GNU Linux-libre 4.4.285-gnu1
[releases.git] / drivers / usb / host / fotg210-hcd.c
1 /* Faraday FOTG210 EHCI-like driver
2  *
3  * Copyright (c) 2013 Faraday Technology Corporation
4  *
5  * Author: Yuan-Hsin Chen <yhchen@faraday-tech.com>
6  *         Feng-Hsin Chiang <john453@faraday-tech.com>
7  *         Po-Yu Chuang <ratbert.chuang@gmail.com>
8  *
9  * Most of code borrowed from the Linux-3.7 EHCI driver
10  *
11  * This program is free software; you can redistribute it and/or modify it
12  * under the terms of the GNU General Public License as published by the
13  * Free Software Foundation; either version 2 of the License, or (at your
14  * option) any later version.
15  *
16  * This program is distributed in the hope that it will be useful, but
17  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
18  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
19  * for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software Foundation,
23  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24  */
25 #include <linux/module.h>
26 #include <linux/device.h>
27 #include <linux/dmapool.h>
28 #include <linux/kernel.h>
29 #include <linux/delay.h>
30 #include <linux/ioport.h>
31 #include <linux/sched.h>
32 #include <linux/vmalloc.h>
33 #include <linux/errno.h>
34 #include <linux/init.h>
35 #include <linux/hrtimer.h>
36 #include <linux/list.h>
37 #include <linux/interrupt.h>
38 #include <linux/usb.h>
39 #include <linux/usb/hcd.h>
40 #include <linux/moduleparam.h>
41 #include <linux/dma-mapping.h>
42 #include <linux/debugfs.h>
43 #include <linux/slab.h>
44 #include <linux/uaccess.h>
45 #include <linux/platform_device.h>
46 #include <linux/io.h>
47
48 #include <asm/byteorder.h>
49 #include <asm/irq.h>
50 #include <asm/unaligned.h>
51
52 #define DRIVER_AUTHOR "Yuan-Hsin Chen"
53 #define DRIVER_DESC "FOTG210 Host Controller (EHCI) Driver"
54 static const char hcd_name[] = "fotg210_hcd";
55
56 #undef FOTG210_URB_TRACE
57 #define FOTG210_STATS
58
59 /* magic numbers that can affect system performance */
60 #define FOTG210_TUNE_CERR       3 /* 0-3 qtd retries; 0 == don't stop */
61 #define FOTG210_TUNE_RL_HS      4 /* nak throttle; see 4.9 */
62 #define FOTG210_TUNE_RL_TT      0
63 #define FOTG210_TUNE_MULT_HS    1 /* 1-3 transactions/uframe; 4.10.3 */
64 #define FOTG210_TUNE_MULT_TT    1
65
66 /* Some drivers think it's safe to schedule isochronous transfers more than 256
67  * ms into the future (partly as a result of an old bug in the scheduling
68  * code).  In an attempt to avoid trouble, we will use a minimum scheduling
69  * length of 512 frames instead of 256.
70  */
71 #define FOTG210_TUNE_FLS 1 /* (medium) 512-frame schedule */
72
73 /* Initial IRQ latency:  faster than hw default */
74 static int log2_irq_thresh; /* 0 to 6 */
75 module_param(log2_irq_thresh, int, S_IRUGO);
76 MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
77
78 /* initial park setting:  slower than hw default */
79 static unsigned park;
80 module_param(park, uint, S_IRUGO);
81 MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
82
83 /* for link power management(LPM) feature */
84 static unsigned int hird;
85 module_param(hird, int, S_IRUGO);
86 MODULE_PARM_DESC(hird, "host initiated resume duration, +1 for each 75us");
87
88 #define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT)
89
90 #include "fotg210.h"
91
92 #define fotg210_dbg(fotg210, fmt, args...) \
93         dev_dbg(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
94 #define fotg210_err(fotg210, fmt, args...) \
95         dev_err(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
96 #define fotg210_info(fotg210, fmt, args...) \
97         dev_info(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
98 #define fotg210_warn(fotg210, fmt, args...) \
99         dev_warn(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
100
101 /* check the values in the HCSPARAMS register (host controller _Structural_
102  * parameters) see EHCI spec, Table 2-4 for each value
103  */
104 static void dbg_hcs_params(struct fotg210_hcd *fotg210, char *label)
105 {
106         u32 params = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
107
108         fotg210_dbg(fotg210, "%s hcs_params 0x%x ports=%d\n", label, params,
109                         HCS_N_PORTS(params));
110 }
111
112 /* check the values in the HCCPARAMS register (host controller _Capability_
113  * parameters) see EHCI Spec, Table 2-5 for each value
114  */
115 static void dbg_hcc_params(struct fotg210_hcd *fotg210, char *label)
116 {
117         u32 params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
118
119         fotg210_dbg(fotg210, "%s hcc_params %04x uframes %s%s\n", label,
120                         params,
121                         HCC_PGM_FRAMELISTLEN(params) ? "256/512/1024" : "1024",
122                         HCC_CANPARK(params) ? " park" : "");
123 }
124
125 static void __maybe_unused
126 dbg_qtd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd)
127 {
128         fotg210_dbg(fotg210, "%s td %p n%08x %08x t%08x p0=%08x\n", label, qtd,
129                         hc32_to_cpup(fotg210, &qtd->hw_next),
130                         hc32_to_cpup(fotg210, &qtd->hw_alt_next),
131                         hc32_to_cpup(fotg210, &qtd->hw_token),
132                         hc32_to_cpup(fotg210, &qtd->hw_buf[0]));
133         if (qtd->hw_buf[1])
134                 fotg210_dbg(fotg210, "  p1=%08x p2=%08x p3=%08x p4=%08x\n",
135                                 hc32_to_cpup(fotg210, &qtd->hw_buf[1]),
136                                 hc32_to_cpup(fotg210, &qtd->hw_buf[2]),
137                                 hc32_to_cpup(fotg210, &qtd->hw_buf[3]),
138                                 hc32_to_cpup(fotg210, &qtd->hw_buf[4]));
139 }
140
141 static void __maybe_unused
142 dbg_qh(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
143 {
144         struct fotg210_qh_hw *hw = qh->hw;
145
146         fotg210_dbg(fotg210, "%s qh %p n%08x info %x %x qtd %x\n", label, qh,
147                         hw->hw_next, hw->hw_info1, hw->hw_info2,
148                         hw->hw_current);
149
150         dbg_qtd("overlay", fotg210, (struct fotg210_qtd *) &hw->hw_qtd_next);
151 }
152
153 static void __maybe_unused
154 dbg_itd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
155 {
156         fotg210_dbg(fotg210, "%s[%d] itd %p, next %08x, urb %p\n", label,
157                         itd->frame, itd, hc32_to_cpu(fotg210, itd->hw_next),
158                         itd->urb);
159
160         fotg210_dbg(fotg210,
161                         "  trans: %08x %08x %08x %08x %08x %08x %08x %08x\n",
162                         hc32_to_cpu(fotg210, itd->hw_transaction[0]),
163                         hc32_to_cpu(fotg210, itd->hw_transaction[1]),
164                         hc32_to_cpu(fotg210, itd->hw_transaction[2]),
165                         hc32_to_cpu(fotg210, itd->hw_transaction[3]),
166                         hc32_to_cpu(fotg210, itd->hw_transaction[4]),
167                         hc32_to_cpu(fotg210, itd->hw_transaction[5]),
168                         hc32_to_cpu(fotg210, itd->hw_transaction[6]),
169                         hc32_to_cpu(fotg210, itd->hw_transaction[7]));
170
171         fotg210_dbg(fotg210,
172                         "  buf:   %08x %08x %08x %08x %08x %08x %08x\n",
173                         hc32_to_cpu(fotg210, itd->hw_bufp[0]),
174                         hc32_to_cpu(fotg210, itd->hw_bufp[1]),
175                         hc32_to_cpu(fotg210, itd->hw_bufp[2]),
176                         hc32_to_cpu(fotg210, itd->hw_bufp[3]),
177                         hc32_to_cpu(fotg210, itd->hw_bufp[4]),
178                         hc32_to_cpu(fotg210, itd->hw_bufp[5]),
179                         hc32_to_cpu(fotg210, itd->hw_bufp[6]));
180
181         fotg210_dbg(fotg210, "  index: %d %d %d %d %d %d %d %d\n",
182                         itd->index[0], itd->index[1], itd->index[2],
183                         itd->index[3], itd->index[4], itd->index[5],
184                         itd->index[6], itd->index[7]);
185 }
186
187 static int __maybe_unused
188 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
189 {
190         return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
191                         label, label[0] ? " " : "", status,
192                         (status & STS_ASS) ? " Async" : "",
193                         (status & STS_PSS) ? " Periodic" : "",
194                         (status & STS_RECL) ? " Recl" : "",
195                         (status & STS_HALT) ? " Halt" : "",
196                         (status & STS_IAA) ? " IAA" : "",
197                         (status & STS_FATAL) ? " FATAL" : "",
198                         (status & STS_FLR) ? " FLR" : "",
199                         (status & STS_PCD) ? " PCD" : "",
200                         (status & STS_ERR) ? " ERR" : "",
201                         (status & STS_INT) ? " INT" : "");
202 }
203
204 static int __maybe_unused
205 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
206 {
207         return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s",
208                         label, label[0] ? " " : "", enable,
209                         (enable & STS_IAA) ? " IAA" : "",
210                         (enable & STS_FATAL) ? " FATAL" : "",
211                         (enable & STS_FLR) ? " FLR" : "",
212                         (enable & STS_PCD) ? " PCD" : "",
213                         (enable & STS_ERR) ? " ERR" : "",
214                         (enable & STS_INT) ? " INT" : "");
215 }
216
217 static const char *const fls_strings[] = { "1024", "512", "256", "??" };
218
219 static int dbg_command_buf(char *buf, unsigned len, const char *label,
220                 u32 command)
221 {
222         return scnprintf(buf, len,
223                         "%s%scommand %07x %s=%d ithresh=%d%s%s%s period=%s%s %s",
224                         label, label[0] ? " " : "", command,
225                         (command & CMD_PARK) ? " park" : "(park)",
226                         CMD_PARK_CNT(command),
227                         (command >> 16) & 0x3f,
228                         (command & CMD_IAAD) ? " IAAD" : "",
229                         (command & CMD_ASE) ? " Async" : "",
230                         (command & CMD_PSE) ? " Periodic" : "",
231                         fls_strings[(command >> 2) & 0x3],
232                         (command & CMD_RESET) ? " Reset" : "",
233                         (command & CMD_RUN) ? "RUN" : "HALT");
234 }
235
236 static char *dbg_port_buf(char *buf, unsigned len, const char *label, int port,
237                 u32 status)
238 {
239         char *sig;
240
241         /* signaling state */
242         switch (status & (3 << 10)) {
243         case 0 << 10:
244                 sig = "se0";
245                 break;
246         case 1 << 10:
247                 sig = "k";
248                 break; /* low speed */
249         case 2 << 10:
250                 sig = "j";
251                 break;
252         default:
253                 sig = "?";
254                 break;
255         }
256
257         scnprintf(buf, len, "%s%sport:%d status %06x %d sig=%s%s%s%s%s%s%s%s",
258                         label, label[0] ? " " : "", port, status,
259                         status >> 25, /*device address */
260                         sig,
261                         (status & PORT_RESET) ? " RESET" : "",
262                         (status & PORT_SUSPEND) ? " SUSPEND" : "",
263                         (status & PORT_RESUME) ? " RESUME" : "",
264                         (status & PORT_PEC) ? " PEC" : "",
265                         (status & PORT_PE) ? " PE" : "",
266                         (status & PORT_CSC) ? " CSC" : "",
267                         (status & PORT_CONNECT) ? " CONNECT" : "");
268
269         return buf;
270 }
271
272 /* functions have the "wrong" filename when they're output... */
273 #define dbg_status(fotg210, label, status) {                    \
274         char _buf[80];                                          \
275         dbg_status_buf(_buf, sizeof(_buf), label, status);      \
276         fotg210_dbg(fotg210, "%s\n", _buf);                     \
277 }
278
279 #define dbg_cmd(fotg210, label, command) {                      \
280         char _buf[80];                                          \
281         dbg_command_buf(_buf, sizeof(_buf), label, command);    \
282         fotg210_dbg(fotg210, "%s\n", _buf);                     \
283 }
284
285 #define dbg_port(fotg210, label, port, status) {                               \
286         char _buf[80];                                                         \
287         fotg210_dbg(fotg210, "%s\n",                                           \
288                         dbg_port_buf(_buf, sizeof(_buf), label, port, status));\
289 }
290
291 /* troubleshooting help: expose state in debugfs */
292 static int debug_async_open(struct inode *, struct file *);
293 static int debug_periodic_open(struct inode *, struct file *);
294 static int debug_registers_open(struct inode *, struct file *);
295 static int debug_async_open(struct inode *, struct file *);
296
297 static ssize_t debug_output(struct file*, char __user*, size_t, loff_t*);
298 static int debug_close(struct inode *, struct file *);
299
300 static const struct file_operations debug_async_fops = {
301         .owner          = THIS_MODULE,
302         .open           = debug_async_open,
303         .read           = debug_output,
304         .release        = debug_close,
305         .llseek         = default_llseek,
306 };
307 static const struct file_operations debug_periodic_fops = {
308         .owner          = THIS_MODULE,
309         .open           = debug_periodic_open,
310         .read           = debug_output,
311         .release        = debug_close,
312         .llseek         = default_llseek,
313 };
314 static const struct file_operations debug_registers_fops = {
315         .owner          = THIS_MODULE,
316         .open           = debug_registers_open,
317         .read           = debug_output,
318         .release        = debug_close,
319         .llseek         = default_llseek,
320 };
321
322 static struct dentry *fotg210_debug_root;
323
324 struct debug_buffer {
325         ssize_t (*fill_func)(struct debug_buffer *);    /* fill method */
326         struct usb_bus *bus;
327         struct mutex mutex;     /* protect filling of buffer */
328         size_t count;           /* number of characters filled into buffer */
329         char *output_buf;
330         size_t alloc_size;
331 };
332
333 static inline char speed_char(u32 scratch)
334 {
335         switch (scratch & (3 << 12)) {
336         case QH_FULL_SPEED:
337                 return 'f';
338
339         case QH_LOW_SPEED:
340                 return 'l';
341
342         case QH_HIGH_SPEED:
343                 return 'h';
344
345         default:
346                 return '?';
347         }
348 }
349
350 static inline char token_mark(struct fotg210_hcd *fotg210, __hc32 token)
351 {
352         __u32 v = hc32_to_cpu(fotg210, token);
353
354         if (v & QTD_STS_ACTIVE)
355                 return '*';
356         if (v & QTD_STS_HALT)
357                 return '-';
358         if (!IS_SHORT_READ(v))
359                 return ' ';
360         /* tries to advance through hw_alt_next */
361         return '/';
362 }
363
364 static void qh_lines(struct fotg210_hcd *fotg210, struct fotg210_qh *qh,
365                 char **nextp, unsigned *sizep)
366 {
367         u32 scratch;
368         u32 hw_curr;
369         struct fotg210_qtd *td;
370         unsigned temp;
371         unsigned size = *sizep;
372         char *next = *nextp;
373         char mark;
374         __le32 list_end = FOTG210_LIST_END(fotg210);
375         struct fotg210_qh_hw *hw = qh->hw;
376
377         if (hw->hw_qtd_next == list_end) /* NEC does this */
378                 mark = '@';
379         else
380                 mark = token_mark(fotg210, hw->hw_token);
381         if (mark == '/') { /* qh_alt_next controls qh advance? */
382                 if ((hw->hw_alt_next & QTD_MASK(fotg210)) ==
383                     fotg210->async->hw->hw_alt_next)
384                         mark = '#'; /* blocked */
385                 else if (hw->hw_alt_next == list_end)
386                         mark = '.'; /* use hw_qtd_next */
387                 /* else alt_next points to some other qtd */
388         }
389         scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
390         hw_curr = (mark == '*') ? hc32_to_cpup(fotg210, &hw->hw_current) : 0;
391         temp = scnprintf(next, size,
392                         "qh/%p dev%d %cs ep%d %08x %08x(%08x%c %s nak%d)",
393                         qh, scratch & 0x007f,
394                         speed_char(scratch),
395                         (scratch >> 8) & 0x000f,
396                         scratch, hc32_to_cpup(fotg210, &hw->hw_info2),
397                         hc32_to_cpup(fotg210, &hw->hw_token), mark,
398                         (cpu_to_hc32(fotg210, QTD_TOGGLE) & hw->hw_token)
399                                 ? "data1" : "data0",
400                         (hc32_to_cpup(fotg210, &hw->hw_alt_next) >> 1) & 0x0f);
401         size -= temp;
402         next += temp;
403
404         /* hc may be modifying the list as we read it ... */
405         list_for_each_entry(td, &qh->qtd_list, qtd_list) {
406                 scratch = hc32_to_cpup(fotg210, &td->hw_token);
407                 mark = ' ';
408                 if (hw_curr == td->qtd_dma)
409                         mark = '*';
410                 else if (hw->hw_qtd_next == cpu_to_hc32(fotg210, td->qtd_dma))
411                         mark = '+';
412                 else if (QTD_LENGTH(scratch)) {
413                         if (td->hw_alt_next == fotg210->async->hw->hw_alt_next)
414                                 mark = '#';
415                         else if (td->hw_alt_next != list_end)
416                                 mark = '/';
417                 }
418                 temp = snprintf(next, size,
419                                 "\n\t%p%c%s len=%d %08x urb %p",
420                                 td, mark, ({ char *tmp;
421                                  switch ((scratch>>8)&0x03) {
422                                  case 0:
423                                         tmp = "out";
424                                         break;
425                                  case 1:
426                                         tmp = "in";
427                                         break;
428                                  case 2:
429                                         tmp = "setup";
430                                         break;
431                                  default:
432                                         tmp = "?";
433                                         break;
434                                  } tmp; }),
435                                 (scratch >> 16) & 0x7fff,
436                                 scratch,
437                                 td->urb);
438                 if (size < temp)
439                         temp = size;
440                 size -= temp;
441                 next += temp;
442                 if (temp == size)
443                         goto done;
444         }
445
446         temp = snprintf(next, size, "\n");
447         if (size < temp)
448                 temp = size;
449
450         size -= temp;
451         next += temp;
452
453 done:
454         *sizep = size;
455         *nextp = next;
456 }
457
458 static ssize_t fill_async_buffer(struct debug_buffer *buf)
459 {
460         struct usb_hcd *hcd;
461         struct fotg210_hcd *fotg210;
462         unsigned long flags;
463         unsigned temp, size;
464         char *next;
465         struct fotg210_qh *qh;
466
467         hcd = bus_to_hcd(buf->bus);
468         fotg210 = hcd_to_fotg210(hcd);
469         next = buf->output_buf;
470         size = buf->alloc_size;
471
472         *next = 0;
473
474         /* dumps a snapshot of the async schedule.
475          * usually empty except for long-term bulk reads, or head.
476          * one QH per line, and TDs we know about
477          */
478         spin_lock_irqsave(&fotg210->lock, flags);
479         for (qh = fotg210->async->qh_next.qh; size > 0 && qh;
480                         qh = qh->qh_next.qh)
481                 qh_lines(fotg210, qh, &next, &size);
482         if (fotg210->async_unlink && size > 0) {
483                 temp = scnprintf(next, size, "\nunlink =\n");
484                 size -= temp;
485                 next += temp;
486
487                 for (qh = fotg210->async_unlink; size > 0 && qh;
488                                 qh = qh->unlink_next)
489                         qh_lines(fotg210, qh, &next, &size);
490         }
491         spin_unlock_irqrestore(&fotg210->lock, flags);
492
493         return strlen(buf->output_buf);
494 }
495
496 /* count tds, get ep direction */
497 static unsigned output_buf_tds_dir(char *buf, struct fotg210_hcd *fotg210,
498                 struct fotg210_qh_hw *hw, struct fotg210_qh *qh, unsigned size)
499 {
500         u32 scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
501         struct fotg210_qtd *qtd;
502         char *type = "";
503         unsigned temp = 0;
504
505         /* count tds, get ep direction */
506         list_for_each_entry(qtd, &qh->qtd_list, qtd_list) {
507                 temp++;
508                 switch ((hc32_to_cpu(fotg210, qtd->hw_token) >> 8) & 0x03) {
509                 case 0:
510                         type = "out";
511                         continue;
512                 case 1:
513                         type = "in";
514                         continue;
515                 }
516         }
517
518         return scnprintf(buf, size, "(%c%d ep%d%s [%d/%d] q%d p%d)",
519                         speed_char(scratch), scratch & 0x007f,
520                         (scratch >> 8) & 0x000f, type, qh->usecs,
521                         qh->c_usecs, temp, (scratch >> 16) & 0x7ff);
522 }
523
524 #define DBG_SCHED_LIMIT 64
525 static ssize_t fill_periodic_buffer(struct debug_buffer *buf)
526 {
527         struct usb_hcd *hcd;
528         struct fotg210_hcd *fotg210;
529         unsigned long flags;
530         union fotg210_shadow p, *seen;
531         unsigned temp, size, seen_count;
532         char *next;
533         unsigned i;
534         __hc32 tag;
535
536         seen = kmalloc_array(DBG_SCHED_LIMIT, sizeof(*seen), GFP_ATOMIC);
537         if (!seen)
538                 return 0;
539
540         seen_count = 0;
541
542         hcd = bus_to_hcd(buf->bus);
543         fotg210 = hcd_to_fotg210(hcd);
544         next = buf->output_buf;
545         size = buf->alloc_size;
546
547         temp = scnprintf(next, size, "size = %d\n", fotg210->periodic_size);
548         size -= temp;
549         next += temp;
550
551         /* dump a snapshot of the periodic schedule.
552          * iso changes, interrupt usually doesn't.
553          */
554         spin_lock_irqsave(&fotg210->lock, flags);
555         for (i = 0; i < fotg210->periodic_size; i++) {
556                 p = fotg210->pshadow[i];
557                 if (likely(!p.ptr))
558                         continue;
559
560                 tag = Q_NEXT_TYPE(fotg210, fotg210->periodic[i]);
561
562                 temp = scnprintf(next, size, "%4d: ", i);
563                 size -= temp;
564                 next += temp;
565
566                 do {
567                         struct fotg210_qh_hw *hw;
568
569                         switch (hc32_to_cpu(fotg210, tag)) {
570                         case Q_TYPE_QH:
571                                 hw = p.qh->hw;
572                                 temp = scnprintf(next, size, " qh%d-%04x/%p",
573                                                 p.qh->period,
574                                                 hc32_to_cpup(fotg210,
575                                                         &hw->hw_info2)
576                                                         /* uframe masks */
577                                                         & (QH_CMASK | QH_SMASK),
578                                                 p.qh);
579                                 size -= temp;
580                                 next += temp;
581                                 /* don't repeat what follows this qh */
582                                 for (temp = 0; temp < seen_count; temp++) {
583                                         if (seen[temp].ptr != p.ptr)
584                                                 continue;
585                                         if (p.qh->qh_next.ptr) {
586                                                 temp = scnprintf(next, size,
587                                                                 " ...");
588                                                 size -= temp;
589                                                 next += temp;
590                                         }
591                                         break;
592                                 }
593                                 /* show more info the first time around */
594                                 if (temp == seen_count) {
595                                         temp = output_buf_tds_dir(next,
596                                                         fotg210, hw,
597                                                         p.qh, size);
598
599                                         if (seen_count < DBG_SCHED_LIMIT)
600                                                 seen[seen_count++].qh = p.qh;
601                                 } else
602                                         temp = 0;
603                                 tag = Q_NEXT_TYPE(fotg210, hw->hw_next);
604                                 p = p.qh->qh_next;
605                                 break;
606                         case Q_TYPE_FSTN:
607                                 temp = scnprintf(next, size,
608                                                 " fstn-%8x/%p",
609                                                 p.fstn->hw_prev, p.fstn);
610                                 tag = Q_NEXT_TYPE(fotg210, p.fstn->hw_next);
611                                 p = p.fstn->fstn_next;
612                                 break;
613                         case Q_TYPE_ITD:
614                                 temp = scnprintf(next, size,
615                                                 " itd/%p", p.itd);
616                                 tag = Q_NEXT_TYPE(fotg210, p.itd->hw_next);
617                                 p = p.itd->itd_next;
618                                 break;
619                         }
620                         size -= temp;
621                         next += temp;
622                 } while (p.ptr);
623
624                 temp = scnprintf(next, size, "\n");
625                 size -= temp;
626                 next += temp;
627         }
628         spin_unlock_irqrestore(&fotg210->lock, flags);
629         kfree(seen);
630
631         return buf->alloc_size - size;
632 }
633 #undef DBG_SCHED_LIMIT
634
635 static const char *rh_state_string(struct fotg210_hcd *fotg210)
636 {
637         switch (fotg210->rh_state) {
638         case FOTG210_RH_HALTED:
639                 return "halted";
640         case FOTG210_RH_SUSPENDED:
641                 return "suspended";
642         case FOTG210_RH_RUNNING:
643                 return "running";
644         case FOTG210_RH_STOPPING:
645                 return "stopping";
646         }
647         return "?";
648 }
649
650 static ssize_t fill_registers_buffer(struct debug_buffer *buf)
651 {
652         struct usb_hcd *hcd;
653         struct fotg210_hcd *fotg210;
654         unsigned long flags;
655         unsigned temp, size, i;
656         char *next, scratch[80];
657         static const char fmt[] = "%*s\n";
658         static const char label[] = "";
659
660         hcd = bus_to_hcd(buf->bus);
661         fotg210 = hcd_to_fotg210(hcd);
662         next = buf->output_buf;
663         size = buf->alloc_size;
664
665         spin_lock_irqsave(&fotg210->lock, flags);
666
667         if (!HCD_HW_ACCESSIBLE(hcd)) {
668                 size = scnprintf(next, size,
669                                 "bus %s, device %s\n"
670                                 "%s\n"
671                                 "SUSPENDED(no register access)\n",
672                                 hcd->self.controller->bus->name,
673                                 dev_name(hcd->self.controller),
674                                 hcd->product_desc);
675                 goto done;
676         }
677
678         /* Capability Registers */
679         i = HC_VERSION(fotg210, fotg210_readl(fotg210,
680                         &fotg210->caps->hc_capbase));
681         temp = scnprintf(next, size,
682                         "bus %s, device %s\n"
683                         "%s\n"
684                         "EHCI %x.%02x, rh state %s\n",
685                         hcd->self.controller->bus->name,
686                         dev_name(hcd->self.controller),
687                         hcd->product_desc,
688                         i >> 8, i & 0x0ff, rh_state_string(fotg210));
689         size -= temp;
690         next += temp;
691
692         /* FIXME interpret both types of params */
693         i = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
694         temp = scnprintf(next, size, "structural params 0x%08x\n", i);
695         size -= temp;
696         next += temp;
697
698         i = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
699         temp = scnprintf(next, size, "capability params 0x%08x\n", i);
700         size -= temp;
701         next += temp;
702
703         /* Operational Registers */
704         temp = dbg_status_buf(scratch, sizeof(scratch), label,
705                         fotg210_readl(fotg210, &fotg210->regs->status));
706         temp = scnprintf(next, size, fmt, temp, scratch);
707         size -= temp;
708         next += temp;
709
710         temp = dbg_command_buf(scratch, sizeof(scratch), label,
711                         fotg210_readl(fotg210, &fotg210->regs->command));
712         temp = scnprintf(next, size, fmt, temp, scratch);
713         size -= temp;
714         next += temp;
715
716         temp = dbg_intr_buf(scratch, sizeof(scratch), label,
717                         fotg210_readl(fotg210, &fotg210->regs->intr_enable));
718         temp = scnprintf(next, size, fmt, temp, scratch);
719         size -= temp;
720         next += temp;
721
722         temp = scnprintf(next, size, "uframe %04x\n",
723                         fotg210_read_frame_index(fotg210));
724         size -= temp;
725         next += temp;
726
727         if (fotg210->async_unlink) {
728                 temp = scnprintf(next, size, "async unlink qh %p\n",
729                                 fotg210->async_unlink);
730                 size -= temp;
731                 next += temp;
732         }
733
734 #ifdef FOTG210_STATS
735         temp = scnprintf(next, size,
736                         "irq normal %ld err %ld iaa %ld(lost %ld)\n",
737                         fotg210->stats.normal, fotg210->stats.error,
738                         fotg210->stats.iaa, fotg210->stats.lost_iaa);
739         size -= temp;
740         next += temp;
741
742         temp = scnprintf(next, size, "complete %ld unlink %ld\n",
743                         fotg210->stats.complete, fotg210->stats.unlink);
744         size -= temp;
745         next += temp;
746 #endif
747
748 done:
749         spin_unlock_irqrestore(&fotg210->lock, flags);
750
751         return buf->alloc_size - size;
752 }
753
754 static struct debug_buffer
755 *alloc_buffer(struct usb_bus *bus, ssize_t (*fill_func)(struct debug_buffer *))
756 {
757         struct debug_buffer *buf;
758
759         buf = kzalloc(sizeof(struct debug_buffer), GFP_KERNEL);
760
761         if (buf) {
762                 buf->bus = bus;
763                 buf->fill_func = fill_func;
764                 mutex_init(&buf->mutex);
765                 buf->alloc_size = PAGE_SIZE;
766         }
767
768         return buf;
769 }
770
771 static int fill_buffer(struct debug_buffer *buf)
772 {
773         int ret = 0;
774
775         if (!buf->output_buf)
776                 buf->output_buf = vmalloc(buf->alloc_size);
777
778         if (!buf->output_buf) {
779                 ret = -ENOMEM;
780                 goto out;
781         }
782
783         ret = buf->fill_func(buf);
784
785         if (ret >= 0) {
786                 buf->count = ret;
787                 ret = 0;
788         }
789
790 out:
791         return ret;
792 }
793
794 static ssize_t debug_output(struct file *file, char __user *user_buf,
795                 size_t len, loff_t *offset)
796 {
797         struct debug_buffer *buf = file->private_data;
798         int ret = 0;
799
800         mutex_lock(&buf->mutex);
801         if (buf->count == 0) {
802                 ret = fill_buffer(buf);
803                 if (ret != 0) {
804                         mutex_unlock(&buf->mutex);
805                         goto out;
806                 }
807         }
808         mutex_unlock(&buf->mutex);
809
810         ret = simple_read_from_buffer(user_buf, len, offset,
811                         buf->output_buf, buf->count);
812
813 out:
814         return ret;
815
816 }
817
818 static int debug_close(struct inode *inode, struct file *file)
819 {
820         struct debug_buffer *buf = file->private_data;
821
822         if (buf) {
823                 vfree(buf->output_buf);
824                 kfree(buf);
825         }
826
827         return 0;
828 }
829 static int debug_async_open(struct inode *inode, struct file *file)
830 {
831         file->private_data = alloc_buffer(inode->i_private, fill_async_buffer);
832
833         return file->private_data ? 0 : -ENOMEM;
834 }
835
836 static int debug_periodic_open(struct inode *inode, struct file *file)
837 {
838         struct debug_buffer *buf;
839
840         buf = alloc_buffer(inode->i_private, fill_periodic_buffer);
841         if (!buf)
842                 return -ENOMEM;
843
844         buf->alloc_size = (sizeof(void *) == 4 ? 6 : 8)*PAGE_SIZE;
845         file->private_data = buf;
846         return 0;
847 }
848
849 static int debug_registers_open(struct inode *inode, struct file *file)
850 {
851         file->private_data = alloc_buffer(inode->i_private,
852                         fill_registers_buffer);
853
854         return file->private_data ? 0 : -ENOMEM;
855 }
856
857 static inline void create_debug_files(struct fotg210_hcd *fotg210)
858 {
859         struct usb_bus *bus = &fotg210_to_hcd(fotg210)->self;
860
861         fotg210->debug_dir = debugfs_create_dir(bus->bus_name,
862                         fotg210_debug_root);
863         if (!fotg210->debug_dir)
864                 return;
865
866         if (!debugfs_create_file("async", S_IRUGO, fotg210->debug_dir, bus,
867                         &debug_async_fops))
868                 goto file_error;
869
870         if (!debugfs_create_file("periodic", S_IRUGO, fotg210->debug_dir, bus,
871                         &debug_periodic_fops))
872                 goto file_error;
873
874         if (!debugfs_create_file("registers", S_IRUGO, fotg210->debug_dir, bus,
875                         &debug_registers_fops))
876                 goto file_error;
877
878         return;
879
880 file_error:
881         debugfs_remove_recursive(fotg210->debug_dir);
882 }
883
884 static inline void remove_debug_files(struct fotg210_hcd *fotg210)
885 {
886         debugfs_remove_recursive(fotg210->debug_dir);
887 }
888
889 /* handshake - spin reading hc until handshake completes or fails
890  * @ptr: address of hc register to be read
891  * @mask: bits to look at in result of read
892  * @done: value of those bits when handshake succeeds
893  * @usec: timeout in microseconds
894  *
895  * Returns negative errno, or zero on success
896  *
897  * Success happens when the "mask" bits have the specified value (hardware
898  * handshake done).  There are two failure modes:  "usec" have passed (major
899  * hardware flakeout), or the register reads as all-ones (hardware removed).
