segment *next, enum xhci_ring_type type)
110 {
111         u32 val;
112
113         if (!prev || !next)
114                 return;
115         prev->next = next;
116         if (type != TYPE_EVENT) {
117                 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
118                         cpu_to_le64(next->dma);
119
120                 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
121                 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
122                 val &= ~TRB_TYPE_BITMASK;
123                 val |= TRB_TYPE(TRB_LINK);
124                 /* Always set the chain bit with 0.95 hardware */
125                 /* Set chain bit for isoc rings on AMD 0.96 host */
126                 if (xhci_link_trb_quirk(xhci) ||
127                                 (type == TYPE_ISOC &&
128                                  (xhci->quirks & XHCI_AMD_0x96_HOST)))
129                         val |= TRB_CHAIN;
130                 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
131         }
132 }
133
134 /*
135  * Link the ring to the new segments.
136  * Set Toggle Cycle for the new ring if needed.
137  */
138 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
139                 struct xhci_segment *first, struct xhci_segment *last,
140                 unsigned int num_segs)
141 {
142         struct xhci_segment *next;
143
144         if (!ring || !first || !last)
145                 return;
146
147         next = ring->enq_seg->next;
148         xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
149         xhci_link_segments(xhci, last, next, ring->type);
150         ring->num_segs += num_segs;
151         ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
152
153         if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
154                 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
155                         &= ~cpu_to_le32(LINK_TOGGLE);
156                 last->trbs[TRBS_PER_SEGMENT-1].link.control
157                         |= cpu_to_le32(LINK_TOGGLE);
158                 ring->last_seg = last;
159         }
160 }
161
162 /*
163  * We need a radix tree for mapping physical addresses of TRBs to which stream
164  * ID they belong to.  We need to do this because the host controller won't tell
165  * us which stream ring the TRB came from.  We could store the stream ID in an
166  * event data TRB, but that doesn't help us for the cancellation case, since the
167  * endpoint may stop before it reaches that event data TRB.
168  *
169  * The radix tree maps the upper portion of the TRB DMA address to a ring
170  * segment that has the same upper portion of DMA addresses.  For example, say I
171  * have segments of size 1KB, that are always 1KB aligned.  A segment may
172  * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
173  * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
174  * pass the radix tree a key to get the right stream ID:
175  *
176  *      0x10c90fff >> 10 = 0x43243
177  *      0x10c912c0 >> 10 = 0x43244
178  *      0x10c91400 >> 10 = 0x43245
179  *
180  * Obviously, only those TRBs with DMA addresses that are within the segment
181  * will make the radix tree return the stream ID for that ring.
182  *
183  * Caveats for the radix tree:
184  *
185  * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
186  * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
187  * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
188  * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
189  * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
190  * extended systems (where the DMA address can be bigger than 32-bits),
191  * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
192  */
193 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
194                 struct xhci_ring *ring,
195                 struct xhci_segment *seg,
196                 gfp_t mem_flags)
197 {
198         unsigned long key;
199         int ret;
200
201         key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
202         /* Skip any segments that were already added. */
203         if (radix_tree_lookup(trb_address_map, key))
204                 return 0;
205
206         ret = radix_tree_maybe_preload(mem_flags);
207         if (ret)
208                 return ret;
209         ret = radix_tree_insert(trb_address_map,
210                         key, ring);
211         radix_tree_preload_end();
212         return ret;
213 }
214
215 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
216                 struct xhci_segment *seg)
217 {
218         unsigned long key;
219
220         key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
221         if (radix_tree_lookup(trb_address_map, key))
222                 radix_tree_delete(trb_address_map, key);
223 }
224
225 static int xhci_update_stream_segment_mapping(
226                 struct radix_tree_root *trb_address_map,
227                 struct xhci_ring *ring,
228                 struct xhci_segment *first_seg,
229                 struct xhci_segment *last_seg,
230                 gfp_t mem_flags)
231 {
232         struct xhci_segment *seg;
233         struct xhci_segment *failed_seg;
234         int ret;
235
236         if (WARN_ON_ONCE(trb_address_map == NULL))
237                 return 0;
238
239         seg = first_seg;
240         do {
241                 ret = xhci_insert_segment_mapping(trb_address_map,
242                                 ring, seg, mem_flags);
243                 if (ret)
244                         goto remove_streams;
245                 if (seg == last_seg)
246                         return 0;
247                 seg = seg->next;
248         } while (seg != first_seg);
249
250         return 0;
251
252 remove_streams:
253         failed_seg = seg;
254         seg = first_seg;
255         do {
256                 xhci_remove_segment_mapping(trb_address_map, seg);
257                 if (seg == failed_seg)
258                         return ret;
259                 seg = seg->next;
260         } while (seg != first_seg);
261
262         return ret;
263 }
264
265 static void xhci_remove_stream_mapping(struct xhci_ring *ring)
266 {
267         struct xhci_segment *seg;
268
269         if (WARN_ON_ONCE(ring->trb_address_map == NULL))
270                 return;
271
272         seg = ring->first_seg;
273         do {
274                 xhci_remove_segment_mapping(ring->trb_address_map, seg);
275                 seg = seg->next;
276         } while (seg != ring->first_seg);
277 }
278
279 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
280 {
281         return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
282                         ring->first_seg, ring->last_seg, mem_flags);
283 }
284
285 /* XXX: Do we need the hcd structure in all these functions? */
286 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
287 {
288         if (!ring)
289                 return;
290
291         if (ring->first_seg) {
292                 if (ring->type == TYPE_STREAM)
293                         xhci_remove_stream_mapping(ring);
294                 xhci_free_segments_for_ring(xhci, ring->first_seg);
295         }
296
297         kfree(ring);
298 }
299
300 static void xhci_initialize_ring_info(struct xhci_ring *ring,
301                                         unsigned int cycle_state)
302 {
303         /* The ring is empty, so the enqueue pointer == dequeue pointer */
304         ring->enqueue = ring->first_seg->trbs;
305         ring->enq_seg = ring->first_seg;
306         ring->dequeue = ring->enqueue;
307         ring->deq_seg = ring->first_seg;
308         /* The ring is initialized to 0. The producer must write 1 to the cycle
309          * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
310          * compare CCS to the cycle bit to check ownership, so CCS = 1.
311          *
312          * New rings are initialized with cycle state equal to 1; if we are
313          * handling ring expansion, set the cycle state equal to the old ring.
314          */
315         ring->cycle_state = cycle_state;
316         /* Not necessary for new rings, but needed for re-initialized rings */
317         ring->enq_updates = 0;
318         ring->deq_updates = 0;
319
320         /*
321          * Each segment has a link TRB, and leave an extra TRB for SW
322          * accounting purpose
323          */
324         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
325 }
326
327 /* Allocate segments and link them for a ring */
328 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
329                 struct xhci_segment **first, struct xhci_segment **last,
330                 unsigned int num_segs, unsigned int cycle_state,
331                 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
332 {
333         struct xhci_segment *prev;
334
335         prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
336         if (!prev)
337                 return -ENOMEM;
338         num_segs--;
339
340         *first = prev;
341         while (num_segs > 0) {
342                 struct xhci_segment     *next;
343
344                 next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
345                 if (!next) {
346                         prev = *first;
347                         while (prev) {
348                                 next = prev->next;
349                                 xhci_segment_free(xhci, prev);
350                                 prev = next;
351                         }
352                         return -ENOMEM;
353                 }
354                 xhci_link_segments(xhci, prev, next, type);
355
356                 prev = next;
357                 num_segs--;
358         }
359         xhci_link_segments(xhci, prev, *first, type);
360         *last = prev;
361
362         return 0;
363 }
364
365 /**
366  * Create a new ring with zero or more segments.
367  *
368  * Link each segment together into a ring.
369  * Set the end flag and the cycle toggle bit on the last segment.
370  * See section 4.9.1 and figures 15 and 16.
371  */
372 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
373                 unsigned int num_segs, unsigned int cycle_state,
374                 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
375 {
376         struct xhci_ring        *ring;
377         int ret;
378
379         ring = kzalloc(sizeof *(ring), flags);
380         if (!ring)
381                 return NULL;
382
383         ring->num_segs = num_segs;
384         ring->bounce_buf_len = max_packet;
385         INIT_LIST_HEAD(&ring->td_list);
386         ring->type = type;
387         if (num_segs == 0)
388                 return ring;
389
390         ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
391                         &ring->last_seg, num_segs, cycle_state, type,
392                         max_packet, flags);
393         if (ret)
394                 goto fail;
395
396         /* Only event ring does not use link TRB */
397         if (type != TYPE_EVENT) {
398                 /* See section 4.9.2.1 and 6.4.4.1 */
399                 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
400                         cpu_to_le32(LINK_TOGGLE);
401         }
402         xhci_initialize_ring_info(ring, cycle_state);
403         return ring;
404
405 fail:
406         kfree(ring);
407         return NULL;
408 }
409
410 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
411                 struct xhci_virt_device *virt_dev,
412                 unsigned int ep_index)
413 {
414         int rings_cached;
415
416         rings_cached = virt_dev->num_rings_cached;
417         if (rings_cached < XHCI_MAX_RINGS_CACHED) {
418                 virt_dev->ring_cache[rings_cached] =
419                         virt_dev->eps[ep_index].ring;
420                 virt_dev->num_rings_cached++;
421                 xhci_dbg(xhci, "Cached old ring, "
422                                 "%d ring%s cached\n",
423                                 virt_dev->num_rings_cached,
424                                 (virt_dev->num_rings_cached > 1) ? "s" : "");
425         } else {
426                 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
427                 xhci_dbg(xhci, "Ring cache full (%d rings), "
428                                 "freeing ring\n",
429                                 virt_dev->num_rings_cached);
430         }
431         virt_dev->eps[ep_index].ring = NULL;
432 }
433
434 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
435  * pointers to the beginning of the ring.
436  */
437 static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
438                         struct xhci_ring *ring, unsigned int cycle_state,
439                         enum xhci_ring_type type)
440 {
441         struct xhci_segment     *seg = ring->first_seg;
442         int i;
443
444         do {
445                 memset(seg->trbs, 0,
446                                 sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
447                 if (cycle_state == 0) {
448                         for (i = 0; i < TRBS_PER_SEGMENT; i++)
449                                 seg->trbs[i].link.control |=
450                                         cpu_to_le32(TRB_CYCLE);
451                 }
452                 /* All endpoint rings have link TRBs */
453                 xhci_link_segments(xhci, seg, seg->next, type);
454                 seg = seg->next;
455         } while (seg != ring->first_seg);
456         ring->type = type;
457         xhci_initialize_ring_info(ring, cycle_state);
458         /* td list should be empty since all URBs have been cancelled,
459          * but just in case...
