GNU Linux-libre 4.19.245-gnu1
[releases.git] / drivers / usb / gadget / udc / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /**
3  * udc.c - Core UDC Framework
4  *
5  * Copyright (C) 2010 Texas Instruments
6  * Author: Felipe Balbi <balbi@ti.com>
7  */
8
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/device.h>
12 #include <linux/list.h>
13 #include <linux/err.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/sched/task_stack.h>
16 #include <linux/workqueue.h>
17
18 #include <linux/usb/ch9.h>
19 #include <linux/usb/gadget.h>
20 #include <linux/usb.h>
21
22 #include "trace.h"
23
24 /**
25  * struct usb_udc - describes one usb device controller
26  * @driver - the gadget driver pointer. For use by the class code
27  * @dev - the child device to the actual controller
28  * @gadget - the gadget. For use by the class code
29  * @list - for use by the udc class driver
30  * @vbus - for udcs who care about vbus status, this value is real vbus status;
31  * for udcs who do not care about vbus status, this value is always true
32  *
33  * This represents the internal data structure which is used by the UDC-class
34  * to hold information about udc driver and gadget together.
35  */
36 struct usb_udc {
37         struct usb_gadget_driver        *driver;
38         struct usb_gadget               *gadget;
39         struct device                   dev;
40         struct list_head                list;
41         bool                            vbus;
42 };
43
44 static struct class *udc_class;
45 static LIST_HEAD(udc_list);
46 static LIST_HEAD(gadget_driver_pending_list);
47 static DEFINE_MUTEX(udc_lock);
48
49 static int udc_bind_to_driver(struct usb_udc *udc,
50                 struct usb_gadget_driver *driver);
51
52 /* ------------------------------------------------------------------------- */
53
54 /**
55  * usb_ep_set_maxpacket_limit - set maximum packet size limit for endpoint
56  * @ep:the endpoint being configured
57  * @maxpacket_limit:value of maximum packet size limit
58  *
59  * This function should be used only in UDC drivers to initialize endpoint
60  * (usually in probe function).
61  */
62 void usb_ep_set_maxpacket_limit(struct usb_ep *ep,
63                                               unsigned maxpacket_limit)
64 {
65         ep->maxpacket_limit = maxpacket_limit;
66         ep->maxpacket = maxpacket_limit;
67
68         trace_usb_ep_set_maxpacket_limit(ep, 0);
69 }
70 EXPORT_SYMBOL_GPL(usb_ep_set_maxpacket_limit);
71
72 /**
73  * usb_ep_enable - configure endpoint, making it usable
74  * @ep:the endpoint being configured.  may not be the endpoint named "ep0".
75  *      drivers discover endpoints through the ep_list of a usb_gadget.
76  *
77  * When configurations are set, or when interface settings change, the driver
78  * will enable or disable the relevant endpoints.  while it is enabled, an
79  * endpoint may be used for i/o until the driver receives a disconnect() from
80  * the host or until the endpoint is disabled.
81  *
82  * the ep0 implementation (which calls this routine) must ensure that the
83  * hardware capabilities of each endpoint match the descriptor provided
84  * for it.  for example, an endpoint named "ep2in-bulk" would be usable
85  * for interrupt transfers as well as bulk, but it likely couldn't be used
86  * for iso transfers or for endpoint 14.  some endpoints are fully
87  * configurable, with more generic names like "ep-a".  (remember that for
88  * USB, "in" means "towards the USB master".)
89  *
90  * This routine must be called in process context.
91  *
92  * returns zero, or a negative error code.
93  */
94 int usb_ep_enable(struct usb_ep *ep)
95 {
96         int ret = 0;
97
98         if (ep->enabled)
99                 goto out;
100
101         /* UDC drivers can't handle endpoints with maxpacket size 0 */
102         if (usb_endpoint_maxp(ep->desc) == 0) {
103                 /*
104                  * We should log an error message here, but we can't call
105                  * dev_err() because there's no way to find the gadget
106                  * given only ep.
107                  */
108                 ret = -EINVAL;
109                 goto out;
110         }
111
112         ret = ep->ops->enable(ep, ep->desc);
113         if (ret)
114                 goto out;
115
116         ep->enabled = true;
117
118 out:
119         trace_usb_ep_enable(ep, ret);
120
121         return ret;
122 }
123 EXPORT_SYMBOL_GPL(usb_ep_enable);
124
125 /**
126  * usb_ep_disable - endpoint is no longer usable
127  * @ep:the endpoint being unconfigured.  may not be the endpoint named "ep0".
128  *
129  * no other task may be using this endpoint when this is called.
130  * any pending and uncompleted requests will complete with status
131  * indicating disconnect (-ESHUTDOWN) before this call returns.
132  * gadget drivers must call usb_ep_enable() again before queueing
133  * requests to the endpoint.
134  *
135  * This routine must be called in process context.
136  *
137  * returns zero, or a negative error code.
138  */
139 int usb_ep_disable(struct usb_ep *ep)
140 {
141         int ret = 0;
142
143         if (!ep->enabled)
144                 goto out;
145
146         ret = ep->ops->disable(ep);
147         if (ret)
148                 goto out;
149
150         ep->enabled = false;
151
152 out:
153         trace_usb_ep_disable(ep, ret);
154
155         return ret;
156 }
157 EXPORT_SYMBOL_GPL(usb_ep_disable);
158
159 /**
160  * usb_ep_alloc_request - allocate a request object to use with this endpoint
161  * @ep:the endpoint to be used with with the request
162  * @gfp_flags:GFP_* flags to use
163  *
164  * Request objects must be allocated with this call, since they normally
165  * need controller-specific setup and may even need endpoint-specific
166  * resources such as allocation of DMA descriptors.
167  * Requests may be submitted with usb_ep_queue(), and receive a single
168  * completion callback.  Free requests with usb_ep_free_request(), when
169  * they are no longer needed.
170  *
171  * Returns the request, or null if one could not be allocated.
172  */
173 struct usb_request *usb_ep_alloc_request(struct usb_ep *ep,
174                                                        gfp_t gfp_flags)
175 {
176         struct usb_request *req = NULL;
177
178         req = ep->ops->alloc_request(ep, gfp_flags);
179
180         trace_usb_ep_alloc_request(ep, req, req ? 0 : -ENOMEM);
181
182         return req;
183 }
184 EXPORT_SYMBOL_GPL(usb_ep_alloc_request);
185
186 /**
187  * usb_ep_free_request - frees a request object
188  * @ep:the endpoint associated with the request
189  * @req:the request being freed
190  *
191  * Reverses the effect of usb_ep_alloc_request().
192  * Caller guarantees the request is not queued, and that it will
193  * no longer be requeued (or otherwise used).
194  */
195 void usb_ep_free_request(struct usb_ep *ep,
196                                        struct usb_request *req)
197 {
198         trace_usb_ep_free_request(ep, req, 0);
199         ep->ops->free_request(ep, req);
200 }
201 EXPORT_SYMBOL_GPL(usb_ep_free_request);
202
203 /**
204  * usb_ep_queue - queues (submits) an I/O request to an endpoint.
205  * @ep:the endpoint associated with the request
206  * @req:the request being submitted
207  * @gfp_flags: GFP_* flags to use in case the lower level driver couldn't
208  *      pre-allocate all necessary memory with the request.
