GNU Linux-libre 5.19-rc6-gnu
[releases.git] / drivers / usb / gadget / udc / mv_udc_core.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2011 Marvell International Ltd. All rights reserved.
4  * Author: Chao Xie <chao.xie@marvell.com>
5  *         Neil Zhang <zhangwm@marvell.com>
6  */
7
8 #include <linux/module.h>
9 #include <linux/pci.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/dmapool.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/ioport.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/errno.h>
18 #include <linux/err.h>
19 #include <linux/timer.h>
20 #include <linux/list.h>
21 #include <linux/interrupt.h>
22 #include <linux/moduleparam.h>
23 #include <linux/device.h>
24 #include <linux/usb/ch9.h>
25 #include <linux/usb/gadget.h>
26 #include <linux/usb/otg.h>
27 #include <linux/pm.h>
28 #include <linux/io.h>
29 #include <linux/irq.h>
30 #include <linux/platform_device.h>
31 #include <linux/clk.h>
32 #include <linux/platform_data/mv_usb.h>
33 #include <asm/unaligned.h>
34
35 #include "mv_udc.h"
36
37 #define DRIVER_DESC             "Marvell PXA USB Device Controller driver"
38
39 #define ep_dir(ep)      (((ep)->ep_num == 0) ? \
40                                 ((ep)->udc->ep0_dir) : ((ep)->direction))
41
42 /* timeout value -- usec */
43 #define RESET_TIMEOUT           10000
44 #define FLUSH_TIMEOUT           10000
45 #define EPSTATUS_TIMEOUT        10000
46 #define PRIME_TIMEOUT           10000
47 #define READSAFE_TIMEOUT        1000
48
49 #define LOOPS_USEC_SHIFT        1
50 #define LOOPS_USEC              (1 << LOOPS_USEC_SHIFT)
51 #define LOOPS(timeout)          ((timeout) >> LOOPS_USEC_SHIFT)
52
53 static DECLARE_COMPLETION(release_done);
54
55 static const char driver_name[] = "mv_udc";
56
57 static void nuke(struct mv_ep *ep, int status);
58 static void stop_activity(struct mv_udc *udc, struct usb_gadget_driver *driver);
59
60 /* for endpoint 0 operations */
61 static const struct usb_endpoint_descriptor mv_ep0_desc = {
62         .bLength =              USB_DT_ENDPOINT_SIZE,
63         .bDescriptorType =      USB_DT_ENDPOINT,
64         .bEndpointAddress =     0,
65         .bmAttributes =         USB_ENDPOINT_XFER_CONTROL,
66         .wMaxPacketSize =       EP0_MAX_PKT_SIZE,
67 };
68
69 static void ep0_reset(struct mv_udc *udc)
70 {
71         struct mv_ep *ep;
72         u32 epctrlx;
73         int i = 0;
74
75         /* ep0 in and out */
76         for (i = 0; i < 2; i++) {
77                 ep = &udc->eps[i];
78                 ep->udc = udc;
79
80                 /* ep0 dQH */
81                 ep->dqh = &udc->ep_dqh[i];
82
83                 /* configure ep0 endpoint capabilities in dQH */
84                 ep->dqh->max_packet_length =
85                         (EP0_MAX_PKT_SIZE << EP_QUEUE_HEAD_MAX_PKT_LEN_POS)
86                         | EP_QUEUE_HEAD_IOS;
87
88                 ep->dqh->next_dtd_ptr = EP_QUEUE_HEAD_NEXT_TERMINATE;
89
90                 epctrlx = readl(&udc->op_regs->epctrlx[0]);
91                 if (i) {        /* TX */
92                         epctrlx |= EPCTRL_TX_ENABLE
93                                 | (USB_ENDPOINT_XFER_CONTROL
94                                         << EPCTRL_TX_EP_TYPE_SHIFT);
95
96                 } else {        /* RX */
97                         epctrlx |= EPCTRL_RX_ENABLE
98                                 | (USB_ENDPOINT_XFER_CONTROL
99                                         << EPCTRL_RX_EP_TYPE_SHIFT);
100                 }
101
102                 writel(epctrlx, &udc->op_regs->epctrlx[0]);
103         }
104 }
105
106 /* protocol ep0 stall, will automatically be cleared on new transaction */
107 static void ep0_stall(struct mv_udc *udc)
108 {
109         u32     epctrlx;
110
111         /* set TX and RX to stall */
112         epctrlx = readl(&udc->op_regs->epctrlx[0]);
113         epctrlx |= EPCTRL_RX_EP_STALL | EPCTRL_TX_EP_STALL;
114         writel(epctrlx, &udc->op_regs->epctrlx[0]);
115
116         /* update ep0 state */
117         udc->ep0_state = WAIT_FOR_SETUP;
118         udc->ep0_dir = EP_DIR_OUT;
119 }
120
121 static int process_ep_req(struct mv_udc *udc, int index,
122         struct mv_req *curr_req)
123 {
124         struct mv_dtd   *curr_dtd;
125         struct mv_dqh   *curr_dqh;
126         int actual, remaining_length;
127         int i, direction;
128         int retval = 0;
129         u32 errors;
130         u32 bit_pos;
131
132         curr_dqh = &udc->ep_dqh[index];
133         direction = index % 2;
134
135         curr_dtd = curr_req->head;
136         actual = curr_req->req.length;
137
138         for (i = 0; i < curr_req->dtd_count; i++) {
139                 if (curr_dtd->size_ioc_sts & DTD_STATUS_ACTIVE) {
140                         dev_dbg(&udc->dev->dev, "%s, dTD not completed\n",
141                                 udc->eps[index].name);
142                         return 1;
143                 }
144
145                 errors = curr_dtd->size_ioc_sts & DTD_ERROR_MASK;
146                 if (!errors) {
147                         remaining_length =
148                                 (curr_dtd->size_ioc_sts & DTD_PACKET_SIZE)
149                                         >> DTD_LENGTH_BIT_POS;
150                         actual -= remaining_length;
151
152                         if (remaining_length) {
153                                 if (direction) {
154                                         dev_dbg(&udc->dev->dev,
155                                                 "TX dTD remains data\n");
156                                         retval = -EPROTO;
157                                         break;
158                                 } else
159                                         break;
160                         }
161                 } else {
162                         dev_info(&udc->dev->dev,
163                                 "complete_tr error: ep=%d %s: error = 0x%x\n",
164                                 index >> 1, direction ? "SEND" : "RECV",
165                                 errors);
166                         if (errors & DTD_STATUS_HALTED) {
167                                 /* Clear the errors and Halt condition */
168                                 curr_dqh->size_ioc_int_sts &= ~errors;
169                                 retval = -EPIPE;
170                         } else if (errors & DTD_STATUS_DATA_BUFF_ERR) {
171                                 retval = -EPROTO;
172                         } else if (errors & DTD_STATUS_TRANSACTION_ERR) {
173                                 retval = -EILSEQ;
174                         }
175                 }
176                 if (i != curr_req->dtd_count - 1)
177                         curr_dtd = (struct mv_dtd *)curr_dtd->next_dtd_virt;
178         }
179         if (retval)
180                 return retval;
181
182         if (direction == EP_DIR_OUT)
183                 bit_pos = 1 << curr_req->ep->ep_num;
184         else
185                 bit_pos = 1 << (16 + curr_req->ep->ep_num);
186
187         while (curr_dqh->curr_dtd_ptr == curr_dtd->td_dma) {
188                 if (curr_dtd->dtd_next == EP_QUEUE_HEAD_NEXT_TERMINATE) {
189                         while (readl(&udc->op_regs->epstatus) & bit_pos)
190                                 udelay(1);
191                         break;
192                 }
193                 udelay(1);
194         }
195
196         curr_req->req.actual = actual;
197
198         return 0;
199 }
200
201 /*
202  * done() - retire a request; caller blocked irqs
203  * @status : request status to be set, only works when
204  * request is still in progress.
205  */
206 static void done(struct mv_ep *ep, struct mv_req *req, int status)
207         __releases(&ep->udc->lock)
208         __acquires(&ep->udc->lock)
209 {
210         struct mv_udc *udc = NULL;
211         unsigned char stopped = ep->stopped;
212         struct mv_dtd *curr_td, *next_td;
213         int j;
214
215         udc = (struct mv_udc *)ep->udc;
216         /* Removed the req from fsl_ep->queue */
217         list_del_init(&req->queue);
218
219         /* req.status should be set as -EINPROGRESS in ep_queue() */
220         if (req->req.status == -EINPROGRESS)
221                 req->req.status = status;
222         else
223                 status = req->req.status;
224
225         /* Free dtd for the request */
226         next_td = req->head;
227         for (j = 0; j < req->dtd_count; j++) {
228                 curr_td = next_td;
229                 if (j != req->dtd_count - 1)
230                         next_td = curr_td->next_dtd_virt;
231                 dma_pool_free(udc->dtd_pool, curr_td, curr_td->td_dma);
232         }
233
234         usb_gadget_unmap_request(&udc->gadget, &req->req, ep_dir(ep));
235
236         if (status && (status != -ESHUTDOWN))
237                 dev_info(&udc->dev->dev, "complete %s req %p stat %d len %u/%u",
238                         ep->ep.name, &req->req, status,
239                         req->req.actual, req->req.length);
240
241         ep->stopped = 1;
242
243         spin_unlock(&ep->udc->lock);
244
245         usb_gadget_giveback_request(&ep->ep, &req->req);
246
247         spin_lock(&ep->udc->lock);
248         ep->stopped = stopped;
249 }
250
251 static int queue_dtd(struct mv_ep *ep, struct mv_req *req)
252 {
253         struct mv_udc *udc;
254         struct mv_dqh *dqh;
255         u32 bit_pos, direction;
256         u32 usbcmd, epstatus;
257         unsigned int loops;
258         int retval = 0;
259
260         udc = ep->udc;
261         direction = ep_dir(ep);
262         dqh = &(udc->ep_dqh[ep->ep_num * 2 + direction]);
263         bit_pos = 1 << (((direction == EP_DIR_OUT) ? 0 : 16) + ep->ep_num);
264
265         /* check if the pipe is empty */
266         if (!(list_empty(&ep->queue))) {
267                 struct mv_req *lastreq;
268                 lastreq = list_entry(ep->queue.prev, struct mv_req, queue);
269                 lastreq->tail->dtd_next =
270                         req->head->td_dma & EP_QUEUE_HEAD_NEXT_POINTER_MASK;
271
272                 wmb();
273
274                 if (readl(&udc->op_regs->epprime) & bit_pos)
275                         goto done;
276
277                 loops = LOOPS(READSAFE_TIMEOUT);
278                 while (1) {
279                         /* start with setting the semaphores */
280                         usbcmd = readl(&udc->op_regs->usbcmd);
281                         usbcmd |= USBCMD_ATDTW_TRIPWIRE_SET;
282                         writel(usbcmd, &udc->op_regs->usbcmd);
283
284                         /* read the endpoint status */
285                         epstatus = readl(&udc->op_regs->epstatus) & bit_pos;
286
287                         /*
288                          * Reread the ATDTW semaphore bit to check if it is
289                          * cleared. When hardware see a hazard, it will clear
290                          * the bit or else we remain set to 1 and we can
291                          * proceed with priming of endpoint if not already
292                          * primed.