460          */
461         INIT_LIST_HEAD(&ring->td_list);
462 }
463
464 /*
465  * Expand an existing ring.
466  * Look for a cached ring or allocate a new ring which has same segment numbers
467  * and link the two rings.
468  */
469 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
470                                 unsigned int num_trbs, gfp_t flags)
471 {
472         struct xhci_segment     *first;
473         struct xhci_segment     *last;
474         unsigned int            num_segs;
475         unsigned int            num_segs_needed;
476         int                     ret;
477
478         num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
479                                 (TRBS_PER_SEGMENT - 1);
480
481         /* Allocate number of segments we needed, or double the ring size */
482         num_segs = ring->num_segs > num_segs_needed ?
483                         ring->num_segs : num_segs_needed;
484
485         ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
486                         num_segs, ring->cycle_state, ring->type,
487                         ring->bounce_buf_len, flags);
488         if (ret)
489                 return -ENOMEM;
490
491         if (ring->type == TYPE_STREAM)
492                 ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
493                                                 ring, first, last, flags);
494         if (ret) {
495                 struct xhci_segment *next;
496                 do {
497                         next = first->next;
498                         xhci_segment_free(xhci, first);
499                         if (first == last)
500                                 break;
501                         first = next;
502                 } while (true);
503                 return ret;
504         }
505
506         xhci_link_rings(xhci, ring, first, last, num_segs);
507         xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
508                         "ring expansion succeed, now has %d segments",
509                         ring->num_segs);
510
511         return 0;
512 }
513
514 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
515
516 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
517                                                     int type, gfp_t flags)
518 {
519         struct xhci_container_ctx *ctx;
520
521         if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
522                 return NULL;
523
524         ctx = kzalloc(sizeof(*ctx), flags);
525         if (!ctx)
526                 return NULL;
527
528         ctx->type = type;
529         ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
530         if (type == XHCI_CTX_TYPE_INPUT)
531                 ctx->size += CTX_SIZE(xhci->hcc_params);
532
533         ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
534         if (!ctx->bytes) {
535                 kfree(ctx);
536                 return NULL;
537         }
538         return ctx;
539 }
540
541 static void xhci_free_container_ctx(struct xhci_hcd *xhci,
542                              struct xhci_container_ctx *ctx)
543 {
544         if (!ctx)
545                 return;
546         dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
547         kfree(ctx);
548 }
549
550 struct xhci_input_control_ctx *xhci_get_input_control_ctx(
551                                               struct xhci_container_ctx *ctx)
552 {
553         if (ctx->type != XHCI_CTX_TYPE_INPUT)
554                 return NULL;
555
556         return (struct xhci_input_control_ctx *)ctx->bytes;
557 }
558
559 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
560                                         struct xhci_container_ctx *ctx)
561 {
562         if (ctx->type == XHCI_CTX_TYPE_DEVICE)
563                 return (struct xhci_slot_ctx *)ctx->bytes;
564
565         return (struct xhci_slot_ctx *)
566                 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
567 }
568
569 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
570                                     struct xhci_container_ctx *ctx,
571                                     unsigned int ep_index)
572 {
573         /* increment ep index by offset of start of ep ctx array */
574         ep_index++;
575         if (ctx->type == XHCI_CTX_TYPE_INPUT)
576                 ep_index++;
577
578         return (struct xhci_ep_ctx *)
579                 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
580 }
581
582
583 /***************** Streams structures manipulation *************************/
584
585 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
586                 unsigned int num_stream_ctxs,
587                 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
588 {
589         struct device *dev = xhci_to_hcd(xhci)->self.controller;
590         size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
591
592         if (size > MEDIUM_STREAM_ARRAY_SIZE)
593                 dma_free_coherent(dev, size,
594                                 stream_ctx, dma);
595         else if (size <= SMALL_STREAM_ARRAY_SIZE)
596                 return dma_pool_free(xhci->small_streams_pool,
597                                 stream_ctx, dma);
598         else
599                 return dma_pool_free(xhci->medium_streams_pool,
600                                 stream_ctx, dma);
601 }
602
603 /*
604  * The stream context array for each endpoint with bulk streams enabled can
605  * vary in size, based on:
606  *  - how many streams the endpoint supports,
607  *  - the maximum primary stream array size the host controller supports,
608  *  - and how many streams the device driver asks for.
609  *
610  * The stream context array must be a power of 2, and can be as small as
611  * 64 bytes or as large as 1MB.
612  */
613 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
614                 unsigned int num_stream_ctxs, dma_addr_t *dma,
615                 gfp_t mem_flags)
616 {
617         struct device *dev = xhci_to_hcd(xhci)->self.controller;
618         size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
619
620         if (size > MEDIUM_STREAM_ARRAY_SIZE)
621                 return dma_alloc_coherent(dev, size,
622                                 dma, mem_flags);
623         else if (size <= SMALL_STREAM_ARRAY_SIZE)
624                 return dma_pool_alloc(xhci->small_streams_pool,
625                                 mem_flags, dma);
626         else
627                 return dma_pool_alloc(xhci->medium_streams_pool,
628                                 mem_flags, dma);
629 }
630
631 struct xhci_ring *xhci_dma_to_transfer_ring(
632                 struct xhci_virt_ep *ep,
633                 u64 address)
634 {
635         if (ep->ep_state & EP_HAS_STREAMS)
636                 return radix_tree_lookup(&ep->stream_info->trb_address_map,
637                                 address >> TRB_SEGMENT_SHIFT);
638         return ep->ring;
639 }
640
641 struct xhci_ring *xhci_stream_id_to_ring(
642                 struct xhci_virt_device *dev,
643                 unsigned int ep_index,
644                 unsigned int stream_id)
645 {
646         struct xhci_virt_ep *ep = &dev->eps[ep_index];
647
648         if (stream_id == 0)
649                 return ep->ring;
650         if (!ep->stream_info)
651                 return NULL;
652
653         if (stream_id >= ep->stream_info->num_streams)
654                 return NULL;
655         return ep->stream_info->stream_rings[stream_id];
656 }
657
658 /*
659  * Change an endpoint's internal structure so it supports stream IDs.  The
660  * number of requested streams includes stream 0, which cannot be used by device
661  * drivers.
662  *
663  * The number of stream contexts in the stream context array may be bigger than
664  * the number of streams the driver wants to use.  This is because the number of
665  * stream context array entries must be a power of two.
666  */
667 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
668                 unsigned int num_stream_ctxs,
669                 unsigned int num_streams,
670                 unsigned int max_packet, gfp_t mem_flags)
671 {
672         struct xhci_stream_info *stream_info;
673         u32 cur_stream;
674         struct xhci_ring *cur_ring;
675         u64 addr;
676         int ret;
677
678         xhci_dbg(xhci, "Allocating %u streams and %u "
679                         "stream context array entries.\n",
680                         num_streams, num_stream_ctxs);
681         if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
682                 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
683                 return NULL;
684         }
685         xhci->cmd_ring_reserved_trbs++;
686
687         stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
688         if (!stream_info)
689                 goto cleanup_trbs;
690
691         stream_info->num_streams = num_streams;
692         stream_info->num_stream_ctxs = num_stream_ctxs;
693
694         /* Initialize the array of virtual pointers to stream rings. */
695         stream_info->stream_rings = kzalloc(
696                         sizeof(struct xhci_ring *)*num_streams,
697                         mem_flags);
698         if (!stream_info->stream_rings)
699                 goto cleanup_info;
700
701         /* Initialize the array of DMA addresses for stream rings for the HW. */
702         stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
703                         num_stream_ctxs, &stream_info->ctx_array_dma,
704                         mem_flags);
705         if (!stream_info->stream_ctx_array)
706                 goto cleanup_ctx;
707         memset(stream_info->stream_ctx_array, 0,
708                         sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
709
710         /* Allocate everything needed to free the stream rings later */
711         stream_info->free_streams_command =
712                 xhci_alloc_command(xhci, true, true, mem_flags);
713         if (!stream_info->free_streams_command)
714                 goto cleanup_ctx;
715
716         INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
717
718         /* Allocate rings for all the streams that the driver will use,
719          * and add their segment DMA addresses to the radix tree.
720          * Stream 0 is reserved.
721          */
722
723         for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
724                 stream_info->stream_rings[cur_stream] =
725                         xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
726                                         mem_flags);
727                 cur_ring = stream_info->stream_rings[cur_stream];
728                 if (!cur_ring)
729                         goto cleanup_rings;
730                 cur_ring->stream_id = cur_stream;
731                 cur_ring->trb_address_map = &stream_info->trb_address_map;
732                 /* Set deq ptr, cycle bit, and stream context type */
733                 addr = cur_ring->first_seg->dma |
734                         SCT_FOR_CTX(SCT_PRI_TR) |
735                         cur_ring->cycle_state;
736                 stream_info->stream_ctx_array[cur_stream].stream_ring =
737                         cpu_to_le64(addr);
738                 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
739                                 cur_stream, (unsigned long long) addr);
740
741                 ret = xhci_update_stream_mapping(cur_ring, mem_flags);
742                 if (ret) {
743                         xhci_ring_free(xhci, cur_ring);
744                         stream_info->stream_rings[cur_stream] = NULL;
745                         goto cleanup_rings;
746                 }
747         }
748         /* Leave the other unused stream ring pointers in the stream context
749          * array initialized to zero.  This will cause the xHC to give us an
750          * error if the device asks for a stream ID we don't have setup (if it
751          * was any other way, the host controller would assume the ring is
752          * "empty" and wait forever for data to be queued to that stream ID).
753          */
754
755         return stream_info;
756
757 cleanup_rings:
758         for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
759                 cur_ring = stream_info->stream_rings[cur_stream];
760                 if (cur_ring) {
761                         xhci_ring_free(xhci, cur_ring);
762                         stream_info->stream_rings[cur_stream] = NULL;
763                 }
764         }
765         xhci_free_command(xhci, stream_info->free_streams_command);
766 cleanup_ctx:
767         kfree(stream_info->stream_rings);
768 cleanup_info:
769         kfree(stream_info);
770 cleanup_trbs:
771         xhci->cmd_ring_reserved_trbs--;
772         return NULL;
773 }
774 /*
775  * Sets the MaxPStreams field and the Linear Stream Array field.
776  * Sets the dequeue pointer to the stream context array.
777  */
778 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
779                 struct xhci_ep_ctx *ep_ctx,
780                 struct xhci_stream_info *stream_info)
781 {
782         u32 max_primary_streams;
783         /* MaxPStreams is the number of stream context array entries, not the
784          * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
785          * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
786          */
787         max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
788         xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
789                         "Setting number of stream ctx array entries to %u",
790                         1 << (max_primary_streams + 1));
791         ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
792         ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
793                                        | EP_HAS_LSA);
794         ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
795 }
796
797 /*
798  * Sets the MaxPStreams field and the Linear Stream Array field to 0.
