GNU Linux-libre 4.14.328-gnu1
[releases.git] / drivers / usb / host / xhci-mem.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/dmapool.h>
27 #include <linux/dma-mapping.h>
28
29 #include "xhci.h"
30 #include "xhci-trace.h"
31
32 /*
33  * Allocates a generic ring segment from the ring pool, sets the dma address,
34  * initializes the segment to zero, and sets the private next pointer to NULL.
35  *
36  * Section 4.11.1.1:
37  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
38  */
39 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
40                                                unsigned int cycle_state,
41                                                unsigned int max_packet,
42                                                gfp_t flags)
43 {
44         struct xhci_segment *seg;
45         dma_addr_t      dma;
46         int             i;
47
48         seg = kzalloc(sizeof *seg, flags);
49         if (!seg)
50                 return NULL;
51
52         seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
53         if (!seg->trbs) {
54                 kfree(seg);
55                 return NULL;
56         }
57
58         if (max_packet) {
59                 seg->bounce_buf = kzalloc(max_packet, flags);
60                 if (!seg->bounce_buf) {
61                         dma_pool_free(xhci->segment_pool, seg->trbs, dma);
62                         kfree(seg);
63                         return NULL;
64                 }
65         }
66         /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
67         if (cycle_state == 0) {
68                 for (i = 0; i < TRBS_PER_SEGMENT; i++)
69                         seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
70         }
71         seg->dma = dma;
72         seg->next = NULL;
73
74         return seg;
75 }
76
77 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
78 {
79         if (seg->trbs) {
80                 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
81                 seg->trbs = NULL;
82         }
83         kfree(seg->bounce_buf);
84         kfree(seg);
85 }
86
87 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
88                                 struct xhci_segment *first)
89 {
90         struct xhci_segment *seg;
91
92         seg = first->next;
93         while (seg != first) {
94                 struct xhci_segment *next = seg->next;
95                 xhci_segment_free(xhci, seg);
96                 seg = next;
97         }
98         xhci_segment_free(xhci, first);
99 }
100
101 /*
102  * Make the prev segment point to the next segment.
103  *
104  * Change the last TRB in the prev segment to be a Link TRB which points to the
105  * DMA address of the next segment.  The caller needs to set any Link TRB
106  * related flags, such as End TRB, Toggle Cycle, and no snoop.
107  */
108 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
109                 struct xhci_segment *next, enum xhci_ring_type type)
110 {
111         u32 val;
112
113         if (!prev || !next)
114                 return;
115         prev->next = next;
116         if (type != TYPE_EVENT) {
117                 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
118                         cpu_to_le64(next->dma);
119
120                 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
121                 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
122                 val &= ~TRB_TYPE_BITMASK;
123                 val |= TRB_TYPE(TRB_LINK);
124                 /* Always set the chain bit with 0.95 hardware */
125                 /* Set chain bit for isoc rings on AMD 0.96 host */
126                 if (xhci_link_trb_quirk(xhci) ||
127                                 (type == TYPE_ISOC &&
128                                  (xhci->quirks & XHCI_AMD_0x96_HOST)))
129                         val |= TRB_CHAIN;
130                 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
131         }
132 }
133
134 /*
135  * Link the ring to the new segments.
136  * Set Toggle Cycle for the new ring if needed.
137  */
138 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
139                 struct xhci_segment *first, struct xhci_segment *last,
140                 unsigned int num_segs)
141 {
142         struct xhci_segment *next;
143
144         if (!ring || !first || !last)
145                 return;
146
147         next = ring->enq_seg->next;
148         xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
149         xhci_link_segments(xhci, last, next, ring->type);
150         ring->num_segs += num_segs;
151         ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
152
153         if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
154                 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
155                         &= ~cpu_to_le32(LINK_TOGGLE);
156                 last->trbs[TRBS_PER_SEGMENT-1].link.control
157                         |= cpu_to_le32(LINK_TOGGLE);
158                 ring->last_seg = last;
159         }
160 }
161
162 /*
163  * We need a radix tree for mapping physical addresses of TRBs to which stream
164  * ID they belong to.  We need to do this because the host controller won't tell
165  * us which stream ring the TRB came from.  We could store the stream ID in an
166  * event data TRB, but that doesn't help us for the cancellation case, since the
167  * endpoint may stop before it reaches that event data TRB.
168  *
169  * The radix tree maps the upper portion of the TRB DMA address to a ring
170  * segment that has the same upper portion of DMA addresses.  For example, say I
171  * have segments of size 1KB, that are always 1KB aligned.  A segment may
172  * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
173  * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
174  * pass the radix tree a key to get the right stream ID:
175  *
176  *      0x10c90fff >> 10 = 0x43243
177  *      0x10c912c0 >> 10 = 0x43244
178  *      0x10c91400 >> 10 = 0x43245
179  *
180  * Obviously, only those TRBs with DMA addresses that are within the segment
181  * will make the radix tree return the stream ID for that ring.
182  *
183  * Caveats for the radix tree:
184  *
185  * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
186  * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
187  * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
188  * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
189  * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
190  * extended systems (where the DMA address can be bigger than 32-bits),
191  * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
192  */
193 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
194                 struct xhci_ring *ring,
195                 struct xhci_segment *seg,
196                 gfp_t mem_flags)
197 {
198         unsigned long key;
199         int ret;
200
201         key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
202         /* Skip any segments that were already added. */
203         if (radix_tree_lookup(trb_address_map, key))
204                 return 0;
205
206         ret = radix_tree_maybe_preload(mem_flags);
207         if (ret)
208                 return ret;
209         ret = radix_tree_insert(trb_address_map,
210                         key, ring);
211         radix_tree_preload_end();
212         return ret;
213 }
214
215 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
216                 struct xhci_segment *seg)
217 {
218         unsigned long key;
219
220         key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
221         if (radix_tree_lookup(trb_address_map, key))
222                 radix_tree_delete(trb_address_map, key);
223 }
224
225 static int xhci_update_stream_segment_mapping(
226                 struct radix_tree_root *trb_address_map,
227                 struct xhci_ring *ring,
228                 struct xhci_segment *first_seg,
229                 struct xhci_segment *last_seg,
230                 gfp_t mem_flags)
231 {
232         struct xhci_segment *seg;
233         struct xhci_segment *failed_seg;
234         int ret;
235
236         if (WARN_ON_ONCE(trb_address_map == NULL))
237                 return 0;
238
239         seg = first_seg;
240         do {
241                 ret = xhci_insert_segment_mapping(trb_address_map,
242                                 ring, seg, mem_flags);
243                 if (ret)
244                         goto remove_streams;
245                 if (seg == last_seg)
246                         return 0;
247                 seg = seg->next;
248         } while (seg != first_seg);
249
250         return 0;
251
252 remove_streams:
253         failed_seg = seg;
254         seg = first_seg;
255         do {
256                 xhci_remove_segment_mapping(trb_address_map, seg);
257                 if (seg == failed_seg)
258                         return ret;
259                 seg = seg->next;
260         } while (seg != first_seg);
261
262         return ret;
263 }
264
265 static void xhci_remove_stream_mapping(struct xhci_ring *ring)
266 {
267         struct xhci_segment *seg;
268
269         if (WARN_ON_ONCE(ring->trb_address_map == NULL))
270                 return;
271
272         seg = ring->first_seg;
273         do {
274                 xhci_remove_segment_mapping(ring->trb_address_map, seg);
275                 seg = seg->next;
276         } while (seg != ring->first_seg);
277 }
278
279 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
280 {
281         return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
282                         ring->first_seg, ring->last_seg, mem_flags);
283 }
284
285 /* XXX: Do we need the hcd structure in all these functions? */
286 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
287 {
288         if (!ring)
289                 return;
290
291         trace_xhci_ring_free(ring);
292
293         if (ring->first_seg) {
294                 if (ring->type == TYPE_STREAM)
295                         xhci_remove_stream_mapping(ring);
296                 xhci_free_segments_for_ring(xhci, ring->first_seg);
297         }
298
299         kfree(ring);
300 }
301
302 static void xhci_initialize_ring_info(struct xhci_ring *ring,
303                                         unsigned int cycle_state)
304 {
305         /* The ring is empty, so the enqueue pointer == dequeue pointer */
306         ring->enqueue = ring->first_seg->trbs;
307         ring->enq_seg = ring->first_seg;
308         ring->dequeue = ring->enqueue;
309         ring->deq_seg = ring->first_seg;
310         /* The ring is initialized to 0. The producer must write 1 to the cycle
311          * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
312          * compare CCS to the cycle bit to check ownership, so CCS = 1.
313          *
314          * New rings are initialized with cycle state equal to 1; if we are
315          * handling ring expansion, set the cycle state equal to the old ring.
316          */
317         ring->cycle_state = cycle_state;
318
319         /*
320          * Each segment has a link TRB, and leave an extra TRB for SW
321          * accounting purpose
322          */
323         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
324 }
325
326 /* Allocate segments and link them for a ring */
327 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
328                 struct xhci_segment **first, struct xhci_segment **last,
329                 unsigned int num_segs, unsigned int cycle_state,
330                 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
331 {
332         struct xhci_segment *prev;
333
334         prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
335         if (!prev)
336                 return -ENOMEM;
337         num_segs--;
338
339         *first = prev;
340         while (num_segs > 0) {
341                 struct xhci_segment     *next;
342
343                 next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
344                 if (!next) {
345                         prev = *first;
346                         while (prev) {
347                                 next = prev->next;
348                                 xhci_segment_free(xhci, prev);
349                                 prev = next;
350                         }
351                         return -ENOMEM;
352                 }
353                 xhci_link_segments(xhci, prev, next, type);
354
355                 prev = next;
356                 num_segs--;
357         }
358         xhci_link_segments(xhci, prev, *first, type);
359         *last = prev;
360
361         return 0;
362 }
363
364 /**
365  * Create a new ring with zero or more segments.
366  *
367  * Link each segment together into a ring.
368  * Set the end flag and the cycle toggle bit on the last segment.
369  * See section 4.9.1 and figures 15 and 16.
