GNU Linux-libre 5.10.219-gnu1
[releases.git] / drivers / usb / host / xhci-mem.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10
11 #include <linux/usb.h>
12 #include <linux/pci.h>
13 #include <linux/slab.h>
14 #include <linux/dmapool.h>
15 #include <linux/dma-mapping.h>
16
17 #include "xhci.h"
18 #include "xhci-trace.h"
19 #include "xhci-debugfs.h"
20
21 /*
22  * Allocates a generic ring segment from the ring pool, sets the dma address,
23  * initializes the segment to zero, and sets the private next pointer to NULL.
24  *
25  * Section 4.11.1.1:
26  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
27  */
28 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
29                                                unsigned int cycle_state,
30                                                unsigned int max_packet,
31                                                gfp_t flags)
32 {
33         struct xhci_segment *seg;
34         dma_addr_t      dma;
35         int             i;
36         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
37
38         seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev));
39         if (!seg)
40                 return NULL;
41
42         seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
43         if (!seg->trbs) {
44                 kfree(seg);
45                 return NULL;
46         }
47
48         if (max_packet) {
49                 seg->bounce_buf = kzalloc_node(max_packet, flags,
50                                         dev_to_node(dev));
51                 if (!seg->bounce_buf) {
52                         dma_pool_free(xhci->segment_pool, seg->trbs, dma);
53                         kfree(seg);
54                         return NULL;
55                 }
56         }
57         /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
58         if (cycle_state == 0) {
59                 for (i = 0; i < TRBS_PER_SEGMENT; i++)
60                         seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
61         }
62         seg->dma = dma;
63         seg->next = NULL;
64
65         return seg;
66 }
67
68 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
69 {
70         if (seg->trbs) {
71                 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
72                 seg->trbs = NULL;
73         }
74         kfree(seg->bounce_buf);
75         kfree(seg);
76 }
77
78 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
79                                 struct xhci_segment *first)
80 {
81         struct xhci_segment *seg;
82
83         seg = first->next;
84         while (seg != first) {
85                 struct xhci_segment *next = seg->next;
86                 xhci_segment_free(xhci, seg);
87                 seg = next;
88         }
89         xhci_segment_free(xhci, first);
90 }
91
92 /*
93  * Make the prev segment point to the next segment.
94  *
95  * Change the last TRB in the prev segment to be a Link TRB which points to the
96  * DMA address of the next segment.  The caller needs to set any Link TRB
97  * related flags, such as End TRB, Toggle Cycle, and no snoop.
98  */
99 static void xhci_link_segments(struct xhci_segment *prev,
100                                struct xhci_segment *next,
101                                enum xhci_ring_type type, bool chain_links)
102 {
103         u32 val;
104
105         if (!prev || !next)
106                 return;
107         prev->next = next;
108         if (type != TYPE_EVENT) {
109                 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
110                         cpu_to_le64(next->dma);
111
112                 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
113                 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
114                 val &= ~TRB_TYPE_BITMASK;
115                 val |= TRB_TYPE(TRB_LINK);
116                 if (chain_links)
117                         val |= TRB_CHAIN;
118                 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
119         }
120 }
121
122 /*
123  * Link the ring to the new segments.
124  * Set Toggle Cycle for the new ring if needed.
125  */
126 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
127                 struct xhci_segment *first, struct xhci_segment *last,
128                 unsigned int num_segs)
129 {
130         struct xhci_segment *next;
131         bool chain_links;
132
133         if (!ring || !first || !last)
134                 return;
135
136         /* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
137         chain_links = !!(xhci_link_trb_quirk(xhci) ||
138                          (ring->type == TYPE_ISOC &&
139                           (xhci->quirks & XHCI_AMD_0x96_HOST)));
140
141         next = ring->enq_seg->next;
142         xhci_link_segments(ring->enq_seg, first, ring->type, chain_links);
143         xhci_link_segments(last, next, ring->type, chain_links);
144         ring->num_segs += num_segs;
145         ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
146
147         if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
148                 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
149                         &= ~cpu_to_le32(LINK_TOGGLE);
150                 last->trbs[TRBS_PER_SEGMENT-1].link.control
151                         |= cpu_to_le32(LINK_TOGGLE);
152                 ring->last_seg = last;
153         }
154 }
155
156 /*
157  * We need a radix tree for mapping physical addresses of TRBs to which stream
158  * ID they belong to.  We need to do this because the host controller won't tell
159  * us which stream ring the TRB came from.  We could store the stream ID in an
160  * event data TRB, but that doesn't help us for the cancellation case, since the
161  * endpoint may stop before it reaches that event data TRB.
162  *
163  * The radix tree maps the upper portion of the TRB DMA address to a ring
164  * segment that has the same upper portion of DMA addresses.  For example, say I
165  * have segments of size 1KB, that are always 1KB aligned.  A segment may
166  * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
167  * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
168  * pass the radix tree a key to get the right stream ID:
169  *
170  *      0x10c90fff >> 10 = 0x43243
171  *      0x10c912c0 >> 10 = 0x43244
172  *      0x10c91400 >> 10 = 0x43245
173  *
174  * Obviously, only those TRBs with DMA addresses that are within the segment
175  * will make the radix tree return the stream ID for that ring.
176  *
177  * Caveats for the radix tree:
178  *
179  * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
180  * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
181  * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
182  * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
183  * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
184  * extended systems (where the DMA address can be bigger than 32-bits),
185  * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
186  */
187 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
188                 struct xhci_ring *ring,
189                 struct xhci_segment *seg,
190                 gfp_t mem_flags)
191 {
192         unsigned long key;
193         int ret;
194
195         key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
196         /* Skip any segments that were already added. */
197         if (radix_tree_lookup(trb_address_map, key))
198                 return 0;
199
200         ret = radix_tree_maybe_preload(mem_flags);
201         if (ret)
202                 return ret;
203         ret = radix_tree_insert(trb_address_map,
204                         key, ring);
205         radix_tree_preload_end();
206         return ret;
207 }
208
209 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
210                 struct xhci_segment *seg)
211 {
212         unsigned long key;
213
214         key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
215         if (radix_tree_lookup(trb_address_map, key))
216                 radix_tree_delete(trb_address_map, key);
217 }
218
219 static int xhci_update_stream_segment_mapping(
220                 struct radix_tree_root *trb_address_map,
221                 struct xhci_ring *ring,
222                 struct xhci_segment *first_seg,
223                 struct xhci_segment *last_seg,
224                 gfp_t mem_flags)
225 {
226         struct xhci_segment *seg;
227         struct xhci_segment *failed_seg;
228         int ret;
229
230         if (WARN_ON_ONCE(trb_address_map == NULL))
231                 return 0;
232
233         seg = first_seg;
234         do {
235                 ret = xhci_insert_segment_mapping(trb_address_map,
236                                 ring, seg, mem_flags);
237                 if (ret)
238                         goto remove_streams;
239                 if (seg == last_seg)
240                         return 0;
241                 seg = seg->next;
242         } while (seg != first_seg);
243
244         return 0;
245
246 remove_streams:
247         failed_seg = seg;
248         seg = first_seg;
249         do {
250                 xhci_remove_segment_mapping(trb_address_map, seg);
251                 if (seg == failed_seg)
252                         return ret;
253                 seg = seg->next;
254         } while (seg != first_seg);
255
256         return ret;
257 }
258
259 static void xhci_remove_stream_mapping(struct xhci_ring *ring)
260 {
261         struct xhci_segment *seg;
262
263         if (WARN_ON_ONCE(ring->trb_address_map == NULL))
264                 return;
265
266         seg = ring->first_seg;
267         do {
268                 xhci_remove_segment_mapping(ring->trb_address_map, seg);
269                 seg = seg->next;
270         } while (seg != ring->first_seg);
271 }
272
273 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
274 {
275         return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
276                         ring->first_seg, ring->last_seg, mem_flags);
277 }
278
279 /* XXX: Do we need the hcd structure in all these functions? */
280 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
281 {
282         if (!ring)
283                 return;
284
285         trace_xhci_ring_free(ring);
286
287         if (ring->first_seg) {
288                 if (ring->type == TYPE_STREAM)
289                         xhci_remove_stream_mapping(ring);
290                 xhci_free_segments_for_ring(xhci, ring->first_seg);
291         }
292
293         kfree(ring);
294 }
295
296 void xhci_initialize_ring_info(struct xhci_ring *ring,
297                                unsigned int cycle_state)
298 {
299         /* The ring is empty, so the enqueue pointer == dequeue pointer */
300         ring->enqueue = ring->first_seg->trbs;
301         ring->enq_seg = ring->first_seg;
302         ring->dequeue = ring->enqueue;
303         ring->deq_seg = ring->first_seg;
304         /* The ring is initialized to 0. The producer must write 1 to the cycle
305          * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
306          * compare CCS to the cycle bit to check ownership, so CCS = 1.
307          *
308          * New rings are initialized with cycle state equal to 1; if we are
309          * handling ring expansion, set the cycle state equal to the old ring.
310          */
311         ring->cycle_state = cycle_state;
312
313         /*
314          * Each segment has a link TRB, and leave an extra TRB for SW
315          * accounting purpose
316          */
317         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
318 }
319
320 /* Allocate segments and link them for a ring */
321 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
322                 struct xhci_segment **first, struct xhci_segment **last,
323                 unsigned int num_segs, unsigned int cycle_state,
324                 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
325 {
326         struct xhci_segment *prev;
327         bool chain_links;
328
329         /* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
330         chain_links = !!(xhci_link_trb_quirk(xhci) ||
331                          (type == TYPE_ISOC &&
332                           (xhci->quirks & XHCI_AMD_0x96_HOST)));
333
334         prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
335         if (!prev)
336                 return -ENOMEM;
337         num_segs--;
338
339         *first = prev;
340         while (num_segs > 0) {
341                 struct xhci_segment     *next;
342
343                 next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
344                 if (!next) {
345                         prev = *first;
346                         while (prev) {
347                                 next = prev->next;
348                                 xhci_segment_free(xhci, prev);
349                                 prev = next;
350                         }
351                         return -ENOMEM;
352                 }
353                 xhci_link_segments(prev, next, type, chain_links);
354
355                 prev = next;
356                 num_segs--;
357         }
358         xhci_link_segments(prev, *first, type, chain_links);
359         *last = prev;
360
361         return 0;
362 }
363
364 /*
365  * Create a new ring with zero or more segments.
366  *
367  * Link each segment together into a ring.
368  * Set the end flag and the cycle toggle bit on the last segment.
369  * See section 4.9.1 and figures 15 and 16.
