GNU Linux-libre 4.14.253-gnu1
[releases.git] / drivers / usb / gadget / function / f_fs.c
1 /*
2  * f_fs.c -- user mode file system API for USB composite function controllers
3  *
4  * Copyright (C) 2010 Samsung Electronics
5  * Author: Michal Nazarewicz <mina86@mina86.com>
6  *
7  * Based on inode.c (GadgetFS) which was:
8  * Copyright (C) 2003-2004 David Brownell
9  * Copyright (C) 2003 Agilent Technologies
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2 of the License, or
14  * (at your option) any later version.
15  */
16
17
18 /* #define DEBUG */
19 /* #define VERBOSE_DEBUG */
20
21 #include <linux/blkdev.h>
22 #include <linux/pagemap.h>
23 #include <linux/export.h>
24 #include <linux/hid.h>
25 #include <linux/module.h>
26 #include <linux/sched/signal.h>
27 #include <linux/uio.h>
28 #include <asm/unaligned.h>
29
30 #include <linux/usb/composite.h>
31 #include <linux/usb/functionfs.h>
32
33 #include <linux/aio.h>
34 #include <linux/mmu_context.h>
35 #include <linux/poll.h>
36 #include <linux/eventfd.h>
37
38 #include "u_fs.h"
39 #include "u_f.h"
40 #include "u_os_desc.h"
41 #include "configfs.h"
42
43 #define FUNCTIONFS_MAGIC        0xa647361 /* Chosen by a honest dice roll ;) */
44
45 /* Reference counter handling */
46 static void ffs_data_get(struct ffs_data *ffs);
47 static void ffs_data_put(struct ffs_data *ffs);
48 /* Creates new ffs_data object. */
49 static struct ffs_data *__must_check ffs_data_new(const char *dev_name)
50         __attribute__((malloc));
51
52 /* Opened counter handling. */
53 static void ffs_data_opened(struct ffs_data *ffs);
54 static void ffs_data_closed(struct ffs_data *ffs);
55
56 /* Called with ffs->mutex held; take over ownership of data. */
57 static int __must_check
58 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
59 static int __must_check
60 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
61
62
63 /* The function structure ***************************************************/
64
65 struct ffs_ep;
66
67 struct ffs_function {
68         struct usb_configuration        *conf;
69         struct usb_gadget               *gadget;
70         struct ffs_data                 *ffs;
71
72         struct ffs_ep                   *eps;
73         u8                              eps_revmap[16];
74         short                           *interfaces_nums;
75
76         struct usb_function             function;
77 };
78
79
80 static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
81 {
82         return container_of(f, struct ffs_function, function);
83 }
84
85
86 static inline enum ffs_setup_state
87 ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
88 {
89         return (enum ffs_setup_state)
90                 cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
91 }
92
93
94 static void ffs_func_eps_disable(struct ffs_function *func);
95 static int __must_check ffs_func_eps_enable(struct ffs_function *func);
96
97 static int ffs_func_bind(struct usb_configuration *,
98                          struct usb_function *);
99 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
100 static void ffs_func_disable(struct usb_function *);
101 static int ffs_func_setup(struct usb_function *,
102                           const struct usb_ctrlrequest *);
103 static bool ffs_func_req_match(struct usb_function *,
104                                const struct usb_ctrlrequest *,
105                                bool config0);
106 static void ffs_func_suspend(struct usb_function *);
107 static void ffs_func_resume(struct usb_function *);
108
109
110 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
111 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
112
113
114 /* The endpoints structures *************************************************/
115
116 struct ffs_ep {
117         struct usb_ep                   *ep;    /* P: ffs->eps_lock */
118         struct usb_request              *req;   /* P: epfile->mutex */
119
120         /* [0]: full speed, [1]: high speed, [2]: super speed */
121         struct usb_endpoint_descriptor  *descs[3];
122
123         u8                              num;
124
125         int                             status; /* P: epfile->mutex */
126 };
127
128 struct ffs_epfile {
129         /* Protects ep->ep and ep->req. */
130         struct mutex                    mutex;
131
132         struct ffs_data                 *ffs;
133         struct ffs_ep                   *ep;    /* P: ffs->eps_lock */
134
135         struct dentry                   *dentry;
136
137         /*
138          * Buffer for holding data from partial reads which may happen since
139          * we’re rounding user read requests to a multiple of a max packet size.
140          *
141          * The pointer is initialised with NULL value and may be set by
142          * __ffs_epfile_read_data function to point to a temporary buffer.
143          *
144          * In normal operation, calls to __ffs_epfile_read_buffered will consume
145          * data from said buffer and eventually free it.  Importantly, while the
146          * function is using the buffer, it sets the pointer to NULL.  This is
147          * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
148          * can never run concurrently (they are synchronised by epfile->mutex)
149          * so the latter will not assign a new value to the pointer.
150          *
151          * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
152          * valid) and sets the pointer to READ_BUFFER_DROP value.  This special
153          * value is crux of the synchronisation between ffs_func_eps_disable and
154          * __ffs_epfile_read_data.
