GNU Linux-libre 6.7.9-gnu
[releases.git] / drivers / usb / host / xhci-mem.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10
11 #include <linux/usb.h>
12 #include <linux/overflow.h>
13 #include <linux/pci.h>
14 #include <linux/slab.h>
15 #include <linux/dmapool.h>
16 #include <linux/dma-mapping.h>
17
18 #include "xhci.h"
19 #include "xhci-trace.h"
20 #include "xhci-debugfs.h"
21
22 /*
23  * Allocates a generic ring segment from the ring pool, sets the dma address,
24  * initializes the segment to zero, and sets the private next pointer to NULL.
25  *
26  * Section 4.11.1.1:
27  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
28  */
29 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
30                                                unsigned int cycle_state,
31                                                unsigned int max_packet,
32                                                unsigned int num,
33                                                gfp_t flags)
34 {
35         struct xhci_segment *seg;
36         dma_addr_t      dma;
37         int             i;
38         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
39
40         seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev));
41         if (!seg)
42                 return NULL;
43
44         seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
45         if (!seg->trbs) {
46                 kfree(seg);
47                 return NULL;
48         }
49
50         if (max_packet) {
51                 seg->bounce_buf = kzalloc_node(max_packet, flags,
52                                         dev_to_node(dev));
53                 if (!seg->bounce_buf) {
54                         dma_pool_free(xhci->segment_pool, seg->trbs, dma);
55                         kfree(seg);
56                         return NULL;
57                 }
58         }
59         /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
60         if (cycle_state == 0) {
61                 for (i = 0; i < TRBS_PER_SEGMENT; i++)
62                         seg->trbs[i].link.control = cpu_to_le32(TRB_CYCLE);
63         }
64         seg->num = num;
65         seg->dma = dma;
66         seg->next = NULL;
67
68         return seg;
69 }
70
71 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
72 {
73         if (seg->trbs) {
74                 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
75                 seg->trbs = NULL;
76         }
77         kfree(seg->bounce_buf);
78         kfree(seg);
79 }
80
81 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
82                                 struct xhci_segment *first)
83 {
84         struct xhci_segment *seg;
85
86         seg = first->next;
87         while (seg != first) {
88                 struct xhci_segment *next = seg->next;
89                 xhci_segment_free(xhci, seg);
90                 seg = next;
91         }
92         xhci_segment_free(xhci, first);
93 }
94
95 /*
96  * Make the prev segment point to the next segment.
97  *
98  * Change the last TRB in the prev segment to be a Link TRB which points to the
99  * DMA address of the next segment.  The caller needs to set any Link TRB
100  * related flags, such as End TRB, Toggle Cycle, and no snoop.
101  */
102 static void xhci_link_segments(struct xhci_segment *prev,
103                                struct xhci_segment *next,
104                                enum xhci_ring_type type, bool chain_links)
105 {
106         u32 val;
107
108         if (!prev || !next)
109                 return;
110         prev->next = next;
111         if (type != TYPE_EVENT) {
112                 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
113                         cpu_to_le64(next->dma);
114
115                 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
116                 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
117                 val &= ~TRB_TYPE_BITMASK;
118                 val |= TRB_TYPE(TRB_LINK);
119                 if (chain_links)
120                         val |= TRB_CHAIN;
121                 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
122         }
123 }
124
125 /*
126  * Link the ring to the new segments.
127  * Set Toggle Cycle for the new ring if needed.
128  */
129 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
130                 struct xhci_segment *first, struct xhci_segment *last,
131                 unsigned int num_segs)
132 {
133         struct xhci_segment *next, *seg;
134         bool chain_links;
135
136         if (!ring || !first || !last)
137                 return;
138
139         /* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
140         chain_links = !!(xhci_link_trb_quirk(xhci) ||
141                          (ring->type == TYPE_ISOC &&
142                           (xhci->quirks & XHCI_AMD_0x96_HOST)));
143
144         next = ring->enq_seg->next;
145         xhci_link_segments(ring->enq_seg, first, ring->type, chain_links);
146         xhci_link_segments(last, next, ring->type, chain_links);
147         ring->num_segs += num_segs;
148
149         if (ring->enq_seg == ring->last_seg) {
150                 if (ring->type != TYPE_EVENT) {
151                         ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
152                                 &= ~cpu_to_le32(LINK_TOGGLE);
153                         last->trbs[TRBS_PER_SEGMENT-1].link.control
154                                 |= cpu_to_le32(LINK_TOGGLE);
155                 }
156                 ring->last_seg = last;
157         }
158
159         for (seg = last; seg != ring->last_seg; seg = seg->next)
160                 seg->next->num = seg->num + 1;
161 }
162
163 /*
164  * We need a radix tree for mapping physical addresses of TRBs to which stream
165  * ID they belong to.  We need to do this because the host controller won't tell
166  * us which stream ring the TRB came from.  We could store the stream ID in an
167  * event data TRB, but that doesn't help us for the cancellation case, since the
168  * endpoint may stop before it reaches that event data TRB.
169  *
170  * The radix tree maps the upper portion of the TRB DMA address to a ring
171  * segment that has the same upper portion of DMA addresses.  For example, say I
172  * have segments of size 1KB, that are always 1KB aligned.  A segment may
173  * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
174  * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
175  * pass the radix tree a key to get the right stream ID:
176  *
177  *      0x10c90fff >> 10 = 0x43243
178  *      0x10c912c0 >> 10 = 0x43244
179  *      0x10c91400 >> 10 = 0x43245
180  *
181  * Obviously, only those TRBs with DMA addresses that are within the segment
182  * will make the radix tree return the stream ID for that ring.
183  *
184  * Caveats for the radix tree:
185  *
186  * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
187  * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
188  * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
189  * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
190  * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
191  * extended systems (where the DMA address can be bigger than 32-bits),
192  * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
193  */
194 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
195                 struct xhci_ring *ring,
196                 struct xhci_segment *seg,
197                 gfp_t mem_flags)
198 {
199         unsigned long key;
200         int ret;
201
202         key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
203         /* Skip any segments that were already added. */
204         if (radix_tree_lookup(trb_address_map, key))
205                 return 0;
206
207         ret = radix_tree_maybe_preload(mem_flags);
208         if (ret)
209                 return ret;
210         ret = radix_tree_insert(trb_address_map,
211                         key, ring);
212         radix_tree_preload_end();
213         return ret;
214 }
215
216 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
217                 struct xhci_segment *seg)
218 {
219         unsigned long key;
220
221         key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
222         if (radix_tree_lookup(trb_address_map, key))
223                 radix_tree_delete(trb_address_map, key);
224 }
225
226 static int xhci_update_stream_segment_mapping(
227                 struct radix_tree_root *trb_address_map,
228                 struct xhci_ring *ring,
229                 struct xhci_segment *first_seg,
230                 struct xhci_segment *last_seg,
231                 gfp_t mem_flags)
232 {
233         struct xhci_segment *seg;
234         struct xhci_segment *failed_seg;
235         int ret;
236
237         if (WARN_ON_ONCE(trb_address_map == NULL))
238                 return 0;
239
240         seg = first_seg;
241         do {
242                 ret = xhci_insert_segment_mapping(trb_address_map,
243                                 ring, seg, mem_flags);
244                 if (ret)
245                         goto remove_streams;
246                 if (seg == last_seg)
247                         return 0;
248                 seg = seg->next;
249         } while (seg != first_seg);
250
251         return 0;
252
253 remove_streams:
254         failed_seg = seg;
255         seg = first_seg;
256         do {
257                 xhci_remove_segment_mapping(trb_address_map, seg);
258                 if (seg == failed_seg)
259                         return ret;
260                 seg = seg->next;
261         } while (seg != first_seg);
262
263         return ret;
264 }
265
266 static void xhci_remove_stream_mapping(struct xhci_ring *ring)
267 {
268         struct xhci_segment *seg;
269
270         if (WARN_ON_ONCE(ring->trb_address_map == NULL))
271                 return;
272
273         seg = ring->first_seg;
274         do {
275                 xhci_remove_segment_mapping(ring->trb_address_map, seg);
276                 seg = seg->next;
277         } while (seg != ring->first_seg);
278 }
279
280 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
281 {
282         return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
283                         ring->first_seg, ring->last_seg, mem_flags);
284 }
285
286 /* XXX: Do we need the hcd structure in all these functions? */
287 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
288 {
289         if (!ring)
290                 return;
291
292         trace_xhci_ring_free(ring);
293
294         if (ring->first_seg) {
295                 if (ring->type == TYPE_STREAM)
296                         xhci_remove_stream_mapping(ring);
297                 xhci_free_segments_for_ring(xhci, ring->first_seg);
298         }
299
300         kfree(ring);
301 }
302
303 void xhci_initialize_ring_info(struct xhci_ring *ring,
304                                unsigned int cycle_state)
305 {
306         /* The ring is empty, so the enqueue pointer == dequeue pointer */
307         ring->enqueue = ring->first_seg->trbs;
308         ring->enq_seg = ring->first_seg;
309         ring->dequeue = ring->enqueue;
310         ring->deq_seg = ring->first_seg;
311         /* The ring is initialized to 0. The producer must write 1 to the cycle
312          * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
313          * compare CCS to the cycle bit to check ownership, so CCS = 1.
314          *
315          * New rings are initialized with cycle state equal to 1; if we are
316          * handling ring expansion, set the cycle state equal to the old ring.
317          */
318         ring->cycle_state = cycle_state;
319
320         /*
321          * Each segment has a link TRB, and leave an extra TRB for SW
322          * accounting purpose
323          */
324         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
325 }
326
327 /* Allocate segments and link them for a ring */
328 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
329                 struct xhci_segment **first, struct xhci_segment **last,
330                 unsigned int num_segs, unsigned int num,
331                 unsigned int cycle_state, enum xhci_ring_type type,
332                 unsigned int max_packet, gfp_t flags)
333 {
334         struct xhci_segment *prev;
335         bool chain_links;
336
337         /* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
338         chain_links = !!(xhci_link_trb_quirk(xhci) ||
339                          (type == TYPE_ISOC &&
340                           (xhci->quirks & XHCI_AMD_0x96_HOST)));
341
342         prev = xhci_segment_alloc(xhci, cycle_state, max_packet, num, flags);
343         if (!prev)
344                 return -ENOMEM;
345         num++;
346
347         *first = prev;
348         while (num < num_segs) {
349                 struct xhci_segment     *next;
350
351                 next = xhci_segment_alloc(xhci, cycle_state, max_packet, num,
352                                           flags);
353                 if (!next) {
354                         prev = *first;
355                         while (prev) {
356                                 next = prev->next;
357                                 xhci_segment_free(xhci, prev);
358                                 prev = next;
359                         }
360                         return -ENOMEM;
361                 }
362                 xhci_link_segments(prev, next, type, chain_links);
363
364                 prev = next;
365                 num++;
366         }
367         xhci_link_segments(prev, *first, type, chain_links);
368         *last = prev;
369
370         return 0;
371 }
372
373 /*
374  * Create a new ring with zero or more segments.