370  */
371 struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
372                 unsigned int num_segs, unsigned int cycle_state,
373                 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
374 {
375         struct xhci_ring        *ring;
376         int ret;
377         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
378
379         ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev));
380         if (!ring)
381                 return NULL;
382
383         ring->num_segs = num_segs;
384         ring->bounce_buf_len = max_packet;
385         INIT_LIST_HEAD(&ring->td_list);
386         ring->type = type;
387         if (num_segs == 0)
388                 return ring;
389
390         ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
391                         &ring->last_seg, num_segs, cycle_state, type,
392                         max_packet, flags);
393         if (ret)
394                 goto fail;
395
396         /* Only event ring does not use link TRB */
397         if (type != TYPE_EVENT) {
398                 /* See section 4.9.2.1 and 6.4.4.1 */
399                 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
400                         cpu_to_le32(LINK_TOGGLE);
401         }
402         xhci_initialize_ring_info(ring, cycle_state);
403         trace_xhci_ring_alloc(ring);
404         return ring;
405
406 fail:
407         kfree(ring);
408         return NULL;
409 }
410
411 void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
412                 struct xhci_virt_device *virt_dev,
413                 unsigned int ep_index)
414 {
415         xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
416         virt_dev->eps[ep_index].ring = NULL;
417 }
418
419 /*
420  * Expand an existing ring.
421  * Allocate a new ring which has same segment numbers and link the two rings.
422  */
423 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
424                                 unsigned int num_trbs, gfp_t flags)
425 {
426         struct xhci_segment     *first;
427         struct xhci_segment     *last;
428         unsigned int            num_segs;
429         unsigned int            num_segs_needed;
430         int                     ret;
431
432         num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
433                                 (TRBS_PER_SEGMENT - 1);
434
435         /* Allocate number of segments we needed, or double the ring size */
436         num_segs = ring->num_segs > num_segs_needed ?
437                         ring->num_segs : num_segs_needed;
438
439         ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
440                         num_segs, ring->cycle_state, ring->type,
441                         ring->bounce_buf_len, flags);
442         if (ret)
443                 return -ENOMEM;
444
445         if (ring->type == TYPE_STREAM)
446                 ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
447                                                 ring, first, last, flags);
448         if (ret) {
449                 struct xhci_segment *next;
450                 do {
451                         next = first->next;
452                         xhci_segment_free(xhci, first);
453                         if (first == last)
454                                 break;
455                         first = next;
456                 } while (true);
457                 return ret;
458         }
459
460         xhci_link_rings(xhci, ring, first, last, num_segs);
461         trace_xhci_ring_expansion(ring);
462         xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
463                         "ring expansion succeed, now has %d segments",
464                         ring->num_segs);
465
466         return 0;
467 }
468
469 struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
470                                                     int type, gfp_t flags)
471 {
472         struct xhci_container_ctx *ctx;
473         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
474
475         if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
476                 return NULL;
477
478         ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev));
479         if (!ctx)
480                 return NULL;
481
482         ctx->type = type;
483         ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
484         if (type == XHCI_CTX_TYPE_INPUT)
485                 ctx->size += CTX_SIZE(xhci->hcc_params);
486
487         ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
488         if (!ctx->bytes) {
489                 kfree(ctx);
490                 return NULL;
491         }
492         return ctx;
493 }
494
495 void xhci_free_container_ctx(struct xhci_hcd *xhci,
496                              struct xhci_container_ctx *ctx)
497 {
498         if (!ctx)
499                 return;
500         dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
501         kfree(ctx);
502 }
503
504 struct xhci_input_control_ctx *xhci_get_input_control_ctx(
505                                               struct xhci_container_ctx *ctx)
506 {
507         if (ctx->type != XHCI_CTX_TYPE_INPUT)
508                 return NULL;
509
510         return (struct xhci_input_control_ctx *)ctx->bytes;
511 }
512
513 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
514                                         struct xhci_container_ctx *ctx)
515 {
516         if (ctx->type == XHCI_CTX_TYPE_DEVICE)
517                 return (struct xhci_slot_ctx *)ctx->bytes;
518
519         return (struct xhci_slot_ctx *)
520                 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
521 }
522
523 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
524                                     struct xhci_container_ctx *ctx,
525                                     unsigned int ep_index)
526 {
527         /* increment ep index by offset of start of ep ctx array */
528         ep_index++;
529         if (ctx->type == XHCI_CTX_TYPE_INPUT)
530                 ep_index++;
531
532         return (struct xhci_ep_ctx *)
533                 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
534 }
535
536
537 /***************** Streams structures manipulation *************************/
538
539 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
540                 unsigned int num_stream_ctxs,
541                 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
542 {
543         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
544         size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
545
546         if (size > MEDIUM_STREAM_ARRAY_SIZE)
547                 dma_free_coherent(dev, size,
548                                 stream_ctx, dma);
549         else if (size <= SMALL_STREAM_ARRAY_SIZE)
550                 return dma_pool_free(xhci->small_streams_pool,
551                                 stream_ctx, dma);
552         else
553                 return dma_pool_free(xhci->medium_streams_pool,
554                                 stream_ctx, dma);
555 }
556
557 /*
558  * The stream context array for each endpoint with bulk streams enabled can
559  * vary in size, based on:
560  *  - how many streams the endpoint supports,
561  *  - the maximum primary stream array size the host controller supports,
562  *  - and how many streams the device driver asks for.
563  *
564  * The stream context array must be a power of 2, and can be as small as
565  * 64 bytes or as large as 1MB.
566  */
567 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
568                 unsigned int num_stream_ctxs, dma_addr_t *dma,
569                 gfp_t mem_flags)
570 {
571         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
572         size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
573
574         if (size > MEDIUM_STREAM_ARRAY_SIZE)
575                 return dma_alloc_coherent(dev, size,
576                                 dma, mem_flags);
577         else if (size <= SMALL_STREAM_ARRAY_SIZE)
578                 return dma_pool_alloc(xhci->small_streams_pool,
579                                 mem_flags, dma);
580         else
581                 return dma_pool_alloc(xhci->medium_streams_pool,
582                                 mem_flags, dma);
583 }
584
585 struct xhci_ring *xhci_dma_to_transfer_ring(
586                 struct xhci_virt_ep *ep,
587                 u64 address)
588 {
589         if (ep->ep_state & EP_HAS_STREAMS)
590                 return radix_tree_lookup(&ep->stream_info->trb_address_map,
591                                 address >> TRB_SEGMENT_SHIFT);
592         return ep->ring;
593 }
594
595 struct xhci_ring *xhci_stream_id_to_ring(
596                 struct xhci_virt_device *dev,
597                 unsigned int ep_index,
598                 unsigned int stream_id)
599 {
600         struct xhci_virt_ep *ep = &dev->eps[ep_index];
601
602         if (stream_id == 0)
603                 return ep->ring;
604         if (!ep->stream_info)
605                 return NULL;
606
607         if (stream_id >= ep->stream_info->num_streams)
608                 return NULL;
609         return ep->stream_info->stream_rings[stream_id];
610 }
611
612 /*
613  * Change an endpoint's internal structure so it supports stream IDs.  The
614  * number of requested streams includes stream 0, which cannot be used by device
615  * drivers.
616  *
617  * The number of stream contexts in the stream context array may be bigger than
618  * the number of streams the driver wants to use.  This is because the number of
619  * stream context array entries must be a power of two.
620  */
621 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
622                 unsigned int num_stream_ctxs,
623                 unsigned int num_streams,
624                 unsigned int max_packet, gfp_t mem_flags)
625 {
626         struct xhci_stream_info *stream_info;
627         u32 cur_stream;
628         struct xhci_ring *cur_ring;
629         u64 addr;
630         int ret;
631         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
632
633         xhci_dbg(xhci, "Allocating %u streams and %u "
634                         "stream context array entries.\n",
635                         num_streams, num_stream_ctxs);
636         if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
637                 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
638                 return NULL;
639         }
640         xhci->cmd_ring_reserved_trbs++;
641
642         stream_info = kzalloc_node(sizeof(*stream_info), mem_flags,
643                         dev_to_node(dev));
644         if (!stream_info)
645                 goto cleanup_trbs;
646
647         stream_info->num_streams = num_streams;
648         stream_info->num_stream_ctxs = num_stream_ctxs;
649
650         /* Initialize the array of virtual pointers to stream rings. */
651         stream_info->stream_rings = kcalloc_node(
652                         num_streams, sizeof(struct xhci_ring *), mem_flags,
653                         dev_to_node(dev));
654         if (!stream_info->stream_rings)
655                 goto cleanup_info;
656
657         /* Initialize the array of DMA addresses for stream rings for the HW. */
658         stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
659                         num_stream_ctxs, &stream_info->ctx_array_dma,
660                         mem_flags);
661         if (!stream_info->stream_ctx_array)
662                 goto cleanup_ring_array;
663         memset(stream_info->stream_ctx_array, 0,
664                         sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
665
666         /* Allocate everything needed to free the stream rings later */
667         stream_info->free_streams_command =
668                 xhci_alloc_command_with_ctx(xhci, true, mem_flags);
669         if (!stream_info->free_streams_command)
670                 goto cleanup_ctx;
671
672         INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
673
674         /* Allocate rings for all the streams that the driver will use,
675          * and add their segment DMA addresses to the radix tree.
676          * Stream 0 is reserved.
677          */
678
679         for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
680                 stream_info->stream_rings[cur_stream] =
681                         xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
682                                         mem_flags);
683                 cur_ring = stream_info->stream_rings[cur_stream];
684                 if (!cur_ring)
685                         goto cleanup_rings;
686                 cur_ring->stream_id = cur_stream;
687                 cur_ring->trb_address_map = &stream_info->trb_address_map;
688                 /* Set deq ptr, cycle bit, and stream context type */
689                 addr = cur_ring->first_seg->dma |
690                         SCT_FOR_CTX(SCT_PRI_TR) |
691                         cur_ring->cycle_state;
692                 stream_info->stream_ctx_array[cur_stream].stream_ring =
693                         cpu_to_le64(addr);
694                 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
695                                 cur_stream, (unsigned long long) addr);
696
697                 ret = xhci_update_stream_mapping(cur_ring, mem_flags);
698                 if (ret) {
699                         xhci_ring_free(xhci, cur_ring);
700                         stream_info->stream_rings[cur_stream] = NULL;
701                         goto cleanup_rings;
702                 }
703         }
704         /* Leave the other unused stream ring pointers in the stream context
705          * array initialized to zero.  This will cause the xHC to give us an
706          * error if the device asks for a stream ID we don't have setup (if it
707          * was any other way, the host controller would assume the ring is
708          * "empty" and wait forever for data to be queued to that stream ID).
709          */
710
711         return stream_info;
712
713 cleanup_rings:
714         for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
715                 cur_ring = stream_info->stream_rings[cur_stream];
716                 if (cur_ring) {
717                         xhci_ring_free(xhci, cur_ring);
718                         stream_info->stream_rings[cur_stream] = NULL;
719                 }
720         }
721         xhci_free_command(xhci, stream_info->free_streams_command);
722 cleanup_ctx:
723         xhci_free_stream_ctx(xhci,
724                 stream_info->num_stream_ctxs,
725                 stream_info->stream_ctx_array,
726                 stream_info->ctx_array_dma);
727 cleanup_ring_array:
728         kfree(stream_info->stream_rings);
729 cleanup_info:
730         kfree(stream_info);
731 cleanup_trbs:
732         xhci->cmd_ring_reserved_trbs--;
733         return NULL;
734 }
735 /*
736  * Sets the MaxPStreams field and the Linear Stream Array field.