370  */
371 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
372                 unsigned int num_segs, unsigned int cycle_state,
373                 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
374 {
375         struct xhci_ring        *ring;
376         int ret;
377
378         ring = kzalloc(sizeof *(ring), flags);
379         if (!ring)
380                 return NULL;
381
382         ring->num_segs = num_segs;
383         ring->bounce_buf_len = max_packet;
384         INIT_LIST_HEAD(&ring->td_list);
385         ring->type = type;
386         if (num_segs == 0)
387                 return ring;
388
389         ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
390                         &ring->last_seg, num_segs, cycle_state, type,
391                         max_packet, flags);
392         if (ret)
393                 goto fail;
394
395         /* Only event ring does not use link TRB */
396         if (type != TYPE_EVENT) {
397                 /* See section 4.9.2.1 and 6.4.4.1 */
398                 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
399                         cpu_to_le32(LINK_TOGGLE);
400         }
401         xhci_initialize_ring_info(ring, cycle_state);
402         trace_xhci_ring_alloc(ring);
403         return ring;
404
405 fail:
406         kfree(ring);
407         return NULL;
408 }
409
410 void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
411                 struct xhci_virt_device *virt_dev,
412                 unsigned int ep_index)
413 {
414         xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
415         virt_dev->eps[ep_index].ring = NULL;
416 }
417
418 /*
419  * Expand an existing ring.
420  * Allocate a new ring which has same segment numbers and link the two rings.
421  */
422 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
423                                 unsigned int num_trbs, gfp_t flags)
424 {
425         struct xhci_segment     *first;
426         struct xhci_segment     *last;
427         unsigned int            num_segs;
428         unsigned int            num_segs_needed;
429         int                     ret;
430
431         num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
432                                 (TRBS_PER_SEGMENT - 1);
433
434         /* Allocate number of segments we needed, or double the ring size */
435         num_segs = ring->num_segs > num_segs_needed ?
436                         ring->num_segs : num_segs_needed;
437
438         ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
439                         num_segs, ring->cycle_state, ring->type,
440                         ring->bounce_buf_len, flags);
441         if (ret)
442                 return -ENOMEM;
443
444         if (ring->type == TYPE_STREAM)
445                 ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
446                                                 ring, first, last, flags);
447         if (ret) {
448                 struct xhci_segment *next;
449                 do {
450                         next = first->next;
451                         xhci_segment_free(xhci, first);
452                         if (first == last)
453                                 break;
454                         first = next;
455                 } while (true);
456                 return ret;
457         }
458
459         xhci_link_rings(xhci, ring, first, last, num_segs);
460         trace_xhci_ring_expansion(ring);
461         xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
462                         "ring expansion succeed, now has %d segments",
463                         ring->num_segs);
464
465         return 0;
466 }
467
468 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
469
470 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
471                                                     int type, gfp_t flags)
472 {
473         struct xhci_container_ctx *ctx;
474
475         if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
476                 return NULL;
477
478         ctx = kzalloc(sizeof(*ctx), flags);
479         if (!ctx)
480                 return NULL;
481
482         ctx->type = type;
483         ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
484         if (type == XHCI_CTX_TYPE_INPUT)
485                 ctx->size += CTX_SIZE(xhci->hcc_params);
486
487         ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
488         if (!ctx->bytes) {
489                 kfree(ctx);
490                 return NULL;
491         }
492         return ctx;
493 }
494
495 static void xhci_free_container_ctx(struct xhci_hcd *xhci,
496                              struct xhci_container_ctx *ctx)
497 {
498         if (!ctx)
499                 return;
500         dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
501         kfree(ctx);
502 }
503
504 struct xhci_input_control_ctx *xhci_get_input_control_ctx(
505                                               struct xhci_container_ctx *ctx)
506 {
507         if (ctx->type != XHCI_CTX_TYPE_INPUT)
508                 return NULL;
509
510         return (struct xhci_input_control_ctx *)ctx->bytes;
511 }
512
513 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
514                                         struct xhci_container_ctx *ctx)
515 {
516         if (ctx->type == XHCI_CTX_TYPE_DEVICE)
517                 return (struct xhci_slot_ctx *)ctx->bytes;
518
519         return (struct xhci_slot_ctx *)
520                 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
521 }
522
523 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
524                                     struct xhci_container_ctx *ctx,
525                                     unsigned int ep_index)
526 {
527         /* increment ep index by offset of start of ep ctx array */
528         ep_index++;
529         if (ctx->type == XHCI_CTX_TYPE_INPUT)
530                 ep_index++;
531
532         return (struct xhci_ep_ctx *)
533                 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
534 }
535
536
537 /***************** Streams structures manipulation *************************/
538
539 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
540                 unsigned int num_stream_ctxs,
541                 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
542 {
543         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
544         size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
545
546         if (size > MEDIUM_STREAM_ARRAY_SIZE)
547                 dma_free_coherent(dev, size,
548                                 stream_ctx, dma);
549         else if (size <= SMALL_STREAM_ARRAY_SIZE)
550                 return dma_pool_free(xhci->small_streams_pool,
551                                 stream_ctx, dma);
552         else
553                 return dma_pool_free(xhci->medium_streams_pool,
554                                 stream_ctx, dma);
555 }
556
557 /*
558  * The stream context array for each endpoint with bulk streams enabled can
559  * vary in size, based on:
560  *  - how many streams the endpoint supports,
561  *  - the maximum primary stream array size the host controller supports,
562  *  - and how many streams the device driver asks for.
563  *
564  * The stream context array must be a power of 2, and can be as small as
565  * 64 bytes or as large as 1MB.
566  */
567 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
568                 unsigned int num_stream_ctxs, dma_addr_t *dma,
569                 gfp_t mem_flags)
570 {
571         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
572         size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
573
574         if (size > MEDIUM_STREAM_ARRAY_SIZE)
575                 return dma_alloc_coherent(dev, size,
576                                 dma, mem_flags);
577         else if (size <= SMALL_STREAM_ARRAY_SIZE)
578                 return dma_pool_alloc(xhci->small_streams_pool,
579                                 mem_flags, dma);
580         else
581                 return dma_pool_alloc(xhci->medium_streams_pool,
582                                 mem_flags, dma);
583 }
584
585 struct xhci_ring *xhci_dma_to_transfer_ring(
586                 struct xhci_virt_ep *ep,
587                 u64 address)
588 {
589         if (ep->ep_state & EP_HAS_STREAMS)
590                 return radix_tree_lookup(&ep->stream_info->trb_address_map,
591                                 address >> TRB_SEGMENT_SHIFT);
592         return ep->ring;
593 }
594
595 struct xhci_ring *xhci_stream_id_to_ring(
596                 struct xhci_virt_device *dev,
597                 unsigned int ep_index,
598                 unsigned int stream_id)
599 {
600         struct xhci_virt_ep *ep = &dev->eps[ep_index];
601
602         if (stream_id == 0)
603                 return ep->ring;
604         if (!ep->stream_info)
605                 return NULL;
606
607         if (stream_id >= ep->stream_info->num_streams)
608                 return NULL;
609         return ep->stream_info->stream_rings[stream_id];
610 }
611
612 /*
613  * Change an endpoint's internal structure so it supports stream IDs.  The
614  * number of requested streams includes stream 0, which cannot be used by device
615  * drivers.
616  *
617  * The number of stream contexts in the stream context array may be bigger than
618  * the number of streams the driver wants to use.  This is because the number of
619  * stream context array entries must be a power of two.
620  */
621 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
622                 unsigned int num_stream_ctxs,
623                 unsigned int num_streams,
624                 unsigned int max_packet, gfp_t mem_flags)
625 {
626         struct xhci_stream_info *stream_info;
627         u32 cur_stream;
628         struct xhci_ring *cur_ring;
629         u64 addr;
630         int ret;
631
632         xhci_dbg(xhci, "Allocating %u streams and %u "
633                         "stream context array entries.\n",
634                         num_streams, num_stream_ctxs);
635         if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
636                 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
637                 return NULL;
638         }
639         xhci->cmd_ring_reserved_trbs++;
640
641         stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
642         if (!stream_info)
643                 goto cleanup_trbs;
644
645         stream_info->num_streams = num_streams;
646         stream_info->num_stream_ctxs = num_stream_ctxs;
647
648         /* Initialize the array of virtual pointers to stream rings. */
649         stream_info->stream_rings = kzalloc(
650                         sizeof(struct xhci_ring *)*num_streams,
651                         mem_flags);
652         if (!stream_info->stream_rings)
653                 goto cleanup_info;
654
655         /* Initialize the array of DMA addresses for stream rings for the HW. */
656         stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
657                         num_stream_ctxs, &stream_info->ctx_array_dma,
658                         mem_flags);
659         if (!stream_info->stream_ctx_array)
660                 goto cleanup_ring_array;
661         memset(stream_info->stream_ctx_array, 0,
662                         sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
663
664         /* Allocate everything needed to free the stream rings later */
665         stream_info->free_streams_command =
666                 xhci_alloc_command(xhci, true, true, mem_flags);
667         if (!stream_info->free_streams_command)
668                 goto cleanup_ctx;
669
670         INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
671
672         /* Allocate rings for all the streams that the driver will use,
673          * and add their segment DMA addresses to the radix tree.
674          * Stream 0 is reserved.
675          */
676
677         for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
678                 stream_info->stream_rings[cur_stream] =
679                         xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
680                                         mem_flags);
681                 cur_ring = stream_info->stream_rings[cur_stream];
682                 if (!cur_ring)
683                         goto cleanup_rings;
684                 cur_ring->stream_id = cur_stream;
685                 cur_ring->trb_address_map = &stream_info->trb_address_map;
686                 /* Set deq ptr, cycle bit, and stream context type */
687                 addr = cur_ring->first_seg->dma |
688                         SCT_FOR_CTX(SCT_PRI_TR) |
689                         cur_ring->cycle_state;
690                 stream_info->stream_ctx_array[cur_stream].stream_ring =
691                         cpu_to_le64(addr);
692                 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
693                                 cur_stream, (unsigned long long) addr);
694
695                 ret = xhci_update_stream_mapping(cur_ring, mem_flags);
696                 if (ret) {
697                         xhci_ring_free(xhci, cur_ring);
698                         stream_info->stream_rings[cur_stream] = NULL;
699                         goto cleanup_rings;
700                 }
701         }
702         /* Leave the other unused stream ring pointers in the stream context
703          * array initialized to zero.  This will cause the xHC to give us an
704          * error if the device asks for a stream ID we don't have setup (if it
705          * was any other way, the host controller would assume the ring is
706          * "empty" and wait forever for data to be queued to that stream ID).
707          */
708
709         return stream_info;
710
711 cleanup_rings:
712         for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
713                 cur_ring = stream_info->stream_rings[cur_stream];
714                 if (cur_ring) {
715                         xhci_ring_free(xhci, cur_ring);
716                         stream_info->stream_rings[cur_stream] = NULL;
717                 }
718         }
719         xhci_free_command(xhci, stream_info->free_streams_command);
720 cleanup_ctx:
721         xhci_free_stream_ctx(xhci,
722                 stream_info->num_stream_ctxs,
723                 stream_info->stream_ctx_array,
724                 stream_info->ctx_array_dma);
725 cleanup_ring_array:
726         kfree(stream_info->stream_rings);
727 cleanup_info:
728         kfree(stream_info);
729 cleanup_trbs:
730         xhci->cmd_ring_reserved_trbs--;
731         return NULL;
732 }
733 /*
734  * Sets the MaxPStreams field and the Linear Stream Array field.