900  *
901  * That last failure should_only happen in cases like physical cardbus eject
902  * before driver shutdown. But it also seems to be caused by bugs in cardbus
903  * bridge shutdown:  shutting down the bridge before the devices using it.
904  */
905 static int handshake(struct fotg210_hcd *fotg210, void __iomem *ptr,
906                 u32 mask, u32 done, int usec)
907 {
908         u32 result;
909
910         do {
911                 result = fotg210_readl(fotg210, ptr);
912                 if (result == ~(u32)0)          /* card removed */
913                         return -ENODEV;
914                 result &= mask;
915                 if (result == done)
916                         return 0;
917                 udelay(1);
918                 usec--;
919         } while (usec > 0);
920         return -ETIMEDOUT;
921 }
922
923 /* Force HC to halt state from unknown (EHCI spec section 2.3).
924  * Must be called with interrupts enabled and the lock not held.
925  */
926 static int fotg210_halt(struct fotg210_hcd *fotg210)
927 {
928         u32 temp;
929
930         spin_lock_irq(&fotg210->lock);
931
932         /* disable any irqs left enabled by previous code */
933         fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
934
935         /*
936          * This routine gets called during probe before fotg210->command
937          * has been initialized, so we can't rely on its value.
938          */
939         fotg210->command &= ~CMD_RUN;
940         temp = fotg210_readl(fotg210, &fotg210->regs->command);
941         temp &= ~(CMD_RUN | CMD_IAAD);
942         fotg210_writel(fotg210, temp, &fotg210->regs->command);
943
944         spin_unlock_irq(&fotg210->lock);
945         synchronize_irq(fotg210_to_hcd(fotg210)->irq);
946
947         return handshake(fotg210, &fotg210->regs->status,
948                         STS_HALT, STS_HALT, 16 * 125);
949 }
950
951 /* Reset a non-running (STS_HALT == 1) controller.
952  * Must be called with interrupts enabled and the lock not held.
953  */
954 static int fotg210_reset(struct fotg210_hcd *fotg210)
955 {
956         int retval;
957         u32 command = fotg210_readl(fotg210, &fotg210->regs->command);
958
959         /* If the EHCI debug controller is active, special care must be
960          * taken before and after a host controller reset
961          */
962         if (fotg210->debug && !dbgp_reset_prep(fotg210_to_hcd(fotg210)))
963                 fotg210->debug = NULL;
964
965         command |= CMD_RESET;
966         dbg_cmd(fotg210, "reset", command);
967         fotg210_writel(fotg210, command, &fotg210->regs->command);
968         fotg210->rh_state = FOTG210_RH_HALTED;
969         fotg210->next_statechange = jiffies;
970         retval = handshake(fotg210, &fotg210->regs->command,
971                         CMD_RESET, 0, 250 * 1000);
972
973         if (retval)
974                 return retval;
975
976         if (fotg210->debug)
977                 dbgp_external_startup(fotg210_to_hcd(fotg210));
978
979         fotg210->port_c_suspend = fotg210->suspended_ports =
980                         fotg210->resuming_ports = 0;
981         return retval;
982 }
983
984 /* Idle the controller (turn off the schedules).
985  * Must be called with interrupts enabled and the lock not held.
986  */
987 static void fotg210_quiesce(struct fotg210_hcd *fotg210)
988 {
989         u32 temp;
990
991         if (fotg210->rh_state != FOTG210_RH_RUNNING)
992                 return;
993
994         /* wait for any schedule enables/disables to take effect */
995         temp = (fotg210->command << 10) & (STS_ASS | STS_PSS);
996         handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, temp,
997                         16 * 125);
998
999         /* then disable anything that's still active */
1000         spin_lock_irq(&fotg210->lock);
1001         fotg210->command &= ~(CMD_ASE | CMD_PSE);
1002         fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1003         spin_unlock_irq(&fotg210->lock);
1004
1005         /* hardware can take 16 microframes to turn off ... */
1006         handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, 0,
1007                         16 * 125);
1008 }
1009
1010 static void end_unlink_async(struct fotg210_hcd *fotg210);
1011 static void unlink_empty_async(struct fotg210_hcd *fotg210);
1012 static void fotg210_work(struct fotg210_hcd *fotg210);
1013 static void start_unlink_intr(struct fotg210_hcd *fotg210,
1014                               struct fotg210_qh *qh);
1015 static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
1016
1017 /* Set a bit in the USBCMD register */
1018 static void fotg210_set_command_bit(struct fotg210_hcd *fotg210, u32 bit)
1019 {
1020         fotg210->command |= bit;
1021         fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1022
1023         /* unblock posted write */
1024         fotg210_readl(fotg210, &fotg210->regs->command);
1025 }
1026
1027 /* Clear a bit in the USBCMD register */
1028 static void fotg210_clear_command_bit(struct fotg210_hcd *fotg210, u32 bit)
1029 {
1030         fotg210->command &= ~bit;
1031         fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1032
1033         /* unblock posted write */
1034         fotg210_readl(fotg210, &fotg210->regs->command);
1035 }
1036
1037 /* EHCI timer support...  Now using hrtimers.
1038  *
1039  * Lots of different events are triggered from fotg210->hrtimer.  Whenever
1040  * the timer routine runs, it checks each possible event; events that are
1041  * currently enabled and whose expiration time has passed get handled.
1042  * The set of enabled events is stored as a collection of bitflags in
1043  * fotg210->enabled_hrtimer_events, and they are numbered in order of
1044  * increasing delay values (ranging between 1 ms and 100 ms).
1045  *
1046  * Rather than implementing a sorted list or tree of all pending events,
1047  * we keep track only of the lowest-numbered pending event, in
1048  * fotg210->next_hrtimer_event.  Whenever fotg210->hrtimer gets restarted, its
1049  * expiration time is set to the timeout value for this event.
1050  *
1051  * As a result, events might not get handled right away; the actual delay
1052  * could be anywhere up to twice the requested delay.  This doesn't
1053  * matter, because none of the events are especially time-critical.  The
1054  * ones that matter most all have a delay of 1 ms, so they will be
1055  * handled after 2 ms at most, which is okay.  In addition to this, we
1056  * allow for an expiration range of 1 ms.
1057  */
1058
1059 /* Delay lengths for the hrtimer event types.
1060  * Keep this list sorted by delay length, in the same order as
1061  * the event types indexed by enum fotg210_hrtimer_event in fotg210.h.
1062  */
1063 static unsigned event_delays_ns[] = {
1064         1 * NSEC_PER_MSEC,      /* FOTG210_HRTIMER_POLL_ASS */
1065         1 * NSEC_PER_MSEC,      /* FOTG210_HRTIMER_POLL_PSS */
1066         1 * NSEC_PER_MSEC,      /* FOTG210_HRTIMER_POLL_DEAD */
1067         1125 * NSEC_PER_USEC,   /* FOTG210_HRTIMER_UNLINK_INTR */
1068         2 * NSEC_PER_MSEC,      /* FOTG210_HRTIMER_FREE_ITDS */
1069         6 * NSEC_PER_MSEC,      /* FOTG210_HRTIMER_ASYNC_UNLINKS */
1070         10 * NSEC_PER_MSEC,     /* FOTG210_HRTIMER_IAA_WATCHDOG */
1071         10 * NSEC_PER_MSEC,     /* FOTG210_HRTIMER_DISABLE_PERIODIC */
1072         15 * NSEC_PER_MSEC,     /* FOTG210_HRTIMER_DISABLE_ASYNC */
1073         100 * NSEC_PER_MSEC,    /* FOTG210_HRTIMER_IO_WATCHDOG */
1074 };
1075
1076 /* Enable a pending hrtimer event */
1077 static void fotg210_enable_event(struct fotg210_hcd *fotg210, unsigned event,
1078                 bool resched)
1079 {
1080         ktime_t *timeout = &fotg210->hr_timeouts[event];
1081
1082         if (resched)
1083                 *timeout = ktime_add(ktime_get(),
1084                                 ktime_set(0, event_delays_ns[event]));
1085         fotg210->enabled_hrtimer_events |= (1 << event);
1086
1087         /* Track only the lowest-numbered pending event */
1088         if (event < fotg210->next_hrtimer_event) {
1089                 fotg210->next_hrtimer_event = event;
1090                 hrtimer_start_range_ns(&fotg210->hrtimer, *timeout,
1091                                 NSEC_PER_MSEC, HRTIMER_MODE_ABS);
1092         }
1093 }
1094
1095
1096 /* Poll the STS_ASS status bit; see when it agrees with CMD_ASE */
1097 static void fotg210_poll_ASS(struct fotg210_hcd *fotg210)
1098 {
1099         unsigned actual, want;
1100
1101         /* Don't enable anything if the controller isn't running (e.g., died) */
1102         if (fotg210->rh_state != FOTG210_RH_RUNNING)
1103                 return;
1104
1105         want = (fotg210->command & CMD_ASE) ? STS_ASS : 0;
1106         actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_ASS;
1107
1108         if (want != actual) {
1109
1110                 /* Poll again later, but give up after about 20 ms */
1111                 if (fotg210->ASS_poll_count++ < 20) {
1112                         fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_ASS,
1113                                         true);
1114                         return;
1115                 }
1116                 fotg210_dbg(fotg210, "Waited too long for the async schedule status (%x/%x), giving up\n",
1117                                 want, actual);
1118         }
1119         fotg210->ASS_poll_count = 0;
1120
1121         /* The status is up-to-date; restart or stop the schedule as needed */
1122         if (want == 0) {        /* Stopped */
1123                 if (fotg210->async_count > 0)
1124                         fotg210_set_command_bit(fotg210, CMD_ASE);
1125
1126         } else {                /* Running */
1127                 if (fotg210->async_count == 0) {
1128
1129                         /* Turn off the schedule after a while */
1130                         fotg210_enable_event(fotg210,
1131                                         FOTG210_HRTIMER_DISABLE_ASYNC,
1132                                         true);
1133                 }
1134         }
1135 }
1136
1137 /* Turn off the async schedule after a brief delay */
1138 static void fotg210_disable_ASE(struct fotg210_hcd *fotg210)
1139 {
1140         fotg210_clear_command_bit(fotg210, CMD_ASE);
1141 }
1142
1143
1144 /* Poll the STS_PSS status bit; see when it agrees with CMD_PSE */
1145 static void fotg210_poll_PSS(struct fotg210_hcd *fotg210)
1146 {
1147         unsigned actual, want;
1148
1149         /* Don't do anything if the controller isn't running (e.g., died) */
1150         if (fotg210->rh_state != FOTG210_RH_RUNNING)
1151                 return;
1152
1153         want = (fotg210->command & CMD_PSE) ? STS_PSS : 0;
1154         actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_PSS;
1155
1156         if (want != actual) {
1157
1158                 /* Poll again later, but give up after about 20 ms */
1159                 if (fotg210->PSS_poll_count++ < 20) {
1160                         fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_PSS,
1161                                         true);
1162                         return;
1163                 }
1164                 fotg210_dbg(fotg210, "Waited too long for the periodic schedule status (%x/%x), giving up\n",
1165                                 want, actual);
1166         }
1167         fotg210->PSS_poll_count = 0;
1168
1169         /* The status is up-to-date; restart or stop the schedule as needed */
1170         if (want == 0) {        /* Stopped */
1171                 if (fotg210->periodic_count > 0)
1172                         fotg210_set_command_bit(fotg210, CMD_PSE);
1173
1174         } else {                /* Running */
1175                 if (fotg210->periodic_count == 0) {
1176
1177                         /* Turn off the schedule after a while */
1178                         fotg210_enable_event(fotg210,
1179                                         FOTG210_HRTIMER_DISABLE_PERIODIC,
1180                                         true);
1181                 }
1182         }
1183 }
1184
1185 /* Turn off the periodic schedule after a brief delay */
1186 static void fotg210_disable_PSE(struct fotg210_hcd *fotg210)
1187 {
1188         fotg210_clear_command_bit(fotg210, CMD_PSE);
1189 }
1190
1191
1192 /* Poll the STS_HALT status bit; see when a dead controller stops */
1193 static void fotg210_handle_controller_death(struct fotg210_hcd *fotg210)
1194 {
1195         if (!(fotg210_readl(fotg210, &fotg210->regs->status) & STS_HALT)) {
1196
1197                 /* Give up after a few milliseconds */
1198                 if (fotg210->died_poll_count++ < 5) {
1199                         /* Try again later */
1200                         fotg210_enable_event(fotg210,
1201                                         FOTG210_HRTIMER_POLL_DEAD, true);
1202                         return;
1203                 }
1204                 fotg210_warn(fotg210, "Waited too long for the controller to stop, giving up\n");
1205         }
1206
1207         /* Clean up the mess */
1208         fotg210->rh_state = FOTG210_RH_HALTED;
1209         fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
1210         fotg210_work(fotg210);
1211         end_unlink_async(fotg210);
1212
1213         /* Not in process context, so don't try to reset the controller */
1214 }
1215
1216
1217 /* Handle unlinked interrupt QHs once they are gone from the hardware */
1218 static void fotg210_handle_intr_unlinks(struct fotg210_hcd *fotg210)
1219 {
1220         bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
1221
1222         /*
1223          * Process all the QHs on the intr_unlink list that were added
1224          * before the current unlink cycle began.  The list is in
1225          * temporal order, so stop when we reach the first entry in the
1226          * current cycle.  But if the root hub isn't running then
1227          * process all the QHs on the list.
1228          */
1229         fotg210->intr_unlinking = true;
1230         while (fotg210->intr_unlink) {
1231                 struct fotg210_qh *qh = fotg210->intr_unlink;
1232
1233                 if (!stopped && qh->unlink_cycle == fotg210->intr_unlink_cycle)
1234                         break;
1235                 fotg210->intr_unlink = qh->unlink_next;
1236                 qh->unlink_next = NULL;
1237                 end_unlink_intr(fotg210, qh);
1238         }
1239
1240         /* Handle remaining entries later */
1241         if (fotg210->intr_unlink) {
1242                 fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
1243                                 true);
1244                 ++fotg210->intr_unlink_cycle;
1245         }
1246         fotg210->intr_unlinking = false;
1247 }
1248
1249
1250 /* Start another free-iTDs/siTDs cycle */
1251 static void start_free_itds(struct fotg210_hcd *fotg210)
1252 {
1253         if (!(fotg210->enabled_hrtimer_events &
1254                         BIT(FOTG210_HRTIMER_FREE_ITDS))) {
1255                 fotg210->last_itd_to_free = list_entry(
1256                                 fotg210->cached_itd_list.prev,
1257                                 struct fotg210_itd, itd_list);
1258                 fotg210_enable_event(fotg210, FOTG210_HRTIMER_FREE_ITDS, true);
1259         }
1260 }
1261
1262 /* Wait for controller to stop using old iTDs and siTDs */
1263 static void end_free_itds(struct fotg210_hcd *fotg210)
1264 {
1265         struct fotg210_itd *itd, *n;
1266
1267         if (fotg210->rh_state < FOTG210_RH_RUNNING)
1268                 fotg210->last_itd_to_free = NULL;
1269
1270         list_for_each_entry_safe(itd, n, &fotg210->cached_itd_list, itd_list) {
1271                 list_del(&itd->itd_list);
1272                 dma_pool_free(fotg210->itd_pool, itd, itd->itd_dma);
1273                 if (itd == fotg210->last_itd_to_free)
1274                         break;
1275         }
1276
1277         if (!list_empty(&fotg210->cached_itd_list))
1278                 start_free_itds(fotg210);
1279 }
1280
1281
1282 /* Handle lost (or very late) IAA interrupts */
1283 static void fotg210_iaa_watchdog(struct fotg210_hcd *fotg210)
1284 {
1285         if (fotg210->rh_state != FOTG210_RH_RUNNING)
1286                 return;
1287
1288         /*
1289          * Lost IAA irqs wedge things badly; seen first with a vt8235.
1290          * So we need this watchdog, but must protect it against both
1291          * (a) SMP races against real IAA firing and retriggering, and
1292          * (b) clean HC shutdown, when IAA watchdog was pending.
1293          */
1294         if (fotg210->async_iaa) {
1295                 u32 cmd, status;
1296
1297                 /* If we get here, IAA is *REALLY* late.  It's barely
1298                  * conceivable that the system is so busy that CMD_IAAD
1299                  * is still legitimately set, so let's be sure it's
1300                  * clear before we read STS_IAA.  (The HC should clear
1301                  * CMD_IAAD when it sets STS_IAA.)
1302                  */
1303                 cmd = fotg210_readl(fotg210, &fotg210->regs->command);
1304
1305                 /*
1306                  * If IAA is set here it either legitimately triggered
1307                  * after the watchdog timer expired (_way_ late, so we'll
1308                  * still count it as lost) ... or a silicon erratum:
1309                  * - VIA seems to set IAA without triggering the IRQ;
1310                  * - IAAD potentially cleared without setting IAA.
1311                  */
1312                 status = fotg210_readl(fotg210, &fotg210->regs->status);
1313                 if ((status & STS_IAA) || !(cmd & CMD_IAAD)) {
1314                         COUNT(fotg210->stats.lost_iaa);
1315                         fotg210_writel(fotg210, STS_IAA,
1316                                         &fotg210->regs->status);
1317                 }
1318
1319                 fotg210_dbg(fotg210, "IAA watchdog: status %x cmd %x\n",
1320                                 status, cmd);
1321                 end_unlink_async(fotg210);
1322         }
1323 }
1324
1325
1326 /* Enable the I/O watchdog, if appropriate */
1327 static void turn_on_io_watchdog(struct fotg210_hcd *fotg210)
1328 {
1329         /* Not needed if the controller isn't running or it's already enabled */
1330         if (fotg210->rh_state != FOTG210_RH_RUNNING ||
1331                         (fotg210->enabled_hrtimer_events &
1332                         BIT(FOTG210_HRTIMER_IO_WATCHDOG)))
1333                 return;
1334
1335         /*
1336          * Isochronous transfers always need the watchdog.
1337          * For other sorts we use it only if the flag is set.
1338          */
1339         if (fotg210->isoc_count > 0 || (fotg210->need_io_watchdog &&
1340                         fotg210->async_count + fotg210->intr_count > 0))
1341                 fotg210_enable_event(fotg210, FOTG210_HRTIMER_IO_WATCHDOG,
1342                                 true);
1343 }
1344
1345
1346 /* Handler functions for the hrtimer event types.
1347  * Keep this array in the same order as the event types indexed by
1348  * enum fotg210_hrtimer_event in fotg210.h.
1349  */
1350 static void (*event_handlers[])(struct fotg210_hcd *) = {
1351         fotg210_poll_ASS,                       /* FOTG210_HRTIMER_POLL_ASS */
1352         fotg210_poll_PSS,                       /* FOTG210_HRTIMER_POLL_PSS */
1353         fotg210_handle_controller_death,        /* FOTG210_HRTIMER_POLL_DEAD */
1354         fotg210_handle_intr_unlinks,    /* FOTG210_HRTIMER_UNLINK_INTR */
1355         end_free_itds,                  /* FOTG210_HRTIMER_FREE_ITDS */
1356         unlink_empty_async,             /* FOTG210_HRTIMER_ASYNC_UNLINKS */
1357         fotg210_iaa_watchdog,           /* FOTG210_HRTIMER_IAA_WATCHDOG */
1358         fotg210_disable_PSE,            /* FOTG210_HRTIMER_DISABLE_PERIODIC */
1359         fotg210_disable_ASE,            /* FOTG210_HRTIMER_DISABLE_ASYNC */
1360         fotg210_work,                   /* FOTG210_HRTIMER_IO_WATCHDOG */
1361 };
1362
1363 static enum hrtimer_restart fotg210_hrtimer_func(struct hrtimer *t)
1364 {
1365         struct fotg210_hcd *fotg210 =
1366                         container_of(t, struct fotg210_hcd, hrtimer);
1367         ktime_t now;
1368         unsigned long events;
1369         unsigned long flags;
1370         unsigned e;
1371
1372         spin_lock_irqsave(&fotg210->lock, flags);
1373
1374         events = fotg210->enabled_hrtimer_events;
1375         fotg210->enabled_hrtimer_events = 0;
1376         fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
1377
1378         /*
1379          * Check each pending event.  If its time has expired, handle
1380          * the event; otherwise re-enable it.
1381          */
1382         now = ktime_get();
1383         for_each_set_bit(e, &events, FOTG210_HRTIMER_NUM_EVENTS) {
1384                 if (now.tv64 >= fotg210->hr_timeouts[e].tv64)
1385                         event_handlers[e](fotg210);
1386                 else
1387                         fotg210_enable_event(fotg210, e, false);
1388         }
1389
1390         spin_unlock_irqrestore(&fotg210->lock, flags);
1391         return HRTIMER_NORESTART;
1392 }
1393
1394 #define fotg210_bus_suspend NULL
1395 #define fotg210_bus_resume NULL
1396
1397 static int check_reset_complete(struct fotg210_hcd *fotg210, int index,
1398                 u32 __iomem *status_reg, int port_status)
1399 {
1400         if (!(port_status & PORT_CONNECT))
1401                 return port_status;
1402
1403         /* if reset finished and it's still not enabled -- handoff */
1404         if (!(port_status & PORT_PE))
1405                 /* with integrated TT, there's nobody to hand it to! */
1406                 fotg210_dbg(fotg210, "Failed to enable port %d on root hub TT\n",
1407                                 index + 1);
1408         else
1409                 fotg210_dbg(fotg210, "port %d reset complete, port enabled\n",
1410                                 index + 1);
1411
1412         return port_status;
1413 }
1414
1415
1416 /* build "status change" packet (one or two bytes) from HC registers */
1417
1418 static int fotg210_hub_status_data(struct usb_hcd *hcd, char *buf)
1419 {
1420         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1421         u32 temp, status;
1422         u32 mask;
1423         int retval = 1;
1424         unsigned long flags;
1425
1426         /* init status to no-changes */
1427         buf[0] = 0;
1428
1429         /* Inform the core about resumes-in-progress by returning
1430          * a non-zero value even if there are no status changes.
1431          */
1432         status = fotg210->resuming_ports;
1433
1434         mask = PORT_CSC | PORT_PEC;
1435         /* PORT_RESUME from hardware ~= PORT_STAT_C_SUSPEND */
1436
1437         /* no hub change reports (bit 0) for now (power, ...) */
1438
1439         /* port N changes (bit N)? */
1440         spin_lock_irqsave(&fotg210->lock, flags);
1441
1442         temp = fotg210_readl(fotg210, &fotg210->regs->port_status);
1443
1444         /*
1445          * Return status information even for ports with OWNER set.
1446          * Otherwise hub_wq wouldn't see the disconnect event when a
1447          * high-speed device is switched over to the companion
1448          * controller by the user.