737  * Sets the dequeue pointer to the stream context array.
738  */
739 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
740                 struct xhci_ep_ctx *ep_ctx,
741                 struct xhci_stream_info *stream_info)
742 {
743         u32 max_primary_streams;
744         /* MaxPStreams is the number of stream context array entries, not the
745          * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
746          * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
747          */
748         max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
749         xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
750                         "Setting number of stream ctx array entries to %u",
751                         1 << (max_primary_streams + 1));
752         ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
753         ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
754                                        | EP_HAS_LSA);
755         ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
756 }
757
758 /*
759  * Sets the MaxPStreams field and the Linear Stream Array field to 0.
760  * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
761  * not at the beginning of the ring).
762  */
763 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
764                 struct xhci_virt_ep *ep)
765 {
766         dma_addr_t addr;
767         ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
768         addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
769         ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
770 }
771
772 /* Frees all stream contexts associated with the endpoint,
773  *
774  * Caller should fix the endpoint context streams fields.
775  */
776 void xhci_free_stream_info(struct xhci_hcd *xhci,
777                 struct xhci_stream_info *stream_info)
778 {
779         int cur_stream;
780         struct xhci_ring *cur_ring;
781
782         if (!stream_info)
783                 return;
784
785         for (cur_stream = 1; cur_stream < stream_info->num_streams;
786                         cur_stream++) {
787                 cur_ring = stream_info->stream_rings[cur_stream];
788                 if (cur_ring) {
789                         xhci_ring_free(xhci, cur_ring);
790                         stream_info->stream_rings[cur_stream] = NULL;
791                 }
792         }
793         xhci_free_command(xhci, stream_info->free_streams_command);
794         xhci->cmd_ring_reserved_trbs--;
795         if (stream_info->stream_ctx_array)
796                 xhci_free_stream_ctx(xhci,
797                                 stream_info->num_stream_ctxs,
798                                 stream_info->stream_ctx_array,
799                                 stream_info->ctx_array_dma);
800
801         kfree(stream_info->stream_rings);
802         kfree(stream_info);
803 }
804
805
806 /***************** Device context manipulation *************************/
807
808 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
809                 struct xhci_virt_ep *ep)
810 {
811         timer_setup(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog,
812                     0);
813         ep->xhci = xhci;
814 }
815
816 static void xhci_free_tt_info(struct xhci_hcd *xhci,
817                 struct xhci_virt_device *virt_dev,
818                 int slot_id)
819 {
820         struct list_head *tt_list_head;
821         struct xhci_tt_bw_info *tt_info, *next;
822         bool slot_found = false;
823
824         /* If the device never made it past the Set Address stage,
825          * it may not have the real_port set correctly.
826          */
827         if (virt_dev->real_port == 0 ||
828                         virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
829                 xhci_dbg(xhci, "Bad real port.\n");
830                 return;
831         }
832
833         tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
834         list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
835                 /* Multi-TT hubs will have more than one entry */
836                 if (tt_info->slot_id == slot_id) {
837                         slot_found = true;
838                         list_del(&tt_info->tt_list);
839                         kfree(tt_info);
840                 } else if (slot_found) {
841                         break;
842                 }
843         }
844 }
845
846 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
847                 struct xhci_virt_device *virt_dev,
848                 struct usb_device *hdev,
849                 struct usb_tt *tt, gfp_t mem_flags)
850 {
851         struct xhci_tt_bw_info          *tt_info;
852         unsigned int                    num_ports;
853         int                             i, j;
854         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
855
856         if (!tt->multi)
857                 num_ports = 1;
858         else
859                 num_ports = hdev->maxchild;
860
861         for (i = 0; i < num_ports; i++, tt_info++) {
862                 struct xhci_interval_bw_table *bw_table;
863
864                 tt_info = kzalloc_node(sizeof(*tt_info), mem_flags,
865                                 dev_to_node(dev));
866                 if (!tt_info)
867                         goto free_tts;
868                 INIT_LIST_HEAD(&tt_info->tt_list);
869                 list_add(&tt_info->tt_list,
870                                 &xhci->rh_bw[virt_dev->real_port - 1].tts);
871                 tt_info->slot_id = virt_dev->udev->slot_id;
872                 if (tt->multi)
873                         tt_info->ttport = i+1;
874                 bw_table = &tt_info->bw_table;
875                 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
876                         INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
877         }
878         return 0;
879
880 free_tts:
881         xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
882         return -ENOMEM;
883 }
884
885
886 /* All the xhci_tds in the ring's TD list should be freed at this point.
887  * Should be called with xhci->lock held if there is any chance the TT lists
888  * will be manipulated by the configure endpoint, allocate device, or update
889  * hub functions while this function is removing the TT entries from the list.
890  */
891 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
892 {
893         struct xhci_virt_device *dev;
894         int i;
895         int old_active_eps = 0;
896
897         /* Slot ID 0 is reserved */
898         if (slot_id == 0 || !xhci->devs[slot_id])
899                 return;
900
901         dev = xhci->devs[slot_id];
902
903         xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
904         if (!dev)
905                 return;
906
907         trace_xhci_free_virt_device(dev);
908
909         if (dev->tt_info)
910                 old_active_eps = dev->tt_info->active_eps;
911
912         for (i = 0; i < 31; i++) {
913                 if (dev->eps[i].ring)
914                         xhci_ring_free(xhci, dev->eps[i].ring);
915                 if (dev->eps[i].stream_info)
916                         xhci_free_stream_info(xhci,
917                                         dev->eps[i].stream_info);
918                 /*
919                  * Endpoints are normally deleted from the bandwidth list when
920                  * endpoints are dropped, before device is freed.
921                  * If host is dying or being removed then endpoints aren't
922                  * dropped cleanly, so delete the endpoint from list here.
923                  * Only applicable for hosts with software bandwidth checking.
924                  */
925
926                 if (!list_empty(&dev->eps[i].bw_endpoint_list)) {
927                         list_del_init(&dev->eps[i].bw_endpoint_list);
928                         xhci_dbg(xhci, "Slot %u endpoint %u not removed from BW list!\n",
929                                  slot_id, i);
930                 }
931         }
932         /* If this is a hub, free the TT(s) from the TT list */
933         xhci_free_tt_info(xhci, dev, slot_id);
934         /* If necessary, update the number of active TTs on this root port */
935         xhci_update_tt_active_eps(xhci, dev, old_active_eps);
936
937         if (dev->in_ctx)
938                 xhci_free_container_ctx(xhci, dev->in_ctx);
939         if (dev->out_ctx)
940                 xhci_free_container_ctx(xhci, dev->out_ctx);
941
942         if (dev->udev && dev->udev->slot_id)
943                 dev->udev->slot_id = 0;
944         kfree(xhci->devs[slot_id]);
945         xhci->devs[slot_id] = NULL;
946 }
947
948 /*
949  * Free a virt_device structure.
950  * If the virt_device added a tt_info (a hub) and has children pointing to
951  * that tt_info, then free the child first. Recursive.
952  * We can't rely on udev at this point to find child-parent relationships.
953  */
954 static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
955 {
956         struct xhci_virt_device *vdev;
957         struct list_head *tt_list_head;
958         struct xhci_tt_bw_info *tt_info, *next;
959         int i;
960
961         vdev = xhci->devs[slot_id];
962         if (!vdev)
963                 return;
964
965         if (vdev->real_port == 0 ||
966                         vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
967                 xhci_dbg(xhci, "Bad vdev->real_port.\n");
968                 goto out;
969         }
970
971         tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
972         list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
973                 /* is this a hub device that added a tt_info to the tts list */
974                 if (tt_info->slot_id == slot_id) {
975                         /* are any devices using this tt_info? */
976                         for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
977                                 vdev = xhci->devs[i];
978                                 if (vdev && (vdev->tt_info == tt_info))
979                                         xhci_free_virt_devices_depth_first(
980                                                 xhci, i);
981                         }
982                 }
983         }
984 out:
985         /* we are now at a leaf device */
986         xhci_debugfs_remove_slot(xhci, slot_id);
987         xhci_free_virt_device(xhci, slot_id);
988 }
989
990 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
991                 struct usb_device *udev, gfp_t flags)
992 {
993         struct xhci_virt_device *dev;
994         int i;
995
996         /* Slot ID 0 is reserved */
997         if (slot_id == 0 || xhci->devs[slot_id]) {
998                 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
999                 return 0;
1000         }
1001
1002         dev = kzalloc(sizeof(*dev), flags);
1003         if (!dev)
1004                 return 0;
1005
1006         dev->slot_id = slot_id;
1007
1008         /* Allocate the (output) device context that will be used in the HC. */
1009         dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
1010         if (!dev->out_ctx)
1011                 goto fail;
1012
1013         xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
1014                         (unsigned long long)dev->out_ctx->dma);
1015
1016         /* Allocate the (input) device context for address device command */
1017         dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
1018         if (!dev->in_ctx)
1019                 goto fail;
1020
1021         xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
1022                         (unsigned long long)dev->in_ctx->dma);
1023
1024         /* Initialize the cancellation list and watchdog timers for each ep */
1025         for (i = 0; i < 31; i++) {
1026                 dev->eps[i].ep_index = i;
1027                 dev->eps[i].vdev = dev;
1028                 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
1029                 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1030                 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1031         }
1032
1033         /* Allocate endpoint 0 ring */
1034         dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
1035         if (!dev->eps[0].ring)
1036                 goto fail;
1037
1038         dev->udev = udev;
1039
1040         /* Point to output device context in dcbaa. */
1041         xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1042         xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1043                  slot_id,
1044                  &xhci->dcbaa->dev_context_ptrs[slot_id],
1045                  le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1046
1047         trace_xhci_alloc_virt_device(dev);
1048
1049         xhci->devs[slot_id] = dev;
1050
1051         return 1;
1052 fail:
1053
1054         if (dev->in_ctx)
1055                 xhci_free_container_ctx(xhci, dev->in_ctx);
1056         if (dev->out_ctx)
1057                 xhci_free_container_ctx(xhci, dev->out_ctx);
1058         kfree(dev);
1059
1060         return 0;
1061 }
1062
1063 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1064                 struct usb_device *udev)
1065 {
1066         struct xhci_virt_device *virt_dev;
1067         struct xhci_ep_ctx      *ep0_ctx;
1068         struct xhci_ring        *ep_ring;
1069
1070         virt_dev = xhci->devs[udev->slot_id];
1071         ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1072         ep_ring = virt_dev->eps[0].ring;
1073         /*
1074          * FIXME we don't keep track of the dequeue pointer very well after a
1075          * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1076          * host to our enqueue pointer.  This should only be called after a
1077          * configured device has reset, so all control transfers should have
1078          * been completed or cancelled before the reset.