735  * Sets the dequeue pointer to the stream context array.
736  */
737 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
738                 struct xhci_ep_ctx *ep_ctx,
739                 struct xhci_stream_info *stream_info)
740 {
741         u32 max_primary_streams;
742         /* MaxPStreams is the number of stream context array entries, not the
743          * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
744          * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
745          */
746         max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
747         xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
748                         "Setting number of stream ctx array entries to %u",
749                         1 << (max_primary_streams + 1));
750         ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
751         ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
752                                        | EP_HAS_LSA);
753         ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
754 }
755
756 /*
757  * Sets the MaxPStreams field and the Linear Stream Array field to 0.
758  * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
759  * not at the beginning of the ring).
760  */
761 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
762                 struct xhci_virt_ep *ep)
763 {
764         dma_addr_t addr;
765         ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
766         addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
767         ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
768 }
769
770 /* Frees all stream contexts associated with the endpoint,
771  *
772  * Caller should fix the endpoint context streams fields.
773  */
774 void xhci_free_stream_info(struct xhci_hcd *xhci,
775                 struct xhci_stream_info *stream_info)
776 {
777         int cur_stream;
778         struct xhci_ring *cur_ring;
779
780         if (!stream_info)
781                 return;
782
783         for (cur_stream = 1; cur_stream < stream_info->num_streams;
784                         cur_stream++) {
785                 cur_ring = stream_info->stream_rings[cur_stream];
786                 if (cur_ring) {
787                         xhci_ring_free(xhci, cur_ring);
788                         stream_info->stream_rings[cur_stream] = NULL;
789                 }
790         }
791         xhci_free_command(xhci, stream_info->free_streams_command);
792         xhci->cmd_ring_reserved_trbs--;
793         if (stream_info->stream_ctx_array)
794                 xhci_free_stream_ctx(xhci,
795                                 stream_info->num_stream_ctxs,
796                                 stream_info->stream_ctx_array,
797                                 stream_info->ctx_array_dma);
798
799         kfree(stream_info->stream_rings);
800         kfree(stream_info);
801 }
802
803
804 /***************** Device context manipulation *************************/
805
806 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
807                 struct xhci_virt_ep *ep)
808 {
809         setup_timer(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog,
810                     (unsigned long)ep);
811         ep->xhci = xhci;
812 }
813
814 static void xhci_free_tt_info(struct xhci_hcd *xhci,
815                 struct xhci_virt_device *virt_dev,
816                 int slot_id)
817 {
818         struct list_head *tt_list_head;
819         struct xhci_tt_bw_info *tt_info, *next;
820         bool slot_found = false;
821
822         /* If the device never made it past the Set Address stage,
823          * it may not have the real_port set correctly.
824          */
825         if (virt_dev->real_port == 0 ||
826                         virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
827                 xhci_dbg(xhci, "Bad real port.\n");
828                 return;
829         }
830
831         tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
832         list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
833                 /* Multi-TT hubs will have more than one entry */
834                 if (tt_info->slot_id == slot_id) {
835                         slot_found = true;
836                         list_del(&tt_info->tt_list);
837                         kfree(tt_info);
838                 } else if (slot_found) {
839                         break;
840                 }
841         }
842 }
843
844 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
845                 struct xhci_virt_device *virt_dev,
846                 struct usb_device *hdev,
847                 struct usb_tt *tt, gfp_t mem_flags)
848 {
849         struct xhci_tt_bw_info          *tt_info;
850         unsigned int                    num_ports;
851         int                             i, j;
852
853         if (!tt->multi)
854                 num_ports = 1;
855         else
856                 num_ports = hdev->maxchild;
857
858         for (i = 0; i < num_ports; i++, tt_info++) {
859                 struct xhci_interval_bw_table *bw_table;
860
861                 tt_info = kzalloc(sizeof(*tt_info), mem_flags);
862                 if (!tt_info)
863                         goto free_tts;
864                 INIT_LIST_HEAD(&tt_info->tt_list);
865                 list_add(&tt_info->tt_list,
866                                 &xhci->rh_bw[virt_dev->real_port - 1].tts);
867                 tt_info->slot_id = virt_dev->udev->slot_id;
868                 if (tt->multi)
869                         tt_info->ttport = i+1;
870                 bw_table = &tt_info->bw_table;
871                 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
872                         INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
873         }
874         return 0;
875
876 free_tts:
877         xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
878         return -ENOMEM;
879 }
880
881
882 /* All the xhci_tds in the ring's TD list should be freed at this point.
883  * Should be called with xhci->lock held if there is any chance the TT lists
884  * will be manipulated by the configure endpoint, allocate device, or update
885  * hub functions while this function is removing the TT entries from the list.
886  */
887 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
888 {
889         struct xhci_virt_device *dev;
890         int i;
891         int old_active_eps = 0;
892
893         /* Slot ID 0 is reserved */
894         if (slot_id == 0 || !xhci->devs[slot_id])
895                 return;
896
897         dev = xhci->devs[slot_id];
898
899         xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
900         if (!dev)
901                 return;
902
903         trace_xhci_free_virt_device(dev);
904
905         if (dev->tt_info)
906                 old_active_eps = dev->tt_info->active_eps;
907
908         for (i = 0; i < 31; i++) {
909                 if (dev->eps[i].ring)
910                         xhci_ring_free(xhci, dev->eps[i].ring);
911                 if (dev->eps[i].stream_info)
912                         xhci_free_stream_info(xhci,
913                                         dev->eps[i].stream_info);
914                 /*
915                  * Endpoints are normally deleted from the bandwidth list when
916                  * endpoints are dropped, before device is freed.
917                  * If host is dying or being removed then endpoints aren't
918                  * dropped cleanly, so delete the endpoint from list here.
919                  * Only applicable for hosts with software bandwidth checking.
920                  */
921
922                 if (!list_empty(&dev->eps[i].bw_endpoint_list)) {
923                         list_del_init(&dev->eps[i].bw_endpoint_list);
924                         xhci_dbg(xhci, "Slot %u endpoint %u not removed from BW list!\n",
925                                  slot_id, i);
926                 }
927         }
928         /* If this is a hub, free the TT(s) from the TT list */
929         xhci_free_tt_info(xhci, dev, slot_id);
930         /* If necessary, update the number of active TTs on this root port */
931         xhci_update_tt_active_eps(xhci, dev, old_active_eps);
932
933         if (dev->in_ctx)
934                 xhci_free_container_ctx(xhci, dev->in_ctx);
935         if (dev->out_ctx)
936                 xhci_free_container_ctx(xhci, dev->out_ctx);
937
938         if (dev->udev && dev->udev->slot_id)
939                 dev->udev->slot_id = 0;
940         kfree(xhci->devs[slot_id]);
941         xhci->devs[slot_id] = NULL;
942 }
943
944 /*
945  * Free a virt_device structure.
946  * If the virt_device added a tt_info (a hub) and has children pointing to
947  * that tt_info, then free the child first. Recursive.
948  * We can't rely on udev at this point to find child-parent relationships.
949  */
950 void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
951 {
952         struct xhci_virt_device *vdev;
953         struct list_head *tt_list_head;
954         struct xhci_tt_bw_info *tt_info, *next;
955         int i;
956
957         vdev = xhci->devs[slot_id];
958         if (!vdev)
959                 return;
960
961         if (vdev->real_port == 0 ||
962                         vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
963                 xhci_dbg(xhci, "Bad vdev->real_port.\n");
964                 goto out;
965         }
966
967         tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
968         list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
969                 /* is this a hub device that added a tt_info to the tts list */
970                 if (tt_info->slot_id == slot_id) {
971                         /* are any devices using this tt_info? */
972                         for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
973                                 vdev = xhci->devs[i];
974                                 if (vdev && (vdev->tt_info == tt_info))
975                                         xhci_free_virt_devices_depth_first(
976                                                 xhci, i);
977                         }
978                 }
979         }
980 out:
981         /* we are now at a leaf device */
982         xhci_free_virt_device(xhci, slot_id);
983 }
984
985 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
986                 struct usb_device *udev, gfp_t flags)
987 {
988         struct xhci_virt_device *dev;
989         int i;
990
991         /* Slot ID 0 is reserved */
992         if (slot_id == 0 || xhci->devs[slot_id]) {
993                 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
994                 return 0;
995         }
996
997         dev = kzalloc(sizeof(*dev), flags);
998         if (!dev)
999                 return 0;
1000
1001         /* Allocate the (output) device context that will be used in the HC. */
1002         dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
1003         if (!dev->out_ctx)
1004                 goto fail;
1005
1006         xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
1007                         (unsigned long long)dev->out_ctx->dma);
1008
1009         /* Allocate the (input) device context for address device command */
1010         dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
1011         if (!dev->in_ctx)
1012                 goto fail;
1013
1014         xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
1015                         (unsigned long long)dev->in_ctx->dma);
1016
1017         /* Initialize the cancellation list and watchdog timers for each ep */
1018         for (i = 0; i < 31; i++) {
1019                 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
1020                 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1021                 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1022         }
1023
1024         /* Allocate endpoint 0 ring */
1025         dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
1026         if (!dev->eps[0].ring)
1027                 goto fail;
1028
1029         dev->udev = udev;
1030
1031         /* Point to output device context in dcbaa. */
1032         xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1033         xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1034                  slot_id,
1035                  &xhci->dcbaa->dev_context_ptrs[slot_id],
1036                  le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1037
1038         trace_xhci_alloc_virt_device(dev);
1039
1040         xhci->devs[slot_id] = dev;
1041
1042         return 1;
1043 fail:
1044
1045         if (dev->in_ctx)
1046                 xhci_free_container_ctx(xhci, dev->in_ctx);
1047         if (dev->out_ctx)
1048                 xhci_free_container_ctx(xhci, dev->out_ctx);
1049         kfree(dev);
1050
1051         return 0;
1052 }
1053
1054 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1055                 struct usb_device *udev)
1056 {
1057         struct xhci_virt_device *virt_dev;
1058         struct xhci_ep_ctx      *ep0_ctx;
1059         struct xhci_ring        *ep_ring;
1060
1061         virt_dev = xhci->devs[udev->slot_id];
1062         ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1063         ep_ring = virt_dev->eps[0].ring;
1064         /*
1065          * FIXME we don't keep track of the dequeue pointer very well after a
1066          * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1067          * host to our enqueue pointer.  This should only be called after a
1068          * configured device has reset, so all control transfers should have
1069          * been completed or cancelled before the reset.
