GNU Linux-libre 5.19-rc6-gnu
[releases.git] / drivers / usb / host / xhci-mem.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10
11 #include <linux/usb.h>
12 #include <linux/pci.h>
13 #include <linux/slab.h>
14 #include <linux/dmapool.h>
15 #include <linux/dma-mapping.h>
16
17 #include "xhci.h"
18 #include "xhci-trace.h"
19 #include "xhci-debugfs.h"
20
21 /*
22  * Allocates a generic ring segment from the ring pool, sets the dma address,
23  * initializes the segment to zero, and sets the private next pointer to NULL.
24  *
25  * Section 4.11.1.1:
26  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
27  */
28 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
29                                                unsigned int cycle_state,
30                                                unsigned int max_packet,
31                                                gfp_t flags)
32 {
33         struct xhci_segment *seg;
34         dma_addr_t      dma;
35         int             i;
36         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
37
38         seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev));
39         if (!seg)
40                 return NULL;
41
42         seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
43         if (!seg->trbs) {
44                 kfree(seg);
45                 return NULL;
46         }
47
48         if (max_packet) {
49                 seg->bounce_buf = kzalloc_node(max_packet, flags,
50                                         dev_to_node(dev));
51                 if (!seg->bounce_buf) {
52                         dma_pool_free(xhci->segment_pool, seg->trbs, dma);
53                         kfree(seg);
54                         return NULL;
55                 }
56         }
57         /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
58         if (cycle_state == 0) {
59                 for (i = 0; i < TRBS_PER_SEGMENT; i++)
60                         seg->trbs[i].link.control = cpu_to_le32(TRB_CYCLE);
61         }
62         seg->dma = dma;
63         seg->next = NULL;
64
65         return seg;
66 }
67
68 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
69 {
70         if (seg->trbs) {
71                 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
72                 seg->trbs = NULL;
73         }
74         kfree(seg->bounce_buf);
75         kfree(seg);
76 }
77
78 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
79                                 struct xhci_segment *first)
80 {
81         struct xhci_segment *seg;
82
83         seg = first->next;
84         while (seg != first) {
85                 struct xhci_segment *next = seg->next;
86                 xhci_segment_free(xhci, seg);
87                 seg = next;
88         }
89         xhci_segment_free(xhci, first);
90 }
91
92 /*
93  * Make the prev segment point to the next segment.
94  *
95  * Change the last TRB in the prev segment to be a Link TRB which points to the
96  * DMA address of the next segment.  The caller needs to set any Link TRB
97  * related flags, such as End TRB, Toggle Cycle, and no snoop.
98  */
99 static void xhci_link_segments(struct xhci_segment *prev,
100                                struct xhci_segment *next,
101                                enum xhci_ring_type type, bool chain_links)
102 {
103         u32 val;
104
105         if (!prev || !next)
106                 return;
107         prev->next = next;
108         if (type != TYPE_EVENT) {
109                 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
110                         cpu_to_le64(next->dma);
111
112                 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
113                 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
114                 val &= ~TRB_TYPE_BITMASK;
115                 val |= TRB_TYPE(TRB_LINK);
116                 if (chain_links)
117                         val |= TRB_CHAIN;
118                 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
119         }
120 }
121
122 /*
123  * Link the ring to the new segments.
124  * Set Toggle Cycle for the new ring if needed.
125  */
126 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
127                 struct xhci_segment *first, struct xhci_segment *last,
128                 unsigned int num_segs)
129 {
130         struct xhci_segment *next;
131         bool chain_links;
132
133         if (!ring || !first || !last)
134                 return;
135
136         /* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
137         chain_links = !!(xhci_link_trb_quirk(xhci) ||
138                          (ring->type == TYPE_ISOC &&
139                           (xhci->quirks & XHCI_AMD_0x96_HOST)));
140
141         next = ring->enq_seg->next;
142         xhci_link_segments(ring->enq_seg, first, ring->type, chain_links);
143         xhci_link_segments(last, next, ring->type, chain_links);
144         ring->num_segs += num_segs;
145         ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
146
147         if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
148                 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
149                         &= ~cpu_to_le32(LINK_TOGGLE);
150                 last->trbs[TRBS_PER_SEGMENT-1].link.control
151                         |= cpu_to_le32(LINK_TOGGLE);
152                 ring->last_seg = last;
153         }
154 }
155
156 /*
157  * We need a radix tree for mapping physical addresses of TRBs to which stream
158  * ID they belong to.  We need to do this because the host controller won't tell
159  * us which stream ring the TRB came from.  We could store the stream ID in an
160  * event data TRB, but that doesn't help us for the cancellation case, since the
161  * endpoint may stop before it reaches that event data TRB.
162  *
163  * The radix tree maps the upper portion of the TRB DMA address to a ring
164  * segment that has the same upper portion of DMA addresses.  For example, say I
165  * have segments of size 1KB, that are always 1KB aligned.  A segment may
166  * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
167  * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
168  * pass the radix tree a key to get the right stream ID:
169  *
170  *      0x10c90fff >> 10 = 0x43243
171  *      0x10c912c0 >> 10 = 0x43244
172  *      0x10c91400 >> 10 = 0x43245
173  *
174  * Obviously, only those TRBs with DMA addresses that are within the segment
175  * will make the radix tree return the stream ID for that ring.
176  *
177  * Caveats for the radix tree:
178  *
179  * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
180  * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
181  * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
182  * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
183  * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
184  * extended systems (where the DMA address can be bigger than 32-bits),
185  * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
186  */
187 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
188                 struct xhci_ring *ring,
189                 struct xhci_segment *seg,
190                 gfp_t mem_flags)
191 {
192         unsigned long key;
193         int ret;
194
195         key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
196         /* Skip any segments that were already added. */
197         if (radix_tree_lookup(trb_address_map, key))
198                 return 0;
199
200         ret = radix_tree_maybe_preload(mem_flags);
201         if (ret)
202                 return ret;
203         ret = radix_tree_insert(trb_address_map,
204                         key, ring);
205         radix_tree_preload_end();
206         return ret;
207 }
208
209 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
210                 struct xhci_segment *seg)
211 {
212         unsigned long key;
213
214         key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
215         if (radix_tree_lookup(trb_address_map, key))
216                 radix_tree_delete(trb_address_map, key);
217 }
218
219 static int xhci_update_stream_segment_mapping(
220                 struct radix_tree_root *trb_address_map,
221                 struct xhci_ring *ring,
222                 struct xhci_segment *first_seg,
223                 struct xhci_segment *last_seg,
224                 gfp_t mem_flags)
225 {
226         struct xhci_segment *seg;
227         struct xhci_segment *failed_seg;
228         int ret;
229
230         if (WARN_ON_ONCE(trb_address_map == NULL))
231                 return 0;
232
233         seg = first_seg;
234         do {
235                 ret = xhci_insert_segment_mapping(trb_address_map,
236                                 ring, seg, mem_flags);
237                 if (ret)
238                         goto remove_streams;
239                 if (seg == last_seg)
240                         return 0;
241                 seg = seg->next;
242         } while (seg != first_seg);
243
244         return 0;
245
246 remove_streams:
247         failed_seg = seg;
248         seg = first_seg;
249         do {
250                 xhci_remove_segment_mapping(trb_address_map, seg);
251                 if (seg == failed_seg)
252                         return ret;
253                 seg = seg->next;
254         } while (seg != first_seg);
255
256         return ret;
257 }
258
259 static void xhci_remove_stream_mapping(struct xhci_ring *ring)
260 {
261         struct xhci_segment *seg;
262
263         if (WARN_ON_ONCE(ring->trb_address_map == NULL))
264                 return;
265
266         seg = ring->first_seg;
267         do {
268                 xhci_remove_segment_mapping(ring->trb_address_map, seg);
269                 seg = seg->next;
270         } while (seg != ring->first_seg);
271 }
272
273 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
274 {
275         return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
276                         ring->first_seg, ring->last_seg, mem_flags);
277 }
278
279 /* XXX: Do we need the hcd structure in all these functions? */
280 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
281 {
282         if (!ring)
283                 return;
284
285         trace_xhci_ring_free(ring);
286
287         if (ring->first_seg) {
288                 if (ring->type == TYPE_STREAM)
289                         xhci_remove_stream_mapping(ring);
290                 xhci_free_segments_for_ring(xhci, ring->first_seg);
291         }
292
293         kfree(ring);
294 }
295
296 void xhci_initialize_ring_info(struct xhci_ring *ring,
297                                unsigned int cycle_state)
298 {
299         /* The ring is empty, so the enqueue pointer == dequeue pointer */
300         ring->enqueue = ring->first_seg->trbs;
301         ring->enq_seg = ring->first_seg;
302         ring->dequeue = ring->enqueue;
303         ring->deq_seg = ring->first_seg;
304         /* The ring is initialized to 0. The producer must write 1 to the cycle
305          * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
306          * compare CCS to the cycle bit to check ownership, so CCS = 1.
307          *
308          * New rings are initialized with cycle state equal to 1; if we are
309          * handling ring expansion, set the cycle state equal to the old ring.
310          */
311         ring->cycle_state = cycle_state;
312
313         /*
314          * Each segment has a link TRB, and leave an extra TRB for SW
315          * accounting purpose
316          */
317         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
318 }
319
320 /* Allocate segments and link them for a ring */
321 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
322                 struct xhci_segment **first, struct xhci_segment **last,
323                 unsigned int num_segs, unsigned int cycle_state,
324                 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
325 {
326         struct xhci_segment *prev;
327         bool chain_links;
328
329         /* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
330         chain_links = !!(xhci_link_trb_quirk(xhci) ||
331                          (type == TYPE_ISOC &&
332                           (xhci->quirks & XHCI_AMD_0x96_HOST)));
333
334         prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
335         if (!prev)
336                 return -ENOMEM;
337         num_segs--;
338
339         *first = prev;
340         while (num_segs > 0) {
341                 struct xhci_segment     *next;
342
343                 next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
344                 if (!next) {
345                         prev = *first;
346                         while (prev) {
347                                 next = prev->next;
348                                 xhci_segment_free(xhci, prev);
349                                 prev = next;
350                         }
351                         return -ENOMEM;
352                 }
353                 xhci_link_segments(prev, next, type, chain_links);
354
355                 prev = next;
356                 num_segs--;
357         }
358         xhci_link_segments(prev, *first, type, chain_links);
359         *last = prev;
360
361         return 0;
362 }
363
364 /*
365  * Create a new ring with zero or more segments.
366  *
367  * Link each segment together into a ring.
368  * Set the end flag and the cycle toggle bit on the last segment.
369  * See section 4.9.1 and figures 15 and 16.