293                          */
294                         if (readl(&udc->op_regs->usbcmd)
295                                 & USBCMD_ATDTW_TRIPWIRE_SET)
296                                 break;
297
298                         loops--;
299                         if (loops == 0) {
300                                 dev_err(&udc->dev->dev,
301                                         "Timeout for ATDTW_TRIPWIRE...\n");
302                                 retval = -ETIME;
303                                 goto done;
304                         }
305                         udelay(LOOPS_USEC);
306                 }
307
308                 /* Clear the semaphore */
309                 usbcmd = readl(&udc->op_regs->usbcmd);
310                 usbcmd &= USBCMD_ATDTW_TRIPWIRE_CLEAR;
311                 writel(usbcmd, &udc->op_regs->usbcmd);
312
313                 if (epstatus)
314                         goto done;
315         }
316
317         /* Write dQH next pointer and terminate bit to 0 */
318         dqh->next_dtd_ptr = req->head->td_dma
319                                 & EP_QUEUE_HEAD_NEXT_POINTER_MASK;
320
321         /* clear active and halt bit, in case set from a previous error */
322         dqh->size_ioc_int_sts &= ~(DTD_STATUS_ACTIVE | DTD_STATUS_HALTED);
323
324         /* Ensure that updates to the QH will occur before priming. */
325         wmb();
326
327         /* Prime the Endpoint */
328         writel(bit_pos, &udc->op_regs->epprime);
329
330 done:
331         return retval;
332 }
333
334 static struct mv_dtd *build_dtd(struct mv_req *req, unsigned *length,
335                 dma_addr_t *dma, int *is_last)
336 {
337         struct mv_dtd *dtd;
338         struct mv_udc *udc;
339         struct mv_dqh *dqh;
340         u32 temp, mult = 0;
341
342         /* how big will this transfer be? */
343         if (usb_endpoint_xfer_isoc(req->ep->ep.desc)) {
344                 dqh = req->ep->dqh;
345                 mult = (dqh->max_packet_length >> EP_QUEUE_HEAD_MULT_POS)
346                                 & 0x3;
347                 *length = min(req->req.length - req->req.actual,
348                                 (unsigned)(mult * req->ep->ep.maxpacket));
349         } else
350                 *length = min(req->req.length - req->req.actual,
351                                 (unsigned)EP_MAX_LENGTH_TRANSFER);
352
353         udc = req->ep->udc;
354
355         /*
356          * Be careful that no _GFP_HIGHMEM is set,
357          * or we can not use dma_to_virt
358          */
359         dtd = dma_pool_alloc(udc->dtd_pool, GFP_ATOMIC, dma);
360         if (dtd == NULL)
361                 return dtd;
362
363         dtd->td_dma = *dma;
364         /* initialize buffer page pointers */
365         temp = (u32)(req->req.dma + req->req.actual);
366         dtd->buff_ptr0 = cpu_to_le32(temp);
367         temp &= ~0xFFF;
368         dtd->buff_ptr1 = cpu_to_le32(temp + 0x1000);
369         dtd->buff_ptr2 = cpu_to_le32(temp + 0x2000);
370         dtd->buff_ptr3 = cpu_to_le32(temp + 0x3000);
371         dtd->buff_ptr4 = cpu_to_le32(temp + 0x4000);
372
373         req->req.actual += *length;
374
375         /* zlp is needed if req->req.zero is set */
376         if (req->req.zero) {
377                 if (*length == 0 || (*length % req->ep->ep.maxpacket) != 0)
378                         *is_last = 1;
379                 else
380                         *is_last = 0;
381         } else if (req->req.length == req->req.actual)
382                 *is_last = 1;
383         else
384                 *is_last = 0;
385
386         /* Fill in the transfer size; set active bit */
387         temp = ((*length << DTD_LENGTH_BIT_POS) | DTD_STATUS_ACTIVE);
388
389         /* Enable interrupt for the last dtd of a request */
390         if (*is_last && !req->req.no_interrupt)
391                 temp |= DTD_IOC;
392
393         temp |= mult << 10;
394
395         dtd->size_ioc_sts = temp;
396
397         mb();
398
399         return dtd;
400 }
401
402 /* generate dTD linked list for a request */
403 static int req_to_dtd(struct mv_req *req)
404 {
405         unsigned count;
406         int is_last, is_first = 1;
407         struct mv_dtd *dtd, *last_dtd = NULL;
408         dma_addr_t dma;
409
410         do {
411                 dtd = build_dtd(req, &count, &dma, &is_last);
412                 if (dtd == NULL)
413                         return -ENOMEM;
414
415                 if (is_first) {
416                         is_first = 0;
417                         req->head = dtd;
418                 } else {
419                         last_dtd->dtd_next = dma;
420                         last_dtd->next_dtd_virt = dtd;
421                 }
422                 last_dtd = dtd;
423                 req->dtd_count++;
424         } while (!is_last);
425
426         /* set terminate bit to 1 for the last dTD */
427         dtd->dtd_next = DTD_NEXT_TERMINATE;
428
429         req->tail = dtd;
430
431         return 0;
432 }
433
434 static int mv_ep_enable(struct usb_ep *_ep,
435                 const struct usb_endpoint_descriptor *desc)
436 {
437         struct mv_udc *udc;
438         struct mv_ep *ep;
439         struct mv_dqh *dqh;
440         u16 max = 0;
441         u32 bit_pos, epctrlx, direction;
442         const unsigned char zlt = 1;
443         unsigned char ios, mult;
444         unsigned long flags;
445
446         ep = container_of(_ep, struct mv_ep, ep);
447         udc = ep->udc;
448
449         if (!_ep || !desc
450                         || desc->bDescriptorType != USB_DT_ENDPOINT)
451                 return -EINVAL;
452
453         if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN)
454                 return -ESHUTDOWN;
455
456         direction = ep_dir(ep);
457         max = usb_endpoint_maxp(desc);
458
459         /*
460          * disable HW zero length termination select
461          * driver handles zero length packet through req->req.zero
462          */
463         bit_pos = 1 << ((direction == EP_DIR_OUT ? 0 : 16) + ep->ep_num);
464
465         /* Check if the Endpoint is Primed */
466         if ((readl(&udc->op_regs->epprime) & bit_pos)
467                 || (readl(&udc->op_regs->epstatus) & bit_pos)) {
468                 dev_info(&udc->dev->dev,
469                         "ep=%d %s: Init ERROR: ENDPTPRIME=0x%x,"
470                         " ENDPTSTATUS=0x%x, bit_pos=0x%x\n",
471                         (unsigned)ep->ep_num, direction ? "SEND" : "RECV",
472                         (unsigned)readl(&udc->op_regs->epprime),
473                         (unsigned)readl(&udc->op_regs->epstatus),
474                         (unsigned)bit_pos);
475                 goto en_done;
476         }
477
478         /* Set the max packet length, interrupt on Setup and Mult fields */
479         ios = 0;
480         mult = 0;
481         switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
482         case USB_ENDPOINT_XFER_BULK:
483         case USB_ENDPOINT_XFER_INT:
484                 break;
485         case USB_ENDPOINT_XFER_CONTROL:
486                 ios = 1;
487                 break;
488         case USB_ENDPOINT_XFER_ISOC:
489                 /* Calculate transactions needed for high bandwidth iso */
490                 mult = usb_endpoint_maxp_mult(desc);
491                 /* 3 transactions at most */
492                 if (mult > 3)
493                         goto en_done;
494                 break;
495         default:
496                 goto en_done;
497         }
498
499         spin_lock_irqsave(&udc->lock, flags);
500         /* Get the endpoint queue head address */
501         dqh = ep->dqh;
502         dqh->max_packet_length = (max << EP_QUEUE_HEAD_MAX_PKT_LEN_POS)
503                 | (mult << EP_QUEUE_HEAD_MULT_POS)
504                 | (zlt ? EP_QUEUE_HEAD_ZLT_SEL : 0)
505                 | (ios ? EP_QUEUE_HEAD_IOS : 0);
506         dqh->next_dtd_ptr = 1;
507         dqh->size_ioc_int_sts = 0;
508
509         ep->ep.maxpacket = max;
510         ep->ep.desc = desc;
511         ep->stopped = 0;
512
513         /* Enable the endpoint for Rx or Tx and set the endpoint type */
514         epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
515         if (direction == EP_DIR_IN) {
516                 epctrlx &= ~EPCTRL_TX_ALL_MASK;
517                 epctrlx |= EPCTRL_TX_ENABLE | EPCTRL_TX_DATA_TOGGLE_RST
518                         | ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
519                                 << EPCTRL_TX_EP_TYPE_SHIFT);
520         } else {
521                 epctrlx &= ~EPCTRL_RX_ALL_MASK;
522                 epctrlx |= EPCTRL_RX_ENABLE | EPCTRL_RX_DATA_TOGGLE_RST
523                         | ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
524                                 << EPCTRL_RX_EP_TYPE_SHIFT);
525         }
526         writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
527
528         /*
529          * Implement Guideline (GL# USB-7) The unused endpoint type must
530          * be programmed to bulk.