155          *
156          * Once __ffs_epfile_read_data is about to finish it will try to set the
157          * pointer back to its old value (as described above), but seeing as the
158          * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
159          * the buffer.
160          *
161          * == State transitions ==
162          *
163          * • ptr == NULL:  (initial state)
164          *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP
165          *   ◦ __ffs_epfile_read_buffered:    nop
166          *   ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
167          *   ◦ reading finishes:              n/a, not in ‘and reading’ state
168          * • ptr == DROP:
169          *   ◦ __ffs_epfile_read_buffer_free: nop
170          *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL
171          *   ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
172          *   ◦ reading finishes:              n/a, not in ‘and reading’ state
173          * • ptr == buf:
174          *   ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
175          *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL and reading
176          *   ◦ __ffs_epfile_read_data:        n/a, __ffs_epfile_read_buffered
177          *                                    is always called first
178          *   ◦ reading finishes:              n/a, not in ‘and reading’ state
179          * • ptr == NULL and reading:
180          *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
181          *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
182          *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
183          *   ◦ reading finishes and …
184          *     … all data read:               free buf, go to ptr == NULL
185          *     … otherwise:                   go to ptr == buf and reading
186          * • ptr == DROP and reading:
187          *   ◦ __ffs_epfile_read_buffer_free: nop
188          *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
189          *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
190          *   ◦ reading finishes:              free buf, go to ptr == DROP
191          */
192         struct ffs_buffer               *read_buffer;
193 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
194
195         char                            name[5];
196
197         unsigned char                   in;     /* P: ffs->eps_lock */
198         unsigned char                   isoc;   /* P: ffs->eps_lock */
199
200         unsigned char                   _pad;
201 };
202
203 struct ffs_buffer {
204         size_t length;
205         char *data;
206         char storage[];
207 };
208
209 /*  ffs_io_data structure ***************************************************/
210
211 struct ffs_io_data {
212         bool aio;
213         bool read;
214
215         struct kiocb *kiocb;
216         struct iov_iter data;
217         const void *to_free;
218         char *buf;
219
220         struct mm_struct *mm;
221         struct work_struct work;
222
223         struct usb_ep *ep;
224         struct usb_request *req;
225
226         struct ffs_data *ffs;
227 };
228
229 struct ffs_desc_helper {
230         struct ffs_data *ffs;
231         unsigned interfaces_count;
232         unsigned eps_count;
233 };
234
235 static int  __must_check ffs_epfiles_create(struct ffs_data *ffs);
236 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
237
238 static struct dentry *
239 ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
240                    const struct file_operations *fops);
241
242 /* Devices management *******************************************************/
243
244 DEFINE_MUTEX(ffs_lock);
245 EXPORT_SYMBOL_GPL(ffs_lock);
246
247 static struct ffs_dev *_ffs_find_dev(const char *name);
248 static struct ffs_dev *_ffs_alloc_dev(void);
249 static void _ffs_free_dev(struct ffs_dev *dev);
250 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data);
251 static void ffs_release_dev(struct ffs_dev *ffs_dev);
252 static int ffs_ready(struct ffs_data *ffs);
253 static void ffs_closed(struct ffs_data *ffs);
254
255 /* Misc helper functions ****************************************************/
256
257 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
258         __attribute__((warn_unused_result, nonnull));
259 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
260         __attribute__((warn_unused_result, nonnull));
261
262
263 /* Control file aka ep0 *****************************************************/
264
265 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
266 {
267         struct ffs_data *ffs = req->context;
268
269         complete(&ffs->ep0req_completion);
270 }
271
272 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
273 {
274         struct usb_request *req = ffs->ep0req;
275         int ret;
276
277         req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);
278
279         spin_unlock_irq(&ffs->ev.waitq.lock);
280
281         req->buf      = data;
282         req->length   = len;
283
284         /*
285          * UDC layer requires to provide a buffer even for ZLP, but should
286          * not use it at all. Let's provide some poisoned pointer to catch
287          * possible bug in the driver.
