GNU Linux-libre 4.9.328-gnu1
[releases.git] / drivers / usb / gadget / udc / mv_udc_core.c
1 /*
2  * Copyright (C) 2011 Marvell International Ltd. All rights reserved.
3  * Author: Chao Xie <chao.xie@marvell.com>
4  *         Neil Zhang <zhangwm@marvell.com>
5  *
6  * This program is free software; you can redistribute  it and/or modify it
7  * under  the terms of  the GNU General  Public License as published by the
8  * Free Software Foundation;  either version 2 of the  License, or (at your
9  * option) any later version.
10  */
11
12 #include <linux/module.h>
13 #include <linux/pci.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/dmapool.h>
16 #include <linux/kernel.h>
17 #include <linux/delay.h>
18 #include <linux/ioport.h>
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/timer.h>
24 #include <linux/list.h>
25 #include <linux/interrupt.h>
26 #include <linux/moduleparam.h>
27 #include <linux/device.h>
28 #include <linux/usb/ch9.h>
29 #include <linux/usb/gadget.h>
30 #include <linux/usb/otg.h>
31 #include <linux/pm.h>
32 #include <linux/io.h>
33 #include <linux/irq.h>
34 #include <linux/platform_device.h>
35 #include <linux/clk.h>
36 #include <linux/platform_data/mv_usb.h>
37 #include <asm/unaligned.h>
38
39 #include "mv_udc.h"
40
41 #define DRIVER_DESC             "Marvell PXA USB Device Controller driver"
42 #define DRIVER_VERSION          "8 Nov 2010"
43
44 #define ep_dir(ep)      (((ep)->ep_num == 0) ? \
45                                 ((ep)->udc->ep0_dir) : ((ep)->direction))
46
47 /* timeout value -- usec */
48 #define RESET_TIMEOUT           10000
49 #define FLUSH_TIMEOUT           10000
50 #define EPSTATUS_TIMEOUT        10000
51 #define PRIME_TIMEOUT           10000
52 #define READSAFE_TIMEOUT        1000
53
54 #define LOOPS_USEC_SHIFT        1
55 #define LOOPS_USEC              (1 << LOOPS_USEC_SHIFT)
56 #define LOOPS(timeout)          ((timeout) >> LOOPS_USEC_SHIFT)
57
58 static DECLARE_COMPLETION(release_done);
59
60 static const char driver_name[] = "mv_udc";
61 static const char driver_desc[] = DRIVER_DESC;
62
63 static void nuke(struct mv_ep *ep, int status);
64 static void stop_activity(struct mv_udc *udc, struct usb_gadget_driver *driver);
65
66 /* for endpoint 0 operations */
67 static const struct usb_endpoint_descriptor mv_ep0_desc = {
68         .bLength =              USB_DT_ENDPOINT_SIZE,
69         .bDescriptorType =      USB_DT_ENDPOINT,
70         .bEndpointAddress =     0,
71         .bmAttributes =         USB_ENDPOINT_XFER_CONTROL,
72         .wMaxPacketSize =       EP0_MAX_PKT_SIZE,
73 };
74
75 static void ep0_reset(struct mv_udc *udc)
76 {
77         struct mv_ep *ep;
78         u32 epctrlx;
79         int i = 0;
80
81         /* ep0 in and out */
82         for (i = 0; i < 2; i++) {
83                 ep = &udc->eps[i];
84                 ep->udc = udc;
85
86                 /* ep0 dQH */
87                 ep->dqh = &udc->ep_dqh[i];
88
89                 /* configure ep0 endpoint capabilities in dQH */
90                 ep->dqh->max_packet_length =
91                         (EP0_MAX_PKT_SIZE << EP_QUEUE_HEAD_MAX_PKT_LEN_POS)
92                         | EP_QUEUE_HEAD_IOS;
93
94                 ep->dqh->next_dtd_ptr = EP_QUEUE_HEAD_NEXT_TERMINATE;
95
96                 epctrlx = readl(&udc->op_regs->epctrlx[0]);
97                 if (i) {        /* TX */
98                         epctrlx |= EPCTRL_TX_ENABLE
99                                 | (USB_ENDPOINT_XFER_CONTROL
100                                         << EPCTRL_TX_EP_TYPE_SHIFT);
101
102                 } else {        /* RX */
103                         epctrlx |= EPCTRL_RX_ENABLE
104                                 | (USB_ENDPOINT_XFER_CONTROL
105                                         << EPCTRL_RX_EP_TYPE_SHIFT);
106                 }
107
108                 writel(epctrlx, &udc->op_regs->epctrlx[0]);
109         }
110 }
111
112 /* protocol ep0 stall, will automatically be cleared on new transaction */
113 static void ep0_stall(struct mv_udc *udc)
114 {
115         u32     epctrlx;
116
117         /* set TX and RX to stall */
118         epctrlx = readl(&udc->op_regs->epctrlx[0]);
119         epctrlx |= EPCTRL_RX_EP_STALL | EPCTRL_TX_EP_STALL;
120         writel(epctrlx, &udc->op_regs->epctrlx[0]);
121
122         /* update ep0 state */
123         udc->ep0_state = WAIT_FOR_SETUP;
124         udc->ep0_dir = EP_DIR_OUT;
125 }
126
127 static int process_ep_req(struct mv_udc *udc, int index,
128         struct mv_req *curr_req)
129 {
130         struct mv_dtd   *curr_dtd;
131         struct mv_dqh   *curr_dqh;
132         int actual, remaining_length;
133         int i, direction;
134         int retval = 0;
135         u32 errors;
136         u32 bit_pos;
137
138         curr_dqh = &udc->ep_dqh[index];
139         direction = index % 2;
140
141         curr_dtd = curr_req->head;
142         actual = curr_req->req.length;
143
144         for (i = 0; i < curr_req->dtd_count; i++) {
145                 if (curr_dtd->size_ioc_sts & DTD_STATUS_ACTIVE) {
146                         dev_dbg(&udc->dev->dev, "%s, dTD not completed\n",
147                                 udc->eps[index].name);
148                         return 1;
149                 }
150
151                 errors = curr_dtd->size_ioc_sts & DTD_ERROR_MASK;
152                 if (!errors) {
153                         remaining_length =
154                                 (curr_dtd->size_ioc_sts & DTD_PACKET_SIZE)
155                                         >> DTD_LENGTH_BIT_POS;
156                         actual -= remaining_length;
157
158                         if (remaining_length) {
159                                 if (direction) {
160                                         dev_dbg(&udc->dev->dev,
161                                                 "TX dTD remains data\n");
162                                         retval = -EPROTO;
163                                         break;
164                                 } else
165                                         break;
166                         }
167                 } else {
168                         dev_info(&udc->dev->dev,
169                                 "complete_tr error: ep=%d %s: error = 0x%x\n",
170                                 index >> 1, direction ? "SEND" : "RECV",
171                                 errors);
172                         if (errors & DTD_STATUS_HALTED) {
173                                 /* Clear the errors and Halt condition */
174                                 curr_dqh->size_ioc_int_sts &= ~errors;
175                                 retval = -EPIPE;
176                         } else if (errors & DTD_STATUS_DATA_BUFF_ERR) {
177                                 retval = -EPROTO;
178                         } else if (errors & DTD_STATUS_TRANSACTION_ERR) {
179                                 retval = -EILSEQ;
180                         }
181                 }
182                 if (i != curr_req->dtd_count - 1)
183                         curr_dtd = (struct mv_dtd *)curr_dtd->next_dtd_virt;
184         }
185         if (retval)
186                 return retval;
187
188         if (direction == EP_DIR_OUT)
189                 bit_pos = 1 << curr_req->ep->ep_num;
190         else
191                 bit_pos = 1 << (16 + curr_req->ep->ep_num);
192
193         while ((curr_dqh->curr_dtd_ptr == curr_dtd->td_dma)) {
194                 if (curr_dtd->dtd_next == EP_QUEUE_HEAD_NEXT_TERMINATE) {
195                         while (readl(&udc->op_regs->epstatus) & bit_pos)
196                                 udelay(1);
197                         break;
198                 }
199                 udelay(1);
200         }
201
202         curr_req->req.actual = actual;
203
204         return 0;
205 }
206
207 /*
208  * done() - retire a request; caller blocked irqs
209  * @status : request status to be set, only works when
210  * request is still in progress.
211  */
212 static void done(struct mv_ep *ep, struct mv_req *req, int status)
213         __releases(&ep->udc->lock)
214         __acquires(&ep->udc->lock)
215 {
216         struct mv_udc *udc = NULL;
217         unsigned char stopped = ep->stopped;
218         struct mv_dtd *curr_td, *next_td;
219         int j;
220
221         udc = (struct mv_udc *)ep->udc;
222         /* Removed the req from fsl_ep->queue */
223         list_del_init(&req->queue);
224
225         /* req.status should be set as -EINPROGRESS in ep_queue() */
226         if (req->req.status == -EINPROGRESS)
227                 req->req.status = status;
228         else
229                 status = req->req.status;
230
231         /* Free dtd for the request */
232         next_td = req->head;
233         for (j = 0; j < req->dtd_count; j++) {
234                 curr_td = next_td;
235                 if (j != req->dtd_count - 1)
236                         next_td = curr_td->next_dtd_virt;
237                 dma_pool_free(udc->dtd_pool, curr_td, curr_td->td_dma);
238         }
239
240         usb_gadget_unmap_request(&udc->gadget, &req->req, ep_dir(ep));
241
242         if (status && (status != -ESHUTDOWN))
243                 dev_info(&udc->dev->dev, "complete %s req %p stat %d len %u/%u",
244                         ep->ep.name, &req->req, status,
245                         req->req.actual, req->req.length);
246
247         ep->stopped = 1;
248
249         spin_unlock(&ep->udc->lock);
250
251         usb_gadget_giveback_request(&ep->ep, &req->req);
252
253         spin_lock(&ep->udc->lock);
254         ep->stopped = stopped;
255 }
256
257 static int queue_dtd(struct mv_ep *ep, struct mv_req *req)
258 {
259         struct mv_udc *udc;
260         struct mv_dqh *dqh;
261         u32 bit_pos, direction;
262         u32 usbcmd, epstatus;
263         unsigned int loops;
264         int retval = 0;
265
266         udc = ep->udc;
267         direction = ep_dir(ep);
268         dqh = &(udc->ep_dqh[ep->ep_num * 2 + direction]);
269         bit_pos = 1 << (((direction == EP_DIR_OUT) ? 0 : 16) + ep->ep_num);
270
271         /* check if the pipe is empty */
272         if (!(list_empty(&ep->queue))) {
273                 struct mv_req *lastreq;
274                 lastreq = list_entry(ep->queue.prev, struct mv_req, queue);
275                 lastreq->tail->dtd_next =
276                         req->head->td_dma & EP_QUEUE_HEAD_NEXT_POINTER_MASK;
277
278                 wmb();
279
280                 if (readl(&udc->op_regs->epprime) & bit_pos)
281                         goto done;
282
283                 loops = LOOPS(READSAFE_TIMEOUT);
284                 while (1) {
285                         /* start with setting the semaphores */
286                         usbcmd = readl(&udc->op_regs->usbcmd);
287                         usbcmd |= USBCMD_ATDTW_TRIPWIRE_SET;
288                         writel(usbcmd, &udc->op_regs->usbcmd);
289
290                         /* read the endpoint status */
291                         epstatus = readl(&udc->op_regs->epstatus) & bit_pos;
292
293                         /*
294                          * Reread the ATDTW semaphore bit to check if it is
295                          * cleared. When hardware see a hazard, it will clear
296                          * the bit or else we remain set to 1 and we can
297                          * proceed with priming of endpoint if not already
298                          * primed.