531          */
532         epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
533         if ((epctrlx & EPCTRL_RX_ENABLE) == 0) {
534                 epctrlx |= (USB_ENDPOINT_XFER_BULK
535                                 << EPCTRL_RX_EP_TYPE_SHIFT);
536                 writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
537         }
538
539         epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
540         if ((epctrlx & EPCTRL_TX_ENABLE) == 0) {
541                 epctrlx |= (USB_ENDPOINT_XFER_BULK
542                                 << EPCTRL_TX_EP_TYPE_SHIFT);
543                 writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
544         }
545
546         spin_unlock_irqrestore(&udc->lock, flags);
547
548         return 0;
549 en_done:
550         return -EINVAL;
551 }
552
553 static int  mv_ep_disable(struct usb_ep *_ep)
554 {
555         struct mv_udc *udc;
556         struct mv_ep *ep;
557         struct mv_dqh *dqh;
558         u32 epctrlx, direction;
559         unsigned long flags;
560
561         ep = container_of(_ep, struct mv_ep, ep);
562         if ((_ep == NULL) || !ep->ep.desc)
563                 return -EINVAL;
564
565         udc = ep->udc;
566
567         /* Get the endpoint queue head address */
568         dqh = ep->dqh;
569
570         spin_lock_irqsave(&udc->lock, flags);
571
572         direction = ep_dir(ep);
573
574         /* Reset the max packet length and the interrupt on Setup */
575         dqh->max_packet_length = 0;
576
577         /* Disable the endpoint for Rx or Tx and reset the endpoint type */
578         epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
579         epctrlx &= ~((direction == EP_DIR_IN)
580                         ? (EPCTRL_TX_ENABLE | EPCTRL_TX_TYPE)
581                         : (EPCTRL_RX_ENABLE | EPCTRL_RX_TYPE));
582         writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
583
584         /* nuke all pending requests (does flush) */
585         nuke(ep, -ESHUTDOWN);
586
587         ep->ep.desc = NULL;
588         ep->stopped = 1;
589
590         spin_unlock_irqrestore(&udc->lock, flags);
591
592         return 0;
593 }
594
595 static struct usb_request *
596 mv_alloc_request(struct usb_ep *_ep, gfp_t gfp_flags)
597 {
598         struct mv_req *req = NULL;
599
600         req = kzalloc(sizeof *req, gfp_flags);
601         if (!req)
602                 return NULL;
603
604         req->req.dma = DMA_ADDR_INVALID;
605         INIT_LIST_HEAD(&req->queue);
606
607         return &req->req;
608 }
609
610 static void mv_free_request(struct usb_ep *_ep, struct usb_request *_req)
611 {
612         struct mv_req *req = NULL;
613
614         req = container_of(_req, struct mv_req, req);
615
616         if (_req)
617                 kfree(req);
618 }
619
620 static void mv_ep_fifo_flush(struct usb_ep *_ep)
621 {
622         struct mv_udc *udc;
623         u32 bit_pos, direction;
624         struct mv_ep *ep;
625         unsigned int loops;
626
627         if (!_ep)
628                 return;
629
630         ep = container_of(_ep, struct mv_ep, ep);
631         if (!ep->ep.desc)
632                 return;
633
634         udc = ep->udc;
635         direction = ep_dir(ep);
636
637         if (ep->ep_num == 0)
638                 bit_pos = (1 << 16) | 1;
639         else if (direction == EP_DIR_OUT)
640                 bit_pos = 1 << ep->ep_num;
641         else
642                 bit_pos = 1 << (16 + ep->ep_num);
643
644         loops = LOOPS(EPSTATUS_TIMEOUT);
645         do {
646                 unsigned int inter_loops;
647
648                 if (loops == 0) {
649                         dev_err(&udc->dev->dev,
650                                 "TIMEOUT for ENDPTSTATUS=0x%x, bit_pos=0x%x\n",
651                                 (unsigned)readl(&udc->op_regs->epstatus),
652                                 (unsigned)bit_pos);
653                         return;
654                 }
655                 /* Write 1 to the Flush register */
656                 writel(bit_pos, &udc->op_regs->epflush);
657
658                 /* Wait until flushing completed */
659                 inter_loops = LOOPS(FLUSH_TIMEOUT);
660                 while (readl(&udc->op_regs->epflush)) {
661                         /*
662                          * ENDPTFLUSH bit should be cleared to indicate this
663                          * operation is complete
664                          */
665                         if (inter_loops == 0) {
666                                 dev_err(&udc->dev->dev,
667                                         "TIMEOUT for ENDPTFLUSH=0x%x,"
668                                         "bit_pos=0x%x\n",
669                                         (unsigned)readl(&udc->op_regs->epflush),
670                                         (unsigned)bit_pos);
671                                 return;
672                         }
673                         inter_loops--;
674                         udelay(LOOPS_USEC);
675                 }
676                 loops--;
677         } while (readl(&udc->op_regs->epstatus) & bit_pos);
678 }
679
680 /* queues (submits) an I/O request to an endpoint */
681 static int
682 mv_ep_queue(struct usb_ep *_ep, struct usb_request *_req, gfp_t gfp_flags)
683 {
684         struct mv_ep *ep = container_of(_ep, struct mv_ep, ep);
685         struct mv_req *req = container_of(_req, struct mv_req, req);
686         struct mv_udc *udc = ep->udc;
687         unsigned long flags;
688         int retval;
689
690         /* catch various bogus parameters */
691         if (!_req || !req->req.complete || !req->req.buf
692                         || !list_empty(&req->queue)) {
693                 dev_err(&udc->dev->dev, "%s, bad params", __func__);
694                 return -EINVAL;
695         }
696         if (unlikely(!_ep || !ep->ep.desc)) {
697                 dev_err(&udc->dev->dev, "%s, bad ep", __func__);
698                 return -EINVAL;
699         }
700
701         udc = ep->udc;
702         if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN)
703                 return -ESHUTDOWN;
704
705         req->ep = ep;
706
707         /* map virtual address to hardware */
708         retval = usb_gadget_map_request(&udc->gadget, _req, ep_dir(ep));
709         if (retval)
710                 return retval;
711
712         req->req.status = -EINPROGRESS;
713         req->req.actual = 0;
714         req->dtd_count = 0;
715
716         spin_lock_irqsave(&udc->lock, flags);
717
718         /* build dtds and push them to device queue */
719         if (!req_to_dtd(req)) {
720                 retval = queue_dtd(ep, req);
721                 if (retval) {
722                         spin_unlock_irqrestore(&udc->lock, flags);
723                         dev_err(&udc->dev->dev, "Failed to queue dtd\n");
724                         goto err_unmap_dma;
725                 }
726         } else {
727                 spin_unlock_irqrestore(&udc->lock, flags);
728                 dev_err(&udc->dev->dev, "Failed to dma_pool_alloc\n");
729                 retval = -ENOMEM;
730                 goto err_unmap_dma;
731         }
732
733         /* Update ep0 state */
734         if (ep->ep_num == 0)
735                 udc->ep0_state = DATA_STATE_XMIT;
736
737         /* irq handler advances the queue */
738         list_add_tail(&req->queue, &ep->queue);
739         spin_unlock_irqrestore(&udc->lock, flags);
740
741         return 0;
742
743 err_unmap_dma:
744         usb_gadget_unmap_request(&udc->gadget, _req, ep_dir(ep));
745
746         return retval;
747 }
748
749 static void mv_prime_ep(struct mv_ep *ep, struct mv_req *req)
750 {
751         struct mv_dqh *dqh = ep->dqh;
752         u32 bit_pos;
753
754         /* Write dQH next pointer and terminate bit to 0 */
755         dqh->next_dtd_ptr = req->head->td_dma
756                 & EP_QUEUE_HEAD_NEXT_POINTER_MASK;
757
758         /* clear active and halt bit, in case set from a previous error */
759         dqh->size_ioc_int_sts &= ~(DTD_STATUS_ACTIVE | DTD_STATUS_HALTED);
760
761         /* Ensure that updates to the QH will occure before priming. */
762         wmb();
763
764         bit_pos = 1 << (((ep_dir(ep) == EP_DIR_OUT) ? 0 : 16) + ep->ep_num);
765
766         /* Prime the Endpoint */
767         writel(bit_pos, &ep->udc->op_regs->epprime);
768 }
769
770 /* dequeues (cancels, unlinks) an I/O request from an endpoint */
771 static int mv_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
772 {
773         struct mv_ep *ep = container_of(_ep, struct mv_ep, ep);
774         struct mv_req *req = NULL, *iter;
775         struct mv_udc *udc = ep->udc;
776         unsigned long flags;
777         int stopped, ret = 0;
778         u32 epctrlx;
779
780         if (!_ep || !_req)
781                 return -EINVAL;
782
783         spin_lock_irqsave(&ep->udc->lock, flags);
784         stopped = ep->stopped;
785
786         /* Stop the ep before we deal with the queue */
787         ep->stopped = 1;
788         epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
789         if (ep_dir(ep) == EP_DIR_IN)
790                 epctrlx &= ~EPCTRL_TX_ENABLE;
791         else
792                 epctrlx &= ~EPCTRL_RX_ENABLE;
793         writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
794
795         /* make sure it's actually queued on this endpoint */
796         list_for_each_entry(iter, &ep->queue, queue) {
797                 if (&iter->req != _req)
798                         continue;
799                 req = iter;
800                 break;
801         }
802         if (!req) {
803                 ret = -EINVAL;
804                 goto out;
805         }
806
807         /* The request is in progress, or completed but not dequeued */
808         if (ep->queue.next == &req->queue) {
809                 _req->status = -ECONNRESET;
810                 mv_ep_fifo_flush(_ep);  /* flush current transfer */
811
812                 /* The request isn't the last request in this ep queue */
813                 if (req->queue.next != &ep->queue) {
814                         struct mv_req *next_req;
815
816                         next_req = list_entry(req->queue.next,
817                                 struct mv_req, queue);
818
819                         /* Point the QH to the first TD of next request */
820                         mv_prime_ep(ep, next_req);
821                 } else {
822                         struct mv_dqh *qh;
823
824                         qh = ep->dqh;
825                         qh->next_dtd_ptr = 1;
826                         qh->size_ioc_int_sts = 0;
827                 }
828
829                 /* The request hasn't been processed, patch up the TD chain */
830         } else {
831                 struct mv_req *prev_req;
832
833                 prev_req = list_entry(req->queue.prev, struct mv_req, queue);
834                 writel(readl(&req->tail->dtd_next),
835                                 &prev_req->tail->dtd_next);
836
837         }
838
839         done(ep, req, -ECONNRESET);
840
841         /* Enable EP */
842 out:
843         epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
844         if (ep_dir(ep) == EP_DIR_IN)
845                 epctrlx |= EPCTRL_TX_ENABLE;
846         else
847                 epctrlx |= EPCTRL_RX_ENABLE;
848         writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
849         ep->stopped = stopped;
850
851         spin_unlock_irqrestore(&ep->udc->lock, flags);
852         return ret;
853 }
854
855 static void ep_set_stall(struct mv_udc *udc, u8 ep_num, u8 direction, int stall)
856 {
857         u32 epctrlx;