1079          */
1080         ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1081                                                         ep_ring->enqueue)
1082                                    | ep_ring->cycle_state);
1083 }
1084
1085 /*
1086  * The xHCI roothub may have ports of differing speeds in any order in the port
1087  * status registers.
1088  *
1089  * The xHCI hardware wants to know the roothub port number that the USB device
1090  * is attached to (or the roothub port its ancestor hub is attached to).  All we
1091  * know is the index of that port under either the USB 2.0 or the USB 3.0
1092  * roothub, but that doesn't give us the real index into the HW port status
1093  * registers. Call xhci_find_raw_port_number() to get real index.
1094  */
1095 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1096                 struct usb_device *udev)
1097 {
1098         struct usb_device *top_dev;
1099         struct usb_hcd *hcd;
1100
1101         if (udev->speed >= USB_SPEED_SUPER)
1102                 hcd = xhci->shared_hcd;
1103         else
1104                 hcd = xhci->main_hcd;
1105
1106         for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1107                         top_dev = top_dev->parent)
1108                 /* Found device below root hub */;
1109
1110         return  xhci_find_raw_port_number(hcd, top_dev->portnum);
1111 }
1112
1113 /* Setup an xHCI virtual device for a Set Address command */
1114 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1115 {
1116         struct xhci_virt_device *dev;
1117         struct xhci_ep_ctx      *ep0_ctx;
1118         struct xhci_slot_ctx    *slot_ctx;
1119         u32                     port_num;
1120         u32                     max_packets;
1121         struct usb_device *top_dev;
1122
1123         dev = xhci->devs[udev->slot_id];
1124         /* Slot ID 0 is reserved */
1125         if (udev->slot_id == 0 || !dev) {
1126                 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1127                                 udev->slot_id);
1128                 return -EINVAL;
1129         }
1130         ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1131         slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1132
1133         /* 3) Only the control endpoint is valid - one endpoint context */
1134         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1135         switch (udev->speed) {
1136         case USB_SPEED_SUPER_PLUS:
1137                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1138                 max_packets = MAX_PACKET(512);
1139                 break;
1140         case USB_SPEED_SUPER:
1141                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1142                 max_packets = MAX_PACKET(512);
1143                 break;
1144         case USB_SPEED_HIGH:
1145                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1146                 max_packets = MAX_PACKET(64);
1147                 break;
1148         /* USB core guesses at a 64-byte max packet first for FS devices */
1149         case USB_SPEED_FULL:
1150                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1151                 max_packets = MAX_PACKET(64);
1152                 break;
1153         case USB_SPEED_LOW:
1154                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1155                 max_packets = MAX_PACKET(8);
1156                 break;
1157         case USB_SPEED_WIRELESS:
1158                 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1159                 return -EINVAL;
1160                 break;
1161         default:
1162                 /* Speed was set earlier, this shouldn't happen. */
1163                 return -EINVAL;
1164         }
1165         /* Find the root hub port this device is under */
1166         port_num = xhci_find_real_port_number(xhci, udev);
1167         if (!port_num)
1168                 return -EINVAL;
1169         slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1170         /* Set the port number in the virtual_device to the faked port number */
1171         for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1172                         top_dev = top_dev->parent)
1173                 /* Found device below root hub */;
1174         dev->fake_port = top_dev->portnum;
1175         dev->real_port = port_num;
1176         xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1177         xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1178
1179         /* Find the right bandwidth table that this device will be a part of.
1180          * If this is a full speed device attached directly to a root port (or a
1181          * decendent of one), it counts as a primary bandwidth domain, not a
1182          * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1183          * will never be created for the HS root hub.
1184          */
1185         if (!udev->tt || !udev->tt->hub->parent) {
1186                 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1187         } else {
1188                 struct xhci_root_port_bw_info *rh_bw;
1189                 struct xhci_tt_bw_info *tt_bw;
1190
1191                 rh_bw = &xhci->rh_bw[port_num - 1];
1192                 /* Find the right TT. */
1193                 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1194                         if (tt_bw->slot_id != udev->tt->hub->slot_id)
1195                                 continue;
1196
1197                         if (!dev->udev->tt->multi ||
1198                                         (udev->tt->multi &&
1199                                          tt_bw->ttport == dev->udev->ttport)) {
1200                                 dev->bw_table = &tt_bw->bw_table;
1201                                 dev->tt_info = tt_bw;
1202                                 break;
1203                         }
1204                 }
1205                 if (!dev->tt_info)
1206                         xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1207         }
1208
1209         /* Is this a LS/FS device under an external HS hub? */
1210         if (udev->tt && udev->tt->hub->parent) {
1211                 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1212                                                 (udev->ttport << 8));
1213                 if (udev->tt->multi)
1214                         slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1215         }
1216         xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1217         xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1218
1219         /* Step 4 - ring already allocated */
1220         /* Step 5 */
1221         ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1222
1223         /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1224         ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1225                                          max_packets);
1226
1227         ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1228                                    dev->eps[0].ring->cycle_state);
1229
1230         trace_xhci_setup_addressable_virt_device(dev);
1231
1232         /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1233
1234         return 0;
1235 }
1236
1237 /*
1238  * Convert interval expressed as 2^(bInterval - 1) == interval into
1239  * straight exponent value 2^n == interval.
1240  *
1241  */
1242 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1243                 struct usb_host_endpoint *ep)
1244 {
1245         unsigned int interval;
1246
1247         interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1248         if (interval != ep->desc.bInterval - 1)
1249                 dev_warn(&udev->dev,
1250                          "ep %#x - rounding interval to %d %sframes\n",
1251                          ep->desc.bEndpointAddress,
1252                          1 << interval,
1253                          udev->speed == USB_SPEED_FULL ? "" : "micro");
1254
1255         if (udev->speed == USB_SPEED_FULL) {
1256                 /*
1257                  * Full speed isoc endpoints specify interval in frames,
1258                  * not microframes. We are using microframes everywhere,
1259                  * so adjust accordingly.
1260                  */
1261                 interval += 3;  /* 1 frame = 2^3 uframes */
1262         }
1263
1264         return interval;
1265 }
1266
1267 /*
1268  * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1269  * microframes, rounded down to nearest power of 2.
1270  */
1271 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1272                 struct usb_host_endpoint *ep, unsigned int desc_interval,
1273                 unsigned int min_exponent, unsigned int max_exponent)
1274 {
1275         unsigned int interval;
1276
1277         interval = fls(desc_interval) - 1;
1278         interval = clamp_val(interval, min_exponent, max_exponent);
1279         if ((1 << interval) != desc_interval)
1280                 dev_dbg(&udev->dev,
1281                          "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1282                          ep->desc.bEndpointAddress,
1283                          1 << interval,
1284                          desc_interval);
1285
1286         return interval;
1287 }
1288
1289 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1290                 struct usb_host_endpoint *ep)
1291 {
1292         if (ep->desc.bInterval == 0)
1293                 return 0;
1294         return xhci_microframes_to_exponent(udev, ep,
1295                         ep->desc.bInterval, 0, 15);
1296 }
1297
1298
1299 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1300                 struct usb_host_endpoint *ep)
1301 {
1302         return xhci_microframes_to_exponent(udev, ep,
1303                         ep->desc.bInterval * 8, 3, 10);
1304 }
1305
1306 /* Return the polling or NAK interval.
1307  *
1308  * The polling interval is expressed in "microframes".  If xHCI's Interval field
1309  * is set to N, it will service the endpoint every 2^(Interval)*125us.
1310  *
1311  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1312  * is set to 0.
1313  */
1314 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1315                 struct usb_host_endpoint *ep)
1316 {
1317         unsigned int interval = 0;
1318
1319         switch (udev->speed) {
1320         case USB_SPEED_HIGH:
1321                 /* Max NAK rate */
1322                 if (usb_endpoint_xfer_control(&ep->desc) ||
1323                     usb_endpoint_xfer_bulk(&ep->desc)) {
1324                         interval = xhci_parse_microframe_interval(udev, ep);
1325                         break;
1326                 }
1327                 fallthrough;    /* SS and HS isoc/int have same decoding */
1328
1329         case USB_SPEED_SUPER_PLUS:
1330         case USB_SPEED_SUPER:
1331                 if (usb_endpoint_xfer_int(&ep->desc) ||
1332                     usb_endpoint_xfer_isoc(&ep->desc)) {
1333                         interval = xhci_parse_exponent_interval(udev, ep);
1334                 }
1335                 break;
1336
1337         case USB_SPEED_FULL:
1338                 if (usb_endpoint_xfer_isoc(&ep->desc)) {
1339                         interval = xhci_parse_exponent_interval(udev, ep);
1340                         break;
1341                 }
1342                 /*
1343                  * Fall through for interrupt endpoint interval decoding
1344                  * since it uses the same rules as low speed interrupt
1345                  * endpoints.
1346                  */
1347                 fallthrough;
1348
1349         case USB_SPEED_LOW:
1350                 if (usb_endpoint_xfer_int(&ep->desc) ||
1351                     usb_endpoint_xfer_isoc(&ep->desc)) {
1352
1353                         interval = xhci_parse_frame_interval(udev, ep);
1354                 }
1355                 break;
1356
1357         default:
1358                 BUG();
1359         }
1360         return interval;
1361 }
1362
1363 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1364  * High speed endpoint descriptors can define "the number of additional
1365  * transaction opportunities per microframe", but that goes in the Max Burst
1366  * endpoint context field.
1367  */
1368 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1369                 struct usb_host_endpoint *ep)
1370 {
1371         if (udev->speed < USB_SPEED_SUPER ||
1372                         !usb_endpoint_xfer_isoc(&ep->desc))
1373                 return 0;
1374         return ep->ss_ep_comp.bmAttributes;
1375 }
1376
1377 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1378                                        struct usb_host_endpoint *ep)
1379 {
1380         /* Super speed and Plus have max burst in ep companion desc */
1381         if (udev->speed >= USB_SPEED_SUPER)
1382                 return ep->ss_ep_comp.bMaxBurst;
1383
1384         if (udev->speed == USB_SPEED_HIGH &&
1385             (usb_endpoint_xfer_isoc(&ep->desc) ||
1386              usb_endpoint_xfer_int(&ep->desc)))
1387                 return usb_endpoint_maxp_mult(&ep->desc) - 1;
1388
1389         return 0;
1390 }
1391
1392 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1393 {
1394         int in;
1395
1396         in = usb_endpoint_dir_in(&ep->desc);
1397
1398         switch (usb_endpoint_type(&ep->desc)) {
1399         case USB_ENDPOINT_XFER_CONTROL:
1400                 return CTRL_EP;
1401         case USB_ENDPOINT_XFER_BULK:
1402                 return in ? BULK_IN_EP : BULK_OUT_EP;
1403         case USB_ENDPOINT_XFER_ISOC:
1404                 return in ? ISOC_IN_EP : ISOC_OUT_EP;
1405         case USB_ENDPOINT_XFER_INT:
1406                 return in ? INT_IN_EP : INT_OUT_EP;
1407         }
1408         return 0;
1409 }
1410
1411 /* Return the maximum endpoint service interval time (ESIT) payload.