299                          */
300                         if (readl(&udc->op_regs->usbcmd)
301                                 & USBCMD_ATDTW_TRIPWIRE_SET)
302                                 break;
303
304                         loops--;
305                         if (loops == 0) {
306                                 dev_err(&udc->dev->dev,
307                                         "Timeout for ATDTW_TRIPWIRE...\n");
308                                 retval = -ETIME;
309                                 goto done;
310                         }
311                         udelay(LOOPS_USEC);
312                 }
313
314                 /* Clear the semaphore */
315                 usbcmd = readl(&udc->op_regs->usbcmd);
316                 usbcmd &= USBCMD_ATDTW_TRIPWIRE_CLEAR;
317                 writel(usbcmd, &udc->op_regs->usbcmd);
318
319                 if (epstatus)
320                         goto done;
321         }
322
323         /* Write dQH next pointer and terminate bit to 0 */
324         dqh->next_dtd_ptr = req->head->td_dma
325                                 & EP_QUEUE_HEAD_NEXT_POINTER_MASK;
326
327         /* clear active and halt bit, in case set from a previous error */
328         dqh->size_ioc_int_sts &= ~(DTD_STATUS_ACTIVE | DTD_STATUS_HALTED);
329
330         /* Ensure that updates to the QH will occur before priming. */
331         wmb();
332
333         /* Prime the Endpoint */
334         writel(bit_pos, &udc->op_regs->epprime);
335
336 done:
337         return retval;
338 }
339
340 static struct mv_dtd *build_dtd(struct mv_req *req, unsigned *length,
341                 dma_addr_t *dma, int *is_last)
342 {
343         struct mv_dtd *dtd;
344         struct mv_udc *udc;
345         struct mv_dqh *dqh;
346         u32 temp, mult = 0;
347
348         /* how big will this transfer be? */
349         if (usb_endpoint_xfer_isoc(req->ep->ep.desc)) {
350                 dqh = req->ep->dqh;
351                 mult = (dqh->max_packet_length >> EP_QUEUE_HEAD_MULT_POS)
352                                 & 0x3;
353                 *length = min(req->req.length - req->req.actual,
354                                 (unsigned)(mult * req->ep->ep.maxpacket));
355         } else
356                 *length = min(req->req.length - req->req.actual,
357                                 (unsigned)EP_MAX_LENGTH_TRANSFER);
358
359         udc = req->ep->udc;
360
361         /*
362          * Be careful that no _GFP_HIGHMEM is set,
363          * or we can not use dma_to_virt
364          */
365         dtd = dma_pool_alloc(udc->dtd_pool, GFP_ATOMIC, dma);
366         if (dtd == NULL)
367                 return dtd;
368
369         dtd->td_dma = *dma;
370         /* initialize buffer page pointers */
371         temp = (u32)(req->req.dma + req->req.actual);
372         dtd->buff_ptr0 = cpu_to_le32(temp);
373         temp &= ~0xFFF;
374         dtd->buff_ptr1 = cpu_to_le32(temp + 0x1000);
375         dtd->buff_ptr2 = cpu_to_le32(temp + 0x2000);
376         dtd->buff_ptr3 = cpu_to_le32(temp + 0x3000);
377         dtd->buff_ptr4 = cpu_to_le32(temp + 0x4000);
378
379         req->req.actual += *length;
380
381         /* zlp is needed if req->req.zero is set */
382         if (req->req.zero) {
383                 if (*length == 0 || (*length % req->ep->ep.maxpacket) != 0)
384                         *is_last = 1;
385                 else
386                         *is_last = 0;
387         } else if (req->req.length == req->req.actual)
388                 *is_last = 1;
389         else
390                 *is_last = 0;
391
392         /* Fill in the transfer size; set active bit */
393         temp = ((*length << DTD_LENGTH_BIT_POS) | DTD_STATUS_ACTIVE);
394
395         /* Enable interrupt for the last dtd of a request */
396         if (*is_last && !req->req.no_interrupt)
397                 temp |= DTD_IOC;
398
399         temp |= mult << 10;
400
401         dtd->size_ioc_sts = temp;
402
403         mb();
404
405         return dtd;
406 }
407
408 /* generate dTD linked list for a request */
409 static int req_to_dtd(struct mv_req *req)
410 {
411         unsigned count;
412         int is_last, is_first = 1;
413         struct mv_dtd *dtd, *last_dtd = NULL;
414         dma_addr_t dma;
415
416         do {
417                 dtd = build_dtd(req, &count, &dma, &is_last);
418                 if (dtd == NULL)
419                         return -ENOMEM;
420
421                 if (is_first) {
422                         is_first = 0;
423                         req->head = dtd;
424                 } else {
425                         last_dtd->dtd_next = dma;
426                         last_dtd->next_dtd_virt = dtd;
427                 }
428                 last_dtd = dtd;
429                 req->dtd_count++;
430         } while (!is_last);
431
432         /* set terminate bit to 1 for the last dTD */
433         dtd->dtd_next = DTD_NEXT_TERMINATE;
434
435         req->tail = dtd;
436
437         return 0;
438 }
439
440 static int mv_ep_enable(struct usb_ep *_ep,
441                 const struct usb_endpoint_descriptor *desc)
442 {
443         struct mv_udc *udc;
444         struct mv_ep *ep;
445         struct mv_dqh *dqh;
446         u16 max = 0;
447         u32 bit_pos, epctrlx, direction;
448         unsigned char zlt = 0, ios = 0, mult = 0;
449         unsigned long flags;
450
451         ep = container_of(_ep, struct mv_ep, ep);
452         udc = ep->udc;
453
454         if (!_ep || !desc
455                         || desc->bDescriptorType != USB_DT_ENDPOINT)
456                 return -EINVAL;
457
458         if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN)
459                 return -ESHUTDOWN;
460
461         direction = ep_dir(ep);
462         max = usb_endpoint_maxp(desc);
463
464         /*
465          * disable HW zero length termination select
466          * driver handles zero length packet through req->req.zero
467          */
468         zlt = 1;
469
470         bit_pos = 1 << ((direction == EP_DIR_OUT ? 0 : 16) + ep->ep_num);
471
472         /* Check if the Endpoint is Primed */
473         if ((readl(&udc->op_regs->epprime) & bit_pos)
474                 || (readl(&udc->op_regs->epstatus) & bit_pos)) {
475                 dev_info(&udc->dev->dev,
476                         "ep=%d %s: Init ERROR: ENDPTPRIME=0x%x,"
477                         " ENDPTSTATUS=0x%x, bit_pos=0x%x\n",
478                         (unsigned)ep->ep_num, direction ? "SEND" : "RECV",
479                         (unsigned)readl(&udc->op_regs->epprime),
480                         (unsigned)readl(&udc->op_regs->epstatus),
481                         (unsigned)bit_pos);
482                 goto en_done;
483         }
484         /* Set the max packet length, interrupt on Setup and Mult fields */
485         switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
486         case USB_ENDPOINT_XFER_BULK:
487                 zlt = 1;
488                 mult = 0;
489                 break;
490         case USB_ENDPOINT_XFER_CONTROL:
491                 ios = 1;
492         case USB_ENDPOINT_XFER_INT:
493                 mult = 0;
494                 break;
495         case USB_ENDPOINT_XFER_ISOC:
496                 /* Calculate transactions needed for high bandwidth iso */
497                 mult = (unsigned char)(1 + ((max >> 11) & 0x03));
498                 max = max & 0x7ff;      /* bit 0~10 */
499                 /* 3 transactions at most */
500                 if (mult > 3)
501                         goto en_done;
502                 break;
503         default:
504                 goto en_done;
505         }
506
507         spin_lock_irqsave(&udc->lock, flags);
508         /* Get the endpoint queue head address */
509         dqh = ep->dqh;
510         dqh->max_packet_length = (max << EP_QUEUE_HEAD_MAX_PKT_LEN_POS)
511                 | (mult << EP_QUEUE_HEAD_MULT_POS)
512                 | (zlt ? EP_QUEUE_HEAD_ZLT_SEL : 0)
513                 | (ios ? EP_QUEUE_HEAD_IOS : 0);
514         dqh->next_dtd_ptr = 1;
515         dqh->size_ioc_int_sts = 0;
516
517         ep->ep.maxpacket = max;
518         ep->ep.desc = desc;
519         ep->stopped = 0;
520
521         /* Enable the endpoint for Rx or Tx and set the endpoint type */
522         epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
523         if (direction == EP_DIR_IN) {
524                 epctrlx &= ~EPCTRL_TX_ALL_MASK;
525                 epctrlx |= EPCTRL_TX_ENABLE | EPCTRL_TX_DATA_TOGGLE_RST
526                         | ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
527                                 << EPCTRL_TX_EP_TYPE_SHIFT);
528         } else {
529                 epctrlx &= ~EPCTRL_RX_ALL_MASK;
530                 epctrlx |= EPCTRL_RX_ENABLE | EPCTRL_RX_DATA_TOGGLE_RST
531                         | ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
532                                 << EPCTRL_RX_EP_TYPE_SHIFT);
533         }
534         writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
535
536         /*
537          * Implement Guideline (GL# USB-7) The unused endpoint type must
538          * be programmed to bulk.