288          */
289         if (req->buf == NULL)
290                 req->buf = (void *)0xDEADBABE;
291
292         reinit_completion(&ffs->ep0req_completion);
293
294         ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
295         if (unlikely(ret < 0))
296                 return ret;
297
298         ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
299         if (unlikely(ret)) {
300                 usb_ep_dequeue(ffs->gadget->ep0, req);
301                 return -EINTR;
302         }
303
304         ffs->setup_state = FFS_NO_SETUP;
305         return req->status ? req->status : req->actual;
306 }
307
308 static int __ffs_ep0_stall(struct ffs_data *ffs)
309 {
310         if (ffs->ev.can_stall) {
311                 pr_vdebug("ep0 stall\n");
312                 usb_ep_set_halt(ffs->gadget->ep0);
313                 ffs->setup_state = FFS_NO_SETUP;
314                 return -EL2HLT;
315         } else {
316                 pr_debug("bogus ep0 stall!\n");
317                 return -ESRCH;
318         }
319 }
320
321 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
322                              size_t len, loff_t *ptr)
323 {
324         struct ffs_data *ffs = file->private_data;
325         ssize_t ret;
326         char *data;
327
328         ENTER();
329
330         /* Fast check if setup was canceled */
331         if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
332                 return -EIDRM;
333
334         /* Acquire mutex */
335         ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
336         if (unlikely(ret < 0))
337                 return ret;
338
339         /* Check state */
340         switch (ffs->state) {
341         case FFS_READ_DESCRIPTORS:
342         case FFS_READ_STRINGS:
343                 /* Copy data */
344                 if (unlikely(len < 16)) {
345                         ret = -EINVAL;
346                         break;
347                 }
348
349                 data = ffs_prepare_buffer(buf, len);
350                 if (IS_ERR(data)) {
351                         ret = PTR_ERR(data);
352                         break;
353                 }
354
355                 /* Handle data */
356                 if (ffs->state == FFS_READ_DESCRIPTORS) {
357                         pr_info("read descriptors\n");
358                         ret = __ffs_data_got_descs(ffs, data, len);
359                         if (unlikely(ret < 0))
360                                 break;
361
362                         ffs->state = FFS_READ_STRINGS;
363                         ret = len;
364                 } else {
365                         pr_info("read strings\n");
366                         ret = __ffs_data_got_strings(ffs, data, len);
367                         if (unlikely(ret < 0))
368                                 break;
369
370                         ret = ffs_epfiles_create(ffs);
371                         if (unlikely(ret)) {
372                                 ffs->state = FFS_CLOSING;
373                                 break;
374                         }
375
376                         ffs->state = FFS_ACTIVE;
377                         mutex_unlock(&ffs->mutex);
378
379                         ret = ffs_ready(ffs);
380                         if (unlikely(ret < 0)) {
381                                 ffs->state = FFS_CLOSING;
382                                 return ret;
383                         }
384
385                         return len;
386                 }
387                 break;
388
389         case FFS_ACTIVE:
390                 data = NULL;
391                 /*
392                  * We're called from user space, we can use _irq
393                  * rather then _irqsave
394                  */
395                 spin_lock_irq(&ffs->ev.waitq.lock);
396                 switch (ffs_setup_state_clear_cancelled(ffs)) {
397                 case FFS_SETUP_CANCELLED:
398                         ret = -EIDRM;
399                         goto done_spin;
400
401                 case FFS_NO_SETUP:
402                         ret = -ESRCH;
403                         goto done_spin;
404
405                 case FFS_SETUP_PENDING:
406                         break;
407                 }
408
409                 /* FFS_SETUP_PENDING */
410                 if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
411                         spin_unlock_irq(&ffs->ev.waitq.lock);
412                         ret = __ffs_ep0_stall(ffs);
413                         break;
414                 }
415
416                 /* FFS_SETUP_PENDING and not stall */
417                 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
418
419                 spin_unlock_irq(&ffs->ev.waitq.lock);
420
421                 data = ffs_prepare_buffer(buf, len);
422                 if (IS_ERR(data)) {
423                         ret = PTR_ERR(data);
424                         break;
425                 }
426
427                 spin_lock_irq(&ffs->ev.waitq.lock);
428
429                 /*
430                  * We are guaranteed to be still in FFS_ACTIVE state
431                  * but the state of setup could have changed from
432                  * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
433                  * to check for that.  If that happened we copied data
434                  * from user space in vain but it's unlikely.
435                  *
436                  * For sure we are not in FFS_NO_SETUP since this is
437                  * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
438                  * transition can be performed and it's protected by
439                  * mutex.
440                  */
441                 if (ffs_setup_state_clear_cancelled(ffs) ==
442                     FFS_SETUP_CANCELLED) {
443                         ret = -EIDRM;
444 done_spin:
445                         spin_unlock_irq(&ffs->ev.waitq.lock);
446                 } else {
447                         /* unlocks spinlock */
448                         ret = __ffs_ep0_queue_wait(ffs, data, len);
449                 }
450                 kfree(data);
451                 break;
452
453         default:
454                 ret = -EBADFD;
455                 break;
456         }
457
458         mutex_unlock(&ffs->mutex);
459         return ret;
460 }
461
462 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
463 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
464                                      size_t n)
465 {
466         /*
467          * n cannot be bigger than ffs->ev.count, which cannot be bigger than
468          * size of ffs->ev.types array (which is four) so that's how much space
469          * we reserve.