375  *
376  * Link each segment together into a ring.
377  * Set the end flag and the cycle toggle bit on the last segment.
378  * See section 4.9.1 and figures 15 and 16.
379  */
380 struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
381                 unsigned int num_segs, unsigned int cycle_state,
382                 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
383 {
384         struct xhci_ring        *ring;
385         int ret;
386         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
387
388         ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev));
389         if (!ring)
390                 return NULL;
391
392         ring->num_segs = num_segs;
393         ring->bounce_buf_len = max_packet;
394         INIT_LIST_HEAD(&ring->td_list);
395         ring->type = type;
396         if (num_segs == 0)
397                 return ring;
398
399         ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
400                         &ring->last_seg, num_segs, 0, cycle_state, type,
401                         max_packet, flags);
402         if (ret)
403                 goto fail;
404
405         /* Only event ring does not use link TRB */
406         if (type != TYPE_EVENT) {
407                 /* See section 4.9.2.1 and 6.4.4.1 */
408                 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
409                         cpu_to_le32(LINK_TOGGLE);
410         }
411         xhci_initialize_ring_info(ring, cycle_state);
412         trace_xhci_ring_alloc(ring);
413         return ring;
414
415 fail:
416         kfree(ring);
417         return NULL;
418 }
419
420 void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
421                 struct xhci_virt_device *virt_dev,
422                 unsigned int ep_index)
423 {
424         xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
425         virt_dev->eps[ep_index].ring = NULL;
426 }
427
428 /*
429  * Expand an existing ring.
430  * Allocate a new ring which has same segment numbers and link the two rings.
431  */
432 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
433                                 unsigned int num_new_segs, gfp_t flags)
434 {
435         struct xhci_segment     *first;
436         struct xhci_segment     *last;
437         int                     ret;
438
439         ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
440                         num_new_segs, ring->enq_seg->num + 1,
441                         ring->cycle_state, ring->type,
442                         ring->bounce_buf_len, flags);
443         if (ret)
444                 return -ENOMEM;
445
446         if (ring->type == TYPE_STREAM)
447                 ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
448                                                 ring, first, last, flags);
449         if (ret) {
450                 struct xhci_segment *next;
451                 do {
452                         next = first->next;
453                         xhci_segment_free(xhci, first);
454                         if (first == last)
455                                 break;
456                         first = next;
457                 } while (true);
458                 return ret;
459         }
460
461         xhci_link_rings(xhci, ring, first, last, num_new_segs);
462         trace_xhci_ring_expansion(ring);
463         xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
464                         "ring expansion succeed, now has %d segments",
465                         ring->num_segs);
466
467         return 0;
468 }
469
470 struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
471                                                     int type, gfp_t flags)
472 {
473         struct xhci_container_ctx *ctx;
474         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
475
476         if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
477                 return NULL;
478
479         ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev));
480         if (!ctx)
481                 return NULL;
482
483         ctx->type = type;
484         ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
485         if (type == XHCI_CTX_TYPE_INPUT)
486                 ctx->size += CTX_SIZE(xhci->hcc_params);
487
488         ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
489         if (!ctx->bytes) {
490                 kfree(ctx);
491                 return NULL;
492         }
493         return ctx;
494 }
495
496 void xhci_free_container_ctx(struct xhci_hcd *xhci,
497                              struct xhci_container_ctx *ctx)
498 {
499         if (!ctx)
500                 return;
501         dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
502         kfree(ctx);
503 }
504
505 struct xhci_input_control_ctx *xhci_get_input_control_ctx(
506                                               struct xhci_container_ctx *ctx)
507 {
508         if (ctx->type != XHCI_CTX_TYPE_INPUT)
509                 return NULL;
510
511         return (struct xhci_input_control_ctx *)ctx->bytes;
512 }
513
514 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
515                                         struct xhci_container_ctx *ctx)
516 {
517         if (ctx->type == XHCI_CTX_TYPE_DEVICE)
518                 return (struct xhci_slot_ctx *)ctx->bytes;
519
520         return (struct xhci_slot_ctx *)
521                 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
522 }
523
524 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
525                                     struct xhci_container_ctx *ctx,
526                                     unsigned int ep_index)
527 {
528         /* increment ep index by offset of start of ep ctx array */
529         ep_index++;
530         if (ctx->type == XHCI_CTX_TYPE_INPUT)
531                 ep_index++;
532
533         return (struct xhci_ep_ctx *)
534                 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
535 }
536 EXPORT_SYMBOL_GPL(xhci_get_ep_ctx);
537
538 /***************** Streams structures manipulation *************************/
539
540 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
541                 unsigned int num_stream_ctxs,
542                 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
543 {
544         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
545         size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
546
547         if (size > MEDIUM_STREAM_ARRAY_SIZE)
548                 dma_free_coherent(dev, size, stream_ctx, dma);
549         else if (size > SMALL_STREAM_ARRAY_SIZE)
550                 dma_pool_free(xhci->medium_streams_pool, stream_ctx, dma);
551         else
552                 dma_pool_free(xhci->small_streams_pool, stream_ctx, dma);
553 }
554
555 /*
556  * The stream context array for each endpoint with bulk streams enabled can
557  * vary in size, based on:
558  *  - how many streams the endpoint supports,
559  *  - the maximum primary stream array size the host controller supports,
560  *  - and how many streams the device driver asks for.
561  *
562  * The stream context array must be a power of 2, and can be as small as
563  * 64 bytes or as large as 1MB.
564  */
565 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
566                 unsigned int num_stream_ctxs, dma_addr_t *dma,
567                 gfp_t mem_flags)
568 {
569         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
570         size_t size = size_mul(sizeof(struct xhci_stream_ctx), num_stream_ctxs);
571
572         if (size > MEDIUM_STREAM_ARRAY_SIZE)
573                 return dma_alloc_coherent(dev, size, dma, mem_flags);
574         if (size > SMALL_STREAM_ARRAY_SIZE)
575                 return dma_pool_zalloc(xhci->medium_streams_pool, mem_flags, dma);
576         else
577                 return dma_pool_zalloc(xhci->small_streams_pool, mem_flags, dma);
578 }
579
580 struct xhci_ring *xhci_dma_to_transfer_ring(
581                 struct xhci_virt_ep *ep,
582                 u64 address)
583 {
584         if (ep->ep_state & EP_HAS_STREAMS)
585                 return radix_tree_lookup(&ep->stream_info->trb_address_map,
586                                 address >> TRB_SEGMENT_SHIFT);
587         return ep->ring;
588 }
589
590 /*
591  * Change an endpoint's internal structure so it supports stream IDs.  The
592  * number of requested streams includes stream 0, which cannot be used by device
593  * drivers.
594  *
595  * The number of stream contexts in the stream context array may be bigger than
596  * the number of streams the driver wants to use.  This is because the number of
597  * stream context array entries must be a power of two.
598  */
599 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
600                 unsigned int num_stream_ctxs,
601                 unsigned int num_streams,
602                 unsigned int max_packet, gfp_t mem_flags)
603 {
604         struct xhci_stream_info *stream_info;
605         u32 cur_stream;
606         struct xhci_ring *cur_ring;
607         u64 addr;
608         int ret;
609         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
610
611         xhci_dbg(xhci, "Allocating %u streams and %u stream context array entries.\n",
612                         num_streams, num_stream_ctxs);
613         if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
614                 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
615                 return NULL;
616         }
617         xhci->cmd_ring_reserved_trbs++;
618
619         stream_info = kzalloc_node(sizeof(*stream_info), mem_flags,
620                         dev_to_node(dev));
621         if (!stream_info)
622                 goto cleanup_trbs;
623
624         stream_info->num_streams = num_streams;
625         stream_info->num_stream_ctxs = num_stream_ctxs;
626
627         /* Initialize the array of virtual pointers to stream rings. */
628         stream_info->stream_rings = kcalloc_node(
629                         num_streams, sizeof(struct xhci_ring *), mem_flags,
630                         dev_to_node(dev));
631         if (!stream_info->stream_rings)
632                 goto cleanup_info;
633
634         /* Initialize the array of DMA addresses for stream rings for the HW. */
635         stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
636                         num_stream_ctxs, &stream_info->ctx_array_dma,
637                         mem_flags);
638         if (!stream_info->stream_ctx_array)
639                 goto cleanup_ring_array;
640
641         /* Allocate everything needed to free the stream rings later */
642         stream_info->free_streams_command =
643                 xhci_alloc_command_with_ctx(xhci, true, mem_flags);
644         if (!stream_info->free_streams_command)
645                 goto cleanup_ctx;
646
647         INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
648
649         /* Allocate rings for all the streams that the driver will use,
650          * and add their segment DMA addresses to the radix tree.
651          * Stream 0 is reserved.
652          */
653
654         for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
655                 stream_info->stream_rings[cur_stream] =
656                         xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
657                                         mem_flags);
658                 cur_ring = stream_info->stream_rings[cur_stream];
659                 if (!cur_ring)
660                         goto cleanup_rings;
661                 cur_ring->stream_id = cur_stream;
662                 cur_ring->trb_address_map = &stream_info->trb_address_map;
663                 /* Set deq ptr, cycle bit, and stream context type */
664                 addr = cur_ring->first_seg->dma |
665                         SCT_FOR_CTX(SCT_PRI_TR) |
666                         cur_ring->cycle_state;
667                 stream_info->stream_ctx_array[cur_stream].stream_ring =
668                         cpu_to_le64(addr);
669                 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n", cur_stream, addr);
670
671                 ret = xhci_update_stream_mapping(cur_ring, mem_flags);
672                 if (ret) {
673                         xhci_ring_free(xhci, cur_ring);
674                         stream_info->stream_rings[cur_stream] = NULL;
675                         goto cleanup_rings;
676                 }
677         }
678         /* Leave the other unused stream ring pointers in the stream context
679          * array initialized to zero.  This will cause the xHC to give us an
680          * error if the device asks for a stream ID we don't have setup (if it
681          * was any other way, the host controller would assume the ring is
682          * "empty" and wait forever for data to be queued to that stream ID).