539          */
540         epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
541         if ((epctrlx & EPCTRL_RX_ENABLE) == 0) {
542                 epctrlx |= (USB_ENDPOINT_XFER_BULK
543                                 << EPCTRL_RX_EP_TYPE_SHIFT);
544                 writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
545         }
546
547         epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
548         if ((epctrlx & EPCTRL_TX_ENABLE) == 0) {
549                 epctrlx |= (USB_ENDPOINT_XFER_BULK
550                                 << EPCTRL_TX_EP_TYPE_SHIFT);
551                 writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
552         }
553
554         spin_unlock_irqrestore(&udc->lock, flags);
555
556         return 0;
557 en_done:
558         return -EINVAL;
559 }
560
561 static int  mv_ep_disable(struct usb_ep *_ep)
562 {
563         struct mv_udc *udc;
564         struct mv_ep *ep;
565         struct mv_dqh *dqh;
566         u32 epctrlx, direction;
567         unsigned long flags;
568
569         ep = container_of(_ep, struct mv_ep, ep);
570         if ((_ep == NULL) || !ep->ep.desc)
571                 return -EINVAL;
572
573         udc = ep->udc;
574
575         /* Get the endpoint queue head address */
576         dqh = ep->dqh;
577
578         spin_lock_irqsave(&udc->lock, flags);
579
580         direction = ep_dir(ep);
581
582         /* Reset the max packet length and the interrupt on Setup */
583         dqh->max_packet_length = 0;
584
585         /* Disable the endpoint for Rx or Tx and reset the endpoint type */
586         epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
587         epctrlx &= ~((direction == EP_DIR_IN)
588                         ? (EPCTRL_TX_ENABLE | EPCTRL_TX_TYPE)
589                         : (EPCTRL_RX_ENABLE | EPCTRL_RX_TYPE));
590         writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
591
592         /* nuke all pending requests (does flush) */
593         nuke(ep, -ESHUTDOWN);
594
595         ep->ep.desc = NULL;
596         ep->stopped = 1;
597
598         spin_unlock_irqrestore(&udc->lock, flags);
599
600         return 0;
601 }
602
603 static struct usb_request *
604 mv_alloc_request(struct usb_ep *_ep, gfp_t gfp_flags)
605 {
606         struct mv_req *req = NULL;
607
608         req = kzalloc(sizeof *req, gfp_flags);
609         if (!req)
610                 return NULL;
611
612         req->req.dma = DMA_ADDR_INVALID;
613         INIT_LIST_HEAD(&req->queue);
614
615         return &req->req;
616 }
617
618 static void mv_free_request(struct usb_ep *_ep, struct usb_request *_req)
619 {
620         struct mv_req *req = NULL;
621
622         req = container_of(_req, struct mv_req, req);
623
624         if (_req)
625                 kfree(req);
626 }
627
628 static void mv_ep_fifo_flush(struct usb_ep *_ep)
629 {
630         struct mv_udc *udc;
631         u32 bit_pos, direction;
632         struct mv_ep *ep;
633         unsigned int loops;
634
635         if (!_ep)
636                 return;
637
638         ep = container_of(_ep, struct mv_ep, ep);
639         if (!ep->ep.desc)
640                 return;
641
642         udc = ep->udc;
643         direction = ep_dir(ep);
644
645         if (ep->ep_num == 0)
646                 bit_pos = (1 << 16) | 1;
647         else if (direction == EP_DIR_OUT)
648                 bit_pos = 1 << ep->ep_num;
649         else
650                 bit_pos = 1 << (16 + ep->ep_num);
651
652         loops = LOOPS(EPSTATUS_TIMEOUT);
653         do {
654                 unsigned int inter_loops;
655
656                 if (loops == 0) {
657                         dev_err(&udc->dev->dev,
658                                 "TIMEOUT for ENDPTSTATUS=0x%x, bit_pos=0x%x\n",
659                                 (unsigned)readl(&udc->op_regs->epstatus),
660                                 (unsigned)bit_pos);
661                         return;
662                 }
663                 /* Write 1 to the Flush register */
664                 writel(bit_pos, &udc->op_regs->epflush);
665
666                 /* Wait until flushing completed */
667                 inter_loops = LOOPS(FLUSH_TIMEOUT);
668                 while (readl(&udc->op_regs->epflush)) {
669                         /*
670                          * ENDPTFLUSH bit should be cleared to indicate this
671                          * operation is complete
672                          */
673                         if (inter_loops == 0) {
674                                 dev_err(&udc->dev->dev,
675                                         "TIMEOUT for ENDPTFLUSH=0x%x,"
676                                         "bit_pos=0x%x\n",
677                                         (unsigned)readl(&udc->op_regs->epflush),
678                                         (unsigned)bit_pos);
679                                 return;
680                         }
681                         inter_loops--;
682                         udelay(LOOPS_USEC);
683                 }
684                 loops--;
685         } while (readl(&udc->op_regs->epstatus) & bit_pos);
686 }
687
688 /* queues (submits) an I/O request to an endpoint */
689 static int
690 mv_ep_queue(struct usb_ep *_ep, struct usb_request *_req, gfp_t gfp_flags)
691 {
692         struct mv_ep *ep = container_of(_ep, struct mv_ep, ep);
693         struct mv_req *req = container_of(_req, struct mv_req, req);
694         struct mv_udc *udc = ep->udc;
695         unsigned long flags;
696         int retval;
697
698         /* catch various bogus parameters */
699         if (!_req || !req->req.complete || !req->req.buf
700                         || !list_empty(&req->queue)) {
701                 dev_err(&udc->dev->dev, "%s, bad params", __func__);
702                 return -EINVAL;
703         }
704         if (unlikely(!_ep || !ep->ep.desc)) {
705                 dev_err(&udc->dev->dev, "%s, bad ep", __func__);
706                 return -EINVAL;
707         }
708
709         udc = ep->udc;
710         if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN)
711                 return -ESHUTDOWN;
712
713         req->ep = ep;
714
715         /* map virtual address to hardware */
716         retval = usb_gadget_map_request(&udc->gadget, _req, ep_dir(ep));
717         if (retval)
718                 return retval;
719
720         req->req.status = -EINPROGRESS;
721         req->req.actual = 0;
722         req->dtd_count = 0;
723
724         spin_lock_irqsave(&udc->lock, flags);
725
726         /* build dtds and push them to device queue */
727         if (!req_to_dtd(req)) {
728                 retval = queue_dtd(ep, req);
729                 if (retval) {
730                         spin_unlock_irqrestore(&udc->lock, flags);
731                         dev_err(&udc->dev->dev, "Failed to queue dtd\n");
732                         goto err_unmap_dma;
733                 }
734         } else {
735                 spin_unlock_irqrestore(&udc->lock, flags);
736                 dev_err(&udc->dev->dev, "Failed to dma_pool_alloc\n");
737                 retval = -ENOMEM;
738                 goto err_unmap_dma;
739         }
740
741         /* Update ep0 state */
742         if (ep->ep_num == 0)
743                 udc->ep0_state = DATA_STATE_XMIT;
744
745         /* irq handler advances the queue */
746         list_add_tail(&req->queue, &ep->queue);
747         spin_unlock_irqrestore(&udc->lock, flags);
748
749         return 0;
750
751 err_unmap_dma:
752         usb_gadget_unmap_request(&udc->gadget, _req, ep_dir(ep));
753
754         return retval;
755 }
756
757 static void mv_prime_ep(struct mv_ep *ep, struct mv_req *req)
758 {
759         struct mv_dqh *dqh = ep->dqh;
760         u32 bit_pos;
761
762         /* Write dQH next pointer and terminate bit to 0 */
763         dqh->next_dtd_ptr = req->head->td_dma
764                 & EP_QUEUE_HEAD_NEXT_POINTER_MASK;
765
766         /* clear active and halt bit, in case set from a previous error */
767         dqh->size_ioc_int_sts &= ~(DTD_STATUS_ACTIVE | DTD_STATUS_HALTED);
768
769         /* Ensure that updates to the QH will occure before priming. */
770         wmb();
771
772         bit_pos = 1 << (((ep_dir(ep) == EP_DIR_OUT) ? 0 : 16) + ep->ep_num);
773
774         /* Prime the Endpoint */
775         writel(bit_pos, &ep->udc->op_regs->epprime);
776 }
777
778 /* dequeues (cancels, unlinks) an I/O request from an endpoint */
779 static int mv_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
780 {
781         struct mv_ep *ep = container_of(_ep, struct mv_ep, ep);
782         struct mv_req *req;
783         struct mv_udc *udc = ep->udc;
784         unsigned long flags;
785         int stopped, ret = 0;
786         u32 epctrlx;
787
788         if (!_ep || !_req)
789                 return -EINVAL;
790
791         spin_lock_irqsave(&ep->udc->lock, flags);
792         stopped = ep->stopped;
793
794         /* Stop the ep before we deal with the queue */
795         ep->stopped = 1;
796         epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
797         if (ep_dir(ep) == EP_DIR_IN)
798                 epctrlx &= ~EPCTRL_TX_ENABLE;
799         else
800                 epctrlx &= ~EPCTRL_RX_ENABLE;
801         writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
802
803         /* make sure it's actually queued on this endpoint */
804         list_for_each_entry(req, &ep->queue, queue) {
805                 if (&req->req == _req)
806                         break;
807         }
808         if (&req->req != _req) {
809                 ret = -EINVAL;
810                 goto out;
811         }
812
813         /* The request is in progress, or completed but not dequeued */
814         if (ep->queue.next == &req->queue) {
815                 _req->status = -ECONNRESET;
816                 mv_ep_fifo_flush(_ep);  /* flush current transfer */
817
818                 /* The request isn't the last request in this ep queue */
819                 if (req->queue.next != &ep->queue) {
820                         struct mv_req *next_req;
821
822                         next_req = list_entry(req->queue.next,
823                                 struct mv_req, queue);
824
825                         /* Point the QH to the first TD of next request */
826                         mv_prime_ep(ep, next_req);
827                 } else {
828                         struct mv_dqh *qh;
829
830                         qh = ep->dqh;
831                         qh->next_dtd_ptr = 1;
832                         qh->size_ioc_int_sts = 0;
833                 }
834
835                 /* The request hasn't been processed, patch up the TD chain */
836         } else {
837                 struct mv_req *prev_req;
838
839                 prev_req = list_entry(req->queue.prev, struct mv_req, queue);
840                 writel(readl(&req->tail->dtd_next),
841                                 &prev_req->tail->dtd_next);
842
843         }
844
845         done(ep, req, -ECONNRESET);
846
847         /* Enable EP */
848 out:
849         epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
850         if (ep_dir(ep) == EP_DIR_IN)
851                 epctrlx |= EPCTRL_TX_ENABLE;
852         else
853                 epctrlx |= EPCTRL_RX_ENABLE;
854         writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
855         ep->stopped = stopped;
856
857         spin_unlock_irqrestore(&ep->udc->lock, flags);
858         return ret;
859 }
860
861 static void ep_set_stall(struct mv_udc *udc, u8 ep_num, u8 direction, int stall)
862 {
863         u32 epctrlx;
864