1070          */
1071         ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1072                                                         ep_ring->enqueue)
1073                                    | ep_ring->cycle_state);
1074 }
1075
1076 /*
1077  * The xHCI roothub may have ports of differing speeds in any order in the port
1078  * status registers.  xhci->port_array provides an array of the port speed for
1079  * each offset into the port status registers.
1080  *
1081  * The xHCI hardware wants to know the roothub port number that the USB device
1082  * is attached to (or the roothub port its ancestor hub is attached to).  All we
1083  * know is the index of that port under either the USB 2.0 or the USB 3.0
1084  * roothub, but that doesn't give us the real index into the HW port status
1085  * registers. Call xhci_find_raw_port_number() to get real index.
1086  */
1087 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1088                 struct usb_device *udev)
1089 {
1090         struct usb_device *top_dev;
1091         struct usb_hcd *hcd;
1092
1093         if (udev->speed >= USB_SPEED_SUPER)
1094                 hcd = xhci->shared_hcd;
1095         else
1096                 hcd = xhci->main_hcd;
1097
1098         for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1099                         top_dev = top_dev->parent)
1100                 /* Found device below root hub */;
1101
1102         return  xhci_find_raw_port_number(hcd, top_dev->portnum);
1103 }
1104
1105 /* Setup an xHCI virtual device for a Set Address command */
1106 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1107 {
1108         struct xhci_virt_device *dev;
1109         struct xhci_ep_ctx      *ep0_ctx;
1110         struct xhci_slot_ctx    *slot_ctx;
1111         u32                     port_num;
1112         u32                     max_packets;
1113         struct usb_device *top_dev;
1114
1115         dev = xhci->devs[udev->slot_id];
1116         /* Slot ID 0 is reserved */
1117         if (udev->slot_id == 0 || !dev) {
1118                 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1119                                 udev->slot_id);
1120                 return -EINVAL;
1121         }
1122         ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1123         slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1124
1125         /* 3) Only the control endpoint is valid - one endpoint context */
1126         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1127         switch (udev->speed) {
1128         case USB_SPEED_SUPER_PLUS:
1129                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1130                 max_packets = MAX_PACKET(512);
1131                 break;
1132         case USB_SPEED_SUPER:
1133                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1134                 max_packets = MAX_PACKET(512);
1135                 break;
1136         case USB_SPEED_HIGH:
1137                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1138                 max_packets = MAX_PACKET(64);
1139                 break;
1140         /* USB core guesses at a 64-byte max packet first for FS devices */
1141         case USB_SPEED_FULL:
1142                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1143                 max_packets = MAX_PACKET(64);
1144                 break;
1145         case USB_SPEED_LOW:
1146                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1147                 max_packets = MAX_PACKET(8);
1148                 break;
1149         case USB_SPEED_WIRELESS:
1150                 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1151                 return -EINVAL;
1152                 break;
1153         default:
1154                 /* Speed was set earlier, this shouldn't happen. */
1155                 return -EINVAL;
1156         }
1157         /* Find the root hub port this device is under */
1158         port_num = xhci_find_real_port_number(xhci, udev);
1159         if (!port_num)
1160                 return -EINVAL;
1161         slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1162         /* Set the port number in the virtual_device to the faked port number */
1163         for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1164                         top_dev = top_dev->parent)
1165                 /* Found device below root hub */;
1166         dev->fake_port = top_dev->portnum;
1167         dev->real_port = port_num;
1168         xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1169         xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1170
1171         /* Find the right bandwidth table that this device will be a part of.
1172          * If this is a full speed device attached directly to a root port (or a
1173          * decendent of one), it counts as a primary bandwidth domain, not a
1174          * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1175          * will never be created for the HS root hub.
1176          */
1177         if (!udev->tt || !udev->tt->hub->parent) {
1178                 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1179         } else {
1180                 struct xhci_root_port_bw_info *rh_bw;
1181                 struct xhci_tt_bw_info *tt_bw;
1182
1183                 rh_bw = &xhci->rh_bw[port_num - 1];
1184                 /* Find the right TT. */
1185                 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1186                         if (tt_bw->slot_id != udev->tt->hub->slot_id)
1187                                 continue;
1188
1189                         if (!dev->udev->tt->multi ||
1190                                         (udev->tt->multi &&
1191                                          tt_bw->ttport == dev->udev->ttport)) {
1192                                 dev->bw_table = &tt_bw->bw_table;
1193                                 dev->tt_info = tt_bw;
1194                                 break;
1195                         }
1196                 }
1197                 if (!dev->tt_info)
1198                         xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1199         }
1200
1201         /* Is this a LS/FS device under an external HS hub? */
1202         if (udev->tt && udev->tt->hub->parent) {
1203                 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1204                                                 (udev->ttport << 8));
1205                 if (udev->tt->multi)
1206                         slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1207         }
1208         xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1209         xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1210
1211         /* Step 4 - ring already allocated */
1212         /* Step 5 */
1213         ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1214
1215         /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1216         ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1217                                          max_packets);
1218
1219         ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1220                                    dev->eps[0].ring->cycle_state);
1221
1222         trace_xhci_setup_addressable_virt_device(dev);
1223
1224         /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1225
1226         return 0;
1227 }
1228
1229 /*
1230  * Convert interval expressed as 2^(bInterval - 1) == interval into
1231  * straight exponent value 2^n == interval.
1232  *
1233  */
1234 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1235                 struct usb_host_endpoint *ep)
1236 {
1237         unsigned int interval;
1238
1239         interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1240         if (interval != ep->desc.bInterval - 1)
1241                 dev_warn(&udev->dev,
1242                          "ep %#x - rounding interval to %d %sframes\n",
1243                          ep->desc.bEndpointAddress,
1244                          1 << interval,
1245                          udev->speed == USB_SPEED_FULL ? "" : "micro");
1246
1247         if (udev->speed == USB_SPEED_FULL) {
1248                 /*
1249                  * Full speed isoc endpoints specify interval in frames,
1250                  * not microframes. We are using microframes everywhere,
1251                  * so adjust accordingly.
1252                  */
1253                 interval += 3;  /* 1 frame = 2^3 uframes */
1254         }
1255
1256         return interval;
1257 }
1258
1259 /*
1260  * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1261  * microframes, rounded down to nearest power of 2.
1262  */
1263 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1264                 struct usb_host_endpoint *ep, unsigned int desc_interval,
1265                 unsigned int min_exponent, unsigned int max_exponent)
1266 {
1267         unsigned int interval;
1268
1269         interval = fls(desc_interval) - 1;
1270         interval = clamp_val(interval, min_exponent, max_exponent);
1271         if ((1 << interval) != desc_interval)
1272                 dev_dbg(&udev->dev,
1273                          "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1274                          ep->desc.bEndpointAddress,
1275                          1 << interval,
1276                          desc_interval);
1277
1278         return interval;
1279 }
1280
1281 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1282                 struct usb_host_endpoint *ep)
1283 {
1284         if (ep->desc.bInterval == 0)
1285                 return 0;
1286         return xhci_microframes_to_exponent(udev, ep,
1287                         ep->desc.bInterval, 0, 15);
1288 }
1289
1290
1291 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1292                 struct usb_host_endpoint *ep)
1293 {
1294         return xhci_microframes_to_exponent(udev, ep,
1295                         ep->desc.bInterval * 8, 3, 10);
1296 }
1297
1298 /* Return the polling or NAK interval.
1299  *
1300  * The polling interval is expressed in "microframes".  If xHCI's Interval field
1301  * is set to N, it will service the endpoint every 2^(Interval)*125us.
1302  *
1303  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1304  * is set to 0.
1305  */
1306 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1307                 struct usb_host_endpoint *ep)
1308 {
1309         unsigned int interval = 0;
1310
1311         switch (udev->speed) {
1312         case USB_SPEED_HIGH:
1313                 /* Max NAK rate */
1314                 if (usb_endpoint_xfer_control(&ep->desc) ||
1315                     usb_endpoint_xfer_bulk(&ep->desc)) {
1316                         interval = xhci_parse_microframe_interval(udev, ep);
1317                         break;
1318                 }
1319                 /* Fall through - SS and HS isoc/int have same decoding */
1320
1321         case USB_SPEED_SUPER_PLUS:
1322         case USB_SPEED_SUPER:
1323                 if (usb_endpoint_xfer_int(&ep->desc) ||
1324                     usb_endpoint_xfer_isoc(&ep->desc)) {
1325                         interval = xhci_parse_exponent_interval(udev, ep);
1326                 }
1327                 break;
1328
1329         case USB_SPEED_FULL:
1330                 if (usb_endpoint_xfer_isoc(&ep->desc)) {
1331                         interval = xhci_parse_exponent_interval(udev, ep);
1332                         break;
1333                 }
1334                 /*
1335                  * Fall through for interrupt endpoint interval decoding
1336                  * since it uses the same rules as low speed interrupt
1337                  * endpoints.
1338                  */
1339
1340         case USB_SPEED_LOW:
1341                 if (usb_endpoint_xfer_int(&ep->desc) ||
1342                     usb_endpoint_xfer_isoc(&ep->desc)) {
1343
1344                         interval = xhci_parse_frame_interval(udev, ep);
1345                 }
1346                 break;
1347
1348         default:
1349                 BUG();
1350         }
1351         return interval;
1352 }
1353
1354 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1355  * High speed endpoint descriptors can define "the number of additional
1356  * transaction opportunities per microframe", but that goes in the Max Burst
1357  * endpoint context field.
1358  */
1359 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1360                 struct usb_host_endpoint *ep)
1361 {
1362         if (udev->speed < USB_SPEED_SUPER ||
1363                         !usb_endpoint_xfer_isoc(&ep->desc))
1364                 return 0;
1365         return ep->ss_ep_comp.bmAttributes;
1366 }
1367
1368 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1369                                        struct usb_host_endpoint *ep)
1370 {
1371         /* Super speed and Plus have max burst in ep companion desc */
1372         if (udev->speed >= USB_SPEED_SUPER)
1373                 return ep->ss_ep_comp.bMaxBurst;
1374
1375         if (udev->speed == USB_SPEED_HIGH &&
1376             (usb_endpoint_xfer_isoc(&ep->desc) ||
1377              usb_endpoint_xfer_int(&ep->desc)))
1378                 return usb_endpoint_maxp_mult(&ep->desc) - 1;
1379
1380         return 0;
1381 }
1382
1383 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1384 {
1385         int in;
1386
1387         in = usb_endpoint_dir_in(&ep->desc);
1388
1389         switch (usb_endpoint_type(&ep->desc)) {
1390         case USB_ENDPOINT_XFER_CONTROL:
1391                 return CTRL_EP;
1392         case USB_ENDPOINT_XFER_BULK:
1393                 return in ? BULK_IN_EP : BULK_OUT_EP;
1394         case USB_ENDPOINT_XFER_ISOC:
1395                 return in ? ISOC_IN_EP : ISOC_OUT_EP;
1396         case USB_ENDPOINT_XFER_INT:
1397                 return in ? INT_IN_EP : INT_OUT_EP;
1398         }
1399         return 0;
1400 }
1401
1402 /* Return the maximum endpoint service interval time (ESIT) payload.