683          */
684
685         return stream_info;
686
687 cleanup_rings:
688         for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
689                 cur_ring = stream_info->stream_rings[cur_stream];
690                 if (cur_ring) {
691                         xhci_ring_free(xhci, cur_ring);
692                         stream_info->stream_rings[cur_stream] = NULL;
693                 }
694         }
695         xhci_free_command(xhci, stream_info->free_streams_command);
696 cleanup_ctx:
697         xhci_free_stream_ctx(xhci,
698                 stream_info->num_stream_ctxs,
699                 stream_info->stream_ctx_array,
700                 stream_info->ctx_array_dma);
701 cleanup_ring_array:
702         kfree(stream_info->stream_rings);
703 cleanup_info:
704         kfree(stream_info);
705 cleanup_trbs:
706         xhci->cmd_ring_reserved_trbs--;
707         return NULL;
708 }
709 /*
710  * Sets the MaxPStreams field and the Linear Stream Array field.
711  * Sets the dequeue pointer to the stream context array.
712  */
713 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
714                 struct xhci_ep_ctx *ep_ctx,
715                 struct xhci_stream_info *stream_info)
716 {
717         u32 max_primary_streams;
718         /* MaxPStreams is the number of stream context array entries, not the
719          * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
720          * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
721          */
722         max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
723         xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
724                         "Setting number of stream ctx array entries to %u",
725                         1 << (max_primary_streams + 1));
726         ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
727         ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
728                                        | EP_HAS_LSA);
729         ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
730 }
731
732 /*
733  * Sets the MaxPStreams field and the Linear Stream Array field to 0.
734  * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
735  * not at the beginning of the ring).
736  */
737 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
738                 struct xhci_virt_ep *ep)
739 {
740         dma_addr_t addr;
741         ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
742         addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
743         ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
744 }
745
746 /* Frees all stream contexts associated with the endpoint,
747  *
748  * Caller should fix the endpoint context streams fields.
749  */
750 void xhci_free_stream_info(struct xhci_hcd *xhci,
751                 struct xhci_stream_info *stream_info)
752 {
753         int cur_stream;
754         struct xhci_ring *cur_ring;
755
756         if (!stream_info)
757                 return;
758
759         for (cur_stream = 1; cur_stream < stream_info->num_streams;
760                         cur_stream++) {
761                 cur_ring = stream_info->stream_rings[cur_stream];
762                 if (cur_ring) {
763                         xhci_ring_free(xhci, cur_ring);
764                         stream_info->stream_rings[cur_stream] = NULL;
765                 }
766         }
767         xhci_free_command(xhci, stream_info->free_streams_command);
768         xhci->cmd_ring_reserved_trbs--;
769         if (stream_info->stream_ctx_array)
770                 xhci_free_stream_ctx(xhci,
771                                 stream_info->num_stream_ctxs,
772                                 stream_info->stream_ctx_array,
773                                 stream_info->ctx_array_dma);
774
775         kfree(stream_info->stream_rings);
776         kfree(stream_info);
777 }
778
779
780 /***************** Device context manipulation *************************/
781
782 static void xhci_free_tt_info(struct xhci_hcd *xhci,
783                 struct xhci_virt_device *virt_dev,
784                 int slot_id)
785 {
786         struct list_head *tt_list_head;
787         struct xhci_tt_bw_info *tt_info, *next;
788         bool slot_found = false;
789
790         /* If the device never made it past the Set Address stage,
791          * it may not have the real_port set correctly.
792          */
793         if (virt_dev->real_port == 0 ||
794                         virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
795                 xhci_dbg(xhci, "Bad real port.\n");
796                 return;
797         }
798
799         tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
800         list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
801                 /* Multi-TT hubs will have more than one entry */
802                 if (tt_info->slot_id == slot_id) {
803                         slot_found = true;
804                         list_del(&tt_info->tt_list);
805                         kfree(tt_info);
806                 } else if (slot_found) {
807                         break;
808                 }
809         }
810 }
811
812 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
813                 struct xhci_virt_device *virt_dev,
814                 struct usb_device *hdev,
815                 struct usb_tt *tt, gfp_t mem_flags)
816 {
817         struct xhci_tt_bw_info          *tt_info;
818         unsigned int                    num_ports;
819         int                             i, j;
820         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
821
822         if (!tt->multi)
823                 num_ports = 1;
824         else
825                 num_ports = hdev->maxchild;
826
827         for (i = 0; i < num_ports; i++, tt_info++) {
828                 struct xhci_interval_bw_table *bw_table;
829
830                 tt_info = kzalloc_node(sizeof(*tt_info), mem_flags,
831                                 dev_to_node(dev));
832                 if (!tt_info)
833                         goto free_tts;
834                 INIT_LIST_HEAD(&tt_info->tt_list);
835                 list_add(&tt_info->tt_list,
836                                 &xhci->rh_bw[virt_dev->real_port - 1].tts);
837                 tt_info->slot_id = virt_dev->udev->slot_id;
838                 if (tt->multi)
839                         tt_info->ttport = i+1;
840                 bw_table = &tt_info->bw_table;
841                 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
842                         INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
843         }
844         return 0;
845
846 free_tts:
847         xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
848         return -ENOMEM;
849 }
850
851
852 /* All the xhci_tds in the ring's TD list should be freed at this point.
853  * Should be called with xhci->lock held if there is any chance the TT lists
854  * will be manipulated by the configure endpoint, allocate device, or update
855  * hub functions while this function is removing the TT entries from the list.
856  */
857 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
858 {
859         struct xhci_virt_device *dev;
860         int i;
861         int old_active_eps = 0;
862
863         /* Slot ID 0 is reserved */
864         if (slot_id == 0 || !xhci->devs[slot_id])
865                 return;
866
867         dev = xhci->devs[slot_id];
868
869         xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
870         if (!dev)
871                 return;
872
873         trace_xhci_free_virt_device(dev);
874
875         if (dev->tt_info)
876                 old_active_eps = dev->tt_info->active_eps;
877
878         for (i = 0; i < 31; i++) {
879                 if (dev->eps[i].ring)
880                         xhci_ring_free(xhci, dev->eps[i].ring);
881                 if (dev->eps[i].stream_info)
882                         xhci_free_stream_info(xhci,
883                                         dev->eps[i].stream_info);
884                 /*
885                  * Endpoints are normally deleted from the bandwidth list when
886                  * endpoints are dropped, before device is freed.
887                  * If host is dying or being removed then endpoints aren't
888                  * dropped cleanly, so delete the endpoint from list here.
889                  * Only applicable for hosts with software bandwidth checking.
890                  */
891
892                 if (!list_empty(&dev->eps[i].bw_endpoint_list)) {
893                         list_del_init(&dev->eps[i].bw_endpoint_list);
894                         xhci_dbg(xhci, "Slot %u endpoint %u not removed from BW list!\n",
895                                  slot_id, i);
896                 }
897         }
898         /* If this is a hub, free the TT(s) from the TT list */
899         xhci_free_tt_info(xhci, dev, slot_id);
900         /* If necessary, update the number of active TTs on this root port */
901         xhci_update_tt_active_eps(xhci, dev, old_active_eps);
902
903         if (dev->in_ctx)
904                 xhci_free_container_ctx(xhci, dev->in_ctx);
905         if (dev->out_ctx)
906                 xhci_free_container_ctx(xhci, dev->out_ctx);
907
908         if (dev->udev && dev->udev->slot_id)
909                 dev->udev->slot_id = 0;
910         kfree(xhci->devs[slot_id]);
911         xhci->devs[slot_id] = NULL;
912 }
913
914 /*
915  * Free a virt_device structure.
916  * If the virt_device added a tt_info (a hub) and has children pointing to
917  * that tt_info, then free the child first. Recursive.
918  * We can't rely on udev at this point to find child-parent relationships.
919  */
920 static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
921 {
922         struct xhci_virt_device *vdev;
923         struct list_head *tt_list_head;
924         struct xhci_tt_bw_info *tt_info, *next;
925         int i;
926
927         vdev = xhci->devs[slot_id];
928         if (!vdev)
929                 return;
930
931         if (vdev->real_port == 0 ||
932                         vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
933                 xhci_dbg(xhci, "Bad vdev->real_port.\n");
934                 goto out;
935         }
936
937         tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
938         list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
939                 /* is this a hub device that added a tt_info to the tts list */
940                 if (tt_info->slot_id == slot_id) {
941                         /* are any devices using this tt_info? */
942                         for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
943                                 vdev = xhci->devs[i];
944                                 if (vdev && (vdev->tt_info == tt_info))
945                                         xhci_free_virt_devices_depth_first(
946                                                 xhci, i);
947                         }
948                 }
949         }
950 out:
951         /* we are now at a leaf device */
952         xhci_debugfs_remove_slot(xhci, slot_id);
953         xhci_free_virt_device(xhci, slot_id);
954 }
955
956 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
957                 struct usb_device *udev, gfp_t flags)
958 {
959         struct xhci_virt_device *dev;
960         int i;
961
962         /* Slot ID 0 is reserved */
963         if (slot_id == 0 || xhci->devs[slot_id]) {
964                 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
965                 return 0;
966         }
967
968         dev = kzalloc(sizeof(*dev), flags);
969         if (!dev)
970                 return 0;
971
972         dev->slot_id = slot_id;
973
974         /* Allocate the (output) device context that will be used in the HC. */
975         dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
976         if (!dev->out_ctx)
977                 goto fail;
978
979         xhci_dbg(xhci, "Slot %d output ctx = 0x%pad (dma)\n", slot_id, &dev->out_ctx->dma);
980
981         /* Allocate the (input) device context for address device command */
982         dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
983         if (!dev->in_ctx)
984                 goto fail;
985
986         xhci_dbg(xhci, "Slot %d input ctx = 0x%pad (dma)\n", slot_id, &dev->in_ctx->dma);
987
988         /* Initialize the cancellation and bandwidth list for each ep */
989         for (i = 0; i < 31; i++) {
990                 dev->eps[i].ep_index = i;
991                 dev->eps[i].vdev = dev;
992                 dev->eps[i].xhci = xhci;
993                 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
994                 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
995         }
996
997         /* Allocate endpoint 0 ring */
998         dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
999         if (!dev->eps[0].ring)
1000                 goto fail;
1001
1002         dev->udev = udev;
1003
1004         /* Point to output device context in dcbaa. */
1005         xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1006         xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1007                  slot_id,
1008                  &xhci->dcbaa->dev_context_ptrs[slot_id],
1009                  le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1010
1011         trace_xhci_alloc_virt_device(dev);
1012
1013         xhci->devs[slot_id] = dev;
1014
1015         return 1;
1016 fail:
1017
1018         if (dev->in_ctx)
1019                 xhci_free_container_ctx(xhci, dev->in_ctx);
1020         if (dev->out_ctx)
1021                 xhci_free_container_ctx(xhci, dev->out_ctx);
1022         kfree(dev);
1023
1024         return 0;
1025 }
1026
1027 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1028                 struct usb_device *udev)
1029 {
1030         struct xhci_virt_device *virt_dev;
1031         struct xhci_ep_ctx      *ep0_ctx;
1032         struct xhci_ring        *ep_ring;
1033
1034         virt_dev = xhci->devs[udev->slot_id];
1035         ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1036         ep_ring = virt_dev->eps[0].ring;
1037         /*
1038          * FIXME we don't keep track of the dequeue pointer very well after a
1039          * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1040          * host to our enqueue pointer.  This should only be called after a
1041          * configured device has reset, so all control transfers should have
1042          * been completed or cancelled before the reset.