209  *
210  * This tells the device controller to perform the specified request through
211  * that endpoint (reading or writing a buffer).  When the request completes,
212  * including being canceled by usb_ep_dequeue(), the request's completion
213  * routine is called to return the request to the driver.  Any endpoint
214  * (except control endpoints like ep0) may have more than one transfer
215  * request queued; they complete in FIFO order.  Once a gadget driver
216  * submits a request, that request may not be examined or modified until it
217  * is given back to that driver through the completion callback.
218  *
219  * Each request is turned into one or more packets.  The controller driver
220  * never merges adjacent requests into the same packet.  OUT transfers
221  * will sometimes use data that's already buffered in the hardware.
222  * Drivers can rely on the fact that the first byte of the request's buffer
223  * always corresponds to the first byte of some USB packet, for both
224  * IN and OUT transfers.
225  *
226  * Bulk endpoints can queue any amount of data; the transfer is packetized
227  * automatically.  The last packet will be short if the request doesn't fill it
228  * out completely.  Zero length packets (ZLPs) should be avoided in portable
229  * protocols since not all usb hardware can successfully handle zero length
230  * packets.  (ZLPs may be explicitly written, and may be implicitly written if
231  * the request 'zero' flag is set.)  Bulk endpoints may also be used
232  * for interrupt transfers; but the reverse is not true, and some endpoints
233  * won't support every interrupt transfer.  (Such as 768 byte packets.)
234  *
235  * Interrupt-only endpoints are less functional than bulk endpoints, for
236  * example by not supporting queueing or not handling buffers that are
237  * larger than the endpoint's maxpacket size.  They may also treat data
238  * toggle differently.
239  *
240  * Control endpoints ... after getting a setup() callback, the driver queues
241  * one response (even if it would be zero length).  That enables the
242  * status ack, after transferring data as specified in the response.  Setup
243  * functions may return negative error codes to generate protocol stalls.
244  * (Note that some USB device controllers disallow protocol stall responses
245  * in some cases.)  When control responses are deferred (the response is
246  * written after the setup callback returns), then usb_ep_set_halt() may be
247  * used on ep0 to trigger protocol stalls.  Depending on the controller,
248  * it may not be possible to trigger a status-stage protocol stall when the
249  * data stage is over, that is, from within the response's completion
250  * routine.
251  *
252  * For periodic endpoints, like interrupt or isochronous ones, the usb host
253  * arranges to poll once per interval, and the gadget driver usually will
254  * have queued some data to transfer at that time.
255  *
256  * Note that @req's ->complete() callback must never be called from
257  * within usb_ep_queue() as that can create deadlock situations.
258  *
259  * This routine may be called in interrupt context.
260  *
261  * Returns zero, or a negative error code.  Endpoints that are not enabled
262  * report errors; errors will also be
263  * reported when the usb peripheral is disconnected.
264  *
265  * If and only if @req is successfully queued (the return value is zero),
266  * @req->complete() will be called exactly once, when the Gadget core and
267  * UDC are finished with the request.  When the completion function is called,
268  * control of the request is returned to the device driver which submitted it.
269  * The completion handler may then immediately free or reuse @req.
270  */
271 int usb_ep_queue(struct usb_ep *ep,
272                                struct usb_request *req, gfp_t gfp_flags)
273 {
274         int ret = 0;
275
276         if (WARN_ON_ONCE(!ep->enabled && ep->address)) {
277                 ret = -ESHUTDOWN;
278                 goto out;
279         }
280
281         ret = ep->ops->queue(ep, req, gfp_flags);
282
283 out:
284         trace_usb_ep_queue(ep, req, ret);
285
286         return ret;
287 }
288 EXPORT_SYMBOL_GPL(usb_ep_queue);
289
290 /**
291  * usb_ep_dequeue - dequeues (cancels, unlinks) an I/O request from an endpoint
292  * @ep:the endpoint associated with the request
293  * @req:the request being canceled
294  *
295  * If the request is still active on the endpoint, it is dequeued and its
296  * completion routine is called (with status -ECONNRESET); else a negative
297  * error code is returned. This is guaranteed to happen before the call to
298  * usb_ep_dequeue() returns.
299  *
300  * Note that some hardware can't clear out write fifos (to unlink the request
301  * at the head of the queue) except as part of disconnecting from usb. Such
302  * restrictions prevent drivers from supporting configuration changes,
303  * even to configuration zero (a "chapter 9" requirement).
304  *
305  * This routine may be called in interrupt context.
306  */
307 int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
308 {
309         int ret;
310
311         ret = ep->ops->dequeue(ep, req);
312         trace_usb_ep_dequeue(ep, req, ret);
313
314         return ret;
315 }
316 EXPORT_SYMBOL_GPL(usb_ep_dequeue);
317
318 /**
319  * usb_ep_set_halt - sets the endpoint halt feature.
320  * @ep: the non-isochronous endpoint being stalled
321  *
322  * Use this to stall an endpoint, perhaps as an error report.
323  * Except for control endpoints,
324  * the endpoint stays halted (will not stream any data) until the host
325  * clears this feature; drivers may need to empty the endpoint's request
326  * queue first, to make sure no inappropriate transfers happen.
327  *
328  * Note that while an endpoint CLEAR_FEATURE will be invisible to the
329  * gadget driver, a SET_INTERFACE will not be.  To reset endpoints for the
330  * current altsetting, see usb_ep_clear_halt().  When switching altsettings,
331  * it's simplest to use usb_ep_enable() or usb_ep_disable() for the endpoints.
332  *
333  * This routine may be called in interrupt context.
334  *
335  * Returns zero, or a negative error code.  On success, this call sets
336  * underlying hardware state that blocks data transfers.
337  * Attempts to halt IN endpoints will fail (returning -EAGAIN) if any
338  * transfer requests are still queued, or if the controller hardware
339  * (usually a FIFO) still holds bytes that the host hasn't collected.
340  */
341 int usb_ep_set_halt(struct usb_ep *ep)
342 {
343         int ret;
344
345         ret = ep->ops->set_halt(ep, 1);
346         trace_usb_ep_set_halt(ep, ret);
347
348         return ret;
349 }
350 EXPORT_SYMBOL_GPL(usb_ep_set_halt);
351
352 /**
353  * usb_ep_clear_halt - clears endpoint halt, and resets toggle
354  * @ep:the bulk or interrupt endpoint being reset
355  *
356  * Use this when responding to the standard usb "set interface" request,
357  * for endpoints that aren't reconfigured, after clearing any other state
358  * in the endpoint's i/o queue.
359  *
360  * This routine may be called in interrupt context.
361  *
362  * Returns zero, or a negative error code.  On success, this call clears
363  * the underlying hardware state reflecting endpoint halt and data toggle.
364  * Note that some hardware can't support this request (like pxa2xx_udc),
365  * and accordingly can't correctly implement interface altsettings.
366  */
367 int usb_ep_clear_halt(struct usb_ep *ep)
368 {
369         int ret;
370
371         ret = ep->ops->set_halt(ep, 0);
372         trace_usb_ep_clear_halt(ep, ret);
373
374         return ret;
375 }
376 EXPORT_SYMBOL_GPL(usb_ep_clear_halt);
377
378 /**
379  * usb_ep_set_wedge - sets the halt feature and ignores clear requests
380  * @ep: the endpoint being wedged
381  *
382  * Use this to stall an endpoint and ignore CLEAR_FEATURE(HALT_ENDPOINT)
383  * requests. If the gadget driver clears the halt status, it will
384  * automatically unwedge the endpoint.