865         epctrlx = readl(&udc->op_regs->epctrlx[ep_num]);
866
867         if (stall) {
868                 if (direction == EP_DIR_IN)
869                         epctrlx |= EPCTRL_TX_EP_STALL;
870                 else
871                         epctrlx |= EPCTRL_RX_EP_STALL;
872         } else {
873                 if (direction == EP_DIR_IN) {
874                         epctrlx &= ~EPCTRL_TX_EP_STALL;
875                         epctrlx |= EPCTRL_TX_DATA_TOGGLE_RST;
876                 } else {
877                         epctrlx &= ~EPCTRL_RX_EP_STALL;
878                         epctrlx |= EPCTRL_RX_DATA_TOGGLE_RST;
879                 }
880         }
881         writel(epctrlx, &udc->op_regs->epctrlx[ep_num]);
882 }
883
884 static int ep_is_stall(struct mv_udc *udc, u8 ep_num, u8 direction)
885 {
886         u32 epctrlx;
887
888         epctrlx = readl(&udc->op_regs->epctrlx[ep_num]);
889
890         if (direction == EP_DIR_OUT)
891                 return (epctrlx & EPCTRL_RX_EP_STALL) ? 1 : 0;
892         else
893                 return (epctrlx & EPCTRL_TX_EP_STALL) ? 1 : 0;
894 }
895
896 static int mv_ep_set_halt_wedge(struct usb_ep *_ep, int halt, int wedge)
897 {
898         struct mv_ep *ep;
899         unsigned long flags = 0;
900         int status = 0;
901         struct mv_udc *udc;
902
903         ep = container_of(_ep, struct mv_ep, ep);
904         udc = ep->udc;
905         if (!_ep || !ep->ep.desc) {
906                 status = -EINVAL;
907                 goto out;
908         }
909
910         if (ep->ep.desc->bmAttributes == USB_ENDPOINT_XFER_ISOC) {
911                 status = -EOPNOTSUPP;
912                 goto out;
913         }
914
915         /*
916          * Attempt to halt IN ep will fail if any transfer requests
917          * are still queue
918          */
919         if (halt && (ep_dir(ep) == EP_DIR_IN) && !list_empty(&ep->queue)) {
920                 status = -EAGAIN;
921                 goto out;
922         }
923
924         spin_lock_irqsave(&ep->udc->lock, flags);
925         ep_set_stall(udc, ep->ep_num, ep_dir(ep), halt);
926         if (halt && wedge)
927                 ep->wedge = 1;
928         else if (!halt)
929                 ep->wedge = 0;
930         spin_unlock_irqrestore(&ep->udc->lock, flags);
931
932         if (ep->ep_num == 0) {
933                 udc->ep0_state = WAIT_FOR_SETUP;
934                 udc->ep0_dir = EP_DIR_OUT;
935         }
936 out:
937         return status;
938 }
939
940 static int mv_ep_set_halt(struct usb_ep *_ep, int halt)
941 {
942         return mv_ep_set_halt_wedge(_ep, halt, 0);
943 }
944
945 static int mv_ep_set_wedge(struct usb_ep *_ep)
946 {
947         return mv_ep_set_halt_wedge(_ep, 1, 1);
948 }
949
950 static struct usb_ep_ops mv_ep_ops = {
951         .enable         = mv_ep_enable,
952         .disable        = mv_ep_disable,
953
954         .alloc_request  = mv_alloc_request,
955         .free_request   = mv_free_request,
956
957         .queue          = mv_ep_queue,
958         .dequeue        = mv_ep_dequeue,
959
960         .set_wedge      = mv_ep_set_wedge,
961         .set_halt       = mv_ep_set_halt,
962         .fifo_flush     = mv_ep_fifo_flush,     /* flush fifo */
963 };
964
965 static void udc_clock_enable(struct mv_udc *udc)
966 {
967         clk_prepare_enable(udc->clk);
968 }
969
970 static void udc_clock_disable(struct mv_udc *udc)
971 {
972         clk_disable_unprepare(udc->clk);
973 }
974
975 static void udc_stop(struct mv_udc *udc)
976 {
977         u32 tmp;
978
979         /* Disable interrupts */
980         tmp = readl(&udc->op_regs->usbintr);
981         tmp &= ~(USBINTR_INT_EN | USBINTR_ERR_INT_EN |
982                 USBINTR_PORT_CHANGE_DETECT_EN | USBINTR_RESET_EN);
983         writel(tmp, &udc->op_regs->usbintr);
984
985         udc->stopped = 1;
986
987         /* Reset the Run the bit in the command register to stop VUSB */
988         tmp = readl(&udc->op_regs->usbcmd);
989         tmp &= ~USBCMD_RUN_STOP;
990         writel(tmp, &udc->op_regs->usbcmd);
991 }
992
993 static void udc_start(struct mv_udc *udc)
994 {
995         u32 usbintr;
996
997         usbintr = USBINTR_INT_EN | USBINTR_ERR_INT_EN
998                 | USBINTR_PORT_CHANGE_DETECT_EN
999                 | USBINTR_RESET_EN | USBINTR_DEVICE_SUSPEND;
1000         /* Enable interrupts */
1001         writel(usbintr, &udc->op_regs->usbintr);
1002
1003         udc->stopped = 0;
1004
1005         /* Set the Run bit in the command register */
1006         writel(USBCMD_RUN_STOP, &udc->op_regs->usbcmd);
1007 }
1008
1009 static int udc_reset(struct mv_udc *udc)
1010 {
1011         unsigned int loops;
1012         u32 tmp, portsc;
1013
1014         /* Stop the controller */
1015         tmp = readl(&udc->op_regs->usbcmd);
1016         tmp &= ~USBCMD_RUN_STOP;
1017         writel(tmp, &udc->op_regs->usbcmd);
1018
1019         /* Reset the controller to get default values */
1020         writel(USBCMD_CTRL_RESET, &udc->op_regs->usbcmd);
1021
1022         /* wait for reset to complete */
1023         loops = LOOPS(RESET_TIMEOUT);
1024         while (readl(&udc->op_regs->usbcmd) & USBCMD_CTRL_RESET) {
1025                 if (loops == 0) {
1026                         dev_err(&udc->dev->dev,
1027                                 "Wait for RESET completed TIMEOUT\n");
1028                         return -ETIMEDOUT;
1029                 }
1030                 loops--;
1031                 udelay(LOOPS_USEC);
1032         }
1033
1034         /* set controller to device mode */
1035         tmp = readl(&udc->op_regs->usbmode);
1036         tmp |= USBMODE_CTRL_MODE_DEVICE;
1037
1038         /* turn setup lockout off, require setup tripwire in usbcmd */
1039         tmp |= USBMODE_SETUP_LOCK_OFF;
1040
1041         writel(tmp, &udc->op_regs->usbmode);
1042
1043         writel(0x0, &udc->op_regs->epsetupstat);
1044
1045         /* Configure the Endpoint List Address */
1046         writel(udc->ep_dqh_dma & USB_EP_LIST_ADDRESS_MASK,
1047                 &udc->op_regs->eplistaddr);
1048
1049         portsc = readl(&udc->op_regs->portsc[0]);
1050         if (readl(&udc->cap_regs->hcsparams) & HCSPARAMS_PPC)
1051                 portsc &= (~PORTSCX_W1C_BITS | ~PORTSCX_PORT_POWER);
1052
1053         if (udc->force_fs)
1054                 portsc |= PORTSCX_FORCE_FULL_SPEED_CONNECT;
1055         else
1056                 portsc &= (~PORTSCX_FORCE_FULL_SPEED_CONNECT);
1057
1058         writel(portsc, &udc->op_regs->portsc[0]);
1059
1060         tmp = readl(&udc->op_regs->epctrlx[0]);
1061         tmp &= ~(EPCTRL_TX_EP_STALL | EPCTRL_RX_EP_STALL);
1062         writel(tmp, &udc->op_regs->epctrlx[0]);
1063
1064         return 0;
1065 }
1066
1067 static int mv_udc_enable_internal(struct mv_udc *udc)
1068 {
1069         int retval;
1070
1071         if (udc->active)
1072                 return 0;
1073
1074         dev_dbg(&udc->dev->dev, "enable udc\n");
1075         udc_clock_enable(udc);
1076         if (udc->pdata->phy_init) {
1077                 retval = udc->pdata->phy_init(udc->phy_regs);
1078                 if (retval) {
1079                         dev_err(&udc->dev->dev,
1080                                 "init phy error %d\n", retval);
1081                         udc_clock_disable(udc);
1082                         return retval;
1083                 }
1084         }
1085         udc->active = 1;
1086
1087         return 0;
1088 }
1089
1090 static int mv_udc_enable(struct mv_udc *udc)
1091 {
1092         if (udc->clock_gating)
1093                 return mv_udc_enable_internal(udc);
1094
1095         return 0;
1096 }
1097
1098 static void mv_udc_disable_internal(struct mv_udc *udc)
1099 {
1100         if (udc->active) {
1101                 dev_dbg(&udc->dev->dev, "disable udc\n");
1102                 if (udc->pdata->phy_deinit)
1103                         udc->pdata->phy_deinit(udc->phy_regs);
1104                 udc_clock_disable(udc);
1105                 udc->active = 0;
1106         }
1107 }
1108
1109 static void mv_udc_disable(struct mv_udc *udc)
1110 {
1111         if (udc->clock_gating)
1112                 mv_udc_disable_internal(udc);
1113 }
1114
1115 static int mv_udc_get_frame(struct usb_gadget *gadget)
1116 {
1117         struct mv_udc *udc;
1118         u16     retval;
1119
1120         if (!gadget)
1121                 return -ENODEV;
1122
1123         udc = container_of(gadget, struct mv_udc, gadget);
1124
1125         retval = readl(&udc->op_regs->frindex) & USB_FRINDEX_MASKS;
1126
1127         return retval;
1128 }
1129
1130 /* Tries to wake up the host connected to this gadget */
1131 static int mv_udc_wakeup(struct usb_gadget *gadget)
1132 {
1133         struct mv_udc *udc = container_of(gadget, struct mv_udc, gadget);
1134         u32 portsc;
1135
1136         /* Remote wakeup feature not enabled by host */
1137         if (!udc->remote_wakeup)
1138                 return -ENOTSUPP;
1139
1140         portsc = readl(&udc->op_regs->portsc);
1141         /* not suspended? */
1142         if (!(portsc & PORTSCX_PORT_SUSPEND))
1143                 return 0;
1144         /* trigger force resume */
1145         portsc |= PORTSCX_PORT_FORCE_RESUME;
1146         writel(portsc, &udc->op_regs->portsc[0]);
1147         return 0;
1148 }
1149
1150 static int mv_udc_vbus_session(struct usb_gadget *gadget, int is_active)
1151 {
1152         struct mv_udc *udc;
1153         unsigned long flags;
1154         int retval = 0;
1155
1156         udc = container_of(gadget, struct mv_udc, gadget);
1157         spin_lock_irqsave(&udc->lock, flags);
1158
1159         udc->vbus_active = (is_active != 0);
1160
1161         dev_dbg(&udc->dev->dev, "%s: softconnect %d, vbus_active %d\n",
1162                 __func__, udc->softconnect, udc->vbus_active);
1163
1164         if (udc->driver && udc->softconnect && udc->vbus_active) {
1165                 retval = mv_udc_enable(udc);
1166                 if (retval == 0) {
1167                         /* Clock is disabled, need re-init registers */
1168                         udc_reset(udc);
1169                         ep0_reset(udc);
1170                         udc_start(udc);
1171                 }
1172         } else if (udc->driver && udc->softconnect) {
1173                 if (!udc->active)
1174                         goto out;
1175
1176                 /* stop all the transfer in queue*/
1177                 stop_activity(udc, udc->driver);
1178                 udc_stop(udc);
1179                 mv_udc_disable(udc);
1180         }
1181
1182 out:
1183         spin_unlock_irqrestore(&udc->lock, flags);
1184         return retval;
1185 }
1186
1187 static int mv_udc_pullup(struct usb_gadget *gadget, int is_on)
1188 {
1189         struct mv_udc *udc;
1190         unsigned long flags;
1191         int retval = 0;
1192
1193         udc = container_of(gadget, struct mv_udc, gadget);
1194         spin_lock_irqsave(&udc->lock, flags);
1195
1196         udc->softconnect = (is_on != 0);
1197
1198         dev_dbg(&udc->dev->dev, "%s: softconnect %d, vbus_active %d\n",
1199                         __func__, udc->softconnect, udc->vbus_active);
1200
1201         if (udc->driver && udc->softconnect && udc->vbus_active) {
1202                 retval = mv_udc_enable(udc);
1203                 if (retval == 0) {
1204                         /* Clock is disabled, need re-init registers */
1205                         udc_reset(udc);
1206                         ep0_reset(udc);
1207                         udc_start(udc);
1208                 }
1209         } else if (udc->driver && udc->vbus_active) {