470          */
471         struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
472         const size_t size = n * sizeof *events;
473         unsigned i = 0;
474
475         memset(events, 0, size);
476
477         do {
478                 events[i].type = ffs->ev.types[i];
479                 if (events[i].type == FUNCTIONFS_SETUP) {
480                         events[i].u.setup = ffs->ev.setup;
481                         ffs->setup_state = FFS_SETUP_PENDING;
482                 }
483         } while (++i < n);
484
485         ffs->ev.count -= n;
486         if (ffs->ev.count)
487                 memmove(ffs->ev.types, ffs->ev.types + n,
488                         ffs->ev.count * sizeof *ffs->ev.types);
489
490         spin_unlock_irq(&ffs->ev.waitq.lock);
491         mutex_unlock(&ffs->mutex);
492
493         return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size;
494 }
495
496 static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
497                             size_t len, loff_t *ptr)
498 {
499         struct ffs_data *ffs = file->private_data;
500         char *data = NULL;
501         size_t n;
502         int ret;
503
504         ENTER();
505
506         /* Fast check if setup was canceled */
507         if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
508                 return -EIDRM;
509
510         /* Acquire mutex */
511         ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
512         if (unlikely(ret < 0))
513                 return ret;
514
515         /* Check state */
516         if (ffs->state != FFS_ACTIVE) {
517                 ret = -EBADFD;
518                 goto done_mutex;
519         }
520
521         /*
522          * We're called from user space, we can use _irq rather then
523          * _irqsave
524          */
525         spin_lock_irq(&ffs->ev.waitq.lock);
526
527         switch (ffs_setup_state_clear_cancelled(ffs)) {
528         case FFS_SETUP_CANCELLED:
529                 ret = -EIDRM;
530                 break;
531
532         case FFS_NO_SETUP:
533                 n = len / sizeof(struct usb_functionfs_event);
534                 if (unlikely(!n)) {
535                         ret = -EINVAL;
536                         break;
537                 }
538
539                 if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
540                         ret = -EAGAIN;
541                         break;
542                 }
543
544                 if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
545                                                         ffs->ev.count)) {
546                         ret = -EINTR;
547                         break;
548                 }
549
550                 return __ffs_ep0_read_events(ffs, buf,
551                                              min(n, (size_t)ffs->ev.count));
552
553         case FFS_SETUP_PENDING:
554                 if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
555                         spin_unlock_irq(&ffs->ev.waitq.lock);
556                         ret = __ffs_ep0_stall(ffs);
557                         goto done_mutex;
558                 }
559
560                 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
561
562                 spin_unlock_irq(&ffs->ev.waitq.lock);
563
564                 if (likely(len)) {
565                         data = kmalloc(len, GFP_KERNEL);
566                         if (unlikely(!data)) {
567                                 ret = -ENOMEM;
568                                 goto done_mutex;
569                         }
570                 }
571
572                 spin_lock_irq(&ffs->ev.waitq.lock);
573
574                 /* See ffs_ep0_write() */
575                 if (ffs_setup_state_clear_cancelled(ffs) ==
576                     FFS_SETUP_CANCELLED) {
577                         ret = -EIDRM;
578                         break;
579                 }
580
581                 /* unlocks spinlock */
582                 ret = __ffs_ep0_queue_wait(ffs, data, len);
583                 if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len)))
584                         ret = -EFAULT;
585                 goto done_mutex;
586
587         default:
588                 ret = -EBADFD;
589                 break;
590         }
591
592         spin_unlock_irq(&ffs->ev.waitq.lock);
593 done_mutex:
594         mutex_unlock(&ffs->mutex);
595         kfree(data);
596         return ret;
597 }
598
599 static int ffs_ep0_open(struct inode *inode, struct file *file)
600 {
601         struct ffs_data *ffs = inode->i_private;
602
603         ENTER();
604
605         if (unlikely(ffs->state == FFS_CLOSING))
606                 return -EBUSY;
607
608         file->private_data = ffs;
609         ffs_data_opened(ffs);
610
611         return 0;
612 }
613
614 static int ffs_ep0_release(struct inode *inode, struct file *file)
615 {
616         struct ffs_data *ffs = file->private_data;
617
618         ENTER();
619
620         ffs_data_closed(ffs);
621
622         return 0;
623 }
624
625 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
626 {
627         struct ffs_data *ffs = file->private_data;
628         struct usb_gadget *gadget = ffs->gadget;
629         long ret;
630
631         ENTER();
632
633         if (code == FUNCTIONFS_INTERFACE_REVMAP) {
634                 struct ffs_function *func = ffs->func;
635                 ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
636         } else if (gadget && gadget->ops->ioctl) {
637                 ret = gadget->ops->ioctl(gadget, code, value);
638         } else {
639                 ret = -ENOTTY;
640         }
641
642         return ret;
643 }
644
645 static unsigned int ffs_ep0_poll(struct file *file, poll_table *wait)
646 {
647         struct ffs_data *ffs = file->private_data;
648         unsigned int mask = POLLWRNORM;
649         int ret;
650
651         poll_wait(file, &ffs->ev.waitq, wait);
652
653         ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
654         if (unlikely(ret < 0))
655                 return mask;
656
657         switch (ffs->state) {
658         case FFS_READ_DESCRIPTORS:
659         case FFS_READ_STRINGS:
660                 mask |= POLLOUT;
661                 break;
662
663         case FFS_ACTIVE:
664                 switch (ffs->setup_state) {
665                 case FFS_NO_SETUP:
666                         if (ffs->ev.count)
667                                 mask |= POLLIN;
668                         break;
669
670                 case FFS_SETUP_PENDING:
671                 case FFS_SETUP_CANCELLED:
672                         mask |= (POLLIN | POLLOUT);
673                         break;
674                 }
675         case FFS_CLOSING:
676                 break;
677         case FFS_DEACTIVATED:
678                 break;
679         }
680
681         mutex_unlock(&ffs->mutex);
682
683         return mask;
684 }
685
686 static const struct file_operations ffs_ep0_operations = {
687         .llseek =       no_llseek,
688
689         .open =         ffs_ep0_open,
690         .write =        ffs_ep0_write,
691         .read =         ffs_ep0_read,
692         .release =      ffs_ep0_release,
693         .unlocked_ioctl =       ffs_ep0_ioctl,
694         .poll =         ffs_ep0_poll,
695 };
696
697
698 /* "Normal" endpoints operations ********************************************/
699
700 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
701 {
702         ENTER();
703         if (likely(req->context)) {
704                 struct ffs_ep *ep = _ep->driver_data;
705                 ep->status = req->status ? req->status : req->actual;
706                 complete(req->context);
707         }
708 }
709
710 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
711 {
712         ssize_t ret = copy_to_iter(data, data_len, iter);
713         if (likely(ret == data_len))
714                 return ret;
715
716         if (unlikely(iov_iter_count(iter)))
717                 return -EFAULT;
718
719         /*
720          * Dear user space developer!