385  *
386  * This routine may be called in interrupt context.
387  *
388  * Returns zero on success, else negative errno.
389  */
390 int usb_ep_set_wedge(struct usb_ep *ep)
391 {
392         int ret;
393
394         if (ep->ops->set_wedge)
395                 ret = ep->ops->set_wedge(ep);
396         else
397                 ret = ep->ops->set_halt(ep, 1);
398
399         trace_usb_ep_set_wedge(ep, ret);
400
401         return ret;
402 }
403 EXPORT_SYMBOL_GPL(usb_ep_set_wedge);
404
405 /**
406  * usb_ep_fifo_status - returns number of bytes in fifo, or error
407  * @ep: the endpoint whose fifo status is being checked.
408  *
409  * FIFO endpoints may have "unclaimed data" in them in certain cases,
410  * such as after aborted transfers.  Hosts may not have collected all
411  * the IN data written by the gadget driver (and reported by a request
412  * completion).  The gadget driver may not have collected all the data
413  * written OUT to it by the host.  Drivers that need precise handling for
414  * fault reporting or recovery may need to use this call.
415  *
416  * This routine may be called in interrupt context.
417  *
418  * This returns the number of such bytes in the fifo, or a negative
419  * errno if the endpoint doesn't use a FIFO or doesn't support such
420  * precise handling.
421  */
422 int usb_ep_fifo_status(struct usb_ep *ep)
423 {
424         int ret;
425
426         if (ep->ops->fifo_status)
427                 ret = ep->ops->fifo_status(ep);
428         else
429                 ret = -EOPNOTSUPP;
430
431         trace_usb_ep_fifo_status(ep, ret);
432
433         return ret;
434 }
435 EXPORT_SYMBOL_GPL(usb_ep_fifo_status);
436
437 /**
438  * usb_ep_fifo_flush - flushes contents of a fifo
439  * @ep: the endpoint whose fifo is being flushed.
440  *
441  * This call may be used to flush the "unclaimed data" that may exist in
442  * an endpoint fifo after abnormal transaction terminations.  The call
443  * must never be used except when endpoint is not being used for any
444  * protocol translation.
445  *
446  * This routine may be called in interrupt context.
447  */
448 void usb_ep_fifo_flush(struct usb_ep *ep)
449 {
450         if (ep->ops->fifo_flush)
451                 ep->ops->fifo_flush(ep);
452
453         trace_usb_ep_fifo_flush(ep, 0);
454 }
455 EXPORT_SYMBOL_GPL(usb_ep_fifo_flush);
456
457 /* ------------------------------------------------------------------------- */
458
459 /**
460  * usb_gadget_frame_number - returns the current frame number
461  * @gadget: controller that reports the frame number
462  *
463  * Returns the usb frame number, normally eleven bits from a SOF packet,
464  * or negative errno if this device doesn't support this capability.
465  */
466 int usb_gadget_frame_number(struct usb_gadget *gadget)
467 {
468         int ret;
469
470         ret = gadget->ops->get_frame(gadget);
471
472         trace_usb_gadget_frame_number(gadget, ret);
473
474         return ret;
475 }
476 EXPORT_SYMBOL_GPL(usb_gadget_frame_number);
477
478 /**
479  * usb_gadget_wakeup - tries to wake up the host connected to this gadget
480  * @gadget: controller used to wake up the host
481  *
482  * Returns zero on success, else negative error code if the hardware
483  * doesn't support such attempts, or its support has not been enabled
484  * by the usb host.  Drivers must return device descriptors that report
485  * their ability to support this, or hosts won't enable it.
486  *
487  * This may also try to use SRP to wake the host and start enumeration,
488  * even if OTG isn't otherwise in use.  OTG devices may also start
489  * remote wakeup even when hosts don't explicitly enable it.
490  */
491 int usb_gadget_wakeup(struct usb_gadget *gadget)
492 {
493         int ret = 0;
494
495         if (!gadget->ops->wakeup) {
496                 ret = -EOPNOTSUPP;
497                 goto out;
498         }
499
500         ret = gadget->ops->wakeup(gadget);
501
502 out:
503         trace_usb_gadget_wakeup(gadget, ret);
504
505         return ret;
506 }
507 EXPORT_SYMBOL_GPL(usb_gadget_wakeup);
508
509 /**
510  * usb_gadget_set_selfpowered - sets the device selfpowered feature.
511  * @gadget:the device being declared as self-powered
512  *
513  * this affects the device status reported by the hardware driver
514  * to reflect that it now has a local power supply.
515  *
516  * returns zero on success, else negative errno.
517  */
518 int usb_gadget_set_selfpowered(struct usb_gadget *gadget)
519 {
520         int ret = 0;
521
522         if (!gadget->ops->set_selfpowered) {
523                 ret = -EOPNOTSUPP;
524                 goto out;
525         }
526
527         ret = gadget->ops->set_selfpowered(gadget, 1);
528
529 out:
530         trace_usb_gadget_set_selfpowered(gadget, ret);
531
532         return ret;
533 }
534 EXPORT_SYMBOL_GPL(usb_gadget_set_selfpowered);
535
536 /**
537  * usb_gadget_clear_selfpowered - clear the device selfpowered feature.
538  * @gadget:the device being declared as bus-powered
539  *
540  * this affects the device status reported by the hardware driver.
541  * some hardware may not support bus-powered operation, in which
542  * case this feature's value can never change.
543  *
544  * returns zero on success, else negative errno.
545  */
546 int usb_gadget_clear_selfpowered(struct usb_gadget *gadget)
547 {
548         int ret = 0;
549
550         if (!gadget->ops->set_selfpowered) {
551                 ret = -EOPNOTSUPP;
552                 goto out;
553         }
554
555         ret = gadget->ops->set_selfpowered(gadget, 0);
556
557 out:
558         trace_usb_gadget_clear_selfpowered(gadget, ret);
559
560         return ret;
561 }
562 EXPORT_SYMBOL_GPL(usb_gadget_clear_selfpowered);
563
564 /**
565  * usb_gadget_vbus_connect - Notify controller that VBUS is powered
566  * @gadget:The device which now has VBUS power.
567  * Context: can sleep
568  *
569  * This call is used by a driver for an external transceiver (or GPIO)
570  * that detects a VBUS power session starting.  Common responses include
571  * resuming the controller, activating the D+ (or D-) pullup to let the
572  * host detect that a USB device is attached, and starting to draw power
573  * (8mA or possibly more, especially after SET_CONFIGURATION).
574  *
575  * Returns zero on success, else negative errno.
576  */
577 int usb_gadget_vbus_connect(struct usb_gadget *gadget)
578 {
579         int ret = 0;
580
581         if (!gadget->ops->vbus_session) {
582                 ret = -EOPNOTSUPP;
583                 goto out;
584         }
585
586         ret = gadget->ops->vbus_session(gadget, 1);
587
588 out:
589         trace_usb_gadget_vbus_connect(gadget, ret);
590
591         return ret;
592 }
593 EXPORT_SYMBOL_GPL(usb_gadget_vbus_connect);
594
595 /**
596  * usb_gadget_vbus_draw - constrain controller's VBUS power usage
597  * @gadget:The device whose VBUS usage is being described
598  * @mA:How much current to draw, in milliAmperes.  This should be twice
599  *      the value listed in the configuration descriptor bMaxPower field.