1412  * Basically, this is the maxpacket size, multiplied by the burst size
1413  * and mult size.
1414  */
1415 static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1416                 struct usb_host_endpoint *ep)
1417 {
1418         int max_burst;
1419         int max_packet;
1420
1421         /* Only applies for interrupt or isochronous endpoints */
1422         if (usb_endpoint_xfer_control(&ep->desc) ||
1423                         usb_endpoint_xfer_bulk(&ep->desc))
1424                 return 0;
1425
1426         /* SuperSpeedPlus Isoc ep sending over 48k per esit */
1427         if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1428             USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1429                 return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1430         /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1431         else if (udev->speed >= USB_SPEED_SUPER)
1432                 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1433
1434         max_packet = usb_endpoint_maxp(&ep->desc);
1435         max_burst = usb_endpoint_maxp_mult(&ep->desc);
1436         /* A 0 in max burst means 1 transfer per ESIT */
1437         return max_packet * max_burst;
1438 }
1439
1440 /* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1441  * Drivers will have to call usb_alloc_streams() to do that.
1442  */
1443 int xhci_endpoint_init(struct xhci_hcd *xhci,
1444                 struct xhci_virt_device *virt_dev,
1445                 struct usb_device *udev,
1446                 struct usb_host_endpoint *ep,
1447                 gfp_t mem_flags)
1448 {
1449         unsigned int ep_index;
1450         struct xhci_ep_ctx *ep_ctx;
1451         struct xhci_ring *ep_ring;
1452         unsigned int max_packet;
1453         enum xhci_ring_type ring_type;
1454         u32 max_esit_payload;
1455         u32 endpoint_type;
1456         unsigned int max_burst;
1457         unsigned int interval;
1458         unsigned int mult;
1459         unsigned int avg_trb_len;
1460         unsigned int err_count = 0;
1461
1462         ep_index = xhci_get_endpoint_index(&ep->desc);
1463         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1464
1465         endpoint_type = xhci_get_endpoint_type(ep);
1466         if (!endpoint_type)
1467                 return -EINVAL;
1468
1469         ring_type = usb_endpoint_type(&ep->desc);
1470
1471         /*
1472          * Get values to fill the endpoint context, mostly from ep descriptor.
1473          * The average TRB buffer lengt for bulk endpoints is unclear as we
1474          * have no clue on scatter gather list entry size. For Isoc and Int,
1475          * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1476          */
1477         max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1478         interval = xhci_get_endpoint_interval(udev, ep);
1479
1480         /* Periodic endpoint bInterval limit quirk */
1481         if (usb_endpoint_xfer_int(&ep->desc) ||
1482             usb_endpoint_xfer_isoc(&ep->desc)) {
1483                 if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1484                     udev->speed >= USB_SPEED_HIGH &&
1485                     interval >= 7) {
1486                         interval = 6;
1487                 }
1488         }
1489
1490         mult = xhci_get_endpoint_mult(udev, ep);
1491         max_packet = usb_endpoint_maxp(&ep->desc);
1492         max_burst = xhci_get_endpoint_max_burst(udev, ep);
1493         avg_trb_len = max_esit_payload;
1494
1495         /* FIXME dig Mult and streams info out of ep companion desc */
1496
1497         /* Allow 3 retries for everything but isoc, set CErr = 3 */
1498         if (!usb_endpoint_xfer_isoc(&ep->desc))
1499                 err_count = 3;
1500         /* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */
1501         if (usb_endpoint_xfer_bulk(&ep->desc)) {
1502                 if (udev->speed == USB_SPEED_HIGH)
1503                         max_packet = 512;
1504                 if (udev->speed == USB_SPEED_FULL) {
1505                         max_packet = rounddown_pow_of_two(max_packet);
1506                         max_packet = clamp_val(max_packet, 8, 64);
1507                 }
1508         }
1509         /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1510         if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1511                 avg_trb_len = 8;
1512         /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1513         if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1514                 mult = 0;
1515
1516         /* Set up the endpoint ring */
1517         virt_dev->eps[ep_index].new_ring =
1518                 xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1519         if (!virt_dev->eps[ep_index].new_ring)
1520                 return -ENOMEM;
1521
1522         virt_dev->eps[ep_index].skip = false;
1523         ep_ring = virt_dev->eps[ep_index].new_ring;
1524
1525         /* Fill the endpoint context */
1526         ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1527                                       EP_INTERVAL(interval) |
1528                                       EP_MULT(mult));
1529         ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1530                                        MAX_PACKET(max_packet) |
1531                                        MAX_BURST(max_burst) |
1532                                        ERROR_COUNT(err_count));
1533         ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1534                                   ep_ring->cycle_state);
1535
1536         ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1537                                       EP_AVG_TRB_LENGTH(avg_trb_len));
1538
1539         return 0;
1540 }
1541
1542 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1543                 struct xhci_virt_device *virt_dev,
1544                 struct usb_host_endpoint *ep)
1545 {
1546         unsigned int ep_index;
1547         struct xhci_ep_ctx *ep_ctx;
1548
1549         ep_index = xhci_get_endpoint_index(&ep->desc);
1550         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1551
1552         ep_ctx->ep_info = 0;
1553         ep_ctx->ep_info2 = 0;
1554         ep_ctx->deq = 0;
1555         ep_ctx->tx_info = 0;
1556         /* Don't free the endpoint ring until the set interface or configuration
1557          * request succeeds.
1558          */
1559 }
1560
1561 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1562 {
1563         bw_info->ep_interval = 0;
1564         bw_info->mult = 0;
1565         bw_info->num_packets = 0;
1566         bw_info->max_packet_size = 0;
1567         bw_info->type = 0;
1568         bw_info->max_esit_payload = 0;
1569 }
1570
1571 void xhci_update_bw_info(struct xhci_hcd *xhci,
1572                 struct xhci_container_ctx *in_ctx,
1573                 struct xhci_input_control_ctx *ctrl_ctx,
1574                 struct xhci_virt_device *virt_dev)
1575 {
1576         struct xhci_bw_info *bw_info;
1577         struct xhci_ep_ctx *ep_ctx;
1578         unsigned int ep_type;
1579         int i;
1580
1581         for (i = 1; i < 31; i++) {
1582                 bw_info = &virt_dev->eps[i].bw_info;
1583
1584                 /* We can't tell what endpoint type is being dropped, but
1585                  * unconditionally clearing the bandwidth info for non-periodic
1586                  * endpoints should be harmless because the info will never be
1587                  * set in the first place.
1588                  */
1589                 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1590                         /* Dropped endpoint */
1591                         xhci_clear_endpoint_bw_info(bw_info);
1592                         continue;
1593                 }
1594
1595                 if (EP_IS_ADDED(ctrl_ctx, i)) {
1596                         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1597                         ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1598
1599                         /* Ignore non-periodic endpoints */
1600                         if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1601                                         ep_type != ISOC_IN_EP &&
1602                                         ep_type != INT_IN_EP)
1603                                 continue;
1604
1605                         /* Added or changed endpoint */
1606                         bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1607                                         le32_to_cpu(ep_ctx->ep_info));
1608                         /* Number of packets and mult are zero-based in the
1609                          * input context, but we want one-based for the
1610                          * interval table.
1611                          */
1612                         bw_info->mult = CTX_TO_EP_MULT(
1613                                         le32_to_cpu(ep_ctx->ep_info)) + 1;
1614                         bw_info->num_packets = CTX_TO_MAX_BURST(
1615                                         le32_to_cpu(ep_ctx->ep_info2)) + 1;
1616                         bw_info->max_packet_size = MAX_PACKET_DECODED(
1617                                         le32_to_cpu(ep_ctx->ep_info2));
1618                         bw_info->type = ep_type;
1619                         bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1620                                         le32_to_cpu(ep_ctx->tx_info));
1621                 }
1622         }
1623 }
1624
1625 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1626  * Useful when you want to change one particular aspect of the endpoint and then
1627  * issue a configure endpoint command.
1628  */
1629 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1630                 struct xhci_container_ctx *in_ctx,
1631                 struct xhci_container_ctx *out_ctx,
1632                 unsigned int ep_index)
1633 {
1634         struct xhci_ep_ctx *out_ep_ctx;
1635         struct xhci_ep_ctx *in_ep_ctx;
1636
1637         out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1638         in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1639
1640         in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1641         in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1642         in_ep_ctx->deq = out_ep_ctx->deq;
1643         in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1644         if (xhci->quirks & XHCI_MTK_HOST) {
1645                 in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0];
1646                 in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1];
1647         }
1648 }
1649
1650 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1651  * Useful when you want to change one particular aspect of the endpoint and then
1652  * issue a configure endpoint command.  Only the context entries field matters,
1653  * but we'll copy the whole thing anyway.