1043          */
1044         ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1045                                                         ep_ring->enqueue)
1046                                    | ep_ring->cycle_state);
1047 }
1048
1049 /*
1050  * The xHCI roothub may have ports of differing speeds in any order in the port
1051  * status registers.
1052  *
1053  * The xHCI hardware wants to know the roothub port number that the USB device
1054  * is attached to (or the roothub port its ancestor hub is attached to).  All we
1055  * know is the index of that port under either the USB 2.0 or the USB 3.0
1056  * roothub, but that doesn't give us the real index into the HW port status
1057  * registers. Call xhci_find_raw_port_number() to get real index.
1058  */
1059 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1060                 struct usb_device *udev)
1061 {
1062         struct usb_device *top_dev;
1063         struct usb_hcd *hcd;
1064
1065         if (udev->speed >= USB_SPEED_SUPER)
1066                 hcd = xhci_get_usb3_hcd(xhci);
1067         else
1068                 hcd = xhci->main_hcd;
1069
1070         for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1071                         top_dev = top_dev->parent)
1072                 /* Found device below root hub */;
1073
1074         return  xhci_find_raw_port_number(hcd, top_dev->portnum);
1075 }
1076
1077 /* Setup an xHCI virtual device for a Set Address command */
1078 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1079 {
1080         struct xhci_virt_device *dev;
1081         struct xhci_ep_ctx      *ep0_ctx;
1082         struct xhci_slot_ctx    *slot_ctx;
1083         u32                     port_num;
1084         u32                     max_packets;
1085         struct usb_device *top_dev;
1086
1087         dev = xhci->devs[udev->slot_id];
1088         /* Slot ID 0 is reserved */
1089         if (udev->slot_id == 0 || !dev) {
1090                 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1091                                 udev->slot_id);
1092                 return -EINVAL;
1093         }
1094         ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1095         slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1096
1097         /* 3) Only the control endpoint is valid - one endpoint context */
1098         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1099         switch (udev->speed) {
1100         case USB_SPEED_SUPER_PLUS:
1101                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1102                 max_packets = MAX_PACKET(512);
1103                 break;
1104         case USB_SPEED_SUPER:
1105                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1106                 max_packets = MAX_PACKET(512);
1107                 break;
1108         case USB_SPEED_HIGH:
1109                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1110                 max_packets = MAX_PACKET(64);
1111                 break;
1112         /* USB core guesses at a 64-byte max packet first for FS devices */
1113         case USB_SPEED_FULL:
1114                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1115                 max_packets = MAX_PACKET(64);
1116                 break;
1117         case USB_SPEED_LOW:
1118                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1119                 max_packets = MAX_PACKET(8);
1120                 break;
1121         default:
1122                 /* Speed was set earlier, this shouldn't happen. */
1123                 return -EINVAL;
1124         }
1125         /* Find the root hub port this device is under */
1126         port_num = xhci_find_real_port_number(xhci, udev);
1127         if (!port_num)
1128                 return -EINVAL;
1129         slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1130         /* Set the port number in the virtual_device to the faked port number */
1131         for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1132                         top_dev = top_dev->parent)
1133                 /* Found device below root hub */;
1134         dev->fake_port = top_dev->portnum;
1135         dev->real_port = port_num;
1136         xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1137         xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1138
1139         /* Find the right bandwidth table that this device will be a part of.
1140          * If this is a full speed device attached directly to a root port (or a
1141          * decendent of one), it counts as a primary bandwidth domain, not a
1142          * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1143          * will never be created for the HS root hub.
1144          */
1145         if (!udev->tt || !udev->tt->hub->parent) {
1146                 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1147         } else {
1148                 struct xhci_root_port_bw_info *rh_bw;
1149                 struct xhci_tt_bw_info *tt_bw;
1150
1151                 rh_bw = &xhci->rh_bw[port_num - 1];
1152                 /* Find the right TT. */
1153                 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1154                         if (tt_bw->slot_id != udev->tt->hub->slot_id)
1155                                 continue;
1156
1157                         if (!dev->udev->tt->multi ||
1158                                         (udev->tt->multi &&
1159                                          tt_bw->ttport == dev->udev->ttport)) {
1160                                 dev->bw_table = &tt_bw->bw_table;
1161                                 dev->tt_info = tt_bw;
1162                                 break;
1163                         }
1164                 }
1165                 if (!dev->tt_info)
1166                         xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1167         }
1168
1169         /* Is this a LS/FS device under an external HS hub? */
1170         if (udev->tt && udev->tt->hub->parent) {
1171                 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1172                                                 (udev->ttport << 8));
1173                 if (udev->tt->multi)
1174                         slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1175         }
1176         xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1177         xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1178
1179         /* Step 4 - ring already allocated */
1180         /* Step 5 */
1181         ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1182
1183         /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1184         ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1185                                          max_packets);
1186
1187         ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1188                                    dev->eps[0].ring->cycle_state);
1189
1190         trace_xhci_setup_addressable_virt_device(dev);
1191
1192         /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1193
1194         return 0;
1195 }
1196
1197 /*
1198  * Convert interval expressed as 2^(bInterval - 1) == interval into
1199  * straight exponent value 2^n == interval.
1200  *
1201  */
1202 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1203                 struct usb_host_endpoint *ep)
1204 {
1205         unsigned int interval;
1206
1207         interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1208         if (interval != ep->desc.bInterval - 1)
1209                 dev_warn(&udev->dev,
1210                          "ep %#x - rounding interval to %d %sframes\n",
1211                          ep->desc.bEndpointAddress,
1212                          1 << interval,
1213                          udev->speed == USB_SPEED_FULL ? "" : "micro");
1214
1215         if (udev->speed == USB_SPEED_FULL) {
1216                 /*
1217                  * Full speed isoc endpoints specify interval in frames,
1218                  * not microframes. We are using microframes everywhere,
1219                  * so adjust accordingly.
1220                  */
1221                 interval += 3;  /* 1 frame = 2^3 uframes */
1222         }
1223
1224         return interval;
1225 }
1226
1227 /*
1228  * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1229  * microframes, rounded down to nearest power of 2.
1230  */
1231 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1232                 struct usb_host_endpoint *ep, unsigned int desc_interval,
1233                 unsigned int min_exponent, unsigned int max_exponent)
1234 {
1235         unsigned int interval;
1236
1237         interval = fls(desc_interval) - 1;
1238         interval = clamp_val(interval, min_exponent, max_exponent);
1239         if ((1 << interval) != desc_interval)
1240                 dev_dbg(&udev->dev,
1241                          "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1242                          ep->desc.bEndpointAddress,
1243                          1 << interval,
1244                          desc_interval);
1245
1246         return interval;
1247 }
1248
1249 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1250                 struct usb_host_endpoint *ep)
1251 {
1252         if (ep->desc.bInterval == 0)
1253                 return 0;
1254         return xhci_microframes_to_exponent(udev, ep,
1255                         ep->desc.bInterval, 0, 15);
1256 }
1257
1258
1259 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1260                 struct usb_host_endpoint *ep)
1261 {
1262         return xhci_microframes_to_exponent(udev, ep,
1263                         ep->desc.bInterval * 8, 3, 10);
1264 }
1265
1266 /* Return the polling or NAK interval.
1267  *
1268  * The polling interval is expressed in "microframes".  If xHCI's Interval field
1269  * is set to N, it will service the endpoint every 2^(Interval)*125us.
1270  *
1271  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1272  * is set to 0.
1273  */
1274 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1275                 struct usb_host_endpoint *ep)
1276 {
1277         unsigned int interval = 0;
1278
1279         switch (udev->speed) {
1280         case USB_SPEED_HIGH:
1281                 /* Max NAK rate */
1282                 if (usb_endpoint_xfer_control(&ep->desc) ||
1283                     usb_endpoint_xfer_bulk(&ep->desc)) {
1284                         interval = xhci_parse_microframe_interval(udev, ep);
1285                         break;
1286                 }
1287                 fallthrough;    /* SS and HS isoc/int have same decoding */
1288
1289         case USB_SPEED_SUPER_PLUS:
1290         case USB_SPEED_SUPER:
1291                 if (usb_endpoint_xfer_int(&ep->desc) ||
1292                     usb_endpoint_xfer_isoc(&ep->desc)) {
1293                         interval = xhci_parse_exponent_interval(udev, ep);
1294                 }
1295                 break;
1296
1297         case USB_SPEED_FULL:
1298                 if (usb_endpoint_xfer_isoc(&ep->desc)) {
1299                         interval = xhci_parse_exponent_interval(udev, ep);
1300                         break;
1301                 }
1302                 /*
1303                  * Fall through for interrupt endpoint interval decoding
1304                  * since it uses the same rules as low speed interrupt
1305                  * endpoints.