858
859         epctrlx = readl(&udc->op_regs->epctrlx[ep_num]);
860
861         if (stall) {
862                 if (direction == EP_DIR_IN)
863                         epctrlx |= EPCTRL_TX_EP_STALL;
864                 else
865                         epctrlx |= EPCTRL_RX_EP_STALL;
866         } else {
867                 if (direction == EP_DIR_IN) {
868                         epctrlx &= ~EPCTRL_TX_EP_STALL;
869                         epctrlx |= EPCTRL_TX_DATA_TOGGLE_RST;
870                 } else {
871                         epctrlx &= ~EPCTRL_RX_EP_STALL;
872                         epctrlx |= EPCTRL_RX_DATA_TOGGLE_RST;
873                 }
874         }
875         writel(epctrlx, &udc->op_regs->epctrlx[ep_num]);
876 }
877
878 static int ep_is_stall(struct mv_udc *udc, u8 ep_num, u8 direction)
879 {
880         u32 epctrlx;
881
882         epctrlx = readl(&udc->op_regs->epctrlx[ep_num]);
883
884         if (direction == EP_DIR_OUT)
885                 return (epctrlx & EPCTRL_RX_EP_STALL) ? 1 : 0;
886         else
887                 return (epctrlx & EPCTRL_TX_EP_STALL) ? 1 : 0;
888 }
889
890 static int mv_ep_set_halt_wedge(struct usb_ep *_ep, int halt, int wedge)
891 {
892         struct mv_ep *ep;
893         unsigned long flags;
894         int status = 0;
895         struct mv_udc *udc;
896
897         ep = container_of(_ep, struct mv_ep, ep);
898         udc = ep->udc;
899         if (!_ep || !ep->ep.desc) {
900                 status = -EINVAL;
901                 goto out;
902         }
903
904         if (ep->ep.desc->bmAttributes == USB_ENDPOINT_XFER_ISOC) {
905                 status = -EOPNOTSUPP;
906                 goto out;
907         }
908
909         /*
910          * Attempt to halt IN ep will fail if any transfer requests
911          * are still queue
912          */
913         if (halt && (ep_dir(ep) == EP_DIR_IN) && !list_empty(&ep->queue)) {
914                 status = -EAGAIN;
915                 goto out;
916         }
917
918         spin_lock_irqsave(&ep->udc->lock, flags);
919         ep_set_stall(udc, ep->ep_num, ep_dir(ep), halt);
920         if (halt && wedge)
921                 ep->wedge = 1;
922         else if (!halt)
923                 ep->wedge = 0;
924         spin_unlock_irqrestore(&ep->udc->lock, flags);
925
926         if (ep->ep_num == 0) {
927                 udc->ep0_state = WAIT_FOR_SETUP;
928                 udc->ep0_dir = EP_DIR_OUT;
929         }
930 out:
931         return status;
932 }
933
934 static int mv_ep_set_halt(struct usb_ep *_ep, int halt)
935 {
936         return mv_ep_set_halt_wedge(_ep, halt, 0);
937 }
938
939 static int mv_ep_set_wedge(struct usb_ep *_ep)
940 {
941         return mv_ep_set_halt_wedge(_ep, 1, 1);
942 }
943
944 static const struct usb_ep_ops mv_ep_ops = {
945         .enable         = mv_ep_enable,
946         .disable        = mv_ep_disable,
947
948         .alloc_request  = mv_alloc_request,
949         .free_request   = mv_free_request,
950
951         .queue          = mv_ep_queue,
952         .dequeue        = mv_ep_dequeue,
953
954         .set_wedge      = mv_ep_set_wedge,
955         .set_halt       = mv_ep_set_halt,
956         .fifo_flush     = mv_ep_fifo_flush,     /* flush fifo */
957 };
958
959 static int udc_clock_enable(struct mv_udc *udc)
960 {
961         return clk_prepare_enable(udc->clk);
962 }
963
964 static void udc_clock_disable(struct mv_udc *udc)
965 {
966         clk_disable_unprepare(udc->clk);
967 }
968
969 static void udc_stop(struct mv_udc *udc)
970 {
971         u32 tmp;
972
973         /* Disable interrupts */
974         tmp = readl(&udc->op_regs->usbintr);
975         tmp &= ~(USBINTR_INT_EN | USBINTR_ERR_INT_EN |
976                 USBINTR_PORT_CHANGE_DETECT_EN | USBINTR_RESET_EN);
977         writel(tmp, &udc->op_regs->usbintr);
978
979         udc->stopped = 1;
980
981         /* Reset the Run the bit in the command register to stop VUSB */
982         tmp = readl(&udc->op_regs->usbcmd);
983         tmp &= ~USBCMD_RUN_STOP;
984         writel(tmp, &udc->op_regs->usbcmd);
985 }
986
987 static void udc_start(struct mv_udc *udc)
988 {
989         u32 usbintr;
990
991         usbintr = USBINTR_INT_EN | USBINTR_ERR_INT_EN
992                 | USBINTR_PORT_CHANGE_DETECT_EN
993                 | USBINTR_RESET_EN | USBINTR_DEVICE_SUSPEND;
994         /* Enable interrupts */
995         writel(usbintr, &udc->op_regs->usbintr);
996
997         udc->stopped = 0;
998
999         /* Set the Run bit in the command register */
1000         writel(USBCMD_RUN_STOP, &udc->op_regs->usbcmd);
1001 }
1002
1003 static int udc_reset(struct mv_udc *udc)
1004 {
1005         unsigned int loops;
1006         u32 tmp, portsc;
1007
1008         /* Stop the controller */
1009         tmp = readl(&udc->op_regs->usbcmd);
1010         tmp &= ~USBCMD_RUN_STOP;
1011         writel(tmp, &udc->op_regs->usbcmd);
1012
1013         /* Reset the controller to get default values */
1014         writel(USBCMD_CTRL_RESET, &udc->op_regs->usbcmd);
1015
1016         /* wait for reset to complete */
1017         loops = LOOPS(RESET_TIMEOUT);
1018         while (readl(&udc->op_regs->usbcmd) & USBCMD_CTRL_RESET) {
1019                 if (loops == 0) {
1020                         dev_err(&udc->dev->dev,
1021                                 "Wait for RESET completed TIMEOUT\n");
1022                         return -ETIMEDOUT;
1023                 }
1024                 loops--;
1025                 udelay(LOOPS_USEC);
1026         }
1027
1028         /* set controller to device mode */
1029         tmp = readl(&udc->op_regs->usbmode);
1030         tmp |= USBMODE_CTRL_MODE_DEVICE;
1031
1032         /* turn setup lockout off, require setup tripwire in usbcmd */
1033         tmp |= USBMODE_SETUP_LOCK_OFF;
1034
1035         writel(tmp, &udc->op_regs->usbmode);
1036
1037         writel(0x0, &udc->op_regs->epsetupstat);
1038
1039         /* Configure the Endpoint List Address */
1040         writel(udc->ep_dqh_dma & USB_EP_LIST_ADDRESS_MASK,
1041                 &udc->op_regs->eplistaddr);
1042
1043         portsc = readl(&udc->op_regs->portsc[0]);
1044         if (readl(&udc->cap_regs->hcsparams) & HCSPARAMS_PPC)
1045                 portsc &= (~PORTSCX_W1C_BITS | ~PORTSCX_PORT_POWER);
1046
1047         if (udc->force_fs)
1048                 portsc |= PORTSCX_FORCE_FULL_SPEED_CONNECT;
1049         else
1050                 portsc &= (~PORTSCX_FORCE_FULL_SPEED_CONNECT);
1051
1052         writel(portsc, &udc->op_regs->portsc[0]);
1053
1054         tmp = readl(&udc->op_regs->epctrlx[0]);
1055         tmp &= ~(EPCTRL_TX_EP_STALL | EPCTRL_RX_EP_STALL);
1056         writel(tmp, &udc->op_regs->epctrlx[0]);
1057
1058         return 0;
1059 }
1060
1061 static int mv_udc_enable_internal(struct mv_udc *udc)
1062 {
1063         int retval;
1064
1065         if (udc->active)
1066                 return 0;
1067
1068         dev_dbg(&udc->dev->dev, "enable udc\n");
1069         retval = udc_clock_enable(udc);
1070         if (retval)
1071                 return retval;
1072
1073         if (udc->pdata->phy_init) {
1074                 retval = udc->pdata->phy_init(udc->phy_regs);
1075                 if (retval) {
1076                         dev_err(&udc->dev->dev,
1077                                 "init phy error %d\n", retval);
1078                         udc_clock_disable(udc);
1079                         return retval;
1080                 }
1081         }
1082         udc->active = 1;
1083
1084         return 0;
1085 }
1086
1087 static int mv_udc_enable(struct mv_udc *udc)
1088 {
1089         if (udc->clock_gating)
1090                 return mv_udc_enable_internal(udc);
1091
1092         return 0;
1093 }
1094
1095 static void mv_udc_disable_internal(struct mv_udc *udc)
1096 {
1097         if (udc->active) {
1098                 dev_dbg(&udc->dev->dev, "disable udc\n");
1099                 if (udc->pdata->phy_deinit)
1100                         udc->pdata->phy_deinit(udc->phy_regs);
1101                 udc_clock_disable(udc);
1102                 udc->active = 0;
1103         }
1104 }
1105
1106 static void mv_udc_disable(struct mv_udc *udc)
1107 {
1108         if (udc->clock_gating)
1109                 mv_udc_disable_internal(udc);
1110 }
1111
1112 static int mv_udc_get_frame(struct usb_gadget *gadget)
1113 {
1114         struct mv_udc *udc;
1115         u16     retval;
1116
1117         if (!gadget)
1118                 return -ENODEV;
1119
1120         udc = container_of(gadget, struct mv_udc, gadget);
1121
1122         retval = readl(&udc->op_regs->frindex) & USB_FRINDEX_MASKS;
1123
1124         return retval;
1125 }
1126
1127 /* Tries to wake up the host connected to this gadget */
1128 static int mv_udc_wakeup(struct usb_gadget *gadget)
1129 {
1130         struct mv_udc *udc = container_of(gadget, struct mv_udc, gadget);
1131         u32 portsc;
1132
1133         /* Remote wakeup feature not enabled by host */
1134         if (!udc->remote_wakeup)
1135                 return -ENOTSUPP;
1136
1137         portsc = readl(&udc->op_regs->portsc);
1138         /* not suspended? */
1139         if (!(portsc & PORTSCX_PORT_SUSPEND))
1140                 return 0;
1141         /* trigger force resume */
1142         portsc |= PORTSCX_PORT_FORCE_RESUME;
1143         writel(portsc, &udc->op_regs->portsc[0]);
1144         return 0;
1145 }
1146
1147 static int mv_udc_vbus_session(struct usb_gadget *gadget, int is_active)
1148 {
1149         struct mv_udc *udc;
1150         unsigned long flags;
1151         int retval = 0;
1152
1153         udc = container_of(gadget, struct mv_udc, gadget);
1154         spin_lock_irqsave(&udc->lock, flags);
1155
1156         udc->vbus_active = (is_active != 0);
1157
1158         dev_dbg(&udc->dev->dev, "%s: softconnect %d, vbus_active %d\n",
1159                 __func__, udc->softconnect, udc->vbus_active);
1160
1161         if (udc->driver && udc->softconnect && udc->vbus_active) {
1162                 retval = mv_udc_enable(udc);
1163                 if (retval == 0) {
1164                         /* Clock is disabled, need re-init registers */
1165                         udc_reset(udc);
1166                         ep0_reset(udc);
1167                         udc_start(udc);
1168                 }
1169         } else if (udc->driver && udc->softconnect) {
1170                 if (!udc->active)
1171                         goto out;
1172
1173                 /* stop all the transfer in queue*/
1174                 stop_activity(udc, udc->driver);
1175                 udc_stop(udc);
1176                 mv_udc_disable(udc);
1177         }
1178
1179 out:
1180         spin_unlock_irqrestore(&udc->lock, flags);
1181         return retval;
1182 }
1183
1184 static int mv_udc_pullup(struct usb_gadget *gadget, int is_on)
1185 {
1186         struct mv_udc *udc;
1187         unsigned long flags;
1188         int retval = 0;
1189
1190         udc = container_of(gadget, struct mv_udc, gadget);
1191         spin_lock_irqsave(&udc->lock, flags);
1192
1193         udc->softconnect = (is_on != 0);
1194
1195         dev_dbg(&udc->dev->dev, "%s: softconnect %d, vbus_active %d\n",
1196                         __func__, udc->softconnect, udc->vbus_active);
1197
1198         if (udc->driver && udc->softconnect && udc->vbus_active) {
1199                 retval = mv_udc_enable(udc);
1200                 if (retval == 0) {
1201                         /* Clock is disabled, need re-init registers */
1202                         udc_reset(udc);
1203                         ep0_reset(udc);
1204                         udc_start(udc);
1205                 }