370  */
371 struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
372                 unsigned int num_segs, unsigned int cycle_state,
373                 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
374 {
375         struct xhci_ring        *ring;
376         int ret;
377         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
378
379         ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev));
380         if (!ring)
381                 return NULL;
382
383         ring->num_segs = num_segs;
384         ring->bounce_buf_len = max_packet;
385         INIT_LIST_HEAD(&ring->td_list);
386         ring->type = type;
387         if (num_segs == 0)
388                 return ring;
389
390         ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
391                         &ring->last_seg, num_segs, cycle_state, type,
392                         max_packet, flags);
393         if (ret)
394                 goto fail;
395
396         /* Only event ring does not use link TRB */
397         if (type != TYPE_EVENT) {
398                 /* See section 4.9.2.1 and 6.4.4.1 */
399                 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
400                         cpu_to_le32(LINK_TOGGLE);
401         }
402         xhci_initialize_ring_info(ring, cycle_state);
403         trace_xhci_ring_alloc(ring);
404         return ring;
405
406 fail:
407         kfree(ring);
408         return NULL;
409 }
410
411 void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
412                 struct xhci_virt_device *virt_dev,
413                 unsigned int ep_index)
414 {
415         xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
416         virt_dev->eps[ep_index].ring = NULL;
417 }
418
419 /*
420  * Expand an existing ring.
421  * Allocate a new ring which has same segment numbers and link the two rings.
422  */
423 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
424                                 unsigned int num_trbs, gfp_t flags)
425 {
426         struct xhci_segment     *first;
427         struct xhci_segment     *last;
428         unsigned int            num_segs;
429         unsigned int            num_segs_needed;
430         int                     ret;
431
432         num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
433                                 (TRBS_PER_SEGMENT - 1);
434
435         /* Allocate number of segments we needed, or double the ring size */
436         num_segs = max(ring->num_segs, num_segs_needed);
437
438         ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
439                         num_segs, ring->cycle_state, ring->type,
440                         ring->bounce_buf_len, flags);
441         if (ret)
442                 return -ENOMEM;
443
444         if (ring->type == TYPE_STREAM)
445                 ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
446                                                 ring, first, last, flags);
447         if (ret) {
448                 struct xhci_segment *next;
449                 do {
450                         next = first->next;
451                         xhci_segment_free(xhci, first);
452                         if (first == last)
453                                 break;
454                         first = next;
455                 } while (true);
456                 return ret;
457         }
458
459         xhci_link_rings(xhci, ring, first, last, num_segs);
460         trace_xhci_ring_expansion(ring);
461         xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
462                         "ring expansion succeed, now has %d segments",
463                         ring->num_segs);
464
465         return 0;
466 }
467
468 struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
469                                                     int type, gfp_t flags)
470 {
471         struct xhci_container_ctx *ctx;
472         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
473
474         if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
475                 return NULL;
476
477         ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev));
478         if (!ctx)
479                 return NULL;
480
481         ctx->type = type;
482         ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
483         if (type == XHCI_CTX_TYPE_INPUT)
484                 ctx->size += CTX_SIZE(xhci->hcc_params);
485
486         ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
487         if (!ctx->bytes) {
488                 kfree(ctx);
489                 return NULL;
490         }
491         return ctx;
492 }
493
494 void xhci_free_container_ctx(struct xhci_hcd *xhci,
495                              struct xhci_container_ctx *ctx)
496 {
497         if (!ctx)
498                 return;
499         dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
500         kfree(ctx);
501 }
502
503 struct xhci_input_control_ctx *xhci_get_input_control_ctx(
504                                               struct xhci_container_ctx *ctx)
505 {
506         if (ctx->type != XHCI_CTX_TYPE_INPUT)
507                 return NULL;
508
509         return (struct xhci_input_control_ctx *)ctx->bytes;
510 }
511
512 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
513                                         struct xhci_container_ctx *ctx)
514 {
515         if (ctx->type == XHCI_CTX_TYPE_DEVICE)
516                 return (struct xhci_slot_ctx *)ctx->bytes;
517
518         return (struct xhci_slot_ctx *)
519                 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
520 }
521
522 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
523                                     struct xhci_container_ctx *ctx,
524                                     unsigned int ep_index)
525 {
526         /* increment ep index by offset of start of ep ctx array */
527         ep_index++;
528         if (ctx->type == XHCI_CTX_TYPE_INPUT)
529                 ep_index++;
530
531         return (struct xhci_ep_ctx *)
532                 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
533 }
534 EXPORT_SYMBOL_GPL(xhci_get_ep_ctx);
535
536 /***************** Streams structures manipulation *************************/
537
538 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
539                 unsigned int num_stream_ctxs,
540                 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
541 {
542         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
543         size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
544
545         if (size > MEDIUM_STREAM_ARRAY_SIZE)
546                 dma_free_coherent(dev, size,
547                                 stream_ctx, dma);
548         else if (size <= SMALL_STREAM_ARRAY_SIZE)
549                 return dma_pool_free(xhci->small_streams_pool,
550                                 stream_ctx, dma);
551         else
552                 return dma_pool_free(xhci->medium_streams_pool,
553                                 stream_ctx, dma);
554 }
555
556 /*
557  * The stream context array for each endpoint with bulk streams enabled can
558  * vary in size, based on:
559  *  - how many streams the endpoint supports,
560  *  - the maximum primary stream array size the host controller supports,
561  *  - and how many streams the device driver asks for.
562  *
563  * The stream context array must be a power of 2, and can be as small as
564  * 64 bytes or as large as 1MB.
565  */
566 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
567                 unsigned int num_stream_ctxs, dma_addr_t *dma,
568                 gfp_t mem_flags)
569 {
570         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
571         size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
572
573         if (size > MEDIUM_STREAM_ARRAY_SIZE)
574                 return dma_alloc_coherent(dev, size,
575                                 dma, mem_flags);
576         else if (size <= SMALL_STREAM_ARRAY_SIZE)
577                 return dma_pool_alloc(xhci->small_streams_pool,
578                                 mem_flags, dma);
579         else
580                 return dma_pool_alloc(xhci->medium_streams_pool,
581                                 mem_flags, dma);
582 }
583
584 struct xhci_ring *xhci_dma_to_transfer_ring(
585                 struct xhci_virt_ep *ep,
586                 u64 address)
587 {
588         if (ep->ep_state & EP_HAS_STREAMS)
589                 return radix_tree_lookup(&ep->stream_info->trb_address_map,
590                                 address >> TRB_SEGMENT_SHIFT);
591         return ep->ring;
592 }
593
594 /*
595  * Change an endpoint's internal structure so it supports stream IDs.  The
596  * number of requested streams includes stream 0, which cannot be used by device
597  * drivers.
598  *
599  * The number of stream contexts in the stream context array may be bigger than
600  * the number of streams the driver wants to use.  This is because the number of
601  * stream context array entries must be a power of two.
602  */
603 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
604                 unsigned int num_stream_ctxs,
605                 unsigned int num_streams,
606                 unsigned int max_packet, gfp_t mem_flags)
607 {
608         struct xhci_stream_info *stream_info;
609         u32 cur_stream;
610         struct xhci_ring *cur_ring;
611         u64 addr;
612         int ret;
613         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
614
615         xhci_dbg(xhci, "Allocating %u streams and %u "
616                         "stream context array entries.\n",
617                         num_streams, num_stream_ctxs);
618         if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
619                 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
620                 return NULL;
621         }
622         xhci->cmd_ring_reserved_trbs++;
623
624         stream_info = kzalloc_node(sizeof(*stream_info), mem_flags,
625                         dev_to_node(dev));
626         if (!stream_info)
627                 goto cleanup_trbs;
628
629         stream_info->num_streams = num_streams;
630         stream_info->num_stream_ctxs = num_stream_ctxs;
631
632         /* Initialize the array of virtual pointers to stream rings. */
633         stream_info->stream_rings = kcalloc_node(
634                         num_streams, sizeof(struct xhci_ring *), mem_flags,
635                         dev_to_node(dev));
636         if (!stream_info->stream_rings)
637                 goto cleanup_info;
638
639         /* Initialize the array of DMA addresses for stream rings for the HW. */
640         stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
641                         num_stream_ctxs, &stream_info->ctx_array_dma,
642                         mem_flags);
643         if (!stream_info->stream_ctx_array)
644                 goto cleanup_ctx;
645         memset(stream_info->stream_ctx_array, 0,
646                         sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
647
648         /* Allocate everything needed to free the stream rings later */
649         stream_info->free_streams_command =
650                 xhci_alloc_command_with_ctx(xhci, true, mem_flags);
651         if (!stream_info->free_streams_command)
652                 goto cleanup_ctx;
653
654         INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
655
656         /* Allocate rings for all the streams that the driver will use,
657          * and add their segment DMA addresses to the radix tree.
658          * Stream 0 is reserved.
659          */
660
661         for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
662                 stream_info->stream_rings[cur_stream] =
663                         xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
664                                         mem_flags);
665                 cur_ring = stream_info->stream_rings[cur_stream];
666                 if (!cur_ring)
667                         goto cleanup_rings;
668                 cur_ring->stream_id = cur_stream;
669                 cur_ring->trb_address_map = &stream_info->trb_address_map;
670                 /* Set deq ptr, cycle bit, and stream context type */
671                 addr = cur_ring->first_seg->dma |
672                         SCT_FOR_CTX(SCT_PRI_TR) |
673                         cur_ring->cycle_state;
674                 stream_info->stream_ctx_array[cur_stream].stream_ring =
675                         cpu_to_le64(addr);
676                 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
677                                 cur_stream, (unsigned long long) addr);
678
679                 ret = xhci_update_stream_mapping(cur_ring, mem_flags);
680                 if (ret) {
681                         xhci_ring_free(xhci, cur_ring);
682                         stream_info->stream_rings[cur_stream] = NULL;
683                         goto cleanup_rings;
684                 }
685         }
686         /* Leave the other unused stream ring pointers in the stream context
687          * array initialized to zero.  This will cause the xHC to give us an
688          * error if the device asks for a stream ID we don't have setup (if it
689          * was any other way, the host controller would assume the ring is
690          * "empty" and wait forever for data to be queued to that stream ID).
691          */
692
693         return stream_info;
694
695 cleanup_rings:
696         for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
697                 cur_ring = stream_info->stream_rings[cur_stream];
698                 if (cur_ring) {
699                         xhci_ring_free(xhci, cur_ring);
700                         stream_info->stream_rings[cur_stream] = NULL;
701                 }
702         }
703         xhci_free_command(xhci, stream_info->free_streams_command);
704 cleanup_ctx:
705         kfree(stream_info->stream_rings);
706 cleanup_info:
707         kfree(stream_info);
708 cleanup_trbs:
709         xhci->cmd_ring_reserved_trbs--;
710         return NULL;
711 }
712 /*
713  * Sets the MaxPStreams field and the Linear Stream Array field.