1306                  */
1307                 fallthrough;
1308
1309         case USB_SPEED_LOW:
1310                 if (usb_endpoint_xfer_int(&ep->desc) ||
1311                     usb_endpoint_xfer_isoc(&ep->desc)) {
1312
1313                         interval = xhci_parse_frame_interval(udev, ep);
1314                 }
1315                 break;
1316
1317         default:
1318                 BUG();
1319         }
1320         return interval;
1321 }
1322
1323 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1324  * High speed endpoint descriptors can define "the number of additional
1325  * transaction opportunities per microframe", but that goes in the Max Burst
1326  * endpoint context field.
1327  */
1328 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1329                 struct usb_host_endpoint *ep)
1330 {
1331         if (udev->speed < USB_SPEED_SUPER ||
1332                         !usb_endpoint_xfer_isoc(&ep->desc))
1333                 return 0;
1334         return ep->ss_ep_comp.bmAttributes;
1335 }
1336
1337 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1338                                        struct usb_host_endpoint *ep)
1339 {
1340         /* Super speed and Plus have max burst in ep companion desc */
1341         if (udev->speed >= USB_SPEED_SUPER)
1342                 return ep->ss_ep_comp.bMaxBurst;
1343
1344         if (udev->speed == USB_SPEED_HIGH &&
1345             (usb_endpoint_xfer_isoc(&ep->desc) ||
1346              usb_endpoint_xfer_int(&ep->desc)))
1347                 return usb_endpoint_maxp_mult(&ep->desc) - 1;
1348
1349         return 0;
1350 }
1351
1352 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1353 {
1354         int in;
1355
1356         in = usb_endpoint_dir_in(&ep->desc);
1357
1358         switch (usb_endpoint_type(&ep->desc)) {
1359         case USB_ENDPOINT_XFER_CONTROL:
1360                 return CTRL_EP;
1361         case USB_ENDPOINT_XFER_BULK:
1362                 return in ? BULK_IN_EP : BULK_OUT_EP;
1363         case USB_ENDPOINT_XFER_ISOC:
1364                 return in ? ISOC_IN_EP : ISOC_OUT_EP;
1365         case USB_ENDPOINT_XFER_INT:
1366                 return in ? INT_IN_EP : INT_OUT_EP;
1367         }
1368         return 0;
1369 }
1370
1371 /* Return the maximum endpoint service interval time (ESIT) payload.
1372  * Basically, this is the maxpacket size, multiplied by the burst size
1373  * and mult size.
1374  */
1375 static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1376                 struct usb_host_endpoint *ep)
1377 {
1378         int max_burst;
1379         int max_packet;
1380
1381         /* Only applies for interrupt or isochronous endpoints */
1382         if (usb_endpoint_xfer_control(&ep->desc) ||
1383                         usb_endpoint_xfer_bulk(&ep->desc))
1384                 return 0;
1385
1386         /* SuperSpeedPlus Isoc ep sending over 48k per esit */
1387         if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1388             USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1389                 return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1390
1391         /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1392         if (udev->speed >= USB_SPEED_SUPER)
1393                 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1394
1395         max_packet = usb_endpoint_maxp(&ep->desc);
1396         max_burst = usb_endpoint_maxp_mult(&ep->desc);
1397         /* A 0 in max burst means 1 transfer per ESIT */
1398         return max_packet * max_burst;
1399 }
1400
1401 /* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1402  * Drivers will have to call usb_alloc_streams() to do that.
1403  */
1404 int xhci_endpoint_init(struct xhci_hcd *xhci,
1405                 struct xhci_virt_device *virt_dev,
1406                 struct usb_device *udev,
1407                 struct usb_host_endpoint *ep,
1408                 gfp_t mem_flags)
1409 {
1410         unsigned int ep_index;
1411         struct xhci_ep_ctx *ep_ctx;
1412         struct xhci_ring *ep_ring;
1413         unsigned int max_packet;
1414         enum xhci_ring_type ring_type;
1415         u32 max_esit_payload;
1416         u32 endpoint_type;
1417         unsigned int max_burst;
1418         unsigned int interval;
1419         unsigned int mult;
1420         unsigned int avg_trb_len;
1421         unsigned int err_count = 0;
1422
1423         ep_index = xhci_get_endpoint_index(&ep->desc);
1424         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1425
1426         endpoint_type = xhci_get_endpoint_type(ep);
1427         if (!endpoint_type)
1428                 return -EINVAL;
1429
1430         ring_type = usb_endpoint_type(&ep->desc);
1431
1432         /*
1433          * Get values to fill the endpoint context, mostly from ep descriptor.
1434          * The average TRB buffer lengt for bulk endpoints is unclear as we
1435          * have no clue on scatter gather list entry size. For Isoc and Int,
1436          * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1437          */
1438         max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1439         interval = xhci_get_endpoint_interval(udev, ep);
1440
1441         /* Periodic endpoint bInterval limit quirk */
1442         if (usb_endpoint_xfer_int(&ep->desc) ||
1443             usb_endpoint_xfer_isoc(&ep->desc)) {
1444                 if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1445                     udev->speed >= USB_SPEED_HIGH &&
1446                     interval >= 7) {
1447                         interval = 6;
1448                 }
1449         }
1450
1451         mult = xhci_get_endpoint_mult(udev, ep);
1452         max_packet = usb_endpoint_maxp(&ep->desc);
1453         max_burst = xhci_get_endpoint_max_burst(udev, ep);
1454         avg_trb_len = max_esit_payload;
1455
1456         /* FIXME dig Mult and streams info out of ep companion desc */
1457
1458         /* Allow 3 retries for everything but isoc, set CErr = 3 */
1459         if (!usb_endpoint_xfer_isoc(&ep->desc))
1460                 err_count = 3;
1461         /* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */
1462         if (usb_endpoint_xfer_bulk(&ep->desc)) {
1463                 if (udev->speed == USB_SPEED_HIGH)
1464                         max_packet = 512;
1465                 if (udev->speed == USB_SPEED_FULL) {
1466                         max_packet = rounddown_pow_of_two(max_packet);
1467                         max_packet = clamp_val(max_packet, 8, 64);
1468                 }
1469         }
1470         /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1471         if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1472                 avg_trb_len = 8;
1473         /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1474         if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1475                 mult = 0;
1476
1477         /* Set up the endpoint ring */
1478         virt_dev->eps[ep_index].new_ring =
1479                 xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1480         if (!virt_dev->eps[ep_index].new_ring)
1481                 return -ENOMEM;
1482
1483         virt_dev->eps[ep_index].skip = false;
1484         ep_ring = virt_dev->eps[ep_index].new_ring;
1485
1486         /* Fill the endpoint context */
1487         ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1488                                       EP_INTERVAL(interval) |
1489                                       EP_MULT(mult));
1490         ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1491                                        MAX_PACKET(max_packet) |
1492                                        MAX_BURST(max_burst) |
1493                                        ERROR_COUNT(err_count));
1494         ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1495                                   ep_ring->cycle_state);
1496
1497         ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1498                                       EP_AVG_TRB_LENGTH(avg_trb_len));
1499
1500         return 0;
1501 }
1502
1503 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1504                 struct xhci_virt_device *virt_dev,
1505                 struct usb_host_endpoint *ep)
1506 {
1507         unsigned int ep_index;
1508         struct xhci_ep_ctx *ep_ctx;
1509
1510         ep_index = xhci_get_endpoint_index(&ep->desc);
1511         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1512
1513         ep_ctx->ep_info = 0;
1514         ep_ctx->ep_info2 = 0;
1515         ep_ctx->deq = 0;
1516         ep_ctx->tx_info = 0;
1517         /* Don't free the endpoint ring until the set interface or configuration
1518          * request succeeds.
1519          */
1520 }
1521
1522 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1523 {
1524         bw_info->ep_interval = 0;
1525         bw_info->mult = 0;
1526         bw_info->num_packets = 0;
1527         bw_info->max_packet_size = 0;
1528         bw_info->type = 0;
1529         bw_info->max_esit_payload = 0;
1530 }
1531
1532 void xhci_update_bw_info(struct xhci_hcd *xhci,
1533                 struct xhci_container_ctx *in_ctx,
1534                 struct xhci_input_control_ctx *ctrl_ctx,
1535                 struct xhci_virt_device *virt_dev)
1536 {
1537         struct xhci_bw_info *bw_info;
1538         struct xhci_ep_ctx *ep_ctx;
1539         unsigned int ep_type;
1540         int i;
1541
1542         for (i = 1; i < 31; i++) {
1543                 bw_info = &virt_dev->eps[i].bw_info;
1544
1545                 /* We can't tell what endpoint type is being dropped, but
1546                  * unconditionally clearing the bandwidth info for non-periodic
1547                  * endpoints should be harmless because the info will never be
1548                  * set in the first place.
1549                  */
1550                 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1551                         /* Dropped endpoint */
1552                         xhci_clear_endpoint_bw_info(bw_info);
1553                         continue;
1554                 }
1555
1556                 if (EP_IS_ADDED(ctrl_ctx, i)) {
1557                         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1558                         ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1559
1560                         /* Ignore non-periodic endpoints */
1561                         if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1562                                         ep_type != ISOC_IN_EP &&
1563                                         ep_type != INT_IN_EP)
1564                                 continue;
1565
1566                         /* Added or changed endpoint */
1567                         bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1568                                         le32_to_cpu(ep_ctx->ep_info));
1569                         /* Number of packets and mult are zero-based in the
1570                          * input context, but we want one-based for the
1571                          * interval table.
1572                          */
1573                         bw_info->mult = CTX_TO_EP_MULT(
1574                                         le32_to_cpu(ep_ctx->ep_info)) + 1;
1575                         bw_info->num_packets = CTX_TO_MAX_BURST(
1576                                         le32_to_cpu(ep_ctx->ep_info2)) + 1;
1577                         bw_info->max_packet_size = MAX_PACKET_DECODED(
1578                                         le32_to_cpu(ep_ctx->ep_info2));
1579                         bw_info->type = ep_type;
1580                         bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1581                                         le32_to_cpu(ep_ctx->tx_info));
1582                 }
1583         }
1584 }
1585
1586 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1587  * Useful when you want to change one particular aspect of the endpoint and then
1588  * issue a configure endpoint command.
1589  */
1590 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1591                 struct xhci_container_ctx *in_ctx,
1592                 struct xhci_container_ctx *out_ctx,
1593                 unsigned int ep_index)
1594 {
1595         struct xhci_ep_ctx *out_ep_ctx;
1596         struct xhci_ep_ctx *in_ep_ctx;
1597
1598         out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1599         in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1600
1601         in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1602         in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1603         in_ep_ctx->deq = out_ep_ctx->deq;
1604         in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1605         if (xhci->quirks & XHCI_MTK_HOST) {
1606                 in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0];
1607                 in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1];
1608         }
1609 }
1610
1611 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1612  * Useful when you want to change one particular aspect of the endpoint and then
1613  * issue a configure endpoint command.  Only the context entries field matters,
1614  * but we'll copy the whole thing anyway.