1206         } else if (udc->driver && udc->vbus_active) {
1207                 /* stop all the transfer in queue*/
1208                 stop_activity(udc, udc->driver);
1209                 udc_stop(udc);
1210                 mv_udc_disable(udc);
1211         }
1212
1213         spin_unlock_irqrestore(&udc->lock, flags);
1214         return retval;
1215 }
1216
1217 static int mv_udc_start(struct usb_gadget *, struct usb_gadget_driver *);
1218 static int mv_udc_stop(struct usb_gadget *);
1219 /* device controller usb_gadget_ops structure */
1220 static const struct usb_gadget_ops mv_ops = {
1221
1222         /* returns the current frame number */
1223         .get_frame      = mv_udc_get_frame,
1224
1225         /* tries to wake up the host connected to this gadget */
1226         .wakeup         = mv_udc_wakeup,
1227
1228         /* notify controller that VBUS is powered or not */
1229         .vbus_session   = mv_udc_vbus_session,
1230
1231         /* D+ pullup, software-controlled connect/disconnect to USB host */
1232         .pullup         = mv_udc_pullup,
1233         .udc_start      = mv_udc_start,
1234         .udc_stop       = mv_udc_stop,
1235 };
1236
1237 static int eps_init(struct mv_udc *udc)
1238 {
1239         struct mv_ep    *ep;
1240         char name[14];
1241         int i;
1242
1243         /* initialize ep0 */
1244         ep = &udc->eps[0];
1245         ep->udc = udc;
1246         strncpy(ep->name, "ep0", sizeof(ep->name));
1247         ep->ep.name = ep->name;
1248         ep->ep.ops = &mv_ep_ops;
1249         ep->wedge = 0;
1250         ep->stopped = 0;
1251         usb_ep_set_maxpacket_limit(&ep->ep, EP0_MAX_PKT_SIZE);
1252         ep->ep.caps.type_control = true;
1253         ep->ep.caps.dir_in = true;
1254         ep->ep.caps.dir_out = true;
1255         ep->ep_num = 0;
1256         ep->ep.desc = &mv_ep0_desc;
1257         INIT_LIST_HEAD(&ep->queue);
1258
1259         ep->ep_type = USB_ENDPOINT_XFER_CONTROL;
1260
1261         /* initialize other endpoints */
1262         for (i = 2; i < udc->max_eps * 2; i++) {
1263                 ep = &udc->eps[i];
1264                 if (i % 2) {
1265                         snprintf(name, sizeof(name), "ep%din", i / 2);
1266                         ep->direction = EP_DIR_IN;
1267                         ep->ep.caps.dir_in = true;
1268                 } else {
1269                         snprintf(name, sizeof(name), "ep%dout", i / 2);
1270                         ep->direction = EP_DIR_OUT;
1271                         ep->ep.caps.dir_out = true;
1272                 }
1273                 ep->udc = udc;
1274                 strncpy(ep->name, name, sizeof(ep->name));
1275                 ep->ep.name = ep->name;
1276
1277                 ep->ep.caps.type_iso = true;
1278                 ep->ep.caps.type_bulk = true;
1279                 ep->ep.caps.type_int = true;
1280
1281                 ep->ep.ops = &mv_ep_ops;
1282                 ep->stopped = 0;
1283                 usb_ep_set_maxpacket_limit(&ep->ep, (unsigned short) ~0);
1284                 ep->ep_num = i / 2;
1285
1286                 INIT_LIST_HEAD(&ep->queue);
1287                 list_add_tail(&ep->ep.ep_list, &udc->gadget.ep_list);
1288
1289                 ep->dqh = &udc->ep_dqh[i];
1290         }
1291
1292         return 0;
1293 }
1294
1295 /* delete all endpoint requests, called with spinlock held */
1296 static void nuke(struct mv_ep *ep, int status)
1297 {
1298         /* called with spinlock held */
1299         ep->stopped = 1;
1300
1301         /* endpoint fifo flush */
1302         mv_ep_fifo_flush(&ep->ep);
1303
1304         while (!list_empty(&ep->queue)) {
1305                 struct mv_req *req = NULL;
1306                 req = list_entry(ep->queue.next, struct mv_req, queue);
1307                 done(ep, req, status);
1308         }
1309 }
1310
1311 static void gadget_reset(struct mv_udc *udc, struct usb_gadget_driver *driver)
1312 {
1313         struct mv_ep    *ep;
1314
1315         nuke(&udc->eps[0], -ESHUTDOWN);
1316
1317         list_for_each_entry(ep, &udc->gadget.ep_list, ep.ep_list) {
1318                 nuke(ep, -ESHUTDOWN);
1319         }
1320
1321         /* report reset; the driver is already quiesced */
1322         if (driver) {
1323                 spin_unlock(&udc->lock);
1324                 usb_gadget_udc_reset(&udc->gadget, driver);
1325                 spin_lock(&udc->lock);
1326         }
1327 }
1328 /* stop all USB activities */
1329 static void stop_activity(struct mv_udc *udc, struct usb_gadget_driver *driver)
1330 {
1331         struct mv_ep    *ep;
1332
1333         nuke(&udc->eps[0], -ESHUTDOWN);
1334
1335         list_for_each_entry(ep, &udc->gadget.ep_list, ep.ep_list) {
1336                 nuke(ep, -ESHUTDOWN);
1337         }
1338
1339         /* report disconnect; the driver is already quiesced */
1340         if (driver) {
1341                 spin_unlock(&udc->lock);
1342                 driver->disconnect(&udc->gadget);
1343                 spin_lock(&udc->lock);
1344         }
1345 }
1346
1347 static int mv_udc_start(struct usb_gadget *gadget,
1348                 struct usb_gadget_driver *driver)
1349 {
1350         struct mv_udc *udc;
1351         int retval = 0;
1352         unsigned long flags;
1353
1354         udc = container_of(gadget, struct mv_udc, gadget);
1355
1356         if (udc->driver)
1357                 return -EBUSY;
1358
1359         spin_lock_irqsave(&udc->lock, flags);
1360
1361         /* hook up the driver ... */
1362         driver->driver.bus = NULL;
1363         udc->driver = driver;
1364
1365         udc->usb_state = USB_STATE_ATTACHED;
1366         udc->ep0_state = WAIT_FOR_SETUP;
1367         udc->ep0_dir = EP_DIR_OUT;
1368
1369         spin_unlock_irqrestore(&udc->lock, flags);
1370
1371         if (udc->transceiver) {
1372                 retval = otg_set_peripheral(udc->transceiver->otg,
1373                                         &udc->gadget);
1374                 if (retval) {
1375                         dev_err(&udc->dev->dev,
1376                                 "unable to register peripheral to otg\n");
1377                         udc->driver = NULL;
1378                         return retval;
1379                 }
1380         }
1381
1382         /* When boot with cable attached, there will be no vbus irq occurred */
1383         if (udc->qwork)
1384                 queue_work(udc->qwork, &udc->vbus_work);
1385
1386         return 0;
1387 }
1388
1389 static int mv_udc_stop(struct usb_gadget *gadget)
1390 {
1391         struct mv_udc *udc;
1392         unsigned long flags;
1393
1394         udc = container_of(gadget, struct mv_udc, gadget);
1395
1396         spin_lock_irqsave(&udc->lock, flags);
1397
1398         mv_udc_enable(udc);
1399         udc_stop(udc);
1400
1401         /* stop all usb activities */
1402         udc->gadget.speed = USB_SPEED_UNKNOWN;
1403         stop_activity(udc, NULL);
1404         mv_udc_disable(udc);
1405
1406         spin_unlock_irqrestore(&udc->lock, flags);
1407
1408         /* unbind gadget driver */
1409         udc->driver = NULL;
1410
1411         return 0;
1412 }
1413
1414 static void mv_set_ptc(struct mv_udc *udc, u32 mode)
1415 {
1416         u32 portsc;
1417
1418         portsc = readl(&udc->op_regs->portsc[0]);
1419         portsc |= mode << 16;
1420         writel(portsc, &udc->op_regs->portsc[0]);
1421 }
1422
1423 static void prime_status_complete(struct usb_ep *ep, struct usb_request *_req)
1424 {
1425         struct mv_ep *mvep = container_of(ep, struct mv_ep, ep);
1426         struct mv_req *req = container_of(_req, struct mv_req, req);
1427         struct mv_udc *udc;
1428         unsigned long flags;
1429
1430         udc = mvep->udc;
1431
1432         dev_info(&udc->dev->dev, "switch to test mode %d\n", req->test_mode);
1433
1434         spin_lock_irqsave(&udc->lock, flags);
1435         if (req->test_mode) {
1436                 mv_set_ptc(udc, req->test_mode);
1437                 req->test_mode = 0;
1438         }
1439         spin_unlock_irqrestore(&udc->lock, flags);
1440 }
1441
1442 static int
1443 udc_prime_status(struct mv_udc *udc, u8 direction, u16 status, bool empty)
1444 {
1445         int retval = 0;
1446         struct mv_req *req;
1447         struct mv_ep *ep;
1448
1449         ep = &udc->eps[0];
1450         udc->ep0_dir = direction;
1451         udc->ep0_state = WAIT_FOR_OUT_STATUS;
1452
1453         req = udc->status_req;
1454
1455         /* fill in the reqest structure */
1456         if (empty == false) {
1457                 *((u16 *) req->req.buf) = cpu_to_le16(status);
1458                 req->req.length = 2;
1459         } else
1460                 req->req.length = 0;
1461
1462         req->ep = ep;
1463         req->req.status = -EINPROGRESS;
1464         req->req.actual = 0;
1465         if (udc->test_mode) {
1466                 req->req.complete = prime_status_complete;
1467                 req->test_mode = udc->test_mode;
1468                 udc->test_mode = 0;
1469         } else
1470                 req->req.complete = NULL;
1471         req->dtd_count = 0;
1472
1473         if (req->req.dma == DMA_ADDR_INVALID) {
1474                 req->req.dma = dma_map_single(ep->udc->gadget.dev.parent,
1475                                 req->req.buf, req->req.length,
1476                                 ep_dir(ep) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1477                 req->mapped = 1;
1478         }
1479
1480         /* prime the data phase */
1481         if (!req_to_dtd(req)) {
1482                 retval = queue_dtd(ep, req);
1483                 if (retval) {
1484                         dev_err(&udc->dev->dev,
1485                                 "Failed to queue dtd when prime status\n");
1486                         goto out;
1487                 }
1488         } else{ /* no mem */
1489                 retval = -ENOMEM;
1490                 dev_err(&udc->dev->dev,
1491                         "Failed to dma_pool_alloc when prime status\n");
1492                 goto out;
1493         }
1494
1495         list_add_tail(&req->queue, &ep->queue);
1496
1497         return 0;
1498 out:
1499         usb_gadget_unmap_request(&udc->gadget, &req->req, ep_dir(ep));
1500
1501         return retval;
1502 }
1503
1504 static void mv_udc_testmode(struct mv_udc *udc, u16 index)
1505 {
1506         if (index <= USB_TEST_FORCE_ENABLE) {
1507                 udc->test_mode = index;
1508                 if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1509                         ep0_stall(udc);
1510         } else
1511                 dev_err(&udc->dev->dev,
1512                         "This test mode(%d) is not supported\n", index);
1513 }
1514
1515 static void ch9setaddress(struct mv_udc *udc, struct usb_ctrlrequest *setup)
1516 {
1517         udc->dev_addr = (u8)setup->wValue;
1518
1519         /* update usb state */
1520         udc->usb_state = USB_STATE_ADDRESS;
1521
1522         if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1523                 ep0_stall(udc);
1524 }
1525
1526 static void ch9getstatus(struct mv_udc *udc, u8 ep_num,
1527         struct usb_ctrlrequest *setup)
1528 {
1529         u16 status = 0;
1530         int retval;
1531
1532         if ((setup->bRequestType & (USB_DIR_IN | USB_TYPE_MASK))
1533                 != (USB_DIR_IN | USB_TYPE_STANDARD))
1534                 return;
1535
1536         if ((setup->bRequestType & USB_RECIP_MASK) == USB_RECIP_DEVICE) {
1537                 status = 1 << USB_DEVICE_SELF_POWERED;
1538                 status |= udc->remote_wakeup << USB_DEVICE_REMOTE_WAKEUP;