721          *
722          * TL;DR: To stop getting below error message in your kernel log, change
723          * user space code using functionfs to align read buffers to a max
724          * packet size.
725          *
726          * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
727          * packet size.  When unaligned buffer is passed to functionfs, it
728          * internally uses a larger, aligned buffer so that such UDCs are happy.
729          *
730          * Unfortunately, this means that host may send more data than was
731          * requested in read(2) system call.  f_fs doesn’t know what to do with
732          * that excess data so it simply drops it.
733          *
734          * Was the buffer aligned in the first place, no such problem would
735          * happen.
736          *
737          * Data may be dropped only in AIO reads.  Synchronous reads are handled
738          * by splitting a request into multiple parts.  This splitting may still
739          * be a problem though so it’s likely best to align the buffer
740          * regardless of it being AIO or not..
741          *
742          * This only affects OUT endpoints, i.e. reading data with a read(2),
743          * aio_read(2) etc. system calls.  Writing data to an IN endpoint is not
744          * affected.
745          */
746         pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
747                "Align read buffer size to max packet size to avoid the problem.\n",
748                data_len, ret);
749
750         return ret;
751 }
752
753 static void ffs_user_copy_worker(struct work_struct *work)
754 {
755         struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
756                                                    work);
757         int ret = io_data->req->status ? io_data->req->status :
758                                          io_data->req->actual;
759         bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
760
761         if (io_data->read && ret > 0) {
762                 mm_segment_t oldfs = get_fs();
763
764                 set_fs(USER_DS);
765                 use_mm(io_data->mm);
766                 ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
767                 unuse_mm(io_data->mm);
768                 set_fs(oldfs);
769         }
770
771         io_data->kiocb->ki_complete(io_data->kiocb, ret, ret);
772
773         if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
774                 eventfd_signal(io_data->ffs->ffs_eventfd, 1);
775
776         usb_ep_free_request(io_data->ep, io_data->req);
777
778         if (io_data->read)
779                 kfree(io_data->to_free);
780         kfree(io_data->buf);
781         kfree(io_data);
782 }
783
784 static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
785                                          struct usb_request *req)
786 {
787         struct ffs_io_data *io_data = req->context;
788         struct ffs_data *ffs = io_data->ffs;
789
790         ENTER();
791
792         INIT_WORK(&io_data->work, ffs_user_copy_worker);
793         queue_work(ffs->io_completion_wq, &io_data->work);
794 }
795
796 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
797 {
798         /*
799          * See comment in struct ffs_epfile for full read_buffer pointer
800          * synchronisation story.
801          */
802         struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
803         if (buf && buf != READ_BUFFER_DROP)
804                 kfree(buf);
805 }
806
807 /* Assumes epfile->mutex is held. */
808 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
809                                           struct iov_iter *iter)
810 {
811         /*
812          * Null out epfile->read_buffer so ffs_func_eps_disable does not free
813          * the buffer while we are using it.  See comment in struct ffs_epfile
814          * for full read_buffer pointer synchronisation story.
815          */
816         struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
817         ssize_t ret;
818         if (!buf || buf == READ_BUFFER_DROP)
819                 return 0;
820
821         ret = copy_to_iter(buf->data, buf->length, iter);
822         if (buf->length == ret) {
823                 kfree(buf);
824                 return ret;
825         }
826
827         if (unlikely(iov_iter_count(iter))) {
828                 ret = -EFAULT;
829         } else {
830                 buf->length -= ret;
831                 buf->data += ret;
832         }
833
834         if (cmpxchg(&epfile->read_buffer, NULL, buf))
835                 kfree(buf);
836
837         return ret;
838 }
839
840 /* Assumes epfile->mutex is held. */
841 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
842                                       void *data, int data_len,
843                                       struct iov_iter *iter)
844 {
845         struct ffs_buffer *buf;
846
847         ssize_t ret = copy_to_iter(data, data_len, iter);
848         if (likely(data_len == ret))
849                 return ret;
850
851         if (unlikely(iov_iter_count(iter)))
852                 return -EFAULT;
853
854         /* See ffs_copy_to_iter for more context. */
855         pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
856                 data_len, ret);
857
858         data_len -= ret;
859         buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL);
860         if (!buf)
861                 return -ENOMEM;
862         buf->length = data_len;
863         buf->data = buf->storage;
864         memcpy(buf->storage, data + ret, data_len);
865
866         /*
867          * At this point read_buffer is NULL or READ_BUFFER_DROP (if
868          * ffs_func_eps_disable has been called in the meanwhile).  See comment
869          * in struct ffs_epfile for full read_buffer pointer synchronisation
870          * story.