714  * Sets the dequeue pointer to the stream context array.
715  */
716 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
717                 struct xhci_ep_ctx *ep_ctx,
718                 struct xhci_stream_info *stream_info)
719 {
720         u32 max_primary_streams;
721         /* MaxPStreams is the number of stream context array entries, not the
722          * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
723          * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
724          */
725         max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
726         xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
727                         "Setting number of stream ctx array entries to %u",
728                         1 << (max_primary_streams + 1));
729         ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
730         ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
731                                        | EP_HAS_LSA);
732         ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
733 }
734
735 /*
736  * Sets the MaxPStreams field and the Linear Stream Array field to 0.
737  * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
738  * not at the beginning of the ring).
739  */
740 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
741                 struct xhci_virt_ep *ep)
742 {
743         dma_addr_t addr;
744         ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
745         addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
746         ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
747 }
748
749 /* Frees all stream contexts associated with the endpoint,
750  *
751  * Caller should fix the endpoint context streams fields.
752  */
753 void xhci_free_stream_info(struct xhci_hcd *xhci,
754                 struct xhci_stream_info *stream_info)
755 {
756         int cur_stream;
757         struct xhci_ring *cur_ring;
758
759         if (!stream_info)
760                 return;
761
762         for (cur_stream = 1; cur_stream < stream_info->num_streams;
763                         cur_stream++) {
764                 cur_ring = stream_info->stream_rings[cur_stream];
765                 if (cur_ring) {
766                         xhci_ring_free(xhci, cur_ring);
767                         stream_info->stream_rings[cur_stream] = NULL;
768                 }
769         }
770         xhci_free_command(xhci, stream_info->free_streams_command);
771         xhci->cmd_ring_reserved_trbs--;
772         if (stream_info->stream_ctx_array)
773                 xhci_free_stream_ctx(xhci,
774                                 stream_info->num_stream_ctxs,
775                                 stream_info->stream_ctx_array,
776                                 stream_info->ctx_array_dma);
777
778         kfree(stream_info->stream_rings);
779         kfree(stream_info);
780 }
781
782
783 /***************** Device context manipulation *************************/
784
785 static void xhci_free_tt_info(struct xhci_hcd *xhci,
786                 struct xhci_virt_device *virt_dev,
787                 int slot_id)
788 {
789         struct list_head *tt_list_head;
790         struct xhci_tt_bw_info *tt_info, *next;
791         bool slot_found = false;
792
793         /* If the device never made it past the Set Address stage,
794          * it may not have the real_port set correctly.
795          */
796         if (virt_dev->real_port == 0 ||
797                         virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
798                 xhci_dbg(xhci, "Bad real port.\n");
799                 return;
800         }
801
802         tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
803         list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
804                 /* Multi-TT hubs will have more than one entry */
805                 if (tt_info->slot_id == slot_id) {
806                         slot_found = true;
807                         list_del(&tt_info->tt_list);
808                         kfree(tt_info);
809                 } else if (slot_found) {
810                         break;
811                 }
812         }
813 }
814
815 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
816                 struct xhci_virt_device *virt_dev,
817                 struct usb_device *hdev,
818                 struct usb_tt *tt, gfp_t mem_flags)
819 {
820         struct xhci_tt_bw_info          *tt_info;
821         unsigned int                    num_ports;
822         int                             i, j;
823         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
824
825         if (!tt->multi)
826                 num_ports = 1;
827         else
828                 num_ports = hdev->maxchild;
829
830         for (i = 0; i < num_ports; i++, tt_info++) {
831                 struct xhci_interval_bw_table *bw_table;
832
833                 tt_info = kzalloc_node(sizeof(*tt_info), mem_flags,
834                                 dev_to_node(dev));
835                 if (!tt_info)
836                         goto free_tts;
837                 INIT_LIST_HEAD(&tt_info->tt_list);
838                 list_add(&tt_info->tt_list,
839                                 &xhci->rh_bw[virt_dev->real_port - 1].tts);
840                 tt_info->slot_id = virt_dev->udev->slot_id;
841                 if (tt->multi)
842                         tt_info->ttport = i+1;
843                 bw_table = &tt_info->bw_table;
844                 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
845                         INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
846         }
847         return 0;
848
849 free_tts:
850         xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
851         return -ENOMEM;
852 }
853
854
855 /* All the xhci_tds in the ring's TD list should be freed at this point.
856  * Should be called with xhci->lock held if there is any chance the TT lists
857  * will be manipulated by the configure endpoint, allocate device, or update
858  * hub functions while this function is removing the TT entries from the list.
859  */
860 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
861 {
862         struct xhci_virt_device *dev;
863         int i;
864         int old_active_eps = 0;
865
866         /* Slot ID 0 is reserved */
867         if (slot_id == 0 || !xhci->devs[slot_id])
868                 return;
869
870         dev = xhci->devs[slot_id];
871
872         xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
873         if (!dev)
874                 return;
875
876         trace_xhci_free_virt_device(dev);
877
878         if (dev->tt_info)
879                 old_active_eps = dev->tt_info->active_eps;
880
881         for (i = 0; i < 31; i++) {
882                 if (dev->eps[i].ring)
883                         xhci_ring_free(xhci, dev->eps[i].ring);
884                 if (dev->eps[i].stream_info)
885                         xhci_free_stream_info(xhci,
886                                         dev->eps[i].stream_info);
887                 /* Endpoints on the TT/root port lists should have been removed
888                  * when usb_disable_device() was called for the device.
889                  * We can't drop them anyway, because the udev might have gone
890                  * away by this point, and we can't tell what speed it was.
891                  */
892                 if (!list_empty(&dev->eps[i].bw_endpoint_list))
893                         xhci_warn(xhci, "Slot %u endpoint %u "
894                                         "not removed from BW list!\n",
895                                         slot_id, i);
896         }
897         /* If this is a hub, free the TT(s) from the TT list */
898         xhci_free_tt_info(xhci, dev, slot_id);
899         /* If necessary, update the number of active TTs on this root port */
900         xhci_update_tt_active_eps(xhci, dev, old_active_eps);
901
902         if (dev->in_ctx)
903                 xhci_free_container_ctx(xhci, dev->in_ctx);
904         if (dev->out_ctx)
905                 xhci_free_container_ctx(xhci, dev->out_ctx);
906
907         if (dev->udev && dev->udev->slot_id)
908                 dev->udev->slot_id = 0;
909         kfree(xhci->devs[slot_id]);
910         xhci->devs[slot_id] = NULL;
911 }
912
913 /*
914  * Free a virt_device structure.
915  * If the virt_device added a tt_info (a hub) and has children pointing to
916  * that tt_info, then free the child first. Recursive.
917  * We can't rely on udev at this point to find child-parent relationships.
918  */
919 static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
920 {
921         struct xhci_virt_device *vdev;
922         struct list_head *tt_list_head;
923         struct xhci_tt_bw_info *tt_info, *next;
924         int i;
925
926         vdev = xhci->devs[slot_id];
927         if (!vdev)
928                 return;
929
930         if (vdev->real_port == 0 ||
931                         vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
932                 xhci_dbg(xhci, "Bad vdev->real_port.\n");
933                 goto out;
934         }
935
936         tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
937         list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
938                 /* is this a hub device that added a tt_info to the tts list */
939                 if (tt_info->slot_id == slot_id) {
940                         /* are any devices using this tt_info? */
941                         for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
942                                 vdev = xhci->devs[i];
943                                 if (vdev && (vdev->tt_info == tt_info))
944                                         xhci_free_virt_devices_depth_first(
945                                                 xhci, i);
946                         }
947                 }
948         }
949 out:
950         /* we are now at a leaf device */
951         xhci_debugfs_remove_slot(xhci, slot_id);
952         xhci_free_virt_device(xhci, slot_id);
953 }
954
955 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
956                 struct usb_device *udev, gfp_t flags)
957 {
958         struct xhci_virt_device *dev;
959         int i;
960
961         /* Slot ID 0 is reserved */
962         if (slot_id == 0 || xhci->devs[slot_id]) {
963                 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
964                 return 0;
965         }
966
967         dev = kzalloc(sizeof(*dev), flags);
968         if (!dev)
969                 return 0;
970
971         dev->slot_id = slot_id;
972
973         /* Allocate the (output) device context that will be used in the HC. */
974         dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
975         if (!dev->out_ctx)
976                 goto fail;
977
978         xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
979                         (unsigned long long)dev->out_ctx->dma);
980
981         /* Allocate the (input) device context for address device command */
982         dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
983         if (!dev->in_ctx)
984                 goto fail;
985
986         xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
987                         (unsigned long long)dev->in_ctx->dma);
988
989         /* Initialize the cancellation and bandwidth list for each ep */
990         for (i = 0; i < 31; i++) {
991                 dev->eps[i].ep_index = i;
992                 dev->eps[i].vdev = dev;
993                 dev->eps[i].xhci = xhci;
994                 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
995                 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
996         }
997
998         /* Allocate endpoint 0 ring */
999         dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
1000         if (!dev->eps[0].ring)
1001                 goto fail;
1002
1003         dev->udev = udev;
1004
1005         /* Point to output device context in dcbaa. */
1006         xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1007         xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1008                  slot_id,
1009                  &xhci->dcbaa->dev_context_ptrs[slot_id],
1010                  le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1011
1012         trace_xhci_alloc_virt_device(dev);
1013
1014         xhci->devs[slot_id] = dev;
1015
1016         return 1;
1017 fail:
1018
1019         if (dev->in_ctx)
1020                 xhci_free_container_ctx(xhci, dev->in_ctx);
1021         if (dev->out_ctx)
1022                 xhci_free_container_ctx(xhci, dev->out_ctx);
1023         kfree(dev);
1024
1025         return 0;
1026 }
1027
1028 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1029                 struct usb_device *udev)
1030 {
1031         struct xhci_virt_device *virt_dev;
1032         struct xhci_ep_ctx      *ep0_ctx;
1033         struct xhci_ring        *ep_ring;
1034
1035         virt_dev = xhci->devs[udev->slot_id];
1036         ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1037         ep_ring = virt_dev->eps[0].ring;
1038         /*
1039          * FIXME we don't keep track of the dequeue pointer very well after a
1040          * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1041          * host to our enqueue pointer.  This should only be called after a
1042          * configured device has reset, so all control transfers should have
1043          * been completed or cancelled before the reset.
1044          */
1045         ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1046                                                         ep_ring->enqueue)
1047                                    | ep_ring->cycle_state);
1048 }
1049
1050 /*
1051  * The xHCI roothub may have ports of differing speeds in any order in the port
1052  * status registers.