1403  * Basically, this is the maxpacket size, multiplied by the burst size
1404  * and mult size.
1405  */
1406 static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1407                 struct usb_host_endpoint *ep)
1408 {
1409         int max_burst;
1410         int max_packet;
1411
1412         /* Only applies for interrupt or isochronous endpoints */
1413         if (usb_endpoint_xfer_control(&ep->desc) ||
1414                         usb_endpoint_xfer_bulk(&ep->desc))
1415                 return 0;
1416
1417         /* SuperSpeedPlus Isoc ep sending over 48k per esit */
1418         if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1419             USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1420                 return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1421         /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1422         else if (udev->speed >= USB_SPEED_SUPER)
1423                 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1424
1425         max_packet = usb_endpoint_maxp(&ep->desc);
1426         max_burst = usb_endpoint_maxp_mult(&ep->desc);
1427         /* A 0 in max burst means 1 transfer per ESIT */
1428         return max_packet * max_burst;
1429 }
1430
1431 /* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1432  * Drivers will have to call usb_alloc_streams() to do that.
1433  */
1434 int xhci_endpoint_init(struct xhci_hcd *xhci,
1435                 struct xhci_virt_device *virt_dev,
1436                 struct usb_device *udev,
1437                 struct usb_host_endpoint *ep,
1438                 gfp_t mem_flags)
1439 {
1440         unsigned int ep_index;
1441         struct xhci_ep_ctx *ep_ctx;
1442         struct xhci_ring *ep_ring;
1443         unsigned int max_packet;
1444         enum xhci_ring_type ring_type;
1445         u32 max_esit_payload;
1446         u32 endpoint_type;
1447         unsigned int max_burst;
1448         unsigned int interval;
1449         unsigned int mult;
1450         unsigned int avg_trb_len;
1451         unsigned int err_count = 0;
1452
1453         ep_index = xhci_get_endpoint_index(&ep->desc);
1454         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1455
1456         endpoint_type = xhci_get_endpoint_type(ep);
1457         if (!endpoint_type)
1458                 return -EINVAL;
1459
1460         ring_type = usb_endpoint_type(&ep->desc);
1461
1462         /*
1463          * Get values to fill the endpoint context, mostly from ep descriptor.
1464          * The average TRB buffer lengt for bulk endpoints is unclear as we
1465          * have no clue on scatter gather list entry size. For Isoc and Int,
1466          * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1467          */
1468         max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1469         interval = xhci_get_endpoint_interval(udev, ep);
1470
1471         /* Periodic endpoint bInterval limit quirk */
1472         if (usb_endpoint_xfer_int(&ep->desc) ||
1473             usb_endpoint_xfer_isoc(&ep->desc)) {
1474                 if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1475                     udev->speed >= USB_SPEED_HIGH &&
1476                     interval >= 7) {
1477                         interval = 6;
1478                 }
1479         }
1480
1481         mult = xhci_get_endpoint_mult(udev, ep);
1482         max_packet = usb_endpoint_maxp(&ep->desc);
1483         max_burst = xhci_get_endpoint_max_burst(udev, ep);
1484         avg_trb_len = max_esit_payload;
1485
1486         /* FIXME dig Mult and streams info out of ep companion desc */
1487
1488         /* Allow 3 retries for everything but isoc, set CErr = 3 */
1489         if (!usb_endpoint_xfer_isoc(&ep->desc))
1490                 err_count = 3;
1491         /* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */
1492         if (usb_endpoint_xfer_bulk(&ep->desc)) {
1493                 if (udev->speed == USB_SPEED_HIGH)
1494                         max_packet = 512;
1495                 if (udev->speed == USB_SPEED_FULL) {
1496                         max_packet = rounddown_pow_of_two(max_packet);
1497                         max_packet = clamp_val(max_packet, 8, 64);
1498                 }
1499         }
1500         /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1501         if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1502                 avg_trb_len = 8;
1503         /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1504         if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1505                 mult = 0;
1506
1507         /* Set up the endpoint ring */
1508         virt_dev->eps[ep_index].new_ring =
1509                 xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1510         if (!virt_dev->eps[ep_index].new_ring)
1511                 return -ENOMEM;
1512
1513         virt_dev->eps[ep_index].skip = false;
1514         ep_ring = virt_dev->eps[ep_index].new_ring;
1515
1516         /* Fill the endpoint context */
1517         ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1518                                       EP_INTERVAL(interval) |
1519                                       EP_MULT(mult));
1520         ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1521                                        MAX_PACKET(max_packet) |
1522                                        MAX_BURST(max_burst) |
1523                                        ERROR_COUNT(err_count));
1524         ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1525                                   ep_ring->cycle_state);
1526
1527         ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1528                                       EP_AVG_TRB_LENGTH(avg_trb_len));
1529
1530         /* FIXME Debug endpoint context */
1531         return 0;
1532 }
1533
1534 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1535                 struct xhci_virt_device *virt_dev,
1536                 struct usb_host_endpoint *ep)
1537 {
1538         unsigned int ep_index;
1539         struct xhci_ep_ctx *ep_ctx;
1540
1541         ep_index = xhci_get_endpoint_index(&ep->desc);
1542         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1543
1544         ep_ctx->ep_info = 0;
1545         ep_ctx->ep_info2 = 0;
1546         ep_ctx->deq = 0;
1547         ep_ctx->tx_info = 0;
1548         /* Don't free the endpoint ring until the set interface or configuration
1549          * request succeeds.
1550          */
1551 }
1552
1553 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1554 {
1555         bw_info->ep_interval = 0;
1556         bw_info->mult = 0;
1557         bw_info->num_packets = 0;
1558         bw_info->max_packet_size = 0;
1559         bw_info->type = 0;
1560         bw_info->max_esit_payload = 0;
1561 }
1562
1563 void xhci_update_bw_info(struct xhci_hcd *xhci,
1564                 struct xhci_container_ctx *in_ctx,
1565                 struct xhci_input_control_ctx *ctrl_ctx,
1566                 struct xhci_virt_device *virt_dev)
1567 {
1568         struct xhci_bw_info *bw_info;
1569         struct xhci_ep_ctx *ep_ctx;
1570         unsigned int ep_type;
1571         int i;
1572
1573         for (i = 1; i < 31; i++) {
1574                 bw_info = &virt_dev->eps[i].bw_info;
1575
1576                 /* We can't tell what endpoint type is being dropped, but
1577                  * unconditionally clearing the bandwidth info for non-periodic
1578                  * endpoints should be harmless because the info will never be
1579                  * set in the first place.
1580                  */
1581                 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1582                         /* Dropped endpoint */
1583                         xhci_clear_endpoint_bw_info(bw_info);
1584                         continue;
1585                 }
1586
1587                 if (EP_IS_ADDED(ctrl_ctx, i)) {
1588                         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1589                         ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1590
1591                         /* Ignore non-periodic endpoints */
1592                         if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1593                                         ep_type != ISOC_IN_EP &&
1594                                         ep_type != INT_IN_EP)
1595                                 continue;
1596
1597                         /* Added or changed endpoint */
1598                         bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1599                                         le32_to_cpu(ep_ctx->ep_info));
1600                         /* Number of packets and mult are zero-based in the
1601                          * input context, but we want one-based for the
1602                          * interval table.
1603                          */
1604                         bw_info->mult = CTX_TO_EP_MULT(
1605                                         le32_to_cpu(ep_ctx->ep_info)) + 1;
1606                         bw_info->num_packets = CTX_TO_MAX_BURST(
1607                                         le32_to_cpu(ep_ctx->ep_info2)) + 1;
1608                         bw_info->max_packet_size = MAX_PACKET_DECODED(
1609                                         le32_to_cpu(ep_ctx->ep_info2));
1610                         bw_info->type = ep_type;
1611                         bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1612                                         le32_to_cpu(ep_ctx->tx_info));
1613                 }
1614         }
1615 }
1616
1617 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1618  * Useful when you want to change one particular aspect of the endpoint and then
1619  * issue a configure endpoint command.
1620  */
1621 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1622                 struct xhci_container_ctx *in_ctx,
1623                 struct xhci_container_ctx *out_ctx,
1624                 unsigned int ep_index)
1625 {
1626         struct xhci_ep_ctx *out_ep_ctx;
1627         struct xhci_ep_ctx *in_ep_ctx;
1628
1629         out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1630         in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1631
1632         in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1633         in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1634         in_ep_ctx->deq = out_ep_ctx->deq;
1635         in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1636 }
1637
1638 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1639  * Useful when you want to change one particular aspect of the endpoint and then
1640  * issue a configure endpoint command.  Only the context entries field matters,
1641  * but we'll copy the whole thing anyway.