871          */
872         if (unlikely(cmpxchg(&epfile->read_buffer, NULL, buf)))
873                 kfree(buf);
874
875         return ret;
876 }
877
878 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
879 {
880         struct ffs_epfile *epfile = file->private_data;
881         struct usb_request *req;
882         struct ffs_ep *ep;
883         char *data = NULL;
884         ssize_t ret, data_len = -EINVAL;
885         int halt;
886
887         /* Are we still active? */
888         if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
889                 return -ENODEV;
890
891         /* Wait for endpoint to be enabled */
892         ep = epfile->ep;
893         if (!ep) {
894                 if (file->f_flags & O_NONBLOCK)
895                         return -EAGAIN;
896
897                 ret = wait_event_interruptible(
898                                 epfile->ffs->wait, (ep = epfile->ep));
899                 if (ret)
900                         return -EINTR;
901         }
902
903         /* Do we halt? */
904         halt = (!io_data->read == !epfile->in);
905         if (halt && epfile->isoc)
906                 return -EINVAL;
907
908         /* We will be using request and read_buffer */
909         ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
910         if (unlikely(ret))
911                 goto error;
912
913         /* Allocate & copy */
914         if (!halt) {
915                 struct usb_gadget *gadget;
916
917                 /*
918                  * Do we have buffered data from previous partial read?  Check
919                  * that for synchronous case only because we do not have
920                  * facility to ‘wake up’ a pending asynchronous read and push
921                  * buffered data to it which we would need to make things behave
922                  * consistently.
923                  */
924                 if (!io_data->aio && io_data->read) {
925                         ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
926                         if (ret)
927                                 goto error_mutex;
928                 }
929
930                 /*
931                  * if we _do_ wait above, the epfile->ffs->gadget might be NULL
932                  * before the waiting completes, so do not assign to 'gadget'
933                  * earlier
934                  */
935                 gadget = epfile->ffs->gadget;
936
937                 spin_lock_irq(&epfile->ffs->eps_lock);
938                 /* In the meantime, endpoint got disabled or changed. */
939                 if (epfile->ep != ep) {
940                         ret = -ESHUTDOWN;
941                         goto error_lock;
942                 }
943                 data_len = iov_iter_count(&io_data->data);
944                 /*
945                  * Controller may require buffer size to be aligned to
946                  * maxpacketsize of an out endpoint.
947                  */
948                 if (io_data->read)
949                         data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
950                 spin_unlock_irq(&epfile->ffs->eps_lock);
951
952                 data = kmalloc(data_len, GFP_KERNEL);
953                 if (unlikely(!data)) {
954                         ret = -ENOMEM;
955                         goto error_mutex;
956                 }
957                 if (!io_data->read &&
958                     !copy_from_iter_full(data, data_len, &io_data->data)) {
959                         ret = -EFAULT;
960                         goto error_mutex;
961                 }
962         }
963
964         spin_lock_irq(&epfile->ffs->eps_lock);
965
966         if (epfile->ep != ep) {
967                 /* In the meantime, endpoint got disabled or changed. */
968                 ret = -ESHUTDOWN;
969         } else if (halt) {
970                 ret = usb_ep_set_halt(ep->ep);
971                 if (!ret)
972                         ret = -EBADMSG;
973         } else if (unlikely(data_len == -EINVAL)) {
974                 /*
975                  * Sanity Check: even though data_len can't be used
976                  * uninitialized at the time I write this comment, some
977                  * compilers complain about this situation.
978                  * In order to keep the code clean from warnings, data_len is
979                  * being initialized to -EINVAL during its declaration, which
980                  * means we can't rely on compiler anymore to warn no future
981                  * changes won't result in data_len being used uninitialized.
982                  * For such reason, we're adding this redundant sanity check
983                  * here.
984                  */
985                 WARN(1, "%s: data_len == -EINVAL\n", __func__);
986                 ret = -EINVAL;
987         } else if (!io_data->aio) {
988                 DECLARE_COMPLETION_ONSTACK(done);
989                 bool interrupted = false;
990
991                 req = ep->req;
992                 req->buf      = data;
993                 req->length   = data_len;
994
995                 req->context  = &done;
996                 req->complete = ffs_epfile_io_complete;
997
998                 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
999                 if (unlikely(ret < 0))
1000                         goto error_lock;
1001
1002                 spin_unlock_irq(&epfile->ffs->eps_lock);
1003
1004                 if (unlikely(wait_for_completion_interruptible(&done))) {
1005                         /*
1006                          * To avoid race condition with ffs_epfile_io_complete,
1007                          * dequeue the request first then check
1008                          * status. usb_ep_dequeue API should guarantee no race
1009                          * condition with req->complete callback.