1210                 /* stop all the transfer in queue*/
1211                 stop_activity(udc, udc->driver);
1212                 udc_stop(udc);
1213                 mv_udc_disable(udc);
1214         }
1215
1216         spin_unlock_irqrestore(&udc->lock, flags);
1217         return retval;
1218 }
1219
1220 static int mv_udc_start(struct usb_gadget *, struct usb_gadget_driver *);
1221 static int mv_udc_stop(struct usb_gadget *);
1222 /* device controller usb_gadget_ops structure */
1223 static const struct usb_gadget_ops mv_ops = {
1224
1225         /* returns the current frame number */
1226         .get_frame      = mv_udc_get_frame,
1227
1228         /* tries to wake up the host connected to this gadget */
1229         .wakeup         = mv_udc_wakeup,
1230
1231         /* notify controller that VBUS is powered or not */
1232         .vbus_session   = mv_udc_vbus_session,
1233
1234         /* D+ pullup, software-controlled connect/disconnect to USB host */
1235         .pullup         = mv_udc_pullup,
1236         .udc_start      = mv_udc_start,
1237         .udc_stop       = mv_udc_stop,
1238 };
1239
1240 static int eps_init(struct mv_udc *udc)
1241 {
1242         struct mv_ep    *ep;
1243         char name[14];
1244         int i;
1245
1246         /* initialize ep0 */
1247         ep = &udc->eps[0];
1248         ep->udc = udc;
1249         strncpy(ep->name, "ep0", sizeof(ep->name));
1250         ep->ep.name = ep->name;
1251         ep->ep.ops = &mv_ep_ops;
1252         ep->wedge = 0;
1253         ep->stopped = 0;
1254         usb_ep_set_maxpacket_limit(&ep->ep, EP0_MAX_PKT_SIZE);
1255         ep->ep.caps.type_control = true;
1256         ep->ep.caps.dir_in = true;
1257         ep->ep.caps.dir_out = true;
1258         ep->ep_num = 0;
1259         ep->ep.desc = &mv_ep0_desc;
1260         INIT_LIST_HEAD(&ep->queue);
1261
1262         ep->ep_type = USB_ENDPOINT_XFER_CONTROL;
1263
1264         /* initialize other endpoints */
1265         for (i = 2; i < udc->max_eps * 2; i++) {
1266                 ep = &udc->eps[i];
1267                 if (i % 2) {
1268                         snprintf(name, sizeof(name), "ep%din", i / 2);
1269                         ep->direction = EP_DIR_IN;
1270                         ep->ep.caps.dir_in = true;
1271                 } else {
1272                         snprintf(name, sizeof(name), "ep%dout", i / 2);
1273                         ep->direction = EP_DIR_OUT;
1274                         ep->ep.caps.dir_out = true;
1275                 }
1276                 ep->udc = udc;
1277                 strncpy(ep->name, name, sizeof(ep->name));
1278                 ep->ep.name = ep->name;
1279
1280                 ep->ep.caps.type_iso = true;
1281                 ep->ep.caps.type_bulk = true;
1282                 ep->ep.caps.type_int = true;
1283
1284                 ep->ep.ops = &mv_ep_ops;
1285                 ep->stopped = 0;
1286                 usb_ep_set_maxpacket_limit(&ep->ep, (unsigned short) ~0);
1287                 ep->ep_num = i / 2;
1288
1289                 INIT_LIST_HEAD(&ep->queue);
1290                 list_add_tail(&ep->ep.ep_list, &udc->gadget.ep_list);
1291
1292                 ep->dqh = &udc->ep_dqh[i];
1293         }
1294
1295         return 0;
1296 }
1297
1298 /* delete all endpoint requests, called with spinlock held */
1299 static void nuke(struct mv_ep *ep, int status)
1300 {
1301         /* called with spinlock held */
1302         ep->stopped = 1;
1303
1304         /* endpoint fifo flush */
1305         mv_ep_fifo_flush(&ep->ep);
1306
1307         while (!list_empty(&ep->queue)) {
1308                 struct mv_req *req = NULL;
1309                 req = list_entry(ep->queue.next, struct mv_req, queue);
1310                 done(ep, req, status);
1311         }
1312 }
1313
1314 static void gadget_reset(struct mv_udc *udc, struct usb_gadget_driver *driver)
1315 {
1316         struct mv_ep    *ep;
1317
1318         nuke(&udc->eps[0], -ESHUTDOWN);
1319
1320         list_for_each_entry(ep, &udc->gadget.ep_list, ep.ep_list) {
1321                 nuke(ep, -ESHUTDOWN);
1322         }
1323
1324         /* report reset; the driver is already quiesced */
1325         if (driver) {
1326                 spin_unlock(&udc->lock);
1327                 usb_gadget_udc_reset(&udc->gadget, driver);
1328                 spin_lock(&udc->lock);
1329         }
1330 }
1331 /* stop all USB activities */
1332 static void stop_activity(struct mv_udc *udc, struct usb_gadget_driver *driver)
1333 {
1334         struct mv_ep    *ep;
1335
1336         nuke(&udc->eps[0], -ESHUTDOWN);
1337
1338         list_for_each_entry(ep, &udc->gadget.ep_list, ep.ep_list) {
1339                 nuke(ep, -ESHUTDOWN);
1340         }
1341
1342         /* report disconnect; the driver is already quiesced */
1343         if (driver) {
1344                 spin_unlock(&udc->lock);
1345                 driver->disconnect(&udc->gadget);
1346                 spin_lock(&udc->lock);
1347         }
1348 }
1349
1350 static int mv_udc_start(struct usb_gadget *gadget,
1351                 struct usb_gadget_driver *driver)
1352 {
1353         struct mv_udc *udc;
1354         int retval = 0;
1355         unsigned long flags;
1356
1357         udc = container_of(gadget, struct mv_udc, gadget);
1358
1359         if (udc->driver)
1360                 return -EBUSY;
1361
1362         spin_lock_irqsave(&udc->lock, flags);
1363
1364         /* hook up the driver ... */
1365         driver->driver.bus = NULL;
1366         udc->driver = driver;
1367
1368         udc->usb_state = USB_STATE_ATTACHED;
1369         udc->ep0_state = WAIT_FOR_SETUP;
1370         udc->ep0_dir = EP_DIR_OUT;
1371
1372         spin_unlock_irqrestore(&udc->lock, flags);
1373
1374         if (udc->transceiver) {
1375                 retval = otg_set_peripheral(udc->transceiver->otg,
1376                                         &udc->gadget);
1377                 if (retval) {
1378                         dev_err(&udc->dev->dev,
1379                                 "unable to register peripheral to otg\n");
1380                         udc->driver = NULL;
1381                         return retval;
1382                 }
1383         }
1384
1385         /* When boot with cable attached, there will be no vbus irq occurred */
1386         if (udc->qwork)
1387                 queue_work(udc->qwork, &udc->vbus_work);
1388
1389         return 0;
1390 }
1391
1392 static int mv_udc_stop(struct usb_gadget *gadget)
1393 {
1394         struct mv_udc *udc;
1395         unsigned long flags;
1396
1397         udc = container_of(gadget, struct mv_udc, gadget);
1398
1399         spin_lock_irqsave(&udc->lock, flags);
1400
1401         mv_udc_enable(udc);
1402         udc_stop(udc);
1403
1404         /* stop all usb activities */
1405         udc->gadget.speed = USB_SPEED_UNKNOWN;
1406         stop_activity(udc, NULL);
1407         mv_udc_disable(udc);
1408
1409         spin_unlock_irqrestore(&udc->lock, flags);
1410
1411         /* unbind gadget driver */
1412         udc->driver = NULL;
1413
1414         return 0;
1415 }
1416
1417 static void mv_set_ptc(struct mv_udc *udc, u32 mode)
1418 {
1419         u32 portsc;
1420
1421         portsc = readl(&udc->op_regs->portsc[0]);
1422         portsc |= mode << 16;
1423         writel(portsc, &udc->op_regs->portsc[0]);
1424 }
1425
1426 static void prime_status_complete(struct usb_ep *ep, struct usb_request *_req)
1427 {
1428         struct mv_ep *mvep = container_of(ep, struct mv_ep, ep);
1429         struct mv_req *req = container_of(_req, struct mv_req, req);
1430         struct mv_udc *udc;
1431         unsigned long flags;
1432
1433         udc = mvep->udc;
1434
1435         dev_info(&udc->dev->dev, "switch to test mode %d\n", req->test_mode);
1436
1437         spin_lock_irqsave(&udc->lock, flags);
1438         if (req->test_mode) {
1439                 mv_set_ptc(udc, req->test_mode);
1440                 req->test_mode = 0;
1441         }
1442         spin_unlock_irqrestore(&udc->lock, flags);
1443 }
1444
1445 static int
1446 udc_prime_status(struct mv_udc *udc, u8 direction, u16 status, bool empty)
1447 {
1448         int retval = 0;
1449         struct mv_req *req;
1450         struct mv_ep *ep;
1451
1452         ep = &udc->eps[0];
1453         udc->ep0_dir = direction;
1454         udc->ep0_state = WAIT_FOR_OUT_STATUS;
1455
1456         req = udc->status_req;
1457
1458         /* fill in the reqest structure */
1459         if (empty == false) {
1460                 *((u16 *) req->req.buf) = cpu_to_le16(status);
1461                 req->req.length = 2;
1462         } else
1463                 req->req.length = 0;
1464
1465         req->ep = ep;
1466         req->req.status = -EINPROGRESS;
1467         req->req.actual = 0;
1468         if (udc->test_mode) {
1469                 req->req.complete = prime_status_complete;
1470                 req->test_mode = udc->test_mode;
1471                 udc->test_mode = 0;
1472         } else
1473                 req->req.complete = NULL;
1474         req->dtd_count = 0;
1475
1476         if (req->req.dma == DMA_ADDR_INVALID) {
1477                 req->req.dma = dma_map_single(ep->udc->gadget.dev.parent,
1478                                 req->req.buf, req->req.length,
1479                                 ep_dir(ep) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1480                 req->mapped = 1;
1481         }
1482
1483         /* prime the data phase */
1484         if (!req_to_dtd(req)) {
1485                 retval = queue_dtd(ep, req);
1486                 if (retval) {
1487                         dev_err(&udc->dev->dev,
1488                                 "Failed to queue dtd when prime status\n");
1489                         goto out;
1490                 }
1491         } else{ /* no mem */
1492                 retval = -ENOMEM;
1493                 dev_err(&udc->dev->dev,
1494                         "Failed to dma_pool_alloc when prime status\n");
1495                 goto out;
1496         }
1497
1498         list_add_tail(&req->queue, &ep->queue);
1499
1500         return 0;
1501 out:
1502         usb_gadget_unmap_request(&udc->gadget, &req->req, ep_dir(ep));
1503
1504         return retval;
1505 }
1506
1507 static void mv_udc_testmode(struct mv_udc *udc, u16 index)
1508 {
1509         if (index <= TEST_FORCE_EN) {
1510                 udc->test_mode = index;
1511                 if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1512                         ep0_stall(udc);
1513         } else
1514                 dev_err(&udc->dev->dev,
1515                         "This test mode(%d) is not supported\n", index);
1516 }
1517
1518 static void ch9setaddress(struct mv_udc *udc, struct usb_ctrlrequest *setup)
1519 {
1520         udc->dev_addr = (u8)setup->wValue;
1521
1522         /* update usb state */
1523         udc->usb_state = USB_STATE_ADDRESS;
1524
1525         if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1526                 ep0_stall(udc);
1527 }
1528
1529 static void ch9getstatus(struct mv_udc *udc, u8 ep_num,
1530         struct usb_ctrlrequest *setup)
1531 {
1532         u16 status = 0;
1533         int retval;
1534
1535         if ((setup->bRequestType & (USB_DIR_IN | USB_TYPE_MASK))
1536                 != (USB_DIR_IN | USB_TYPE_STANDARD))
1537                 return;
1538
1539         if ((setup->bRequestType & USB_RECIP_MASK) == USB_RECIP_DEVICE) {
1540                 status = 1 << USB_DEVICE_SELF_POWERED;
1541                 status |= udc->remote_wakeup << USB_DEVICE_REMOTE_WAKEUP;
1542         } else if ((setup->bRequestType & USB_RECIP_MASK)