1449          */
1450
1451         if ((temp & mask) != 0 || test_bit(0, &fotg210->port_c_suspend) ||
1452                         (fotg210->reset_done[0] &&
1453                         time_after_eq(jiffies, fotg210->reset_done[0]))) {
1454                 buf[0] |= 1 << 1;
1455                 status = STS_PCD;
1456         }
1457         /* FIXME autosuspend idle root hubs */
1458         spin_unlock_irqrestore(&fotg210->lock, flags);
1459         return status ? retval : 0;
1460 }
1461
1462 static void fotg210_hub_descriptor(struct fotg210_hcd *fotg210,
1463                 struct usb_hub_descriptor *desc)
1464 {
1465         int ports = HCS_N_PORTS(fotg210->hcs_params);
1466         u16 temp;
1467
1468         desc->bDescriptorType = USB_DT_HUB;
1469         desc->bPwrOn2PwrGood = 10;      /* fotg210 1.0, 2.3.9 says 20ms max */
1470         desc->bHubContrCurrent = 0;
1471
1472         desc->bNbrPorts = ports;
1473         temp = 1 + (ports / 8);
1474         desc->bDescLength = 7 + 2 * temp;
1475
1476         /* two bitmaps:  ports removable, and usb 1.0 legacy PortPwrCtrlMask */
1477         memset(&desc->u.hs.DeviceRemovable[0], 0, temp);
1478         memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp);
1479
1480         temp = HUB_CHAR_INDV_PORT_OCPM; /* per-port overcurrent reporting */
1481         temp |= HUB_CHAR_NO_LPSM;       /* no power switching */
1482         desc->wHubCharacteristics = cpu_to_le16(temp);
1483 }
1484
1485 static int fotg210_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue,
1486                 u16 wIndex, char *buf, u16 wLength)
1487 {
1488         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1489         int ports = HCS_N_PORTS(fotg210->hcs_params);
1490         u32 __iomem *status_reg = &fotg210->regs->port_status;
1491         u32 temp, temp1, status;
1492         unsigned long flags;
1493         int retval = 0;
1494         unsigned selector;
1495
1496         /*
1497          * FIXME:  support SetPortFeatures USB_PORT_FEAT_INDICATOR.
1498          * HCS_INDICATOR may say we can change LEDs to off/amber/green.
1499          * (track current state ourselves) ... blink for diagnostics,
1500          * power, "this is the one", etc.  EHCI spec supports this.
1501          */
1502
1503         spin_lock_irqsave(&fotg210->lock, flags);
1504         switch (typeReq) {
1505         case ClearHubFeature:
1506                 switch (wValue) {
1507                 case C_HUB_LOCAL_POWER:
1508                 case C_HUB_OVER_CURRENT:
1509                         /* no hub-wide feature/status flags */
1510                         break;
1511                 default:
1512                         goto error;
1513                 }
1514                 break;
1515         case ClearPortFeature:
1516                 if (!wIndex || wIndex > ports)
1517                         goto error;
1518                 wIndex--;
1519                 temp = fotg210_readl(fotg210, status_reg);
1520                 temp &= ~PORT_RWC_BITS;
1521
1522                 /*
1523                  * Even if OWNER is set, so the port is owned by the
1524                  * companion controller, hub_wq needs to be able to clear
1525                  * the port-change status bits (especially
1526                  * USB_PORT_STAT_C_CONNECTION).
1527                  */
1528
1529                 switch (wValue) {
1530                 case USB_PORT_FEAT_ENABLE:
1531                         fotg210_writel(fotg210, temp & ~PORT_PE, status_reg);
1532                         break;
1533                 case USB_PORT_FEAT_C_ENABLE:
1534                         fotg210_writel(fotg210, temp | PORT_PEC, status_reg);
1535                         break;
1536                 case USB_PORT_FEAT_SUSPEND:
1537                         if (temp & PORT_RESET)
1538                                 goto error;
1539                         if (!(temp & PORT_SUSPEND))
1540                                 break;
1541                         if ((temp & PORT_PE) == 0)
1542                                 goto error;
1543
1544                         /* resume signaling for 20 msec */
1545                         fotg210_writel(fotg210, temp | PORT_RESUME, status_reg);
1546                         fotg210->reset_done[wIndex] = jiffies
1547                                         + msecs_to_jiffies(USB_RESUME_TIMEOUT);
1548                         break;
1549                 case USB_PORT_FEAT_C_SUSPEND:
1550                         clear_bit(wIndex, &fotg210->port_c_suspend);
1551                         break;
1552                 case USB_PORT_FEAT_C_CONNECTION:
1553                         fotg210_writel(fotg210, temp | PORT_CSC, status_reg);
1554                         break;
1555                 case USB_PORT_FEAT_C_OVER_CURRENT:
1556                         fotg210_writel(fotg210, temp | OTGISR_OVC,
1557                                         &fotg210->regs->otgisr);
1558                         break;
1559                 case USB_PORT_FEAT_C_RESET:
1560                         /* GetPortStatus clears reset */
1561                         break;
1562                 default:
1563                         goto error;
1564                 }
1565                 fotg210_readl(fotg210, &fotg210->regs->command);
1566                 break;
1567         case GetHubDescriptor:
1568                 fotg210_hub_descriptor(fotg210, (struct usb_hub_descriptor *)
1569                                 buf);
1570                 break;
1571         case GetHubStatus:
1572                 /* no hub-wide feature/status flags */
1573                 memset(buf, 0, 4);
1574                 /*cpu_to_le32s ((u32 *) buf); */
1575                 break;
1576         case GetPortStatus:
1577                 if (!wIndex || wIndex > ports)
1578                         goto error;
1579                 wIndex--;
1580                 status = 0;
1581                 temp = fotg210_readl(fotg210, status_reg);
1582
1583                 /* wPortChange bits */
1584                 if (temp & PORT_CSC)
1585                         status |= USB_PORT_STAT_C_CONNECTION << 16;
1586                 if (temp & PORT_PEC)
1587                         status |= USB_PORT_STAT_C_ENABLE << 16;
1588
1589                 temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1590                 if (temp1 & OTGISR_OVC)
1591                         status |= USB_PORT_STAT_C_OVERCURRENT << 16;
1592
1593                 /* whoever resumes must GetPortStatus to complete it!! */
1594                 if (temp & PORT_RESUME) {
1595
1596                         /* Remote Wakeup received? */
1597                         if (!fotg210->reset_done[wIndex]) {
1598                                 /* resume signaling for 20 msec */
1599                                 fotg210->reset_done[wIndex] = jiffies
1600                                                 + msecs_to_jiffies(20);
1601                                 /* check the port again */
1602                                 mod_timer(&fotg210_to_hcd(fotg210)->rh_timer,
1603                                                 fotg210->reset_done[wIndex]);
1604                         }
1605
1606                         /* resume completed? */
1607                         else if (time_after_eq(jiffies,
1608                                         fotg210->reset_done[wIndex])) {
1609                                 clear_bit(wIndex, &fotg210->suspended_ports);
1610                                 set_bit(wIndex, &fotg210->port_c_suspend);
1611                                 fotg210->reset_done[wIndex] = 0;
1612
1613                                 /* stop resume signaling */
1614                                 temp = fotg210_readl(fotg210, status_reg);
1615                                 fotg210_writel(fotg210, temp &
1616                                                 ~(PORT_RWC_BITS | PORT_RESUME),
1617                                                 status_reg);
1618                                 clear_bit(wIndex, &fotg210->resuming_ports);
1619                                 retval = handshake(fotg210, status_reg,
1620                                                 PORT_RESUME, 0, 2000);/* 2ms */
1621                                 if (retval != 0) {
1622                                         fotg210_err(fotg210,
1623                                                         "port %d resume error %d\n",
1624                                                         wIndex + 1, retval);
1625                                         goto error;
1626                                 }
1627                                 temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
1628                         }
1629                 }
1630
1631                 /* whoever resets must GetPortStatus to complete it!! */
1632                 if ((temp & PORT_RESET) && time_after_eq(jiffies,
1633                                 fotg210->reset_done[wIndex])) {
1634                         status |= USB_PORT_STAT_C_RESET << 16;
1635                         fotg210->reset_done[wIndex] = 0;
1636                         clear_bit(wIndex, &fotg210->resuming_ports);
1637
1638                         /* force reset to complete */
1639                         fotg210_writel(fotg210,
1640                                         temp & ~(PORT_RWC_BITS | PORT_RESET),
1641                                         status_reg);
1642                         /* REVISIT:  some hardware needs 550+ usec to clear
1643                          * this bit; seems too long to spin routinely...
1644                          */
1645                         retval = handshake(fotg210, status_reg,
1646                                         PORT_RESET, 0, 1000);
1647                         if (retval != 0) {
1648                                 fotg210_err(fotg210, "port %d reset error %d\n",
1649                                                 wIndex + 1, retval);
1650                                 goto error;
1651                         }
1652
1653                         /* see what we found out */
1654                         temp = check_reset_complete(fotg210, wIndex, status_reg,
1655                                         fotg210_readl(fotg210, status_reg));
1656
1657                         /* restart schedule */
1658                         fotg210->command |= CMD_RUN;
1659                         fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1660                 }
1661
1662                 if (!(temp & (PORT_RESUME|PORT_RESET))) {
1663                         fotg210->reset_done[wIndex] = 0;
1664                         clear_bit(wIndex, &fotg210->resuming_ports);
1665                 }
1666
1667                 /* transfer dedicated ports to the companion hc */
1668                 if ((temp & PORT_CONNECT) &&
1669                                 test_bit(wIndex, &fotg210->companion_ports)) {
1670                         temp &= ~PORT_RWC_BITS;
1671                         fotg210_writel(fotg210, temp, status_reg);
1672                         fotg210_dbg(fotg210, "port %d --> companion\n",
1673                                         wIndex + 1);
1674                         temp = fotg210_readl(fotg210, status_reg);
1675                 }
1676
1677                 /*
1678                  * Even if OWNER is set, there's no harm letting hub_wq
1679                  * see the wPortStatus values (they should all be 0 except
1680                  * for PORT_POWER anyway).
1681                  */
1682
1683                 if (temp & PORT_CONNECT) {
1684                         status |= USB_PORT_STAT_CONNECTION;
1685                         status |= fotg210_port_speed(fotg210, temp);
1686                 }
1687                 if (temp & PORT_PE)
1688                         status |= USB_PORT_STAT_ENABLE;
1689
1690                 /* maybe the port was unsuspended without our knowledge */
1691                 if (temp & (PORT_SUSPEND|PORT_RESUME)) {
1692                         status |= USB_PORT_STAT_SUSPEND;
1693                 } else if (test_bit(wIndex, &fotg210->suspended_ports)) {
1694                         clear_bit(wIndex, &fotg210->suspended_ports);
1695                         clear_bit(wIndex, &fotg210->resuming_ports);
1696                         fotg210->reset_done[wIndex] = 0;
1697                         if (temp & PORT_PE)
1698                                 set_bit(wIndex, &fotg210->port_c_suspend);
1699                 }
1700
1701                 temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1702                 if (temp1 & OTGISR_OVC)
1703                         status |= USB_PORT_STAT_OVERCURRENT;
1704                 if (temp & PORT_RESET)
1705                         status |= USB_PORT_STAT_RESET;
1706                 if (test_bit(wIndex, &fotg210->port_c_suspend))
1707                         status |= USB_PORT_STAT_C_SUSPEND << 16;
1708
1709                 if (status & ~0xffff)   /* only if wPortChange is interesting */
1710                         dbg_port(fotg210, "GetStatus", wIndex + 1, temp);
1711                 put_unaligned_le32(status, buf);
1712                 break;
1713         case SetHubFeature:
1714                 switch (wValue) {
1715                 case C_HUB_LOCAL_POWER:
1716                 case C_HUB_OVER_CURRENT:
1717                         /* no hub-wide feature/status flags */
1718                         break;
1719                 default:
1720                         goto error;
1721                 }
1722                 break;
1723         case SetPortFeature:
1724                 selector = wIndex >> 8;
1725                 wIndex &= 0xff;
1726
1727                 if (!wIndex || wIndex > ports)
1728                         goto error;
1729                 wIndex--;
1730                 temp = fotg210_readl(fotg210, status_reg);
1731                 temp &= ~PORT_RWC_BITS;
1732                 switch (wValue) {
1733                 case USB_PORT_FEAT_SUSPEND:
1734                         if ((temp & PORT_PE) == 0
1735                                         || (temp & PORT_RESET) != 0)
1736                                 goto error;
1737
1738                         /* After above check the port must be connected.
1739                          * Set appropriate bit thus could put phy into low power
1740                          * mode if we have hostpc feature
1741                          */
1742                         fotg210_writel(fotg210, temp | PORT_SUSPEND,
1743                                         status_reg);
1744                         set_bit(wIndex, &fotg210->suspended_ports);
1745                         break;
1746                 case USB_PORT_FEAT_RESET:
1747                         if (temp & PORT_RESUME)
1748                                 goto error;
1749                         /* line status bits may report this as low speed,
1750                          * which can be fine if this root hub has a
1751                          * transaction translator built in.
1752                          */
1753                         fotg210_dbg(fotg210, "port %d reset\n", wIndex + 1);
1754                         temp |= PORT_RESET;
1755                         temp &= ~PORT_PE;
1756
1757                         /*
1758                          * caller must wait, then call GetPortStatus
1759                          * usb 2.0 spec says 50 ms resets on root
1760                          */
1761                         fotg210->reset_done[wIndex] = jiffies
1762                                         + msecs_to_jiffies(50);
1763                         fotg210_writel(fotg210, temp, status_reg);
1764                         break;
1765
1766                 /* For downstream facing ports (these):  one hub port is put
1767                  * into test mode according to USB2 11.24.2.13, then the hub
1768                  * must be reset (which for root hub now means rmmod+modprobe,
1769                  * or else system reboot).  See EHCI 2.3.9 and 4.14 for info
1770                  * about the EHCI-specific stuff.
1771                  */
1772                 case USB_PORT_FEAT_TEST:
1773                         if (!selector || selector > 5)
1774                                 goto error;
1775                         spin_unlock_irqrestore(&fotg210->lock, flags);
1776                         fotg210_quiesce(fotg210);
1777                         spin_lock_irqsave(&fotg210->lock, flags);
1778
1779                         /* Put all enabled ports into suspend */
1780                         temp = fotg210_readl(fotg210, status_reg) &
1781                                 ~PORT_RWC_BITS;
1782                         if (temp & PORT_PE)
1783                                 fotg210_writel(fotg210, temp | PORT_SUSPEND,
1784                                                 status_reg);
1785
1786                         spin_unlock_irqrestore(&fotg210->lock, flags);
1787                         fotg210_halt(fotg210);
1788                         spin_lock_irqsave(&fotg210->lock, flags);
1789
1790                         temp = fotg210_readl(fotg210, status_reg);
1791                         temp |= selector << 16;
1792                         fotg210_writel(fotg210, temp, status_reg);
1793                         break;
1794
1795                 default:
1796                         goto error;
1797                 }
1798                 fotg210_readl(fotg210, &fotg210->regs->command);
1799                 break;
1800
1801         default:
1802 error:
1803                 /* "stall" on error */
1804                 retval = -EPIPE;
1805         }
1806         spin_unlock_irqrestore(&fotg210->lock, flags);
1807         return retval;
1808 }
1809
1810 static void __maybe_unused fotg210_relinquish_port(struct usb_hcd *hcd,
1811                 int portnum)
1812 {
1813         return;
1814 }
1815
1816 static int __maybe_unused fotg210_port_handed_over(struct usb_hcd *hcd,
1817                 int portnum)
1818 {
1819         return 0;
1820 }
1821
1822 /* There's basically three types of memory:
1823  *      - data used only by the HCD ... kmalloc is fine
1824  *      - async and periodic schedules, shared by HC and HCD ... these
1825  *        need to use dma_pool or dma_alloc_coherent
1826  *      - driver buffers, read/written by HC ... single shot DMA mapped
1827  *
1828  * There's also "register" data (e.g. PCI or SOC), which is memory mapped.
1829  * No memory seen by this driver is pageable.
1830  */
1831
1832 /* Allocate the key transfer structures from the previously allocated pool */
1833 static inline void fotg210_qtd_init(struct fotg210_hcd *fotg210,
1834                 struct fotg210_qtd *qtd, dma_addr_t dma)
1835 {
1836         memset(qtd, 0, sizeof(*qtd));
1837         qtd->qtd_dma = dma;
1838         qtd->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
1839         qtd->hw_next = FOTG210_LIST_END(fotg210);
1840         qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
1841         INIT_LIST_HEAD(&qtd->qtd_list);
1842 }
1843
1844 static struct fotg210_qtd *fotg210_qtd_alloc(struct fotg210_hcd *fotg210,
1845                 gfp_t flags)
1846 {
1847         struct fotg210_qtd *qtd;
1848         dma_addr_t dma;
1849
1850         qtd = dma_pool_alloc(fotg210->qtd_pool, flags, &dma);
1851         if (qtd != NULL)
1852                 fotg210_qtd_init(fotg210, qtd, dma);
1853
1854         return qtd;
1855 }
1856
1857 static inline void fotg210_qtd_free(struct fotg210_hcd *fotg210,
1858                 struct fotg210_qtd *qtd)
1859 {
1860         dma_pool_free(fotg210->qtd_pool, qtd, qtd->qtd_dma);
1861 }
1862
1863
1864 static void qh_destroy(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
1865 {
1866         /* clean qtds first, and know this is not linked */
1867         if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
1868                 fotg210_dbg(fotg210, "unused qh not empty!\n");
1869                 BUG();
1870         }
1871         if (qh->dummy)
1872                 fotg210_qtd_free(fotg210, qh->dummy);
1873         dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1874         kfree(qh);
1875 }
1876
1877 static struct fotg210_qh *fotg210_qh_alloc(struct fotg210_hcd *fotg210,
1878                 gfp_t flags)
1879 {
1880         struct fotg210_qh *qh;
1881         dma_addr_t dma;
1882
1883         qh = kzalloc(sizeof(*qh), GFP_ATOMIC);
1884         if (!qh)
1885                 goto done;
1886         qh->hw = (struct fotg210_qh_hw *)
1887                 dma_pool_alloc(fotg210->qh_pool, flags, &dma);
1888         if (!qh->hw)
1889                 goto fail;
1890         memset(qh->hw, 0, sizeof(*qh->hw));
1891         qh->qh_dma = dma;
1892         INIT_LIST_HEAD(&qh->qtd_list);
1893
1894         /* dummy td enables safe urb queuing */
1895         qh->dummy = fotg210_qtd_alloc(fotg210, flags);
1896         if (qh->dummy == NULL) {
1897                 fotg210_dbg(fotg210, "no dummy td\n");
1898                 goto fail1;
1899         }
1900 done:
1901         return qh;
1902 fail1:
1903         dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1904 fail:
1905         kfree(qh);
1906         return NULL;
1907 }
1908
1909 /* The queue heads and transfer descriptors are managed from pools tied
1910  * to each of the "per device" structures.
1911  * This is the initialisation and cleanup code.
1912  */
1913
1914 static void fotg210_mem_cleanup(struct fotg210_hcd *fotg210)
1915 {
1916         if (fotg210->async)
1917                 qh_destroy(fotg210, fotg210->async);
1918         fotg210->async = NULL;
1919
1920         if (fotg210->dummy)
1921                 qh_destroy(fotg210, fotg210->dummy);
1922         fotg210->dummy = NULL;
1923
1924         /* DMA consistent memory and pools */
1925         dma_pool_destroy(fotg210->qtd_pool);
1926         fotg210->qtd_pool = NULL;
1927
1928         dma_pool_destroy(fotg210->qh_pool);
1929         fotg210->qh_pool = NULL;
1930
1931         dma_pool_destroy(fotg210->itd_pool);
1932         fotg210->itd_pool = NULL;
1933
1934         if (fotg210->periodic)
1935                 dma_free_coherent(fotg210_to_hcd(fotg210)->self.controller,
1936                                 fotg210->periodic_size * sizeof(u32),
1937                                 fotg210->periodic, fotg210->periodic_dma);
1938         fotg210->periodic = NULL;
1939
1940         /* shadow periodic table */
1941         kfree(fotg210->pshadow);
1942         fotg210->pshadow = NULL;
1943 }
1944
1945 /* remember to add cleanup code (above) if you add anything here */
1946 static int fotg210_mem_init(struct fotg210_hcd *fotg210, gfp_t flags)
1947 {
1948         int i;
1949
1950         /* QTDs for control/bulk/intr transfers */
1951         fotg210->qtd_pool = dma_pool_create("fotg210_qtd",
1952                         fotg210_to_hcd(fotg210)->self.controller,
1953                         sizeof(struct fotg210_qtd),
1954                         32 /* byte alignment (for hw parts) */,
1955                         4096 /* can't cross 4K */);
1956         if (!fotg210->qtd_pool)
1957                 goto fail;
1958
1959         /* QHs for control/bulk/intr transfers */
1960         fotg210->qh_pool = dma_pool_create("fotg210_qh",
1961                         fotg210_to_hcd(fotg210)->self.controller,
1962                         sizeof(struct fotg210_qh_hw),
1963                         32 /* byte alignment (for hw parts) */,
1964                         4096 /* can't cross 4K */);
1965         if (!fotg210->qh_pool)
1966                 goto fail;
1967
1968         fotg210->async = fotg210_qh_alloc(fotg210, flags);
1969         if (!fotg210->async)
1970                 goto fail;
1971
1972         /* ITD for high speed ISO transfers */
1973         fotg210->itd_pool = dma_pool_create("fotg210_itd",
1974                         fotg210_to_hcd(fotg210)->self.controller,
1975                         sizeof(struct fotg210_itd),
1976                         64 /* byte alignment (for hw parts) */,
1977                         4096 /* can't cross 4K */);
1978         if (!fotg210->itd_pool)
1979                 goto fail;
1980
1981         /* Hardware periodic table */
1982         fotg210->periodic = (__le32 *)
1983                 dma_alloc_coherent(fotg210_to_hcd(fotg210)->self.controller,
1984                                 fotg210->periodic_size * sizeof(__le32),
1985                                 &fotg210->periodic_dma, 0);
1986         if (fotg210->periodic == NULL)
1987                 goto fail;
1988
1989         for (i = 0; i < fotg210->periodic_size; i++)
1990                 fotg210->periodic[i] = FOTG210_LIST_END(fotg210);
1991
1992         /* software shadow of hardware table */
1993         fotg210->pshadow = kcalloc(fotg210->periodic_size, sizeof(void *),
1994                         flags);
1995         if (fotg210->pshadow != NULL)
1996                 return 0;
1997
1998 fail:
1999         fotg210_dbg(fotg210, "couldn't init memory\n");
2000         fotg210_mem_cleanup(fotg210);
2001         return -ENOMEM;
2002 }
2003 /* EHCI hardware queue manipulation ... the core.  QH/QTD manipulation.
2004  *
2005  * Control, bulk, and interrupt traffic all use "qh" lists.  They list "qtd"
2006  * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
2007  * buffers needed for the larger number).  We use one QH per endpoint, queue
2008  * multiple urbs (all three types) per endpoint.  URBs may need several qtds.
2009  *
2010  * ISO traffic uses "ISO TD" (itd) records, and (along with
2011  * interrupts) needs careful scheduling.  Performance improvements can be
2012  * an ongoing challenge.  That's in "ehci-sched.c".
2013  *
2014  * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
2015  * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
2016  * (b) special fields in qh entries or (c) split iso entries.  TTs will
2017  * buffer low/full speed data so the host collects it at high speed.
2018  */
2019
2020 /* fill a qtd, returning how much of the buffer we were able to queue up */
2021 static int qtd_fill(struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd,
2022                 dma_addr_t buf, size_t len, int token, int maxpacket)
2023 {
2024         int i, count;
2025         u64 addr = buf;
2026
2027         /* one buffer entry per 4K ... first might be short or unaligned */
2028         qtd->hw_buf[0] = cpu_to_hc32(fotg210, (u32)addr);
2029         qtd->hw_buf_hi[0] = cpu_to_hc32(fotg210, (u32)(addr >> 32));
2030         count = 0x1000 - (buf & 0x0fff);        /* rest of that page */
2031         if (likely(len < count))                /* ... iff needed */
2032                 count = len;
2033         else {
2034                 buf +=  0x1000;
2035                 buf &= ~0x0fff;
2036
2037                 /* per-qtd limit: from 16K to 20K (best alignment) */
2038                 for (i = 1; count < len && i < 5; i++) {
2039                         addr = buf;
2040                         qtd->hw_buf[i] = cpu_to_hc32(fotg210, (u32)addr);
2041                         qtd->hw_buf_hi[i] = cpu_to_hc32(fotg210,
2042                                         (u32)(addr >> 32));
2043                         buf += 0x1000;
2044                         if ((count + 0x1000) < len)
2045                                 count += 0x1000;
2046                         else
2047                                 count = len;
2048                 }
2049
2050                 /* short packets may only terminate transfers */
2051                 if (count != len)
2052                         count -= (count % maxpacket);
2053         }
2054         qtd->hw_token = cpu_to_hc32(fotg210, (count << 16) | token);
2055         qtd->length = count;
2056
2057         return count;
2058 }
2059
2060 static inline void qh_update(struct fotg210_hcd *fotg210,
2061                 struct fotg210_qh *qh, struct fotg210_qtd *qtd)
2062 {
2063         struct fotg210_qh_hw *hw = qh->hw;
2064
2065         /* writes to an active overlay are unsafe */
2066         BUG_ON(qh->qh_state != QH_STATE_IDLE);
2067
2068         hw->hw_qtd_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2069         hw->hw_alt_next = FOTG210_LIST_END(fotg210);
2070
2071         /* Except for control endpoints, we make hardware maintain data
2072          * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
2073          * and set the pseudo-toggle in udev. Only usb_clear_halt() will
2074          * ever clear it.
2075          */
2076         if (!(hw->hw_info1 & cpu_to_hc32(fotg210, QH_TOGGLE_CTL))) {
2077                 unsigned is_out, epnum;
2078
2079                 is_out = qh->is_out;
2080                 epnum = (hc32_to_cpup(fotg210, &hw->hw_info1) >> 8) & 0x0f;
2081                 if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
2082                         hw->hw_token &= ~cpu_to_hc32(fotg210, QTD_TOGGLE);
2083                         usb_settoggle(qh->dev, epnum, is_out, 1);
2084                 }
2085         }
2086
2087         hw->hw_token &= cpu_to_hc32(fotg210, QTD_TOGGLE | QTD_STS_PING);
2088 }
2089
2090 /* if it weren't for a common silicon quirk (writing the dummy into the qh
2091  * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
2092  * recovery (including urb dequeue) would need software changes to a QH...
2093  */
2094 static void qh_refresh(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2095 {
2096         struct fotg210_qtd *qtd;
2097
2098         if (list_empty(&qh->qtd_list))
2099                 qtd = qh->dummy;
2100         else {
2101                 qtd = list_entry(qh->qtd_list.next,
2102                                 struct fotg210_qtd, qtd_list);
2103                 /*
2104                  * first qtd may already be partially processed.
2105                  * If we come here during unlink, the QH overlay region
2106                  * might have reference to the just unlinked qtd. The
2107                  * qtd is updated in qh_completions(). Update the QH
2108                  * overlay here.
2109                  */
2110                 if (cpu_to_hc32(fotg210, qtd->qtd_dma) == qh->hw->hw_current) {
2111                         qh->hw->hw_qtd_next = qtd->hw_next;
2112                         qtd = NULL;
2113                 }
2114         }
2115
2116         if (qtd)
2117                 qh_update(fotg210, qh, qtd);
2118 }
2119
2120 static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2121
2122 static void fotg210_clear_tt_buffer_complete(struct usb_hcd *hcd,
2123                 struct usb_host_endpoint *ep)
2124 {
2125         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
2126         struct fotg210_qh *qh = ep->hcpriv;
2127         unsigned long flags;
2128
2129         spin_lock_irqsave(&fotg210->lock, flags);
2130         qh->clearing_tt = 0;
2131         if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
2132                         && fotg210->rh_state == FOTG210_RH_RUNNING)
2133                 qh_link_async(fotg210, qh);
2134         spin_unlock_irqrestore(&fotg210->lock, flags);
2135 }
2136
2137 static void fotg210_clear_tt_buffer(struct fotg210_hcd *fotg210,
2138                 struct fotg210_qh *qh, struct urb *urb, u32 token)
2139 {
2140
2141         /* If an async split transaction gets an error or is unlinked,
2142          * the TT buffer may be left in an indeterminate state.  We
2143          * have to clear the TT buffer.