1010                          */
1011                         usb_ep_dequeue(ep->ep, req);
1012                         wait_for_completion(&done);
1013                         interrupted = ep->status < 0;
1014                 }
1015
1016                 if (interrupted)
1017                         ret = -EINTR;
1018                 else if (io_data->read && ep->status > 0)
1019                         ret = __ffs_epfile_read_data(epfile, data, ep->status,
1020                                                      &io_data->data);
1021                 else
1022                         ret = ep->status;
1023                 goto error_mutex;
1024         } else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) {
1025                 ret = -ENOMEM;
1026         } else {
1027                 req->buf      = data;
1028                 req->length   = data_len;
1029
1030                 io_data->buf = data;
1031                 io_data->ep = ep->ep;
1032                 io_data->req = req;
1033                 io_data->ffs = epfile->ffs;
1034
1035                 req->context  = io_data;
1036                 req->complete = ffs_epfile_async_io_complete;
1037
1038                 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1039                 if (unlikely(ret)) {
1040                         io_data->req = NULL;
1041                         usb_ep_free_request(ep->ep, req);
1042                         goto error_lock;
1043                 }
1044
1045                 ret = -EIOCBQUEUED;
1046                 /*
1047                  * Do not kfree the buffer in this function.  It will be freed
1048                  * by ffs_user_copy_worker.
1049                  */
1050                 data = NULL;
1051         }
1052
1053 error_lock:
1054         spin_unlock_irq(&epfile->ffs->eps_lock);
1055 error_mutex:
1056         mutex_unlock(&epfile->mutex);
1057 error:
1058         kfree(data);
1059         return ret;
1060 }
1061
1062 static int
1063 ffs_epfile_open(struct inode *inode, struct file *file)
1064 {
1065         struct ffs_epfile *epfile = inode->i_private;
1066
1067         ENTER();
1068
1069         if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1070                 return -ENODEV;
1071
1072         file->private_data = epfile;
1073         ffs_data_opened(epfile->ffs);
1074
1075         return 0;
1076 }
1077
1078 static int ffs_aio_cancel(struct kiocb *kiocb)
1079 {
1080         struct ffs_io_data *io_data = kiocb->private;
1081         struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
1082         unsigned long flags;
1083         int value;
1084
1085         ENTER();
1086
1087         spin_lock_irqsave(&epfile->ffs->eps_lock, flags);
1088
1089         if (likely(io_data && io_data->ep && io_data->req))
1090                 value = usb_ep_dequeue(io_data->ep, io_data->req);
1091         else
1092                 value = -EINVAL;
1093
1094         spin_unlock_irqrestore(&epfile->ffs->eps_lock, flags);
1095
1096         return value;
1097 }
1098
1099 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1100 {
1101         struct ffs_io_data io_data, *p = &io_data;
1102         ssize_t res;
1103
1104         ENTER();
1105
1106         if (!is_sync_kiocb(kiocb)) {
1107                 p = kzalloc(sizeof(io_data), GFP_KERNEL);
1108                 if (unlikely(!p))
1109                         return -ENOMEM;
1110                 p->aio = true;
1111         } else {
1112                 memset(p, 0, sizeof(*p));
1113                 p->aio = false;
1114         }
1115
1116         p->read = false;
1117         p->kiocb = kiocb;
1118         p->data = *from;
1119         p->mm = current->mm;
1120
1121         kiocb->private = p;
1122
1123         if (p->aio)
1124                 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1125
1126         res = ffs_epfile_io(kiocb->ki_filp, p);
1127         if (res == -EIOCBQUEUED)
1128                 return res;
1129         if (p->aio)
1130                 kfree(p);
1131         else
1132                 *from = p->data;
1133         return res;
1134 }
1135
1136 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1137 {
1138         struct ffs_io_data io_data, *p = &io_data;
1139         ssize_t res;
1140
1141         ENTER();
1142
1143         if (!is_sync_kiocb(kiocb)) {
1144                 p = kzalloc(sizeof(io_data), GFP_KERNEL);
1145                 if (unlikely(!p))
1146                         return -ENOMEM;
1147                 p->aio = true;
1148         } else {
1149                 memset(p, 0, sizeof(*p));
1150                 p->aio = false;
1151         }
1152
1153         p->read = true;
1154         p->kiocb = kiocb;
1155         if (p->aio) {
1156                 p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
1157                 if (!p->to_free) {
1158                         kfree(p);
1159                         return -ENOMEM;
1160                 }
1161         } else {
1162                 p->data = *to;
1163                 p->to_free = NULL;
1164         }
1165         p->mm = current->mm;
1166
1167         kiocb->private = p;
1168
1169         if (p->aio)
1170                 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1171
1172         res = ffs_epfile_io(kiocb->ki_filp, p);