1543                         == USB_RECIP_INTERFACE) {
1544                 /* get interface status */
1545                 status = 0;
1546         } else if ((setup->bRequestType & USB_RECIP_MASK)
1547                         == USB_RECIP_ENDPOINT) {
1548                 u8 ep_num, direction;
1549
1550                 ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
1551                 direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
1552                                 ? EP_DIR_IN : EP_DIR_OUT;
1553                 status = ep_is_stall(udc, ep_num, direction)
1554                                 << USB_ENDPOINT_HALT;
1555         }
1556
1557         retval = udc_prime_status(udc, EP_DIR_IN, status, false);
1558         if (retval)
1559                 ep0_stall(udc);
1560         else
1561                 udc->ep0_state = DATA_STATE_XMIT;
1562 }
1563
1564 static void ch9clearfeature(struct mv_udc *udc, struct usb_ctrlrequest *setup)
1565 {
1566         u8 ep_num;
1567         u8 direction;
1568         struct mv_ep *ep;
1569
1570         if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1571                 == ((USB_TYPE_STANDARD | USB_RECIP_DEVICE))) {
1572                 switch (setup->wValue) {
1573                 case USB_DEVICE_REMOTE_WAKEUP:
1574                         udc->remote_wakeup = 0;
1575                         break;
1576                 default:
1577                         goto out;
1578                 }
1579         } else if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1580                 == ((USB_TYPE_STANDARD | USB_RECIP_ENDPOINT))) {
1581                 switch (setup->wValue) {
1582                 case USB_ENDPOINT_HALT:
1583                         ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
1584                         direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
1585                                 ? EP_DIR_IN : EP_DIR_OUT;
1586                         if (setup->wValue != 0 || setup->wLength != 0
1587                                 || ep_num > udc->max_eps)
1588                                 goto out;
1589                         ep = &udc->eps[ep_num * 2 + direction];
1590                         if (ep->wedge == 1)
1591                                 break;
1592                         spin_unlock(&udc->lock);
1593                         ep_set_stall(udc, ep_num, direction, 0);
1594                         spin_lock(&udc->lock);
1595                         break;
1596                 default:
1597                         goto out;
1598                 }
1599         } else
1600                 goto out;
1601
1602         if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1603                 ep0_stall(udc);
1604 out:
1605         return;
1606 }
1607
1608 static void ch9setfeature(struct mv_udc *udc, struct usb_ctrlrequest *setup)
1609 {
1610         u8 ep_num;
1611         u8 direction;
1612
1613         if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1614                 == ((USB_TYPE_STANDARD | USB_RECIP_DEVICE))) {
1615                 switch (setup->wValue) {
1616                 case USB_DEVICE_REMOTE_WAKEUP:
1617                         udc->remote_wakeup = 1;
1618                         break;
1619                 case USB_DEVICE_TEST_MODE:
1620                         if (setup->wIndex & 0xFF
1621                                 ||  udc->gadget.speed != USB_SPEED_HIGH)
1622                                 ep0_stall(udc);
1623
1624                         if (udc->usb_state != USB_STATE_CONFIGURED
1625                                 && udc->usb_state != USB_STATE_ADDRESS
1626                                 && udc->usb_state != USB_STATE_DEFAULT)
1627                                 ep0_stall(udc);
1628
1629                         mv_udc_testmode(udc, (setup->wIndex >> 8));
1630                         goto out;
1631                 default:
1632                         goto out;
1633                 }
1634         } else if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1635                 == ((USB_TYPE_STANDARD | USB_RECIP_ENDPOINT))) {
1636                 switch (setup->wValue) {
1637                 case USB_ENDPOINT_HALT:
1638                         ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
1639                         direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
1640                                 ? EP_DIR_IN : EP_DIR_OUT;
1641                         if (setup->wValue != 0 || setup->wLength != 0
1642                                 || ep_num > udc->max_eps)
1643                                 goto out;
1644                         spin_unlock(&udc->lock);
1645                         ep_set_stall(udc, ep_num, direction, 1);
1646                         spin_lock(&udc->lock);
1647                         break;
1648                 default:
1649                         goto out;
1650                 }
1651         } else
1652                 goto out;
1653
1654         if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1655                 ep0_stall(udc);
1656 out:
1657         return;
1658 }
1659
1660 static void handle_setup_packet(struct mv_udc *udc, u8 ep_num,
1661         struct usb_ctrlrequest *setup)
1662         __releases(&ep->udc->lock)
1663         __acquires(&ep->udc->lock)
1664 {
1665         bool delegate = false;
1666
1667         nuke(&udc->eps[ep_num * 2 + EP_DIR_OUT], -ESHUTDOWN);
1668
1669         dev_dbg(&udc->dev->dev, "SETUP %02x.%02x v%04x i%04x l%04x\n",
1670                         setup->bRequestType, setup->bRequest,
1671                         setup->wValue, setup->wIndex, setup->wLength);
1672         /* We process some standard setup requests here */
1673         if ((setup->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1674                 switch (setup->bRequest) {
1675                 case USB_REQ_GET_STATUS:
1676                         ch9getstatus(udc, ep_num, setup);
1677                         break;
1678
1679                 case USB_REQ_SET_ADDRESS:
1680                         ch9setaddress(udc, setup);
1681                         break;
1682
1683                 case USB_REQ_CLEAR_FEATURE:
1684                         ch9clearfeature(udc, setup);
1685                         break;
1686
1687                 case USB_REQ_SET_FEATURE:
1688                         ch9setfeature(udc, setup);
1689                         break;
1690
1691                 default:
1692                         delegate = true;
1693                 }
1694         } else
1695                 delegate = true;
1696
1697         /* delegate USB standard requests to the gadget driver */
1698         if (delegate == true) {
1699                 /* USB requests handled by gadget */
1700                 if (setup->wLength) {
1701                         /* DATA phase from gadget, STATUS phase from udc */
1702                         udc->ep0_dir = (setup->bRequestType & USB_DIR_IN)
1703                                         ?  EP_DIR_IN : EP_DIR_OUT;
1704                         spin_unlock(&udc->lock);
1705                         if (udc->driver->setup(&udc->gadget,
1706                                 &udc->local_setup_buff) < 0)
1707                                 ep0_stall(udc);
1708                         spin_lock(&udc->lock);
1709                         udc->ep0_state = (setup->bRequestType & USB_DIR_IN)
1710                                         ?  DATA_STATE_XMIT : DATA_STATE_RECV;
1711                 } else {
1712                         /* no DATA phase, IN STATUS phase from gadget */
1713                         udc->ep0_dir = EP_DIR_IN;
1714                         spin_unlock(&udc->lock);
1715                         if (udc->driver->setup(&udc->gadget,
1716                                 &udc->local_setup_buff) < 0)
1717                                 ep0_stall(udc);
1718                         spin_lock(&udc->lock);
1719                         udc->ep0_state = WAIT_FOR_OUT_STATUS;
1720                 }
1721         }
1722 }
1723
1724 /* complete DATA or STATUS phase of ep0 prime status phase if needed */
1725 static void ep0_req_complete(struct mv_udc *udc,
1726         struct mv_ep *ep0, struct mv_req *req)
1727 {
1728         u32 new_addr;
1729
1730         if (udc->usb_state == USB_STATE_ADDRESS) {
1731                 /* set the new address */
1732                 new_addr = (u32)udc->dev_addr;
1733                 writel(new_addr << USB_DEVICE_ADDRESS_BIT_SHIFT,
1734                         &udc->op_regs->deviceaddr);
1735         }
1736
1737         done(ep0, req, 0);
1738
1739         switch (udc->ep0_state) {
1740         case DATA_STATE_XMIT:
1741                 /* receive status phase */
1742                 if (udc_prime_status(udc, EP_DIR_OUT, 0, true))
1743                         ep0_stall(udc);
1744                 break;
1745         case DATA_STATE_RECV:
1746                 /* send status phase */
1747                 if (udc_prime_status(udc, EP_DIR_IN, 0 , true))
1748                         ep0_stall(udc);
1749                 break;
1750         case WAIT_FOR_OUT_STATUS:
1751                 udc->ep0_state = WAIT_FOR_SETUP;
1752                 break;
1753         case WAIT_FOR_SETUP:
1754                 dev_err(&udc->dev->dev, "unexpect ep0 packets\n");
1755                 break;
1756         default:
1757                 ep0_stall(udc);
1758                 break;
1759         }
1760 }
1761
1762 static void get_setup_data(struct mv_udc *udc, u8 ep_num, u8 *buffer_ptr)
1763 {
1764         u32 temp;
1765         struct mv_dqh *dqh;
1766
1767         dqh = &udc->ep_dqh[ep_num * 2 + EP_DIR_OUT];
1768
1769         /* Clear bit in ENDPTSETUPSTAT */
1770         writel((1 << ep_num), &udc->op_regs->epsetupstat);
1771
1772         /* while a hazard exists when setup package arrives */
1773         do {
1774                 /* Set Setup Tripwire */
1775                 temp = readl(&udc->op_regs->usbcmd);
1776                 writel(temp | USBCMD_SETUP_TRIPWIRE_SET, &udc->op_regs->usbcmd);
1777
1778                 /* Copy the setup packet to local buffer */
1779                 memcpy(buffer_ptr, (u8 *) dqh->setup_buffer, 8);
1780         } while (!(readl(&udc->op_regs->usbcmd) & USBCMD_SETUP_TRIPWIRE_SET));
1781
1782         /* Clear Setup Tripwire */
1783         temp = readl(&udc->op_regs->usbcmd);
1784         writel(temp & ~USBCMD_SETUP_TRIPWIRE_SET, &udc->op_regs->usbcmd);
1785 }
1786
1787 static void irq_process_tr_complete(struct mv_udc *udc)
1788 {
1789         u32 tmp, bit_pos;
1790         int i, ep_num = 0, direction = 0;
1791         struct mv_ep    *curr_ep;
1792         struct mv_req *curr_req, *temp_req;
1793         int status;
1794
1795         /*
1796          * We use separate loops for ENDPTSETUPSTAT and ENDPTCOMPLETE
1797          * because the setup packets are to be read ASAP
1798          */
1799
1800         /* Process all Setup packet received interrupts */
1801         tmp = readl(&udc->op_regs->epsetupstat);
1802
1803         if (tmp) {
1804                 for (i = 0; i < udc->max_eps; i++) {
1805                         if (tmp & (1 << i)) {
1806                                 get_setup_data(udc, i,
1807                                         (u8 *)(&udc->local_setup_buff));
1808                                 handle_setup_packet(udc, i,
1809                                         &udc->local_setup_buff);
1810                         }
1811                 }
1812         }
1813
1814         /* Don't clear the endpoint setup status register here.