799  * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
800  * not at the beginning of the ring).
801  */
802 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
803                 struct xhci_virt_ep *ep)
804 {
805         dma_addr_t addr;
806         ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
807         addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
808         ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
809 }
810
811 /* Frees all stream contexts associated with the endpoint,
812  *
813  * Caller should fix the endpoint context streams fields.
814  */
815 void xhci_free_stream_info(struct xhci_hcd *xhci,
816                 struct xhci_stream_info *stream_info)
817 {
818         int cur_stream;
819         struct xhci_ring *cur_ring;
820
821         if (!stream_info)
822                 return;
823
824         for (cur_stream = 1; cur_stream < stream_info->num_streams;
825                         cur_stream++) {
826                 cur_ring = stream_info->stream_rings[cur_stream];
827                 if (cur_ring) {
828                         xhci_ring_free(xhci, cur_ring);
829                         stream_info->stream_rings[cur_stream] = NULL;
830                 }
831         }
832         xhci_free_command(xhci, stream_info->free_streams_command);
833         xhci->cmd_ring_reserved_trbs--;
834         if (stream_info->stream_ctx_array)
835                 xhci_free_stream_ctx(xhci,
836                                 stream_info->num_stream_ctxs,
837                                 stream_info->stream_ctx_array,
838                                 stream_info->ctx_array_dma);
839
840         kfree(stream_info->stream_rings);
841         kfree(stream_info);
842 }
843
844
845 /***************** Device context manipulation *************************/
846
847 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
848                 struct xhci_virt_ep *ep)
849 {
850         setup_timer(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog,
851                     (unsigned long)ep);
852         ep->xhci = xhci;
853 }
854
855 static void xhci_free_tt_info(struct xhci_hcd *xhci,
856                 struct xhci_virt_device *virt_dev,
857                 int slot_id)
858 {
859         struct list_head *tt_list_head;
860         struct xhci_tt_bw_info *tt_info, *next;
861         bool slot_found = false;
862
863         /* If the device never made it past the Set Address stage,
864          * it may not have the real_port set correctly.
865          */
866         if (virt_dev->real_port == 0 ||
867                         virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
868                 xhci_dbg(xhci, "Bad real port.\n");
869                 return;
870         }
871
872         tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
873         list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
874                 /* Multi-TT hubs will have more than one entry */
875                 if (tt_info->slot_id == slot_id) {
876                         slot_found = true;
877                         list_del(&tt_info->tt_list);
878                         kfree(tt_info);
879                 } else if (slot_found) {
880                         break;
881                 }
882         }
883 }
884
885 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
886                 struct xhci_virt_device *virt_dev,
887                 struct usb_device *hdev,
888                 struct usb_tt *tt, gfp_t mem_flags)
889 {
890         struct xhci_tt_bw_info          *tt_info;
891         unsigned int                    num_ports;
892         int                             i, j;
893
894         if (!tt->multi)
895                 num_ports = 1;
896         else
897                 num_ports = hdev->maxchild;
898
899         for (i = 0; i < num_ports; i++, tt_info++) {
900                 struct xhci_interval_bw_table *bw_table;
901
902                 tt_info = kzalloc(sizeof(*tt_info), mem_flags);
903                 if (!tt_info)
904                         goto free_tts;
905                 INIT_LIST_HEAD(&tt_info->tt_list);
906                 list_add(&tt_info->tt_list,
907                                 &xhci->rh_bw[virt_dev->real_port - 1].tts);
908                 tt_info->slot_id = virt_dev->udev->slot_id;
909                 if (tt->multi)
910                         tt_info->ttport = i+1;
911                 bw_table = &tt_info->bw_table;
912                 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
913                         INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
914         }
915         return 0;
916
917 free_tts:
918         xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
919         return -ENOMEM;
920 }
921
922
923 /* All the xhci_tds in the ring's TD list should be freed at this point.
924  * Should be called with xhci->lock held if there is any chance the TT lists
925  * will be manipulated by the configure endpoint, allocate device, or update
926  * hub functions while this function is removing the TT entries from the list.
927  */
928 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
929 {
930         struct xhci_virt_device *dev;
931         int i;
932         int old_active_eps = 0;
933
934         /* Slot ID 0 is reserved */
935         if (slot_id == 0 || !xhci->devs[slot_id])
936                 return;
937
938         dev = xhci->devs[slot_id];
939         xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
940         if (!dev)
941                 return;
942
943         if (dev->tt_info)
944                 old_active_eps = dev->tt_info->active_eps;
945
946         for (i = 0; i < 31; ++i) {
947                 if (dev->eps[i].ring)
948                         xhci_ring_free(xhci, dev->eps[i].ring);
949                 if (dev->eps[i].stream_info)
950                         xhci_free_stream_info(xhci,
951                                         dev->eps[i].stream_info);
952                 /* Endpoints on the TT/root port lists should have been removed
953                  * when usb_disable_device() was called for the device.
954                  * We can't drop them anyway, because the udev might have gone
955                  * away by this point, and we can't tell what speed it was.
956                  */
957                 if (!list_empty(&dev->eps[i].bw_endpoint_list))
958                         xhci_warn(xhci, "Slot %u endpoint %u "
959                                         "not removed from BW list!\n",
960                                         slot_id, i);
961         }
962         /* If this is a hub, free the TT(s) from the TT list */
963         xhci_free_tt_info(xhci, dev, slot_id);
964         /* If necessary, update the number of active TTs on this root port */
965         xhci_update_tt_active_eps(xhci, dev, old_active_eps);
966
967         if (dev->ring_cache) {
968                 for (i = 0; i < dev->num_rings_cached; i++)
969                         xhci_ring_free(xhci, dev->ring_cache[i]);
970                 kfree(dev->ring_cache);
971         }
972
973         if (dev->in_ctx)
974                 xhci_free_container_ctx(xhci, dev->in_ctx);
975         if (dev->out_ctx)
976                 xhci_free_container_ctx(xhci, dev->out_ctx);
977
978         if (dev->udev && dev->udev->slot_id)
979                 dev->udev->slot_id = 0;
980         kfree(xhci->devs[slot_id]);
981         xhci->devs[slot_id] = NULL;
982 }
983
984 /*
985  * Free a virt_device structure.
986  * If the virt_device added a tt_info (a hub) and has children pointing to
987  * that tt_info, then free the child first. Recursive.
988  * We can't rely on udev at this point to find child-parent relationships.
989  */
990 void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
991 {
992         struct xhci_virt_device *vdev;
993         struct list_head *tt_list_head;
994         struct xhci_tt_bw_info *tt_info, *next;
995         int i;
996
997         vdev = xhci->devs[slot_id];
998         if (!vdev)
999                 return;
1000
1001         if (vdev->real_port == 0 ||
1002                         vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
1003                 xhci_dbg(xhci, "Bad vdev->real_port.\n");
1004                 goto out;
1005         }
1006
1007         tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
1008         list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
1009                 /* is this a hub device that added a tt_info to the tts list */
1010                 if (tt_info->slot_id == slot_id) {
1011                         /* are any devices using this tt_info? */
1012                         for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
1013                                 vdev = xhci->devs[i];
1014                                 if (vdev && (vdev->tt_info == tt_info))
1015                                         xhci_free_virt_devices_depth_first(
1016                                                 xhci, i);
1017                         }
1018                 }
1019         }
1020 out:
1021         /* we are now at a leaf device */
1022         xhci_free_virt_device(xhci, slot_id);
1023 }
1024
1025 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
1026                 struct usb_device *udev, gfp_t flags)
1027 {
1028         struct xhci_virt_device *dev;
1029         int i;
1030
1031         /* Slot ID 0 is reserved */
1032         if (slot_id == 0 || xhci->devs[slot_id]) {
1033                 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
1034                 return 0;
1035         }
1036
1037         dev = kzalloc(sizeof(*dev), flags);
1038         if (!dev)
1039                 return 0;
1040
1041         /* Allocate the (output) device context that will be used in the HC. */
1042         dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
1043         if (!dev->out_ctx)
1044                 goto fail;
1045
1046         xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
1047                         (unsigned long long)dev->out_ctx->dma);
1048
1049         /* Allocate the (input) device context for address device command */
1050         dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
1051         if (!dev->in_ctx)
1052                 goto fail;
1053
1054         xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
1055                         (unsigned long long)dev->in_ctx->dma);
1056
1057         /* Initialize the cancellation list and watchdog timers for each ep */
1058         for (i = 0; i < 31; i++) {
1059                 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
1060                 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1061                 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1062         }
1063
1064         /* Allocate endpoint 0 ring */
1065         dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
1066         if (!dev->eps[0].ring)
1067                 goto fail;
1068
1069         /* Allocate pointers to the ring cache */
1070         dev->ring_cache = kzalloc(
1071                         sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
1072                         flags);
1073         if (!dev->ring_cache)
1074                 goto fail;
1075         dev->num_rings_cached = 0;
1076
1077         init_completion(&dev->cmd_completion);
1078         dev->udev = udev;
1079
1080         /* Point to output device context in dcbaa. */
1081         xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1082         xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1083                  slot_id,
1084                  &xhci->dcbaa->dev_context_ptrs[slot_id],
1085                  le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1086
1087         xhci->devs[slot_id] = dev;
1088
1089         return 1;
1090 fail:
1091         if (dev->eps[0].ring)
1092                 xhci_ring_free(xhci, dev->eps[0].ring);
1093         if (dev->in_ctx)
1094                 xhci_free_container_ctx(xhci, dev->in_ctx);
1095         if (dev->out_ctx)
1096                 xhci_free_container_ctx(xhci, dev->out_ctx);
1097         kfree(dev);
1098
1099         return 0;
1100 }
1101
1102 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1103                 struct usb_device *udev)
1104 {
1105         struct xhci_virt_device *virt_dev;
1106         struct xhci_ep_ctx      *ep0_ctx;
1107         struct xhci_ring        *ep_ring;
1108
1109         virt_dev = xhci->devs[udev->slot_id];
1110         ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1111         ep_ring = virt_dev->eps[0].ring;
1112         /*
1113          * FIXME we don't keep track of the dequeue pointer very well after a
1114          * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1115          * host to our enqueue pointer.  This should only be called after a
1116          * configured device has reset, so all control transfers should have
1117          * been completed or cancelled before the reset.
1118          */
1119         ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1120                                                         ep_ring->enqueue)
1121                                    | ep_ring->cycle_state);
1122 }
1123
1124 /*
1125  * The xHCI roothub may have ports of differing speeds in any order in the port
1126  * status registers.  xhci->port_array provides an array of the port speed for
1127  * each offset into the port status registers.