1615  */
1616 void xhci_slot_copy(struct xhci_hcd *xhci,
1617                 struct xhci_container_ctx *in_ctx,
1618                 struct xhci_container_ctx *out_ctx)
1619 {
1620         struct xhci_slot_ctx *in_slot_ctx;
1621         struct xhci_slot_ctx *out_slot_ctx;
1622
1623         in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1624         out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1625
1626         in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1627         in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1628         in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1629         in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1630 }
1631
1632 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1633 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1634 {
1635         int i;
1636         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1637         int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1638
1639         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1640                         "Allocating %d scratchpad buffers", num_sp);
1641
1642         if (!num_sp)
1643                 return 0;
1644
1645         xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags,
1646                                 dev_to_node(dev));
1647         if (!xhci->scratchpad)
1648                 goto fail_sp;
1649
1650         xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1651                                      size_mul(sizeof(u64), num_sp),
1652                                      &xhci->scratchpad->sp_dma, flags);
1653         if (!xhci->scratchpad->sp_array)
1654                 goto fail_sp2;
1655
1656         xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *),
1657                                         flags, dev_to_node(dev));
1658         if (!xhci->scratchpad->sp_buffers)
1659                 goto fail_sp3;
1660
1661         xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1662         for (i = 0; i < num_sp; i++) {
1663                 dma_addr_t dma;
1664                 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1665                                                flags);
1666                 if (!buf)
1667                         goto fail_sp4;
1668
1669                 xhci->scratchpad->sp_array[i] = dma;
1670                 xhci->scratchpad->sp_buffers[i] = buf;
1671         }
1672
1673         return 0;
1674
1675  fail_sp4:
1676         while (i--)
1677                 dma_free_coherent(dev, xhci->page_size,
1678                                     xhci->scratchpad->sp_buffers[i],
1679                                     xhci->scratchpad->sp_array[i]);
1680
1681         kfree(xhci->scratchpad->sp_buffers);
1682
1683  fail_sp3:
1684         dma_free_coherent(dev, num_sp * sizeof(u64),
1685                             xhci->scratchpad->sp_array,
1686                             xhci->scratchpad->sp_dma);
1687
1688  fail_sp2:
1689         kfree(xhci->scratchpad);
1690         xhci->scratchpad = NULL;
1691
1692  fail_sp:
1693         return -ENOMEM;
1694 }
1695
1696 static void scratchpad_free(struct xhci_hcd *xhci)
1697 {
1698         int num_sp;
1699         int i;
1700         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1701
1702         if (!xhci->scratchpad)
1703                 return;
1704
1705         num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1706
1707         for (i = 0; i < num_sp; i++) {
1708                 dma_free_coherent(dev, xhci->page_size,
1709                                     xhci->scratchpad->sp_buffers[i],
1710                                     xhci->scratchpad->sp_array[i]);
1711         }
1712         kfree(xhci->scratchpad->sp_buffers);
1713         dma_free_coherent(dev, num_sp * sizeof(u64),
1714                             xhci->scratchpad->sp_array,
1715                             xhci->scratchpad->sp_dma);
1716         kfree(xhci->scratchpad);
1717         xhci->scratchpad = NULL;
1718 }
1719
1720 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1721                 bool allocate_completion, gfp_t mem_flags)
1722 {
1723         struct xhci_command *command;
1724         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1725
1726         command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev));
1727         if (!command)
1728                 return NULL;
1729
1730         if (allocate_completion) {
1731                 command->completion =
1732                         kzalloc_node(sizeof(struct completion), mem_flags,
1733                                 dev_to_node(dev));
1734                 if (!command->completion) {
1735                         kfree(command);
1736                         return NULL;
1737                 }
1738                 init_completion(command->completion);
1739         }
1740
1741         command->status = 0;
1742         INIT_LIST_HEAD(&command->cmd_list);
1743         return command;
1744 }
1745
1746 struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci,
1747                 bool allocate_completion, gfp_t mem_flags)
1748 {
1749         struct xhci_command *command;
1750
1751         command = xhci_alloc_command(xhci, allocate_completion, mem_flags);
1752         if (!command)
1753                 return NULL;
1754
1755         command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1756                                                    mem_flags);
1757         if (!command->in_ctx) {
1758                 kfree(command->completion);
1759                 kfree(command);
1760                 return NULL;
1761         }
1762         return command;
1763 }
1764
1765 void xhci_urb_free_priv(struct urb_priv *urb_priv)
1766 {
1767         kfree(urb_priv);
1768 }
1769
1770 void xhci_free_command(struct xhci_hcd *xhci,
1771                 struct xhci_command *command)
1772 {
1773         xhci_free_container_ctx(xhci,
1774                         command->in_ctx);
1775         kfree(command->completion);
1776         kfree(command);
1777 }
1778
1779 static int xhci_alloc_erst(struct xhci_hcd *xhci,
1780                     struct xhci_ring *evt_ring,
1781                     struct xhci_erst *erst,
1782                     gfp_t flags)
1783 {
1784         size_t size;
1785         unsigned int val;
1786         struct xhci_segment *seg;
1787         struct xhci_erst_entry *entry;
1788
1789         size = size_mul(sizeof(struct xhci_erst_entry), evt_ring->num_segs);
1790         erst->entries = dma_alloc_coherent(xhci_to_hcd(xhci)->self.sysdev,
1791                                            size, &erst->erst_dma_addr, flags);
1792         if (!erst->entries)
1793                 return -ENOMEM;
1794
1795         erst->num_entries = evt_ring->num_segs;
1796
1797         seg = evt_ring->first_seg;
1798         for (val = 0; val < evt_ring->num_segs; val++) {
1799                 entry = &erst->entries[val];
1800                 entry->seg_addr = cpu_to_le64(seg->dma);
1801                 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
1802                 entry->rsvd = 0;
1803                 seg = seg->next;
1804         }
1805
1806         return 0;
1807 }
1808
1809 static void
1810 xhci_remove_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
1811 {
1812         u32 tmp;
1813
1814         if (!ir)
1815                 return;
1816
1817         /*
1818          * Clean out interrupter registers except ERSTBA. Clearing either the
1819          * low or high 32 bits of ERSTBA immediately causes the controller to
1820          * dereference the partially cleared 64 bit address, causing IOMMU error.
1821          */
1822         if (ir->ir_set) {
1823                 tmp = readl(&ir->ir_set->erst_size);
1824                 tmp &= ERST_SIZE_MASK;
1825                 writel(tmp, &ir->ir_set->erst_size);
1826
1827                 xhci_write_64(xhci, ERST_EHB, &ir->ir_set->erst_dequeue);
1828         }
1829 }
1830
1831 static void
1832 xhci_free_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
1833 {
1834         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1835         size_t erst_size;
1836
1837         if (!ir)
1838                 return;
1839
1840         erst_size = sizeof(struct xhci_erst_entry) * ir->erst.num_entries;
1841         if (ir->erst.entries)
1842                 dma_free_coherent(dev, erst_size,
1843                                   ir->erst.entries,
1844                                   ir->erst.erst_dma_addr);
1845         ir->erst.entries = NULL;
1846
1847         /* free interrupter event ring */
1848         if (ir->event_ring)
1849                 xhci_ring_free(xhci, ir->event_ring);
1850
1851         ir->event_ring = NULL;
1852
1853         kfree(ir);
1854 }
1855
1856 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1857 {
1858         struct device   *dev = xhci_to_hcd(xhci)->self.sysdev;
1859         int i, j, num_ports;
1860
1861         cancel_delayed_work_sync(&xhci->cmd_timer);
1862
1863         xhci_remove_interrupter(xhci, xhci->interrupter);
1864         xhci_free_interrupter(xhci, xhci->interrupter);
1865         xhci->interrupter = NULL;
1866         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed primary event ring");
1867
1868         if (xhci->cmd_ring)
1869                 xhci_ring_free(xhci, xhci->cmd_ring);
1870         xhci->cmd_ring = NULL;
1871         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1872         xhci_cleanup_command_queue(xhci);
1873
1874         num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1875         for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1876                 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1877                 for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1878                         struct list_head *ep = &bwt->interval_bw[j].endpoints;
1879                         while (!list_empty(ep))
1880                                 list_del_init(ep->next);
1881                 }
1882         }
1883
1884         for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1885                 xhci_free_virt_devices_depth_first(xhci, i);
1886
1887         dma_pool_destroy(xhci->segment_pool);
1888         xhci->segment_pool = NULL;
1889         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1890
1891         dma_pool_destroy(xhci->device_pool);
1892         xhci->device_pool = NULL;
1893         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1894
1895         dma_pool_destroy(xhci->small_streams_pool);
1896         xhci->small_streams_pool = NULL;
1897         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1898                         "Freed small stream array pool");
1899
1900         dma_pool_destroy(xhci->medium_streams_pool);
1901         xhci->medium_streams_pool = NULL;
1902         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1903                         "Freed medium stream array pool");
1904
1905         if (xhci->dcbaa)
1906                 dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1907                                 xhci->dcbaa, xhci->dcbaa->dma);
1908         xhci->dcbaa = NULL;
1909
1910         scratchpad_free(xhci);
1911
1912         if (!xhci->rh_bw)
1913                 goto no_bw;
1914
1915         for (i = 0; i < num_ports; i++) {
1916                 struct xhci_tt_bw_info *tt, *n;
1917                 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1918                         list_del(&tt->tt_list);
1919                         kfree(tt);
1920                 }
1921         }
1922
1923 no_bw:
1924         xhci->cmd_ring_reserved_trbs = 0;
1925         xhci->usb2_rhub.num_ports = 0;
1926         xhci->usb3_rhub.num_ports = 0;
1927         xhci->num_active_eps = 0;
1928         kfree(xhci->usb2_rhub.ports);
1929         kfree(xhci->usb3_rhub.ports);
1930         kfree(xhci->hw_ports);
1931         kfree(xhci->rh_bw);
1932         kfree(xhci->ext_caps);
1933         for (i = 0; i < xhci->num_port_caps; i++)
1934                 kfree(xhci->port_caps[i].psi);
1935         kfree(xhci->port_caps);
1936         xhci->num_port_caps = 0;
1937
1938         xhci->usb2_rhub.ports = NULL;
1939         xhci->usb3_rhub.ports = NULL;
1940         xhci->hw_ports = NULL;
1941         xhci->rh_bw = NULL;
1942         xhci->ext_caps = NULL;
1943         xhci->port_caps = NULL;
1944
1945         xhci->page_size = 0;
1946         xhci->page_shift = 0;
1947         xhci->usb2_rhub.bus_state.bus_suspended = 0;
1948         xhci->usb3_rhub.bus_state.bus_suspended = 0;
1949 }
1950
1951 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
1952 {
1953         dma_addr_t deq;
1954
1955         deq = xhci_trb_virt_to_dma(ir->event_ring->deq_seg,
1956                         ir->event_ring->dequeue);
1957         if (!deq)
1958                 xhci_warn(xhci, "WARN something wrong with SW event ring dequeue ptr.\n");
1959         /* Update HC event ring dequeue pointer */
1960         /* Don't clear the EHB bit (which is RW1C) because
1961          * there might be more events to service.