1815          * It is cleared as a setup packet is read out of the buffer
1816          */
1817
1818         /* Process non-setup transaction complete interrupts */
1819         tmp = readl(&udc->op_regs->epcomplete);
1820
1821         if (!tmp)
1822                 return;
1823
1824         writel(tmp, &udc->op_regs->epcomplete);
1825
1826         for (i = 0; i < udc->max_eps * 2; i++) {
1827                 ep_num = i >> 1;
1828                 direction = i % 2;
1829
1830                 bit_pos = 1 << (ep_num + 16 * direction);
1831
1832                 if (!(bit_pos & tmp))
1833                         continue;
1834
1835                 if (i == 1)
1836                         curr_ep = &udc->eps[0];
1837                 else
1838                         curr_ep = &udc->eps[i];
1839                 /* process the req queue until an uncomplete request */
1840                 list_for_each_entry_safe(curr_req, temp_req,
1841                         &curr_ep->queue, queue) {
1842                         status = process_ep_req(udc, i, curr_req);
1843                         if (status)
1844                                 break;
1845
1846                         /* write back status to req */
1847                         curr_req->req.status = status;
1848
1849                         /* ep0 request completion */
1850                         if (ep_num == 0) {
1851                                 ep0_req_complete(udc, curr_ep, curr_req);
1852                                 break;
1853                         } else {
1854                                 done(curr_ep, curr_req, status);
1855                         }
1856                 }
1857         }
1858 }
1859
1860 static void irq_process_reset(struct mv_udc *udc)
1861 {
1862         u32 tmp;
1863         unsigned int loops;
1864
1865         udc->ep0_dir = EP_DIR_OUT;
1866         udc->ep0_state = WAIT_FOR_SETUP;
1867         udc->remote_wakeup = 0;         /* default to 0 on reset */
1868
1869         /* The address bits are past bit 25-31. Set the address */
1870         tmp = readl(&udc->op_regs->deviceaddr);
1871         tmp &= ~(USB_DEVICE_ADDRESS_MASK);
1872         writel(tmp, &udc->op_regs->deviceaddr);
1873
1874         /* Clear all the setup token semaphores */
1875         tmp = readl(&udc->op_regs->epsetupstat);
1876         writel(tmp, &udc->op_regs->epsetupstat);
1877
1878         /* Clear all the endpoint complete status bits */
1879         tmp = readl(&udc->op_regs->epcomplete);
1880         writel(tmp, &udc->op_regs->epcomplete);
1881
1882         /* wait until all endptprime bits cleared */
1883         loops = LOOPS(PRIME_TIMEOUT);
1884         while (readl(&udc->op_regs->epprime) & 0xFFFFFFFF) {
1885                 if (loops == 0) {
1886                         dev_err(&udc->dev->dev,
1887                                 "Timeout for ENDPTPRIME = 0x%x\n",
1888                                 readl(&udc->op_regs->epprime));
1889                         break;
1890                 }
1891                 loops--;
1892                 udelay(LOOPS_USEC);
1893         }
1894
1895         /* Write 1s to the Flush register */
1896         writel((u32)~0, &udc->op_regs->epflush);
1897
1898         if (readl(&udc->op_regs->portsc[0]) & PORTSCX_PORT_RESET) {
1899                 dev_info(&udc->dev->dev, "usb bus reset\n");
1900                 udc->usb_state = USB_STATE_DEFAULT;
1901                 /* reset all the queues, stop all USB activities */
1902                 gadget_reset(udc, udc->driver);
1903         } else {
1904                 dev_info(&udc->dev->dev, "USB reset portsc 0x%x\n",
1905                         readl(&udc->op_regs->portsc));
1906
1907                 /*
1908                  * re-initialize
1909                  * controller reset
1910                  */
1911                 udc_reset(udc);
1912
1913                 /* reset all the queues, stop all USB activities */
1914                 stop_activity(udc, udc->driver);
1915
1916                 /* reset ep0 dQH and endptctrl */
1917                 ep0_reset(udc);
1918
1919                 /* enable interrupt and set controller to run state */
1920                 udc_start(udc);
1921
1922                 udc->usb_state = USB_STATE_ATTACHED;
1923         }
1924 }
1925
1926 static void handle_bus_resume(struct mv_udc *udc)
1927 {
1928         udc->usb_state = udc->resume_state;
1929         udc->resume_state = 0;
1930
1931         /* report resume to the driver */
1932         if (udc->driver) {
1933                 if (udc->driver->resume) {
1934                         spin_unlock(&udc->lock);
1935                         udc->driver->resume(&udc->gadget);
1936                         spin_lock(&udc->lock);
1937                 }
1938         }
1939 }
1940
1941 static void irq_process_suspend(struct mv_udc *udc)
1942 {
1943         udc->resume_state = udc->usb_state;
1944         udc->usb_state = USB_STATE_SUSPENDED;
1945
1946         if (udc->driver->suspend) {
1947                 spin_unlock(&udc->lock);
1948                 udc->driver->suspend(&udc->gadget);
1949                 spin_lock(&udc->lock);
1950         }
1951 }
1952
1953 static void irq_process_port_change(struct mv_udc *udc)
1954 {
1955         u32 portsc;
1956
1957         portsc = readl(&udc->op_regs->portsc[0]);
1958         if (!(portsc & PORTSCX_PORT_RESET)) {
1959                 /* Get the speed */
1960                 u32 speed = portsc & PORTSCX_PORT_SPEED_MASK;
1961                 switch (speed) {
1962                 case PORTSCX_PORT_SPEED_HIGH:
1963                         udc->gadget.speed = USB_SPEED_HIGH;
1964                         break;
1965                 case PORTSCX_PORT_SPEED_FULL:
1966                         udc->gadget.speed = USB_SPEED_FULL;
1967                         break;
1968                 case PORTSCX_PORT_SPEED_LOW:
1969                         udc->gadget.speed = USB_SPEED_LOW;
1970                         break;
1971                 default:
1972                         udc->gadget.speed = USB_SPEED_UNKNOWN;
1973                         break;
1974                 }
1975         }
1976
1977         if (portsc & PORTSCX_PORT_SUSPEND) {
1978                 udc->resume_state = udc->usb_state;
1979                 udc->usb_state = USB_STATE_SUSPENDED;
1980                 if (udc->driver->suspend) {
1981                         spin_unlock(&udc->lock);
1982                         udc->driver->suspend(&udc->gadget);
1983                         spin_lock(&udc->lock);
1984                 }
1985         }
1986
1987         if (!(portsc & PORTSCX_PORT_SUSPEND)
1988                 && udc->usb_state == USB_STATE_SUSPENDED) {
1989                 handle_bus_resume(udc);
1990         }
1991
1992         if (!udc->resume_state)
1993                 udc->usb_state = USB_STATE_DEFAULT;
1994 }
1995
1996 static void irq_process_error(struct mv_udc *udc)
1997 {
1998         /* Increment the error count */
1999         udc->errors++;
2000 }
2001
2002 static irqreturn_t mv_udc_irq(int irq, void *dev)
2003 {
2004         struct mv_udc *udc = (struct mv_udc *)dev;
2005         u32 status, intr;
2006
2007         /* Disable ISR when stopped bit is set */
2008         if (udc->stopped)
2009                 return IRQ_NONE;
2010
2011         spin_lock(&udc->lock);
2012
2013         status = readl(&udc->op_regs->usbsts);
2014         intr = readl(&udc->op_regs->usbintr);
2015         status &= intr;
2016
2017         if (status == 0) {
2018                 spin_unlock(&udc->lock);
2019                 return IRQ_NONE;
2020         }
2021
2022         /* Clear all the interrupts occurred */
2023         writel(status, &udc->op_regs->usbsts);
2024
2025         if (status & USBSTS_ERR)
2026                 irq_process_error(udc);
2027
2028         if (status & USBSTS_RESET)
2029                 irq_process_reset(udc);
2030
2031         if (status & USBSTS_PORT_CHANGE)
2032                 irq_process_port_change(udc);
2033
2034         if (status & USBSTS_INT)
2035                 irq_process_tr_complete(udc);
2036
2037         if (status & USBSTS_SUSPEND)
2038                 irq_process_suspend(udc);
2039
2040         spin_unlock(&udc->lock);
2041
2042         return IRQ_HANDLED;
2043 }
2044
2045 static irqreturn_t mv_udc_vbus_irq(int irq, void *dev)
2046 {
2047         struct mv_udc *udc = (struct mv_udc *)dev;
2048
2049         /* polling VBUS and init phy may cause too much time*/
2050         if (udc->qwork)
2051                 queue_work(udc->qwork, &udc->vbus_work);
2052
2053         return IRQ_HANDLED;
2054 }
2055
2056 static void mv_udc_vbus_work(struct work_struct *work)
2057 {
2058         struct mv_udc *udc;
2059         unsigned int vbus;
2060
2061         udc = container_of(work, struct mv_udc, vbus_work);
2062         if (!udc->pdata->vbus)
2063                 return;
2064
2065         vbus = udc->pdata->vbus->poll();
2066         dev_info(&udc->dev->dev, "vbus is %d\n", vbus);
2067
2068         if (vbus == VBUS_HIGH)
2069                 mv_udc_vbus_session(&udc->gadget, 1);
2070         else if (vbus == VBUS_LOW)
2071                 mv_udc_vbus_session(&udc->gadget, 0);
2072 }
2073
2074 /* release device structure */
2075 static void gadget_release(struct device *_dev)
2076 {
2077         struct mv_udc *udc;
2078
2079         udc = dev_get_drvdata(_dev);
2080
2081         complete(udc->done);
2082 }
2083
2084 static int mv_udc_remove(struct platform_device *pdev)
2085 {
2086         struct mv_udc *udc;
2087
2088         udc = platform_get_drvdata(pdev);
2089
2090         usb_del_gadget_udc(&udc->gadget);
2091
2092         if (udc->qwork) {
2093                 flush_workqueue(udc->qwork);
2094                 destroy_workqueue(udc->qwork);
2095         }
2096
2097         /* free memory allocated in probe */
2098         dma_pool_destroy(udc->dtd_pool);
2099
2100         if (udc->ep_dqh)
2101                 dma_free_coherent(&pdev->dev, udc->ep_dqh_size,
2102                         udc->ep_dqh, udc->ep_dqh_dma);
2103
2104         mv_udc_disable(udc);
2105
2106         /* free dev, wait for the release() finished */
2107         wait_for_completion(udc->done);
2108
2109         return 0;
2110 }
2111
2112 static int mv_udc_probe(struct platform_device *pdev)
2113 {
2114         struct mv_usb_platform_data *pdata = dev_get_platdata(&pdev->dev);
2115         struct mv_udc *udc;
2116         int retval = 0;
2117         struct resource *r;
2118         size_t size;
2119
2120         if (pdata == NULL) {
2121                 dev_err(&pdev->dev, "missing platform_data\n");
2122                 return -ENODEV;
2123         }
2124
2125         udc = devm_kzalloc(&pdev->dev, sizeof(*udc), GFP_KERNEL);
2126         if (udc == NULL)
2127                 return -ENOMEM;
2128
2129         udc->done = &release_done;
2130         udc->pdata = dev_get_platdata(&pdev->dev);
2131         spin_lock_init(&udc->lock);
2132
2133         udc->dev = pdev;
2134
2135         if (pdata->mode == MV_USB_MODE_OTG) {
2136                 udc->transceiver = devm_usb_get_phy(&pdev->dev,
2137                                         USB_PHY_TYPE_USB2);
2138                 if (IS_ERR(udc->transceiver)) {
2139                         retval = PTR_ERR(udc->transceiver);
2140
2141                         if (retval == -ENXIO)
2142                                 return retval;
2143
2144                         udc->transceiver = NULL;
2145                         return -EPROBE_DEFER;
2146                 }
2147         }
2148
2149         /* udc only have one sysclk. */
2150         udc->clk = devm_clk_get(&pdev->dev, NULL);
2151         if (IS_ERR(udc->clk))
2152                 return PTR_ERR(udc->clk);
2153
2154         r = platform_get_resource_byname(udc->dev, IORESOURCE_MEM, "capregs");
2155         if (r == NULL) {
2156                 dev_err(&pdev->dev, "no I/O memory resource defined\n");
2157                 return -ENODEV;
2158         }
2159
2160         udc->cap_regs = (struct mv_cap_regs __iomem *)
2161                 devm_ioremap(&pdev->dev, r->start, resource_size(r));
2162         if (udc->cap_regs == NULL) {
2163                 dev_err(&pdev->dev, "failed to map I/O memory\n");
2164                 return -EBUSY;
2165         }
2166
2167         r = platform_get_resource_byname(udc->dev, IORESOURCE_MEM, "phyregs");
2168         if (r == NULL) {
2169                 dev_err(&pdev->dev, "no phy I/O memory resource defined\n");
2170                 return -ENODEV;
2171         }
2172
2173         udc->phy_regs = devm_ioremap(&pdev->dev, r->start, resource_size(r));
2174         if (udc->phy_regs == NULL) {
2175                 dev_err(&pdev->dev, "failed to map phy I/O memory\n");
2176                 return -EBUSY;
2177         }
2178
2179         /* we will acces controller register, so enable the clk */
2180         retval = mv_udc_enable_internal(udc);
2181         if (retval)
2182                 return retval;
2183
2184         udc->op_regs =
2185                 (struct mv_op_regs __iomem *)((unsigned long)udc->cap_regs
2186                 + (readl(&udc->cap_regs->caplength_hciversion)
2187                         & CAPLENGTH_MASK));
2188         udc->max_eps = readl(&udc->cap_regs->dccparams) & DCCPARAMS_DEN_MASK;
2189
2190         /*
2191          * some platform will use usb to download image, it may not disconnect
2192          * usb gadget before loading kernel. So first stop udc here.