2144          *
2145          * Note: this routine is never called for Isochronous transfers.
2146          */
2147         if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
2148                 struct usb_device *tt = urb->dev->tt->hub;
2149
2150                 dev_dbg(&tt->dev,
2151                                 "clear tt buffer port %d, a%d ep%d t%08x\n",
2152                                 urb->dev->ttport, urb->dev->devnum,
2153                                 usb_pipeendpoint(urb->pipe), token);
2154
2155                 if (urb->dev->tt->hub !=
2156                                 fotg210_to_hcd(fotg210)->self.root_hub) {
2157                         if (usb_hub_clear_tt_buffer(urb) == 0)
2158                                 qh->clearing_tt = 1;
2159                 }
2160         }
2161 }
2162
2163 static int qtd_copy_status(struct fotg210_hcd *fotg210, struct urb *urb,
2164                 size_t length, u32 token)
2165 {
2166         int status = -EINPROGRESS;
2167
2168         /* count IN/OUT bytes, not SETUP (even short packets) */
2169         if (likely(QTD_PID(token) != 2))
2170                 urb->actual_length += length - QTD_LENGTH(token);
2171
2172         /* don't modify error codes */
2173         if (unlikely(urb->unlinked))
2174                 return status;
2175
2176         /* force cleanup after short read; not always an error */
2177         if (unlikely(IS_SHORT_READ(token)))
2178                 status = -EREMOTEIO;
2179
2180         /* serious "can't proceed" faults reported by the hardware */
2181         if (token & QTD_STS_HALT) {
2182                 if (token & QTD_STS_BABBLE) {
2183                         /* FIXME "must" disable babbling device's port too */
2184                         status = -EOVERFLOW;
2185                 /* CERR nonzero + halt --> stall */
2186                 } else if (QTD_CERR(token)) {
2187                         status = -EPIPE;
2188
2189                 /* In theory, more than one of the following bits can be set
2190                  * since they are sticky and the transaction is retried.
2191                  * Which to test first is rather arbitrary.
2192                  */
2193                 } else if (token & QTD_STS_MMF) {
2194                         /* fs/ls interrupt xfer missed the complete-split */
2195                         status = -EPROTO;
2196                 } else if (token & QTD_STS_DBE) {
2197                         status = (QTD_PID(token) == 1) /* IN ? */
2198                                 ? -ENOSR  /* hc couldn't read data */
2199                                 : -ECOMM; /* hc couldn't write data */
2200                 } else if (token & QTD_STS_XACT) {
2201                         /* timeout, bad CRC, wrong PID, etc */
2202                         fotg210_dbg(fotg210, "devpath %s ep%d%s 3strikes\n",
2203                                         urb->dev->devpath,
2204                                         usb_pipeendpoint(urb->pipe),
2205                                         usb_pipein(urb->pipe) ? "in" : "out");
2206                         status = -EPROTO;
2207                 } else {        /* unknown */
2208                         status = -EPROTO;
2209                 }
2210
2211                 fotg210_dbg(fotg210,
2212                                 "dev%d ep%d%s qtd token %08x --> status %d\n",
2213                                 usb_pipedevice(urb->pipe),
2214                                 usb_pipeendpoint(urb->pipe),
2215                                 usb_pipein(urb->pipe) ? "in" : "out",
2216                                 token, status);
2217         }
2218
2219         return status;
2220 }
2221
2222 static void fotg210_urb_done(struct fotg210_hcd *fotg210, struct urb *urb,
2223                 int status)
2224 __releases(fotg210->lock)
2225 __acquires(fotg210->lock)
2226 {
2227         if (likely(urb->hcpriv != NULL)) {
2228                 struct fotg210_qh *qh = (struct fotg210_qh *) urb->hcpriv;
2229
2230                 /* S-mask in a QH means it's an interrupt urb */
2231                 if ((qh->hw->hw_info2 & cpu_to_hc32(fotg210, QH_SMASK)) != 0) {
2232
2233                         /* ... update hc-wide periodic stats (for usbfs) */
2234                         fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs--;
2235                 }
2236         }
2237
2238         if (unlikely(urb->unlinked)) {
2239                 COUNT(fotg210->stats.unlink);
2240         } else {
2241                 /* report non-error and short read status as zero */
2242                 if (status == -EINPROGRESS || status == -EREMOTEIO)
2243                         status = 0;
2244                 COUNT(fotg210->stats.complete);
2245         }
2246
2247 #ifdef FOTG210_URB_TRACE
2248         fotg210_dbg(fotg210,
2249                         "%s %s urb %p ep%d%s status %d len %d/%d\n",
2250                         __func__, urb->dev->devpath, urb,
2251                         usb_pipeendpoint(urb->pipe),
2252                         usb_pipein(urb->pipe) ? "in" : "out",
2253                         status,
2254                         urb->actual_length, urb->transfer_buffer_length);
2255 #endif
2256
2257         /* complete() can reenter this HCD */
2258         usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
2259         spin_unlock(&fotg210->lock);
2260         usb_hcd_giveback_urb(fotg210_to_hcd(fotg210), urb, status);
2261         spin_lock(&fotg210->lock);
2262 }
2263
2264 static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2265
2266 /* Process and free completed qtds for a qh, returning URBs to drivers.
2267  * Chases up to qh->hw_current.  Returns number of completions called,
2268  * indicating how much "real" work we did.
2269  */
2270 static unsigned qh_completions(struct fotg210_hcd *fotg210,
2271                 struct fotg210_qh *qh)
2272 {
2273         struct fotg210_qtd *last, *end = qh->dummy;
2274         struct list_head *entry, *tmp;
2275         int last_status;
2276         int stopped;
2277         unsigned count = 0;
2278         u8 state;
2279         struct fotg210_qh_hw *hw = qh->hw;
2280
2281         if (unlikely(list_empty(&qh->qtd_list)))
2282                 return count;
2283
2284         /* completions (or tasks on other cpus) must never clobber HALT
2285          * till we've gone through and cleaned everything up, even when
2286          * they add urbs to this qh's queue or mark them for unlinking.
2287          *
2288          * NOTE:  unlinking expects to be done in queue order.
2289          *
2290          * It's a bug for qh->qh_state to be anything other than
2291          * QH_STATE_IDLE, unless our caller is scan_async() or
2292          * scan_intr().
2293          */
2294         state = qh->qh_state;
2295         qh->qh_state = QH_STATE_COMPLETING;
2296         stopped = (state == QH_STATE_IDLE);
2297
2298 rescan:
2299         last = NULL;
2300         last_status = -EINPROGRESS;
2301         qh->needs_rescan = 0;
2302
2303         /* remove de-activated QTDs from front of queue.
2304          * after faults (including short reads), cleanup this urb
2305          * then let the queue advance.
2306          * if queue is stopped, handles unlinks.
2307          */
2308         list_for_each_safe(entry, tmp, &qh->qtd_list) {
2309                 struct fotg210_qtd *qtd;
2310                 struct urb *urb;
2311                 u32 token = 0;
2312
2313                 qtd = list_entry(entry, struct fotg210_qtd, qtd_list);
2314                 urb = qtd->urb;
2315
2316                 /* clean up any state from previous QTD ...*/
2317                 if (last) {
2318                         if (likely(last->urb != urb)) {
2319                                 fotg210_urb_done(fotg210, last->urb,
2320                                                 last_status);
2321                                 count++;
2322                                 last_status = -EINPROGRESS;
2323                         }
2324                         fotg210_qtd_free(fotg210, last);
2325                         last = NULL;
2326                 }
2327
2328                 /* ignore urbs submitted during completions we reported */
2329                 if (qtd == end)
2330                         break;
2331
2332                 /* hardware copies qtd out of qh overlay */
2333                 rmb();
2334                 token = hc32_to_cpu(fotg210, qtd->hw_token);
2335
2336                 /* always clean up qtds the hc de-activated */
2337 retry_xacterr:
2338                 if ((token & QTD_STS_ACTIVE) == 0) {
2339
2340                         /* Report Data Buffer Error: non-fatal but useful */
2341                         if (token & QTD_STS_DBE)
2342                                 fotg210_dbg(fotg210,
2343                                         "detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
2344                                         urb, usb_endpoint_num(&urb->ep->desc),
2345                                         usb_endpoint_dir_in(&urb->ep->desc)
2346                                                 ? "in" : "out",
2347                                         urb->transfer_buffer_length, qtd, qh);
2348
2349                         /* on STALL, error, and short reads this urb must
2350                          * complete and all its qtds must be recycled.
2351                          */
2352                         if ((token & QTD_STS_HALT) != 0) {
2353
2354                                 /* retry transaction errors until we
2355                                  * reach the software xacterr limit
2356                                  */
2357                                 if ((token & QTD_STS_XACT) &&
2358                                                 QTD_CERR(token) == 0 &&
2359                                                 ++qh->xacterrs < QH_XACTERR_MAX &&
2360                                                 !urb->unlinked) {
2361                                         fotg210_dbg(fotg210,
2362                                                 "detected XactErr len %zu/%zu retry %d\n",
2363                                                 qtd->length - QTD_LENGTH(token),
2364                                                 qtd->length,
2365                                                 qh->xacterrs);
2366
2367                                         /* reset the token in the qtd and the
2368                                          * qh overlay (which still contains
2369                                          * the qtd) so that we pick up from
2370                                          * where we left off
2371                                          */
2372                                         token &= ~QTD_STS_HALT;
2373                                         token |= QTD_STS_ACTIVE |
2374                                                  (FOTG210_TUNE_CERR << 10);
2375                                         qtd->hw_token = cpu_to_hc32(fotg210,
2376                                                         token);
2377                                         wmb();
2378                                         hw->hw_token = cpu_to_hc32(fotg210,
2379                                                         token);
2380                                         goto retry_xacterr;
2381                                 }
2382                                 stopped = 1;
2383
2384                         /* magic dummy for some short reads; qh won't advance.
2385                          * that silicon quirk can kick in with this dummy too.
2386                          *
2387                          * other short reads won't stop the queue, including
2388                          * control transfers (status stage handles that) or
2389                          * most other single-qtd reads ... the queue stops if
2390                          * URB_SHORT_NOT_OK was set so the driver submitting
2391                          * the urbs could clean it up.
2392                          */
2393                         } else if (IS_SHORT_READ(token) &&
2394                                         !(qtd->hw_alt_next &
2395                                         FOTG210_LIST_END(fotg210))) {
2396                                 stopped = 1;
2397                         }
2398
2399                 /* stop scanning when we reach qtds the hc is using */
2400                 } else if (likely(!stopped
2401                                 && fotg210->rh_state >= FOTG210_RH_RUNNING)) {
2402                         break;
2403
2404                 /* scan the whole queue for unlinks whenever it stops */
2405                 } else {
2406                         stopped = 1;
2407
2408                         /* cancel everything if we halt, suspend, etc */
2409                         if (fotg210->rh_state < FOTG210_RH_RUNNING)
2410                                 last_status = -ESHUTDOWN;
2411
2412                         /* this qtd is active; skip it unless a previous qtd
2413                          * for its urb faulted, or its urb was canceled.
2414                          */
2415                         else if (last_status == -EINPROGRESS && !urb->unlinked)
2416                                 continue;
2417
2418                         /* qh unlinked; token in overlay may be most current */
2419                         if (state == QH_STATE_IDLE &&
2420                                         cpu_to_hc32(fotg210, qtd->qtd_dma)
2421                                         == hw->hw_current) {
2422                                 token = hc32_to_cpu(fotg210, hw->hw_token);
2423
2424                                 /* An unlink may leave an incomplete
2425                                  * async transaction in the TT buffer.
2426                                  * We have to clear it.
2427                                  */
2428                                 fotg210_clear_tt_buffer(fotg210, qh, urb,
2429                                                 token);
2430                         }
2431                 }
2432
2433                 /* unless we already know the urb's status, collect qtd status
2434                  * and update count of bytes transferred.  in common short read
2435                  * cases with only one data qtd (including control transfers),
2436                  * queue processing won't halt.  but with two or more qtds (for
2437                  * example, with a 32 KB transfer), when the first qtd gets a
2438                  * short read the second must be removed by hand.
2439                  */
2440                 if (last_status == -EINPROGRESS) {
2441                         last_status = qtd_copy_status(fotg210, urb,
2442                                         qtd->length, token);
2443                         if (last_status == -EREMOTEIO &&
2444                                         (qtd->hw_alt_next &
2445                                         FOTG210_LIST_END(fotg210)))
2446                                 last_status = -EINPROGRESS;
2447
2448                         /* As part of low/full-speed endpoint-halt processing
2449                          * we must clear the TT buffer (11.17.5).
2450                          */
2451                         if (unlikely(last_status != -EINPROGRESS &&
2452                                         last_status != -EREMOTEIO)) {
2453                                 /* The TT's in some hubs malfunction when they
2454                                  * receive this request following a STALL (they
2455                                  * stop sending isochronous packets).  Since a
2456                                  * STALL can't leave the TT buffer in a busy
2457                                  * state (if you believe Figures 11-48 - 11-51
2458                                  * in the USB 2.0 spec), we won't clear the TT
2459                                  * buffer in this case.  Strictly speaking this
2460                                  * is a violation of the spec.
2461                                  */
2462                                 if (last_status != -EPIPE)
2463                                         fotg210_clear_tt_buffer(fotg210, qh,
2464                                                         urb, token);
2465                         }
2466                 }
2467
2468                 /* if we're removing something not at the queue head,
2469                  * patch the hardware queue pointer.
2470                  */
2471                 if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
2472                         last = list_entry(qtd->qtd_list.prev,
2473                                         struct fotg210_qtd, qtd_list);
2474                         last->hw_next = qtd->hw_next;
2475                 }
2476
2477                 /* remove qtd; it's recycled after possible urb completion */
2478                 list_del(&qtd->qtd_list);
2479                 last = qtd;
2480
2481                 /* reinit the xacterr counter for the next qtd */
2482                 qh->xacterrs = 0;
2483         }
2484
2485         /* last urb's completion might still need calling */
2486         if (likely(last != NULL)) {
2487                 fotg210_urb_done(fotg210, last->urb, last_status);
2488                 count++;
2489                 fotg210_qtd_free(fotg210, last);
2490         }
2491
2492         /* Do we need to rescan for URBs dequeued during a giveback? */
2493         if (unlikely(qh->needs_rescan)) {
2494                 /* If the QH is already unlinked, do the rescan now. */
2495                 if (state == QH_STATE_IDLE)
2496                         goto rescan;
2497
2498                 /* Otherwise we have to wait until the QH is fully unlinked.
2499                  * Our caller will start an unlink if qh->needs_rescan is
2500                  * set.  But if an unlink has already started, nothing needs
2501                  * to be done.
2502                  */
2503                 if (state != QH_STATE_LINKED)
2504                         qh->needs_rescan = 0;
2505         }
2506
2507         /* restore original state; caller must unlink or relink */
2508         qh->qh_state = state;
2509
2510         /* be sure the hardware's done with the qh before refreshing
2511          * it after fault cleanup, or recovering from silicon wrongly
2512          * overlaying the dummy qtd (which reduces DMA chatter).
2513          */
2514         if (stopped != 0 || hw->hw_qtd_next == FOTG210_LIST_END(fotg210)) {
2515                 switch (state) {
2516                 case QH_STATE_IDLE:
2517                         qh_refresh(fotg210, qh);
2518                         break;
2519                 case QH_STATE_LINKED:
2520                         /* We won't refresh a QH that's linked (after the HC
2521                          * stopped the queue).  That avoids a race:
2522                          *  - HC reads first part of QH;
2523                          *  - CPU updates that first part and the token;
2524                          *  - HC reads rest of that QH, including token
2525                          * Result:  HC gets an inconsistent image, and then
2526                          * DMAs to/from the wrong memory (corrupting it).
2527                          *
2528                          * That should be rare for interrupt transfers,
2529                          * except maybe high bandwidth ...
2530                          */
2531
2532                         /* Tell the caller to start an unlink */
2533                         qh->needs_rescan = 1;
2534                         break;
2535                 /* otherwise, unlink already started */
2536                 }
2537         }
2538
2539         return count;
2540 }
2541
2542 /* high bandwidth multiplier, as encoded in highspeed endpoint descriptors */
2543 #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
2544 /* ... and packet size, for any kind of endpoint descriptor */
2545 #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
2546
2547 /* reverse of qh_urb_transaction:  free a list of TDs.
2548  * used for cleanup after errors, before HC sees an URB's TDs.
2549  */
2550 static void qtd_list_free(struct fotg210_hcd *fotg210, struct urb *urb,
2551                 struct list_head *qtd_list)
2552 {
2553         struct list_head *entry, *temp;
2554
2555         list_for_each_safe(entry, temp, qtd_list) {
2556                 struct fotg210_qtd *qtd;
2557
2558                 qtd = list_entry(entry, struct fotg210_qtd, qtd_list);
2559                 list_del(&qtd->qtd_list);
2560                 fotg210_qtd_free(fotg210, qtd);
2561         }
2562 }
2563
2564 /* create a list of filled qtds for this URB; won't link into qh.
2565  */
2566 static struct list_head *qh_urb_transaction(struct fotg210_hcd *fotg210,
2567                 struct urb *urb, struct list_head *head, gfp_t flags)
2568 {
2569         struct fotg210_qtd *qtd, *qtd_prev;
2570         dma_addr_t buf;
2571         int len, this_sg_len, maxpacket;
2572         int is_input;
2573         u32 token;
2574         int i;
2575         struct scatterlist *sg;
2576
2577         /*
2578          * URBs map to sequences of QTDs:  one logical transaction
2579          */
2580         qtd = fotg210_qtd_alloc(fotg210, flags);
2581         if (unlikely(!qtd))
2582                 return NULL;
2583         list_add_tail(&qtd->qtd_list, head);
2584         qtd->urb = urb;
2585
2586         token = QTD_STS_ACTIVE;
2587         token |= (FOTG210_TUNE_CERR << 10);
2588         /* for split transactions, SplitXState initialized to zero */
2589
2590         len = urb->transfer_buffer_length;
2591         is_input = usb_pipein(urb->pipe);
2592         if (usb_pipecontrol(urb->pipe)) {
2593                 /* SETUP pid */
2594                 qtd_fill(fotg210, qtd, urb->setup_dma,
2595                                 sizeof(struct usb_ctrlrequest),
2596                                 token | (2 /* "setup" */ << 8), 8);
2597
2598                 /* ... and always at least one more pid */
2599                 token ^= QTD_TOGGLE;
2600                 qtd_prev = qtd;
2601                 qtd = fotg210_qtd_alloc(fotg210, flags);
2602                 if (unlikely(!qtd))
2603                         goto cleanup;
2604                 qtd->urb = urb;
2605                 qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2606                 list_add_tail(&qtd->qtd_list, head);
2607
2608                 /* for zero length DATA stages, STATUS is always IN */
2609                 if (len == 0)
2610                         token |= (1 /* "in" */ << 8);
2611         }
2612
2613         /*
2614          * data transfer stage:  buffer setup
2615          */
2616         i = urb->num_mapped_sgs;
2617         if (len > 0 && i > 0) {
2618                 sg = urb->sg;
2619                 buf = sg_dma_address(sg);
2620
2621                 /* urb->transfer_buffer_length may be smaller than the
2622                  * size of the scatterlist (or vice versa)
2623                  */
2624                 this_sg_len = min_t(int, sg_dma_len(sg), len);
2625         } else {
2626                 sg = NULL;
2627                 buf = urb->transfer_dma;
2628                 this_sg_len = len;
2629         }
2630
2631         if (is_input)
2632                 token |= (1 /* "in" */ << 8);
2633         /* else it's already initted to "out" pid (0 << 8) */
2634
2635         maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
2636
2637         /*
2638          * buffer gets wrapped in one or more qtds;
2639          * last one may be "short" (including zero len)
2640          * and may serve as a control status ack
2641          */
2642         for (;;) {
2643                 int this_qtd_len;
2644
2645                 this_qtd_len = qtd_fill(fotg210, qtd, buf, this_sg_len, token,
2646                                 maxpacket);
2647                 this_sg_len -= this_qtd_len;
2648                 len -= this_qtd_len;
2649                 buf += this_qtd_len;
2650
2651                 /*
2652                  * short reads advance to a "magic" dummy instead of the next
2653                  * qtd ... that forces the queue to stop, for manual cleanup.
2654                  * (this will usually be overridden later.)
2655                  */
2656                 if (is_input)
2657                         qtd->hw_alt_next = fotg210->async->hw->hw_alt_next;
2658
2659                 /* qh makes control packets use qtd toggle; maybe switch it */
2660                 if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
2661                         token ^= QTD_TOGGLE;
2662
2663                 if (likely(this_sg_len <= 0)) {
2664                         if (--i <= 0 || len <= 0)
2665                                 break;
2666                         sg = sg_next(sg);
2667                         buf = sg_dma_address(sg);
2668                         this_sg_len = min_t(int, sg_dma_len(sg), len);
2669                 }
2670
2671                 qtd_prev = qtd;
2672                 qtd = fotg210_qtd_alloc(fotg210, flags);
2673                 if (unlikely(!qtd))
2674                         goto cleanup;
2675                 qtd->urb = urb;
2676                 qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2677                 list_add_tail(&qtd->qtd_list, head);
2678         }
2679
2680         /*
2681          * unless the caller requires manual cleanup after short reads,
2682          * have the alt_next mechanism keep the queue running after the
2683          * last data qtd (the only one, for control and most other cases).
2684          */
2685         if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0 ||
2686                         usb_pipecontrol(urb->pipe)))
2687                 qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
2688
2689         /*
2690          * control requests may need a terminating data "status" ack;
2691          * other OUT ones may need a terminating short packet
2692          * (zero length).
2693          */
2694         if (likely(urb->transfer_buffer_length != 0)) {
2695                 int one_more = 0;
2696
2697                 if (usb_pipecontrol(urb->pipe)) {
2698                         one_more = 1;
2699                         token ^= 0x0100;        /* "in" <--> "out"  */
2700                         token |= QTD_TOGGLE;    /* force DATA1 */
2701                 } else if (usb_pipeout(urb->pipe)
2702                                 && (urb->transfer_flags & URB_ZERO_PACKET)
2703                                 && !(urb->transfer_buffer_length % maxpacket)) {
2704                         one_more = 1;
2705                 }
2706                 if (one_more) {
2707                         qtd_prev = qtd;
2708                         qtd = fotg210_qtd_alloc(fotg210, flags);
2709                         if (unlikely(!qtd))
2710                                 goto cleanup;
2711                         qtd->urb = urb;
2712                         qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2713                         list_add_tail(&qtd->qtd_list, head);
2714
2715                         /* never any data in such packets */
2716                         qtd_fill(fotg210, qtd, 0, 0, token, 0);
2717                 }
2718         }
2719
2720         /* by default, enable interrupt on urb completion */
2721         if (likely(!(urb->transfer_flags & URB_NO_INTERRUPT)))
2722                 qtd->hw_token |= cpu_to_hc32(fotg210, QTD_IOC);
2723         return head;
2724
2725 cleanup:
2726         qtd_list_free(fotg210, urb, head);
2727         return NULL;
2728 }
2729
2730 /* Would be best to create all qh's from config descriptors,
2731  * when each interface/altsetting is established.  Unlink
2732  * any previous qh and cancel its urbs first; endpoints are
2733  * implicitly reset then (data toggle too).
2734  * That'd mean updating how usbcore talks to HCDs. (2.7?)
2735 */
2736
2737
2738 /* Each QH holds a qtd list; a QH is used for everything except iso.
2739  *
2740  * For interrupt urbs, the scheduler must set the microframe scheduling
2741  * mask(s) each time the QH gets scheduled.  For highspeed, that's
2742  * just one microframe in the s-mask.  For split interrupt transactions
2743  * there are additional complications: c-mask, maybe FSTNs.
2744  */
2745 static struct fotg210_qh *qh_make(struct fotg210_hcd *fotg210, struct urb *urb,
2746                 gfp_t flags)
2747 {
2748         struct fotg210_qh *qh = fotg210_qh_alloc(fotg210, flags);
2749         u32 info1 = 0, info2 = 0;
2750         int is_input, type;
2751         int maxp = 0;
2752         struct usb_tt *tt = urb->dev->tt;
2753         struct fotg210_qh_hw *hw;
2754
2755         if (!qh)
2756                 return qh;
2757
2758         /*
2759          * init endpoint/device data for this QH
2760          */
2761         info1 |= usb_pipeendpoint(urb->pipe) << 8;
2762         info1 |= usb_pipedevice(urb->pipe) << 0;
2763
2764         is_input = usb_pipein(urb->pipe);
2765         type = usb_pipetype(urb->pipe);
2766         maxp = usb_maxpacket(urb->dev, urb->pipe, !is_input);
2767
2768         /* 1024 byte maxpacket is a hardware ceiling.  High bandwidth
2769          * acts like up to 3KB, but is built from smaller packets.
2770          */
2771         if (max_packet(maxp) > 1024) {
2772                 fotg210_dbg(fotg210, "bogus qh maxpacket %d\n",
2773                                 max_packet(maxp));
2774                 goto done;
2775         }
2776
2777         /* Compute interrupt scheduling parameters just once, and save.
2778          * - allowing for high bandwidth, how many nsec/uframe are used?
2779          * - split transactions need a second CSPLIT uframe; same question
2780          * - splits also need a schedule gap (for full/low speed I/O)
2781          * - qh has a polling interval
2782          *
2783          * For control/bulk requests, the HC or TT handles these.
2784          */
2785         if (type == PIPE_INTERRUPT) {
2786                 qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
2787                                 is_input, 0,
2788                                 hb_mult(maxp) * max_packet(maxp)));
2789                 qh->start = NO_FRAME;
2790
2791                 if (urb->dev->speed == USB_SPEED_HIGH) {
2792                         qh->c_usecs = 0;
2793                         qh->gap_uf = 0;
2794
2795                         qh->period = urb->interval >> 3;
2796                         if (qh->period == 0 && urb->interval != 1) {
2797                                 /* NOTE interval 2 or 4 uframes could work.
2798                                  * But interval 1 scheduling is simpler, and
2799                                  * includes high bandwidth.
2800                                  */
2801                                 urb->interval = 1;
2802                         } else if (qh->period > fotg210->periodic_size) {
2803                                 qh->period = fotg210->periodic_size;
2804                                 urb->interval = qh->period << 3;
2805                         }
2806                 } else {
2807                         int think_time;
2808
2809                         /* gap is f(FS/LS transfer times) */
2810                         qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
2811                                         is_input, 0, maxp) / (125 * 1000);
2812
2813                         /* FIXME this just approximates SPLIT/CSPLIT times */
2814                         if (is_input) {         /* SPLIT, gap, CSPLIT+DATA */
2815                                 qh->c_usecs = qh->usecs + HS_USECS(0);
2816                                 qh->usecs = HS_USECS(1);
2817                         } else {                /* SPLIT+DATA, gap, CSPLIT */
2818                                 qh->usecs += HS_USECS(1);
2819                                 qh->c_usecs = HS_USECS(0);
2820                         }
2821
2822                         think_time = tt ? tt->think_time : 0;
2823                         qh->tt_usecs = NS_TO_US(think_time +
2824                                         usb_calc_bus_time(urb->dev->speed,
2825                                         is_input, 0, max_packet(maxp)));
2826                         qh->period = urb->interval;
2827                         if (qh->period > fotg210->periodic_size) {
2828                                 qh->period = fotg210->periodic_size;
2829                                 urb->interval = qh->period;
2830                         }
2831                 }
2832         }
2833
2834         /* support for tt scheduling, and access to toggles */
2835         qh->dev = urb->dev;
2836
2837         /* using TT? */
2838         switch (urb->dev->speed) {
2839         case USB_SPEED_LOW:
2840                 info1 |= QH_LOW_SPEED;
2841                 /* FALL THROUGH */
2842
2843         case USB_SPEED_FULL:
2844                 /* EPS 0 means "full" */
2845                 if (type != PIPE_INTERRUPT)
2846                         info1 |= (FOTG210_TUNE_RL_TT << 28);
2847                 if (type == PIPE_CONTROL) {
2848                         info1 |= QH_CONTROL_EP;         /* for TT */
2849                         info1 |= QH_TOGGLE_CTL;         /* toggle from qtd */
2850                 }
2851                 info1 |= maxp << 16;
2852
2853                 info2 |= (FOTG210_TUNE_MULT_TT << 30);
2854
2855                 /* Some Freescale processors have an erratum in which the
2856                  * port number in the queue head was 0..N-1 instead of 1..N.