600  *
601  * This call is used by gadget drivers during SET_CONFIGURATION calls,
602  * reporting how much power the device may consume.  For example, this
603  * could affect how quickly batteries are recharged.
604  *
605  * Returns zero on success, else negative errno.
606  */
607 int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA)
608 {
609         int ret = 0;
610
611         if (!gadget->ops->vbus_draw) {
612                 ret = -EOPNOTSUPP;
613                 goto out;
614         }
615
616         ret = gadget->ops->vbus_draw(gadget, mA);
617         if (!ret)
618                 gadget->mA = mA;
619
620 out:
621         trace_usb_gadget_vbus_draw(gadget, ret);
622
623         return ret;
624 }
625 EXPORT_SYMBOL_GPL(usb_gadget_vbus_draw);
626
627 /**
628  * usb_gadget_vbus_disconnect - notify controller about VBUS session end
629  * @gadget:the device whose VBUS supply is being described
630  * Context: can sleep
631  *
632  * This call is used by a driver for an external transceiver (or GPIO)
633  * that detects a VBUS power session ending.  Common responses include
634  * reversing everything done in usb_gadget_vbus_connect().
635  *
636  * Returns zero on success, else negative errno.
637  */
638 int usb_gadget_vbus_disconnect(struct usb_gadget *gadget)
639 {
640         int ret = 0;
641
642         if (!gadget->ops->vbus_session) {
643                 ret = -EOPNOTSUPP;
644                 goto out;
645         }
646
647         ret = gadget->ops->vbus_session(gadget, 0);
648
649 out:
650         trace_usb_gadget_vbus_disconnect(gadget, ret);
651
652         return ret;
653 }
654 EXPORT_SYMBOL_GPL(usb_gadget_vbus_disconnect);
655
656 /**
657  * usb_gadget_connect - software-controlled connect to USB host
658  * @gadget:the peripheral being connected
659  *
660  * Enables the D+ (or potentially D-) pullup.  The host will start
661  * enumerating this gadget when the pullup is active and a VBUS session
662  * is active (the link is powered).  This pullup is always enabled unless
663  * usb_gadget_disconnect() has been used to disable it.
664  *
665  * Returns zero on success, else negative errno.
666  */
667 int usb_gadget_connect(struct usb_gadget *gadget)
668 {
669         int ret = 0;
670
671         if (!gadget->ops->pullup) {
672                 ret = -EOPNOTSUPP;
673                 goto out;
674         }
675
676         if (gadget->deactivated) {
677                 /*
678                  * If gadget is deactivated we only save new state.
679                  * Gadget will be connected automatically after activation.
680                  */
681                 gadget->connected = true;
682                 goto out;
683         }
684
685         ret = gadget->ops->pullup(gadget, 1);
686         if (!ret)
687                 gadget->connected = 1;
688
689 out:
690         trace_usb_gadget_connect(gadget, ret);
691
692         return ret;
693 }
694 EXPORT_SYMBOL_GPL(usb_gadget_connect);
695
696 /**
697  * usb_gadget_disconnect - software-controlled disconnect from USB host
698  * @gadget:the peripheral being disconnected
699  *
700  * Disables the D+ (or potentially D-) pullup, which the host may see
701  * as a disconnect (when a VBUS session is active).  Not all systems
702  * support software pullup controls.
703  *
704  * Returns zero on success, else negative errno.
705  */
706 int usb_gadget_disconnect(struct usb_gadget *gadget)
707 {
708         int ret = 0;
709
710         if (!gadget->ops->pullup) {
711                 ret = -EOPNOTSUPP;
712                 goto out;
713         }
714
715         if (gadget->deactivated) {
716                 /*
717                  * If gadget is deactivated we only save new state.
718                  * Gadget will stay disconnected after activation.
719                  */
720                 gadget->connected = false;
721                 goto out;
722         }
723
724         ret = gadget->ops->pullup(gadget, 0);
725         if (!ret)
726                 gadget->connected = 0;
727
728 out:
729         trace_usb_gadget_disconnect(gadget, ret);
730
731         return ret;
732 }
733 EXPORT_SYMBOL_GPL(usb_gadget_disconnect);
734
735 /**
736  * usb_gadget_deactivate - deactivate function which is not ready to work
737  * @gadget: the peripheral being deactivated
738  *
739  * This routine may be used during the gadget driver bind() call to prevent
740  * the peripheral from ever being visible to the USB host, unless later
741  * usb_gadget_activate() is called.  For example, user mode components may
742  * need to be activated before the system can talk to hosts.
743  *
744  * Returns zero on success, else negative errno.
745  */
746 int usb_gadget_deactivate(struct usb_gadget *gadget)
747 {
748         int ret = 0;
749
750         if (gadget->deactivated)
751                 goto out;
752
753         if (gadget->connected) {
754                 ret = usb_gadget_disconnect(gadget);
755                 if (ret)
756                         goto out;
757
758                 /*
759                  * If gadget was being connected before deactivation, we want
760                  * to reconnect it in usb_gadget_activate().
761                  */
762                 gadget->connected = true;
763         }
764         gadget->deactivated = true;
765
766 out:
767         trace_usb_gadget_deactivate(gadget, ret);
768
769         return ret;
770 }
771 EXPORT_SYMBOL_GPL(usb_gadget_deactivate);
772
773 /**
774  * usb_gadget_activate - activate function which is not ready to work
775  * @gadget: the peripheral being activated
776  *
777  * This routine activates gadget which was previously deactivated with
778  * usb_gadget_deactivate() call. It calls usb_gadget_connect() if needed.
779  *
780  * Returns zero on success, else negative errno.
781  */
782 int usb_gadget_activate(struct usb_gadget *gadget)
783 {
784         int ret = 0;
785
786         if (!gadget->deactivated)
787                 goto out;
788
789         gadget->deactivated = false;
790
791         /*
792          * If gadget has been connected before deactivation, or became connected
793          * while it was being deactivated, we call usb_gadget_connect().