1539         } else if ((setup->bRequestType & USB_RECIP_MASK)
1540                         == USB_RECIP_INTERFACE) {
1541                 /* get interface status */
1542                 status = 0;
1543         } else if ((setup->bRequestType & USB_RECIP_MASK)
1544                         == USB_RECIP_ENDPOINT) {
1545                 u8 ep_num, direction;
1546
1547                 ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
1548                 direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
1549                                 ? EP_DIR_IN : EP_DIR_OUT;
1550                 status = ep_is_stall(udc, ep_num, direction)
1551                                 << USB_ENDPOINT_HALT;
1552         }
1553
1554         retval = udc_prime_status(udc, EP_DIR_IN, status, false);
1555         if (retval)
1556                 ep0_stall(udc);
1557         else
1558                 udc->ep0_state = DATA_STATE_XMIT;
1559 }
1560
1561 static void ch9clearfeature(struct mv_udc *udc, struct usb_ctrlrequest *setup)
1562 {
1563         u8 ep_num;
1564         u8 direction;
1565         struct mv_ep *ep;
1566
1567         if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1568                 == ((USB_TYPE_STANDARD | USB_RECIP_DEVICE))) {
1569                 switch (setup->wValue) {
1570                 case USB_DEVICE_REMOTE_WAKEUP:
1571                         udc->remote_wakeup = 0;
1572                         break;
1573                 default:
1574                         goto out;
1575                 }
1576         } else if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1577                 == ((USB_TYPE_STANDARD | USB_RECIP_ENDPOINT))) {
1578                 switch (setup->wValue) {
1579                 case USB_ENDPOINT_HALT:
1580                         ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
1581                         direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
1582                                 ? EP_DIR_IN : EP_DIR_OUT;
1583                         if (setup->wValue != 0 || setup->wLength != 0
1584                                 || ep_num > udc->max_eps)
1585                                 goto out;
1586                         ep = &udc->eps[ep_num * 2 + direction];
1587                         if (ep->wedge == 1)
1588                                 break;
1589                         spin_unlock(&udc->lock);
1590                         ep_set_stall(udc, ep_num, direction, 0);
1591                         spin_lock(&udc->lock);
1592                         break;
1593                 default:
1594                         goto out;
1595                 }
1596         } else
1597                 goto out;
1598
1599         if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1600                 ep0_stall(udc);
1601 out:
1602         return;
1603 }
1604
1605 static void ch9setfeature(struct mv_udc *udc, struct usb_ctrlrequest *setup)
1606 {
1607         u8 ep_num;
1608         u8 direction;
1609
1610         if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1611                 == ((USB_TYPE_STANDARD | USB_RECIP_DEVICE))) {
1612                 switch (setup->wValue) {
1613                 case USB_DEVICE_REMOTE_WAKEUP:
1614                         udc->remote_wakeup = 1;
1615                         break;
1616                 case USB_DEVICE_TEST_MODE:
1617                         if (setup->wIndex & 0xFF
1618                                 ||  udc->gadget.speed != USB_SPEED_HIGH)
1619                                 ep0_stall(udc);
1620
1621                         if (udc->usb_state != USB_STATE_CONFIGURED
1622                                 && udc->usb_state != USB_STATE_ADDRESS
1623                                 && udc->usb_state != USB_STATE_DEFAULT)
1624                                 ep0_stall(udc);
1625
1626                         mv_udc_testmode(udc, (setup->wIndex >> 8));
1627                         goto out;
1628                 default:
1629                         goto out;
1630                 }
1631         } else if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1632                 == ((USB_TYPE_STANDARD | USB_RECIP_ENDPOINT))) {
1633                 switch (setup->wValue) {
1634                 case USB_ENDPOINT_HALT:
1635                         ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
1636                         direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
1637                                 ? EP_DIR_IN : EP_DIR_OUT;
1638                         if (setup->wValue != 0 || setup->wLength != 0
1639                                 || ep_num > udc->max_eps)
1640                                 goto out;
1641                         spin_unlock(&udc->lock);
1642                         ep_set_stall(udc, ep_num, direction, 1);
1643                         spin_lock(&udc->lock);
1644                         break;
1645                 default:
1646                         goto out;
1647                 }
1648         } else
1649                 goto out;
1650
1651         if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1652                 ep0_stall(udc);
1653 out:
1654         return;
1655 }
1656
1657 static void handle_setup_packet(struct mv_udc *udc, u8 ep_num,
1658         struct usb_ctrlrequest *setup)
1659         __releases(&ep->udc->lock)
1660         __acquires(&ep->udc->lock)
1661 {
1662         bool delegate = false;
1663
1664         nuke(&udc->eps[ep_num * 2 + EP_DIR_OUT], -ESHUTDOWN);
1665
1666         dev_dbg(&udc->dev->dev, "SETUP %02x.%02x v%04x i%04x l%04x\n",
1667                         setup->bRequestType, setup->bRequest,
1668                         setup->wValue, setup->wIndex, setup->wLength);
1669         /* We process some standard setup requests here */
1670         if ((setup->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1671                 switch (setup->bRequest) {
1672                 case USB_REQ_GET_STATUS:
1673                         ch9getstatus(udc, ep_num, setup);
1674                         break;
1675
1676                 case USB_REQ_SET_ADDRESS:
1677                         ch9setaddress(udc, setup);
1678                         break;
1679
1680                 case USB_REQ_CLEAR_FEATURE:
1681                         ch9clearfeature(udc, setup);
1682                         break;
1683
1684                 case USB_REQ_SET_FEATURE:
1685                         ch9setfeature(udc, setup);
1686                         break;
1687
1688                 default:
1689                         delegate = true;
1690                 }
1691         } else
1692                 delegate = true;
1693
1694         /* delegate USB standard requests to the gadget driver */
1695         if (delegate == true) {
1696                 /* USB requests handled by gadget */
1697                 if (setup->wLength) {
1698                         /* DATA phase from gadget, STATUS phase from udc */
1699                         udc->ep0_dir = (setup->bRequestType & USB_DIR_IN)
1700                                         ?  EP_DIR_IN : EP_DIR_OUT;
1701                         spin_unlock(&udc->lock);
1702                         if (udc->driver->setup(&udc->gadget,
1703                                 &udc->local_setup_buff) < 0)
1704                                 ep0_stall(udc);
1705                         spin_lock(&udc->lock);
1706                         udc->ep0_state = (setup->bRequestType & USB_DIR_IN)
1707                                         ?  DATA_STATE_XMIT : DATA_STATE_RECV;
1708                 } else {
1709                         /* no DATA phase, IN STATUS phase from gadget */
1710                         udc->ep0_dir = EP_DIR_IN;
1711                         spin_unlock(&udc->lock);
1712                         if (udc->driver->setup(&udc->gadget,
1713                                 &udc->local_setup_buff) < 0)
1714                                 ep0_stall(udc);
1715                         spin_lock(&udc->lock);
1716                         udc->ep0_state = WAIT_FOR_OUT_STATUS;
1717                 }
1718         }
1719 }
1720
1721 /* complete DATA or STATUS phase of ep0 prime status phase if needed */
1722 static void ep0_req_complete(struct mv_udc *udc,
1723         struct mv_ep *ep0, struct mv_req *req)
1724 {
1725         u32 new_addr;
1726
1727         if (udc->usb_state == USB_STATE_ADDRESS) {
1728                 /* set the new address */
1729                 new_addr = (u32)udc->dev_addr;
1730                 writel(new_addr << USB_DEVICE_ADDRESS_BIT_SHIFT,
1731                         &udc->op_regs->deviceaddr);
1732         }
1733
1734         done(ep0, req, 0);
1735
1736         switch (udc->ep0_state) {
1737         case DATA_STATE_XMIT:
1738                 /* receive status phase */
1739                 if (udc_prime_status(udc, EP_DIR_OUT, 0, true))
1740                         ep0_stall(udc);
1741                 break;
1742         case DATA_STATE_RECV:
1743                 /* send status phase */
1744                 if (udc_prime_status(udc, EP_DIR_IN, 0 , true))
1745                         ep0_stall(udc);
1746                 break;
1747         case WAIT_FOR_OUT_STATUS:
1748                 udc->ep0_state = WAIT_FOR_SETUP;
1749                 break;
1750         case WAIT_FOR_SETUP:
1751                 dev_err(&udc->dev->dev, "unexpect ep0 packets\n");
1752                 break;
1753         default:
1754                 ep0_stall(udc);
1755                 break;
1756         }
1757 }
1758
1759 static void get_setup_data(struct mv_udc *udc, u8 ep_num, u8 *buffer_ptr)
1760 {
1761         u32 temp;
1762         struct mv_dqh *dqh;
1763
1764         dqh = &udc->ep_dqh[ep_num * 2 + EP_DIR_OUT];
1765
1766         /* Clear bit in ENDPTSETUPSTAT */
1767         writel((1 << ep_num), &udc->op_regs->epsetupstat);
1768
1769         /* while a hazard exists when setup package arrives */
1770         do {
1771                 /* Set Setup Tripwire */
1772                 temp = readl(&udc->op_regs->usbcmd);
1773                 writel(temp | USBCMD_SETUP_TRIPWIRE_SET, &udc->op_regs->usbcmd);
1774
1775                 /* Copy the setup packet to local buffer */
1776                 memcpy(buffer_ptr, (u8 *) dqh->setup_buffer, 8);
1777         } while (!(readl(&udc->op_regs->usbcmd) & USBCMD_SETUP_TRIPWIRE_SET));
1778
1779         /* Clear Setup Tripwire */
1780         temp = readl(&udc->op_regs->usbcmd);
1781         writel(temp & ~USBCMD_SETUP_TRIPWIRE_SET, &udc->op_regs->usbcmd);
1782 }
1783
1784 static void irq_process_tr_complete(struct mv_udc *udc)
1785 {
1786         u32 tmp, bit_pos;
1787         int i, ep_num = 0, direction = 0;
1788         struct mv_ep    *curr_ep;
1789         struct mv_req *curr_req, *temp_req;
1790         int status;
1791
1792         /*
1793          * We use separate loops for ENDPTSETUPSTAT and ENDPTCOMPLETE
1794          * because the setup packets are to be read ASAP
1795          */
1796
1797         /* Process all Setup packet received interrupts */
1798         tmp = readl(&udc->op_regs->epsetupstat);
1799
1800         if (tmp) {
1801                 for (i = 0; i < udc->max_eps; i++) {
1802                         if (tmp & (1 << i)) {
1803                                 get_setup_data(udc, i,
1804                                         (u8 *)(&udc->local_setup_buff));
1805                                 handle_setup_packet(udc, i,
1806                                         &udc->local_setup_buff);
1807                         }
1808                 }
1809         }
1810
1811         /* Don't clear the endpoint setup status register here.