1642  */
1643 void xhci_slot_copy(struct xhci_hcd *xhci,
1644                 struct xhci_container_ctx *in_ctx,
1645                 struct xhci_container_ctx *out_ctx)
1646 {
1647         struct xhci_slot_ctx *in_slot_ctx;
1648         struct xhci_slot_ctx *out_slot_ctx;
1649
1650         in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1651         out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1652
1653         in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1654         in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1655         in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1656         in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1657 }
1658
1659 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1660 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1661 {
1662         int i;
1663         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1664         int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1665
1666         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1667                         "Allocating %d scratchpad buffers", num_sp);
1668
1669         if (!num_sp)
1670                 return 0;
1671
1672         xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1673         if (!xhci->scratchpad)
1674                 goto fail_sp;
1675
1676         xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1677                                      num_sp * sizeof(u64),
1678                                      &xhci->scratchpad->sp_dma, flags);
1679         if (!xhci->scratchpad->sp_array)
1680                 goto fail_sp2;
1681
1682         xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1683         if (!xhci->scratchpad->sp_buffers)
1684                 goto fail_sp3;
1685
1686         xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1687         for (i = 0; i < num_sp; i++) {
1688                 dma_addr_t dma;
1689                 void *buf = dma_zalloc_coherent(dev, xhci->page_size, &dma,
1690                                 flags);
1691                 if (!buf)
1692                         goto fail_sp4;
1693
1694                 xhci->scratchpad->sp_array[i] = dma;
1695                 xhci->scratchpad->sp_buffers[i] = buf;
1696         }
1697
1698         return 0;
1699
1700  fail_sp4:
1701         for (i = i - 1; i >= 0; i--) {
1702                 dma_free_coherent(dev, xhci->page_size,
1703                                     xhci->scratchpad->sp_buffers[i],
1704                                     xhci->scratchpad->sp_array[i]);
1705         }
1706
1707         kfree(xhci->scratchpad->sp_buffers);
1708
1709  fail_sp3:
1710         dma_free_coherent(dev, num_sp * sizeof(u64),
1711                             xhci->scratchpad->sp_array,
1712                             xhci->scratchpad->sp_dma);
1713
1714  fail_sp2:
1715         kfree(xhci->scratchpad);
1716         xhci->scratchpad = NULL;
1717
1718  fail_sp:
1719         return -ENOMEM;
1720 }
1721
1722 static void scratchpad_free(struct xhci_hcd *xhci)
1723 {
1724         int num_sp;
1725         int i;
1726         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1727
1728         if (!xhci->scratchpad)
1729                 return;
1730
1731         num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1732
1733         for (i = 0; i < num_sp; i++) {
1734                 dma_free_coherent(dev, xhci->page_size,
1735                                     xhci->scratchpad->sp_buffers[i],
1736                                     xhci->scratchpad->sp_array[i]);
1737         }
1738         kfree(xhci->scratchpad->sp_buffers);
1739         dma_free_coherent(dev, num_sp * sizeof(u64),
1740                             xhci->scratchpad->sp_array,
1741                             xhci->scratchpad->sp_dma);
1742         kfree(xhci->scratchpad);
1743         xhci->scratchpad = NULL;
1744 }
1745
1746 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1747                 bool allocate_in_ctx, bool allocate_completion,
1748                 gfp_t mem_flags)
1749 {
1750         struct xhci_command *command;
1751
1752         command = kzalloc(sizeof(*command), mem_flags);
1753         if (!command)
1754                 return NULL;
1755
1756         if (allocate_in_ctx) {
1757                 command->in_ctx =
1758                         xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1759                                         mem_flags);
1760                 if (!command->in_ctx) {
1761                         kfree(command);
1762                         return NULL;
1763                 }
1764         }
1765
1766         if (allocate_completion) {
1767                 command->completion =
1768                         kzalloc(sizeof(struct completion), mem_flags);
1769                 if (!command->completion) {
1770                         xhci_free_container_ctx(xhci, command->in_ctx);
1771                         kfree(command);
1772                         return NULL;
1773                 }
1774                 init_completion(command->completion);
1775         }
1776
1777         command->status = 0;
1778         INIT_LIST_HEAD(&command->cmd_list);
1779         return command;
1780 }
1781
1782 void xhci_urb_free_priv(struct urb_priv *urb_priv)
1783 {
1784         kfree(urb_priv);
1785 }
1786
1787 void xhci_free_command(struct xhci_hcd *xhci,
1788                 struct xhci_command *command)
1789 {
1790         xhci_free_container_ctx(xhci,
1791                         command->in_ctx);
1792         kfree(command->completion);
1793         kfree(command);
1794 }
1795
1796 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1797 {
1798         struct device   *dev = xhci_to_hcd(xhci)->self.sysdev;
1799         int size;
1800         int i, j, num_ports;
1801
1802         cancel_delayed_work_sync(&xhci->cmd_timer);
1803
1804         /* Free the Event Ring Segment Table and the actual Event Ring */
1805         size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1806         if (xhci->erst.entries)
1807                 dma_free_coherent(dev, size,
1808                                 xhci->erst.entries, xhci->erst.erst_dma_addr);
1809         xhci->erst.entries = NULL;
1810         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed ERST");
1811         if (xhci->event_ring)
1812                 xhci_ring_free(xhci, xhci->event_ring);
1813         xhci->event_ring = NULL;
1814         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1815
1816         if (xhci->lpm_command)
1817                 xhci_free_command(xhci, xhci->lpm_command);
1818         xhci->lpm_command = NULL;
1819         if (xhci->cmd_ring)
1820                 xhci_ring_free(xhci, xhci->cmd_ring);
1821         xhci->cmd_ring = NULL;
1822         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1823         xhci_cleanup_command_queue(xhci);
1824
1825         num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1826         for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1827                 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1828                 for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1829                         struct list_head *ep = &bwt->interval_bw[j].endpoints;
1830                         while (!list_empty(ep))
1831                                 list_del_init(ep->next);
1832                 }
1833         }
1834
1835         for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1836                 xhci_free_virt_devices_depth_first(xhci, i);
1837
1838         dma_pool_destroy(xhci->segment_pool);
1839         xhci->segment_pool = NULL;
1840         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1841
1842         dma_pool_destroy(xhci->device_pool);
1843         xhci->device_pool = NULL;
1844         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1845
1846         dma_pool_destroy(xhci->small_streams_pool);
1847         xhci->small_streams_pool = NULL;
1848         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1849                         "Freed small stream array pool");
1850
1851         dma_pool_destroy(xhci->medium_streams_pool);
1852         xhci->medium_streams_pool = NULL;
1853         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1854                         "Freed medium stream array pool");
1855
1856         if (xhci->dcbaa)
1857                 dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1858                                 xhci->dcbaa, xhci->dcbaa->dma);
1859         xhci->dcbaa = NULL;
1860
1861         scratchpad_free(xhci);
1862
1863         if (!xhci->rh_bw)
1864                 goto no_bw;
1865
1866         for (i = 0; i < num_ports; i++) {
1867                 struct xhci_tt_bw_info *tt, *n;
1868                 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1869                         list_del(&tt->tt_list);
1870                         kfree(tt);
1871                 }
1872         }
1873
1874 no_bw:
1875         xhci->cmd_ring_reserved_trbs = 0;
1876         xhci->num_usb2_ports = 0;
1877         xhci->num_usb3_ports = 0;
1878         xhci->num_active_eps = 0;
1879         kfree(xhci->usb2_ports);
1880         kfree(xhci->usb3_ports);
1881         kfree(xhci->port_array);
1882         kfree(xhci->rh_bw);
1883         kfree(xhci->ext_caps);
1884         kfree(xhci->usb2_rhub.psi);
1885         kfree(xhci->usb3_rhub.psi);
1886
1887         xhci->usb2_ports = NULL;
1888         xhci->usb3_ports = NULL;
1889         xhci->port_array = NULL;
1890         xhci->usb2_rhub.psi = NULL;
1891         xhci->usb3_rhub.psi = NULL;
1892         xhci->rh_bw = NULL;
1893         xhci->ext_caps = NULL;
1894
1895         xhci->page_size = 0;
1896         xhci->page_shift = 0;
1897         xhci->bus_state[0].bus_suspended = 0;
1898         xhci->bus_state[1].bus_suspended = 0;
1899 }
1900
1901 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1902                 struct xhci_segment *input_seg,
1903                 union xhci_trb *start_trb,
1904                 union xhci_trb *end_trb,
1905                 dma_addr_t input_dma,
1906                 struct xhci_segment *result_seg,
1907                 char *test_name, int test_number)
1908 {
1909         unsigned long long start_dma;
1910         unsigned long long end_dma;
1911         struct xhci_segment *seg;
1912
1913         start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1914         end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1915
1916         seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1917         if (seg != result_seg) {
1918                 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1919                                 test_name, test_number);
1920                 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1921                                 "input DMA 0x%llx\n",
1922                                 input_seg,
1923                                 (unsigned long long) input_dma);
1924                 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1925                                 "ending TRB %p (0x%llx DMA)\n",
1926                                 start_trb, start_dma,
1927                                 end_trb, end_dma);
1928                 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1929                                 result_seg, seg);
1930                 trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
1931                           true);
1932                 return -1;
1933         }
1934         return 0;
1935 }
1936
1937 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1938 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
1939 {
1940         struct {
1941                 dma_addr_t              input_dma;
1942                 struct xhci_segment     *result_seg;
1943         } simple_test_vector [] = {
1944                 /* A zeroed DMA field should fail */
1945                 { 0, NULL },
1946                 /* One TRB before the ring start should fail */
1947                 { xhci->event_ring->first_seg->dma - 16, NULL },
1948                 /* One byte before the ring start should fail */
1949                 { xhci->event_ring->first_seg->dma - 1, NULL },
1950                 /* Starting TRB should succeed */
1951                 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1952                 /* Ending TRB should succeed */
1953                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1954                         xhci->event_ring->first_seg },
1955                 /* One byte after the ring end should fail */
1956                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1957                 /* One TRB after the ring end should fail */
1958                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1959                 /* An address of all ones should fail */
1960                 { (dma_addr_t) (~0), NULL },
1961         };
1962         struct {
1963                 struct xhci_segment     *input_seg;
1964                 union xhci_trb          *start_trb;
1965                 union xhci_trb          *end_trb;
1966                 dma_addr_t              input_dma;
1967                 struct xhci_segment     *result_seg;
1968         } complex_test_vector [] = {
1969                 /* Test feeding a valid DMA address from a different ring */
1970                 {       .input_seg = xhci->event_ring->first_seg,
1971                         .start_trb = xhci->event_ring->first_seg->trbs,
1972                         .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1973                         .input_dma = xhci->cmd_ring->first_seg->dma,
1974                         .result_seg = NULL,
1975                 },
1976                 /* Test feeding a valid end TRB from a different ring */
1977                 {       .input_seg = xhci->event_ring->first_seg,
1978                         .start_trb = xhci->event_ring->first_seg->trbs,
1979                         .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1980                         .input_dma = xhci->cmd_ring->first_seg->dma,
1981                         .result_seg = NULL,
1982                 },
1983                 /* Test feeding a valid start and end TRB from a different ring */
1984                 {       .input_seg = xhci->event_ring->first_seg,
1985                         .start_trb = xhci->cmd_ring->first_seg->trbs,
1986                         .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1987                         .input_dma = xhci->cmd_ring->first_seg->dma,
1988                         .result_seg = NULL,
1989                 },
1990                 /* TRB in this ring, but after this TD */
1991                 {       .input_seg = xhci->event_ring->first_seg,
1992                         .start_trb = &xhci->event_ring->first_seg->trbs[0],
1993                         .end_trb = &xhci->event_ring->first_seg->trbs[3],
1994                         .input_dma = xhci->event_ring->first_seg->dma + 4*16,
1995                         .result_seg = NULL,
1996                 },
1997                 /* TRB in this ring, but before this TD */
1998                 {       .input_seg = xhci->event_ring->first_seg,
1999                         .start_trb = &xhci->event_ring->first_seg->trbs[3],
2000                         .end_trb = &xhci->event_ring->first_seg->trbs[6],
2001                         .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2002                         .result_seg = NULL,
2003                 },
2004                 /* TRB in this ring, but after this wrapped TD */
2005                 {       .input_seg = xhci->event_ring->first_seg,
2006                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2007                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
2008                         .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2009                         .result_seg = NULL,
2010                 },
2011                 /* TRB in this ring, but before this wrapped TD */
2012                 {       .input_seg = xhci->event_ring->first_seg,
2013                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2014                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
2015                         .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
2016                         .result_seg = NULL,
2017                 },
2018                 /* TRB not in this ring, and we have a wrapped TD */
2019                 {       .input_seg = xhci->event_ring->first_seg,
2020                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2021                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
2022                         .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
2023                         .result_seg = NULL,
2024                 },
2025         };
2026
2027         unsigned int num_tests;
2028         int i, ret;
2029
2030         num_tests = ARRAY_SIZE(simple_test_vector);
2031         for (i = 0; i < num_tests; i++) {
2032                 ret = xhci_test_trb_in_td(xhci,
2033                                 xhci->event_ring->first_seg,
2034                                 xhci->event_ring->first_seg->trbs,
2035                                 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2036                                 simple_test_vector[i].input_dma,
2037                                 simple_test_vector[i].result_seg,
2038                                 "Simple", i);
2039                 if (ret < 0)
2040                         return ret;
2041         }
2042
2043         num_tests = ARRAY_SIZE(complex_test_vector);
2044         for (i = 0; i < num_tests; i++) {
2045                 ret = xhci_test_trb_in_td(xhci,
2046                                 complex_test_vector[i].input_seg,
2047                                 complex_test_vector[i].start_trb,
2048                                 complex_test_vector[i].end_trb,
2049                                 complex_test_vector[i].input_dma,
2050                                 complex_test_vector[i].result_seg,
2051                                 "Complex", i);
2052                 if (ret < 0)
2053                         return ret;
2054         }
2055         xhci_dbg(xhci, "TRB math tests passed.\n");
2056         return 0;
2057 }
2058
2059 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2060 {
2061         u64 temp;
2062         dma_addr_t deq;
2063
2064         deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2065                         xhci->event_ring->dequeue);
2066         if (deq == 0 && !in_interrupt())
2067                 xhci_warn(xhci, "WARN something wrong with SW event ring "
2068                                 "dequeue ptr.\n");
2069         /* Update HC event ring dequeue pointer */
2070         temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2071         temp &= ERST_PTR_MASK;
2072         /* Don't clear the EHB bit (which is RW1C) because
2073          * there might be more events to service.