1053  *
1054  * The xHCI hardware wants to know the roothub port number that the USB device
1055  * is attached to (or the roothub port its ancestor hub is attached to).  All we
1056  * know is the index of that port under either the USB 2.0 or the USB 3.0
1057  * roothub, but that doesn't give us the real index into the HW port status
1058  * registers. Call xhci_find_raw_port_number() to get real index.
1059  */
1060 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1061                 struct usb_device *udev)
1062 {
1063         struct usb_device *top_dev;
1064         struct usb_hcd *hcd;
1065
1066         if (udev->speed >= USB_SPEED_SUPER)
1067                 hcd = xhci_get_usb3_hcd(xhci);
1068         else
1069                 hcd = xhci->main_hcd;
1070
1071         for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1072                         top_dev = top_dev->parent)
1073                 /* Found device below root hub */;
1074
1075         return  xhci_find_raw_port_number(hcd, top_dev->portnum);
1076 }
1077
1078 /* Setup an xHCI virtual device for a Set Address command */
1079 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1080 {
1081         struct xhci_virt_device *dev;
1082         struct xhci_ep_ctx      *ep0_ctx;
1083         struct xhci_slot_ctx    *slot_ctx;
1084         u32                     port_num;
1085         u32                     max_packets;
1086         struct usb_device *top_dev;
1087
1088         dev = xhci->devs[udev->slot_id];
1089         /* Slot ID 0 is reserved */
1090         if (udev->slot_id == 0 || !dev) {
1091                 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1092                                 udev->slot_id);
1093                 return -EINVAL;
1094         }
1095         ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1096         slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1097
1098         /* 3) Only the control endpoint is valid - one endpoint context */
1099         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1100         switch (udev->speed) {
1101         case USB_SPEED_SUPER_PLUS:
1102                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1103                 max_packets = MAX_PACKET(512);
1104                 break;
1105         case USB_SPEED_SUPER:
1106                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1107                 max_packets = MAX_PACKET(512);
1108                 break;
1109         case USB_SPEED_HIGH:
1110                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1111                 max_packets = MAX_PACKET(64);
1112                 break;
1113         /* USB core guesses at a 64-byte max packet first for FS devices */
1114         case USB_SPEED_FULL:
1115                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1116                 max_packets = MAX_PACKET(64);
1117                 break;
1118         case USB_SPEED_LOW:
1119                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1120                 max_packets = MAX_PACKET(8);
1121                 break;
1122         case USB_SPEED_WIRELESS:
1123                 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1124                 return -EINVAL;
1125         default:
1126                 /* Speed was set earlier, this shouldn't happen. */
1127                 return -EINVAL;
1128         }
1129         /* Find the root hub port this device is under */
1130         port_num = xhci_find_real_port_number(xhci, udev);
1131         if (!port_num)
1132                 return -EINVAL;
1133         slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1134         /* Set the port number in the virtual_device to the faked port number */
1135         for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1136                         top_dev = top_dev->parent)
1137                 /* Found device below root hub */;
1138         dev->fake_port = top_dev->portnum;
1139         dev->real_port = port_num;
1140         xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1141         xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1142
1143         /* Find the right bandwidth table that this device will be a part of.
1144          * If this is a full speed device attached directly to a root port (or a
1145          * decendent of one), it counts as a primary bandwidth domain, not a
1146          * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1147          * will never be created for the HS root hub.
1148          */
1149         if (!udev->tt || !udev->tt->hub->parent) {
1150                 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1151         } else {
1152                 struct xhci_root_port_bw_info *rh_bw;
1153                 struct xhci_tt_bw_info *tt_bw;
1154
1155                 rh_bw = &xhci->rh_bw[port_num - 1];
1156                 /* Find the right TT. */
1157                 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1158                         if (tt_bw->slot_id != udev->tt->hub->slot_id)
1159                                 continue;
1160
1161                         if (!dev->udev->tt->multi ||
1162                                         (udev->tt->multi &&
1163                                          tt_bw->ttport == dev->udev->ttport)) {
1164                                 dev->bw_table = &tt_bw->bw_table;
1165                                 dev->tt_info = tt_bw;
1166                                 break;
1167                         }
1168                 }
1169                 if (!dev->tt_info)
1170                         xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1171         }
1172
1173         /* Is this a LS/FS device under an external HS hub? */
1174         if (udev->tt && udev->tt->hub->parent) {
1175                 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1176                                                 (udev->ttport << 8));
1177                 if (udev->tt->multi)
1178                         slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1179         }
1180         xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1181         xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1182
1183         /* Step 4 - ring already allocated */
1184         /* Step 5 */
1185         ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1186
1187         /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1188         ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1189                                          max_packets);
1190
1191         ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1192                                    dev->eps[0].ring->cycle_state);
1193
1194         trace_xhci_setup_addressable_virt_device(dev);
1195
1196         /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1197
1198         return 0;
1199 }
1200
1201 /*
1202  * Convert interval expressed as 2^(bInterval - 1) == interval into
1203  * straight exponent value 2^n == interval.
1204  *
1205  */
1206 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1207                 struct usb_host_endpoint *ep)
1208 {
1209         unsigned int interval;
1210
1211         interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1212         if (interval != ep->desc.bInterval - 1)
1213                 dev_warn(&udev->dev,
1214                          "ep %#x - rounding interval to %d %sframes\n",
1215                          ep->desc.bEndpointAddress,
1216                          1 << interval,
1217                          udev->speed == USB_SPEED_FULL ? "" : "micro");
1218
1219         if (udev->speed == USB_SPEED_FULL) {
1220                 /*
1221                  * Full speed isoc endpoints specify interval in frames,
1222                  * not microframes. We are using microframes everywhere,
1223                  * so adjust accordingly.
1224                  */
1225                 interval += 3;  /* 1 frame = 2^3 uframes */
1226         }
1227
1228         return interval;
1229 }
1230
1231 /*
1232  * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1233  * microframes, rounded down to nearest power of 2.
1234  */
1235 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1236                 struct usb_host_endpoint *ep, unsigned int desc_interval,
1237                 unsigned int min_exponent, unsigned int max_exponent)
1238 {
1239         unsigned int interval;
1240
1241         interval = fls(desc_interval) - 1;
1242         interval = clamp_val(interval, min_exponent, max_exponent);
1243         if ((1 << interval) != desc_interval)
1244                 dev_dbg(&udev->dev,
1245                          "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1246                          ep->desc.bEndpointAddress,
1247                          1 << interval,
1248                          desc_interval);
1249
1250         return interval;
1251 }
1252
1253 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1254                 struct usb_host_endpoint *ep)
1255 {
1256         if (ep->desc.bInterval == 0)
1257                 return 0;
1258         return xhci_microframes_to_exponent(udev, ep,
1259                         ep->desc.bInterval, 0, 15);
1260 }
1261
1262
1263 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1264                 struct usb_host_endpoint *ep)
1265 {
1266         return xhci_microframes_to_exponent(udev, ep,
1267                         ep->desc.bInterval * 8, 3, 10);
1268 }
1269
1270 /* Return the polling or NAK interval.
1271  *
1272  * The polling interval is expressed in "microframes".  If xHCI's Interval field
1273  * is set to N, it will service the endpoint every 2^(Interval)*125us.
1274  *
1275  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1276  * is set to 0.
1277  */
1278 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1279                 struct usb_host_endpoint *ep)
1280 {
1281         unsigned int interval = 0;
1282
1283         switch (udev->speed) {
1284         case USB_SPEED_HIGH:
1285                 /* Max NAK rate */
1286                 if (usb_endpoint_xfer_control(&ep->desc) ||
1287                     usb_endpoint_xfer_bulk(&ep->desc)) {
1288                         interval = xhci_parse_microframe_interval(udev, ep);
1289                         break;
1290                 }
1291                 fallthrough;    /* SS and HS isoc/int have same decoding */
1292
1293         case USB_SPEED_SUPER_PLUS:
1294         case USB_SPEED_SUPER:
1295                 if (usb_endpoint_xfer_int(&ep->desc) ||
1296                     usb_endpoint_xfer_isoc(&ep->desc)) {
1297                         interval = xhci_parse_exponent_interval(udev, ep);
1298                 }
1299                 break;
1300
1301         case USB_SPEED_FULL:
1302                 if (usb_endpoint_xfer_isoc(&ep->desc)) {
1303                         interval = xhci_parse_exponent_interval(udev, ep);
1304                         break;
1305                 }
1306                 /*
1307                  * Fall through for interrupt endpoint interval decoding
1308                  * since it uses the same rules as low speed interrupt
1309                  * endpoints.
1310                  */
1311                 fallthrough;
1312
1313         case USB_SPEED_LOW:
1314                 if (usb_endpoint_xfer_int(&ep->desc) ||
1315                     usb_endpoint_xfer_isoc(&ep->desc)) {
1316
1317                         interval = xhci_parse_frame_interval(udev, ep);
1318                 }
1319                 break;
1320
1321         default:
1322                 BUG();
1323         }
1324         return interval;
1325 }
1326
1327 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1328  * High speed endpoint descriptors can define "the number of additional
1329  * transaction opportunities per microframe", but that goes in the Max Burst
1330  * endpoint context field.
1331  */
1332 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1333                 struct usb_host_endpoint *ep)
1334 {
1335         if (udev->speed < USB_SPEED_SUPER ||
1336                         !usb_endpoint_xfer_isoc(&ep->desc))
1337                 return 0;
1338         return ep->ss_ep_comp.bmAttributes;
1339 }
1340
1341 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1342                                        struct usb_host_endpoint *ep)
1343 {
1344         /* Super speed and Plus have max burst in ep companion desc */
1345         if (udev->speed >= USB_SPEED_SUPER)
1346                 return ep->ss_ep_comp.bMaxBurst;
1347
1348         if (udev->speed == USB_SPEED_HIGH &&
1349             (usb_endpoint_xfer_isoc(&ep->desc) ||
1350              usb_endpoint_xfer_int(&ep->desc)))
1351                 return usb_endpoint_maxp_mult(&ep->desc) - 1;
1352
1353         return 0;
1354 }
1355
1356 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1357 {
1358         int in;
1359
1360         in = usb_endpoint_dir_in(&ep->desc);
1361
1362         switch (usb_endpoint_type(&ep->desc)) {
1363         case USB_ENDPOINT_XFER_CONTROL:
1364                 return CTRL_EP;
1365         case USB_ENDPOINT_XFER_BULK:
1366                 return in ? BULK_IN_EP : BULK_OUT_EP;
1367         case USB_ENDPOINT_XFER_ISOC:
1368                 return in ? ISOC_IN_EP : ISOC_OUT_EP;
1369         case USB_ENDPOINT_XFER_INT:
1370                 return in ? INT_IN_EP : INT_OUT_EP;
1371         }
1372         return 0;
1373 }
1374
1375 /* Return the maximum endpoint service interval time (ESIT) payload.