1128  *
1129  * The xHCI hardware wants to know the roothub port number that the USB device
1130  * is attached to (or the roothub port its ancestor hub is attached to).  All we
1131  * know is the index of that port under either the USB 2.0 or the USB 3.0
1132  * roothub, but that doesn't give us the real index into the HW port status
1133  * registers. Call xhci_find_raw_port_number() to get real index.
1134  */
1135 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1136                 struct usb_device *udev)
1137 {
1138         struct usb_device *top_dev;
1139         struct usb_hcd *hcd;
1140
1141         if (udev->speed >= USB_SPEED_SUPER)
1142                 hcd = xhci->shared_hcd;
1143         else
1144                 hcd = xhci->main_hcd;
1145
1146         for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1147                         top_dev = top_dev->parent)
1148                 /* Found device below root hub */;
1149
1150         return  xhci_find_raw_port_number(hcd, top_dev->portnum);
1151 }
1152
1153 /* Setup an xHCI virtual device for a Set Address command */
1154 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1155 {
1156         struct xhci_virt_device *dev;
1157         struct xhci_ep_ctx      *ep0_ctx;
1158         struct xhci_slot_ctx    *slot_ctx;
1159         u32                     port_num;
1160         u32                     max_packets;
1161         struct usb_device *top_dev;
1162
1163         dev = xhci->devs[udev->slot_id];
1164         /* Slot ID 0 is reserved */
1165         if (udev->slot_id == 0 || !dev) {
1166                 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1167                                 udev->slot_id);
1168                 return -EINVAL;
1169         }
1170         ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1171         slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1172
1173         /* 3) Only the control endpoint is valid - one endpoint context */
1174         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1175         switch (udev->speed) {
1176         case USB_SPEED_SUPER_PLUS:
1177                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1178                 max_packets = MAX_PACKET(512);
1179                 break;
1180         case USB_SPEED_SUPER:
1181                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1182                 max_packets = MAX_PACKET(512);
1183                 break;
1184         case USB_SPEED_HIGH:
1185                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1186                 max_packets = MAX_PACKET(64);
1187                 break;
1188         /* USB core guesses at a 64-byte max packet first for FS devices */
1189         case USB_SPEED_FULL:
1190                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1191                 max_packets = MAX_PACKET(64);
1192                 break;
1193         case USB_SPEED_LOW:
1194                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1195                 max_packets = MAX_PACKET(8);
1196                 break;
1197         case USB_SPEED_WIRELESS:
1198                 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1199                 return -EINVAL;
1200                 break;
1201         default:
1202                 /* Speed was set earlier, this shouldn't happen. */
1203                 return -EINVAL;
1204         }
1205         /* Find the root hub port this device is under */
1206         port_num = xhci_find_real_port_number(xhci, udev);
1207         if (!port_num)
1208                 return -EINVAL;
1209         slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1210         /* Set the port number in the virtual_device to the faked port number */
1211         for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1212                         top_dev = top_dev->parent)
1213                 /* Found device below root hub */;
1214         dev->fake_port = top_dev->portnum;
1215         dev->real_port = port_num;
1216         xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1217         xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1218
1219         /* Find the right bandwidth table that this device will be a part of.
1220          * If this is a full speed device attached directly to a root port (or a
1221          * decendent of one), it counts as a primary bandwidth domain, not a
1222          * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1223          * will never be created for the HS root hub.
1224          */
1225         if (!udev->tt || !udev->tt->hub->parent) {
1226                 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1227         } else {
1228                 struct xhci_root_port_bw_info *rh_bw;
1229                 struct xhci_tt_bw_info *tt_bw;
1230
1231                 rh_bw = &xhci->rh_bw[port_num - 1];
1232                 /* Find the right TT. */
1233                 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1234                         if (tt_bw->slot_id != udev->tt->hub->slot_id)
1235                                 continue;
1236
1237                         if (!dev->udev->tt->multi ||
1238                                         (udev->tt->multi &&
1239                                          tt_bw->ttport == dev->udev->ttport)) {
1240                                 dev->bw_table = &tt_bw->bw_table;
1241                                 dev->tt_info = tt_bw;
1242                                 break;
1243                         }
1244                 }
1245                 if (!dev->tt_info)
1246                         xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1247         }
1248
1249         /* Is this a LS/FS device under an external HS hub? */
1250         if (udev->tt && udev->tt->hub->parent) {
1251                 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1252                                                 (udev->ttport << 8));
1253                 if (udev->tt->multi)
1254                         slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1255         }
1256         xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1257         xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1258
1259         /* Step 4 - ring already allocated */
1260         /* Step 5 */
1261         ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1262
1263         /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1264         ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1265                                          max_packets);
1266
1267         ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1268                                    dev->eps[0].ring->cycle_state);
1269
1270         /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1271
1272         return 0;
1273 }
1274
1275 /*
1276  * Convert interval expressed as 2^(bInterval - 1) == interval into
1277  * straight exponent value 2^n == interval.
1278  *
1279  */
1280 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1281                 struct usb_host_endpoint *ep)
1282 {
1283         unsigned int interval;
1284
1285         interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1286         if (interval != ep->desc.bInterval - 1)
1287                 dev_warn(&udev->dev,
1288                          "ep %#x - rounding interval to %d %sframes\n",
1289                          ep->desc.bEndpointAddress,
1290                          1 << interval,
1291                          udev->speed == USB_SPEED_FULL ? "" : "micro");
1292
1293         if (udev->speed == USB_SPEED_FULL) {
1294                 /*
1295                  * Full speed isoc endpoints specify interval in frames,
1296                  * not microframes. We are using microframes everywhere,
1297                  * so adjust accordingly.
1298                  */
1299                 interval += 3;  /* 1 frame = 2^3 uframes */
1300         }
1301
1302         return interval;
1303 }
1304
1305 /*
1306  * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1307  * microframes, rounded down to nearest power of 2.
1308  */
1309 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1310                 struct usb_host_endpoint *ep, unsigned int desc_interval,
1311                 unsigned int min_exponent, unsigned int max_exponent)
1312 {
1313         unsigned int interval;
1314
1315         interval = fls(desc_interval) - 1;
1316         interval = clamp_val(interval, min_exponent, max_exponent);
1317         if ((1 << interval) != desc_interval)
1318                 dev_dbg(&udev->dev,
1319                          "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1320                          ep->desc.bEndpointAddress,
1321                          1 << interval,
1322                          desc_interval);
1323
1324         return interval;
1325 }
1326
1327 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1328                 struct usb_host_endpoint *ep)
1329 {
1330         if (ep->desc.bInterval == 0)
1331                 return 0;
1332         return xhci_microframes_to_exponent(udev, ep,
1333                         ep->desc.bInterval, 0, 15);
1334 }
1335
1336
1337 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1338                 struct usb_host_endpoint *ep)
1339 {
1340         return xhci_microframes_to_exponent(udev, ep,
1341                         ep->desc.bInterval * 8, 3, 10);
1342 }
1343
1344 /* Return the polling or NAK interval.
1345  *
1346  * The polling interval is expressed in "microframes".  If xHCI's Interval field
1347  * is set to N, it will service the endpoint every 2^(Interval)*125us.
1348  *
1349  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1350  * is set to 0.
1351  */
1352 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1353                 struct usb_host_endpoint *ep)
1354 {
1355         unsigned int interval = 0;
1356
1357         switch (udev->speed) {
1358         case USB_SPEED_HIGH:
1359                 /* Max NAK rate */
1360                 if (usb_endpoint_xfer_control(&ep->desc) ||
1361                     usb_endpoint_xfer_bulk(&ep->desc)) {
1362                         interval = xhci_parse_microframe_interval(udev, ep);
1363                         break;
1364                 }
1365                 /* Fall through - SS and HS isoc/int have same decoding */
1366
1367         case USB_SPEED_SUPER_PLUS:
1368         case USB_SPEED_SUPER:
1369                 if (usb_endpoint_xfer_int(&ep->desc) ||
1370                     usb_endpoint_xfer_isoc(&ep->desc)) {
1371                         interval = xhci_parse_exponent_interval(udev, ep);
1372                 }
1373                 break;
1374
1375         case USB_SPEED_FULL:
1376                 if (usb_endpoint_xfer_isoc(&ep->desc)) {
1377                         interval = xhci_parse_exponent_interval(udev, ep);
1378                         break;
1379                 }
1380                 /*
1381                  * Fall through for interrupt endpoint interval decoding
1382                  * since it uses the same rules as low speed interrupt
1383                  * endpoints.
1384                  */
1385
1386         case USB_SPEED_LOW:
1387                 if (usb_endpoint_xfer_int(&ep->desc) ||
1388                     usb_endpoint_xfer_isoc(&ep->desc)) {
1389
1390                         interval = xhci_parse_frame_interval(udev, ep);
1391                 }
1392                 break;
1393
1394         default:
1395                 BUG();
1396         }
1397         return interval;
1398 }
1399
1400 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1401  * High speed endpoint descriptors can define "the number of additional
1402  * transaction opportunities per microframe", but that goes in the Max Burst
1403  * endpoint context field.
1404  */
1405 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1406                 struct usb_host_endpoint *ep)
1407 {
1408         if (udev->speed < USB_SPEED_SUPER ||
1409                         !usb_endpoint_xfer_isoc(&ep->desc))
1410                 return 0;
1411         return ep->ss_ep_comp.bmAttributes;
1412 }
1413
1414 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1415                                        struct usb_host_endpoint *ep)
1416 {
1417         /* Super speed and Plus have max burst in ep companion desc */
1418         if (udev->speed >= USB_SPEED_SUPER)
1419                 return ep->ss_ep_comp.bMaxBurst;
1420
1421         if (udev->speed == USB_SPEED_HIGH &&
1422             (usb_endpoint_xfer_isoc(&ep->desc) ||
1423              usb_endpoint_xfer_int(&ep->desc)))
1424                 return (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
1425
1426         return 0;
1427 }
1428
1429 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1430 {
1431         int in;
1432
1433         in = usb_endpoint_dir_in(&ep->desc);
1434
1435         if (usb_endpoint_xfer_control(&ep->desc))
1436                 return CTRL_EP;
1437         if (usb_endpoint_xfer_bulk(&ep->desc))
1438                 return in ? BULK_IN_EP : BULK_OUT_EP;
1439         if (usb_endpoint_xfer_isoc(&ep->desc))
1440                 return in ? ISOC_IN_EP : ISOC_OUT_EP;
1441         if (usb_endpoint_xfer_int(&ep->desc))
1442                 return in ? INT_IN_EP : INT_OUT_EP;
1443         return 0;
1444 }
1445
1446 /* Return the maximum endpoint service interval time (ESIT) payload.
1447  * Basically, this is the maxpacket size, multiplied by the burst size
1448  * and mult size.