2193          */
2194         udc_stop(udc);
2195         writel(0xFFFFFFFF, &udc->op_regs->usbsts);
2196
2197         size = udc->max_eps * sizeof(struct mv_dqh) *2;
2198         size = (size + DQH_ALIGNMENT - 1) & ~(DQH_ALIGNMENT - 1);
2199         udc->ep_dqh = dma_alloc_coherent(&pdev->dev, size,
2200                                         &udc->ep_dqh_dma, GFP_KERNEL);
2201
2202         if (udc->ep_dqh == NULL) {
2203                 dev_err(&pdev->dev, "allocate dQH memory failed\n");
2204                 retval = -ENOMEM;
2205                 goto err_disable_clock;
2206         }
2207         udc->ep_dqh_size = size;
2208
2209         /* create dTD dma_pool resource */
2210         udc->dtd_pool = dma_pool_create("mv_dtd",
2211                         &pdev->dev,
2212                         sizeof(struct mv_dtd),
2213                         DTD_ALIGNMENT,
2214                         DMA_BOUNDARY);
2215
2216         if (!udc->dtd_pool) {
2217                 retval = -ENOMEM;
2218                 goto err_free_dma;
2219         }
2220
2221         size = udc->max_eps * sizeof(struct mv_ep) *2;
2222         udc->eps = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
2223         if (udc->eps == NULL) {
2224                 retval = -ENOMEM;
2225                 goto err_destroy_dma;
2226         }
2227
2228         /* initialize ep0 status request structure */
2229         udc->status_req = devm_kzalloc(&pdev->dev, sizeof(struct mv_req),
2230                                         GFP_KERNEL);
2231         if (!udc->status_req) {
2232                 retval = -ENOMEM;
2233                 goto err_destroy_dma;
2234         }
2235         INIT_LIST_HEAD(&udc->status_req->queue);
2236
2237         /* allocate a small amount of memory to get valid address */
2238         udc->status_req->req.buf = kzalloc(8, GFP_KERNEL);
2239         udc->status_req->req.dma = DMA_ADDR_INVALID;
2240
2241         udc->resume_state = USB_STATE_NOTATTACHED;
2242         udc->usb_state = USB_STATE_POWERED;
2243         udc->ep0_dir = EP_DIR_OUT;
2244         udc->remote_wakeup = 0;
2245
2246         r = platform_get_resource(udc->dev, IORESOURCE_IRQ, 0);
2247         if (r == NULL) {
2248                 dev_err(&pdev->dev, "no IRQ resource defined\n");
2249                 retval = -ENODEV;
2250                 goto err_destroy_dma;
2251         }
2252         udc->irq = r->start;
2253         if (devm_request_irq(&pdev->dev, udc->irq, mv_udc_irq,
2254                 IRQF_SHARED, driver_name, udc)) {
2255                 dev_err(&pdev->dev, "Request irq %d for UDC failed\n",
2256                         udc->irq);
2257                 retval = -ENODEV;
2258                 goto err_destroy_dma;
2259         }
2260
2261         /* initialize gadget structure */
2262         udc->gadget.ops = &mv_ops;      /* usb_gadget_ops */
2263         udc->gadget.ep0 = &udc->eps[0].ep;      /* gadget ep0 */
2264         INIT_LIST_HEAD(&udc->gadget.ep_list);   /* ep_list */
2265         udc->gadget.speed = USB_SPEED_UNKNOWN;  /* speed */
2266         udc->gadget.max_speed = USB_SPEED_HIGH; /* support dual speed */
2267
2268         /* the "gadget" abstracts/virtualizes the controller */
2269         udc->gadget.name = driver_name;         /* gadget name */
2270
2271         eps_init(udc);
2272
2273         /* VBUS detect: we can disable/enable clock on demand.*/
2274         if (udc->transceiver)
2275                 udc->clock_gating = 1;
2276         else if (pdata->vbus) {
2277                 udc->clock_gating = 1;
2278                 retval = devm_request_threaded_irq(&pdev->dev,
2279                                 pdata->vbus->irq, NULL,
2280                                 mv_udc_vbus_irq, IRQF_ONESHOT, "vbus", udc);
2281                 if (retval) {
2282                         dev_info(&pdev->dev,
2283                                 "Can not request irq for VBUS, "
2284                                 "disable clock gating\n");
2285                         udc->clock_gating = 0;
2286                 }
2287
2288                 udc->qwork = create_singlethread_workqueue("mv_udc_queue");
2289                 if (!udc->qwork) {
2290                         dev_err(&pdev->dev, "cannot create workqueue\n");
2291                         retval = -ENOMEM;
2292                         goto err_destroy_dma;
2293                 }
2294
2295                 INIT_WORK(&udc->vbus_work, mv_udc_vbus_work);
2296         }
2297
2298         /*
2299          * When clock gating is supported, we can disable clk and phy.
2300          * If not, it means that VBUS detection is not supported, we
2301          * have to enable vbus active all the time to let controller work.
2302          */
2303         if (udc->clock_gating)
2304                 mv_udc_disable_internal(udc);
2305         else
2306                 udc->vbus_active = 1;
2307
2308         retval = usb_add_gadget_udc_release(&pdev->dev, &udc->gadget,
2309                         gadget_release);
2310         if (retval)
2311                 goto err_create_workqueue;
2312
2313         platform_set_drvdata(pdev, udc);
2314         dev_info(&pdev->dev, "successful probe UDC device %s clock gating.\n",
2315                 udc->clock_gating ? "with" : "without");
2316
2317         return 0;
2318
2319 err_create_workqueue:
2320         if (udc->qwork)
2321                 destroy_workqueue(udc->qwork);
2322 err_destroy_dma:
2323         dma_pool_destroy(udc->dtd_pool);
2324 err_free_dma:
2325         dma_free_coherent(&pdev->dev, udc->ep_dqh_size,
2326                         udc->ep_dqh, udc->ep_dqh_dma);
2327 err_disable_clock:
2328         mv_udc_disable_internal(udc);
2329
2330         return retval;
2331 }
2332
2333 #ifdef CONFIG_PM
2334 static int mv_udc_suspend(struct device *dev)
2335 {
2336         struct mv_udc *udc;
2337
2338         udc = dev_get_drvdata(dev);
2339
2340         /* if OTG is enabled, the following will be done in OTG driver*/
2341         if (udc->transceiver)
2342                 return 0;
2343
2344         if (udc->pdata->vbus && udc->pdata->vbus->poll)
2345                 if (udc->pdata->vbus->poll() == VBUS_HIGH) {
2346                         dev_info(&udc->dev->dev, "USB cable is connected!\n");
2347                         return -EAGAIN;
2348                 }
2349
2350         /*
2351          * only cable is unplugged, udc can suspend.
2352          * So do not care about clock_gating == 1.
2353          */
2354         if (!udc->clock_gating) {
2355                 udc_stop(udc);
2356
2357                 spin_lock_irq(&udc->lock);
2358                 /* stop all usb activities */
2359                 stop_activity(udc, udc->driver);
2360                 spin_unlock_irq(&udc->lock);
2361
2362                 mv_udc_disable_internal(udc);
2363         }
2364
2365         return 0;
2366 }
2367
2368 static int mv_udc_resume(struct device *dev)
2369 {
2370         struct mv_udc *udc;
2371         int retval;
2372
2373         udc = dev_get_drvdata(dev);
2374
2375         /* if OTG is enabled, the following will be done in OTG driver*/
2376         if (udc->transceiver)
2377                 return 0;
2378
2379         if (!udc->clock_gating) {
2380                 retval = mv_udc_enable_internal(udc);
2381                 if (retval)
2382                         return retval;
2383
2384                 if (udc->driver && udc->softconnect) {
2385                         udc_reset(udc);
2386                         ep0_reset(udc);
2387                         udc_start(udc);
2388                 }
2389         }
2390
2391         return 0;
2392 }
2393
2394 static const struct dev_pm_ops mv_udc_pm_ops = {
2395         .suspend        = mv_udc_suspend,
2396         .resume         = mv_udc_resume,
2397 };
2398 #endif
2399
2400 static void mv_udc_shutdown(struct platform_device *pdev)
2401 {
2402         struct mv_udc *udc;
2403         u32 mode;
2404
2405         udc = platform_get_drvdata(pdev);
2406         /* reset controller mode to IDLE */
2407         mv_udc_enable(udc);
2408         mode = readl(&udc->op_regs->usbmode);
2409         mode &= ~3;
2410         writel(mode, &udc->op_regs->usbmode);
2411         mv_udc_disable(udc);
2412 }
2413
2414 static struct platform_driver udc_driver = {
2415         .probe          = mv_udc_probe,
2416         .remove         = mv_udc_remove,
2417         .shutdown       = mv_udc_shutdown,
2418         .driver         = {
2419                 .name   = "mv-udc",
2420 #ifdef CONFIG_PM
2421                 .pm     = &mv_udc_pm_ops,
2422 #endif
2423         },
2424 };
2425
2426 module_platform_driver(udc_driver);
2427 MODULE_ALIAS("platform:mv-udc");
2428 MODULE_DESCRIPTION(DRIVER_DESC);
2429 MODULE_AUTHOR("Chao Xie <chao.xie@marvell.com>");
2430 MODULE_VERSION(DRIVER_VERSION);
2431 MODULE_LICENSE("GPL");