2857                  */
2858                 if (fotg210_has_fsl_portno_bug(fotg210))
2859                         info2 |= (urb->dev->ttport-1) << 23;
2860                 else
2861                         info2 |= urb->dev->ttport << 23;
2862
2863                 /* set the address of the TT; for TDI's integrated
2864                  * root hub tt, leave it zeroed.
2865                  */
2866                 if (tt && tt->hub != fotg210_to_hcd(fotg210)->self.root_hub)
2867                         info2 |= tt->hub->devnum << 16;
2868
2869                 /* NOTE:  if (PIPE_INTERRUPT) { scheduler sets c-mask } */
2870
2871                 break;
2872
2873         case USB_SPEED_HIGH:            /* no TT involved */
2874                 info1 |= QH_HIGH_SPEED;
2875                 if (type == PIPE_CONTROL) {
2876                         info1 |= (FOTG210_TUNE_RL_HS << 28);
2877                         info1 |= 64 << 16;      /* usb2 fixed maxpacket */
2878                         info1 |= QH_TOGGLE_CTL; /* toggle from qtd */
2879                         info2 |= (FOTG210_TUNE_MULT_HS << 30);
2880                 } else if (type == PIPE_BULK) {
2881                         info1 |= (FOTG210_TUNE_RL_HS << 28);
2882                         /* The USB spec says that high speed bulk endpoints
2883                          * always use 512 byte maxpacket.  But some device
2884                          * vendors decided to ignore that, and MSFT is happy
2885                          * to help them do so.  So now people expect to use
2886                          * such nonconformant devices with Linux too; sigh.
2887                          */
2888                         info1 |= max_packet(maxp) << 16;
2889                         info2 |= (FOTG210_TUNE_MULT_HS << 30);
2890                 } else {                /* PIPE_INTERRUPT */
2891                         info1 |= max_packet(maxp) << 16;
2892                         info2 |= hb_mult(maxp) << 30;
2893                 }
2894                 break;
2895         default:
2896                 fotg210_dbg(fotg210, "bogus dev %p speed %d\n", urb->dev,
2897                                 urb->dev->speed);
2898 done:
2899                 qh_destroy(fotg210, qh);
2900                 return NULL;
2901         }
2902
2903         /* NOTE:  if (PIPE_INTERRUPT) { scheduler sets s-mask } */
2904
2905         /* init as live, toggle clear, advance to dummy */
2906         qh->qh_state = QH_STATE_IDLE;
2907         hw = qh->hw;
2908         hw->hw_info1 = cpu_to_hc32(fotg210, info1);
2909         hw->hw_info2 = cpu_to_hc32(fotg210, info2);
2910         qh->is_out = !is_input;
2911         usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
2912         qh_refresh(fotg210, qh);
2913         return qh;
2914 }
2915
2916 static void enable_async(struct fotg210_hcd *fotg210)
2917 {
2918         if (fotg210->async_count++)
2919                 return;
2920
2921         /* Stop waiting to turn off the async schedule */
2922         fotg210->enabled_hrtimer_events &= ~BIT(FOTG210_HRTIMER_DISABLE_ASYNC);
2923
2924         /* Don't start the schedule until ASS is 0 */
2925         fotg210_poll_ASS(fotg210);
2926         turn_on_io_watchdog(fotg210);
2927 }
2928
2929 static void disable_async(struct fotg210_hcd *fotg210)
2930 {
2931         if (--fotg210->async_count)
2932                 return;
2933
2934         /* The async schedule and async_unlink list are supposed to be empty */
2935         WARN_ON(fotg210->async->qh_next.qh || fotg210->async_unlink);
2936
2937         /* Don't turn off the schedule until ASS is 1 */
2938         fotg210_poll_ASS(fotg210);
2939 }
2940
2941 /* move qh (and its qtds) onto async queue; maybe enable queue.  */
2942
2943 static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2944 {
2945         __hc32 dma = QH_NEXT(fotg210, qh->qh_dma);
2946         struct fotg210_qh *head;
2947
2948         /* Don't link a QH if there's a Clear-TT-Buffer pending */
2949         if (unlikely(qh->clearing_tt))
2950                 return;
2951
2952         WARN_ON(qh->qh_state != QH_STATE_IDLE);
2953
2954         /* clear halt and/or toggle; and maybe recover from silicon quirk */
2955         qh_refresh(fotg210, qh);
2956
2957         /* splice right after start */
2958         head = fotg210->async;
2959         qh->qh_next = head->qh_next;
2960         qh->hw->hw_next = head->hw->hw_next;
2961         wmb();
2962
2963         head->qh_next.qh = qh;
2964         head->hw->hw_next = dma;
2965
2966         qh->xacterrs = 0;
2967         qh->qh_state = QH_STATE_LINKED;
2968         /* qtd completions reported later by interrupt */
2969
2970         enable_async(fotg210);
2971 }
2972
2973 /* For control/bulk/interrupt, return QH with these TDs appended.
2974  * Allocates and initializes the QH if necessary.
2975  * Returns null if it can't allocate a QH it needs to.
2976  * If the QH has TDs (urbs) already, that's great.
2977  */
2978 static struct fotg210_qh *qh_append_tds(struct fotg210_hcd *fotg210,
2979                 struct urb *urb, struct list_head *qtd_list,
2980                 int epnum, void **ptr)
2981 {
2982         struct fotg210_qh *qh = NULL;
2983         __hc32 qh_addr_mask = cpu_to_hc32(fotg210, 0x7f);
2984
2985         qh = (struct fotg210_qh *) *ptr;
2986         if (unlikely(qh == NULL)) {
2987                 /* can't sleep here, we have fotg210->lock... */
2988                 qh = qh_make(fotg210, urb, GFP_ATOMIC);
2989                 *ptr = qh;
2990         }
2991         if (likely(qh != NULL)) {
2992                 struct fotg210_qtd *qtd;
2993
2994                 if (unlikely(list_empty(qtd_list)))
2995                         qtd = NULL;
2996                 else
2997                         qtd = list_entry(qtd_list->next, struct fotg210_qtd,
2998                                         qtd_list);
2999
3000                 /* control qh may need patching ... */
3001                 if (unlikely(epnum == 0)) {
3002                         /* usb_reset_device() briefly reverts to address 0 */
3003                         if (usb_pipedevice(urb->pipe) == 0)
3004                                 qh->hw->hw_info1 &= ~qh_addr_mask;
3005                 }
3006
3007                 /* just one way to queue requests: swap with the dummy qtd.
3008                  * only hc or qh_refresh() ever modify the overlay.
3009                  */
3010                 if (likely(qtd != NULL)) {
3011                         struct fotg210_qtd *dummy;
3012                         dma_addr_t dma;
3013                         __hc32 token;
3014
3015                         /* to avoid racing the HC, use the dummy td instead of
3016                          * the first td of our list (becomes new dummy).  both
3017                          * tds stay deactivated until we're done, when the
3018                          * HC is allowed to fetch the old dummy (4.10.2).
3019                          */
3020                         token = qtd->hw_token;
3021                         qtd->hw_token = HALT_BIT(fotg210);
3022
3023                         dummy = qh->dummy;
3024
3025                         dma = dummy->qtd_dma;
3026                         *dummy = *qtd;
3027                         dummy->qtd_dma = dma;
3028
3029                         list_del(&qtd->qtd_list);
3030                         list_add(&dummy->qtd_list, qtd_list);
3031                         list_splice_tail(qtd_list, &qh->qtd_list);
3032
3033                         fotg210_qtd_init(fotg210, qtd, qtd->qtd_dma);
3034                         qh->dummy = qtd;
3035
3036                         /* hc must see the new dummy at list end */
3037                         dma = qtd->qtd_dma;
3038                         qtd = list_entry(qh->qtd_list.prev,
3039                                         struct fotg210_qtd, qtd_list);
3040                         qtd->hw_next = QTD_NEXT(fotg210, dma);
3041
3042                         /* let the hc process these next qtds */
3043                         wmb();
3044                         dummy->hw_token = token;
3045
3046                         urb->hcpriv = qh;
3047                 }
3048         }
3049         return qh;
3050 }
3051
3052 static int submit_async(struct fotg210_hcd *fotg210, struct urb *urb,
3053                 struct list_head *qtd_list, gfp_t mem_flags)
3054 {
3055         int epnum;
3056         unsigned long flags;
3057         struct fotg210_qh *qh = NULL;
3058         int rc;
3059
3060         epnum = urb->ep->desc.bEndpointAddress;
3061
3062 #ifdef FOTG210_URB_TRACE
3063         {
3064                 struct fotg210_qtd *qtd;
3065
3066                 qtd = list_entry(qtd_list->next, struct fotg210_qtd, qtd_list);
3067                 fotg210_dbg(fotg210,
3068                                 "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
3069                                 __func__, urb->dev->devpath, urb,
3070                                 epnum & 0x0f, (epnum & USB_DIR_IN)
3071                                         ? "in" : "out",
3072                                 urb->transfer_buffer_length,
3073                                 qtd, urb->ep->hcpriv);
3074         }
3075 #endif
3076
3077         spin_lock_irqsave(&fotg210->lock, flags);
3078         if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3079                 rc = -ESHUTDOWN;
3080                 goto done;
3081         }
3082         rc = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3083         if (unlikely(rc))
3084                 goto done;
3085
3086         qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3087         if (unlikely(qh == NULL)) {
3088                 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3089                 rc = -ENOMEM;
3090                 goto done;
3091         }
3092
3093         /* Control/bulk operations through TTs don't need scheduling,
3094          * the HC and TT handle it when the TT has a buffer ready.
3095          */
3096         if (likely(qh->qh_state == QH_STATE_IDLE))
3097                 qh_link_async(fotg210, qh);
3098 done:
3099         spin_unlock_irqrestore(&fotg210->lock, flags);
3100         if (unlikely(qh == NULL))
3101                 qtd_list_free(fotg210, urb, qtd_list);
3102         return rc;
3103 }
3104
3105 static void single_unlink_async(struct fotg210_hcd *fotg210,
3106                 struct fotg210_qh *qh)
3107 {
3108         struct fotg210_qh *prev;
3109
3110         /* Add to the end of the list of QHs waiting for the next IAAD */
3111         qh->qh_state = QH_STATE_UNLINK;
3112         if (fotg210->async_unlink)
3113                 fotg210->async_unlink_last->unlink_next = qh;
3114         else
3115                 fotg210->async_unlink = qh;
3116         fotg210->async_unlink_last = qh;
3117
3118         /* Unlink it from the schedule */
3119         prev = fotg210->async;
3120         while (prev->qh_next.qh != qh)
3121                 prev = prev->qh_next.qh;
3122
3123         prev->hw->hw_next = qh->hw->hw_next;
3124         prev->qh_next = qh->qh_next;
3125         if (fotg210->qh_scan_next == qh)
3126                 fotg210->qh_scan_next = qh->qh_next.qh;
3127 }
3128
3129 static void start_iaa_cycle(struct fotg210_hcd *fotg210, bool nested)
3130 {
3131         /*
3132          * Do nothing if an IAA cycle is already running or
3133          * if one will be started shortly.
3134          */
3135         if (fotg210->async_iaa || fotg210->async_unlinking)
3136                 return;
3137
3138         /* Do all the waiting QHs at once */
3139         fotg210->async_iaa = fotg210->async_unlink;
3140         fotg210->async_unlink = NULL;
3141
3142         /* If the controller isn't running, we don't have to wait for it */
3143         if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING)) {
3144                 if (!nested)            /* Avoid recursion */
3145                         end_unlink_async(fotg210);
3146
3147         /* Otherwise start a new IAA cycle */
3148         } else if (likely(fotg210->rh_state == FOTG210_RH_RUNNING)) {
3149                 /* Make sure the unlinks are all visible to the hardware */
3150                 wmb();
3151
3152                 fotg210_writel(fotg210, fotg210->command | CMD_IAAD,
3153                                 &fotg210->regs->command);
3154                 fotg210_readl(fotg210, &fotg210->regs->command);
3155                 fotg210_enable_event(fotg210, FOTG210_HRTIMER_IAA_WATCHDOG,
3156                                 true);
3157         }
3158 }
3159
3160 /* the async qh for the qtds being unlinked are now gone from the HC */
3161
3162 static void end_unlink_async(struct fotg210_hcd *fotg210)
3163 {
3164         struct fotg210_qh *qh;
3165
3166         /* Process the idle QHs */
3167 restart:
3168         fotg210->async_unlinking = true;
3169         while (fotg210->async_iaa) {
3170                 qh = fotg210->async_iaa;
3171                 fotg210->async_iaa = qh->unlink_next;
3172                 qh->unlink_next = NULL;
3173
3174                 qh->qh_state = QH_STATE_IDLE;
3175                 qh->qh_next.qh = NULL;
3176
3177                 qh_completions(fotg210, qh);
3178                 if (!list_empty(&qh->qtd_list) &&
3179                                 fotg210->rh_state == FOTG210_RH_RUNNING)
3180                         qh_link_async(fotg210, qh);
3181                 disable_async(fotg210);
3182         }
3183         fotg210->async_unlinking = false;
3184
3185         /* Start a new IAA cycle if any QHs are waiting for it */
3186         if (fotg210->async_unlink) {
3187                 start_iaa_cycle(fotg210, true);
3188                 if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING))
3189                         goto restart;
3190         }
3191 }
3192
3193 static void unlink_empty_async(struct fotg210_hcd *fotg210)
3194 {
3195         struct fotg210_qh *qh, *next;
3196         bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
3197         bool check_unlinks_later = false;
3198
3199         /* Unlink all the async QHs that have been empty for a timer cycle */
3200         next = fotg210->async->qh_next.qh;
3201         while (next) {
3202                 qh = next;
3203                 next = qh->qh_next.qh;
3204
3205                 if (list_empty(&qh->qtd_list) &&
3206                                 qh->qh_state == QH_STATE_LINKED) {
3207                         if (!stopped && qh->unlink_cycle ==
3208                                         fotg210->async_unlink_cycle)
3209                                 check_unlinks_later = true;
3210                         else
3211                                 single_unlink_async(fotg210, qh);
3212                 }
3213         }
3214
3215         /* Start a new IAA cycle if any QHs are waiting for it */
3216         if (fotg210->async_unlink)
3217                 start_iaa_cycle(fotg210, false);
3218
3219         /* QHs that haven't been empty for long enough will be handled later */
3220         if (check_unlinks_later) {
3221                 fotg210_enable_event(fotg210, FOTG210_HRTIMER_ASYNC_UNLINKS,
3222                                 true);
3223                 ++fotg210->async_unlink_cycle;
3224         }
3225 }
3226
3227 /* makes sure the async qh will become idle */
3228 /* caller must own fotg210->lock */
3229
3230 static void start_unlink_async(struct fotg210_hcd *fotg210,
3231                 struct fotg210_qh *qh)
3232 {
3233         /*
3234          * If the QH isn't linked then there's nothing we can do
3235          * unless we were called during a giveback, in which case
3236          * qh_completions() has to deal with it.
3237          */
3238         if (qh->qh_state != QH_STATE_LINKED) {
3239                 if (qh->qh_state == QH_STATE_COMPLETING)
3240                         qh->needs_rescan = 1;
3241                 return;
3242         }
3243
3244         single_unlink_async(fotg210, qh);
3245         start_iaa_cycle(fotg210, false);
3246 }
3247
3248 static void scan_async(struct fotg210_hcd *fotg210)
3249 {
3250         struct fotg210_qh *qh;
3251         bool check_unlinks_later = false;
3252
3253         fotg210->qh_scan_next = fotg210->async->qh_next.qh;
3254         while (fotg210->qh_scan_next) {
3255                 qh = fotg210->qh_scan_next;
3256                 fotg210->qh_scan_next = qh->qh_next.qh;
3257 rescan:
3258                 /* clean any finished work for this qh */
3259                 if (!list_empty(&qh->qtd_list)) {
3260                         int temp;
3261
3262                         /*
3263                          * Unlinks could happen here; completion reporting
3264                          * drops the lock.  That's why fotg210->qh_scan_next
3265                          * always holds the next qh to scan; if the next qh
3266                          * gets unlinked then fotg210->qh_scan_next is adjusted
3267                          * in single_unlink_async().
3268                          */
3269                         temp = qh_completions(fotg210, qh);
3270                         if (qh->needs_rescan) {
3271                                 start_unlink_async(fotg210, qh);
3272                         } else if (list_empty(&qh->qtd_list)
3273                                         && qh->qh_state == QH_STATE_LINKED) {
3274                                 qh->unlink_cycle = fotg210->async_unlink_cycle;
3275                                 check_unlinks_later = true;
3276                         } else if (temp != 0)
3277                                 goto rescan;
3278                 }
3279         }
3280
3281         /*
3282          * Unlink empty entries, reducing DMA usage as well
3283          * as HCD schedule-scanning costs.  Delay for any qh
3284          * we just scanned, there's a not-unusual case that it
3285          * doesn't stay idle for long.
3286          */
3287         if (check_unlinks_later && fotg210->rh_state == FOTG210_RH_RUNNING &&
3288                         !(fotg210->enabled_hrtimer_events &
3289                         BIT(FOTG210_HRTIMER_ASYNC_UNLINKS))) {
3290                 fotg210_enable_event(fotg210,
3291                                 FOTG210_HRTIMER_ASYNC_UNLINKS, true);
3292                 ++fotg210->async_unlink_cycle;
3293         }
3294 }
3295 /* EHCI scheduled transaction support:  interrupt, iso, split iso
3296  * These are called "periodic" transactions in the EHCI spec.
3297  *
3298  * Note that for interrupt transfers, the QH/QTD manipulation is shared
3299  * with the "asynchronous" transaction support (control/bulk transfers).
3300  * The only real difference is in how interrupt transfers are scheduled.
3301  *
3302  * For ISO, we make an "iso_stream" head to serve the same role as a QH.
3303  * It keeps track of every ITD (or SITD) that's linked, and holds enough
3304  * pre-calculated schedule data to make appending to the queue be quick.
3305  */
3306 static int fotg210_get_frame(struct usb_hcd *hcd);
3307
3308 /* periodic_next_shadow - return "next" pointer on shadow list
3309  * @periodic: host pointer to qh/itd
3310  * @tag: hardware tag for type of this record
3311  */
3312 static union fotg210_shadow *periodic_next_shadow(struct fotg210_hcd *fotg210,
3313                 union fotg210_shadow *periodic, __hc32 tag)
3314 {
3315         switch (hc32_to_cpu(fotg210, tag)) {
3316         case Q_TYPE_QH:
3317                 return &periodic->qh->qh_next;
3318         case Q_TYPE_FSTN:
3319                 return &periodic->fstn->fstn_next;
3320         default:
3321                 return &periodic->itd->itd_next;
3322         }
3323 }
3324
3325 static __hc32 *shadow_next_periodic(struct fotg210_hcd *fotg210,
3326                 union fotg210_shadow *periodic, __hc32 tag)
3327 {
3328         switch (hc32_to_cpu(fotg210, tag)) {
3329         /* our fotg210_shadow.qh is actually software part */
3330         case Q_TYPE_QH:
3331                 return &periodic->qh->hw->hw_next;
3332         /* others are hw parts */
3333         default:
3334                 return periodic->hw_next;
3335         }
3336 }
3337
3338 /* caller must hold fotg210->lock */
3339 static void periodic_unlink(struct fotg210_hcd *fotg210, unsigned frame,
3340                 void *ptr)
3341 {
3342         union fotg210_shadow *prev_p = &fotg210->pshadow[frame];
3343         __hc32 *hw_p = &fotg210->periodic[frame];
3344         union fotg210_shadow here = *prev_p;
3345
3346         /* find predecessor of "ptr"; hw and shadow lists are in sync */
3347         while (here.ptr && here.ptr != ptr) {
3348                 prev_p = periodic_next_shadow(fotg210, prev_p,
3349                                 Q_NEXT_TYPE(fotg210, *hw_p));
3350                 hw_p = shadow_next_periodic(fotg210, &here,
3351                                 Q_NEXT_TYPE(fotg210, *hw_p));
3352                 here = *prev_p;
3353         }
3354         /* an interrupt entry (at list end) could have been shared */
3355         if (!here.ptr)
3356                 return;
3357
3358         /* update shadow and hardware lists ... the old "next" pointers
3359          * from ptr may still be in use, the caller updates them.
3360          */
3361         *prev_p = *periodic_next_shadow(fotg210, &here,
3362                         Q_NEXT_TYPE(fotg210, *hw_p));
3363
3364         *hw_p = *shadow_next_periodic(fotg210, &here,
3365                         Q_NEXT_TYPE(fotg210, *hw_p));
3366 }
3367
3368 /* how many of the uframe's 125 usecs are allocated? */
3369 static unsigned short periodic_usecs(struct fotg210_hcd *fotg210,
3370                 unsigned frame, unsigned uframe)
3371 {
3372         __hc32 *hw_p = &fotg210->periodic[frame];
3373         union fotg210_shadow *q = &fotg210->pshadow[frame];
3374         unsigned usecs = 0;
3375         struct fotg210_qh_hw *hw;
3376
3377         while (q->ptr) {
3378                 switch (hc32_to_cpu(fotg210, Q_NEXT_TYPE(fotg210, *hw_p))) {
3379                 case Q_TYPE_QH:
3380                         hw = q->qh->hw;
3381                         /* is it in the S-mask? */
3382                         if (hw->hw_info2 & cpu_to_hc32(fotg210, 1 << uframe))
3383                                 usecs += q->qh->usecs;
3384                         /* ... or C-mask? */
3385                         if (hw->hw_info2 & cpu_to_hc32(fotg210,
3386                                         1 << (8 + uframe)))
3387                                 usecs += q->qh->c_usecs;
3388                         hw_p = &hw->hw_next;
3389                         q = &q->qh->qh_next;
3390                         break;
3391                 /* case Q_TYPE_FSTN: */
3392                 default:
3393                         /* for "save place" FSTNs, count the relevant INTR
3394                          * bandwidth from the previous frame
3395                          */
3396                         if (q->fstn->hw_prev != FOTG210_LIST_END(fotg210))
3397                                 fotg210_dbg(fotg210, "ignoring FSTN cost ...\n");
3398
3399                         hw_p = &q->fstn->hw_next;
3400                         q = &q->fstn->fstn_next;
3401                         break;
3402                 case Q_TYPE_ITD:
3403                         if (q->itd->hw_transaction[uframe])
3404                                 usecs += q->itd->stream->usecs;
3405                         hw_p = &q->itd->hw_next;
3406                         q = &q->itd->itd_next;
3407                         break;
3408                 }
3409         }
3410         if (usecs > fotg210->uframe_periodic_max)
3411                 fotg210_err(fotg210, "uframe %d sched overrun: %d usecs\n",
3412                                 frame * 8 + uframe, usecs);
3413         return usecs;
3414 }
3415
3416 static int same_tt(struct usb_device *dev1, struct usb_device *dev2)
3417 {
3418         if (!dev1->tt || !dev2->tt)
3419                 return 0;
3420         if (dev1->tt != dev2->tt)
3421                 return 0;
3422         if (dev1->tt->multi)
3423                 return dev1->ttport == dev2->ttport;
3424         else
3425                 return 1;
3426 }
3427
3428 /* return true iff the device's transaction translator is available
3429  * for a periodic transfer starting at the specified frame, using
3430  * all the uframes in the mask.
3431  */
3432 static int tt_no_collision(struct fotg210_hcd *fotg210, unsigned period,
3433                 struct usb_device *dev, unsigned frame, u32 uf_mask)
3434 {
3435         if (period == 0)        /* error */
3436                 return 0;
3437
3438         /* note bandwidth wastage:  split never follows csplit
3439          * (different dev or endpoint) until the next uframe.
3440          * calling convention doesn't make that distinction.
3441          */
3442         for (; frame < fotg210->periodic_size; frame += period) {
3443                 union fotg210_shadow here;
3444                 __hc32 type;
3445                 struct fotg210_qh_hw *hw;
3446
3447                 here = fotg210->pshadow[frame];
3448                 type = Q_NEXT_TYPE(fotg210, fotg210->periodic[frame]);
3449                 while (here.ptr) {
3450                         switch (hc32_to_cpu(fotg210, type)) {
3451                         case Q_TYPE_ITD:
3452                                 type = Q_NEXT_TYPE(fotg210, here.itd->hw_next);
3453                                 here = here.itd->itd_next;
3454                                 continue;
3455                         case Q_TYPE_QH:
3456                                 hw = here.qh->hw;
3457                                 if (same_tt(dev, here.qh->dev)) {
3458                                         u32 mask;
3459
3460                                         mask = hc32_to_cpu(fotg210,
3461                                                         hw->hw_info2);
3462                                         /* "knows" no gap is needed */
3463                                         mask |= mask >> 8;
3464                                         if (mask & uf_mask)
3465                                                 break;
3466                                 }
3467                                 type = Q_NEXT_TYPE(fotg210, hw->hw_next);
3468                                 here = here.qh->qh_next;
3469                                 continue;
3470                         /* case Q_TYPE_FSTN: */
3471                         default:
3472                                 fotg210_dbg(fotg210,
3473                                                 "periodic frame %d bogus type %d\n",
3474                                                 frame, type);
3475                         }
3476
3477                         /* collision or error */
3478                         return 0;
3479                 }
3480         }
3481
3482         /* no collision */
3483         return 1;
3484 }
3485
3486 static void enable_periodic(struct fotg210_hcd *fotg210)
3487 {
3488         if (fotg210->periodic_count++)
3489                 return;
3490
3491         /* Stop waiting to turn off the periodic schedule */
3492         fotg210->enabled_hrtimer_events &=
3493                 ~BIT(FOTG210_HRTIMER_DISABLE_PERIODIC);
3494
3495         /* Don't start the schedule until PSS is 0 */
3496         fotg210_poll_PSS(fotg210);
3497         turn_on_io_watchdog(fotg210);
3498 }
3499
3500 static void disable_periodic(struct fotg210_hcd *fotg210)
3501 {
3502         if (--fotg210->periodic_count)
3503                 return;
3504
3505         /* Don't turn off the schedule until PSS is 1 */
3506         fotg210_poll_PSS(fotg210);
3507 }
3508
3509 /* periodic schedule slots have iso tds (normal or split) first, then a
3510  * sparse tree for active interrupt transfers.
3511  *
3512  * this just links in a qh; caller guarantees uframe masks are set right.