1449  */
1450 static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1451                 struct usb_host_endpoint *ep)
1452 {
1453         int max_burst;
1454         int max_packet;
1455
1456         /* Only applies for interrupt or isochronous endpoints */
1457         if (usb_endpoint_xfer_control(&ep->desc) ||
1458                         usb_endpoint_xfer_bulk(&ep->desc))
1459                 return 0;
1460
1461         /* SuperSpeedPlus Isoc ep sending over 48k per esit */
1462         if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1463             USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1464                 return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1465         /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1466         else if (udev->speed >= USB_SPEED_SUPER)
1467                 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1468
1469         max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1470         max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
1471         /* A 0 in max burst means 1 transfer per ESIT */
1472         return max_packet * (max_burst + 1);
1473 }
1474
1475 /* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1476  * Drivers will have to call usb_alloc_streams() to do that.
1477  */
1478 int xhci_endpoint_init(struct xhci_hcd *xhci,
1479                 struct xhci_virt_device *virt_dev,
1480                 struct usb_device *udev,
1481                 struct usb_host_endpoint *ep,
1482                 gfp_t mem_flags)
1483 {
1484         unsigned int ep_index;
1485         struct xhci_ep_ctx *ep_ctx;
1486         struct xhci_ring *ep_ring;
1487         unsigned int max_packet;
1488         enum xhci_ring_type ring_type;
1489         u32 max_esit_payload;
1490         u32 endpoint_type;
1491         unsigned int max_burst;
1492         unsigned int interval;
1493         unsigned int mult;
1494         unsigned int avg_trb_len;
1495         unsigned int err_count = 0;
1496
1497         ep_index = xhci_get_endpoint_index(&ep->desc);
1498         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1499
1500         endpoint_type = xhci_get_endpoint_type(ep);
1501         if (!endpoint_type)
1502                 return -EINVAL;
1503
1504         ring_type = usb_endpoint_type(&ep->desc);
1505
1506         /*
1507          * Get values to fill the endpoint context, mostly from ep descriptor.
1508          * The average TRB buffer lengt for bulk endpoints is unclear as we
1509          * have no clue on scatter gather list entry size. For Isoc and Int,
1510          * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1511          */
1512         max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1513         interval = xhci_get_endpoint_interval(udev, ep);
1514
1515         /* Periodic endpoint bInterval limit quirk */
1516         if (usb_endpoint_xfer_int(&ep->desc) ||
1517             usb_endpoint_xfer_isoc(&ep->desc)) {
1518                 if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1519                     udev->speed >= USB_SPEED_HIGH &&
1520                     interval >= 7) {
1521                         interval = 6;
1522                 }
1523         }
1524
1525         mult = xhci_get_endpoint_mult(udev, ep);
1526         max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1527         max_burst = xhci_get_endpoint_max_burst(udev, ep);
1528         avg_trb_len = max_esit_payload;
1529
1530         /* FIXME dig Mult and streams info out of ep companion desc */
1531
1532         /* Allow 3 retries for everything but isoc, set CErr = 3 */
1533         if (!usb_endpoint_xfer_isoc(&ep->desc))
1534                 err_count = 3;
1535         /* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */
1536         if (usb_endpoint_xfer_bulk(&ep->desc)) {
1537                 if (udev->speed == USB_SPEED_HIGH)
1538                         max_packet = 512;
1539                 if (udev->speed == USB_SPEED_FULL) {
1540                         max_packet = rounddown_pow_of_two(max_packet);
1541                         max_packet = clamp_val(max_packet, 8, 64);
1542                 }
1543         }
1544         /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1545         if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1546                 avg_trb_len = 8;
1547         /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1548         if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1549                 mult = 0;
1550
1551         /* Set up the endpoint ring */
1552         virt_dev->eps[ep_index].new_ring =
1553                 xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1554         if (!virt_dev->eps[ep_index].new_ring) {
1555                 /* Attempt to use the ring cache */
1556                 if (virt_dev->num_rings_cached == 0)
1557                         return -ENOMEM;
1558                 virt_dev->num_rings_cached--;
1559                 virt_dev->eps[ep_index].new_ring =
1560                         virt_dev->ring_cache[virt_dev->num_rings_cached];
1561                 virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1562                 xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
1563                                         1, ring_type);
1564         }
1565         virt_dev->eps[ep_index].skip = false;
1566         ep_ring = virt_dev->eps[ep_index].new_ring;
1567
1568         /* Fill the endpoint context */
1569         ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1570                                       EP_INTERVAL(interval) |
1571                                       EP_MULT(mult));
1572         ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1573                                        MAX_PACKET(max_packet) |
1574                                        MAX_BURST(max_burst) |
1575                                        ERROR_COUNT(err_count));
1576         ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1577                                   ep_ring->cycle_state);
1578
1579         ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1580                                       EP_AVG_TRB_LENGTH(avg_trb_len));
1581
1582         /* FIXME Debug endpoint context */
1583         return 0;
1584 }
1585
1586 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1587                 struct xhci_virt_device *virt_dev,
1588                 struct usb_host_endpoint *ep)
1589 {
1590         unsigned int ep_index;
1591         struct xhci_ep_ctx *ep_ctx;
1592
1593         ep_index = xhci_get_endpoint_index(&ep->desc);
1594         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1595
1596         ep_ctx->ep_info = 0;
1597         ep_ctx->ep_info2 = 0;
1598         ep_ctx->deq = 0;
1599         ep_ctx->tx_info = 0;
1600         /* Don't free the endpoint ring until the set interface or configuration
1601          * request succeeds.
1602          */
1603 }
1604
1605 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1606 {
1607         bw_info->ep_interval = 0;
1608         bw_info->mult = 0;
1609         bw_info->num_packets = 0;
1610         bw_info->max_packet_size = 0;
1611         bw_info->type = 0;
1612         bw_info->max_esit_payload = 0;
1613 }
1614
1615 void xhci_update_bw_info(struct xhci_hcd *xhci,
1616                 struct xhci_container_ctx *in_ctx,
1617                 struct xhci_input_control_ctx *ctrl_ctx,
1618                 struct xhci_virt_device *virt_dev)
1619 {
1620         struct xhci_bw_info *bw_info;
1621         struct xhci_ep_ctx *ep_ctx;
1622         unsigned int ep_type;
1623         int i;
1624
1625         for (i = 1; i < 31; ++i) {
1626                 bw_info = &virt_dev->eps[i].bw_info;
1627
1628                 /* We can't tell what endpoint type is being dropped, but
1629                  * unconditionally clearing the bandwidth info for non-periodic
1630                  * endpoints should be harmless because the info will never be
1631                  * set in the first place.
1632                  */
1633                 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1634                         /* Dropped endpoint */
1635                         xhci_clear_endpoint_bw_info(bw_info);
1636                         continue;
1637                 }
1638
1639                 if (EP_IS_ADDED(ctrl_ctx, i)) {
1640                         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1641                         ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1642
1643                         /* Ignore non-periodic endpoints */
1644                         if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1645                                         ep_type != ISOC_IN_EP &&
1646                                         ep_type != INT_IN_EP)
1647                                 continue;
1648
1649                         /* Added or changed endpoint */
1650                         bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1651                                         le32_to_cpu(ep_ctx->ep_info));
1652                         /* Number of packets and mult are zero-based in the
1653                          * input context, but we want one-based for the
1654                          * interval table.
1655                          */
1656                         bw_info->mult = CTX_TO_EP_MULT(
1657                                         le32_to_cpu(ep_ctx->ep_info)) + 1;
1658                         bw_info->num_packets = CTX_TO_MAX_BURST(
1659                                         le32_to_cpu(ep_ctx->ep_info2)) + 1;
1660                         bw_info->max_packet_size = MAX_PACKET_DECODED(
1661                                         le32_to_cpu(ep_ctx->ep_info2));
1662                         bw_info->type = ep_type;
1663                         bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1664                                         le32_to_cpu(ep_ctx->tx_info));
1665                 }
1666         }
1667 }
1668
1669 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1670  * Useful when you want to change one particular aspect of the endpoint and then
1671  * issue a configure endpoint command.
1672  */
1673 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1674                 struct xhci_container_ctx *in_ctx,
1675                 struct xhci_container_ctx *out_ctx,
1676                 unsigned int ep_index)
1677 {
1678         struct xhci_ep_ctx *out_ep_ctx;
1679         struct xhci_ep_ctx *in_ep_ctx;
1680
1681         out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1682         in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1683
1684         in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1685         in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1686         in_ep_ctx->deq = out_ep_ctx->deq;
1687         in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1688 }
1689
1690 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1691  * Useful when you want to change one particular aspect of the endpoint and then
1692  * issue a configure endpoint command.  Only the context entries field matters,
1693  * but we'll copy the whole thing anyway.