794          */
795         if (gadget->connected)
796                 ret = usb_gadget_connect(gadget);
797
798 out:
799         trace_usb_gadget_activate(gadget, ret);
800
801         return ret;
802 }
803 EXPORT_SYMBOL_GPL(usb_gadget_activate);
804
805 /* ------------------------------------------------------------------------- */
806
807 #ifdef  CONFIG_HAS_DMA
808
809 int usb_gadget_map_request_by_dev(struct device *dev,
810                 struct usb_request *req, int is_in)
811 {
812         if (req->length == 0)
813                 return 0;
814
815         if (req->num_sgs) {
816                 int     mapped;
817
818                 mapped = dma_map_sg(dev, req->sg, req->num_sgs,
819                                 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
820                 if (mapped == 0) {
821                         dev_err(dev, "failed to map SGs\n");
822                         return -EFAULT;
823                 }
824
825                 req->num_mapped_sgs = mapped;
826         } else {
827                 if (is_vmalloc_addr(req->buf)) {
828                         dev_err(dev, "buffer is not dma capable\n");
829                         return -EFAULT;
830                 } else if (object_is_on_stack(req->buf)) {
831                         dev_err(dev, "buffer is on stack\n");
832                         return -EFAULT;
833                 }
834
835                 req->dma = dma_map_single(dev, req->buf, req->length,
836                                 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
837
838                 if (dma_mapping_error(dev, req->dma)) {
839                         dev_err(dev, "failed to map buffer\n");
840                         return -EFAULT;
841                 }
842
843                 req->dma_mapped = 1;
844         }
845
846         return 0;
847 }
848 EXPORT_SYMBOL_GPL(usb_gadget_map_request_by_dev);
849
850 int usb_gadget_map_request(struct usb_gadget *gadget,
851                 struct usb_request *req, int is_in)
852 {
853         return usb_gadget_map_request_by_dev(gadget->dev.parent, req, is_in);
854 }
855 EXPORT_SYMBOL_GPL(usb_gadget_map_request);
856
857 void usb_gadget_unmap_request_by_dev(struct device *dev,
858                 struct usb_request *req, int is_in)
859 {
860         if (req->length == 0)
861                 return;
862
863         if (req->num_mapped_sgs) {
864                 dma_unmap_sg(dev, req->sg, req->num_sgs,
865                                 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
866
867                 req->num_mapped_sgs = 0;
868         } else if (req->dma_mapped) {
869                 dma_unmap_single(dev, req->dma, req->length,
870                                 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
871                 req->dma_mapped = 0;
872         }
873 }
874 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request_by_dev);
875
876 void usb_gadget_unmap_request(struct usb_gadget *gadget,
877                 struct usb_request *req, int is_in)
878 {
879         usb_gadget_unmap_request_by_dev(gadget->dev.parent, req, is_in);
880 }
881 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request);
882
883 #endif  /* CONFIG_HAS_DMA */
884
885 /* ------------------------------------------------------------------------- */
886
887 /**
888  * usb_gadget_giveback_request - give the request back to the gadget layer
889  * Context: in_interrupt()
890  *
891  * This is called by device controller drivers in order to return the
892  * completed request back to the gadget layer.
893  */
894 void usb_gadget_giveback_request(struct usb_ep *ep,
895                 struct usb_request *req)
896 {
897         if (likely(req->status == 0))
898                 usb_led_activity(USB_LED_EVENT_GADGET);
899
900         trace_usb_gadget_giveback_request(ep, req, 0);
901
902         req->complete(ep, req);
903 }
904 EXPORT_SYMBOL_GPL(usb_gadget_giveback_request);
905
906 /* ------------------------------------------------------------------------- */
907
908 /**
909  * gadget_find_ep_by_name - returns ep whose name is the same as sting passed
910  *      in second parameter or NULL if searched endpoint not found
911  * @g: controller to check for quirk
912  * @name: name of searched endpoint
913  */
914 struct usb_ep *gadget_find_ep_by_name(struct usb_gadget *g, const char *name)
915 {
916         struct usb_ep *ep;
917
918         gadget_for_each_ep(ep, g) {
919                 if (!strcmp(ep->name, name))
920                         return ep;
921         }
922
923         return NULL;
924 }
925 EXPORT_SYMBOL_GPL(gadget_find_ep_by_name);
926
927 /* ------------------------------------------------------------------------- */
928
929 int usb_gadget_ep_match_desc(struct usb_gadget *gadget,
930                 struct usb_ep *ep, struct usb_endpoint_descriptor *desc,
931                 struct usb_ss_ep_comp_descriptor *ep_comp)
932 {
933         u8              type;
934         u16             max;
935         int             num_req_streams = 0;
936
937         /* endpoint already claimed? */
938         if (ep->claimed)
939                 return 0;
940
941         type = usb_endpoint_type(desc);
942         max = usb_endpoint_maxp(desc);
943
944         if (usb_endpoint_dir_in(desc) && !ep->caps.dir_in)
945                 return 0;
946         if (usb_endpoint_dir_out(desc) && !ep->caps.dir_out)
947                 return 0;
948
949         if (max > ep->maxpacket_limit)
950                 return 0;
951
952         /* "high bandwidth" works only at high speed */
953         if (!gadget_is_dualspeed(gadget) && usb_endpoint_maxp_mult(desc) > 1)
954                 return 0;
955
956         switch (type) {
957         case USB_ENDPOINT_XFER_CONTROL:
958                 /* only support ep0 for portable CONTROL traffic */
959                 return 0;
960         case USB_ENDPOINT_XFER_ISOC:
961                 if (!ep->caps.type_iso)
962                         return 0;
963                 /* ISO:  limit 1023 bytes full speed, 1024 high/super speed */
964                 if (!gadget_is_dualspeed(gadget) && max > 1023)
965                         return 0;
966                 break;
967         case USB_ENDPOINT_XFER_BULK:
968                 if (!ep->caps.type_bulk)
969                         return 0;
970                 if (ep_comp && gadget_is_superspeed(gadget)) {
971                         /* Get the number of required streams from the
972                          * EP companion descriptor and see if the EP
973                          * matches it
974                          */
975                         num_req_streams = ep_comp->bmAttributes & 0x1f;
976                         if (num_req_streams > ep->max_streams)
977                                 return 0;
978                 }
979                 break;
980         case USB_ENDPOINT_XFER_INT:
981                 /* Bulk endpoints handle interrupt transfers,
982                  * except the toggle-quirky iso-synch kind
983                  */
984                 if (!ep->caps.type_int && !ep->caps.type_bulk)
985                         return 0;
986                 /* INT:  limit 64 bytes full speed, 1024 high/super speed */
987                 if (!gadget_is_dualspeed(gadget) && max > 64)
988                         return 0;
989                 break;
990         }
991
992         return 1;
993 }
994 EXPORT_SYMBOL_GPL(usb_gadget_ep_match_desc);
995
996 /* ------------------------------------------------------------------------- */
997
998 static void usb_gadget_state_work(struct work_struct *work)
999 {
1000         struct usb_gadget *gadget = work_to_gadget(work);
1001         struct usb_udc *udc = gadget->udc;
1002
1003         if (udc)
1004                 sysfs_notify(&udc->dev.kobj, NULL, "state");
1005 }
1006
1007 void usb_gadget_set_state(struct usb_gadget *gadget,
1008                 enum usb_device_state state)
1009 {
1010         gadget->state = state;
1011         schedule_work(&gadget->work);
1012 }
1013 EXPORT_SYMBOL_GPL(usb_gadget_set_state);
1014
1015 /* ------------------------------------------------------------------------- */
1016
1017 static void usb_udc_connect_control(struct usb_udc *udc)
1018 {
1019         if (udc->vbus)
1020                 usb_gadget_connect(udc->gadget);
1021         else
1022                 usb_gadget_disconnect(udc->gadget);
1023 }
1024
1025 /**
1026  * usb_udc_vbus_handler - updates the udc core vbus status, and try to
1027  * connect or disconnect gadget
1028  * @gadget: The gadget which vbus change occurs
1029  * @status: The vbus status
1030  *
1031  * The udc driver calls it when it wants to connect or disconnect gadget
1032  * according to vbus status.