1654  */
1655 void xhci_slot_copy(struct xhci_hcd *xhci,
1656                 struct xhci_container_ctx *in_ctx,
1657                 struct xhci_container_ctx *out_ctx)
1658 {
1659         struct xhci_slot_ctx *in_slot_ctx;
1660         struct xhci_slot_ctx *out_slot_ctx;
1661
1662         in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1663         out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1664
1665         in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1666         in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1667         in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1668         in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1669 }
1670
1671 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1672 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1673 {
1674         int i;
1675         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1676         int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1677
1678         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1679                         "Allocating %d scratchpad buffers", num_sp);
1680
1681         if (!num_sp)
1682                 return 0;
1683
1684         xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags,
1685                                 dev_to_node(dev));
1686         if (!xhci->scratchpad)
1687                 goto fail_sp;
1688
1689         xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1690                                      num_sp * sizeof(u64),
1691                                      &xhci->scratchpad->sp_dma, flags);
1692         if (!xhci->scratchpad->sp_array)
1693                 goto fail_sp2;
1694
1695         xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *),
1696                                         flags, dev_to_node(dev));
1697         if (!xhci->scratchpad->sp_buffers)
1698                 goto fail_sp3;
1699
1700         xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1701         for (i = 0; i < num_sp; i++) {
1702                 dma_addr_t dma;
1703                 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1704                                                flags);
1705                 if (!buf)
1706                         goto fail_sp4;
1707
1708                 xhci->scratchpad->sp_array[i] = dma;
1709                 xhci->scratchpad->sp_buffers[i] = buf;
1710         }
1711
1712         return 0;
1713
1714  fail_sp4:
1715         for (i = i - 1; i >= 0; i--) {
1716                 dma_free_coherent(dev, xhci->page_size,
1717                                     xhci->scratchpad->sp_buffers[i],
1718                                     xhci->scratchpad->sp_array[i]);
1719         }
1720
1721         kfree(xhci->scratchpad->sp_buffers);
1722
1723  fail_sp3:
1724         dma_free_coherent(dev, num_sp * sizeof(u64),
1725                             xhci->scratchpad->sp_array,
1726                             xhci->scratchpad->sp_dma);
1727
1728  fail_sp2:
1729         kfree(xhci->scratchpad);
1730         xhci->scratchpad = NULL;
1731
1732  fail_sp:
1733         return -ENOMEM;
1734 }
1735
1736 static void scratchpad_free(struct xhci_hcd *xhci)
1737 {
1738         int num_sp;
1739         int i;
1740         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1741
1742         if (!xhci->scratchpad)
1743                 return;
1744
1745         num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1746
1747         for (i = 0; i < num_sp; i++) {
1748                 dma_free_coherent(dev, xhci->page_size,
1749                                     xhci->scratchpad->sp_buffers[i],
1750                                     xhci->scratchpad->sp_array[i]);
1751         }
1752         kfree(xhci->scratchpad->sp_buffers);
1753         dma_free_coherent(dev, num_sp * sizeof(u64),
1754                             xhci->scratchpad->sp_array,
1755                             xhci->scratchpad->sp_dma);
1756         kfree(xhci->scratchpad);
1757         xhci->scratchpad = NULL;
1758 }
1759
1760 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1761                 bool allocate_completion, gfp_t mem_flags)
1762 {
1763         struct xhci_command *command;
1764         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1765
1766         command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev));
1767         if (!command)
1768                 return NULL;
1769
1770         if (allocate_completion) {
1771                 command->completion =
1772                         kzalloc_node(sizeof(struct completion), mem_flags,
1773                                 dev_to_node(dev));
1774                 if (!command->completion) {
1775                         kfree(command);
1776                         return NULL;
1777                 }
1778                 init_completion(command->completion);
1779         }
1780
1781         command->status = 0;
1782         INIT_LIST_HEAD(&command->cmd_list);
1783         return command;
1784 }
1785
1786 struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci,
1787                 bool allocate_completion, gfp_t mem_flags)
1788 {
1789         struct xhci_command *command;
1790
1791         command = xhci_alloc_command(xhci, allocate_completion, mem_flags);
1792         if (!command)
1793                 return NULL;
1794
1795         command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1796                                                    mem_flags);
1797         if (!command->in_ctx) {
1798                 kfree(command->completion);
1799                 kfree(command);
1800                 return NULL;
1801         }
1802         return command;
1803 }
1804
1805 void xhci_urb_free_priv(struct urb_priv *urb_priv)
1806 {
1807         kfree(urb_priv);
1808 }
1809
1810 void xhci_free_command(struct xhci_hcd *xhci,
1811                 struct xhci_command *command)
1812 {
1813         xhci_free_container_ctx(xhci,
1814                         command->in_ctx);
1815         kfree(command->completion);
1816         kfree(command);
1817 }
1818
1819 int xhci_alloc_erst(struct xhci_hcd *xhci,
1820                     struct xhci_ring *evt_ring,
1821                     struct xhci_erst *erst,
1822                     gfp_t flags)
1823 {
1824         size_t size;
1825         unsigned int val;
1826         struct xhci_segment *seg;
1827         struct xhci_erst_entry *entry;
1828
1829         size = sizeof(struct xhci_erst_entry) * evt_ring->num_segs;
1830         erst->entries = dma_alloc_coherent(xhci_to_hcd(xhci)->self.sysdev,
1831                                            size, &erst->erst_dma_addr, flags);
1832         if (!erst->entries)
1833                 return -ENOMEM;
1834
1835         erst->num_entries = evt_ring->num_segs;
1836
1837         seg = evt_ring->first_seg;
1838         for (val = 0; val < evt_ring->num_segs; val++) {
1839                 entry = &erst->entries[val];
1840                 entry->seg_addr = cpu_to_le64(seg->dma);
1841                 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
1842                 entry->rsvd = 0;
1843                 seg = seg->next;
1844         }
1845
1846         return 0;
1847 }
1848
1849 void xhci_free_erst(struct xhci_hcd *xhci, struct xhci_erst *erst)
1850 {
1851         size_t size;
1852         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1853
1854         size = sizeof(struct xhci_erst_entry) * (erst->num_entries);
1855         if (erst->entries)
1856                 dma_free_coherent(dev, size,
1857                                 erst->entries,
1858                                 erst->erst_dma_addr);
1859         erst->entries = NULL;
1860 }
1861
1862 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1863 {
1864         struct device   *dev = xhci_to_hcd(xhci)->self.sysdev;
1865         int i, j, num_ports;
1866
1867         cancel_delayed_work_sync(&xhci->cmd_timer);
1868
1869         xhci_free_erst(xhci, &xhci->erst);
1870
1871         if (xhci->event_ring)
1872                 xhci_ring_free(xhci, xhci->event_ring);
1873         xhci->event_ring = NULL;
1874         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1875
1876         if (xhci->lpm_command)
1877                 xhci_free_command(xhci, xhci->lpm_command);
1878         xhci->lpm_command = NULL;
1879         if (xhci->cmd_ring)
1880                 xhci_ring_free(xhci, xhci->cmd_ring);
1881         xhci->cmd_ring = NULL;
1882         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1883         xhci_cleanup_command_queue(xhci);
1884
1885         num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1886         for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1887                 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1888                 for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1889                         struct list_head *ep = &bwt->interval_bw[j].endpoints;
1890                         while (!list_empty(ep))
1891                                 list_del_init(ep->next);
1892                 }
1893         }
1894
1895         for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1896                 xhci_free_virt_devices_depth_first(xhci, i);
1897
1898         dma_pool_destroy(xhci->segment_pool);
1899         xhci->segment_pool = NULL;
1900         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1901
1902         dma_pool_destroy(xhci->device_pool);
1903         xhci->device_pool = NULL;
1904         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1905
1906         dma_pool_destroy(xhci->small_streams_pool);
1907         xhci->small_streams_pool = NULL;
1908         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1909                         "Freed small stream array pool");
1910
1911         dma_pool_destroy(xhci->medium_streams_pool);
1912         xhci->medium_streams_pool = NULL;
1913         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1914                         "Freed medium stream array pool");
1915
1916         if (xhci->dcbaa)
1917                 dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1918                                 xhci->dcbaa, xhci->dcbaa->dma);
1919         xhci->dcbaa = NULL;
1920
1921         scratchpad_free(xhci);
1922
1923         if (!xhci->rh_bw)
1924                 goto no_bw;
1925
1926         for (i = 0; i < num_ports; i++) {
1927                 struct xhci_tt_bw_info *tt, *n;
1928                 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1929                         list_del(&tt->tt_list);
1930                         kfree(tt);
1931                 }
1932         }
1933
1934 no_bw:
1935         xhci->cmd_ring_reserved_trbs = 0;
1936         xhci->usb2_rhub.num_ports = 0;
1937         xhci->usb3_rhub.num_ports = 0;
1938         xhci->num_active_eps = 0;
1939         kfree(xhci->usb2_rhub.ports);
1940         kfree(xhci->usb3_rhub.ports);
1941         kfree(xhci->hw_ports);
1942         kfree(xhci->rh_bw);
1943         kfree(xhci->ext_caps);
1944         for (i = 0; i < xhci->num_port_caps; i++)
1945                 kfree(xhci->port_caps[i].psi);
1946         kfree(xhci->port_caps);
1947         xhci->num_port_caps = 0;
1948
1949         xhci->usb2_rhub.ports = NULL;
1950         xhci->usb3_rhub.ports = NULL;
1951         xhci->hw_ports = NULL;
1952         xhci->rh_bw = NULL;
1953         xhci->ext_caps = NULL;
1954         xhci->port_caps = NULL;
1955
1956         xhci->page_size = 0;
1957         xhci->page_shift = 0;
1958         xhci->usb2_rhub.bus_state.bus_suspended = 0;
1959         xhci->usb3_rhub.bus_state.bus_suspended = 0;
1960 }
1961
1962 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1963                 struct xhci_segment *input_seg,
1964                 union xhci_trb *start_trb,
1965                 union xhci_trb *end_trb,
1966                 dma_addr_t input_dma,
1967                 struct xhci_segment *result_seg,
1968                 char *test_name, int test_number)
1969 {
1970         unsigned long long start_dma;
1971         unsigned long long end_dma;
1972         struct xhci_segment *seg;
1973
1974         start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1975         end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1976
1977         seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1978         if (seg != result_seg) {
1979                 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1980                                 test_name, test_number);
1981                 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1982                                 "input DMA 0x%llx\n",
1983                                 input_seg,
1984                                 (unsigned long long) input_dma);
1985                 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1986                                 "ending TRB %p (0x%llx DMA)\n",
1987                                 start_trb, start_dma,
1988                                 end_trb, end_dma);
1989                 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1990                                 result_seg, seg);
1991                 trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
1992                           true);
1993                 return -1;
1994         }
1995         return 0;
1996 }
1997
1998 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1999 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
2000 {
2001         struct {
2002                 dma_addr_t              input_dma;
2003                 struct xhci_segment     *result_seg;
2004         } simple_test_vector [] = {
2005                 /* A zeroed DMA field should fail */
2006                 { 0, NULL },
2007                 /* One TRB before the ring start should fail */
2008                 { xhci->event_ring->first_seg->dma - 16, NULL },
2009                 /* One byte before the ring start should fail */
2010                 { xhci->event_ring->first_seg->dma - 1, NULL },
2011                 /* Starting TRB should succeed */
2012                 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
2013                 /* Ending TRB should succeed */
2014                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
2015                         xhci->event_ring->first_seg },
2016                 /* One byte after the ring end should fail */
2017                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
2018                 /* One TRB after the ring end should fail */
2019                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
2020                 /* An address of all ones should fail */
2021                 { (dma_addr_t) (~0), NULL },
2022         };
2023         struct {
2024                 struct xhci_segment     *input_seg;
2025                 union xhci_trb          *start_trb;