3513  * no FSTN support (yet; fotg210 0.96+)
3514  */
3515 static void qh_link_periodic(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3516 {
3517         unsigned i;
3518         unsigned period = qh->period;
3519
3520         dev_dbg(&qh->dev->dev,
3521                         "link qh%d-%04x/%p start %d [%d/%d us]\n", period,
3522                         hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3523                         (QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
3524                         qh->c_usecs);
3525
3526         /* high bandwidth, or otherwise every microframe */
3527         if (period == 0)
3528                 period = 1;
3529
3530         for (i = qh->start; i < fotg210->periodic_size; i += period) {
3531                 union fotg210_shadow *prev = &fotg210->pshadow[i];
3532                 __hc32 *hw_p = &fotg210->periodic[i];
3533                 union fotg210_shadow here = *prev;
3534                 __hc32 type = 0;
3535
3536                 /* skip the iso nodes at list head */
3537                 while (here.ptr) {
3538                         type = Q_NEXT_TYPE(fotg210, *hw_p);
3539                         if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
3540                                 break;
3541                         prev = periodic_next_shadow(fotg210, prev, type);
3542                         hw_p = shadow_next_periodic(fotg210, &here, type);
3543                         here = *prev;
3544                 }
3545
3546                 /* sorting each branch by period (slow-->fast)
3547                  * enables sharing interior tree nodes
3548                  */
3549                 while (here.ptr && qh != here.qh) {
3550                         if (qh->period > here.qh->period)
3551                                 break;
3552                         prev = &here.qh->qh_next;
3553                         hw_p = &here.qh->hw->hw_next;
3554                         here = *prev;
3555                 }
3556                 /* link in this qh, unless some earlier pass did that */
3557                 if (qh != here.qh) {
3558                         qh->qh_next = here;
3559                         if (here.qh)
3560                                 qh->hw->hw_next = *hw_p;
3561                         wmb();
3562                         prev->qh = qh;
3563                         *hw_p = QH_NEXT(fotg210, qh->qh_dma);
3564                 }
3565         }
3566         qh->qh_state = QH_STATE_LINKED;
3567         qh->xacterrs = 0;
3568
3569         /* update per-qh bandwidth for usbfs */
3570         fotg210_to_hcd(fotg210)->self.bandwidth_allocated += qh->period
3571                 ? ((qh->usecs + qh->c_usecs) / qh->period)
3572                 : (qh->usecs * 8);
3573
3574         list_add(&qh->intr_node, &fotg210->intr_qh_list);
3575
3576         /* maybe enable periodic schedule processing */
3577         ++fotg210->intr_count;
3578         enable_periodic(fotg210);
3579 }
3580
3581 static void qh_unlink_periodic(struct fotg210_hcd *fotg210,
3582                 struct fotg210_qh *qh)
3583 {
3584         unsigned i;
3585         unsigned period;
3586
3587         /*
3588          * If qh is for a low/full-speed device, simply unlinking it
3589          * could interfere with an ongoing split transaction.  To unlink
3590          * it safely would require setting the QH_INACTIVATE bit and
3591          * waiting at least one frame, as described in EHCI 4.12.2.5.
3592          *
3593          * We won't bother with any of this.  Instead, we assume that the
3594          * only reason for unlinking an interrupt QH while the current URB
3595          * is still active is to dequeue all the URBs (flush the whole
3596          * endpoint queue).
3597          *
3598          * If rebalancing the periodic schedule is ever implemented, this
3599          * approach will no longer be valid.
3600          */
3601
3602         /* high bandwidth, or otherwise part of every microframe */
3603         period = qh->period;
3604         if (!period)
3605                 period = 1;
3606
3607         for (i = qh->start; i < fotg210->periodic_size; i += period)
3608                 periodic_unlink(fotg210, i, qh);
3609
3610         /* update per-qh bandwidth for usbfs */
3611         fotg210_to_hcd(fotg210)->self.bandwidth_allocated -= qh->period
3612                 ? ((qh->usecs + qh->c_usecs) / qh->period)
3613                 : (qh->usecs * 8);
3614
3615         dev_dbg(&qh->dev->dev,
3616                         "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
3617                         qh->period, hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3618                         (QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
3619                         qh->c_usecs);
3620
3621         /* qh->qh_next still "live" to HC */
3622         qh->qh_state = QH_STATE_UNLINK;
3623         qh->qh_next.ptr = NULL;
3624
3625         if (fotg210->qh_scan_next == qh)
3626                 fotg210->qh_scan_next = list_entry(qh->intr_node.next,
3627                                 struct fotg210_qh, intr_node);
3628         list_del(&qh->intr_node);
3629 }
3630
3631 static void start_unlink_intr(struct fotg210_hcd *fotg210,
3632                 struct fotg210_qh *qh)
3633 {
3634         /* If the QH isn't linked then there's nothing we can do
3635          * unless we were called during a giveback, in which case
3636          * qh_completions() has to deal with it.
3637          */
3638         if (qh->qh_state != QH_STATE_LINKED) {
3639                 if (qh->qh_state == QH_STATE_COMPLETING)
3640                         qh->needs_rescan = 1;
3641                 return;
3642         }
3643
3644         qh_unlink_periodic(fotg210, qh);
3645
3646         /* Make sure the unlinks are visible before starting the timer */
3647         wmb();
3648
3649         /*
3650          * The EHCI spec doesn't say how long it takes the controller to
3651          * stop accessing an unlinked interrupt QH.  The timer delay is
3652          * 9 uframes; presumably that will be long enough.
3653          */
3654         qh->unlink_cycle = fotg210->intr_unlink_cycle;
3655
3656         /* New entries go at the end of the intr_unlink list */
3657         if (fotg210->intr_unlink)
3658                 fotg210->intr_unlink_last->unlink_next = qh;
3659         else
3660                 fotg210->intr_unlink = qh;
3661         fotg210->intr_unlink_last = qh;
3662
3663         if (fotg210->intr_unlinking)
3664                 ;       /* Avoid recursive calls */
3665         else if (fotg210->rh_state < FOTG210_RH_RUNNING)
3666                 fotg210_handle_intr_unlinks(fotg210);
3667         else if (fotg210->intr_unlink == qh) {
3668                 fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
3669                                 true);
3670                 ++fotg210->intr_unlink_cycle;
3671         }
3672 }
3673
3674 static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3675 {
3676         struct fotg210_qh_hw *hw = qh->hw;
3677         int rc;
3678
3679         qh->qh_state = QH_STATE_IDLE;
3680         hw->hw_next = FOTG210_LIST_END(fotg210);
3681
3682         qh_completions(fotg210, qh);
3683
3684         /* reschedule QH iff another request is queued */
3685         if (!list_empty(&qh->qtd_list) &&
3686                         fotg210->rh_state == FOTG210_RH_RUNNING) {
3687                 rc = qh_schedule(fotg210, qh);
3688
3689                 /* An error here likely indicates handshake failure
3690                  * or no space left in the schedule.  Neither fault
3691                  * should happen often ...
3692                  *
3693                  * FIXME kill the now-dysfunctional queued urbs
3694                  */
3695                 if (rc != 0)
3696                         fotg210_err(fotg210, "can't reschedule qh %p, err %d\n",
3697                                         qh, rc);
3698         }
3699
3700         /* maybe turn off periodic schedule */
3701         --fotg210->intr_count;
3702         disable_periodic(fotg210);
3703 }
3704
3705 static int check_period(struct fotg210_hcd *fotg210, unsigned frame,
3706                 unsigned uframe, unsigned period, unsigned usecs)
3707 {
3708         int claimed;
3709
3710         /* complete split running into next frame?
3711          * given FSTN support, we could sometimes check...
3712          */
3713         if (uframe >= 8)
3714                 return 0;
3715
3716         /* convert "usecs we need" to "max already claimed" */
3717         usecs = fotg210->uframe_periodic_max - usecs;
3718
3719         /* we "know" 2 and 4 uframe intervals were rejected; so
3720          * for period 0, check _every_ microframe in the schedule.
3721          */
3722         if (unlikely(period == 0)) {
3723                 do {
3724                         for (uframe = 0; uframe < 7; uframe++) {
3725                                 claimed = periodic_usecs(fotg210, frame,
3726                                                 uframe);
3727                                 if (claimed > usecs)
3728                                         return 0;
3729                         }
3730                 } while ((frame += 1) < fotg210->periodic_size);
3731
3732         /* just check the specified uframe, at that period */
3733         } else {
3734                 do {
3735                         claimed = periodic_usecs(fotg210, frame, uframe);
3736                         if (claimed > usecs)
3737                                 return 0;
3738                 } while ((frame += period) < fotg210->periodic_size);
3739         }
3740
3741         /* success! */
3742         return 1;
3743 }
3744
3745 static int check_intr_schedule(struct fotg210_hcd *fotg210, unsigned frame,
3746                 unsigned uframe, const struct fotg210_qh *qh, __hc32 *c_maskp)
3747 {
3748         int retval = -ENOSPC;
3749         u8 mask = 0;
3750
3751         if (qh->c_usecs && uframe >= 6)         /* FSTN territory? */
3752                 goto done;
3753
3754         if (!check_period(fotg210, frame, uframe, qh->period, qh->usecs))
3755                 goto done;
3756         if (!qh->c_usecs) {
3757                 retval = 0;
3758                 *c_maskp = 0;
3759                 goto done;
3760         }
3761
3762         /* Make sure this tt's buffer is also available for CSPLITs.
3763          * We pessimize a bit; probably the typical full speed case
3764          * doesn't need the second CSPLIT.
3765          *
3766          * NOTE:  both SPLIT and CSPLIT could be checked in just
3767          * one smart pass...
3768          */
3769         mask = 0x03 << (uframe + qh->gap_uf);
3770         *c_maskp = cpu_to_hc32(fotg210, mask << 8);
3771
3772         mask |= 1 << uframe;
3773         if (tt_no_collision(fotg210, qh->period, qh->dev, frame, mask)) {
3774                 if (!check_period(fotg210, frame, uframe + qh->gap_uf + 1,
3775                                 qh->period, qh->c_usecs))
3776                         goto done;
3777                 if (!check_period(fotg210, frame, uframe + qh->gap_uf,
3778                                 qh->period, qh->c_usecs))
3779                         goto done;
3780                 retval = 0;
3781         }
3782 done:
3783         return retval;
3784 }
3785
3786 /* "first fit" scheduling policy used the first time through,
3787  * or when the previous schedule slot can't be re-used.
3788  */
3789 static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3790 {
3791         int status;
3792         unsigned uframe;
3793         __hc32 c_mask;
3794         unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */
3795         struct fotg210_qh_hw *hw = qh->hw;
3796
3797         qh_refresh(fotg210, qh);
3798         hw->hw_next = FOTG210_LIST_END(fotg210);
3799         frame = qh->start;
3800
3801         /* reuse the previous schedule slots, if we can */
3802         if (frame < qh->period) {
3803                 uframe = ffs(hc32_to_cpup(fotg210, &hw->hw_info2) & QH_SMASK);
3804                 status = check_intr_schedule(fotg210, frame, --uframe,
3805                                 qh, &c_mask);
3806         } else {
3807                 uframe = 0;
3808                 c_mask = 0;
3809                 status = -ENOSPC;
3810         }
3811
3812         /* else scan the schedule to find a group of slots such that all
3813          * uframes have enough periodic bandwidth available.
3814          */
3815         if (status) {
3816                 /* "normal" case, uframing flexible except with splits */
3817                 if (qh->period) {
3818                         int i;
3819
3820                         for (i = qh->period; status && i > 0; --i) {
3821                                 frame = ++fotg210->random_frame % qh->period;
3822                                 for (uframe = 0; uframe < 8; uframe++) {
3823                                         status = check_intr_schedule(fotg210,
3824                                                         frame, uframe, qh,
3825                                                         &c_mask);
3826                                         if (status == 0)
3827                                                 break;
3828                                 }
3829                         }
3830
3831                 /* qh->period == 0 means every uframe */
3832                 } else {
3833                         frame = 0;
3834                         status = check_intr_schedule(fotg210, 0, 0, qh,
3835                                         &c_mask);
3836                 }
3837                 if (status)
3838                         goto done;
3839                 qh->start = frame;
3840
3841                 /* reset S-frame and (maybe) C-frame masks */
3842                 hw->hw_info2 &= cpu_to_hc32(fotg210, ~(QH_CMASK | QH_SMASK));
3843                 hw->hw_info2 |= qh->period
3844                         ? cpu_to_hc32(fotg210, 1 << uframe)
3845                         : cpu_to_hc32(fotg210, QH_SMASK);
3846                 hw->hw_info2 |= c_mask;
3847         } else
3848                 fotg210_dbg(fotg210, "reused qh %p schedule\n", qh);
3849
3850         /* stuff into the periodic schedule */
3851         qh_link_periodic(fotg210, qh);
3852 done:
3853         return status;
3854 }
3855
3856 static int intr_submit(struct fotg210_hcd *fotg210, struct urb *urb,
3857                 struct list_head *qtd_list, gfp_t mem_flags)
3858 {
3859         unsigned epnum;
3860         unsigned long flags;
3861         struct fotg210_qh *qh;
3862         int status;
3863         struct list_head empty;
3864
3865         /* get endpoint and transfer/schedule data */
3866         epnum = urb->ep->desc.bEndpointAddress;
3867
3868         spin_lock_irqsave(&fotg210->lock, flags);
3869
3870         if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3871                 status = -ESHUTDOWN;
3872                 goto done_not_linked;
3873         }
3874         status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3875         if (unlikely(status))
3876                 goto done_not_linked;
3877
3878         /* get qh and force any scheduling errors */
3879         INIT_LIST_HEAD(&empty);
3880         qh = qh_append_tds(fotg210, urb, &empty, epnum, &urb->ep->hcpriv);
3881         if (qh == NULL) {
3882                 status = -ENOMEM;
3883                 goto done;
3884         }
3885         if (qh->qh_state == QH_STATE_IDLE) {
3886                 status = qh_schedule(fotg210, qh);
3887                 if (status)
3888                         goto done;
3889         }
3890
3891         /* then queue the urb's tds to the qh */
3892         qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3893         BUG_ON(qh == NULL);
3894
3895         /* ... update usbfs periodic stats */
3896         fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs++;
3897
3898 done:
3899         if (unlikely(status))
3900                 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3901 done_not_linked:
3902         spin_unlock_irqrestore(&fotg210->lock, flags);
3903         if (status)
3904                 qtd_list_free(fotg210, urb, qtd_list);
3905
3906         return status;
3907 }
3908
3909 static void scan_intr(struct fotg210_hcd *fotg210)
3910 {
3911         struct fotg210_qh *qh;
3912
3913         list_for_each_entry_safe(qh, fotg210->qh_scan_next,
3914                         &fotg210->intr_qh_list, intr_node) {
3915 rescan:
3916                 /* clean any finished work for this qh */
3917                 if (!list_empty(&qh->qtd_list)) {
3918                         int temp;
3919
3920                         /*
3921                          * Unlinks could happen here; completion reporting
3922                          * drops the lock.  That's why fotg210->qh_scan_next
3923                          * always holds the next qh to scan; if the next qh
3924                          * gets unlinked then fotg210->qh_scan_next is adjusted
3925                          * in qh_unlink_periodic().
3926                          */
3927                         temp = qh_completions(fotg210, qh);
3928                         if (unlikely(qh->needs_rescan ||
3929                                         (list_empty(&qh->qtd_list) &&
3930                                         qh->qh_state == QH_STATE_LINKED)))
3931                                 start_unlink_intr(fotg210, qh);
3932                         else if (temp != 0)
3933                                 goto rescan;
3934                 }
3935         }
3936 }
3937
3938 /* fotg210_iso_stream ops work with both ITD and SITD */
3939
3940 static struct fotg210_iso_stream *iso_stream_alloc(gfp_t mem_flags)
3941 {
3942         struct fotg210_iso_stream *stream;
3943
3944         stream = kzalloc(sizeof(*stream), mem_flags);
3945         if (likely(stream != NULL)) {
3946                 INIT_LIST_HEAD(&stream->td_list);
3947                 INIT_LIST_HEAD(&stream->free_list);
3948                 stream->next_uframe = -1;
3949         }
3950         return stream;
3951 }
3952
3953 static void iso_stream_init(struct fotg210_hcd *fotg210,
3954                 struct fotg210_iso_stream *stream, struct usb_device *dev,
3955                 int pipe, unsigned interval)
3956 {
3957         u32 buf1;
3958         unsigned epnum, maxp;
3959         int is_input;
3960         long bandwidth;
3961         unsigned multi;
3962
3963         /*
3964          * this might be a "high bandwidth" highspeed endpoint,
3965          * as encoded in the ep descriptor's wMaxPacket field
3966          */
3967         epnum = usb_pipeendpoint(pipe);
3968         is_input = usb_pipein(pipe) ? USB_DIR_IN : 0;
3969         maxp = usb_maxpacket(dev, pipe, !is_input);
3970         if (is_input)
3971                 buf1 = (1 << 11);
3972         else
3973                 buf1 = 0;
3974
3975         maxp = max_packet(maxp);
3976         multi = hb_mult(maxp);
3977         buf1 |= maxp;
3978         maxp *= multi;
3979
3980         stream->buf0 = cpu_to_hc32(fotg210, (epnum << 8) | dev->devnum);
3981         stream->buf1 = cpu_to_hc32(fotg210, buf1);
3982         stream->buf2 = cpu_to_hc32(fotg210, multi);
3983
3984         /* usbfs wants to report the average usecs per frame tied up
3985          * when transfers on this endpoint are scheduled ...
3986          */
3987         if (dev->speed == USB_SPEED_FULL) {
3988                 interval <<= 3;
3989                 stream->usecs = NS_TO_US(usb_calc_bus_time(dev->speed,
3990                                 is_input, 1, maxp));
3991                 stream->usecs /= 8;
3992         } else {
3993                 stream->highspeed = 1;
3994                 stream->usecs = HS_USECS_ISO(maxp);
3995         }
3996         bandwidth = stream->usecs * 8;
3997         bandwidth /= interval;
3998
3999         stream->bandwidth = bandwidth;
4000         stream->udev = dev;
4001         stream->bEndpointAddress = is_input | epnum;
4002         stream->interval = interval;
4003         stream->maxp = maxp;
4004 }
4005
4006 static struct fotg210_iso_stream *iso_stream_find(struct fotg210_hcd *fotg210,
4007                 struct urb *urb)
4008 {
4009         unsigned epnum;
4010         struct fotg210_iso_stream *stream;
4011         struct usb_host_endpoint *ep;
4012         unsigned long flags;
4013
4014         epnum = usb_pipeendpoint(urb->pipe);
4015         if (usb_pipein(urb->pipe))
4016                 ep = urb->dev->ep_in[epnum];
4017         else
4018                 ep = urb->dev->ep_out[epnum];
4019
4020         spin_lock_irqsave(&fotg210->lock, flags);
4021         stream = ep->hcpriv;
4022
4023         if (unlikely(stream == NULL)) {
4024                 stream = iso_stream_alloc(GFP_ATOMIC);
4025                 if (likely(stream != NULL)) {
4026                         ep->hcpriv = stream;
4027                         stream->ep = ep;
4028                         iso_stream_init(fotg210, stream, urb->dev, urb->pipe,
4029                                         urb->interval);
4030                 }
4031
4032         /* if dev->ep[epnum] is a QH, hw is set */
4033         } else if (unlikely(stream->hw != NULL)) {
4034                 fotg210_dbg(fotg210, "dev %s ep%d%s, not iso??\n",
4035                                 urb->dev->devpath, epnum,
4036                                 usb_pipein(urb->pipe) ? "in" : "out");
4037                 stream = NULL;
4038         }
4039
4040         spin_unlock_irqrestore(&fotg210->lock, flags);
4041         return stream;
4042 }
4043
4044 /* fotg210_iso_sched ops can be ITD-only or SITD-only */
4045
4046 static struct fotg210_iso_sched *iso_sched_alloc(unsigned packets,
4047                 gfp_t mem_flags)
4048 {
4049         struct fotg210_iso_sched *iso_sched;
4050         int size = sizeof(*iso_sched);
4051
4052         size += packets * sizeof(struct fotg210_iso_packet);
4053         iso_sched = kzalloc(size, mem_flags);
4054         if (likely(iso_sched != NULL))
4055                 INIT_LIST_HEAD(&iso_sched->td_list);
4056
4057         return iso_sched;
4058 }
4059
4060 static inline void itd_sched_init(struct fotg210_hcd *fotg210,
4061                 struct fotg210_iso_sched *iso_sched,
4062                 struct fotg210_iso_stream *stream, struct urb *urb)
4063 {
4064         unsigned i;
4065         dma_addr_t dma = urb->transfer_dma;
4066
4067         /* how many uframes are needed for these transfers */
4068         iso_sched->span = urb->number_of_packets * stream->interval;
4069
4070         /* figure out per-uframe itd fields that we'll need later
4071          * when we fit new itds into the schedule.
4072          */
4073         for (i = 0; i < urb->number_of_packets; i++) {
4074                 struct fotg210_iso_packet *uframe = &iso_sched->packet[i];
4075                 unsigned length;
4076                 dma_addr_t buf;
4077                 u32 trans;
4078
4079                 length = urb->iso_frame_desc[i].length;
4080                 buf = dma + urb->iso_frame_desc[i].offset;
4081
4082                 trans = FOTG210_ISOC_ACTIVE;
4083                 trans |= buf & 0x0fff;
4084                 if (unlikely(((i + 1) == urb->number_of_packets))
4085                                 && !(urb->transfer_flags & URB_NO_INTERRUPT))
4086                         trans |= FOTG210_ITD_IOC;
4087                 trans |= length << 16;
4088                 uframe->transaction = cpu_to_hc32(fotg210, trans);
4089
4090                 /* might need to cross a buffer page within a uframe */
4091                 uframe->bufp = (buf & ~(u64)0x0fff);
4092                 buf += length;
4093                 if (unlikely((uframe->bufp != (buf & ~(u64)0x0fff))))
4094                         uframe->cross = 1;
4095         }
4096 }
4097
4098 static void iso_sched_free(struct fotg210_iso_stream *stream,
4099                 struct fotg210_iso_sched *iso_sched)
4100 {
4101         if (!iso_sched)
4102                 return;
4103         /* caller must hold fotg210->lock!*/
4104         list_splice(&iso_sched->td_list, &stream->free_list);
4105         kfree(iso_sched);
4106 }
4107
4108 static int itd_urb_transaction(struct fotg210_iso_stream *stream,
4109                 struct fotg210_hcd *fotg210, struct urb *urb, gfp_t mem_flags)
4110 {
4111         struct fotg210_itd *itd;
4112         dma_addr_t itd_dma;
4113         int i;
4114         unsigned num_itds;
4115         struct fotg210_iso_sched *sched;
4116         unsigned long flags;
4117
4118         sched = iso_sched_alloc(urb->number_of_packets, mem_flags);
4119         if (unlikely(sched == NULL))
4120                 return -ENOMEM;
4121
4122         itd_sched_init(fotg210, sched, stream, urb);
4123
4124         if (urb->interval < 8)
4125                 num_itds = 1 + (sched->span + 7) / 8;
4126         else
4127                 num_itds = urb->number_of_packets;
4128
4129         /* allocate/init ITDs */
4130         spin_lock_irqsave(&fotg210->lock, flags);
4131         for (i = 0; i < num_itds; i++) {
4132
4133                 /*
4134                  * Use iTDs from the free list, but not iTDs that may
4135                  * still be in use by the hardware.
4136                  */
4137                 if (likely(!list_empty(&stream->free_list))) {
4138                         itd = list_first_entry(&stream->free_list,
4139                                         struct fotg210_itd, itd_list);
4140                         if (itd->frame == fotg210->now_frame)
4141                                 goto alloc_itd;
4142                         list_del(&itd->itd_list);
4143                         itd_dma = itd->itd_dma;
4144                 } else {
4145 alloc_itd:
4146                         spin_unlock_irqrestore(&fotg210->lock, flags);
4147                         itd = dma_pool_alloc(fotg210->itd_pool, mem_flags,
4148                                         &itd_dma);
4149                         spin_lock_irqsave(&fotg210->lock, flags);
4150                         if (!itd) {
4151                                 iso_sched_free(stream, sched);
4152                                 spin_unlock_irqrestore(&fotg210->lock, flags);
4153                                 return -ENOMEM;
4154                         }
4155                 }
4156
4157                 memset(itd, 0, sizeof(*itd));
4158                 itd->itd_dma = itd_dma;
4159                 list_add(&itd->itd_list, &sched->td_list);
4160         }
4161         spin_unlock_irqrestore(&fotg210->lock, flags);
4162
4163         /* temporarily store schedule info in hcpriv */
4164         urb->hcpriv = sched;
4165         urb->error_count = 0;
4166         return 0;
4167 }
4168
4169 static inline int itd_slot_ok(struct fotg210_hcd *fotg210, u32 mod, u32 uframe,
4170                 u8 usecs, u32 period)
4171 {
4172         uframe %= period;
4173         do {
4174                 /* can't commit more than uframe_periodic_max usec */
4175                 if (periodic_usecs(fotg210, uframe >> 3, uframe & 0x7)
4176                                 > (fotg210->uframe_periodic_max - usecs))
4177                         return 0;
4178
4179                 /* we know urb->interval is 2^N uframes */
4180                 uframe += period;
4181         } while (uframe < mod);
4182         return 1;
4183 }
4184
4185 /* This scheduler plans almost as far into the future as it has actual
4186  * periodic schedule slots.  (Affected by TUNE_FLS, which defaults to
4187  * "as small as possible" to be cache-friendlier.)  That limits the size
4188  * transfers you can stream reliably; avoid more than 64 msec per urb.
4189  * Also avoid queue depths of less than fotg210's worst irq latency (affected
4190  * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
4191  * and other factors); or more than about 230 msec total (for portability,
4192  * given FOTG210_TUNE_FLS and the slop).  Or, write a smarter scheduler!
4193  */
4194
4195 #define SCHEDULE_SLOP 80 /* microframes */
4196
4197 static int iso_stream_schedule(struct fotg210_hcd *fotg210, struct urb *urb,
4198                 struct fotg210_iso_stream *stream)
4199 {
4200         u32 now, next, start, period, span;
4201         int status;
4202         unsigned mod = fotg210->periodic_size << 3;
4203         struct fotg210_iso_sched *sched = urb->hcpriv;
4204
4205         period = urb->interval;
4206         span = sched->span;
4207
4208         if (span > mod - SCHEDULE_SLOP) {
4209                 fotg210_dbg(fotg210, "iso request %p too long\n", urb);
4210                 status = -EFBIG;
4211                 goto fail;
4212         }
4213
4214         now = fotg210_read_frame_index(fotg210) & (mod - 1);
4215
4216         /* Typical case: reuse current schedule, stream is still active.
4217          * Hopefully there are no gaps from the host falling behind
4218          * (irq delays etc), but if there are we'll take the next
4219          * slot in the schedule, implicitly assuming URB_ISO_ASAP.
4220          */
4221         if (likely(!list_empty(&stream->td_list))) {
4222                 u32 excess;
4223
4224                 /* For high speed devices, allow scheduling within the
4225                  * isochronous scheduling threshold.  For full speed devices
4226                  * and Intel PCI-based controllers, don't (work around for
4227                  * Intel ICH9 bug).
4228                  */
4229                 if (!stream->highspeed && fotg210->fs_i_thresh)
4230                         next = now + fotg210->i_thresh;
4231                 else
4232                         next = now;
4233
4234                 /* Fell behind (by up to twice the slop amount)?
4235                  * We decide based on the time of the last currently-scheduled
4236                  * slot, not the time of the next available slot.
4237                  */
4238                 excess = (stream->next_uframe - period - next) & (mod - 1);
4239                 if (excess >= mod - 2 * SCHEDULE_SLOP)
4240                         start = next + excess - mod + period *
4241                                         DIV_ROUND_UP(mod - excess, period);
4242                 else
4243                         start = next + excess + period;
4244                 if (start - now >= mod) {
4245                         fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4246                                         urb, start - now - period, period,
4247                                         mod);
4248                         status = -EFBIG;
4249                         goto fail;
4250                 }
4251         }
4252
4253         /* need to schedule; when's the next (u)frame we could start?
4254          * this is bigger than fotg210->i_thresh allows; scheduling itself
4255          * isn't free, the slop should handle reasonably slow cpus.  it
4256          * can also help high bandwidth if the dma and irq loads don't
4257          * jump until after the queue is primed.
4258          */
4259         else {
4260                 int done = 0;
4261
4262                 start = SCHEDULE_SLOP + (now & ~0x07);
4263
4264                 /* NOTE:  assumes URB_ISO_ASAP, to limit complexity/bugs */
4265
4266                 /* find a uframe slot with enough bandwidth.
4267                  * Early uframes are more precious because full-speed
4268                  * iso IN transfers can't use late uframes,
4269                  * and therefore they should be allocated last.