2074          */
2075         temp &= ~ERST_EHB;
2076         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2077                         "// Write event ring dequeue pointer, "
2078                         "preserving EHB bit");
2079         xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2080                         &xhci->ir_set->erst_dequeue);
2081 }
2082
2083 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2084                 __le32 __iomem *addr, int max_caps)
2085 {
2086         u32 temp, port_offset, port_count;
2087         int i;
2088         u8 major_revision, minor_revision;
2089         struct xhci_hub *rhub;
2090
2091         temp = readl(addr);
2092         major_revision = XHCI_EXT_PORT_MAJOR(temp);
2093         minor_revision = XHCI_EXT_PORT_MINOR(temp);
2094
2095         if (major_revision == 0x03) {
2096                 rhub = &xhci->usb3_rhub;
2097                 /*
2098                  * Some hosts incorrectly use sub-minor version for minor
2099                  * version (i.e. 0x02 instead of 0x20 for bcdUSB 0x320 and 0x01
2100                  * for bcdUSB 0x310). Since there is no USB release with sub
2101                  * minor version 0x301 to 0x309, we can assume that they are
2102                  * incorrect and fix it here.
2103                  */
2104                 if (minor_revision > 0x00 && minor_revision < 0x10)
2105                         minor_revision <<= 4;
2106         } else if (major_revision <= 0x02) {
2107                 rhub = &xhci->usb2_rhub;
2108         } else {
2109                 xhci_warn(xhci, "Ignoring unknown port speed, "
2110                                 "Ext Cap %p, revision = 0x%x\n",
2111                                 addr, major_revision);
2112                 /* Ignoring port protocol we can't understand. FIXME */
2113                 return;
2114         }
2115         rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp);
2116
2117         if (rhub->min_rev < minor_revision)
2118                 rhub->min_rev = minor_revision;
2119
2120         /* Port offset and count in the third dword, see section 7.2 */
2121         temp = readl(addr + 2);
2122         port_offset = XHCI_EXT_PORT_OFF(temp);
2123         port_count = XHCI_EXT_PORT_COUNT(temp);
2124         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2125                         "Ext Cap %p, port offset = %u, "
2126                         "count = %u, revision = 0x%x",
2127                         addr, port_offset, port_count, major_revision);
2128         /* Port count includes the current port offset */
2129         if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2130                 /* WTF? "Valid values are â€˜1’ to MaxPorts" */
2131                 return;
2132
2133         rhub->psi_count = XHCI_EXT_PORT_PSIC(temp);
2134         if (rhub->psi_count) {
2135                 rhub->psi = kcalloc(rhub->psi_count, sizeof(*rhub->psi),
2136                                     GFP_KERNEL);
2137                 if (!rhub->psi)
2138                         rhub->psi_count = 0;
2139
2140                 rhub->psi_uid_count++;
2141                 for (i = 0; i < rhub->psi_count; i++) {
2142                         rhub->psi[i] = readl(addr + 4 + i);
2143
2144                         /* count unique ID values, two consecutive entries can
2145                          * have the same ID if link is assymetric
2146                          */
2147                         if (i && (XHCI_EXT_PORT_PSIV(rhub->psi[i]) !=
2148                                   XHCI_EXT_PORT_PSIV(rhub->psi[i - 1])))
2149                                 rhub->psi_uid_count++;
2150
2151                         xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2152                                   XHCI_EXT_PORT_PSIV(rhub->psi[i]),
2153                                   XHCI_EXT_PORT_PSIE(rhub->psi[i]),
2154                                   XHCI_EXT_PORT_PLT(rhub->psi[i]),
2155                                   XHCI_EXT_PORT_PFD(rhub->psi[i]),
2156                                   XHCI_EXT_PORT_LP(rhub->psi[i]),
2157                                   XHCI_EXT_PORT_PSIM(rhub->psi[i]));
2158                 }
2159         }
2160         /* cache usb2 port capabilities */
2161         if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2162                 xhci->ext_caps[xhci->num_ext_caps++] = temp;
2163
2164         /* Check the host's USB2 LPM capability */
2165         if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
2166                         (temp & XHCI_L1C)) {
2167                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2168                                 "xHCI 0.96: support USB2 software lpm");
2169                 xhci->sw_lpm_support = 1;
2170         }
2171
2172         if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
2173                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2174                                 "xHCI 1.0: support USB2 software lpm");
2175                 xhci->sw_lpm_support = 1;
2176                 if (temp & XHCI_HLC) {
2177                         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2178                                         "xHCI 1.0: support USB2 hardware lpm");
2179                         xhci->hw_lpm_support = 1;
2180                 }
2181         }
2182
2183         port_offset--;
2184         for (i = port_offset; i < (port_offset + port_count); i++) {
2185                 /* Duplicate entry.  Ignore the port if the revisions differ. */
2186                 if (xhci->port_array[i] != 0) {
2187                         xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2188                                         " port %u\n", addr, i);
2189                         xhci_warn(xhci, "Port was marked as USB %u, "
2190                                         "duplicated as USB %u\n",
2191                                         xhci->port_array[i], major_revision);
2192                         /* Only adjust the roothub port counts if we haven't
2193                          * found a similar duplicate.
2194                          */
2195                         if (xhci->port_array[i] != major_revision &&
2196                                 xhci->port_array[i] != DUPLICATE_ENTRY) {
2197                                 if (xhci->port_array[i] == 0x03)
2198                                         xhci->num_usb3_ports--;
2199                                 else
2200                                         xhci->num_usb2_ports--;
2201                                 xhci->port_array[i] = DUPLICATE_ENTRY;
2202                         }
2203                         /* FIXME: Should we disable the port? */
2204                         continue;
2205                 }
2206                 xhci->port_array[i] = major_revision;
2207                 if (major_revision == 0x03)
2208                         xhci->num_usb3_ports++;
2209                 else
2210                         xhci->num_usb2_ports++;
2211         }
2212         /* FIXME: Should we disable ports not in the Extended Capabilities? */
2213 }
2214
2215 /*
2216  * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2217  * specify what speeds each port is supposed to be.  We can't count on the port
2218  * speed bits in the PORTSC register being correct until a device is connected,
2219  * but we need to set up the two fake roothubs with the correct number of USB
2220  * 3.0 and USB 2.0 ports at host controller initialization time.
2221  */
2222 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2223 {
2224         void __iomem *base;
2225         u32 offset;
2226         unsigned int num_ports;
2227         int i, j, port_index;
2228         int cap_count = 0;
2229         u32 cap_start;
2230
2231         num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2232         xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2233         if (!xhci->port_array)
2234                 return -ENOMEM;
2235
2236         xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2237         if (!xhci->rh_bw)
2238                 return -ENOMEM;
2239         for (i = 0; i < num_ports; i++) {
2240                 struct xhci_interval_bw_table *bw_table;
2241
2242                 INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2243                 bw_table = &xhci->rh_bw[i].bw_table;
2244                 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2245                         INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2246         }
2247         base = &xhci->cap_regs->hc_capbase;
2248
2249         cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2250         if (!cap_start) {
2251                 xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2252                 return -ENODEV;
2253         }
2254
2255         offset = cap_start;
2256         /* count extended protocol capability entries for later caching */
2257         while (offset) {
2258                 cap_count++;
2259                 offset = xhci_find_next_ext_cap(base, offset,
2260                                                       XHCI_EXT_CAPS_PROTOCOL);
2261         }
2262
2263         xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags);
2264         if (!xhci->ext_caps)
2265                 return -ENOMEM;
2266
2267         offset = cap_start;
2268
2269         while (offset) {
2270                 xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2271                 if (xhci->num_usb2_ports + xhci->num_usb3_ports == num_ports)
2272                         break;
2273                 offset = xhci_find_next_ext_cap(base, offset,
2274                                                 XHCI_EXT_CAPS_PROTOCOL);
2275         }
2276
2277         if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2278                 xhci_warn(xhci, "No ports on the roothubs?\n");
2279                 return -ENODEV;
2280         }
2281         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2282                         "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2283                         xhci->num_usb2_ports, xhci->num_usb3_ports);
2284
2285         /* Place limits on the number of roothub ports so that the hub
2286          * descriptors aren't longer than the USB core will allocate.