1694  */
1695 void xhci_slot_copy(struct xhci_hcd *xhci,
1696                 struct xhci_container_ctx *in_ctx,
1697                 struct xhci_container_ctx *out_ctx)
1698 {
1699         struct xhci_slot_ctx *in_slot_ctx;
1700         struct xhci_slot_ctx *out_slot_ctx;
1701
1702         in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1703         out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1704
1705         in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1706         in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1707         in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1708         in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1709 }
1710
1711 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1712 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1713 {
1714         int i;
1715         struct device *dev = xhci_to_hcd(xhci)->self.controller;
1716         int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1717
1718         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1719                         "Allocating %d scratchpad buffers", num_sp);
1720
1721         if (!num_sp)
1722                 return 0;
1723
1724         xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1725         if (!xhci->scratchpad)
1726                 goto fail_sp;
1727
1728         xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1729                                      num_sp * sizeof(u64),
1730                                      &xhci->scratchpad->sp_dma, flags);
1731         if (!xhci->scratchpad->sp_array)
1732                 goto fail_sp2;
1733
1734         xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1735         if (!xhci->scratchpad->sp_buffers)
1736                 goto fail_sp3;
1737
1738         xhci->scratchpad->sp_dma_buffers =
1739                 kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1740
1741         if (!xhci->scratchpad->sp_dma_buffers)
1742                 goto fail_sp4;
1743
1744         xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1745         for (i = 0; i < num_sp; i++) {
1746                 dma_addr_t dma;
1747                 void *buf = dma_zalloc_coherent(dev, xhci->page_size, &dma,
1748                                 flags);
1749                 if (!buf)
1750                         goto fail_sp5;
1751
1752                 xhci->scratchpad->sp_array[i] = dma;
1753                 xhci->scratchpad->sp_buffers[i] = buf;
1754                 xhci->scratchpad->sp_dma_buffers[i] = dma;
1755         }
1756
1757         return 0;
1758
1759  fail_sp5:
1760         for (i = i - 1; i >= 0; i--) {
1761                 dma_free_coherent(dev, xhci->page_size,
1762                                     xhci->scratchpad->sp_buffers[i],
1763                                     xhci->scratchpad->sp_dma_buffers[i]);
1764         }
1765         kfree(xhci->scratchpad->sp_dma_buffers);
1766
1767  fail_sp4:
1768         kfree(xhci->scratchpad->sp_buffers);
1769
1770  fail_sp3:
1771         dma_free_coherent(dev, num_sp * sizeof(u64),
1772                             xhci->scratchpad->sp_array,
1773                             xhci->scratchpad->sp_dma);
1774
1775  fail_sp2:
1776         kfree(xhci->scratchpad);
1777         xhci->scratchpad = NULL;
1778
1779  fail_sp:
1780         return -ENOMEM;
1781 }
1782
1783 static void scratchpad_free(struct xhci_hcd *xhci)
1784 {
1785         int num_sp;
1786         int i;
1787         struct device *dev = xhci_to_hcd(xhci)->self.controller;
1788
1789         if (!xhci->scratchpad)
1790                 return;
1791
1792         num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1793
1794         for (i = 0; i < num_sp; i++) {
1795                 dma_free_coherent(dev, xhci->page_size,
1796                                     xhci->scratchpad->sp_buffers[i],
1797                                     xhci->scratchpad->sp_dma_buffers[i]);
1798         }
1799         kfree(xhci->scratchpad->sp_dma_buffers);
1800         kfree(xhci->scratchpad->sp_buffers);
1801         dma_free_coherent(dev, num_sp * sizeof(u64),
1802                             xhci->scratchpad->sp_array,
1803                             xhci->scratchpad->sp_dma);
1804         kfree(xhci->scratchpad);
1805         xhci->scratchpad = NULL;
1806 }
1807
1808 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1809                 bool allocate_in_ctx, bool allocate_completion,
1810                 gfp_t mem_flags)
1811 {
1812         struct xhci_command *command;
1813
1814         command = kzalloc(sizeof(*command), mem_flags);
1815         if (!command)
1816                 return NULL;
1817
1818         if (allocate_in_ctx) {
1819                 command->in_ctx =
1820                         xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1821                                         mem_flags);
1822                 if (!command->in_ctx) {
1823                         kfree(command);
1824                         return NULL;
1825                 }
1826         }
1827
1828         if (allocate_completion) {
1829                 command->completion =
1830                         kzalloc(sizeof(struct completion), mem_flags);
1831                 if (!command->completion) {
1832                         xhci_free_container_ctx(xhci, command->in_ctx);
1833                         kfree(command);
1834                         return NULL;
1835                 }
1836                 init_completion(command->completion);
1837         }
1838
1839         command->status = 0;
1840         INIT_LIST_HEAD(&command->cmd_list);
1841         return command;
1842 }
1843
1844 void xhci_urb_free_priv(struct urb_priv *urb_priv)
1845 {
1846         if (urb_priv) {
1847                 kfree(urb_priv->td[0]);
1848                 kfree(urb_priv);
1849         }
1850 }
1851
1852 void xhci_free_command(struct xhci_hcd *xhci,
1853                 struct xhci_command *command)
1854 {
1855         xhci_free_container_ctx(xhci,
1856                         command->in_ctx);
1857         kfree(command->completion);
1858         kfree(command);
1859 }
1860
1861 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1862 {
1863         struct device   *dev = xhci_to_hcd(xhci)->self.controller;
1864         int size;
1865         int i, j, num_ports;
1866
1867         cancel_delayed_work_sync(&xhci->cmd_timer);
1868
1869         /* Free the Event Ring Segment Table and the actual Event Ring */
1870         size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1871         if (xhci->erst.entries)
1872                 dma_free_coherent(dev, size,
1873                                 xhci->erst.entries, xhci->erst.erst_dma_addr);
1874         xhci->erst.entries = NULL;
1875         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed ERST");
1876         if (xhci->event_ring)
1877                 xhci_ring_free(xhci, xhci->event_ring);
1878         xhci->event_ring = NULL;
1879         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1880
1881         if (xhci->lpm_command)
1882                 xhci_free_command(xhci, xhci->lpm_command);
1883         xhci->lpm_command = NULL;
1884         if (xhci->cmd_ring)
1885                 xhci_ring_free(xhci, xhci->cmd_ring);
1886         xhci->cmd_ring = NULL;
1887         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1888         xhci_cleanup_command_queue(xhci);
1889
1890         num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1891         for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1892                 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1893                 for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1894                         struct list_head *ep = &bwt->interval_bw[j].endpoints;
1895                         while (!list_empty(ep))
1896                                 list_del_init(ep->next);
1897                 }
1898         }
1899
1900         for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1901                 xhci_free_virt_devices_depth_first(xhci, i);
1902
1903         dma_pool_destroy(xhci->segment_pool);
1904         xhci->segment_pool = NULL;
1905         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1906
1907         dma_pool_destroy(xhci->device_pool);
1908         xhci->device_pool = NULL;
1909         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1910
1911         dma_pool_destroy(xhci->small_streams_pool);
1912         xhci->small_streams_pool = NULL;
1913         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1914                         "Freed small stream array pool");
1915
1916         dma_pool_destroy(xhci->medium_streams_pool);
1917         xhci->medium_streams_pool = NULL;
1918         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1919                         "Freed medium stream array pool");
1920
1921         if (xhci->dcbaa)
1922                 dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1923                                 xhci->dcbaa, xhci->dcbaa->dma);
1924         xhci->dcbaa = NULL;
1925
1926         scratchpad_free(xhci);
1927
1928         if (!xhci->rh_bw)
1929                 goto no_bw;
1930
1931         for (i = 0; i < num_ports; i++) {
1932                 struct xhci_tt_bw_info *tt, *n;
1933                 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1934                         list_del(&tt->tt_list);
1935                         kfree(tt);
1936                 }
1937         }
1938
1939 no_bw:
1940         xhci->cmd_ring_reserved_trbs = 0;
1941         xhci->num_usb2_ports = 0;
1942         xhci->num_usb3_ports = 0;
1943         xhci->num_active_eps = 0;
1944         kfree(xhci->usb2_ports);
1945         kfree(xhci->usb3_ports);
1946         kfree(xhci->port_array);
1947         kfree(xhci->rh_bw);
1948         kfree(xhci->ext_caps);
1949         kfree(xhci->usb2_rhub.psi);
1950         kfree(xhci->usb3_rhub.psi);
1951
1952         xhci->usb2_ports = NULL;
1953         xhci->usb3_ports = NULL;
1954         xhci->port_array = NULL;
1955         xhci->usb2_rhub.psi = NULL;
1956         xhci->usb3_rhub.psi = NULL;
1957         xhci->rh_bw = NULL;
1958         xhci->ext_caps = NULL;
1959
1960         xhci->page_size = 0;
1961         xhci->page_shift = 0;
1962         xhci->bus_state[0].bus_suspended = 0;
1963         xhci->bus_state[1].bus_suspended = 0;
1964 }
1965
1966 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1967                 struct xhci_segment *input_seg,
1968                 union xhci_trb *start_trb,
1969                 union xhci_trb *end_trb,
1970                 dma_addr_t input_dma,
1971                 struct xhci_segment *result_seg,
1972                 char *test_name, int test_number)
1973 {
1974         unsigned long long start_dma;
1975         unsigned long long end_dma;
1976         struct xhci_segment *seg;
1977
1978         start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1979         end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1980
1981         seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1982         if (seg != result_seg) {
1983                 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1984                                 test_name, test_number);
1985                 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1986                                 "input DMA 0x%llx\n",
1987                                 input_seg,
1988                                 (unsigned long long) input_dma);
1989                 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1990                                 "ending TRB %p (0x%llx DMA)\n",
1991                                 start_trb, start_dma,
1992                                 end_trb, end_dma);
1993                 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1994                                 result_seg, seg);
1995                 trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
1996                           true);
1997                 return -1;
1998         }
1999         return 0;
2000 }
2001
2002 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
2003 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
2004 {
2005         struct {
2006                 dma_addr_t              input_dma;
2007                 struct xhci_segment     *result_seg;
2008         } simple_test_vector [] = {
2009                 /* A zeroed DMA field should fail */
2010                 { 0, NULL },
2011                 /* One TRB before the ring start should fail */
2012                 { xhci->event_ring->first_seg->dma - 16, NULL },
2013                 /* One byte before the ring start should fail */
2014                 { xhci->event_ring->first_seg->dma - 1, NULL },
2015                 /* Starting TRB should succeed */
2016                 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
2017                 /* Ending TRB should succeed */
2018                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
2019                         xhci->event_ring->first_seg },
2020                 /* One byte after the ring end should fail */
2021                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
2022                 /* One TRB after the ring end should fail */
2023                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
2024                 /* An address of all ones should fail */
2025                 { (dma_addr_t) (~0), NULL },
2026         };
2027         struct {
2028                 struct xhci_segment     *input_seg;
2029                 union xhci_trb          *start_trb;
2030                 union xhci_trb          *end_trb;
2031                 dma_addr_t              input_dma;
2032                 struct xhci_segment     *result_seg;
2033         } complex_test_vector [] = {
2034                 /* Test feeding a valid DMA address from a different ring */
2035                 {       .input_seg = xhci->event_ring->first_seg,
2036                         .start_trb = xhci->event_ring->first_seg->trbs,
2037                         .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2038                         .input_dma = xhci->cmd_ring->first_seg->dma,
2039                         .result_seg = NULL,
2040                 },
2041                 /* Test feeding a valid end TRB from a different ring */
2042                 {       .input_seg = xhci->event_ring->first_seg,
2043                         .start_trb = xhci->event_ring->first_seg->trbs,
2044                         .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2045                         .input_dma = xhci->cmd_ring->first_seg->dma,
2046                         .result_seg = NULL,
2047                 },
2048                 /* Test feeding a valid start and end TRB from a different ring */
2049                 {       .input_seg = xhci->event_ring->first_seg,
2050                         .start_trb = xhci->cmd_ring->first_seg->trbs,
2051                         .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2052                         .input_dma = xhci->cmd_ring->first_seg->dma,
2053                         .result_seg = NULL,
2054                 },
2055                 /* TRB in this ring, but after this TD */
2056                 {       .input_seg = xhci->event_ring->first_seg,
2057                         .start_trb = &xhci->event_ring->first_seg->trbs[0],
2058                         .end_trb = &xhci->event_ring->first_seg->trbs[3],
2059                         .input_dma = xhci->event_ring->first_seg->dma + 4*16,
2060                         .result_seg = NULL,
2061                 },
2062                 /* TRB in this ring, but before this TD */
2063                 {       .input_seg = xhci->event_ring->first_seg,
2064                         .start_trb = &xhci->event_ring->first_seg->trbs[3],
2065                         .end_trb = &xhci->event_ring->first_seg->trbs[6],
2066                         .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2067                         .result_seg = NULL,
2068                 },
2069                 /* TRB in this ring, but after this wrapped TD */
2070                 {       .input_seg = xhci->event_ring->first_seg,
2071                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2072                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
2073                         .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2074                         .result_seg = NULL,
2075                 },
2076                 /* TRB in this ring, but before this wrapped TD */
2077                 {       .input_seg = xhci->event_ring->first_seg,
2078                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2079                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
2080                         .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
2081                         .result_seg = NULL,
2082                 },
2083                 /* TRB not in this ring, and we have a wrapped TD */
2084                 {       .input_seg = xhci->event_ring->first_seg,
2085                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2086                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
2087                         .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
2088                         .result_seg = NULL,
2089                 },
2090         };
2091
2092         unsigned int num_tests;
2093         int i, ret;
2094
2095         num_tests = ARRAY_SIZE(simple_test_vector);
2096         for (i = 0; i < num_tests; i++) {
2097                 ret = xhci_test_trb_in_td(xhci,
2098                                 xhci->event_ring->first_seg,
2099                                 xhci->event_ring->first_seg->trbs,
2100                                 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2101                                 simple_test_vector[i].input_dma,
2102                                 simple_test_vector[i].result_seg,
2103                                 "Simple", i);
2104                 if (ret < 0)
2105                         return ret;
2106         }
2107
2108         num_tests = ARRAY_SIZE(complex_test_vector);
2109         for (i = 0; i < num_tests; i++) {
2110                 ret = xhci_test_trb_in_td(xhci,
2111                                 complex_test_vector[i].input_seg,
2112                                 complex_test_vector[i].start_trb,
2113                                 complex_test_vector[i].end_trb,
2114                                 complex_test_vector[i].input_dma,
2115                                 complex_test_vector[i].result_seg,
2116                                 "Complex", i);
2117                 if (ret < 0)
2118                         return ret;
2119         }
2120         xhci_dbg(xhci, "TRB math tests passed.\n");
2121         return 0;
2122 }
2123
2124 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2125 {
2126         u64 temp;
2127         dma_addr_t deq;
2128
2129         deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2130                         xhci->event_ring->dequeue);
2131         if (deq == 0 && !in_interrupt())
2132                 xhci_warn(xhci, "WARN something wrong with SW event ring "
2133                                 "dequeue ptr.\n");
2134         /* Update HC event ring dequeue pointer */
2135         temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2136         temp &= ERST_PTR_MASK;
2137         /* Don't clear the EHB bit (which is RW1C) because
2138          * there might be more events to service.