1376  * Basically, this is the maxpacket size, multiplied by the burst size
1377  * and mult size.
1378  */
1379 static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1380                 struct usb_host_endpoint *ep)
1381 {
1382         int max_burst;
1383         int max_packet;
1384
1385         /* Only applies for interrupt or isochronous endpoints */
1386         if (usb_endpoint_xfer_control(&ep->desc) ||
1387                         usb_endpoint_xfer_bulk(&ep->desc))
1388                 return 0;
1389
1390         /* SuperSpeedPlus Isoc ep sending over 48k per esit */
1391         if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1392             USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1393                 return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1394         /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1395         else if (udev->speed >= USB_SPEED_SUPER)
1396                 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1397
1398         max_packet = usb_endpoint_maxp(&ep->desc);
1399         max_burst = usb_endpoint_maxp_mult(&ep->desc);
1400         /* A 0 in max burst means 1 transfer per ESIT */
1401         return max_packet * max_burst;
1402 }
1403
1404 /* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1405  * Drivers will have to call usb_alloc_streams() to do that.
1406  */
1407 int xhci_endpoint_init(struct xhci_hcd *xhci,
1408                 struct xhci_virt_device *virt_dev,
1409                 struct usb_device *udev,
1410                 struct usb_host_endpoint *ep,
1411                 gfp_t mem_flags)
1412 {
1413         unsigned int ep_index;
1414         struct xhci_ep_ctx *ep_ctx;
1415         struct xhci_ring *ep_ring;
1416         unsigned int max_packet;
1417         enum xhci_ring_type ring_type;
1418         u32 max_esit_payload;
1419         u32 endpoint_type;
1420         unsigned int max_burst;
1421         unsigned int interval;
1422         unsigned int mult;
1423         unsigned int avg_trb_len;
1424         unsigned int err_count = 0;
1425
1426         ep_index = xhci_get_endpoint_index(&ep->desc);
1427         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1428
1429         endpoint_type = xhci_get_endpoint_type(ep);
1430         if (!endpoint_type)
1431                 return -EINVAL;
1432
1433         ring_type = usb_endpoint_type(&ep->desc);
1434
1435         /*
1436          * Get values to fill the endpoint context, mostly from ep descriptor.
1437          * The average TRB buffer lengt for bulk endpoints is unclear as we
1438          * have no clue on scatter gather list entry size. For Isoc and Int,
1439          * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1440          */
1441         max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1442         interval = xhci_get_endpoint_interval(udev, ep);
1443
1444         /* Periodic endpoint bInterval limit quirk */
1445         if (usb_endpoint_xfer_int(&ep->desc) ||
1446             usb_endpoint_xfer_isoc(&ep->desc)) {
1447                 if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1448                     udev->speed >= USB_SPEED_HIGH &&
1449                     interval >= 7) {
1450                         interval = 6;
1451                 }
1452         }
1453
1454         mult = xhci_get_endpoint_mult(udev, ep);
1455         max_packet = usb_endpoint_maxp(&ep->desc);
1456         max_burst = xhci_get_endpoint_max_burst(udev, ep);
1457         avg_trb_len = max_esit_payload;
1458
1459         /* FIXME dig Mult and streams info out of ep companion desc */
1460
1461         /* Allow 3 retries for everything but isoc, set CErr = 3 */
1462         if (!usb_endpoint_xfer_isoc(&ep->desc))
1463                 err_count = 3;
1464         /* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */
1465         if (usb_endpoint_xfer_bulk(&ep->desc)) {
1466                 if (udev->speed == USB_SPEED_HIGH)
1467                         max_packet = 512;
1468                 if (udev->speed == USB_SPEED_FULL) {
1469                         max_packet = rounddown_pow_of_two(max_packet);
1470                         max_packet = clamp_val(max_packet, 8, 64);
1471                 }
1472         }
1473         /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1474         if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1475                 avg_trb_len = 8;
1476         /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1477         if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1478                 mult = 0;
1479
1480         /* Set up the endpoint ring */
1481         virt_dev->eps[ep_index].new_ring =
1482                 xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1483         if (!virt_dev->eps[ep_index].new_ring)
1484                 return -ENOMEM;
1485
1486         virt_dev->eps[ep_index].skip = false;
1487         ep_ring = virt_dev->eps[ep_index].new_ring;
1488
1489         /* Fill the endpoint context */
1490         ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1491                                       EP_INTERVAL(interval) |
1492                                       EP_MULT(mult));
1493         ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1494                                        MAX_PACKET(max_packet) |
1495                                        MAX_BURST(max_burst) |
1496                                        ERROR_COUNT(err_count));
1497         ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1498                                   ep_ring->cycle_state);
1499
1500         ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1501                                       EP_AVG_TRB_LENGTH(avg_trb_len));
1502
1503         return 0;
1504 }
1505
1506 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1507                 struct xhci_virt_device *virt_dev,
1508                 struct usb_host_endpoint *ep)
1509 {
1510         unsigned int ep_index;
1511         struct xhci_ep_ctx *ep_ctx;
1512
1513         ep_index = xhci_get_endpoint_index(&ep->desc);
1514         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1515
1516         ep_ctx->ep_info = 0;
1517         ep_ctx->ep_info2 = 0;
1518         ep_ctx->deq = 0;
1519         ep_ctx->tx_info = 0;
1520         /* Don't free the endpoint ring until the set interface or configuration
1521          * request succeeds.
1522          */
1523 }
1524
1525 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1526 {
1527         bw_info->ep_interval = 0;
1528         bw_info->mult = 0;
1529         bw_info->num_packets = 0;
1530         bw_info->max_packet_size = 0;
1531         bw_info->type = 0;
1532         bw_info->max_esit_payload = 0;
1533 }
1534
1535 void xhci_update_bw_info(struct xhci_hcd *xhci,
1536                 struct xhci_container_ctx *in_ctx,
1537                 struct xhci_input_control_ctx *ctrl_ctx,
1538                 struct xhci_virt_device *virt_dev)
1539 {
1540         struct xhci_bw_info *bw_info;
1541         struct xhci_ep_ctx *ep_ctx;
1542         unsigned int ep_type;
1543         int i;
1544
1545         for (i = 1; i < 31; i++) {
1546                 bw_info = &virt_dev->eps[i].bw_info;
1547
1548                 /* We can't tell what endpoint type is being dropped, but
1549                  * unconditionally clearing the bandwidth info for non-periodic
1550                  * endpoints should be harmless because the info will never be
1551                  * set in the first place.
1552                  */
1553                 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1554                         /* Dropped endpoint */
1555                         xhci_clear_endpoint_bw_info(bw_info);
1556                         continue;
1557                 }
1558
1559                 if (EP_IS_ADDED(ctrl_ctx, i)) {
1560                         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1561                         ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1562
1563                         /* Ignore non-periodic endpoints */
1564                         if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1565                                         ep_type != ISOC_IN_EP &&
1566                                         ep_type != INT_IN_EP)
1567                                 continue;
1568
1569                         /* Added or changed endpoint */
1570                         bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1571                                         le32_to_cpu(ep_ctx->ep_info));
1572                         /* Number of packets and mult are zero-based in the
1573                          * input context, but we want one-based for the
1574                          * interval table.
1575                          */
1576                         bw_info->mult = CTX_TO_EP_MULT(
1577                                         le32_to_cpu(ep_ctx->ep_info)) + 1;
1578                         bw_info->num_packets = CTX_TO_MAX_BURST(
1579                                         le32_to_cpu(ep_ctx->ep_info2)) + 1;
1580                         bw_info->max_packet_size = MAX_PACKET_DECODED(
1581                                         le32_to_cpu(ep_ctx->ep_info2));
1582                         bw_info->type = ep_type;
1583                         bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1584                                         le32_to_cpu(ep_ctx->tx_info));
1585                 }
1586         }
1587 }
1588
1589 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1590  * Useful when you want to change one particular aspect of the endpoint and then
1591  * issue a configure endpoint command.
1592  */
1593 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1594                 struct xhci_container_ctx *in_ctx,
1595                 struct xhci_container_ctx *out_ctx,
1596                 unsigned int ep_index)
1597 {
1598         struct xhci_ep_ctx *out_ep_ctx;
1599         struct xhci_ep_ctx *in_ep_ctx;
1600
1601         out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1602         in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1603
1604         in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1605         in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1606         in_ep_ctx->deq = out_ep_ctx->deq;
1607         in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1608         if (xhci->quirks & XHCI_MTK_HOST) {
1609                 in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0];
1610                 in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1];
1611         }
1612 }
1613
1614 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1615  * Useful when you want to change one particular aspect of the endpoint and then
1616  * issue a configure endpoint command.  Only the context entries field matters,
1617  * but we'll copy the whole thing anyway.