1812          * It is cleared as a setup packet is read out of the buffer
1813          */
1814
1815         /* Process non-setup transaction complete interrupts */
1816         tmp = readl(&udc->op_regs->epcomplete);
1817
1818         if (!tmp)
1819                 return;
1820
1821         writel(tmp, &udc->op_regs->epcomplete);
1822
1823         for (i = 0; i < udc->max_eps * 2; i++) {
1824                 ep_num = i >> 1;
1825                 direction = i % 2;
1826
1827                 bit_pos = 1 << (ep_num + 16 * direction);
1828
1829                 if (!(bit_pos & tmp))
1830                         continue;
1831
1832                 if (i == 1)
1833                         curr_ep = &udc->eps[0];
1834                 else
1835                         curr_ep = &udc->eps[i];
1836                 /* process the req queue until an uncomplete request */
1837                 list_for_each_entry_safe(curr_req, temp_req,
1838                         &curr_ep->queue, queue) {
1839                         status = process_ep_req(udc, i, curr_req);
1840                         if (status)
1841                                 break;
1842
1843                         /* write back status to req */
1844                         curr_req->req.status = status;
1845
1846                         /* ep0 request completion */
1847                         if (ep_num == 0) {
1848                                 ep0_req_complete(udc, curr_ep, curr_req);
1849                                 break;
1850                         } else {
1851                                 done(curr_ep, curr_req, status);
1852                         }
1853                 }
1854         }
1855 }
1856
1857 static void irq_process_reset(struct mv_udc *udc)
1858 {
1859         u32 tmp;
1860         unsigned int loops;
1861
1862         udc->ep0_dir = EP_DIR_OUT;
1863         udc->ep0_state = WAIT_FOR_SETUP;
1864         udc->remote_wakeup = 0;         /* default to 0 on reset */
1865
1866         /* The address bits are past bit 25-31. Set the address */
1867         tmp = readl(&udc->op_regs->deviceaddr);
1868         tmp &= ~(USB_DEVICE_ADDRESS_MASK);
1869         writel(tmp, &udc->op_regs->deviceaddr);
1870
1871         /* Clear all the setup token semaphores */
1872         tmp = readl(&udc->op_regs->epsetupstat);
1873         writel(tmp, &udc->op_regs->epsetupstat);
1874
1875         /* Clear all the endpoint complete status bits */
1876         tmp = readl(&udc->op_regs->epcomplete);
1877         writel(tmp, &udc->op_regs->epcomplete);
1878
1879         /* wait until all endptprime bits cleared */
1880         loops = LOOPS(PRIME_TIMEOUT);
1881         while (readl(&udc->op_regs->epprime) & 0xFFFFFFFF) {
1882                 if (loops == 0) {
1883                         dev_err(&udc->dev->dev,
1884                                 "Timeout for ENDPTPRIME = 0x%x\n",
1885                                 readl(&udc->op_regs->epprime));
1886                         break;
1887                 }
1888                 loops--;
1889                 udelay(LOOPS_USEC);
1890         }
1891
1892         /* Write 1s to the Flush register */
1893         writel((u32)~0, &udc->op_regs->epflush);
1894
1895         if (readl(&udc->op_regs->portsc[0]) & PORTSCX_PORT_RESET) {
1896                 dev_info(&udc->dev->dev, "usb bus reset\n");
1897                 udc->usb_state = USB_STATE_DEFAULT;
1898                 /* reset all the queues, stop all USB activities */
1899                 gadget_reset(udc, udc->driver);
1900         } else {
1901                 dev_info(&udc->dev->dev, "USB reset portsc 0x%x\n",
1902                         readl(&udc->op_regs->portsc));
1903
1904                 /*
1905                  * re-initialize
1906                  * controller reset
1907                  */
1908                 udc_reset(udc);
1909
1910                 /* reset all the queues, stop all USB activities */
1911                 stop_activity(udc, udc->driver);
1912
1913                 /* reset ep0 dQH and endptctrl */
1914                 ep0_reset(udc);
1915
1916                 /* enable interrupt and set controller to run state */
1917                 udc_start(udc);
1918
1919                 udc->usb_state = USB_STATE_ATTACHED;
1920         }
1921 }
1922
1923 static void handle_bus_resume(struct mv_udc *udc)
1924 {
1925         udc->usb_state = udc->resume_state;
1926         udc->resume_state = 0;
1927
1928         /* report resume to the driver */
1929         if (udc->driver) {
1930                 if (udc->driver->resume) {
1931                         spin_unlock(&udc->lock);
1932                         udc->driver->resume(&udc->gadget);
1933                         spin_lock(&udc->lock);
1934                 }
1935         }
1936 }
1937
1938 static void irq_process_suspend(struct mv_udc *udc)
1939 {
1940         udc->resume_state = udc->usb_state;
1941         udc->usb_state = USB_STATE_SUSPENDED;
1942
1943         if (udc->driver->suspend) {
1944                 spin_unlock(&udc->lock);
1945                 udc->driver->suspend(&udc->gadget);
1946                 spin_lock(&udc->lock);
1947         }
1948 }
1949
1950 static void irq_process_port_change(struct mv_udc *udc)
1951 {
1952         u32 portsc;
1953
1954         portsc = readl(&udc->op_regs->portsc[0]);
1955         if (!(portsc & PORTSCX_PORT_RESET)) {
1956                 /* Get the speed */
1957                 u32 speed = portsc & PORTSCX_PORT_SPEED_MASK;
1958                 switch (speed) {
1959                 case PORTSCX_PORT_SPEED_HIGH:
1960                         udc->gadget.speed = USB_SPEED_HIGH;
1961                         break;
1962                 case PORTSCX_PORT_SPEED_FULL:
1963                         udc->gadget.speed = USB_SPEED_FULL;
1964                         break;
1965                 case PORTSCX_PORT_SPEED_LOW:
1966                         udc->gadget.speed = USB_SPEED_LOW;
1967                         break;
1968                 default:
1969                         udc->gadget.speed = USB_SPEED_UNKNOWN;
1970                         break;
1971                 }
1972         }
1973
1974         if (portsc & PORTSCX_PORT_SUSPEND) {
1975                 udc->resume_state = udc->usb_state;
1976                 udc->usb_state = USB_STATE_SUSPENDED;
1977                 if (udc->driver->suspend) {
1978                         spin_unlock(&udc->lock);
1979                         udc->driver->suspend(&udc->gadget);
1980                         spin_lock(&udc->lock);
1981                 }
1982         }
1983
1984         if (!(portsc & PORTSCX_PORT_SUSPEND)
1985                 && udc->usb_state == USB_STATE_SUSPENDED) {
1986                 handle_bus_resume(udc);
1987         }
1988
1989         if (!udc->resume_state)
1990                 udc->usb_state = USB_STATE_DEFAULT;
1991 }
1992
1993 static void irq_process_error(struct mv_udc *udc)
1994 {
1995         /* Increment the error count */
1996         udc->errors++;
1997 }
1998
1999 static irqreturn_t mv_udc_irq(int irq, void *dev)
2000 {
2001         struct mv_udc *udc = (struct mv_udc *)dev;
2002         u32 status, intr;
2003
2004         /* Disable ISR when stopped bit is set */
2005         if (udc->stopped)
2006                 return IRQ_NONE;
2007
2008         spin_lock(&udc->lock);
2009
2010         status = readl(&udc->op_regs->usbsts);
2011         intr = readl(&udc->op_regs->usbintr);
2012         status &= intr;
2013
2014         if (status == 0) {
2015                 spin_unlock(&udc->lock);
2016                 return IRQ_NONE;
2017         }
2018
2019         /* Clear all the interrupts occurred */
2020         writel(status, &udc->op_regs->usbsts);
2021
2022         if (status & USBSTS_ERR)
2023                 irq_process_error(udc);
2024
2025         if (status & USBSTS_RESET)
2026                 irq_process_reset(udc);
2027
2028         if (status & USBSTS_PORT_CHANGE)
2029                 irq_process_port_change(udc);
2030
2031         if (status & USBSTS_INT)
2032                 irq_process_tr_complete(udc);
2033
2034         if (status & USBSTS_SUSPEND)
2035                 irq_process_suspend(udc);
2036
2037         spin_unlock(&udc->lock);
2038
2039         return IRQ_HANDLED;
2040 }
2041
2042 static irqreturn_t mv_udc_vbus_irq(int irq, void *dev)
2043 {
2044         struct mv_udc *udc = (struct mv_udc *)dev;
2045
2046         /* polling VBUS and init phy may cause too much time*/
2047         if (udc->qwork)
2048                 queue_work(udc->qwork, &udc->vbus_work);
2049
2050         return IRQ_HANDLED;
2051 }
2052
2053 static void mv_udc_vbus_work(struct work_struct *work)
2054 {
2055         struct mv_udc *udc;
2056         unsigned int vbus;
2057
2058         udc = container_of(work, struct mv_udc, vbus_work);
2059         if (!udc->pdata->vbus)
2060                 return;
2061
2062         vbus = udc->pdata->vbus->poll();
2063         dev_info(&udc->dev->dev, "vbus is %d\n", vbus);
2064
2065         if (vbus == VBUS_HIGH)
2066                 mv_udc_vbus_session(&udc->gadget, 1);
2067         else if (vbus == VBUS_LOW)
2068                 mv_udc_vbus_session(&udc->gadget, 0);
2069 }
2070
2071 /* release device structure */
2072 static void gadget_release(struct device *_dev)
2073 {
2074         struct mv_udc *udc;
2075
2076         udc = dev_get_drvdata(_dev);
2077
2078         complete(udc->done);
2079 }
2080
2081 static int mv_udc_remove(struct platform_device *pdev)
2082 {
2083         struct mv_udc *udc;
2084
2085         udc = platform_get_drvdata(pdev);
2086
2087         usb_del_gadget_udc(&udc->gadget);
2088
2089         if (udc->qwork)
2090                 destroy_workqueue(udc->qwork);
2091
2092         /* free memory allocated in probe */
2093         dma_pool_destroy(udc->dtd_pool);
2094
2095         if (udc->ep_dqh)
2096                 dma_free_coherent(&pdev->dev, udc->ep_dqh_size,
2097                         udc->ep_dqh, udc->ep_dqh_dma);
2098
2099         mv_udc_disable(udc);
2100
2101         /* free dev, wait for the release() finished */
2102         wait_for_completion(udc->done);
2103
2104         return 0;
2105 }
2106
2107 static int mv_udc_probe(struct platform_device *pdev)
2108 {
2109         struct mv_usb_platform_data *pdata = dev_get_platdata(&pdev->dev);
2110         struct mv_udc *udc;
2111         int retval = 0;
2112         struct resource *r;
2113         size_t size;
2114
2115         if (pdata == NULL) {
2116                 dev_err(&pdev->dev, "missing platform_data\n");
2117                 return -ENODEV;
2118         }
2119
2120         udc = devm_kzalloc(&pdev->dev, sizeof(*udc), GFP_KERNEL);
2121         if (udc == NULL)
2122                 return -ENOMEM;
2123
2124         udc->done = &release_done;
2125         udc->pdata = dev_get_platdata(&pdev->dev);
2126         spin_lock_init(&udc->lock);
2127
2128         udc->dev = pdev;
2129
2130         if (pdata->mode == MV_USB_MODE_OTG) {
2131                 udc->transceiver = devm_usb_get_phy(&pdev->dev,
2132                                         USB_PHY_TYPE_USB2);
2133                 if (IS_ERR(udc->transceiver)) {
2134                         retval = PTR_ERR(udc->transceiver);
2135
2136                         if (retval == -ENXIO)
2137                                 return retval;
2138
2139                         udc->transceiver = NULL;
2140                         return -EPROBE_DEFER;
2141                 }
2142         }
2143
2144         /* udc only have one sysclk. */
2145         udc->clk = devm_clk_get(&pdev->dev, NULL);
2146         if (IS_ERR(udc->clk))
2147                 return PTR_ERR(udc->clk);
2148
2149         r = platform_get_resource_byname(udc->dev, IORESOURCE_MEM, "capregs");
2150         if (r == NULL) {
2151                 dev_err(&pdev->dev, "no I/O memory resource defined\n");
2152                 return -ENODEV;
2153         }
2154
2155         udc->cap_regs = (struct mv_cap_regs __iomem *)
2156                 devm_ioremap(&pdev->dev, r->start, resource_size(r));
2157         if (udc->cap_regs == NULL) {
2158                 dev_err(&pdev->dev, "failed to map I/O memory\n");
2159                 return -EBUSY;
2160         }
2161
2162         r = platform_get_resource_byname(udc->dev, IORESOURCE_MEM, "phyregs");
2163         if (r == NULL) {
2164                 dev_err(&pdev->dev, "no phy I/O memory resource defined\n");
2165                 return -ENODEV;
2166         }
2167
2168         udc->phy_regs = devm_ioremap(&pdev->dev, r->start, resource_size(r));
2169         if (udc->phy_regs == NULL) {
2170                 dev_err(&pdev->dev, "failed to map phy I/O memory\n");
2171                 return -EBUSY;
2172         }
2173
2174         /* we will acces controller register, so enable the clk */
2175         retval = mv_udc_enable_internal(udc);
2176         if (retval)
2177                 return retval;
2178
2179         udc->op_regs =
2180                 (struct mv_op_regs __iomem *)((unsigned long)udc->cap_regs
2181                 + (readl(&udc->cap_regs->caplength_hciversion)
2182                         & CAPLENGTH_MASK));
2183         udc->max_eps = readl(&udc->cap_regs->dccparams) & DCCPARAMS_DEN_MASK;
2184
2185         /*
2186          * some platform will use usb to download image, it may not disconnect
2187          * usb gadget before loading kernel. So first stop udc here.