2139          */
2140         temp &= ~ERST_EHB;
2141         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2142                         "// Write event ring dequeue pointer, "
2143                         "preserving EHB bit");
2144         xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2145                         &xhci->ir_set->erst_dequeue);
2146 }
2147
2148 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2149                 __le32 __iomem *addr, int max_caps)
2150 {
2151         u32 temp, port_offset, port_count;
2152         int i;
2153         u8 major_revision, minor_revision;
2154         struct xhci_hub *rhub;
2155
2156         temp = readl(addr);
2157         major_revision = XHCI_EXT_PORT_MAJOR(temp);
2158         minor_revision = XHCI_EXT_PORT_MINOR(temp);
2159
2160         if (major_revision == 0x03) {
2161                 rhub = &xhci->usb3_rhub;
2162                 /*
2163                  * Some hosts incorrectly use sub-minor version for minor
2164                  * version (i.e. 0x02 instead of 0x20 for bcdUSB 0x320 and 0x01
2165                  * for bcdUSB 0x310). Since there is no USB release with sub
2166                  * minor version 0x301 to 0x309, we can assume that they are
2167                  * incorrect and fix it here.
2168                  */
2169                 if (minor_revision > 0x00 && minor_revision < 0x10)
2170                         minor_revision <<= 4;
2171         } else if (major_revision <= 0x02) {
2172                 rhub = &xhci->usb2_rhub;
2173         } else {
2174                 xhci_warn(xhci, "Ignoring unknown port speed, "
2175                                 "Ext Cap %p, revision = 0x%x\n",
2176                                 addr, major_revision);
2177                 /* Ignoring port protocol we can't understand. FIXME */
2178                 return;
2179         }
2180         rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp);
2181
2182         if (rhub->min_rev < minor_revision)
2183                 rhub->min_rev = minor_revision;
2184
2185         /* Port offset and count in the third dword, see section 7.2 */
2186         temp = readl(addr + 2);
2187         port_offset = XHCI_EXT_PORT_OFF(temp);
2188         port_count = XHCI_EXT_PORT_COUNT(temp);
2189         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2190                         "Ext Cap %p, port offset = %u, "
2191                         "count = %u, revision = 0x%x",
2192                         addr, port_offset, port_count, major_revision);
2193         /* Port count includes the current port offset */
2194         if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2195                 /* WTF? "Valid values are â€˜1’ to MaxPorts" */
2196                 return;
2197
2198         rhub->psi_count = XHCI_EXT_PORT_PSIC(temp);
2199         if (rhub->psi_count) {
2200                 rhub->psi = kcalloc(rhub->psi_count, sizeof(*rhub->psi),
2201                                     GFP_KERNEL);
2202                 if (!rhub->psi)
2203                         rhub->psi_count = 0;
2204
2205                 rhub->psi_uid_count++;
2206                 for (i = 0; i < rhub->psi_count; i++) {
2207                         rhub->psi[i] = readl(addr + 4 + i);
2208
2209                         /* count unique ID values, two consecutive entries can
2210                          * have the same ID if link is assymetric
2211                          */
2212                         if (i && (XHCI_EXT_PORT_PSIV(rhub->psi[i]) !=
2213                                   XHCI_EXT_PORT_PSIV(rhub->psi[i - 1])))
2214                                 rhub->psi_uid_count++;
2215
2216                         xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2217                                   XHCI_EXT_PORT_PSIV(rhub->psi[i]),
2218                                   XHCI_EXT_PORT_PSIE(rhub->psi[i]),
2219                                   XHCI_EXT_PORT_PLT(rhub->psi[i]),
2220                                   XHCI_EXT_PORT_PFD(rhub->psi[i]),
2221                                   XHCI_EXT_PORT_LP(rhub->psi[i]),
2222                                   XHCI_EXT_PORT_PSIM(rhub->psi[i]));
2223                 }
2224         }
2225         /* cache usb2 port capabilities */
2226         if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2227                 xhci->ext_caps[xhci->num_ext_caps++] = temp;
2228
2229         /* Check the host's USB2 LPM capability */
2230         if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
2231                         (temp & XHCI_L1C)) {
2232                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2233                                 "xHCI 0.96: support USB2 software lpm");
2234                 xhci->sw_lpm_support = 1;
2235         }
2236
2237         if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
2238                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2239                                 "xHCI 1.0: support USB2 software lpm");
2240                 xhci->sw_lpm_support = 1;
2241                 if (temp & XHCI_HLC) {
2242                         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2243                                         "xHCI 1.0: support USB2 hardware lpm");
2244                         xhci->hw_lpm_support = 1;
2245                 }
2246         }
2247
2248         port_offset--;
2249         for (i = port_offset; i < (port_offset + port_count); i++) {
2250                 /* Duplicate entry.  Ignore the port if the revisions differ. */
2251                 if (xhci->port_array[i] != 0) {
2252                         xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2253                                         " port %u\n", addr, i);
2254                         xhci_warn(xhci, "Port was marked as USB %u, "
2255                                         "duplicated as USB %u\n",
2256                                         xhci->port_array[i], major_revision);
2257                         /* Only adjust the roothub port counts if we haven't
2258                          * found a similar duplicate.
2259                          */
2260                         if (xhci->port_array[i] != major_revision &&
2261                                 xhci->port_array[i] != DUPLICATE_ENTRY) {
2262                                 if (xhci->port_array[i] == 0x03)
2263                                         xhci->num_usb3_ports--;
2264                                 else
2265                                         xhci->num_usb2_ports--;
2266                                 xhci->port_array[i] = DUPLICATE_ENTRY;
2267                         }
2268                         /* FIXME: Should we disable the port? */
2269                         continue;
2270                 }
2271                 xhci->port_array[i] = major_revision;
2272                 if (major_revision == 0x03)
2273                         xhci->num_usb3_ports++;
2274                 else
2275                         xhci->num_usb2_ports++;
2276         }
2277         /* FIXME: Should we disable ports not in the Extended Capabilities? */
2278 }
2279
2280 /*
2281  * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2282  * specify what speeds each port is supposed to be.  We can't count on the port
2283  * speed bits in the PORTSC register being correct until a device is connected,
2284  * but we need to set up the two fake roothubs with the correct number of USB
2285  * 3.0 and USB 2.0 ports at host controller initialization time.
2286  */
2287 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2288 {
2289         void __iomem *base;
2290         u32 offset;
2291         unsigned int num_ports;
2292         int i, j, port_index;
2293         int cap_count = 0;
2294         u32 cap_start;
2295
2296         num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2297         xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2298         if (!xhci->port_array)
2299                 return -ENOMEM;
2300
2301         xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2302         if (!xhci->rh_bw)
2303                 return -ENOMEM;
2304         for (i = 0; i < num_ports; i++) {
2305                 struct xhci_interval_bw_table *bw_table;
2306
2307                 INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2308                 bw_table = &xhci->rh_bw[i].bw_table;
2309                 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2310                         INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2311         }
2312         base = &xhci->cap_regs->hc_capbase;
2313
2314         cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2315         if (!cap_start) {
2316                 xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2317                 return -ENODEV;
2318         }
2319
2320         offset = cap_start;
2321         /* count extended protocol capability entries for later caching */
2322         while (offset) {
2323                 cap_count++;
2324                 offset = xhci_find_next_ext_cap(base, offset,
2325                                                       XHCI_EXT_CAPS_PROTOCOL);
2326         }
2327
2328         xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags);
2329         if (!xhci->ext_caps)
2330                 return -ENOMEM;
2331
2332         offset = cap_start;
2333
2334         while (offset) {
2335                 xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2336                 if (xhci->num_usb2_ports + xhci->num_usb3_ports == num_ports)
2337                         break;
2338                 offset = xhci_find_next_ext_cap(base, offset,
2339                                                 XHCI_EXT_CAPS_PROTOCOL);
2340         }
2341
2342         if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2343                 xhci_warn(xhci, "No ports on the roothubs?\n");
2344                 return -ENODEV;
2345         }
2346         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2347                         "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2348                         xhci->num_usb2_ports, xhci->num_usb3_ports);
2349
2350         /* Place limits on the number of roothub ports so that the hub
2351          * descriptors aren't longer than the USB core will allocate.