1618  */
1619 void xhci_slot_copy(struct xhci_hcd *xhci,
1620                 struct xhci_container_ctx *in_ctx,
1621                 struct xhci_container_ctx *out_ctx)
1622 {
1623         struct xhci_slot_ctx *in_slot_ctx;
1624         struct xhci_slot_ctx *out_slot_ctx;
1625
1626         in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1627         out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1628
1629         in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1630         in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1631         in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1632         in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1633 }
1634
1635 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1636 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1637 {
1638         int i;
1639         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1640         int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1641
1642         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1643                         "Allocating %d scratchpad buffers", num_sp);
1644
1645         if (!num_sp)
1646                 return 0;
1647
1648         xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags,
1649                                 dev_to_node(dev));
1650         if (!xhci->scratchpad)
1651                 goto fail_sp;
1652
1653         xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1654                                      num_sp * sizeof(u64),
1655                                      &xhci->scratchpad->sp_dma, flags);
1656         if (!xhci->scratchpad->sp_array)
1657                 goto fail_sp2;
1658
1659         xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *),
1660                                         flags, dev_to_node(dev));
1661         if (!xhci->scratchpad->sp_buffers)
1662                 goto fail_sp3;
1663
1664         xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1665         for (i = 0; i < num_sp; i++) {
1666                 dma_addr_t dma;
1667                 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1668                                                flags);
1669                 if (!buf)
1670                         goto fail_sp4;
1671
1672                 xhci->scratchpad->sp_array[i] = dma;
1673                 xhci->scratchpad->sp_buffers[i] = buf;
1674         }
1675
1676         return 0;
1677
1678  fail_sp4:
1679         for (i = i - 1; i >= 0; i--) {
1680                 dma_free_coherent(dev, xhci->page_size,
1681                                     xhci->scratchpad->sp_buffers[i],
1682                                     xhci->scratchpad->sp_array[i]);
1683         }
1684
1685         kfree(xhci->scratchpad->sp_buffers);
1686
1687  fail_sp3:
1688         dma_free_coherent(dev, num_sp * sizeof(u64),
1689                             xhci->scratchpad->sp_array,
1690                             xhci->scratchpad->sp_dma);
1691
1692  fail_sp2:
1693         kfree(xhci->scratchpad);
1694         xhci->scratchpad = NULL;
1695
1696  fail_sp:
1697         return -ENOMEM;
1698 }
1699
1700 static void scratchpad_free(struct xhci_hcd *xhci)
1701 {
1702         int num_sp;
1703         int i;
1704         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1705
1706         if (!xhci->scratchpad)
1707                 return;
1708
1709         num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1710
1711         for (i = 0; i < num_sp; i++) {
1712                 dma_free_coherent(dev, xhci->page_size,
1713                                     xhci->scratchpad->sp_buffers[i],
1714                                     xhci->scratchpad->sp_array[i]);
1715         }
1716         kfree(xhci->scratchpad->sp_buffers);
1717         dma_free_coherent(dev, num_sp * sizeof(u64),
1718                             xhci->scratchpad->sp_array,
1719                             xhci->scratchpad->sp_dma);
1720         kfree(xhci->scratchpad);
1721         xhci->scratchpad = NULL;
1722 }
1723
1724 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1725                 bool allocate_completion, gfp_t mem_flags)
1726 {
1727         struct xhci_command *command;
1728         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1729
1730         command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev));
1731         if (!command)
1732                 return NULL;
1733
1734         if (allocate_completion) {
1735                 command->completion =
1736                         kzalloc_node(sizeof(struct completion), mem_flags,
1737                                 dev_to_node(dev));
1738                 if (!command->completion) {
1739                         kfree(command);
1740                         return NULL;
1741                 }
1742                 init_completion(command->completion);
1743         }
1744
1745         command->status = 0;
1746         INIT_LIST_HEAD(&command->cmd_list);
1747         return command;
1748 }
1749
1750 struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci,
1751                 bool allocate_completion, gfp_t mem_flags)
1752 {
1753         struct xhci_command *command;
1754
1755         command = xhci_alloc_command(xhci, allocate_completion, mem_flags);
1756         if (!command)
1757                 return NULL;
1758
1759         command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1760                                                    mem_flags);
1761         if (!command->in_ctx) {
1762                 kfree(command->completion);
1763                 kfree(command);
1764                 return NULL;
1765         }
1766         return command;
1767 }
1768
1769 void xhci_urb_free_priv(struct urb_priv *urb_priv)
1770 {
1771         kfree(urb_priv);
1772 }
1773
1774 void xhci_free_command(struct xhci_hcd *xhci,
1775                 struct xhci_command *command)
1776 {
1777         xhci_free_container_ctx(xhci,
1778                         command->in_ctx);
1779         kfree(command->completion);
1780         kfree(command);
1781 }
1782
1783 int xhci_alloc_erst(struct xhci_hcd *xhci,
1784                     struct xhci_ring *evt_ring,
1785                     struct xhci_erst *erst,
1786                     gfp_t flags)
1787 {
1788         size_t size;
1789         unsigned int val;
1790         struct xhci_segment *seg;
1791         struct xhci_erst_entry *entry;
1792
1793         size = sizeof(struct xhci_erst_entry) * evt_ring->num_segs;
1794         erst->entries = dma_alloc_coherent(xhci_to_hcd(xhci)->self.sysdev,
1795                                            size, &erst->erst_dma_addr, flags);
1796         if (!erst->entries)
1797                 return -ENOMEM;
1798
1799         erst->num_entries = evt_ring->num_segs;
1800
1801         seg = evt_ring->first_seg;
1802         for (val = 0; val < evt_ring->num_segs; val++) {
1803                 entry = &erst->entries[val];
1804                 entry->seg_addr = cpu_to_le64(seg->dma);
1805                 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
1806                 entry->rsvd = 0;
1807                 seg = seg->next;
1808         }
1809
1810         return 0;
1811 }
1812
1813 void xhci_free_erst(struct xhci_hcd *xhci, struct xhci_erst *erst)
1814 {
1815         size_t size;
1816         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1817
1818         size = sizeof(struct xhci_erst_entry) * (erst->num_entries);
1819         if (erst->entries)
1820                 dma_free_coherent(dev, size,
1821                                 erst->entries,
1822                                 erst->erst_dma_addr);
1823         erst->entries = NULL;
1824 }
1825
1826 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1827 {
1828         struct device   *dev = xhci_to_hcd(xhci)->self.sysdev;
1829         int i, j, num_ports;
1830
1831         cancel_delayed_work_sync(&xhci->cmd_timer);
1832
1833         xhci_free_erst(xhci, &xhci->erst);
1834
1835         if (xhci->event_ring)
1836                 xhci_ring_free(xhci, xhci->event_ring);
1837         xhci->event_ring = NULL;
1838         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1839
1840         if (xhci->cmd_ring)
1841                 xhci_ring_free(xhci, xhci->cmd_ring);
1842         xhci->cmd_ring = NULL;
1843         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1844         xhci_cleanup_command_queue(xhci);
1845
1846         num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1847         for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1848                 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1849                 for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1850                         struct list_head *ep = &bwt->interval_bw[j].endpoints;
1851                         while (!list_empty(ep))
1852                                 list_del_init(ep->next);
1853                 }
1854         }
1855
1856         for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1857                 xhci_free_virt_devices_depth_first(xhci, i);
1858
1859         dma_pool_destroy(xhci->segment_pool);
1860         xhci->segment_pool = NULL;
1861         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1862
1863         dma_pool_destroy(xhci->device_pool);
1864         xhci->device_pool = NULL;
1865         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1866
1867         dma_pool_destroy(xhci->small_streams_pool);
1868         xhci->small_streams_pool = NULL;
1869         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1870                         "Freed small stream array pool");
1871
1872         dma_pool_destroy(xhci->medium_streams_pool);
1873         xhci->medium_streams_pool = NULL;
1874         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1875                         "Freed medium stream array pool");
1876
1877         if (xhci->dcbaa)
1878                 dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1879                                 xhci->dcbaa, xhci->dcbaa->dma);
1880         xhci->dcbaa = NULL;
1881
1882         scratchpad_free(xhci);
1883
1884         if (!xhci->rh_bw)
1885                 goto no_bw;
1886
1887         for (i = 0; i < num_ports; i++) {
1888                 struct xhci_tt_bw_info *tt, *n;
1889                 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1890                         list_del(&tt->tt_list);
1891                         kfree(tt);
1892                 }
1893         }
1894
1895 no_bw:
1896         xhci->cmd_ring_reserved_trbs = 0;
1897         xhci->usb2_rhub.num_ports = 0;
1898         xhci->usb3_rhub.num_ports = 0;
1899         xhci->num_active_eps = 0;
1900         kfree(xhci->usb2_rhub.ports);
1901         kfree(xhci->usb3_rhub.ports);
1902         kfree(xhci->hw_ports);
1903         kfree(xhci->rh_bw);
1904         kfree(xhci->ext_caps);
1905         for (i = 0; i < xhci->num_port_caps; i++)
1906                 kfree(xhci->port_caps[i].psi);
1907         kfree(xhci->port_caps);
1908         xhci->num_port_caps = 0;
1909
1910         xhci->usb2_rhub.ports = NULL;
1911         xhci->usb3_rhub.ports = NULL;
1912         xhci->hw_ports = NULL;
1913         xhci->rh_bw = NULL;
1914         xhci->ext_caps = NULL;
1915         xhci->port_caps = NULL;
1916
1917         xhci->page_size = 0;
1918         xhci->page_shift = 0;
1919         xhci->usb2_rhub.bus_state.bus_suspended = 0;
1920         xhci->usb3_rhub.bus_state.bus_suspended = 0;
1921 }
1922
1923 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1924                 struct xhci_segment *input_seg,
1925                 union xhci_trb *start_trb,
1926                 union xhci_trb *end_trb,
1927                 dma_addr_t input_dma,
1928                 struct xhci_segment *result_seg,
1929                 char *test_name, int test_number)
1930 {
1931         unsigned long long start_dma;
1932         unsigned long long end_dma;
1933         struct xhci_segment *seg;
1934
1935         start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1936         end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1937
1938         seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1939         if (seg != result_seg) {
1940                 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1941                                 test_name, test_number);
1942                 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1943                                 "input DMA 0x%llx\n",
1944                                 input_seg,
1945                                 (unsigned long long) input_dma);
1946                 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1947                                 "ending TRB %p (0x%llx DMA)\n",
1948                                 start_trb, start_dma,
1949                                 end_trb, end_dma);
1950                 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1951                                 result_seg, seg);
1952                 trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
1953                           true);
1954                 return -1;
1955         }
1956         return 0;
1957 }
1958
1959 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1960 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
1961 {
1962         struct {
1963                 dma_addr_t              input_dma;
1964                 struct xhci_segment     *result_seg;
1965         } simple_test_vector [] = {
1966                 /* A zeroed DMA field should fail */
1967                 { 0, NULL },
1968                 /* One TRB before the ring start should fail */
1969                 { xhci->event_ring->first_seg->dma - 16, NULL },
1970                 /* One byte before the ring start should fail */
1971                 { xhci->event_ring->first_seg->dma - 1, NULL },
1972                 /* Starting TRB should succeed */
1973                 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1974                 /* Ending TRB should succeed */
1975                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1976                         xhci->event_ring->first_seg },
1977                 /* One byte after the ring end should fail */
1978                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1979                 /* One TRB after the ring end should fail */
1980                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1981                 /* An address of all ones should fail */