1033  */
1034 void usb_udc_vbus_handler(struct usb_gadget *gadget, bool status)
1035 {
1036         struct usb_udc *udc = gadget->udc;
1037
1038         if (udc) {
1039                 udc->vbus = status;
1040                 usb_udc_connect_control(udc);
1041         }
1042 }
1043 EXPORT_SYMBOL_GPL(usb_udc_vbus_handler);
1044
1045 /**
1046  * usb_gadget_udc_reset - notifies the udc core that bus reset occurs
1047  * @gadget: The gadget which bus reset occurs
1048  * @driver: The gadget driver we want to notify
1049  *
1050  * If the udc driver has bus reset handler, it needs to call this when the bus
1051  * reset occurs, it notifies the gadget driver that the bus reset occurs as
1052  * well as updates gadget state.
1053  */
1054 void usb_gadget_udc_reset(struct usb_gadget *gadget,
1055                 struct usb_gadget_driver *driver)
1056 {
1057         driver->reset(gadget);
1058         usb_gadget_set_state(gadget, USB_STATE_DEFAULT);
1059 }
1060 EXPORT_SYMBOL_GPL(usb_gadget_udc_reset);
1061
1062 /**
1063  * usb_gadget_udc_start - tells usb device controller to start up
1064  * @udc: The UDC to be started
1065  *
1066  * This call is issued by the UDC Class driver when it's about
1067  * to register a gadget driver to the device controller, before
1068  * calling gadget driver's bind() method.
1069  *
1070  * It allows the controller to be powered off until strictly
1071  * necessary to have it powered on.
1072  *
1073  * Returns zero on success, else negative errno.
1074  */
1075 static inline int usb_gadget_udc_start(struct usb_udc *udc)
1076 {
1077         return udc->gadget->ops->udc_start(udc->gadget, udc->driver);
1078 }
1079
1080 /**
1081  * usb_gadget_udc_stop - tells usb device controller we don't need it anymore
1082  * @gadget: The device we want to stop activity
1083  * @driver: The driver to unbind from @gadget
1084  *
1085  * This call is issued by the UDC Class driver after calling
1086  * gadget driver's unbind() method.
1087  *
1088  * The details are implementation specific, but it can go as
1089  * far as powering off UDC completely and disable its data
1090  * line pullups.
1091  */
1092 static inline void usb_gadget_udc_stop(struct usb_udc *udc)
1093 {
1094         udc->gadget->ops->udc_stop(udc->gadget);
1095 }
1096
1097 /**
1098  * usb_gadget_udc_set_speed - tells usb device controller speed supported by
1099  *    current driver
1100  * @udc: The device we want to set maximum speed
1101  * @speed: The maximum speed to allowed to run
1102  *
1103  * This call is issued by the UDC Class driver before calling
1104  * usb_gadget_udc_start() in order to make sure that we don't try to
1105  * connect on speeds the gadget driver doesn't support.
1106  */
1107 static inline void usb_gadget_udc_set_speed(struct usb_udc *udc,
1108                                             enum usb_device_speed speed)
1109 {
1110         if (udc->gadget->ops->udc_set_speed) {
1111                 enum usb_device_speed s;
1112
1113                 s = min(speed, udc->gadget->max_speed);
1114                 udc->gadget->ops->udc_set_speed(udc->gadget, s);
1115         }
1116 }
1117
1118 /**
1119  * usb_udc_release - release the usb_udc struct
1120  * @dev: the dev member within usb_udc
1121  *
1122  * This is called by driver's core in order to free memory once the last
1123  * reference is released.
1124  */
1125 static void usb_udc_release(struct device *dev)
1126 {
1127         struct usb_udc *udc;
1128
1129         udc = container_of(dev, struct usb_udc, dev);
1130         dev_dbg(dev, "releasing '%s'\n", dev_name(dev));
1131         kfree(udc);
1132 }
1133
1134 static const struct attribute_group *usb_udc_attr_groups[];
1135
1136 static void usb_udc_nop_release(struct device *dev)
1137 {
1138         dev_vdbg(dev, "%s\n", __func__);
1139 }
1140
1141 /* should be called with udc_lock held */
1142 static int check_pending_gadget_drivers(struct usb_udc *udc)
1143 {
1144         struct usb_gadget_driver *driver;
1145         int ret = 0;
1146
1147         list_for_each_entry(driver, &gadget_driver_pending_list, pending)
1148                 if (!driver->udc_name || strcmp(driver->udc_name,
1149                                                 dev_name(&udc->dev)) == 0) {
1150                         ret = udc_bind_to_driver(udc, driver);
1151                         if (ret != -EPROBE_DEFER)
1152                                 list_del_init(&driver->pending);
1153                         break;
1154                 }
1155
1156         return ret;
1157 }
1158
1159 /**
1160  * usb_add_gadget_udc_release - adds a new gadget to the udc class driver list
1161  * @parent: the parent device to this udc. Usually the controller driver's
1162  * device.
1163  * @gadget: the gadget to be added to the list.
1164  * @release: a gadget release function.
1165  *
1166  * Returns zero on success, negative errno otherwise.
1167  * Calls the gadget release function in the latter case.
1168  */
1169 int usb_add_gadget_udc_release(struct device *parent, struct usb_gadget *gadget,
1170                 void (*release)(struct device *dev))
1171 {
1172         struct usb_udc          *udc;
1173         int                     ret = -ENOMEM;
1174
1175         dev_set_name(&gadget->dev, "gadget");
1176         INIT_WORK(&gadget->work, usb_gadget_state_work);
1177         gadget->dev.parent = parent;
1178
1179         if (release)
1180                 gadget->dev.release = release;
1181         else
1182                 gadget->dev.release = usb_udc_nop_release;
1183
1184         device_initialize(&gadget->dev);
1185
1186         udc = kzalloc(sizeof(*udc), GFP_KERNEL);
1187         if (!udc)
1188                 goto err_put_gadget;
1189
1190         device_initialize(&udc->dev);
1191         udc->dev.release = usb_udc_release;
1192         udc->dev.class = udc_class;
1193         udc->dev.groups = usb_udc_attr_groups;
1194         udc->dev.parent = parent;
1195         ret = dev_set_name(&udc->dev, "%s", kobject_name(&parent->kobj));
1196         if (ret)
1197                 goto err_put_udc;
1198
1199         ret = device_add(&gadget->dev);
1200         if (ret)
1201                 goto err_put_udc;
1202
1203         udc->gadget = gadget;
1204         gadget->udc = udc;
1205
1206         mutex_lock(&udc_lock);
1207         list_add_tail(&udc->list, &udc_list);
1208
1209         ret = device_add(&udc->dev);
1210         if (ret)
1211                 goto err_unlist_udc;
1212
1213         usb_gadget_set_state(gadget, USB_STATE_NOTATTACHED);
1214         udc->vbus = true;
1215
1216         /* pick up one of pending gadget drivers */
1217         ret = check_pending_gadget_drivers(udc);
1218         if (ret)
1219                 goto err_del_udc;
1220
1221         mutex_unlock(&udc_lock);
1222
1223         return 0;
1224
1225  err_del_udc:
1226         device_del(&udc->dev);
1227
1228  err_unlist_udc:
1229         list_del(&udc->list);
1230         mutex_unlock(&udc_lock);
1231
1232         device_del(&gadget->dev);
1233
1234  err_put_udc:
1235         put_device(&udc->dev);
1236
1237  err_put_gadget:
1238         put_device(&gadget->dev);
1239         return ret;
1240 }
1241 EXPORT_SYMBOL_GPL(usb_add_gadget_udc_release);
1242
1243 /**
1244  * usb_get_gadget_udc_name - get the name of the first UDC controller
1245  * This functions returns the name of the first UDC controller in the system.