1962          */
1963         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1964                        "// Write event ring dequeue pointer, preserving EHB bit");
1965         xhci_write_64(xhci, deq & ERST_PTR_MASK, &ir->ir_set->erst_dequeue);
1966 }
1967
1968 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
1969                 __le32 __iomem *addr, int max_caps)
1970 {
1971         u32 temp, port_offset, port_count;
1972         int i;
1973         u8 major_revision, minor_revision, tmp_minor_revision;
1974         struct xhci_hub *rhub;
1975         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1976         struct xhci_port_cap *port_cap;
1977
1978         temp = readl(addr);
1979         major_revision = XHCI_EXT_PORT_MAJOR(temp);
1980         minor_revision = XHCI_EXT_PORT_MINOR(temp);
1981
1982         if (major_revision == 0x03) {
1983                 rhub = &xhci->usb3_rhub;
1984                 /*
1985                  * Some hosts incorrectly use sub-minor version for minor
1986                  * version (i.e. 0x02 instead of 0x20 for bcdUSB 0x320 and 0x01
1987                  * for bcdUSB 0x310). Since there is no USB release with sub
1988                  * minor version 0x301 to 0x309, we can assume that they are
1989                  * incorrect and fix it here.
1990                  */
1991                 if (minor_revision > 0x00 && minor_revision < 0x10)
1992                         minor_revision <<= 4;
1993                 /*
1994                  * Some zhaoxin's xHCI controller that follow usb3.1 spec
1995                  * but only support Gen1.
1996                  */
1997                 if (xhci->quirks & XHCI_ZHAOXIN_HOST) {
1998                         tmp_minor_revision = minor_revision;
1999                         minor_revision = 0;
2000                 }
2001
2002         } else if (major_revision <= 0x02) {
2003                 rhub = &xhci->usb2_rhub;
2004         } else {
2005                 xhci_warn(xhci, "Ignoring unknown port speed, Ext Cap %p, revision = 0x%x\n",
2006                                 addr, major_revision);
2007                 /* Ignoring port protocol we can't understand. FIXME */
2008                 return;
2009         }
2010
2011         /* Port offset and count in the third dword, see section 7.2 */
2012         temp = readl(addr + 2);
2013         port_offset = XHCI_EXT_PORT_OFF(temp);
2014         port_count = XHCI_EXT_PORT_COUNT(temp);
2015         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2016                        "Ext Cap %p, port offset = %u, count = %u, revision = 0x%x",
2017                        addr, port_offset, port_count, major_revision);
2018         /* Port count includes the current port offset */
2019         if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2020                 /* WTF? "Valid values are â€˜1’ to MaxPorts" */
2021                 return;
2022
2023         port_cap = &xhci->port_caps[xhci->num_port_caps++];
2024         if (xhci->num_port_caps > max_caps)
2025                 return;
2026
2027         port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp);
2028
2029         if (port_cap->psi_count) {
2030                 port_cap->psi = kcalloc_node(port_cap->psi_count,
2031                                              sizeof(*port_cap->psi),
2032                                              GFP_KERNEL, dev_to_node(dev));
2033                 if (!port_cap->psi)
2034                         port_cap->psi_count = 0;
2035
2036                 port_cap->psi_uid_count++;
2037                 for (i = 0; i < port_cap->psi_count; i++) {
2038                         port_cap->psi[i] = readl(addr + 4 + i);
2039
2040                         /* count unique ID values, two consecutive entries can
2041                          * have the same ID if link is assymetric
2042                          */
2043                         if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) !=
2044                                   XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1])))
2045                                 port_cap->psi_uid_count++;
2046
2047                         if (xhci->quirks & XHCI_ZHAOXIN_HOST &&
2048                             major_revision == 0x03 &&
2049                             XHCI_EXT_PORT_PSIV(port_cap->psi[i]) >= 5)
2050                                 minor_revision = tmp_minor_revision;
2051
2052                         xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2053                                   XHCI_EXT_PORT_PSIV(port_cap->psi[i]),
2054                                   XHCI_EXT_PORT_PSIE(port_cap->psi[i]),
2055                                   XHCI_EXT_PORT_PLT(port_cap->psi[i]),
2056                                   XHCI_EXT_PORT_PFD(port_cap->psi[i]),
2057                                   XHCI_EXT_PORT_LP(port_cap->psi[i]),
2058                                   XHCI_EXT_PORT_PSIM(port_cap->psi[i]));
2059                 }
2060         }
2061
2062         rhub->maj_rev = major_revision;
2063
2064         if (rhub->min_rev < minor_revision)
2065                 rhub->min_rev = minor_revision;
2066
2067         port_cap->maj_rev = major_revision;
2068         port_cap->min_rev = minor_revision;
2069
2070         /* cache usb2 port capabilities */
2071         if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2072                 xhci->ext_caps[xhci->num_ext_caps++] = temp;
2073
2074         if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) &&
2075                  (temp & XHCI_HLC)) {
2076                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2077                                "xHCI 1.0: support USB2 hardware lpm");
2078                 xhci->hw_lpm_support = 1;
2079         }
2080
2081         port_offset--;
2082         for (i = port_offset; i < (port_offset + port_count); i++) {
2083                 struct xhci_port *hw_port = &xhci->hw_ports[i];
2084                 /* Duplicate entry.  Ignore the port if the revisions differ. */
2085                 if (hw_port->rhub) {
2086                         xhci_warn(xhci, "Duplicate port entry, Ext Cap %p, port %u\n", addr, i);
2087                         xhci_warn(xhci, "Port was marked as USB %u, duplicated as USB %u\n",
2088                                         hw_port->rhub->maj_rev, major_revision);
2089                         /* Only adjust the roothub port counts if we haven't
2090                          * found a similar duplicate.
2091                          */
2092                         if (hw_port->rhub != rhub &&
2093                                  hw_port->hcd_portnum != DUPLICATE_ENTRY) {
2094                                 hw_port->rhub->num_ports--;
2095                                 hw_port->hcd_portnum = DUPLICATE_ENTRY;
2096                         }
2097                         continue;
2098                 }
2099                 hw_port->rhub = rhub;
2100                 hw_port->port_cap = port_cap;
2101                 rhub->num_ports++;
2102         }
2103         /* FIXME: Should we disable ports not in the Extended Capabilities? */
2104 }
2105
2106 static void xhci_create_rhub_port_array(struct xhci_hcd *xhci,
2107                                         struct xhci_hub *rhub, gfp_t flags)
2108 {
2109         int port_index = 0;
2110         int i;
2111         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2112
2113         if (!rhub->num_ports)
2114                 return;
2115         rhub->ports = kcalloc_node(rhub->num_ports, sizeof(*rhub->ports),
2116                         flags, dev_to_node(dev));
2117         if (!rhub->ports)
2118                 return;
2119
2120         for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
2121                 if (xhci->hw_ports[i].rhub != rhub ||
2122                     xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY)
2123                         continue;
2124                 xhci->hw_ports[i].hcd_portnum = port_index;
2125                 rhub->ports[port_index] = &xhci->hw_ports[i];
2126                 port_index++;
2127                 if (port_index == rhub->num_ports)
2128                         break;
2129         }
2130 }
2131
2132 /*
2133  * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2134  * specify what speeds each port is supposed to be.  We can't count on the port
2135  * speed bits in the PORTSC register being correct until a device is connected,
2136  * but we need to set up the two fake roothubs with the correct number of USB
2137  * 3.0 and USB 2.0 ports at host controller initialization time.
2138  */
2139 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2140 {
2141         void __iomem *base;
2142         u32 offset;
2143         unsigned int num_ports;
2144         int i, j;
2145         int cap_count = 0;
2146         u32 cap_start;
2147         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2148
2149         num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2150         xhci->hw_ports = kcalloc_node(num_ports, sizeof(*xhci->hw_ports),
2151                                 flags, dev_to_node(dev));
2152         if (!xhci->hw_ports)
2153                 return -ENOMEM;
2154
2155         for (i = 0; i < num_ports; i++) {
2156                 xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base +
2157                         NUM_PORT_REGS * i;
2158                 xhci->hw_ports[i].hw_portnum = i;
2159
2160                 init_completion(&xhci->hw_ports[i].rexit_done);
2161                 init_completion(&xhci->hw_ports[i].u3exit_done);
2162         }
2163
2164         xhci->rh_bw = kcalloc_node(num_ports, sizeof(*xhci->rh_bw), flags,
2165                                    dev_to_node(dev));
2166         if (!xhci->rh_bw)
2167                 return -ENOMEM;
2168         for (i = 0; i < num_ports; i++) {
2169                 struct xhci_interval_bw_table *bw_table;
2170
2171                 INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2172                 bw_table = &xhci->rh_bw[i].bw_table;
2173                 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2174                         INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2175         }
2176         base = &xhci->cap_regs->hc_capbase;
2177
2178         cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2179         if (!cap_start) {
2180                 xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2181                 return -ENODEV;
2182         }
2183
2184         offset = cap_start;
2185         /* count extended protocol capability entries for later caching */
2186         while (offset) {
2187                 cap_count++;
2188                 offset = xhci_find_next_ext_cap(base, offset,
2189                                                       XHCI_EXT_CAPS_PROTOCOL);
2190         }
2191
2192         xhci->ext_caps = kcalloc_node(cap_count, sizeof(*xhci->ext_caps),
2193                                 flags, dev_to_node(dev));
2194         if (!xhci->ext_caps)
2195                 return -ENOMEM;
2196
2197         xhci->port_caps = kcalloc_node(cap_count, sizeof(*xhci->port_caps),
2198                                 flags, dev_to_node(dev));
2199         if (!xhci->port_caps)
2200                 return -ENOMEM;
2201
2202         offset = cap_start;
2203
2204         while (offset) {
2205                 xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2206                 if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports ==
2207                     num_ports)
2208                         break;
2209                 offset = xhci_find_next_ext_cap(base, offset,
2210                                                 XHCI_EXT_CAPS_PROTOCOL);
2211         }
2212         if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) {
2213                 xhci_warn(xhci, "No ports on the roothubs?\n");
2214                 return -ENODEV;
2215         }
2216         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2217                        "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2218                        xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports);
2219
2220         /* Place limits on the number of roothub ports so that the hub
2221          * descriptors aren't longer than the USB core will allocate.