1982                 { (dma_addr_t) (~0), NULL },
1983         };
1984         struct {
1985                 struct xhci_segment     *input_seg;
1986                 union xhci_trb          *start_trb;
1987                 union xhci_trb          *end_trb;
1988                 dma_addr_t              input_dma;
1989                 struct xhci_segment     *result_seg;
1990         } complex_test_vector [] = {
1991                 /* Test feeding a valid DMA address from a different ring */
1992                 {       .input_seg = xhci->event_ring->first_seg,
1993                         .start_trb = xhci->event_ring->first_seg->trbs,
1994                         .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1995                         .input_dma = xhci->cmd_ring->first_seg->dma,
1996                         .result_seg = NULL,
1997                 },
1998                 /* Test feeding a valid end TRB from a different ring */
1999                 {       .input_seg = xhci->event_ring->first_seg,
2000                         .start_trb = xhci->event_ring->first_seg->trbs,
2001                         .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2002                         .input_dma = xhci->cmd_ring->first_seg->dma,
2003                         .result_seg = NULL,
2004                 },
2005                 /* Test feeding a valid start and end TRB from a different ring */
2006                 {       .input_seg = xhci->event_ring->first_seg,
2007                         .start_trb = xhci->cmd_ring->first_seg->trbs,
2008                         .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2009                         .input_dma = xhci->cmd_ring->first_seg->dma,
2010                         .result_seg = NULL,
2011                 },
2012                 /* TRB in this ring, but after this TD */
2013                 {       .input_seg = xhci->event_ring->first_seg,
2014                         .start_trb = &xhci->event_ring->first_seg->trbs[0],
2015                         .end_trb = &xhci->event_ring->first_seg->trbs[3],
2016                         .input_dma = xhci->event_ring->first_seg->dma + 4*16,
2017                         .result_seg = NULL,
2018                 },
2019                 /* TRB in this ring, but before this TD */
2020                 {       .input_seg = xhci->event_ring->first_seg,
2021                         .start_trb = &xhci->event_ring->first_seg->trbs[3],
2022                         .end_trb = &xhci->event_ring->first_seg->trbs[6],
2023                         .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2024                         .result_seg = NULL,
2025                 },
2026                 /* TRB in this ring, but after this wrapped TD */
2027                 {       .input_seg = xhci->event_ring->first_seg,
2028                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2029                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
2030                         .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2031                         .result_seg = NULL,
2032                 },
2033                 /* TRB in this ring, but before this wrapped TD */
2034                 {       .input_seg = xhci->event_ring->first_seg,
2035                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2036                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
2037                         .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
2038                         .result_seg = NULL,
2039                 },
2040                 /* TRB not in this ring, and we have a wrapped TD */
2041                 {       .input_seg = xhci->event_ring->first_seg,
2042                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2043                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
2044                         .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
2045                         .result_seg = NULL,
2046                 },
2047         };
2048
2049         unsigned int num_tests;
2050         int i, ret;
2051
2052         num_tests = ARRAY_SIZE(simple_test_vector);
2053         for (i = 0; i < num_tests; i++) {
2054                 ret = xhci_test_trb_in_td(xhci,
2055                                 xhci->event_ring->first_seg,
2056                                 xhci->event_ring->first_seg->trbs,
2057                                 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2058                                 simple_test_vector[i].input_dma,
2059                                 simple_test_vector[i].result_seg,
2060                                 "Simple", i);
2061                 if (ret < 0)
2062                         return ret;
2063         }
2064
2065         num_tests = ARRAY_SIZE(complex_test_vector);
2066         for (i = 0; i < num_tests; i++) {
2067                 ret = xhci_test_trb_in_td(xhci,
2068                                 complex_test_vector[i].input_seg,
2069                                 complex_test_vector[i].start_trb,
2070                                 complex_test_vector[i].end_trb,
2071                                 complex_test_vector[i].input_dma,
2072                                 complex_test_vector[i].result_seg,
2073                                 "Complex", i);
2074                 if (ret < 0)
2075                         return ret;
2076         }
2077         xhci_dbg(xhci, "TRB math tests passed.\n");
2078         return 0;
2079 }
2080
2081 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2082 {
2083         u64 temp;
2084         dma_addr_t deq;
2085
2086         deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2087                         xhci->event_ring->dequeue);
2088         if (!deq)
2089                 xhci_warn(xhci, "WARN something wrong with SW event ring "
2090                                 "dequeue ptr.\n");
2091         /* Update HC event ring dequeue pointer */
2092         temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2093         temp &= ERST_PTR_MASK;
2094         /* Don't clear the EHB bit (which is RW1C) because
2095          * there might be more events to service.
2096          */
2097         temp &= ~ERST_EHB;
2098         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2099                         "// Write event ring dequeue pointer, "
2100                         "preserving EHB bit");
2101         xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2102                         &xhci->ir_set->erst_dequeue);
2103 }
2104
2105 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2106                 __le32 __iomem *addr, int max_caps)
2107 {
2108         u32 temp, port_offset, port_count;
2109         int i;
2110         u8 major_revision, minor_revision;
2111         struct xhci_hub *rhub;
2112         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2113         struct xhci_port_cap *port_cap;
2114
2115         temp = readl(addr);
2116         major_revision = XHCI_EXT_PORT_MAJOR(temp);
2117         minor_revision = XHCI_EXT_PORT_MINOR(temp);
2118
2119         if (major_revision == 0x03) {
2120                 rhub = &xhci->usb3_rhub;
2121                 /*
2122                  * Some hosts incorrectly use sub-minor version for minor
2123                  * version (i.e. 0x02 instead of 0x20 for bcdUSB 0x320 and 0x01
2124                  * for bcdUSB 0x310). Since there is no USB release with sub
2125                  * minor version 0x301 to 0x309, we can assume that they are
2126                  * incorrect and fix it here.
2127                  */
2128                 if (minor_revision > 0x00 && minor_revision < 0x10)
2129                         minor_revision <<= 4;
2130         } else if (major_revision <= 0x02) {
2131                 rhub = &xhci->usb2_rhub;
2132         } else {
2133                 xhci_warn(xhci, "Ignoring unknown port speed, "
2134                                 "Ext Cap %p, revision = 0x%x\n",
2135                                 addr, major_revision);
2136                 /* Ignoring port protocol we can't understand. FIXME */
2137                 return;
2138         }
2139         rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp);
2140
2141         if (rhub->min_rev < minor_revision)
2142                 rhub->min_rev = minor_revision;
2143
2144         /* Port offset and count in the third dword, see section 7.2 */
2145         temp = readl(addr + 2);
2146         port_offset = XHCI_EXT_PORT_OFF(temp);
2147         port_count = XHCI_EXT_PORT_COUNT(temp);
2148         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2149                         "Ext Cap %p, port offset = %u, "
2150                         "count = %u, revision = 0x%x",
2151                         addr, port_offset, port_count, major_revision);
2152         /* Port count includes the current port offset */
2153         if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2154                 /* WTF? "Valid values are â€˜1’ to MaxPorts" */
2155                 return;
2156
2157         port_cap = &xhci->port_caps[xhci->num_port_caps++];
2158         if (xhci->num_port_caps > max_caps)
2159                 return;
2160
2161         port_cap->maj_rev = major_revision;
2162         port_cap->min_rev = minor_revision;
2163         port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp);
2164
2165         if (port_cap->psi_count) {
2166                 port_cap->psi = kcalloc_node(port_cap->psi_count,
2167                                              sizeof(*port_cap->psi),
2168                                              GFP_KERNEL, dev_to_node(dev));
2169                 if (!port_cap->psi)
2170                         port_cap->psi_count = 0;
2171
2172                 port_cap->psi_uid_count++;
2173                 for (i = 0; i < port_cap->psi_count; i++) {
2174                         port_cap->psi[i] = readl(addr + 4 + i);
2175
2176                         /* count unique ID values, two consecutive entries can
2177                          * have the same ID if link is assymetric
2178                          */
2179                         if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) !=
2180                                   XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1])))
2181                                 port_cap->psi_uid_count++;
2182
2183                         xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2184                                   XHCI_EXT_PORT_PSIV(port_cap->psi[i]),
2185                                   XHCI_EXT_PORT_PSIE(port_cap->psi[i]),
2186                                   XHCI_EXT_PORT_PLT(port_cap->psi[i]),
2187                                   XHCI_EXT_PORT_PFD(port_cap->psi[i]),
2188                                   XHCI_EXT_PORT_LP(port_cap->psi[i]),
2189                                   XHCI_EXT_PORT_PSIM(port_cap->psi[i]));
2190                 }
2191         }
2192         /* cache usb2 port capabilities */
2193         if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2194                 xhci->ext_caps[xhci->num_ext_caps++] = temp;
2195
2196         if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) &&
2197                  (temp & XHCI_HLC)) {
2198                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2199                                "xHCI 1.0: support USB2 hardware lpm");
2200                 xhci->hw_lpm_support = 1;
2201         }
2202
2203         port_offset--;
2204         for (i = port_offset; i < (port_offset + port_count); i++) {
2205                 struct xhci_port *hw_port = &xhci->hw_ports[i];
2206                 /* Duplicate entry.  Ignore the port if the revisions differ. */
2207                 if (hw_port->rhub) {
2208                         xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2209                                         " port %u\n", addr, i);
2210                         xhci_warn(xhci, "Port was marked as USB %u, "
2211                                         "duplicated as USB %u\n",
2212                                         hw_port->rhub->maj_rev, major_revision);
2213                         /* Only adjust the roothub port counts if we haven't
2214                          * found a similar duplicate.
2215                          */
2216                         if (hw_port->rhub != rhub &&
2217                                  hw_port->hcd_portnum != DUPLICATE_ENTRY) {
2218                                 hw_port->rhub->num_ports--;
2219                                 hw_port->hcd_portnum = DUPLICATE_ENTRY;
2220                         }
2221                         continue;
2222                 }
2223                 hw_port->rhub = rhub;
2224                 hw_port->port_cap = port_cap;
2225                 rhub->num_ports++;
2226         }
2227         /* FIXME: Should we disable ports not in the Extended Capabilities? */
2228 }
2229
2230 static void xhci_create_rhub_port_array(struct xhci_hcd *xhci,
2231                                         struct xhci_hub *rhub, gfp_t flags)
2232 {
2233         int port_index = 0;
2234         int i;
2235         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2236
2237         if (!rhub->num_ports)
2238                 return;
2239         rhub->ports = kcalloc_node(rhub->num_ports, sizeof(*rhub->ports),
2240                         flags, dev_to_node(dev));
2241         if (!rhub->ports)
2242                 return;
2243
2244         for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
2245                 if (xhci->hw_ports[i].rhub != rhub ||
2246                     xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY)
2247                         continue;
2248                 xhci->hw_ports[i].hcd_portnum = port_index;
2249                 rhub->ports[port_index] = &xhci->hw_ports[i];
2250                 port_index++;
2251                 if (port_index == rhub->num_ports)
2252                         break;
2253         }
2254 }
2255
2256 /*
2257  * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2258  * specify what speeds each port is supposed to be.  We can't count on the port
2259  * speed bits in the PORTSC register being correct until a device is connected,
2260  * but we need to set up the two fake roothubs with the correct number of USB
2261  * 3.0 and USB 2.0 ports at host controller initialization time.