4270                  */
4271                 next = start;
4272                 start += period;
4273                 do {
4274                         start--;
4275                         /* check schedule: enough space? */
4276                         if (itd_slot_ok(fotg210, mod, start,
4277                                         stream->usecs, period))
4278                                 done = 1;
4279                 } while (start > next && !done);
4280
4281                 /* no room in the schedule */
4282                 if (!done) {
4283                         fotg210_dbg(fotg210, "iso resched full %p (now %d max %d)\n",
4284                                         urb, now, now + mod);
4285                         status = -ENOSPC;
4286                         goto fail;
4287                 }
4288         }
4289
4290         /* Tried to schedule too far into the future? */
4291         if (unlikely(start - now + span - period >=
4292                         mod - 2 * SCHEDULE_SLOP)) {
4293                 fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4294                                 urb, start - now, span - period,
4295                                 mod - 2 * SCHEDULE_SLOP);
4296                 status = -EFBIG;
4297                 goto fail;
4298         }
4299
4300         stream->next_uframe = start & (mod - 1);
4301
4302         /* report high speed start in uframes; full speed, in frames */
4303         urb->start_frame = stream->next_uframe;
4304         if (!stream->highspeed)
4305                 urb->start_frame >>= 3;
4306
4307         /* Make sure scan_isoc() sees these */
4308         if (fotg210->isoc_count == 0)
4309                 fotg210->next_frame = now >> 3;
4310         return 0;
4311
4312 fail:
4313         iso_sched_free(stream, sched);
4314         urb->hcpriv = NULL;
4315         return status;
4316 }
4317
4318 static inline void itd_init(struct fotg210_hcd *fotg210,
4319                 struct fotg210_iso_stream *stream, struct fotg210_itd *itd)
4320 {
4321         int i;
4322
4323         /* it's been recently zeroed */
4324         itd->hw_next = FOTG210_LIST_END(fotg210);
4325         itd->hw_bufp[0] = stream->buf0;
4326         itd->hw_bufp[1] = stream->buf1;
4327         itd->hw_bufp[2] = stream->buf2;
4328
4329         for (i = 0; i < 8; i++)
4330                 itd->index[i] = -1;
4331
4332         /* All other fields are filled when scheduling */
4333 }
4334
4335 static inline void itd_patch(struct fotg210_hcd *fotg210,
4336                 struct fotg210_itd *itd, struct fotg210_iso_sched *iso_sched,
4337                 unsigned index, u16 uframe)
4338 {
4339         struct fotg210_iso_packet *uf = &iso_sched->packet[index];
4340         unsigned pg = itd->pg;
4341
4342         uframe &= 0x07;
4343         itd->index[uframe] = index;
4344
4345         itd->hw_transaction[uframe] = uf->transaction;
4346         itd->hw_transaction[uframe] |= cpu_to_hc32(fotg210, pg << 12);
4347         itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, uf->bufp & ~(u32)0);
4348         itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(uf->bufp >> 32));
4349
4350         /* iso_frame_desc[].offset must be strictly increasing */
4351         if (unlikely(uf->cross)) {
4352                 u64 bufp = uf->bufp + 4096;
4353
4354                 itd->pg = ++pg;
4355                 itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, bufp & ~(u32)0);
4356                 itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(bufp >> 32));
4357         }
4358 }
4359
4360 static inline void itd_link(struct fotg210_hcd *fotg210, unsigned frame,
4361                 struct fotg210_itd *itd)
4362 {
4363         union fotg210_shadow *prev = &fotg210->pshadow[frame];
4364         __hc32 *hw_p = &fotg210->periodic[frame];
4365         union fotg210_shadow here = *prev;
4366         __hc32 type = 0;
4367
4368         /* skip any iso nodes which might belong to previous microframes */
4369         while (here.ptr) {
4370                 type = Q_NEXT_TYPE(fotg210, *hw_p);
4371                 if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
4372                         break;
4373                 prev = periodic_next_shadow(fotg210, prev, type);
4374                 hw_p = shadow_next_periodic(fotg210, &here, type);
4375                 here = *prev;
4376         }
4377
4378         itd->itd_next = here;
4379         itd->hw_next = *hw_p;
4380         prev->itd = itd;
4381         itd->frame = frame;
4382         wmb();
4383         *hw_p = cpu_to_hc32(fotg210, itd->itd_dma | Q_TYPE_ITD);
4384 }
4385
4386 /* fit urb's itds into the selected schedule slot; activate as needed */
4387 static void itd_link_urb(struct fotg210_hcd *fotg210, struct urb *urb,
4388                 unsigned mod, struct fotg210_iso_stream *stream)
4389 {
4390         int packet;
4391         unsigned next_uframe, uframe, frame;
4392         struct fotg210_iso_sched *iso_sched = urb->hcpriv;
4393         struct fotg210_itd *itd;
4394
4395         next_uframe = stream->next_uframe & (mod - 1);
4396
4397         if (unlikely(list_empty(&stream->td_list))) {
4398                 fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4399                                 += stream->bandwidth;
4400                 fotg210_dbg(fotg210,
4401                         "schedule devp %s ep%d%s-iso period %d start %d.%d\n",
4402                         urb->dev->devpath, stream->bEndpointAddress & 0x0f,
4403                         (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
4404                         urb->interval,
4405                         next_uframe >> 3, next_uframe & 0x7);
4406         }
4407
4408         /* fill iTDs uframe by uframe */
4409         for (packet = 0, itd = NULL; packet < urb->number_of_packets;) {
4410                 if (itd == NULL) {
4411                         /* ASSERT:  we have all necessary itds */
4412
4413                         /* ASSERT:  no itds for this endpoint in this uframe */
4414
4415                         itd = list_entry(iso_sched->td_list.next,
4416                                         struct fotg210_itd, itd_list);
4417                         list_move_tail(&itd->itd_list, &stream->td_list);
4418                         itd->stream = stream;
4419                         itd->urb = urb;
4420                         itd_init(fotg210, stream, itd);
4421                 }
4422
4423                 uframe = next_uframe & 0x07;
4424                 frame = next_uframe >> 3;
4425
4426                 itd_patch(fotg210, itd, iso_sched, packet, uframe);
4427
4428                 next_uframe += stream->interval;
4429                 next_uframe &= mod - 1;
4430                 packet++;
4431
4432                 /* link completed itds into the schedule */
4433                 if (((next_uframe >> 3) != frame)
4434                                 || packet == urb->number_of_packets) {
4435                         itd_link(fotg210, frame & (fotg210->periodic_size - 1),
4436                                         itd);
4437                         itd = NULL;
4438                 }
4439         }
4440         stream->next_uframe = next_uframe;
4441
4442         /* don't need that schedule data any more */
4443         iso_sched_free(stream, iso_sched);
4444         urb->hcpriv = NULL;
4445
4446         ++fotg210->isoc_count;
4447         enable_periodic(fotg210);
4448 }
4449
4450 #define ISO_ERRS (FOTG210_ISOC_BUF_ERR | FOTG210_ISOC_BABBLE |\
4451                 FOTG210_ISOC_XACTERR)
4452
4453 /* Process and recycle a completed ITD.  Return true iff its urb completed,
4454  * and hence its completion callback probably added things to the hardware
4455  * schedule.
4456  *
4457  * Note that we carefully avoid recycling this descriptor until after any
4458  * completion callback runs, so that it won't be reused quickly.  That is,
4459  * assuming (a) no more than two urbs per frame on this endpoint, and also
4460  * (b) only this endpoint's completions submit URBs.  It seems some silicon
4461  * corrupts things if you reuse completed descriptors very quickly...
4462  */
4463 static bool itd_complete(struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
4464 {
4465         struct urb *urb = itd->urb;
4466         struct usb_iso_packet_descriptor *desc;
4467         u32 t;
4468         unsigned uframe;
4469         int urb_index = -1;
4470         struct fotg210_iso_stream *stream = itd->stream;
4471         struct usb_device *dev;
4472         bool retval = false;
4473
4474         /* for each uframe with a packet */
4475         for (uframe = 0; uframe < 8; uframe++) {
4476                 if (likely(itd->index[uframe] == -1))
4477                         continue;
4478                 urb_index = itd->index[uframe];
4479                 desc = &urb->iso_frame_desc[urb_index];
4480
4481                 t = hc32_to_cpup(fotg210, &itd->hw_transaction[uframe]);
4482                 itd->hw_transaction[uframe] = 0;
4483
4484                 /* report transfer status */
4485                 if (unlikely(t & ISO_ERRS)) {
4486                         urb->error_count++;
4487                         if (t & FOTG210_ISOC_BUF_ERR)
4488                                 desc->status = usb_pipein(urb->pipe)
4489                                         ? -ENOSR  /* hc couldn't read */
4490                                         : -ECOMM; /* hc couldn't write */
4491                         else if (t & FOTG210_ISOC_BABBLE)
4492                                 desc->status = -EOVERFLOW;
4493                         else /* (t & FOTG210_ISOC_XACTERR) */
4494                                 desc->status = -EPROTO;
4495
4496                         /* HC need not update length with this error */
4497                         if (!(t & FOTG210_ISOC_BABBLE)) {
4498                                 desc->actual_length = FOTG210_ITD_LENGTH(t);
4499                                 urb->actual_length += desc->actual_length;
4500                         }
4501                 } else if (likely((t & FOTG210_ISOC_ACTIVE) == 0)) {
4502                         desc->status = 0;
4503                         desc->actual_length = FOTG210_ITD_LENGTH(t);
4504                         urb->actual_length += desc->actual_length;
4505                 } else {
4506                         /* URB was too late */
4507                         desc->status = -EXDEV;
4508                 }
4509         }
4510
4511         /* handle completion now? */
4512         if (likely((urb_index + 1) != urb->number_of_packets))
4513                 goto done;
4514
4515         /* ASSERT: it's really the last itd for this urb
4516          * list_for_each_entry (itd, &stream->td_list, itd_list)
4517          *      BUG_ON (itd->urb == urb);
4518          */
4519
4520         /* give urb back to the driver; completion often (re)submits */
4521         dev = urb->dev;
4522         fotg210_urb_done(fotg210, urb, 0);
4523         retval = true;
4524         urb = NULL;
4525
4526         --fotg210->isoc_count;
4527         disable_periodic(fotg210);
4528
4529         if (unlikely(list_is_singular(&stream->td_list))) {
4530                 fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4531                                 -= stream->bandwidth;
4532                 fotg210_dbg(fotg210,
4533                         "deschedule devp %s ep%d%s-iso\n",
4534                         dev->devpath, stream->bEndpointAddress & 0x0f,
4535                         (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
4536         }
4537
4538 done:
4539         itd->urb = NULL;
4540
4541         /* Add to the end of the free list for later reuse */
4542         list_move_tail(&itd->itd_list, &stream->free_list);
4543
4544         /* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
4545         if (list_empty(&stream->td_list)) {
4546                 list_splice_tail_init(&stream->free_list,
4547                                 &fotg210->cached_itd_list);
4548                 start_free_itds(fotg210);
4549         }
4550
4551         return retval;
4552 }
4553
4554 static int itd_submit(struct fotg210_hcd *fotg210, struct urb *urb,
4555                 gfp_t mem_flags)
4556 {
4557         int status = -EINVAL;
4558         unsigned long flags;
4559         struct fotg210_iso_stream *stream;
4560
4561         /* Get iso_stream head */
4562         stream = iso_stream_find(fotg210, urb);
4563         if (unlikely(stream == NULL)) {
4564                 fotg210_dbg(fotg210, "can't get iso stream\n");
4565                 return -ENOMEM;
4566         }
4567         if (unlikely(urb->interval != stream->interval &&
4568                         fotg210_port_speed(fotg210, 0) ==
4569                         USB_PORT_STAT_HIGH_SPEED)) {
4570                 fotg210_dbg(fotg210, "can't change iso interval %d --> %d\n",
4571                                 stream->interval, urb->interval);
4572                 goto done;
4573         }
4574
4575 #ifdef FOTG210_URB_TRACE
4576         fotg210_dbg(fotg210,
4577                         "%s %s urb %p ep%d%s len %d, %d pkts %d uframes[%p]\n",
4578                         __func__, urb->dev->devpath, urb,
4579                         usb_pipeendpoint(urb->pipe),
4580                         usb_pipein(urb->pipe) ? "in" : "out",
4581                         urb->transfer_buffer_length,
4582                         urb->number_of_packets, urb->interval,
4583                         stream);
4584 #endif
4585
4586         /* allocate ITDs w/o locking anything */
4587         status = itd_urb_transaction(stream, fotg210, urb, mem_flags);
4588         if (unlikely(status < 0)) {
4589                 fotg210_dbg(fotg210, "can't init itds\n");
4590                 goto done;
4591         }
4592
4593         /* schedule ... need to lock */
4594         spin_lock_irqsave(&fotg210->lock, flags);
4595         if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
4596                 status = -ESHUTDOWN;
4597                 goto done_not_linked;
4598         }
4599         status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
4600         if (unlikely(status))
4601                 goto done_not_linked;
4602         status = iso_stream_schedule(fotg210, urb, stream);
4603         if (likely(status == 0))
4604                 itd_link_urb(fotg210, urb, fotg210->periodic_size << 3, stream);
4605         else
4606                 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
4607 done_not_linked:
4608         spin_unlock_irqrestore(&fotg210->lock, flags);
4609 done:
4610         return status;
4611 }
4612
4613 static inline int scan_frame_queue(struct fotg210_hcd *fotg210, unsigned frame,
4614                 unsigned now_frame, bool live)
4615 {
4616         unsigned uf;
4617         bool modified;
4618         union fotg210_shadow q, *q_p;
4619         __hc32 type, *hw_p;
4620
4621         /* scan each element in frame's queue for completions */
4622         q_p = &fotg210->pshadow[frame];
4623         hw_p = &fotg210->periodic[frame];
4624         q.ptr = q_p->ptr;
4625         type = Q_NEXT_TYPE(fotg210, *hw_p);
4626         modified = false;
4627
4628         while (q.ptr) {
4629                 switch (hc32_to_cpu(fotg210, type)) {
4630                 case Q_TYPE_ITD:
4631                         /* If this ITD is still active, leave it for
4632                          * later processing ... check the next entry.
4633                          * No need to check for activity unless the
4634                          * frame is current.
4635                          */
4636                         if (frame == now_frame && live) {
4637                                 rmb();
4638                                 for (uf = 0; uf < 8; uf++) {
4639                                         if (q.itd->hw_transaction[uf] &
4640                                                         ITD_ACTIVE(fotg210))
4641                                                 break;
4642                                 }
4643                                 if (uf < 8) {
4644                                         q_p = &q.itd->itd_next;
4645                                         hw_p = &q.itd->hw_next;
4646                                         type = Q_NEXT_TYPE(fotg210,
4647                                                         q.itd->hw_next);
4648                                         q = *q_p;
4649                                         break;
4650                                 }
4651                         }
4652
4653                         /* Take finished ITDs out of the schedule
4654                          * and process them:  recycle, maybe report
4655                          * URB completion.  HC won't cache the
4656                          * pointer for much longer, if at all.
4657                          */
4658                         *q_p = q.itd->itd_next;
4659                         *hw_p = q.itd->hw_next;
4660                         type = Q_NEXT_TYPE(fotg210, q.itd->hw_next);
4661                         wmb();
4662                         modified = itd_complete(fotg210, q.itd);
4663                         q = *q_p;
4664                         break;
4665                 default:
4666                         fotg210_dbg(fotg210, "corrupt type %d frame %d shadow %p\n",
4667                                         type, frame, q.ptr);
4668                         /* FALL THROUGH */
4669                 case Q_TYPE_QH:
4670                 case Q_TYPE_FSTN:
4671                         /* End of the iTDs and siTDs */
4672                         q.ptr = NULL;
4673                         break;
4674                 }
4675
4676                 /* assume completion callbacks modify the queue */
4677                 if (unlikely(modified && fotg210->isoc_count > 0))
4678                         return -EINVAL;
4679         }
4680         return 0;
4681 }
4682
4683 static void scan_isoc(struct fotg210_hcd *fotg210)
4684 {
4685         unsigned uf, now_frame, frame, ret;
4686         unsigned fmask = fotg210->periodic_size - 1;
4687         bool live;
4688
4689         /*
4690          * When running, scan from last scan point up to "now"
4691          * else clean up by scanning everything that's left.
4692          * Touches as few pages as possible:  cache-friendly.
4693          */
4694         if (fotg210->rh_state >= FOTG210_RH_RUNNING) {
4695                 uf = fotg210_read_frame_index(fotg210);
4696                 now_frame = (uf >> 3) & fmask;
4697                 live = true;
4698         } else  {
4699                 now_frame = (fotg210->next_frame - 1) & fmask;
4700                 live = false;
4701         }
4702         fotg210->now_frame = now_frame;
4703
4704         frame = fotg210->next_frame;
4705         for (;;) {
4706                 ret = 1;
4707                 while (ret != 0)
4708                         ret = scan_frame_queue(fotg210, frame,
4709                                         now_frame, live);
4710
4711                 /* Stop when we have reached the current frame */
4712                 if (frame == now_frame)
4713                         break;
4714                 frame = (frame + 1) & fmask;
4715         }
4716         fotg210->next_frame = now_frame;
4717 }
4718
4719 /* Display / Set uframe_periodic_max
4720  */
4721 static ssize_t show_uframe_periodic_max(struct device *dev,
4722                 struct device_attribute *attr, char *buf)
4723 {
4724         struct fotg210_hcd *fotg210;
4725         int n;
4726
4727         fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4728         n = scnprintf(buf, PAGE_SIZE, "%d\n", fotg210->uframe_periodic_max);
4729         return n;
4730 }
4731
4732
4733 static ssize_t store_uframe_periodic_max(struct device *dev,
4734                 struct device_attribute *attr, const char *buf, size_t count)
4735 {
4736         struct fotg210_hcd *fotg210;
4737         unsigned uframe_periodic_max;
4738         unsigned frame, uframe;
4739         unsigned short allocated_max;
4740         unsigned long flags;
4741         ssize_t ret;
4742
4743         fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4744         if (kstrtouint(buf, 0, &uframe_periodic_max) < 0)
4745                 return -EINVAL;
4746
4747         if (uframe_periodic_max < 100 || uframe_periodic_max >= 125) {
4748                 fotg210_info(fotg210, "rejecting invalid request for uframe_periodic_max=%u\n",
4749                                 uframe_periodic_max);
4750                 return -EINVAL;
4751         }
4752
4753         ret = -EINVAL;
4754
4755         /*
4756          * lock, so that our checking does not race with possible periodic
4757          * bandwidth allocation through submitting new urbs.
4758          */
4759         spin_lock_irqsave(&fotg210->lock, flags);
4760
4761         /*
4762          * for request to decrease max periodic bandwidth, we have to check
4763          * every microframe in the schedule to see whether the decrease is
4764          * possible.
4765          */
4766         if (uframe_periodic_max < fotg210->uframe_periodic_max) {
4767                 allocated_max = 0;
4768
4769                 for (frame = 0; frame < fotg210->periodic_size; ++frame)
4770                         for (uframe = 0; uframe < 7; ++uframe)
4771                                 allocated_max = max(allocated_max,
4772                                                 periodic_usecs(fotg210, frame,
4773                                                 uframe));
4774
4775                 if (allocated_max > uframe_periodic_max) {
4776                         fotg210_info(fotg210,
4777                                         "cannot decrease uframe_periodic_max because periodic bandwidth is already allocated (%u > %u)\n",
4778                                         allocated_max, uframe_periodic_max);
4779                         goto out_unlock;
4780                 }
4781         }
4782
4783         /* increasing is always ok */
4784
4785         fotg210_info(fotg210,
4786                         "setting max periodic bandwidth to %u%% (== %u usec/uframe)\n",
4787                         100 * uframe_periodic_max/125, uframe_periodic_max);
4788
4789         if (uframe_periodic_max != 100)
4790                 fotg210_warn(fotg210, "max periodic bandwidth set is non-standard\n");
4791
4792         fotg210->uframe_periodic_max = uframe_periodic_max;
4793         ret = count;
4794
4795 out_unlock:
4796         spin_unlock_irqrestore(&fotg210->lock, flags);
4797         return ret;
4798 }
4799
4800 static DEVICE_ATTR(uframe_periodic_max, 0644, show_uframe_periodic_max,
4801                    store_uframe_periodic_max);
4802
4803 static inline int create_sysfs_files(struct fotg210_hcd *fotg210)
4804 {
4805         struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
4806         int i = 0;
4807
4808         if (i)
4809                 goto out;
4810
4811         i = device_create_file(controller, &dev_attr_uframe_periodic_max);
4812 out:
4813         return i;
4814 }
4815
4816 static inline void remove_sysfs_files(struct fotg210_hcd *fotg210)
4817 {
4818         struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
4819
4820         device_remove_file(controller, &dev_attr_uframe_periodic_max);
4821 }
4822 /* On some systems, leaving remote wakeup enabled prevents system shutdown.
4823  * The firmware seems to think that powering off is a wakeup event!
4824  * This routine turns off remote wakeup and everything else, on all ports.
4825  */
4826 static void fotg210_turn_off_all_ports(struct fotg210_hcd *fotg210)
4827 {
4828         u32 __iomem *status_reg = &fotg210->regs->port_status;
4829
4830         fotg210_writel(fotg210, PORT_RWC_BITS, status_reg);
4831 }
4832
4833 /* Halt HC, turn off all ports, and let the BIOS use the companion controllers.
4834  * Must be called with interrupts enabled and the lock not held.
4835  */
4836 static void fotg210_silence_controller(struct fotg210_hcd *fotg210)
4837 {
4838         fotg210_halt(fotg210);
4839
4840         spin_lock_irq(&fotg210->lock);
4841         fotg210->rh_state = FOTG210_RH_HALTED;
4842         fotg210_turn_off_all_ports(fotg210);
4843         spin_unlock_irq(&fotg210->lock);
4844 }
4845
4846 /* fotg210_shutdown kick in for silicon on any bus (not just pci, etc).
4847  * This forcibly disables dma and IRQs, helping kexec and other cases
4848  * where the next system software may expect clean state.
4849  */
4850 static void fotg210_shutdown(struct usb_hcd *hcd)
4851 {
4852         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4853
4854         spin_lock_irq(&fotg210->lock);
4855         fotg210->shutdown = true;
4856         fotg210->rh_state = FOTG210_RH_STOPPING;
4857         fotg210->enabled_hrtimer_events = 0;
4858         spin_unlock_irq(&fotg210->lock);
4859
4860         fotg210_silence_controller(fotg210);
4861
4862         hrtimer_cancel(&fotg210->hrtimer);
4863 }
4864
4865 /* fotg210_work is called from some interrupts, timers, and so on.
4866  * it calls driver completion functions, after dropping fotg210->lock.
4867  */
4868 static void fotg210_work(struct fotg210_hcd *fotg210)
4869 {
4870         /* another CPU may drop fotg210->lock during a schedule scan while
4871          * it reports urb completions.  this flag guards against bogus
4872          * attempts at re-entrant schedule scanning.
4873          */
4874         if (fotg210->scanning) {
4875                 fotg210->need_rescan = true;
4876                 return;
4877         }
4878         fotg210->scanning = true;
4879
4880 rescan:
4881         fotg210->need_rescan = false;
4882         if (fotg210->async_count)
4883                 scan_async(fotg210);
4884         if (fotg210->intr_count > 0)
4885                 scan_intr(fotg210);
4886         if (fotg210->isoc_count > 0)
4887                 scan_isoc(fotg210);
4888         if (fotg210->need_rescan)
4889                 goto rescan;
4890         fotg210->scanning = false;
4891
4892         /* the IO watchdog guards against hardware or driver bugs that
4893          * misplace IRQs, and should let us run completely without IRQs.
4894          * such lossage has been observed on both VT6202 and VT8235.
4895          */
4896         turn_on_io_watchdog(fotg210);
4897 }
4898
4899 /* Called when the fotg210_hcd module is removed.
4900  */
4901 static void fotg210_stop(struct usb_hcd *hcd)
4902 {
4903         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4904
4905         fotg210_dbg(fotg210, "stop\n");
4906
4907         /* no more interrupts ... */
4908
4909         spin_lock_irq(&fotg210->lock);
4910         fotg210->enabled_hrtimer_events = 0;
4911         spin_unlock_irq(&fotg210->lock);
4912
4913         fotg210_quiesce(fotg210);
4914         fotg210_silence_controller(fotg210);
4915         fotg210_reset(fotg210);
4916
4917         hrtimer_cancel(&fotg210->hrtimer);
4918         remove_sysfs_files(fotg210);
4919         remove_debug_files(fotg210);
4920
4921         /* root hub is shut down separately (first, when possible) */
4922         spin_lock_irq(&fotg210->lock);
4923         end_free_itds(fotg210);
4924         spin_unlock_irq(&fotg210->lock);
4925         fotg210_mem_cleanup(fotg210);
4926
4927 #ifdef FOTG210_STATS
4928         fotg210_dbg(fotg210, "irq normal %ld err %ld iaa %ld (lost %ld)\n",
4929                         fotg210->stats.normal, fotg210->stats.error,
4930                         fotg210->stats.iaa, fotg210->stats.lost_iaa);
4931         fotg210_dbg(fotg210, "complete %ld unlink %ld\n",
4932                         fotg210->stats.complete, fotg210->stats.unlink);
4933 #endif
4934
4935         dbg_status(fotg210, "fotg210_stop completed",
4936                         fotg210_readl(fotg210, &fotg210->regs->status));
4937 }
4938
4939 /* one-time init, only for memory state */
4940 static int hcd_fotg210_init(struct usb_hcd *hcd)
4941 {
4942         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4943         u32 temp;
4944         int retval;
4945         u32 hcc_params;
4946         struct fotg210_qh_hw *hw;
4947
4948         spin_lock_init(&fotg210->lock);
4949
4950         /*
4951          * keep io watchdog by default, those good HCDs could turn off it later
4952          */
4953         fotg210->need_io_watchdog = 1;
4954
4955         hrtimer_init(&fotg210->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
4956         fotg210->hrtimer.function = fotg210_hrtimer_func;
4957         fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
4958
4959         hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
4960
4961         /*
4962          * by default set standard 80% (== 100 usec/uframe) max periodic
4963          * bandwidth as required by USB 2.0
4964          */
4965         fotg210->uframe_periodic_max = 100;
4966
4967         /*
4968          * hw default: 1K periodic list heads, one per frame.
4969          * periodic_size can shrink by USBCMD update if hcc_params allows.
4970          */
4971         fotg210->periodic_size = DEFAULT_I_TDPS;
4972         INIT_LIST_HEAD(&fotg210->intr_qh_list);
4973         INIT_LIST_HEAD(&fotg210->cached_itd_list);
4974
4975         if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
4976                 /* periodic schedule size can be smaller than default */
4977                 switch (FOTG210_TUNE_FLS) {
4978                 case 0:
4979                         fotg210->periodic_size = 1024;
4980                         break;
4981                 case 1:
4982                         fotg210->periodic_size = 512;
4983                         break;
4984                 case 2:
4985                         fotg210->periodic_size = 256;
4986                         break;
4987                 default:
4988                         BUG();
4989                 }
4990         }
4991         retval = fotg210_mem_init(fotg210, GFP_KERNEL);
4992         if (retval < 0)
4993                 return retval;
4994
4995         /* controllers may cache some of the periodic schedule ... */
4996         fotg210->i_thresh = 2;
4997
4998         /*
4999          * dedicate a qh for the async ring head, since we couldn't unlink
5000          * a 'real' qh without stopping the async schedule [4.8].  use it
5001          * as the 'reclamation list head' too.
5002          * its dummy is used in hw_alt_next of many tds, to prevent the qh
5003          * from automatically advancing to the next td after short reads.