2222          */
2223         if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) {
2224                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2225                                 "Limiting USB 3.0 roothub ports to %u.",
2226                                 USB_SS_MAXPORTS);
2227                 xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS;
2228         }
2229         if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) {
2230                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2231                                 "Limiting USB 2.0 roothub ports to %u.",
2232                                 USB_MAXCHILDREN);
2233                 xhci->usb2_rhub.num_ports = USB_MAXCHILDREN;
2234         }
2235
2236         if (!xhci->usb2_rhub.num_ports)
2237                 xhci_info(xhci, "USB2 root hub has no ports\n");
2238
2239         if (!xhci->usb3_rhub.num_ports)
2240                 xhci_info(xhci, "USB3 root hub has no ports\n");
2241
2242         xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags);
2243         xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags);
2244
2245         return 0;
2246 }
2247
2248 static struct xhci_interrupter *
2249 xhci_alloc_interrupter(struct xhci_hcd *xhci, gfp_t flags)
2250 {
2251         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2252         struct xhci_interrupter *ir;
2253         unsigned int num_segs;
2254         int ret;
2255
2256         ir = kzalloc_node(sizeof(*ir), flags, dev_to_node(dev));
2257         if (!ir)
2258                 return NULL;
2259
2260         num_segs = min_t(unsigned int, 1 << HCS_ERST_MAX(xhci->hcs_params2),
2261                          ERST_MAX_SEGS);
2262
2263         ir->event_ring = xhci_ring_alloc(xhci, num_segs, 1, TYPE_EVENT, 0,
2264                                          flags);
2265         if (!ir->event_ring) {
2266                 xhci_warn(xhci, "Failed to allocate interrupter event ring\n");
2267                 kfree(ir);
2268                 return NULL;
2269         }
2270
2271         ret = xhci_alloc_erst(xhci, ir->event_ring, &ir->erst, flags);
2272         if (ret) {
2273                 xhci_warn(xhci, "Failed to allocate interrupter erst\n");
2274                 xhci_ring_free(xhci, ir->event_ring);
2275                 kfree(ir);
2276                 return NULL;
2277         }
2278
2279         return ir;
2280 }
2281
2282 static int
2283 xhci_add_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir,
2284                      unsigned int intr_num)
2285 {
2286         u64 erst_base;
2287         u32 erst_size;
2288
2289         if (intr_num > xhci->max_interrupters) {
2290                 xhci_warn(xhci, "Can't add interrupter %d, max interrupters %d\n",
2291                           intr_num, xhci->max_interrupters);
2292                 return -EINVAL;
2293         }
2294
2295         ir->ir_set = &xhci->run_regs->ir_set[intr_num];
2296
2297         /* set ERST count with the number of entries in the segment table */
2298         erst_size = readl(&ir->ir_set->erst_size);
2299         erst_size &= ERST_SIZE_MASK;
2300         erst_size |= ir->event_ring->num_segs;
2301         writel(erst_size, &ir->ir_set->erst_size);
2302
2303         erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base);
2304         erst_base &= ERST_BASE_RSVDP;
2305         erst_base |= ir->erst.erst_dma_addr & ~ERST_BASE_RSVDP;
2306         xhci_write_64(xhci, erst_base, &ir->ir_set->erst_base);
2307
2308         /* Set the event ring dequeue address of this interrupter */
2309         xhci_set_hc_event_deq(xhci, ir);
2310
2311         return 0;
2312 }
2313
2314 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2315 {
2316         dma_addr_t      dma;
2317         struct device   *dev = xhci_to_hcd(xhci)->self.sysdev;
2318         unsigned int    val, val2;
2319         u64             val_64;
2320         u32             page_size, temp;
2321         int             i;
2322
2323         INIT_LIST_HEAD(&xhci->cmd_list);
2324
2325         /* init command timeout work */
2326         INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2327         init_completion(&xhci->cmd_ring_stop_completion);
2328
2329         page_size = readl(&xhci->op_regs->page_size);
2330         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2331                         "Supported page size register = 0x%x", page_size);
2332         i = ffs(page_size);
2333         if (i < 16)
2334                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2335                         "Supported page size of %iK", (1 << (i+12)) / 1024);
2336         else
2337                 xhci_warn(xhci, "WARN: no supported page size\n");
2338         /* Use 4K pages, since that's common and the minimum the HC supports */
2339         xhci->page_shift = 12;
2340         xhci->page_size = 1 << xhci->page_shift;
2341         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2342                         "HCD page size set to %iK", xhci->page_size / 1024);
2343
2344         /*
2345          * Program the Number of Device Slots Enabled field in the CONFIG
2346          * register with the max value of slots the HC can handle.
2347          */
2348         val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2349         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2350                         "// xHC can handle at most %d device slots.", val);
2351         val2 = readl(&xhci->op_regs->config_reg);
2352         val |= (val2 & ~HCS_SLOTS_MASK);
2353         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2354                         "// Setting Max device slots reg = 0x%x.", val);
2355         writel(val, &xhci->op_regs->config_reg);
2356
2357         /*
2358          * xHCI section 5.4.6 - Device Context array must be
2359          * "physically contiguous and 64-byte (cache line) aligned".
2360          */
2361         xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2362                         flags);
2363         if (!xhci->dcbaa)
2364                 goto fail;
2365         xhci->dcbaa->dma = dma;
2366         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2367                         "// Device context base array address = 0x%pad (DMA), %p (virt)",
2368                         &xhci->dcbaa->dma, xhci->dcbaa);
2369         xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2370
2371         /*
2372          * Initialize the ring segment pool.  The ring must be a contiguous
2373          * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2374          * however, the command ring segment needs 64-byte aligned segments
2375          * and our use of dma addresses in the trb_address_map radix tree needs
2376          * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2377          */
2378         if (xhci->quirks & XHCI_ZHAOXIN_TRB_FETCH)
2379                 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2380                                 TRB_SEGMENT_SIZE * 2, TRB_SEGMENT_SIZE * 2, xhci->page_size * 2);
2381         else
2382                 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2383                                 TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2384
2385         /* See Table 46 and Note on Figure 55 */
2386         xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2387                         2112, 64, xhci->page_size);
2388         if (!xhci->segment_pool || !xhci->device_pool)
2389                 goto fail;
2390
2391         /* Linear stream context arrays don't have any boundary restrictions,
2392          * and only need to be 16-byte aligned.
2393          */
2394         xhci->small_streams_pool =
2395                 dma_pool_create("xHCI 256 byte stream ctx arrays",
2396                         dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2397         xhci->medium_streams_pool =
2398                 dma_pool_create("xHCI 1KB stream ctx arrays",
2399                         dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2400         /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2401          * will be allocated with dma_alloc_coherent()
2402          */
2403
2404         if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2405                 goto fail;
2406
2407         /* Set up the command ring to have one segments for now. */
2408         xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2409         if (!xhci->cmd_ring)
2410                 goto fail;
2411         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2412                         "Allocated command ring at %p", xhci->cmd_ring);
2413         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%pad",
2414                         &xhci->cmd_ring->first_seg->dma);
2415
2416         /* Set the address in the Command Ring Control register */
2417         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2418         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2419                 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2420                 xhci->cmd_ring->cycle_state;
2421         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2422                         "// Setting command ring address to 0x%016llx", val_64);
2423         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2424
2425         /* Reserve one command ring TRB for disabling LPM.
2426          * Since the USB core grabs the shared usb_bus bandwidth mutex before
2427          * disabling LPM, we only need to reserve one TRB for all devices.
2428          */
2429         xhci->cmd_ring_reserved_trbs++;
2430
2431         val = readl(&xhci->cap_regs->db_off);
2432         val &= DBOFF_MASK;
2433         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2434                        "// Doorbell array is located at offset 0x%x from cap regs base addr",
2435                        val);
2436         xhci->dba = (void __iomem *) xhci->cap_regs + val;
2437
2438         /* Allocate and set up primary interrupter 0 with an event ring. */
2439         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2440                        "Allocating primary event ring");
2441         xhci->interrupter = xhci_alloc_interrupter(xhci, flags);
2442         if (!xhci->interrupter)
2443                 goto fail;
2444
2445         if (xhci_add_interrupter(xhci, xhci->interrupter, 0))
2446                 goto fail;
2447
2448         xhci->isoc_bei_interval = AVOID_BEI_INTERVAL_MAX;
2449
2450         /*
2451          * XXX: Might need to set the Interrupter Moderation Register to
2452          * something other than the default (~1ms minimum between interrupts).
2453          * See section 5.5.1.2.
2454          */
2455         for (i = 0; i < MAX_HC_SLOTS; i++)
2456                 xhci->devs[i] = NULL;
2457
2458         if (scratchpad_alloc(xhci, flags))
2459                 goto fail;
2460         if (xhci_setup_port_arrays(xhci, flags))
2461                 goto fail;
2462
2463         /* Enable USB 3.0 device notifications for function remote wake, which
2464          * is necessary for allowing USB 3.0 devices to do remote wakeup from
2465          * U3 (device suspend).
2466          */
2467         temp = readl(&xhci->op_regs->dev_notification);
2468         temp &= ~DEV_NOTE_MASK;
2469         temp |= DEV_NOTE_FWAKE;
2470         writel(temp, &xhci->op_regs->dev_notification);
2471
2472         return 0;
2473
2474 fail:
2475         xhci_halt(xhci);
2476         xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
2477         xhci_mem_cleanup(xhci);
2478         return -ENOMEM;
2479 }