2262  */
2263 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2264 {
2265         void __iomem *base;
2266         u32 offset;
2267         unsigned int num_ports;
2268         int i, j;
2269         int cap_count = 0;
2270         u32 cap_start;
2271         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2272
2273         num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2274         xhci->hw_ports = kcalloc_node(num_ports, sizeof(*xhci->hw_ports),
2275                                 flags, dev_to_node(dev));
2276         if (!xhci->hw_ports)
2277                 return -ENOMEM;
2278
2279         for (i = 0; i < num_ports; i++) {
2280                 xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base +
2281                         NUM_PORT_REGS * i;
2282                 xhci->hw_ports[i].hw_portnum = i;
2283         }
2284
2285         xhci->rh_bw = kcalloc_node(num_ports, sizeof(*xhci->rh_bw), flags,
2286                                    dev_to_node(dev));
2287         if (!xhci->rh_bw)
2288                 return -ENOMEM;
2289         for (i = 0; i < num_ports; i++) {
2290                 struct xhci_interval_bw_table *bw_table;
2291
2292                 INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2293                 bw_table = &xhci->rh_bw[i].bw_table;
2294                 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2295                         INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2296         }
2297         base = &xhci->cap_regs->hc_capbase;
2298
2299         cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2300         if (!cap_start) {
2301                 xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2302                 return -ENODEV;
2303         }
2304
2305         offset = cap_start;
2306         /* count extended protocol capability entries for later caching */
2307         while (offset) {
2308                 cap_count++;
2309                 offset = xhci_find_next_ext_cap(base, offset,
2310                                                       XHCI_EXT_CAPS_PROTOCOL);
2311         }
2312
2313         xhci->ext_caps = kcalloc_node(cap_count, sizeof(*xhci->ext_caps),
2314                                 flags, dev_to_node(dev));
2315         if (!xhci->ext_caps)
2316                 return -ENOMEM;
2317
2318         xhci->port_caps = kcalloc_node(cap_count, sizeof(*xhci->port_caps),
2319                                 flags, dev_to_node(dev));
2320         if (!xhci->port_caps)
2321                 return -ENOMEM;
2322
2323         offset = cap_start;
2324
2325         while (offset) {
2326                 xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2327                 if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports ==
2328                     num_ports)
2329                         break;
2330                 offset = xhci_find_next_ext_cap(base, offset,
2331                                                 XHCI_EXT_CAPS_PROTOCOL);
2332         }
2333         if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) {
2334                 xhci_warn(xhci, "No ports on the roothubs?\n");
2335                 return -ENODEV;
2336         }
2337         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2338                        "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2339                        xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports);
2340
2341         /* Place limits on the number of roothub ports so that the hub
2342          * descriptors aren't longer than the USB core will allocate.
2343          */
2344         if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) {
2345                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2346                                 "Limiting USB 3.0 roothub ports to %u.",
2347                                 USB_SS_MAXPORTS);
2348                 xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS;
2349         }
2350         if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) {
2351                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2352                                 "Limiting USB 2.0 roothub ports to %u.",
2353                                 USB_MAXCHILDREN);
2354                 xhci->usb2_rhub.num_ports = USB_MAXCHILDREN;
2355         }
2356
2357         if (!xhci->usb2_rhub.num_ports)
2358                 xhci_info(xhci, "USB2 root hub has no ports\n");
2359
2360         if (!xhci->usb3_rhub.num_ports)
2361                 xhci_info(xhci, "USB3 root hub has no ports\n");
2362
2363         xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags);
2364         xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags);
2365
2366         return 0;
2367 }
2368
2369 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2370 {
2371         dma_addr_t      dma;
2372         struct device   *dev = xhci_to_hcd(xhci)->self.sysdev;
2373         unsigned int    val, val2;
2374         u64             val_64;
2375         u32             page_size, temp;
2376         int             i, ret;
2377
2378         INIT_LIST_HEAD(&xhci->cmd_list);
2379
2380         /* init command timeout work */
2381         INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2382         init_completion(&xhci->cmd_ring_stop_completion);
2383
2384         page_size = readl(&xhci->op_regs->page_size);
2385         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2386                         "Supported page size register = 0x%x", page_size);
2387         i = ffs(page_size);
2388         if (i < 16)
2389                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2390                         "Supported page size of %iK", (1 << (i+12)) / 1024);
2391         else
2392                 xhci_warn(xhci, "WARN: no supported page size\n");
2393         /* Use 4K pages, since that's common and the minimum the HC supports */
2394         xhci->page_shift = 12;
2395         xhci->page_size = 1 << xhci->page_shift;
2396         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2397                         "HCD page size set to %iK", xhci->page_size / 1024);
2398
2399         /*
2400          * Program the Number of Device Slots Enabled field in the CONFIG
2401          * register with the max value of slots the HC can handle.
2402          */
2403         val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2404         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2405                         "// xHC can handle at most %d device slots.", val);
2406         val2 = readl(&xhci->op_regs->config_reg);
2407         val |= (val2 & ~HCS_SLOTS_MASK);
2408         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2409                         "// Setting Max device slots reg = 0x%x.", val);
2410         writel(val, &xhci->op_regs->config_reg);
2411
2412         /*
2413          * xHCI section 5.4.6 - Device Context array must be
2414          * "physically contiguous and 64-byte (cache line) aligned".
2415          */
2416         xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2417                         flags);
2418         if (!xhci->dcbaa)
2419                 goto fail;
2420         xhci->dcbaa->dma = dma;
2421         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2422                         "// Device context base array address = 0x%llx (DMA), %p (virt)",
2423                         (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2424         xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2425
2426         /*
2427          * Initialize the ring segment pool.  The ring must be a contiguous
2428          * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2429          * however, the command ring segment needs 64-byte aligned segments
2430          * and our use of dma addresses in the trb_address_map radix tree needs
2431          * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2432          */
2433         xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2434                         TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2435
2436         /* See Table 46 and Note on Figure 55 */
2437         xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2438                         2112, 64, xhci->page_size);
2439         if (!xhci->segment_pool || !xhci->device_pool)
2440                 goto fail;
2441
2442         /* Linear stream context arrays don't have any boundary restrictions,
2443          * and only need to be 16-byte aligned.
2444          */
2445         xhci->small_streams_pool =
2446                 dma_pool_create("xHCI 256 byte stream ctx arrays",
2447                         dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2448         xhci->medium_streams_pool =
2449                 dma_pool_create("xHCI 1KB stream ctx arrays",
2450                         dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2451         /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2452          * will be allocated with dma_alloc_coherent()
2453          */
2454
2455         if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2456                 goto fail;
2457
2458         /* Set up the command ring to have one segments for now. */
2459         xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2460         if (!xhci->cmd_ring)
2461                 goto fail;
2462         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2463                         "Allocated command ring at %p", xhci->cmd_ring);
2464         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2465                         (unsigned long long)xhci->cmd_ring->first_seg->dma);
2466
2467         /* Set the address in the Command Ring Control register */
2468         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2469         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2470                 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2471                 xhci->cmd_ring->cycle_state;
2472         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2473                         "// Setting command ring address to 0x%016llx", val_64);
2474         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2475
2476         /* Reserve one command ring TRB for disabling LPM.
2477          * Since the USB core grabs the shared usb_bus bandwidth mutex before
2478          * disabling LPM, we only need to reserve one TRB for all devices.
2479          */
2480         xhci->cmd_ring_reserved_trbs++;
2481
2482         val = readl(&xhci->cap_regs->db_off);
2483         val &= DBOFF_MASK;
2484         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2485                         "// Doorbell array is located at offset 0x%x"
2486                         " from cap regs base addr", val);
2487         xhci->dba = (void __iomem *) xhci->cap_regs + val;
2488         /* Set ir_set to interrupt register set 0 */
2489         xhci->ir_set = &xhci->run_regs->ir_set[0];
2490
2491         /*
2492          * Event ring setup: Allocate a normal ring, but also setup
2493          * the event ring segment table (ERST).  Section 4.9.3.
2494          */
2495         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2496         xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2497                                         0, flags);
2498         if (!xhci->event_ring)
2499                 goto fail;
2500         if (xhci_check_trb_in_td_math(xhci) < 0)
2501                 goto fail;
2502
2503         ret = xhci_alloc_erst(xhci, xhci->event_ring, &xhci->erst, flags);
2504         if (ret)
2505                 goto fail;
2506
2507         /* set ERST count with the number of entries in the segment table */
2508         val = readl(&xhci->ir_set->erst_size);
2509         val &= ERST_SIZE_MASK;
2510         val |= ERST_NUM_SEGS;
2511         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2512                         "// Write ERST size = %i to ir_set 0 (some bits preserved)",
2513                         val);
2514         writel(val, &xhci->ir_set->erst_size);
2515
2516         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2517                         "// Set ERST entries to point to event ring.");
2518         /* set the segment table base address */
2519         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2520                         "// Set ERST base address for ir_set 0 = 0x%llx",
2521                         (unsigned long long)xhci->erst.erst_dma_addr);
2522         val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2523         val_64 &= ERST_PTR_MASK;
2524         val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2525         xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2526
2527         /* Set the event ring dequeue address */
2528         xhci_set_hc_event_deq(xhci);
2529         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2530                         "Wrote ERST address to ir_set 0.");
2531
2532         xhci->isoc_bei_interval = AVOID_BEI_INTERVAL_MAX;
2533
2534         /*
2535          * XXX: Might need to set the Interrupter Moderation Register to
2536          * something other than the default (~1ms minimum between interrupts).
2537          * See section 5.5.1.2.
2538          */
2539         for (i = 0; i < MAX_HC_SLOTS; i++)
2540                 xhci->devs[i] = NULL;
2541         for (i = 0; i < USB_MAXCHILDREN; i++) {
2542                 xhci->usb2_rhub.bus_state.resume_done[i] = 0;
2543                 xhci->usb3_rhub.bus_state.resume_done[i] = 0;
2544                 /* Only the USB 2.0 completions will ever be used. */
2545                 init_completion(&xhci->usb2_rhub.bus_state.rexit_done[i]);
2546                 init_completion(&xhci->usb3_rhub.bus_state.u3exit_done[i]);
2547         }
2548
2549         if (scratchpad_alloc(xhci, flags))
2550                 goto fail;
2551         if (xhci_setup_port_arrays(xhci, flags))
2552                 goto fail;
2553
2554         /* Enable USB 3.0 device notifications for function remote wake, which
2555          * is necessary for allowing USB 3.0 devices to do remote wakeup from
2556          * U3 (device suspend).
2557          */
2558         temp = readl(&xhci->op_regs->dev_notification);
2559         temp &= ~DEV_NOTE_MASK;
2560         temp |= DEV_NOTE_FWAKE;
2561         writel(temp, &xhci->op_regs->dev_notification);
2562
2563         return 0;
2564
2565 fail:
2566         xhci_halt(xhci);
2567         xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
2568         xhci_mem_cleanup(xhci);
2569         return -ENOMEM;
2570 }