5004          */
5005         fotg210->async->qh_next.qh = NULL;
5006         hw = fotg210->async->hw;
5007         hw->hw_next = QH_NEXT(fotg210, fotg210->async->qh_dma);
5008         hw->hw_info1 = cpu_to_hc32(fotg210, QH_HEAD);
5009         hw->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
5010         hw->hw_qtd_next = FOTG210_LIST_END(fotg210);
5011         fotg210->async->qh_state = QH_STATE_LINKED;
5012         hw->hw_alt_next = QTD_NEXT(fotg210, fotg210->async->dummy->qtd_dma);
5013
5014         /* clear interrupt enables, set irq latency */
5015         if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
5016                 log2_irq_thresh = 0;
5017         temp = 1 << (16 + log2_irq_thresh);
5018         if (HCC_CANPARK(hcc_params)) {
5019                 /* HW default park == 3, on hardware that supports it (like
5020                  * NVidia and ALI silicon), maximizes throughput on the async
5021                  * schedule by avoiding QH fetches between transfers.
5022                  *
5023                  * With fast usb storage devices and NForce2, "park" seems to
5024                  * make problems:  throughput reduction (!), data errors...
5025                  */
5026                 if (park) {
5027                         park = min_t(unsigned, park, 3);
5028                         temp |= CMD_PARK;
5029                         temp |= park << 8;
5030                 }
5031                 fotg210_dbg(fotg210, "park %d\n", park);
5032         }
5033         if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
5034                 /* periodic schedule size can be smaller than default */
5035                 temp &= ~(3 << 2);
5036                 temp |= (FOTG210_TUNE_FLS << 2);
5037         }
5038         fotg210->command = temp;
5039
5040         /* Accept arbitrarily long scatter-gather lists */
5041         if (!(hcd->driver->flags & HCD_LOCAL_MEM))
5042                 hcd->self.sg_tablesize = ~0;
5043         return 0;
5044 }
5045
5046 /* start HC running; it's halted, hcd_fotg210_init() has been run (once) */
5047 static int fotg210_run(struct usb_hcd *hcd)
5048 {
5049         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5050         u32 temp;
5051         u32 hcc_params;
5052
5053         hcd->uses_new_polling = 1;
5054
5055         /* EHCI spec section 4.1 */
5056
5057         fotg210_writel(fotg210, fotg210->periodic_dma,
5058                         &fotg210->regs->frame_list);
5059         fotg210_writel(fotg210, (u32)fotg210->async->qh_dma,
5060                         &fotg210->regs->async_next);
5061
5062         /*
5063          * hcc_params controls whether fotg210->regs->segment must (!!!)
5064          * be used; it constrains QH/ITD/SITD and QTD locations.
5065          * pci_pool consistent memory always uses segment zero.
5066          * streaming mappings for I/O buffers, like pci_map_single(),
5067          * can return segments above 4GB, if the device allows.
5068          *
5069          * NOTE:  the dma mask is visible through dev->dma_mask, so
5070          * drivers can pass this info along ... like NETIF_F_HIGHDMA,
5071          * Scsi_Host.highmem_io, and so forth.  It's readonly to all
5072          * host side drivers though.
5073          */
5074         hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
5075
5076         /*
5077          * Philips, Intel, and maybe others need CMD_RUN before the
5078          * root hub will detect new devices (why?); NEC doesn't
5079          */
5080         fotg210->command &= ~(CMD_IAAD|CMD_PSE|CMD_ASE|CMD_RESET);
5081         fotg210->command |= CMD_RUN;
5082         fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
5083         dbg_cmd(fotg210, "init", fotg210->command);
5084
5085         /*
5086          * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
5087          * are explicitly handed to companion controller(s), so no TT is
5088          * involved with the root hub.  (Except where one is integrated,
5089          * and there's no companion controller unless maybe for USB OTG.)
5090          *
5091          * Turning on the CF flag will transfer ownership of all ports
5092          * from the companions to the EHCI controller.  If any of the
5093          * companions are in the middle of a port reset at the time, it
5094          * could cause trouble.  Write-locking ehci_cf_port_reset_rwsem
5095          * guarantees that no resets are in progress.  After we set CF,
5096          * a short delay lets the hardware catch up; new resets shouldn't
5097          * be started before the port switching actions could complete.
5098          */
5099         down_write(&ehci_cf_port_reset_rwsem);
5100         fotg210->rh_state = FOTG210_RH_RUNNING;
5101         /* unblock posted writes */
5102         fotg210_readl(fotg210, &fotg210->regs->command);
5103         usleep_range(5000, 10000);
5104         up_write(&ehci_cf_port_reset_rwsem);
5105         fotg210->last_periodic_enable = ktime_get_real();
5106
5107         temp = HC_VERSION(fotg210,
5108                         fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5109         fotg210_info(fotg210,
5110                         "USB %x.%x started, EHCI %x.%02x\n",
5111                         ((fotg210->sbrn & 0xf0) >> 4), (fotg210->sbrn & 0x0f),
5112                         temp >> 8, temp & 0xff);
5113
5114         fotg210_writel(fotg210, INTR_MASK,
5115                         &fotg210->regs->intr_enable); /* Turn On Interrupts */
5116
5117         /* GRR this is run-once init(), being done every time the HC starts.
5118          * So long as they're part of class devices, we can't do it init()
5119          * since the class device isn't created that early.
5120          */
5121         create_debug_files(fotg210);
5122         create_sysfs_files(fotg210);
5123
5124         return 0;
5125 }
5126
5127 static int fotg210_setup(struct usb_hcd *hcd)
5128 {
5129         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5130         int retval;
5131
5132         fotg210->regs = (void __iomem *)fotg210->caps +
5133                         HC_LENGTH(fotg210,
5134                         fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5135         dbg_hcs_params(fotg210, "reset");
5136         dbg_hcc_params(fotg210, "reset");
5137
5138         /* cache this readonly data; minimize chip reads */
5139         fotg210->hcs_params = fotg210_readl(fotg210,
5140                         &fotg210->caps->hcs_params);
5141
5142         fotg210->sbrn = HCD_USB2;
5143
5144         /* data structure init */
5145         retval = hcd_fotg210_init(hcd);
5146         if (retval)
5147                 return retval;
5148
5149         retval = fotg210_halt(fotg210);
5150         if (retval)
5151                 return retval;
5152
5153         fotg210_reset(fotg210);
5154
5155         return 0;
5156 }
5157
5158 static irqreturn_t fotg210_irq(struct usb_hcd *hcd)
5159 {
5160         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5161         u32 status, masked_status, pcd_status = 0, cmd;
5162         int bh;
5163
5164         spin_lock(&fotg210->lock);
5165
5166         status = fotg210_readl(fotg210, &fotg210->regs->status);
5167
5168         /* e.g. cardbus physical eject */
5169         if (status == ~(u32) 0) {
5170                 fotg210_dbg(fotg210, "device removed\n");
5171                 goto dead;
5172         }
5173
5174         /*
5175          * We don't use STS_FLR, but some controllers don't like it to
5176          * remain on, so mask it out along with the other status bits.
5177          */
5178         masked_status = status & (INTR_MASK | STS_FLR);
5179
5180         /* Shared IRQ? */
5181         if (!masked_status ||
5182                         unlikely(fotg210->rh_state == FOTG210_RH_HALTED)) {
5183                 spin_unlock(&fotg210->lock);
5184                 return IRQ_NONE;
5185         }
5186
5187         /* clear (just) interrupts */
5188         fotg210_writel(fotg210, masked_status, &fotg210->regs->status);
5189         cmd = fotg210_readl(fotg210, &fotg210->regs->command);
5190         bh = 0;
5191
5192         /* unrequested/ignored: Frame List Rollover */
5193         dbg_status(fotg210, "irq", status);
5194
5195         /* INT, ERR, and IAA interrupt rates can be throttled */
5196
5197         /* normal [4.15.1.2] or error [4.15.1.1] completion */
5198         if (likely((status & (STS_INT|STS_ERR)) != 0)) {
5199                 if (likely((status & STS_ERR) == 0))
5200                         COUNT(fotg210->stats.normal);
5201                 else
5202                         COUNT(fotg210->stats.error);
5203                 bh = 1;
5204         }
5205
5206         /* complete the unlinking of some qh [4.15.2.3] */
5207         if (status & STS_IAA) {
5208
5209                 /* Turn off the IAA watchdog */
5210                 fotg210->enabled_hrtimer_events &=
5211                         ~BIT(FOTG210_HRTIMER_IAA_WATCHDOG);
5212
5213                 /*
5214                  * Mild optimization: Allow another IAAD to reset the
5215                  * hrtimer, if one occurs before the next expiration.
5216                  * In theory we could always cancel the hrtimer, but
5217                  * tests show that about half the time it will be reset
5218                  * for some other event anyway.
5219                  */
5220                 if (fotg210->next_hrtimer_event == FOTG210_HRTIMER_IAA_WATCHDOG)
5221                         ++fotg210->next_hrtimer_event;
5222
5223                 /* guard against (alleged) silicon errata */
5224                 if (cmd & CMD_IAAD)
5225                         fotg210_dbg(fotg210, "IAA with IAAD still set?\n");
5226                 if (fotg210->async_iaa) {
5227                         COUNT(fotg210->stats.iaa);
5228                         end_unlink_async(fotg210);
5229                 } else
5230                         fotg210_dbg(fotg210, "IAA with nothing unlinked?\n");
5231         }
5232
5233         /* remote wakeup [4.3.1] */
5234         if (status & STS_PCD) {
5235                 int pstatus;
5236                 u32 __iomem *status_reg = &fotg210->regs->port_status;
5237
5238                 /* kick root hub later */
5239                 pcd_status = status;
5240
5241                 /* resume root hub? */
5242                 if (fotg210->rh_state == FOTG210_RH_SUSPENDED)
5243                         usb_hcd_resume_root_hub(hcd);
5244
5245                 pstatus = fotg210_readl(fotg210, status_reg);
5246
5247                 if (test_bit(0, &fotg210->suspended_ports) &&
5248                                 ((pstatus & PORT_RESUME) ||
5249                                 !(pstatus & PORT_SUSPEND)) &&
5250                                 (pstatus & PORT_PE) &&
5251                                 fotg210->reset_done[0] == 0) {
5252
5253                         /* start 20 msec resume signaling from this port,
5254                          * and make hub_wq collect PORT_STAT_C_SUSPEND to
5255                          * stop that signaling.  Use 5 ms extra for safety,
5256                          * like usb_port_resume() does.
5257                          */
5258                         fotg210->reset_done[0] = jiffies + msecs_to_jiffies(25);
5259                         set_bit(0, &fotg210->resuming_ports);
5260                         fotg210_dbg(fotg210, "port 1 remote wakeup\n");
5261                         mod_timer(&hcd->rh_timer, fotg210->reset_done[0]);
5262                 }
5263         }
5264
5265         /* PCI errors [4.15.2.4] */
5266         if (unlikely((status & STS_FATAL) != 0)) {
5267                 fotg210_err(fotg210, "fatal error\n");
5268                 dbg_cmd(fotg210, "fatal", cmd);
5269                 dbg_status(fotg210, "fatal", status);
5270 dead:
5271                 usb_hc_died(hcd);
5272
5273                 /* Don't let the controller do anything more */
5274                 fotg210->shutdown = true;
5275                 fotg210->rh_state = FOTG210_RH_STOPPING;
5276                 fotg210->command &= ~(CMD_RUN | CMD_ASE | CMD_PSE);
5277                 fotg210_writel(fotg210, fotg210->command,
5278                                 &fotg210->regs->command);
5279                 fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
5280                 fotg210_handle_controller_death(fotg210);
5281
5282                 /* Handle completions when the controller stops */
5283                 bh = 0;
5284         }
5285
5286         if (bh)
5287                 fotg210_work(fotg210);
5288         spin_unlock(&fotg210->lock);
5289         if (pcd_status)
5290                 usb_hcd_poll_rh_status(hcd);
5291         return IRQ_HANDLED;
5292 }
5293
5294 /* non-error returns are a promise to giveback() the urb later
5295  * we drop ownership so next owner (or urb unlink) can get it
5296  *
5297  * urb + dev is in hcd.self.controller.urb_list
5298  * we're queueing TDs onto software and hardware lists
5299  *
5300  * hcd-specific init for hcpriv hasn't been done yet
5301  *
5302  * NOTE:  control, bulk, and interrupt share the same code to append TDs
5303  * to a (possibly active) QH, and the same QH scanning code.
5304  */
5305 static int fotg210_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
5306                 gfp_t mem_flags)
5307 {
5308         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5309         struct list_head qtd_list;
5310
5311         INIT_LIST_HEAD(&qtd_list);
5312
5313         switch (usb_pipetype(urb->pipe)) {
5314         case PIPE_CONTROL:
5315                 /* qh_completions() code doesn't handle all the fault cases
5316                  * in multi-TD control transfers.  Even 1KB is rare anyway.
5317                  */
5318                 if (urb->transfer_buffer_length > (16 * 1024))
5319                         return -EMSGSIZE;
5320                 /* FALLTHROUGH */
5321         /* case PIPE_BULK: */
5322         default:
5323                 if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5324                         return -ENOMEM;
5325                 return submit_async(fotg210, urb, &qtd_list, mem_flags);
5326
5327         case PIPE_INTERRUPT:
5328                 if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5329                         return -ENOMEM;
5330                 return intr_submit(fotg210, urb, &qtd_list, mem_flags);
5331
5332         case PIPE_ISOCHRONOUS:
5333                 return itd_submit(fotg210, urb, mem_flags);
5334         }
5335 }
5336
5337 /* remove from hardware lists
5338  * completions normally happen asynchronously
5339  */
5340
5341 static int fotg210_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
5342 {
5343         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5344         struct fotg210_qh *qh;
5345         unsigned long flags;
5346         int rc;
5347
5348         spin_lock_irqsave(&fotg210->lock, flags);
5349         rc = usb_hcd_check_unlink_urb(hcd, urb, status);
5350         if (rc)
5351                 goto done;
5352
5353         switch (usb_pipetype(urb->pipe)) {
5354         /* case PIPE_CONTROL: */
5355         /* case PIPE_BULK:*/
5356         default:
5357                 qh = (struct fotg210_qh *) urb->hcpriv;
5358                 if (!qh)
5359                         break;
5360                 switch (qh->qh_state) {
5361                 case QH_STATE_LINKED:
5362                 case QH_STATE_COMPLETING:
5363                         start_unlink_async(fotg210, qh);
5364                         break;
5365                 case QH_STATE_UNLINK:
5366                 case QH_STATE_UNLINK_WAIT:
5367                         /* already started */
5368                         break;
5369                 case QH_STATE_IDLE:
5370                         /* QH might be waiting for a Clear-TT-Buffer */
5371                         qh_completions(fotg210, qh);
5372                         break;
5373                 }
5374                 break;
5375
5376         case PIPE_INTERRUPT:
5377                 qh = (struct fotg210_qh *) urb->hcpriv;
5378                 if (!qh)
5379                         break;
5380                 switch (qh->qh_state) {
5381                 case QH_STATE_LINKED:
5382                 case QH_STATE_COMPLETING:
5383                         start_unlink_intr(fotg210, qh);
5384                         break;
5385                 case QH_STATE_IDLE:
5386                         qh_completions(fotg210, qh);
5387                         break;
5388                 default:
5389                         fotg210_dbg(fotg210, "bogus qh %p state %d\n",
5390                                         qh, qh->qh_state);
5391                         goto done;
5392                 }
5393                 break;
5394
5395         case PIPE_ISOCHRONOUS:
5396                 /* itd... */
5397
5398                 /* wait till next completion, do it then. */
5399                 /* completion irqs can wait up to 1024 msec, */
5400                 break;
5401         }
5402 done:
5403         spin_unlock_irqrestore(&fotg210->lock, flags);
5404         return rc;
5405 }
5406
5407 /* bulk qh holds the data toggle */
5408
5409 static void fotg210_endpoint_disable(struct usb_hcd *hcd,
5410                 struct usb_host_endpoint *ep)
5411 {
5412         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5413         unsigned long flags;
5414         struct fotg210_qh *qh, *tmp;
5415
5416         /* ASSERT:  any requests/urbs are being unlinked */
5417         /* ASSERT:  nobody can be submitting urbs for this any more */
5418
5419 rescan:
5420         spin_lock_irqsave(&fotg210->lock, flags);
5421         qh = ep->hcpriv;
5422         if (!qh)
5423                 goto done;
5424
5425         /* endpoints can be iso streams.  for now, we don't
5426          * accelerate iso completions ... so spin a while.
5427          */
5428         if (qh->hw == NULL) {
5429                 struct fotg210_iso_stream *stream = ep->hcpriv;
5430
5431                 if (!list_empty(&stream->td_list))
5432                         goto idle_timeout;
5433
5434                 /* BUG_ON(!list_empty(&stream->free_list)); */
5435                 kfree(stream);
5436                 goto done;
5437         }
5438
5439         if (fotg210->rh_state < FOTG210_RH_RUNNING)
5440                 qh->qh_state = QH_STATE_IDLE;
5441         switch (qh->qh_state) {
5442         case QH_STATE_LINKED:
5443         case QH_STATE_COMPLETING:
5444                 for (tmp = fotg210->async->qh_next.qh;
5445                                 tmp && tmp != qh;
5446                                 tmp = tmp->qh_next.qh)
5447                         continue;
5448                 /* periodic qh self-unlinks on empty, and a COMPLETING qh
5449                  * may already be unlinked.
5450                  */
5451                 if (tmp)
5452                         start_unlink_async(fotg210, qh);
5453                 /* FALL THROUGH */
5454         case QH_STATE_UNLINK:           /* wait for hw to finish? */
5455         case QH_STATE_UNLINK_WAIT:
5456 idle_timeout:
5457                 spin_unlock_irqrestore(&fotg210->lock, flags);
5458                 schedule_timeout_uninterruptible(1);
5459                 goto rescan;
5460         case QH_STATE_IDLE:             /* fully unlinked */
5461                 if (qh->clearing_tt)
5462                         goto idle_timeout;
5463                 if (list_empty(&qh->qtd_list)) {
5464                         qh_destroy(fotg210, qh);
5465                         break;
5466                 }
5467                 /* else FALL THROUGH */
5468         default:
5469                 /* caller was supposed to have unlinked any requests;
5470                  * that's not our job.  just leak this memory.
5471                  */
5472                 fotg210_err(fotg210, "qh %p (#%02x) state %d%s\n",
5473                                 qh, ep->desc.bEndpointAddress, qh->qh_state,
5474                                 list_empty(&qh->qtd_list) ? "" : "(has tds)");
5475                 break;
5476         }
5477 done:
5478         ep->hcpriv = NULL;
5479         spin_unlock_irqrestore(&fotg210->lock, flags);
5480 }
5481
5482 static void fotg210_endpoint_reset(struct usb_hcd *hcd,
5483                 struct usb_host_endpoint *ep)
5484 {
5485         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5486         struct fotg210_qh *qh;
5487         int eptype = usb_endpoint_type(&ep->desc);
5488         int epnum = usb_endpoint_num(&ep->desc);
5489         int is_out = usb_endpoint_dir_out(&ep->desc);
5490         unsigned long flags;
5491
5492         if (eptype != USB_ENDPOINT_XFER_BULK && eptype != USB_ENDPOINT_XFER_INT)
5493                 return;
5494
5495         spin_lock_irqsave(&fotg210->lock, flags);
5496         qh = ep->hcpriv;
5497
5498         /* For Bulk and Interrupt endpoints we maintain the toggle state
5499          * in the hardware; the toggle bits in udev aren't used at all.
5500          * When an endpoint is reset by usb_clear_halt() we must reset
5501          * the toggle bit in the QH.
5502          */
5503         if (qh) {
5504                 usb_settoggle(qh->dev, epnum, is_out, 0);
5505                 if (!list_empty(&qh->qtd_list)) {
5506                         WARN_ONCE(1, "clear_halt for a busy endpoint\n");
5507                 } else if (qh->qh_state == QH_STATE_LINKED ||
5508                                 qh->qh_state == QH_STATE_COMPLETING) {
5509
5510                         /* The toggle value in the QH can't be updated
5511                          * while the QH is active.  Unlink it now;
5512                          * re-linking will call qh_refresh().
5513                          */
5514                         if (eptype == USB_ENDPOINT_XFER_BULK)
5515                                 start_unlink_async(fotg210, qh);
5516                         else
5517                                 start_unlink_intr(fotg210, qh);
5518                 }
5519         }
5520         spin_unlock_irqrestore(&fotg210->lock, flags);
5521 }
5522
5523 static int fotg210_get_frame(struct usb_hcd *hcd)
5524 {
5525         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5526
5527         return (fotg210_read_frame_index(fotg210) >> 3) %
5528                 fotg210->periodic_size;
5529 }
5530
5531 /* The EHCI in ChipIdea HDRC cannot be a separate module or device,
5532  * because its registers (and irq) are shared between host/gadget/otg
5533  * functions  and in order to facilitate role switching we cannot
5534  * give the fotg210 driver exclusive access to those.
5535  */
5536 MODULE_DESCRIPTION(DRIVER_DESC);
5537 MODULE_AUTHOR(DRIVER_AUTHOR);
5538 MODULE_LICENSE("GPL");
5539
5540 static const struct hc_driver fotg210_fotg210_hc_driver = {
5541         .description            = hcd_name,
5542         .product_desc           = "Faraday USB2.0 Host Controller",
5543         .hcd_priv_size          = sizeof(struct fotg210_hcd),
5544
5545         /*
5546          * generic hardware linkage
5547          */
5548         .irq                    = fotg210_irq,
5549         .flags                  = HCD_MEMORY | HCD_USB2,
5550
5551         /*
5552          * basic lifecycle operations
5553          */
5554         .reset                  = hcd_fotg210_init,
5555         .start                  = fotg210_run,
5556         .stop                   = fotg210_stop,
5557         .shutdown               = fotg210_shutdown,
5558
5559         /*
5560          * managing i/o requests and associated device resources
5561          */
5562         .urb_enqueue            = fotg210_urb_enqueue,
5563         .urb_dequeue            = fotg210_urb_dequeue,
5564         .endpoint_disable       = fotg210_endpoint_disable,
5565         .endpoint_reset         = fotg210_endpoint_reset,
5566
5567         /*
5568          * scheduling support
5569          */
5570         .get_frame_number       = fotg210_get_frame,
5571
5572         /*
5573          * root hub support
5574          */
5575         .hub_status_data        = fotg210_hub_status_data,
5576         .hub_control            = fotg210_hub_control,
5577         .bus_suspend            = fotg210_bus_suspend,
5578         .bus_resume             = fotg210_bus_resume,
5579
5580         .relinquish_port        = fotg210_relinquish_port,
5581         .port_handed_over       = fotg210_port_handed_over,
5582
5583         .clear_tt_buffer_complete = fotg210_clear_tt_buffer_complete,
5584 };
5585
5586 static void fotg210_init(struct fotg210_hcd *fotg210)
5587 {
5588         u32 value;
5589
5590         iowrite32(GMIR_MDEV_INT | GMIR_MOTG_INT | GMIR_INT_POLARITY,
5591                         &fotg210->regs->gmir);
5592
5593         value = ioread32(&fotg210->regs->otgcsr);
5594         value &= ~OTGCSR_A_BUS_DROP;
5595         value |= OTGCSR_A_BUS_REQ;
5596         iowrite32(value, &fotg210->regs->otgcsr);
5597 }
5598
5599 /**
5600  * fotg210_hcd_probe - initialize faraday FOTG210 HCDs
5601  *
5602  * Allocates basic resources for this USB host controller, and
5603  * then invokes the start() method for the HCD associated with it
5604  * through the hotplug entry's driver_data.
5605  */
5606 static int fotg210_hcd_probe(struct platform_device *pdev)
5607 {
5608         struct device *dev = &pdev->dev;
5609         struct usb_hcd *hcd;
5610         struct resource *res;
5611         int irq;
5612         int retval;
5613         struct fotg210_hcd *fotg210;
5614
5615         if (usb_disabled())
5616                 return -ENODEV;
5617
5618         pdev->dev.power.power_state = PMSG_ON;
5619
5620         res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
5621         if (!res) {
5622                 dev_err(dev, "Found HC with no IRQ. Check %s setup!\n",
5623                                 dev_name(dev));
5624                 return -ENODEV;
5625         }
5626
5627         irq = res->start;
5628
5629         hcd = usb_create_hcd(&fotg210_fotg210_hc_driver, dev,
5630                         dev_name(dev));
5631         if (!hcd) {
5632                 dev_err(dev, "failed to create hcd\n");
5633                 retval = -ENOMEM;
5634                 goto fail_create_hcd;
5635         }
5636
5637         hcd->has_tt = 1;
5638
5639         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
5640         hcd->regs = devm_ioremap_resource(&pdev->dev, res);
5641         if (IS_ERR(hcd->regs)) {
5642                 retval = PTR_ERR(hcd->regs);
5643                 goto failed;
5644         }
5645
5646         hcd->rsrc_start = res->start;
5647         hcd->rsrc_len = resource_size(res);
5648
5649         fotg210 = hcd_to_fotg210(hcd);
5650
5651         fotg210->caps = hcd->regs;
5652
5653         retval = fotg210_setup(hcd);
5654         if (retval)
5655                 goto failed;
5656
5657         fotg210_init(fotg210);
5658
5659         retval = usb_add_hcd(hcd, irq, IRQF_SHARED);
5660         if (retval) {
5661                 dev_err(dev, "failed to add hcd with err %d\n", retval);
5662                 goto failed;
5663         }
5664         device_wakeup_enable(hcd->self.controller);
5665
5666         return retval;
5667
5668 failed:
5669         usb_put_hcd(hcd);
5670 fail_create_hcd:
5671         dev_err(dev, "init %s fail, %d\n", dev_name(dev), retval);
5672         return retval;
5673 }
5674
5675 /**
5676  * fotg210_hcd_remove - shutdown processing for EHCI HCDs
5677  * @dev: USB Host Controller being removed
5678  *
5679  */
5680 static int fotg210_hcd_remove(struct platform_device *pdev)
5681 {
5682         struct device *dev = &pdev->dev;
5683         struct usb_hcd *hcd = dev_get_drvdata(dev);
5684
5685         if (!hcd)
5686                 return 0;
5687
5688         usb_remove_hcd(hcd);
5689         usb_put_hcd(hcd);
5690
5691         return 0;
5692 }
5693
5694 static struct platform_driver fotg210_hcd_driver = {
5695         .driver = {
5696                 .name   = "fotg210-hcd",
5697         },
5698         .probe  = fotg210_hcd_probe,
5699         .remove = fotg210_hcd_remove,
5700 };
5701
5702 static int __init fotg210_hcd_init(void)
5703 {
5704         int retval = 0;
5705
5706         if (usb_disabled())
5707                 return -ENODEV;
5708
5709         pr_info("%s: " DRIVER_DESC "\n", hcd_name);
5710         set_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5711         if (test_bit(USB_UHCI_LOADED, &usb_hcds_loaded) ||
5712                         test_bit(USB_OHCI_LOADED, &usb_hcds_loaded))
5713                 pr_warn("Warning! fotg210_hcd should always be loaded before uhci_hcd and ohci_hcd, not after\n");
5714
5715         pr_debug("%s: block sizes: qh %Zd qtd %Zd itd %Zd\n",
5716                         hcd_name, sizeof(struct fotg210_qh),
5717                         sizeof(struct fotg210_qtd),
5718                         sizeof(struct fotg210_itd));
5719
5720         fotg210_debug_root = debugfs_create_dir("fotg210", usb_debug_root);
5721         if (!fotg210_debug_root) {
5722                 retval = -ENOENT;
5723                 goto err_debug;
5724         }
5725
5726         retval = platform_driver_register(&fotg210_hcd_driver);
5727         if (retval < 0)
5728                 goto clean;
5729         return retval;
5730
5731 clean:
5732         debugfs_remove(fotg210_debug_root);
5733         fotg210_debug_root = NULL;
5734 err_debug:
5735         clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5736         return retval;
5737 }
5738 module_init(fotg210_hcd_init);
5739
5740 static void __exit fotg210_hcd_cleanup(void)
5741 {
5742         platform_driver_unregister(&fotg210_hcd_driver);
5743         debugfs_remove(fotg210_debug_root);
5744         clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5745 }
5746 module_exit(fotg210_hcd_cleanup);