2026                 union xhci_trb          *end_trb;
2027                 dma_addr_t              input_dma;
2028                 struct xhci_segment     *result_seg;
2029         } complex_test_vector [] = {
2030                 /* Test feeding a valid DMA address from a different ring */
2031                 {       .input_seg = xhci->event_ring->first_seg,
2032                         .start_trb = xhci->event_ring->first_seg->trbs,
2033                         .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2034                         .input_dma = xhci->cmd_ring->first_seg->dma,
2035                         .result_seg = NULL,
2036                 },
2037                 /* Test feeding a valid end TRB from a different ring */
2038                 {       .input_seg = xhci->event_ring->first_seg,
2039                         .start_trb = xhci->event_ring->first_seg->trbs,
2040                         .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2041                         .input_dma = xhci->cmd_ring->first_seg->dma,
2042                         .result_seg = NULL,
2043                 },
2044                 /* Test feeding a valid start and end TRB from a different ring */
2045                 {       .input_seg = xhci->event_ring->first_seg,
2046                         .start_trb = xhci->cmd_ring->first_seg->trbs,
2047                         .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2048                         .input_dma = xhci->cmd_ring->first_seg->dma,
2049                         .result_seg = NULL,
2050                 },
2051                 /* TRB in this ring, but after this TD */
2052                 {       .input_seg = xhci->event_ring->first_seg,
2053                         .start_trb = &xhci->event_ring->first_seg->trbs[0],
2054                         .end_trb = &xhci->event_ring->first_seg->trbs[3],
2055                         .input_dma = xhci->event_ring->first_seg->dma + 4*16,
2056                         .result_seg = NULL,
2057                 },
2058                 /* TRB in this ring, but before this TD */
2059                 {       .input_seg = xhci->event_ring->first_seg,
2060                         .start_trb = &xhci->event_ring->first_seg->trbs[3],
2061                         .end_trb = &xhci->event_ring->first_seg->trbs[6],
2062                         .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2063                         .result_seg = NULL,
2064                 },
2065                 /* TRB in this ring, but after this wrapped TD */
2066                 {       .input_seg = xhci->event_ring->first_seg,
2067                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2068                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
2069                         .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2070                         .result_seg = NULL,
2071                 },
2072                 /* TRB in this ring, but before this wrapped TD */
2073                 {       .input_seg = xhci->event_ring->first_seg,
2074                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2075                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
2076                         .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
2077                         .result_seg = NULL,
2078                 },
2079                 /* TRB not in this ring, and we have a wrapped TD */
2080                 {       .input_seg = xhci->event_ring->first_seg,
2081                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2082                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
2083                         .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
2084                         .result_seg = NULL,
2085                 },
2086         };
2087
2088         unsigned int num_tests;
2089         int i, ret;
2090
2091         num_tests = ARRAY_SIZE(simple_test_vector);
2092         for (i = 0; i < num_tests; i++) {
2093                 ret = xhci_test_trb_in_td(xhci,
2094                                 xhci->event_ring->first_seg,
2095                                 xhci->event_ring->first_seg->trbs,
2096                                 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2097                                 simple_test_vector[i].input_dma,
2098                                 simple_test_vector[i].result_seg,
2099                                 "Simple", i);
2100                 if (ret < 0)
2101                         return ret;
2102         }
2103
2104         num_tests = ARRAY_SIZE(complex_test_vector);
2105         for (i = 0; i < num_tests; i++) {
2106                 ret = xhci_test_trb_in_td(xhci,
2107                                 complex_test_vector[i].input_seg,
2108                                 complex_test_vector[i].start_trb,
2109                                 complex_test_vector[i].end_trb,
2110                                 complex_test_vector[i].input_dma,
2111                                 complex_test_vector[i].result_seg,
2112                                 "Complex", i);
2113                 if (ret < 0)
2114                         return ret;
2115         }
2116         xhci_dbg(xhci, "TRB math tests passed.\n");
2117         return 0;
2118 }
2119
2120 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2121 {
2122         u64 temp;
2123         dma_addr_t deq;
2124
2125         deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2126                         xhci->event_ring->dequeue);
2127         if (deq == 0 && !in_interrupt())
2128                 xhci_warn(xhci, "WARN something wrong with SW event ring "
2129                                 "dequeue ptr.\n");
2130         /* Update HC event ring dequeue pointer */
2131         temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2132         temp &= ERST_PTR_MASK;
2133         /* Don't clear the EHB bit (which is RW1C) because
2134          * there might be more events to service.
2135          */
2136         temp &= ~ERST_EHB;
2137         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2138                         "// Write event ring dequeue pointer, "
2139                         "preserving EHB bit");
2140         xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2141                         &xhci->ir_set->erst_dequeue);
2142 }
2143
2144 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2145                 __le32 __iomem *addr, int max_caps)
2146 {
2147         u32 temp, port_offset, port_count;
2148         int i;
2149         u8 major_revision, minor_revision, tmp_minor_revision;
2150         struct xhci_hub *rhub;
2151         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2152         struct xhci_port_cap *port_cap;
2153
2154         temp = readl(addr);
2155         major_revision = XHCI_EXT_PORT_MAJOR(temp);
2156         minor_revision = XHCI_EXT_PORT_MINOR(temp);
2157
2158         if (major_revision == 0x03) {
2159                 rhub = &xhci->usb3_rhub;
2160                 /*
2161                  * Some hosts incorrectly use sub-minor version for minor
2162                  * version (i.e. 0x02 instead of 0x20 for bcdUSB 0x320 and 0x01
2163                  * for bcdUSB 0x310). Since there is no USB release with sub
2164                  * minor version 0x301 to 0x309, we can assume that they are
2165                  * incorrect and fix it here.
2166                  */
2167                 if (minor_revision > 0x00 && minor_revision < 0x10)
2168                         minor_revision <<= 4;
2169                 /*
2170                  * Some zhaoxin's xHCI controller that follow usb3.1 spec
2171                  * but only support Gen1.
2172                  */
2173                 if (xhci->quirks & XHCI_ZHAOXIN_HOST) {
2174                         tmp_minor_revision = minor_revision;
2175                         minor_revision = 0;
2176                 }
2177
2178         } else if (major_revision <= 0x02) {
2179                 rhub = &xhci->usb2_rhub;
2180         } else {
2181                 xhci_warn(xhci, "Ignoring unknown port speed, "
2182                                 "Ext Cap %p, revision = 0x%x\n",
2183                                 addr, major_revision);
2184                 /* Ignoring port protocol we can't understand. FIXME */
2185                 return;
2186         }
2187
2188         /* Port offset and count in the third dword, see section 7.2 */
2189         temp = readl(addr + 2);
2190         port_offset = XHCI_EXT_PORT_OFF(temp);
2191         port_count = XHCI_EXT_PORT_COUNT(temp);
2192         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2193                         "Ext Cap %p, port offset = %u, "
2194                         "count = %u, revision = 0x%x",
2195                         addr, port_offset, port_count, major_revision);
2196         /* Port count includes the current port offset */
2197         if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2198                 /* WTF? "Valid values are â€˜1’ to MaxPorts" */
2199                 return;
2200
2201         port_cap = &xhci->port_caps[xhci->num_port_caps++];
2202         if (xhci->num_port_caps > max_caps)
2203                 return;
2204
2205         port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp);
2206
2207         if (port_cap->psi_count) {
2208                 port_cap->psi = kcalloc_node(port_cap->psi_count,
2209                                              sizeof(*port_cap->psi),
2210                                              GFP_KERNEL, dev_to_node(dev));
2211                 if (!port_cap->psi)
2212                         port_cap->psi_count = 0;
2213
2214                 port_cap->psi_uid_count++;
2215                 for (i = 0; i < port_cap->psi_count; i++) {
2216                         port_cap->psi[i] = readl(addr + 4 + i);
2217
2218                         /* count unique ID values, two consecutive entries can
2219                          * have the same ID if link is assymetric
2220                          */
2221                         if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) !=
2222                                   XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1])))
2223                                 port_cap->psi_uid_count++;
2224
2225                         if (xhci->quirks & XHCI_ZHAOXIN_HOST &&
2226                             major_revision == 0x03 &&
2227                             XHCI_EXT_PORT_PSIV(port_cap->psi[i]) >= 5)
2228                                 minor_revision = tmp_minor_revision;
2229
2230                         xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2231                                   XHCI_EXT_PORT_PSIV(port_cap->psi[i]),
2232                                   XHCI_EXT_PORT_PSIE(port_cap->psi[i]),
2233                                   XHCI_EXT_PORT_PLT(port_cap->psi[i]),
2234                                   XHCI_EXT_PORT_PFD(port_cap->psi[i]),
2235                                   XHCI_EXT_PORT_LP(port_cap->psi[i]),
2236                                   XHCI_EXT_PORT_PSIM(port_cap->psi[i]));
2237                 }
2238         }
2239
2240         rhub->maj_rev = major_revision;
2241
2242         if (rhub->min_rev < minor_revision)
2243                 rhub->min_rev = minor_revision;
2244
2245         port_cap->maj_rev = major_revision;
2246         port_cap->min_rev = minor_revision;
2247
2248         /* cache usb2 port capabilities */
2249         if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2250                 xhci->ext_caps[xhci->num_ext_caps++] = temp;
2251
2252         if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) &&
2253                  (temp & XHCI_HLC)) {
2254                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2255                                "xHCI 1.0: support USB2 hardware lpm");
2256                 xhci->hw_lpm_support = 1;
2257         }
2258
2259         port_offset--;
2260         for (i = port_offset; i < (port_offset + port_count); i++) {
2261                 struct xhci_port *hw_port = &xhci->hw_ports[i];
2262                 /* Duplicate entry.  Ignore the port if the revisions differ. */
2263                 if (hw_port->rhub) {
2264                         xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2265                                         " port %u\n", addr, i);
2266                         xhci_warn(xhci, "Port was marked as USB %u, "
2267                                         "duplicated as USB %u\n",
2268                                         hw_port->rhub->maj_rev, major_revision);
2269                         /* Only adjust the roothub port counts if we haven't
2270                          * found a similar duplicate.
2271                          */
2272                         if (hw_port->rhub != rhub &&
2273                                  hw_port->hcd_portnum != DUPLICATE_ENTRY) {
2274                                 hw_port->rhub->num_ports--;
2275                                 hw_port->hcd_portnum = DUPLICATE_ENTRY;
2276                         }
2277                         continue;
2278                 }
2279                 hw_port->rhub = rhub;
2280                 hw_port->port_cap = port_cap;
2281                 rhub->num_ports++;
2282         }
2283         /* FIXME: Should we disable ports not in the Extended Capabilities? */
2284 }
2285
2286 static void xhci_create_rhub_port_array(struct xhci_hcd *xhci,
2287                                         struct xhci_hub *rhub, gfp_t flags)
2288 {
2289         int port_index = 0;
2290         int i;
2291         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2292
2293         if (!rhub->num_ports)
2294                 return;
2295         rhub->ports = kcalloc_node(rhub->num_ports, sizeof(*rhub->ports),
2296                         flags, dev_to_node(dev));
2297         if (!rhub->ports)
2298                 return;
2299
2300         for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
2301                 if (xhci->hw_ports[i].rhub != rhub ||
2302                     xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY)
2303                         continue;
2304                 xhci->hw_ports[i].hcd_portnum = port_index;
2305                 rhub->ports[port_index] = &xhci->hw_ports[i];
2306                 port_index++;
2307                 if (port_index == rhub->num_ports)
2308                         break;
2309         }
2310 }
2311
2312 /*
2313  * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2314  * specify what speeds each port is supposed to be.  We can't count on the port
2315  * speed bits in the PORTSC register being correct until a device is connected,
2316  * but we need to set up the two fake roothubs with the correct number of USB
2317  * 3.0 and USB 2.0 ports at host controller initialization time.