1246  * Please note that this interface is usefull only for legacy drivers which
1247  * assume that there is only one UDC controller in the system and they need to
1248  * get its name before initialization. There is no guarantee that the UDC
1249  * of the returned name will be still available, when gadget driver registers
1250  * itself.
1251  *
1252  * Returns pointer to string with UDC controller name on success, NULL
1253  * otherwise. Caller should kfree() returned string.
1254  */
1255 char *usb_get_gadget_udc_name(void)
1256 {
1257         struct usb_udc *udc;
1258         char *name = NULL;
1259
1260         /* For now we take the first available UDC */
1261         mutex_lock(&udc_lock);
1262         list_for_each_entry(udc, &udc_list, list) {
1263                 if (!udc->driver) {
1264                         name = kstrdup(udc->gadget->name, GFP_KERNEL);
1265                         break;
1266                 }
1267         }
1268         mutex_unlock(&udc_lock);
1269         return name;
1270 }
1271 EXPORT_SYMBOL_GPL(usb_get_gadget_udc_name);
1272
1273 /**
1274  * usb_add_gadget_udc - adds a new gadget to the udc class driver list
1275  * @parent: the parent device to this udc. Usually the controller
1276  * driver's device.
1277  * @gadget: the gadget to be added to the list
1278  *
1279  * Returns zero on success, negative errno otherwise.
1280  */
1281 int usb_add_gadget_udc(struct device *parent, struct usb_gadget *gadget)
1282 {
1283         return usb_add_gadget_udc_release(parent, gadget, NULL);
1284 }
1285 EXPORT_SYMBOL_GPL(usb_add_gadget_udc);
1286
1287 static void usb_gadget_remove_driver(struct usb_udc *udc)
1288 {
1289         dev_dbg(&udc->dev, "unregistering UDC driver [%s]\n",
1290                         udc->driver->function);
1291
1292         kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE);
1293
1294         usb_gadget_disconnect(udc->gadget);
1295         udc->driver->disconnect(udc->gadget);
1296         udc->driver->unbind(udc->gadget);
1297         usb_gadget_udc_stop(udc);
1298
1299         udc->driver = NULL;
1300         udc->gadget->dev.driver = NULL;
1301 }
1302
1303 /**
1304  * usb_del_gadget_udc - deletes @udc from udc_list
1305  * @gadget: the gadget to be removed.
1306  *
1307  * This, will call usb_gadget_unregister_driver() if
1308  * the @udc is still busy.
1309  */
1310 void usb_del_gadget_udc(struct usb_gadget *gadget)
1311 {
1312         struct usb_udc *udc = gadget->udc;
1313
1314         if (!udc)
1315                 return;
1316
1317         dev_vdbg(gadget->dev.parent, "unregistering gadget\n");
1318
1319         mutex_lock(&udc_lock);
1320         list_del(&udc->list);
1321
1322         if (udc->driver) {
1323                 struct usb_gadget_driver *driver = udc->driver;
1324
1325                 usb_gadget_remove_driver(udc);
1326                 list_add(&driver->pending, &gadget_driver_pending_list);
1327         }
1328         mutex_unlock(&udc_lock);
1329
1330         kobject_uevent(&udc->dev.kobj, KOBJ_REMOVE);
1331         flush_work(&gadget->work);
1332         device_unregister(&udc->dev);
1333         device_unregister(&gadget->dev);
1334         memset(&gadget->dev, 0x00, sizeof(gadget->dev));
1335 }
1336 EXPORT_SYMBOL_GPL(usb_del_gadget_udc);
1337
1338 /* ------------------------------------------------------------------------- */
1339
1340 static int udc_bind_to_driver(struct usb_udc *udc, struct usb_gadget_driver *driver)
1341 {
1342         int ret;
1343
1344         dev_dbg(&udc->dev, "registering UDC driver [%s]\n",
1345                         driver->function);
1346
1347         udc->driver = driver;
1348         udc->gadget->dev.driver = &driver->driver;
1349
1350         usb_gadget_udc_set_speed(udc, driver->max_speed);
1351
1352         ret = driver->bind(udc->gadget, driver);
1353         if (ret)
1354                 goto err1;
1355         ret = usb_gadget_udc_start(udc);
1356         if (ret) {
1357                 driver->unbind(udc->gadget);
1358                 goto err1;
1359         }
1360         usb_udc_connect_control(udc);
1361
1362         kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE);
1363         return 0;
1364 err1:
1365         if (ret != -EISNAM)
1366                 dev_err(&udc->dev, "failed to start %s: %d\n",
1367                         udc->driver->function, ret);
1368         udc->driver = NULL;
1369         udc->gadget->dev.driver = NULL;
1370         return ret;
1371 }
1372
1373 int usb_gadget_probe_driver(struct usb_gadget_driver *driver)
1374 {
1375         struct usb_udc          *udc = NULL;
1376         int                     ret = -ENODEV;
1377
1378         if (!driver || !driver->bind || !driver->setup)
1379                 return -EINVAL;
1380
1381         mutex_lock(&udc_lock);
1382         if (driver->udc_name) {
1383                 list_for_each_entry(udc, &udc_list, list) {
1384                         ret = strcmp(driver->udc_name, dev_name(&udc->dev));
1385                         if (!ret)
1386                                 break;
1387                 }
1388                 if (ret)
1389                         ret = -ENODEV;
1390                 else if (udc->driver)
1391                         ret = -EBUSY;
1392                 else
1393                         goto found;
1394         } else {
1395                 list_for_each_entry(udc, &udc_list, list) {
1396                         /* For now we take the first one */
1397                         if (!udc->driver)
1398                                 goto found;
1399                 }
1400         }
1401
1402         if (!driver->match_existing_only) {
1403                 list_add_tail(&driver->pending, &gadget_driver_pending_list);
1404                 pr_info("udc-core: couldn't find an available UDC - added [%s] to list of pending drivers\n",
1405                         driver->function);
1406                 ret = 0;
1407         }
1408
1409         mutex_unlock(&udc_lock);
1410         return ret;
1411 found:
1412         ret = udc_bind_to_driver(udc, driver);
1413         mutex_unlock(&udc_lock);
1414         return ret;
1415 }
1416 EXPORT_SYMBOL_GPL(usb_gadget_probe_driver);
1417
1418 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
1419 {
1420         struct usb_udc          *udc = NULL;
1421         int                     ret = -ENODEV;
1422
1423         if (!driver || !driver->unbind)
1424                 return -EINVAL;
1425
1426         mutex_lock(&udc_lock);
1427         list_for_each_entry(udc, &udc_list, list) {
1428                 if (udc->driver == driver) {
1429                         usb_gadget_remove_driver(udc);
1430                         usb_gadget_set_state(udc->gadget,
1431                                              USB_STATE_NOTATTACHED);
1432
1433                         /* Maybe there is someone waiting for this UDC? */
1434                         check_pending_gadget_drivers(udc);
1435                         /*
1436                          * For now we ignore bind errors as probably it's
1437                          * not a valid reason to fail other's gadget unbind