2188          */
2189         udc_stop(udc);
2190         writel(0xFFFFFFFF, &udc->op_regs->usbsts);
2191
2192         size = udc->max_eps * sizeof(struct mv_dqh) *2;
2193         size = (size + DQH_ALIGNMENT - 1) & ~(DQH_ALIGNMENT - 1);
2194         udc->ep_dqh = dma_alloc_coherent(&pdev->dev, size,
2195                                         &udc->ep_dqh_dma, GFP_KERNEL);
2196
2197         if (udc->ep_dqh == NULL) {
2198                 dev_err(&pdev->dev, "allocate dQH memory failed\n");
2199                 retval = -ENOMEM;
2200                 goto err_disable_clock;
2201         }
2202         udc->ep_dqh_size = size;
2203
2204         /* create dTD dma_pool resource */
2205         udc->dtd_pool = dma_pool_create("mv_dtd",
2206                         &pdev->dev,
2207                         sizeof(struct mv_dtd),
2208                         DTD_ALIGNMENT,
2209                         DMA_BOUNDARY);
2210
2211         if (!udc->dtd_pool) {
2212                 retval = -ENOMEM;
2213                 goto err_free_dma;
2214         }
2215
2216         size = udc->max_eps * sizeof(struct mv_ep) *2;
2217         udc->eps = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
2218         if (udc->eps == NULL) {
2219                 retval = -ENOMEM;
2220                 goto err_destroy_dma;
2221         }
2222
2223         /* initialize ep0 status request structure */
2224         udc->status_req = devm_kzalloc(&pdev->dev, sizeof(struct mv_req),
2225                                         GFP_KERNEL);
2226         if (!udc->status_req) {
2227                 retval = -ENOMEM;
2228                 goto err_destroy_dma;
2229         }
2230         INIT_LIST_HEAD(&udc->status_req->queue);
2231
2232         /* allocate a small amount of memory to get valid address */
2233         udc->status_req->req.buf = kzalloc(8, GFP_KERNEL);
2234         udc->status_req->req.dma = DMA_ADDR_INVALID;
2235
2236         udc->resume_state = USB_STATE_NOTATTACHED;
2237         udc->usb_state = USB_STATE_POWERED;
2238         udc->ep0_dir = EP_DIR_OUT;
2239         udc->remote_wakeup = 0;
2240
2241         r = platform_get_resource(udc->dev, IORESOURCE_IRQ, 0);
2242         if (r == NULL) {
2243                 dev_err(&pdev->dev, "no IRQ resource defined\n");
2244                 retval = -ENODEV;
2245                 goto err_destroy_dma;
2246         }
2247         udc->irq = r->start;
2248         if (devm_request_irq(&pdev->dev, udc->irq, mv_udc_irq,
2249                 IRQF_SHARED, driver_name, udc)) {
2250                 dev_err(&pdev->dev, "Request irq %d for UDC failed\n",
2251                         udc->irq);
2252                 retval = -ENODEV;
2253                 goto err_destroy_dma;
2254         }
2255
2256         /* initialize gadget structure */
2257         udc->gadget.ops = &mv_ops;      /* usb_gadget_ops */
2258         udc->gadget.ep0 = &udc->eps[0].ep;      /* gadget ep0 */
2259         INIT_LIST_HEAD(&udc->gadget.ep_list);   /* ep_list */
2260         udc->gadget.speed = USB_SPEED_UNKNOWN;  /* speed */
2261         udc->gadget.max_speed = USB_SPEED_HIGH; /* support dual speed */
2262
2263         /* the "gadget" abstracts/virtualizes the controller */
2264         udc->gadget.name = driver_name;         /* gadget name */
2265
2266         eps_init(udc);
2267
2268         /* VBUS detect: we can disable/enable clock on demand.*/
2269         if (udc->transceiver)
2270                 udc->clock_gating = 1;
2271         else if (pdata->vbus) {
2272                 udc->clock_gating = 1;
2273                 retval = devm_request_threaded_irq(&pdev->dev,
2274                                 pdata->vbus->irq, NULL,
2275                                 mv_udc_vbus_irq, IRQF_ONESHOT, "vbus", udc);
2276                 if (retval) {
2277                         dev_info(&pdev->dev,
2278                                 "Can not request irq for VBUS, "
2279                                 "disable clock gating\n");
2280                         udc->clock_gating = 0;
2281                 }
2282
2283                 udc->qwork = create_singlethread_workqueue("mv_udc_queue");
2284                 if (!udc->qwork) {
2285                         dev_err(&pdev->dev, "cannot create workqueue\n");
2286                         retval = -ENOMEM;
2287                         goto err_destroy_dma;
2288                 }
2289
2290                 INIT_WORK(&udc->vbus_work, mv_udc_vbus_work);
2291         }
2292
2293         /*
2294          * When clock gating is supported, we can disable clk and phy.
2295          * If not, it means that VBUS detection is not supported, we
2296          * have to enable vbus active all the time to let controller work.
2297          */
2298         if (udc->clock_gating)
2299                 mv_udc_disable_internal(udc);
2300         else
2301                 udc->vbus_active = 1;
2302
2303         retval = usb_add_gadget_udc_release(&pdev->dev, &udc->gadget,
2304                         gadget_release);
2305         if (retval)
2306                 goto err_create_workqueue;
2307
2308         platform_set_drvdata(pdev, udc);
2309         dev_info(&pdev->dev, "successful probe UDC device %s clock gating.\n",
2310                 udc->clock_gating ? "with" : "without");
2311
2312         return 0;
2313
2314 err_create_workqueue:
2315         if (udc->qwork)
2316                 destroy_workqueue(udc->qwork);
2317 err_destroy_dma:
2318         dma_pool_destroy(udc->dtd_pool);
2319 err_free_dma:
2320         dma_free_coherent(&pdev->dev, udc->ep_dqh_size,
2321                         udc->ep_dqh, udc->ep_dqh_dma);
2322 err_disable_clock:
2323         mv_udc_disable_internal(udc);
2324
2325         return retval;
2326 }
2327
2328 #ifdef CONFIG_PM
2329 static int mv_udc_suspend(struct device *dev)
2330 {
2331         struct mv_udc *udc;
2332
2333         udc = dev_get_drvdata(dev);
2334
2335         /* if OTG is enabled, the following will be done in OTG driver*/
2336         if (udc->transceiver)
2337                 return 0;
2338
2339         if (udc->pdata->vbus && udc->pdata->vbus->poll)
2340                 if (udc->pdata->vbus->poll() == VBUS_HIGH) {
2341                         dev_info(&udc->dev->dev, "USB cable is connected!\n");
2342                         return -EAGAIN;
2343                 }
2344
2345         /*
2346          * only cable is unplugged, udc can suspend.
2347          * So do not care about clock_gating == 1.
2348          */
2349         if (!udc->clock_gating) {
2350                 udc_stop(udc);
2351
2352                 spin_lock_irq(&udc->lock);
2353                 /* stop all usb activities */
2354                 stop_activity(udc, udc->driver);
2355                 spin_unlock_irq(&udc->lock);
2356
2357                 mv_udc_disable_internal(udc);
2358         }
2359
2360         return 0;
2361 }
2362
2363 static int mv_udc_resume(struct device *dev)
2364 {
2365         struct mv_udc *udc;
2366         int retval;
2367
2368         udc = dev_get_drvdata(dev);
2369
2370         /* if OTG is enabled, the following will be done in OTG driver*/
2371         if (udc->transceiver)
2372                 return 0;
2373
2374         if (!udc->clock_gating) {
2375                 retval = mv_udc_enable_internal(udc);
2376                 if (retval)
2377                         return retval;
2378
2379                 if (udc->driver && udc->softconnect) {
2380                         udc_reset(udc);
2381                         ep0_reset(udc);
2382                         udc_start(udc);
2383                 }
2384         }
2385
2386         return 0;
2387 }
2388
2389 static const struct dev_pm_ops mv_udc_pm_ops = {
2390         .suspend        = mv_udc_suspend,
2391         .resume         = mv_udc_resume,
2392 };
2393 #endif
2394
2395 static void mv_udc_shutdown(struct platform_device *pdev)
2396 {
2397         struct mv_udc *udc;
2398         u32 mode;
2399
2400         udc = platform_get_drvdata(pdev);
2401         /* reset controller mode to IDLE */
2402         mv_udc_enable(udc);
2403         mode = readl(&udc->op_regs->usbmode);
2404         mode &= ~3;
2405         writel(mode, &udc->op_regs->usbmode);
2406         mv_udc_disable(udc);
2407 }
2408
2409 static struct platform_driver udc_driver = {
2410         .probe          = mv_udc_probe,
2411         .remove         = mv_udc_remove,
2412         .shutdown       = mv_udc_shutdown,
2413         .driver         = {
2414                 .name   = "mv-udc",
2415 #ifdef CONFIG_PM
2416                 .pm     = &mv_udc_pm_ops,
2417 #endif
2418         },
2419 };
2420
2421 module_platform_driver(udc_driver);
2422 MODULE_ALIAS("platform:mv-udc");
2423 MODULE_DESCRIPTION(DRIVER_DESC);
2424 MODULE_AUTHOR("Chao Xie <chao.xie@marvell.com>");
2425 MODULE_LICENSE("GPL");