2318  */
2319 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2320 {
2321         void __iomem *base;
2322         u32 offset;
2323         unsigned int num_ports;
2324         int i, j;
2325         int cap_count = 0;
2326         u32 cap_start;
2327         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2328
2329         num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2330         xhci->hw_ports = kcalloc_node(num_ports, sizeof(*xhci->hw_ports),
2331                                 flags, dev_to_node(dev));
2332         if (!xhci->hw_ports)
2333                 return -ENOMEM;
2334
2335         for (i = 0; i < num_ports; i++) {
2336                 xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base +
2337                         NUM_PORT_REGS * i;
2338                 xhci->hw_ports[i].hw_portnum = i;
2339
2340                 init_completion(&xhci->hw_ports[i].rexit_done);
2341                 init_completion(&xhci->hw_ports[i].u3exit_done);
2342         }
2343
2344         xhci->rh_bw = kcalloc_node(num_ports, sizeof(*xhci->rh_bw), flags,
2345                                    dev_to_node(dev));
2346         if (!xhci->rh_bw)
2347                 return -ENOMEM;
2348         for (i = 0; i < num_ports; i++) {
2349                 struct xhci_interval_bw_table *bw_table;
2350
2351                 INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2352                 bw_table = &xhci->rh_bw[i].bw_table;
2353                 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2354                         INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2355         }
2356         base = &xhci->cap_regs->hc_capbase;
2357
2358         cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2359         if (!cap_start) {
2360                 xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2361                 return -ENODEV;
2362         }
2363
2364         offset = cap_start;
2365         /* count extended protocol capability entries for later caching */
2366         while (offset) {
2367                 cap_count++;
2368                 offset = xhci_find_next_ext_cap(base, offset,
2369                                                       XHCI_EXT_CAPS_PROTOCOL);
2370         }
2371
2372         xhci->ext_caps = kcalloc_node(cap_count, sizeof(*xhci->ext_caps),
2373                                 flags, dev_to_node(dev));
2374         if (!xhci->ext_caps)
2375                 return -ENOMEM;
2376
2377         xhci->port_caps = kcalloc_node(cap_count, sizeof(*xhci->port_caps),
2378                                 flags, dev_to_node(dev));
2379         if (!xhci->port_caps)
2380                 return -ENOMEM;
2381
2382         offset = cap_start;
2383
2384         while (offset) {
2385                 xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2386                 if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports ==
2387                     num_ports)
2388                         break;
2389                 offset = xhci_find_next_ext_cap(base, offset,
2390                                                 XHCI_EXT_CAPS_PROTOCOL);
2391         }
2392         if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) {
2393                 xhci_warn(xhci, "No ports on the roothubs?\n");
2394                 return -ENODEV;
2395         }
2396         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2397                        "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2398                        xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports);
2399
2400         /* Place limits on the number of roothub ports so that the hub
2401          * descriptors aren't longer than the USB core will allocate.
2402          */
2403         if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) {
2404                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2405                                 "Limiting USB 3.0 roothub ports to %u.",
2406                                 USB_SS_MAXPORTS);
2407                 xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS;
2408         }
2409         if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) {
2410                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2411                                 "Limiting USB 2.0 roothub ports to %u.",
2412                                 USB_MAXCHILDREN);
2413                 xhci->usb2_rhub.num_ports = USB_MAXCHILDREN;
2414         }
2415
2416         /*
2417          * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2418          * Not sure how the USB core will handle a hub with no ports...
2419          */
2420
2421         xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags);
2422         xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags);
2423
2424         return 0;
2425 }
2426
2427 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2428 {
2429         dma_addr_t      dma;
2430         struct device   *dev = xhci_to_hcd(xhci)->self.sysdev;
2431         unsigned int    val, val2;
2432         u64             val_64;
2433         u32             page_size, temp;
2434         int             i, ret;
2435
2436         INIT_LIST_HEAD(&xhci->cmd_list);
2437
2438         /* init command timeout work */
2439         INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2440         init_completion(&xhci->cmd_ring_stop_completion);
2441
2442         page_size = readl(&xhci->op_regs->page_size);
2443         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2444                         "Supported page size register = 0x%x", page_size);
2445         for (i = 0; i < 16; i++) {
2446                 if ((0x1 & page_size) != 0)
2447                         break;
2448                 page_size = page_size >> 1;
2449         }
2450         if (i < 16)
2451                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2452                         "Supported page size of %iK", (1 << (i+12)) / 1024);
2453         else
2454                 xhci_warn(xhci, "WARN: no supported page size\n");
2455         /* Use 4K pages, since that's common and the minimum the HC supports */
2456         xhci->page_shift = 12;
2457         xhci->page_size = 1 << xhci->page_shift;
2458         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2459                         "HCD page size set to %iK", xhci->page_size / 1024);
2460
2461         /*
2462          * Program the Number of Device Slots Enabled field in the CONFIG
2463          * register with the max value of slots the HC can handle.
2464          */
2465         val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2466         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2467                         "// xHC can handle at most %d device slots.", val);
2468         val2 = readl(&xhci->op_regs->config_reg);
2469         val |= (val2 & ~HCS_SLOTS_MASK);
2470         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2471                         "// Setting Max device slots reg = 0x%x.", val);
2472         writel(val, &xhci->op_regs->config_reg);
2473
2474         /*
2475          * xHCI section 5.4.6 - doorbell array must be
2476          * "physically contiguous and 64-byte (cache line) aligned".
2477          */
2478         xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2479                         flags);
2480         if (!xhci->dcbaa)
2481                 goto fail;
2482         xhci->dcbaa->dma = dma;
2483         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2484                         "// Device context base array address = 0x%llx (DMA), %p (virt)",
2485                         (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2486         xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2487
2488         /*
2489          * Initialize the ring segment pool.  The ring must be a contiguous
2490          * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2491          * however, the command ring segment needs 64-byte aligned segments
2492          * and our use of dma addresses in the trb_address_map radix tree needs
2493          * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2494          */
2495         if (xhci->quirks & XHCI_ZHAOXIN_TRB_FETCH)
2496                 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2497                                 TRB_SEGMENT_SIZE * 2, TRB_SEGMENT_SIZE * 2, xhci->page_size * 2);
2498         else
2499                 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2500                                 TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2501
2502         /* See Table 46 and Note on Figure 55 */
2503         xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2504                         2112, 64, xhci->page_size);
2505         if (!xhci->segment_pool || !xhci->device_pool)
2506                 goto fail;
2507
2508         /* Linear stream context arrays don't have any boundary restrictions,
2509          * and only need to be 16-byte aligned.
2510          */
2511         xhci->small_streams_pool =
2512                 dma_pool_create("xHCI 256 byte stream ctx arrays",
2513                         dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2514         xhci->medium_streams_pool =
2515                 dma_pool_create("xHCI 1KB stream ctx arrays",
2516                         dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2517         /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2518          * will be allocated with dma_alloc_coherent()
2519          */
2520
2521         if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2522                 goto fail;
2523
2524         /* Set up the command ring to have one segments for now. */
2525         xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2526         if (!xhci->cmd_ring)
2527                 goto fail;
2528         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2529                         "Allocated command ring at %p", xhci->cmd_ring);
2530         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2531                         (unsigned long long)xhci->cmd_ring->first_seg->dma);
2532
2533         /* Set the address in the Command Ring Control register */
2534         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2535         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2536                 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2537                 xhci->cmd_ring->cycle_state;
2538         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2539                         "// Setting command ring address to 0x%016llx", val_64);
2540         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2541
2542         xhci->lpm_command = xhci_alloc_command_with_ctx(xhci, true, flags);
2543         if (!xhci->lpm_command)
2544                 goto fail;
2545
2546         /* Reserve one command ring TRB for disabling LPM.
2547          * Since the USB core grabs the shared usb_bus bandwidth mutex before
2548          * disabling LPM, we only need to reserve one TRB for all devices.
2549          */
2550         xhci->cmd_ring_reserved_trbs++;
2551
2552         val = readl(&xhci->cap_regs->db_off);
2553         val &= DBOFF_MASK;
2554         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2555                         "// Doorbell array is located at offset 0x%x"
2556                         " from cap regs base addr", val);
2557         xhci->dba = (void __iomem *) xhci->cap_regs + val;
2558         /* Set ir_set to interrupt register set 0 */
2559         xhci->ir_set = &xhci->run_regs->ir_set[0];
2560
2561         /*
2562          * Event ring setup: Allocate a normal ring, but also setup
2563          * the event ring segment table (ERST).  Section 4.9.3.
2564          */
2565         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2566         xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2567                                         0, flags);
2568         if (!xhci->event_ring)
2569                 goto fail;
2570         if (xhci_check_trb_in_td_math(xhci) < 0)
2571                 goto fail;
2572
2573         ret = xhci_alloc_erst(xhci, xhci->event_ring, &xhci->erst, flags);
2574         if (ret)
2575                 goto fail;
2576
2577         /* set ERST count with the number of entries in the segment table */
2578         val = readl(&xhci->ir_set->erst_size);
2579         val &= ERST_SIZE_MASK;
2580         val |= ERST_NUM_SEGS;
2581         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2582                         "// Write ERST size = %i to ir_set 0 (some bits preserved)",
2583                         val);
2584         writel(val, &xhci->ir_set->erst_size);
2585
2586         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2587                         "// Set ERST entries to point to event ring.");
2588         /* set the segment table base address */
2589         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2590                         "// Set ERST base address for ir_set 0 = 0x%llx",
2591                         (unsigned long long)xhci->erst.erst_dma_addr);
2592         val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2593         val_64 &= ERST_PTR_MASK;
2594         val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2595         xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2596
2597         /* Set the event ring dequeue address */
2598         xhci_set_hc_event_deq(xhci);
2599         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2600                         "Wrote ERST address to ir_set 0.");
2601
2602         /*
2603          * XXX: Might need to set the Interrupter Moderation Register to
2604          * something other than the default (~1ms minimum between interrupts).
2605          * See section 5.5.1.2.
2606          */
2607         for (i = 0; i < MAX_HC_SLOTS; i++)
2608                 xhci->devs[i] = NULL;
2609
2610         if (scratchpad_alloc(xhci, flags))
2611                 goto fail;
2612         if (xhci_setup_port_arrays(xhci, flags))
2613                 goto fail;
2614
2615         /* Enable USB 3.0 device notifications for function remote wake, which
2616          * is necessary for allowing USB 3.0 devices to do remote wakeup from
2617          * U3 (device suspend).
2618          */
2619         temp = readl(&xhci->op_regs->dev_notification);
2620         temp &= ~DEV_NOTE_MASK;
2621         temp |= DEV_NOTE_FWAKE;
2622         writel(temp, &xhci->op_regs->dev_notification);
2623
2624         return 0;
2625
2626 fail:
2627         xhci_halt(xhci);
2628         xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
2629         xhci_mem_cleanup(xhci);
2630         return -ENOMEM;
2631 }