2287          */
2288         if (xhci->num_usb3_ports > USB_SS_MAXPORTS) {
2289                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2290                                 "Limiting USB 3.0 roothub ports to %u.",
2291                                 USB_SS_MAXPORTS);
2292                 xhci->num_usb3_ports = USB_SS_MAXPORTS;
2293         }
2294         if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2295                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2296                                 "Limiting USB 2.0 roothub ports to %u.",
2297                                 USB_MAXCHILDREN);
2298                 xhci->num_usb2_ports = USB_MAXCHILDREN;
2299         }
2300
2301         /*
2302          * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2303          * Not sure how the USB core will handle a hub with no ports...
2304          */
2305         if (xhci->num_usb2_ports) {
2306                 xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2307                                 xhci->num_usb2_ports, flags);
2308                 if (!xhci->usb2_ports)
2309                         return -ENOMEM;
2310
2311                 port_index = 0;
2312                 for (i = 0; i < num_ports; i++) {
2313                         if (xhci->port_array[i] == 0x03 ||
2314                                         xhci->port_array[i] == 0 ||
2315                                         xhci->port_array[i] == DUPLICATE_ENTRY)
2316                                 continue;
2317
2318                         xhci->usb2_ports[port_index] =
2319                                 &xhci->op_regs->port_status_base +
2320                                 NUM_PORT_REGS*i;
2321                         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2322                                         "USB 2.0 port at index %u, "
2323                                         "addr = %p", i,
2324                                         xhci->usb2_ports[port_index]);
2325                         port_index++;
2326                         if (port_index == xhci->num_usb2_ports)
2327                                 break;
2328                 }
2329         }
2330         if (xhci->num_usb3_ports) {
2331                 xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2332                                 xhci->num_usb3_ports, flags);
2333                 if (!xhci->usb3_ports)
2334                         return -ENOMEM;
2335
2336                 port_index = 0;
2337                 for (i = 0; i < num_ports; i++)
2338                         if (xhci->port_array[i] == 0x03) {
2339                                 xhci->usb3_ports[port_index] =
2340                                         &xhci->op_regs->port_status_base +
2341                                         NUM_PORT_REGS*i;
2342                                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2343                                                 "USB 3.0 port at index %u, "
2344                                                 "addr = %p", i,
2345                                                 xhci->usb3_ports[port_index]);
2346                                 port_index++;
2347                                 if (port_index == xhci->num_usb3_ports)
2348                                         break;
2349                         }
2350         }
2351         return 0;
2352 }
2353
2354 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2355 {
2356         dma_addr_t      dma;
2357         struct device   *dev = xhci_to_hcd(xhci)->self.sysdev;
2358         unsigned int    val, val2;
2359         u64             val_64;
2360         struct xhci_segment     *seg;
2361         u32 page_size, temp;
2362         int i;
2363
2364         INIT_LIST_HEAD(&xhci->cmd_list);
2365
2366         /* init command timeout work */
2367         INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2368         init_completion(&xhci->cmd_ring_stop_completion);
2369
2370         page_size = readl(&xhci->op_regs->page_size);
2371         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2372                         "Supported page size register = 0x%x", page_size);
2373         for (i = 0; i < 16; i++) {
2374                 if ((0x1 & page_size) != 0)
2375                         break;
2376                 page_size = page_size >> 1;
2377         }
2378         if (i < 16)
2379                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2380                         "Supported page size of %iK", (1 << (i+12)) / 1024);
2381         else
2382                 xhci_warn(xhci, "WARN: no supported page size\n");
2383         /* Use 4K pages, since that's common and the minimum the HC supports */
2384         xhci->page_shift = 12;
2385         xhci->page_size = 1 << xhci->page_shift;
2386         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2387                         "HCD page size set to %iK", xhci->page_size / 1024);
2388
2389         /*
2390          * Program the Number of Device Slots Enabled field in the CONFIG
2391          * register with the max value of slots the HC can handle.
2392          */
2393         val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2394         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2395                         "// xHC can handle at most %d device slots.", val);
2396         val2 = readl(&xhci->op_regs->config_reg);
2397         val |= (val2 & ~HCS_SLOTS_MASK);
2398         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2399                         "// Setting Max device slots reg = 0x%x.", val);
2400         writel(val, &xhci->op_regs->config_reg);
2401
2402         /*
2403          * xHCI section 5.4.6 - doorbell array must be
2404          * "physically contiguous and 64-byte (cache line) aligned".
2405          */
2406         xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2407                         flags);
2408         if (!xhci->dcbaa)
2409                 goto fail;
2410         memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2411         xhci->dcbaa->dma = dma;
2412         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2413                         "// Device context base array address = 0x%llx (DMA), %p (virt)",
2414                         (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2415         xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2416
2417         /*
2418          * Initialize the ring segment pool.  The ring must be a contiguous
2419          * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2420          * however, the command ring segment needs 64-byte aligned segments
2421          * and our use of dma addresses in the trb_address_map radix tree needs
2422          * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2423          */
2424         xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2425                         TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2426
2427         /* See Table 46 and Note on Figure 55 */
2428         xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2429                         2112, 64, xhci->page_size);
2430         if (!xhci->segment_pool || !xhci->device_pool)
2431                 goto fail;
2432
2433         /* Linear stream context arrays don't have any boundary restrictions,
2434          * and only need to be 16-byte aligned.
2435          */
2436         xhci->small_streams_pool =
2437                 dma_pool_create("xHCI 256 byte stream ctx arrays",
2438                         dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2439         xhci->medium_streams_pool =
2440                 dma_pool_create("xHCI 1KB stream ctx arrays",
2441                         dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2442         /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2443          * will be allocated with dma_alloc_coherent()
2444          */
2445
2446         if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2447                 goto fail;
2448
2449         /* Set up the command ring to have one segments for now. */
2450         xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2451         if (!xhci->cmd_ring)
2452                 goto fail;
2453         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2454                         "Allocated command ring at %p", xhci->cmd_ring);
2455         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2456                         (unsigned long long)xhci->cmd_ring->first_seg->dma);
2457
2458         /* Set the address in the Command Ring Control register */
2459         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2460         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2461                 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2462                 xhci->cmd_ring->cycle_state;
2463         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2464                         "// Setting command ring address to 0x%016llx", val_64);
2465         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2466         xhci_dbg_cmd_ptrs(xhci);
2467
2468         xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags);
2469         if (!xhci->lpm_command)
2470                 goto fail;
2471
2472         /* Reserve one command ring TRB for disabling LPM.
2473          * Since the USB core grabs the shared usb_bus bandwidth mutex before
2474          * disabling LPM, we only need to reserve one TRB for all devices.
2475          */
2476         xhci->cmd_ring_reserved_trbs++;
2477
2478         val = readl(&xhci->cap_regs->db_off);
2479         val &= DBOFF_MASK;
2480         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2481                         "// Doorbell array is located at offset 0x%x"
2482                         " from cap regs base addr", val);
2483         xhci->dba = (void __iomem *) xhci->cap_regs + val;
2484         xhci_dbg_regs(xhci);
2485         xhci_print_run_regs(xhci);
2486         /* Set ir_set to interrupt register set 0 */
2487         xhci->ir_set = &xhci->run_regs->ir_set[0];
2488
2489         /*
2490          * Event ring setup: Allocate a normal ring, but also setup
2491          * the event ring segment table (ERST).  Section 4.9.3.
2492          */
2493         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2494         xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2495                                         0, flags);
2496         if (!xhci->event_ring)
2497                 goto fail;
2498         if (xhci_check_trb_in_td_math(xhci) < 0)
2499                 goto fail;
2500
2501         xhci->erst.entries = dma_alloc_coherent(dev,
2502                         sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2503                         flags);
2504         if (!xhci->erst.entries)
2505                 goto fail;
2506         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2507                         "// Allocated event ring segment table at 0x%llx",
2508                         (unsigned long long)dma);
2509
2510         memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2511         xhci->erst.num_entries = ERST_NUM_SEGS;
2512         xhci->erst.erst_dma_addr = dma;
2513         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2514                         "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx",
2515                         xhci->erst.num_entries,
2516                         xhci->erst.entries,
2517                         (unsigned long long)xhci->erst.erst_dma_addr);
2518
2519         /* set ring base address and size for each segment table entry */
2520         for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2521                 struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2522                 entry->seg_addr = cpu_to_le64(seg->dma);
2523                 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2524                 entry->rsvd = 0;
2525                 seg = seg->next;
2526         }
2527
2528         /* set ERST count with the number of entries in the segment table */
2529         val = readl(&xhci->ir_set->erst_size);
2530         val &= ERST_SIZE_MASK;
2531         val |= ERST_NUM_SEGS;
2532         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2533                         "// Write ERST size = %i to ir_set 0 (some bits preserved)",
2534                         val);
2535         writel(val, &xhci->ir_set->erst_size);
2536
2537         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2538                         "// Set ERST entries to point to event ring.");
2539         /* set the segment table base address */
2540         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2541                         "// Set ERST base address for ir_set 0 = 0x%llx",
2542                         (unsigned long long)xhci->erst.erst_dma_addr);
2543         val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2544         val_64 &= ERST_PTR_MASK;
2545         val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2546         xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2547
2548         /* Set the event ring dequeue address */
2549         xhci_set_hc_event_deq(xhci);
2550         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2551                         "Wrote ERST address to ir_set 0.");
2552         xhci_print_ir_set(xhci, 0);
2553
2554         /*
2555          * XXX: Might need to set the Interrupter Moderation Register to
2556          * something other than the default (~1ms minimum between interrupts).
2557          * See section 5.5.1.2.
2558          */
2559         for (i = 0; i < MAX_HC_SLOTS; i++)
2560                 xhci->devs[i] = NULL;
2561         for (i = 0; i < USB_MAXCHILDREN; i++) {
2562                 xhci->bus_state[0].resume_done[i] = 0;
2563                 xhci->bus_state[1].resume_done[i] = 0;
2564                 /* Only the USB 2.0 completions will ever be used. */
2565                 init_completion(&xhci->bus_state[1].rexit_done[i]);
2566         }
2567
2568         if (scratchpad_alloc(xhci, flags))
2569                 goto fail;
2570         if (xhci_setup_port_arrays(xhci, flags))
2571                 goto fail;
2572
2573         /* Enable USB 3.0 device notifications for function remote wake, which
2574          * is necessary for allowing USB 3.0 devices to do remote wakeup from
2575          * U3 (device suspend).
2576          */
2577         temp = readl(&xhci->op_regs->dev_notification);
2578         temp &= ~DEV_NOTE_MASK;
2579         temp |= DEV_NOTE_FWAKE;
2580         writel(temp, &xhci->op_regs->dev_notification);
2581
2582         return 0;
2583
2584 fail:
2585         xhci_halt(xhci);
2586         xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
2587         xhci_mem_cleanup(xhci);
2588         return -ENOMEM;
2589 }