2352          */
2353         if (xhci->num_usb3_ports > 15) {
2354                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2355                                 "Limiting USB 3.0 roothub ports to 15.");
2356                 xhci->num_usb3_ports = 15;
2357         }
2358         if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2359                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2360                                 "Limiting USB 2.0 roothub ports to %u.",
2361                                 USB_MAXCHILDREN);
2362                 xhci->num_usb2_ports = USB_MAXCHILDREN;
2363         }
2364
2365         /*
2366          * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2367          * Not sure how the USB core will handle a hub with no ports...
2368          */
2369         if (xhci->num_usb2_ports) {
2370                 xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2371                                 xhci->num_usb2_ports, flags);
2372                 if (!xhci->usb2_ports)
2373                         return -ENOMEM;
2374
2375                 port_index = 0;
2376                 for (i = 0; i < num_ports; i++) {
2377                         if (xhci->port_array[i] == 0x03 ||
2378                                         xhci->port_array[i] == 0 ||
2379                                         xhci->port_array[i] == DUPLICATE_ENTRY)
2380                                 continue;
2381
2382                         xhci->usb2_ports[port_index] =
2383                                 &xhci->op_regs->port_status_base +
2384                                 NUM_PORT_REGS*i;
2385                         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2386                                         "USB 2.0 port at index %u, "
2387                                         "addr = %p", i,
2388                                         xhci->usb2_ports[port_index]);
2389                         port_index++;
2390                         if (port_index == xhci->num_usb2_ports)
2391                                 break;
2392                 }
2393         }
2394         if (xhci->num_usb3_ports) {
2395                 xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2396                                 xhci->num_usb3_ports, flags);
2397                 if (!xhci->usb3_ports)
2398                         return -ENOMEM;
2399
2400                 port_index = 0;
2401                 for (i = 0; i < num_ports; i++)
2402                         if (xhci->port_array[i] == 0x03) {
2403                                 xhci->usb3_ports[port_index] =
2404                                         &xhci->op_regs->port_status_base +
2405                                         NUM_PORT_REGS*i;
2406                                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2407                                                 "USB 3.0 port at index %u, "
2408                                                 "addr = %p", i,
2409                                                 xhci->usb3_ports[port_index]);
2410                                 port_index++;
2411                                 if (port_index == xhci->num_usb3_ports)
2412                                         break;
2413                         }
2414         }
2415         return 0;
2416 }
2417
2418 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2419 {
2420         dma_addr_t      dma;
2421         struct device   *dev = xhci_to_hcd(xhci)->self.controller;
2422         unsigned int    val, val2;
2423         u64             val_64;
2424         struct xhci_segment     *seg;
2425         u32 page_size, temp;
2426         int i;
2427
2428         INIT_LIST_HEAD(&xhci->cmd_list);
2429
2430         /* init command timeout work */
2431         INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2432         init_completion(&xhci->cmd_ring_stop_completion);
2433
2434         page_size = readl(&xhci->op_regs->page_size);
2435         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2436                         "Supported page size register = 0x%x", page_size);
2437         for (i = 0; i < 16; i++) {
2438                 if ((0x1 & page_size) != 0)
2439                         break;
2440                 page_size = page_size >> 1;
2441         }
2442         if (i < 16)
2443                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2444                         "Supported page size of %iK", (1 << (i+12)) / 1024);
2445         else
2446                 xhci_warn(xhci, "WARN: no supported page size\n");
2447         /* Use 4K pages, since that's common and the minimum the HC supports */
2448         xhci->page_shift = 12;
2449         xhci->page_size = 1 << xhci->page_shift;
2450         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2451                         "HCD page size set to %iK", xhci->page_size / 1024);
2452
2453         /*
2454          * Program the Number of Device Slots Enabled field in the CONFIG
2455          * register with the max value of slots the HC can handle.
2456          */
2457         val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2458         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2459                         "// xHC can handle at most %d device slots.", val);
2460         val2 = readl(&xhci->op_regs->config_reg);
2461         val |= (val2 & ~HCS_SLOTS_MASK);
2462         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2463                         "// Setting Max device slots reg = 0x%x.", val);
2464         writel(val, &xhci->op_regs->config_reg);
2465
2466         /*
2467          * Section 5.4.8 - doorbell array must be
2468          * "physically contiguous and 64-byte (cache line) aligned".
2469          */
2470         xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2471                         flags);
2472         if (!xhci->dcbaa)
2473                 goto fail;
2474         memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2475         xhci->dcbaa->dma = dma;
2476         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2477                         "// Device context base array address = 0x%llx (DMA), %p (virt)",
2478                         (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2479         xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2480
2481         /*
2482          * Initialize the ring segment pool.  The ring must be a contiguous
2483          * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2484          * however, the command ring segment needs 64-byte aligned segments
2485          * and our use of dma addresses in the trb_address_map radix tree needs
2486          * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2487          */
2488         xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2489                         TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2490
2491         /* See Table 46 and Note on Figure 55 */
2492         xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2493                         2112, 64, xhci->page_size);
2494         if (!xhci->segment_pool || !xhci->device_pool)
2495                 goto fail;
2496
2497         /* Linear stream context arrays don't have any boundary restrictions,
2498          * and only need to be 16-byte aligned.
2499          */
2500         xhci->small_streams_pool =
2501                 dma_pool_create("xHCI 256 byte stream ctx arrays",
2502                         dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2503         xhci->medium_streams_pool =
2504                 dma_pool_create("xHCI 1KB stream ctx arrays",
2505                         dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2506         /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2507          * will be allocated with dma_alloc_coherent()
2508          */
2509
2510         if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2511                 goto fail;
2512
2513         /* Set up the command ring to have one segments for now. */
2514         xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2515         if (!xhci->cmd_ring)
2516                 goto fail;
2517         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2518                         "Allocated command ring at %p", xhci->cmd_ring);
2519         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2520                         (unsigned long long)xhci->cmd_ring->first_seg->dma);
2521
2522         /* Set the address in the Command Ring Control register */
2523         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2524         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2525                 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2526                 xhci->cmd_ring->cycle_state;
2527         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2528                         "// Setting command ring address to 0x%016llx", val_64);
2529         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2530         xhci_dbg_cmd_ptrs(xhci);
2531
2532         xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags);
2533         if (!xhci->lpm_command)
2534                 goto fail;
2535
2536         /* Reserve one command ring TRB for disabling LPM.
2537          * Since the USB core grabs the shared usb_bus bandwidth mutex before
2538          * disabling LPM, we only need to reserve one TRB for all devices.
2539          */
2540         xhci->cmd_ring_reserved_trbs++;
2541
2542         val = readl(&xhci->cap_regs->db_off);
2543         val &= DBOFF_MASK;
2544         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2545                         "// Doorbell array is located at offset 0x%x"
2546                         " from cap regs base addr", val);
2547         xhci->dba = (void __iomem *) xhci->cap_regs + val;
2548         xhci_dbg_regs(xhci);
2549         xhci_print_run_regs(xhci);
2550         /* Set ir_set to interrupt register set 0 */
2551         xhci->ir_set = &xhci->run_regs->ir_set[0];
2552
2553         /*
2554          * Event ring setup: Allocate a normal ring, but also setup
2555          * the event ring segment table (ERST).  Section 4.9.3.
2556          */
2557         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2558         xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2559                                         0, flags);
2560         if (!xhci->event_ring)
2561                 goto fail;
2562         if (xhci_check_trb_in_td_math(xhci) < 0)
2563                 goto fail;
2564
2565         xhci->erst.entries = dma_alloc_coherent(dev,
2566                         sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2567                         flags);
2568         if (!xhci->erst.entries)
2569                 goto fail;
2570         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2571                         "// Allocated event ring segment table at 0x%llx",
2572                         (unsigned long long)dma);
2573
2574         memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2575         xhci->erst.num_entries = ERST_NUM_SEGS;
2576         xhci->erst.erst_dma_addr = dma;
2577         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2578                         "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx",
2579                         xhci->erst.num_entries,
2580                         xhci->erst.entries,
2581                         (unsigned long long)xhci->erst.erst_dma_addr);
2582
2583         /* set ring base address and size for each segment table entry */
2584         for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2585                 struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2586                 entry->seg_addr = cpu_to_le64(seg->dma);
2587                 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2588                 entry->rsvd = 0;
2589                 seg = seg->next;
2590         }
2591
2592         /* set ERST count with the number of entries in the segment table */
2593         val = readl(&xhci->ir_set->erst_size);
2594         val &= ERST_SIZE_MASK;
2595         val |= ERST_NUM_SEGS;
2596         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2597                         "// Write ERST size = %i to ir_set 0 (some bits preserved)",
2598                         val);
2599         writel(val, &xhci->ir_set->erst_size);
2600
2601         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2602                         "// Set ERST entries to point to event ring.");
2603         /* set the segment table base address */
2604         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2605                         "// Set ERST base address for ir_set 0 = 0x%llx",
2606                         (unsigned long long)xhci->erst.erst_dma_addr);
2607         val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2608         val_64 &= ERST_PTR_MASK;
2609         val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2610         xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2611
2612         /* Set the event ring dequeue address */
2613         xhci_set_hc_event_deq(xhci);
2614         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2615                         "Wrote ERST address to ir_set 0.");
2616         xhci_print_ir_set(xhci, 0);
2617
2618         /*
2619          * XXX: Might need to set the Interrupter Moderation Register to
2620          * something other than the default (~1ms minimum between interrupts).
2621          * See section 5.5.1.2.
2622          */
2623         init_completion(&xhci->addr_dev);
2624         for (i = 0; i < MAX_HC_SLOTS; ++i)
2625                 xhci->devs[i] = NULL;
2626         for (i = 0; i < USB_MAXCHILDREN; ++i) {
2627                 xhci->bus_state[0].resume_done[i] = 0;
2628                 xhci->bus_state[1].resume_done[i] = 0;
2629                 /* Only the USB 2.0 completions will ever be used. */
2630                 init_completion(&xhci->bus_state[1].rexit_done[i]);
2631         }
2632
2633         if (scratchpad_alloc(xhci, flags))
2634                 goto fail;
2635         if (xhci_setup_port_arrays(xhci, flags))
2636                 goto fail;
2637
2638         /* Enable USB 3.0 device notifications for function remote wake, which
2639          * is necessary for allowing USB 3.0 devices to do remote wakeup from
2640          * U3 (device suspend).
2641          */
2642         temp = readl(&xhci->op_regs->dev_notification);
2643         temp &= ~DEV_NOTE_MASK;
2644         temp |= DEV_NOTE_FWAKE;
2645         writel(temp, &xhci->op_regs->dev_notification);
2646
2647         return 0;
2648
2649 fail:
2650         xhci_warn(xhci, "Couldn't initialize memory\n");
2651         xhci_halt(xhci);
2652         xhci_reset(xhci);
2653         xhci_mem_cleanup(xhci);
2654         return -ENOMEM;
2655 }