1438                          */
1439                         ret = 0;
1440                         break;
1441                 }
1442         }
1443
1444         if (ret) {
1445                 list_del(&driver->pending);
1446                 ret = 0;
1447         }
1448         mutex_unlock(&udc_lock);
1449         return ret;
1450 }
1451 EXPORT_SYMBOL_GPL(usb_gadget_unregister_driver);
1452
1453 /* ------------------------------------------------------------------------- */
1454
1455 static ssize_t srp_store(struct device *dev,
1456                 struct device_attribute *attr, const char *buf, size_t n)
1457 {
1458         struct usb_udc          *udc = container_of(dev, struct usb_udc, dev);
1459
1460         if (sysfs_streq(buf, "1"))
1461                 usb_gadget_wakeup(udc->gadget);
1462
1463         return n;
1464 }
1465 static DEVICE_ATTR_WO(srp);
1466
1467 static ssize_t soft_connect_store(struct device *dev,
1468                 struct device_attribute *attr, const char *buf, size_t n)
1469 {
1470         struct usb_udc          *udc = container_of(dev, struct usb_udc, dev);
1471         ssize_t                 ret;
1472
1473         mutex_lock(&udc_lock);
1474         if (!udc->driver) {
1475                 dev_err(dev, "soft-connect without a gadget driver\n");
1476                 ret = -EOPNOTSUPP;
1477                 goto out;
1478         }
1479
1480         if (sysfs_streq(buf, "connect")) {
1481                 usb_gadget_udc_start(udc);
1482                 usb_gadget_connect(udc->gadget);
1483         } else if (sysfs_streq(buf, "disconnect")) {
1484                 usb_gadget_disconnect(udc->gadget);
1485                 udc->driver->disconnect(udc->gadget);
1486                 usb_gadget_udc_stop(udc);
1487         } else {
1488                 dev_err(dev, "unsupported command '%s'\n", buf);
1489                 ret = -EINVAL;
1490                 goto out;
1491         }
1492
1493         ret = n;
1494 out:
1495         mutex_unlock(&udc_lock);
1496         return ret;
1497 }
1498 static DEVICE_ATTR_WO(soft_connect);
1499
1500 static ssize_t state_show(struct device *dev, struct device_attribute *attr,
1501                           char *buf)
1502 {
1503         struct usb_udc          *udc = container_of(dev, struct usb_udc, dev);
1504         struct usb_gadget       *gadget = udc->gadget;
1505
1506         return sprintf(buf, "%s\n", usb_state_string(gadget->state));
1507 }
1508 static DEVICE_ATTR_RO(state);
1509
1510 static ssize_t function_show(struct device *dev, struct device_attribute *attr,
1511                              char *buf)
1512 {
1513         struct usb_udc          *udc = container_of(dev, struct usb_udc, dev);
1514         struct usb_gadget_driver *drv = udc->driver;
1515
1516         if (!drv || !drv->function)
1517                 return 0;
1518         return scnprintf(buf, PAGE_SIZE, "%s\n", drv->function);
1519 }
1520 static DEVICE_ATTR_RO(function);
1521
1522 #define USB_UDC_SPEED_ATTR(name, param)                                 \
1523 ssize_t name##_show(struct device *dev,                                 \
1524                 struct device_attribute *attr, char *buf)               \
1525 {                                                                       \
1526         struct usb_udc *udc = container_of(dev, struct usb_udc, dev);   \
1527         return scnprintf(buf, PAGE_SIZE, "%s\n",                        \
1528                         usb_speed_string(udc->gadget->param));          \
1529 }                                                                       \
1530 static DEVICE_ATTR_RO(name)
1531
1532 static USB_UDC_SPEED_ATTR(current_speed, speed);
1533 static USB_UDC_SPEED_ATTR(maximum_speed, max_speed);
1534
1535 #define USB_UDC_ATTR(name)                                      \
1536 ssize_t name##_show(struct device *dev,                         \
1537                 struct device_attribute *attr, char *buf)       \
1538 {                                                               \
1539         struct usb_udc          *udc = container_of(dev, struct usb_udc, dev); \
1540         struct usb_gadget       *gadget = udc->gadget;          \
1541                                                                 \
1542         return scnprintf(buf, PAGE_SIZE, "%d\n", gadget->name); \
1543 }                                                               \
1544 static DEVICE_ATTR_RO(name)
1545
1546 static USB_UDC_ATTR(is_otg);
1547 static USB_UDC_ATTR(is_a_peripheral);
1548 static USB_UDC_ATTR(b_hnp_enable);
1549 static USB_UDC_ATTR(a_hnp_support);
1550 static USB_UDC_ATTR(a_alt_hnp_support);
1551 static USB_UDC_ATTR(is_selfpowered);
1552
1553 static struct attribute *usb_udc_attrs[] = {
1554         &dev_attr_srp.attr,
1555         &dev_attr_soft_connect.attr,
1556         &dev_attr_state.attr,
1557         &dev_attr_function.attr,
1558         &dev_attr_current_speed.attr,
1559         &dev_attr_maximum_speed.attr,
1560
1561         &dev_attr_is_otg.attr,
1562         &dev_attr_is_a_peripheral.attr,
1563         &dev_attr_b_hnp_enable.attr,
1564         &dev_attr_a_hnp_support.attr,
1565         &dev_attr_a_alt_hnp_support.attr,
1566         &dev_attr_is_selfpowered.attr,
1567         NULL,
1568 };
1569
1570 static const struct attribute_group usb_udc_attr_group = {
1571         .attrs = usb_udc_attrs,
1572 };
1573
1574 static const struct attribute_group *usb_udc_attr_groups[] = {
1575         &usb_udc_attr_group,
1576         NULL,
1577 };
1578
1579 static int usb_udc_uevent(struct device *dev, struct kobj_uevent_env *env)
1580 {
1581         struct usb_udc          *udc = container_of(dev, struct usb_udc, dev);
1582         int                     ret;
1583
1584         ret = add_uevent_var(env, "USB_UDC_NAME=%s", udc->gadget->name);
1585         if (ret) {
1586                 dev_err(dev, "failed to add uevent USB_UDC_NAME\n");
1587                 return ret;
1588         }
1589
1590         if (udc->driver) {
1591                 ret = add_uevent_var(env, "USB_UDC_DRIVER=%s",
1592                                 udc->driver->function);
1593                 if (ret) {
1594                         dev_err(dev, "failed to add uevent USB_UDC_DRIVER\n");
1595                         return ret;
1596                 }
1597         }
1598
1599         return 0;
1600 }
1601
1602 static int __init usb_udc_init(void)
1603 {
1604         udc_class = class_create(THIS_MODULE, "udc");
1605         if (IS_ERR(udc_class)) {
1606                 pr_err("failed to create udc class --> %ld\n",
1607                                 PTR_ERR(udc_class));
1608                 return PTR_ERR(udc_class);
1609         }
1610
1611         udc_class->dev_uevent = usb_udc_uevent;
1612         return 0;
1613 }
1614 subsys_initcall(usb_udc_init);
1615
1616 static void __exit usb_udc_exit(void)
1617 {
1618         class_destroy(udc_class);
1619 }
1620 module_exit(usb_udc_exit);
1621
1622 MODULE_DESCRIPTION("UDC Framework");
1623 MODULE_AUTHOR("Felipe Balbi <balbi@ti.com>");
1624 MODULE_LICENSE("GPL v2");