1173         if (res == -EIOCBQUEUED)
1174                 return res;
1175
1176         if (p->aio) {
1177                 kfree(p->to_free);
1178                 kfree(p);
1179         } else {
1180                 *to = p->data;
1181         }
1182         return res;
1183 }
1184
1185 static int
1186 ffs_epfile_release(struct inode *inode, struct file *file)
1187 {
1188         struct ffs_epfile *epfile = inode->i_private;
1189
1190         ENTER();
1191
1192         __ffs_epfile_read_buffer_free(epfile);
1193         ffs_data_closed(epfile->ffs);
1194
1195         return 0;
1196 }
1197
1198 static long ffs_epfile_ioctl(struct file *file, unsigned code,
1199                              unsigned long value)
1200 {
1201         struct ffs_epfile *epfile = file->private_data;
1202         struct ffs_ep *ep;
1203         int ret;
1204
1205         ENTER();
1206
1207         if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1208                 return -ENODEV;
1209
1210         /* Wait for endpoint to be enabled */
1211         ep = epfile->ep;
1212         if (!ep) {
1213                 if (file->f_flags & O_NONBLOCK)
1214                         return -EAGAIN;
1215
1216                 ret = wait_event_interruptible(
1217                                 epfile->ffs->wait, (ep = epfile->ep));
1218                 if (ret)
1219                         return -EINTR;
1220         }
1221
1222         spin_lock_irq(&epfile->ffs->eps_lock);
1223
1224         /* In the meantime, endpoint got disabled or changed. */
1225         if (epfile->ep != ep) {
1226                 spin_unlock_irq(&epfile->ffs->eps_lock);
1227                 return -ESHUTDOWN;
1228         }
1229
1230         switch (code) {
1231         case FUNCTIONFS_FIFO_STATUS:
1232                 ret = usb_ep_fifo_status(epfile->ep->ep);
1233                 break;
1234         case FUNCTIONFS_FIFO_FLUSH:
1235                 usb_ep_fifo_flush(epfile->ep->ep);
1236                 ret = 0;
1237                 break;
1238         case FUNCTIONFS_CLEAR_HALT:
1239                 ret = usb_ep_clear_halt(epfile->ep->ep);
1240                 break;
1241         case FUNCTIONFS_ENDPOINT_REVMAP:
1242                 ret = epfile->ep->num;
1243                 break;
1244         case FUNCTIONFS_ENDPOINT_DESC:
1245         {
1246                 int desc_idx;
1247                 struct usb_endpoint_descriptor desc1, *desc;
1248
1249                 switch (epfile->ffs->gadget->speed) {
1250                 case USB_SPEED_SUPER:
1251                 case USB_SPEED_SUPER_PLUS:
1252                         desc_idx = 2;
1253                         break;
1254                 case USB_SPEED_HIGH:
1255                         desc_idx = 1;
1256                         break;
1257                 default:
1258                         desc_idx = 0;
1259                 }
1260
1261                 desc = epfile->ep->descs[desc_idx];
1262                 memcpy(&desc1, desc, desc->bLength);
1263
1264                 spin_unlock_irq(&epfile->ffs->eps_lock);
1265                 ret = copy_to_user((void *)value, &desc1, desc1.bLength);
1266                 if (ret)
1267                         ret = -EFAULT;
1268                 return ret;
1269         }
1270         default:
1271                 ret = -ENOTTY;
1272         }
1273         spin_unlock_irq(&epfile->ffs->eps_lock);
1274
1275         return ret;
1276 }
1277
1278 static const struct file_operations ffs_epfile_operations = {
1279         .llseek =       no_llseek,
1280
1281         .open =         ffs_epfile_open,
1282         .write_iter =   ffs_epfile_write_iter,
1283         .read_iter =    ffs_epfile_read_iter,
1284         .release =      ffs_epfile_release,
1285         .unlocked_ioctl =       ffs_epfile_ioctl,
1286 };
1287
1288
1289 /* File system and super block operations ***********************************/
1290
1291 /*
1292  * Mounting the file system creates a controller file, used first for
1293  * function configuration then later for event monitoring.
1294  */
1295
1296 static struct inode *__must_check
1297 ffs_sb_make_inode(struct super_block *sb, void *data,
1298                   const struct file_operations *fops,
1299                   const struct inode_operations *iops,
1300                   struct ffs_file_perms *perms)
1301 {
1302         struct inode *inode;
1303
1304         ENTER();
1305
1306         inode = new_inode(sb);
1307
1308         if (likely(inode)) {
1309                 struct timespec ts = current_time(inode);
1310
1311                 inode->i_ino     = get_next_ino();
1312                 inode->i_mode    = perms->mode;
1313                 inode->i_uid     = perms->uid;
1314                 inode->i_gid     = perms->gid;
1315                 inode->i_atime   = ts;
1316                 inode->i_mtime   = ts;
1317                 inode->i_ctime   = ts;
1318                 inode->i_private = data;
1319                 if (fops)
1320                         inode->i_fop = fops;
1321                 if (iops)
1322                         inode->i_op  = iops;
1323         }
1324
1325         return inode;
1326 }
1327
1328 /* Create "regular" file */
1329 static struct dentry *ffs_sb_create_file(struct super_block *sb,
1330                                         const char *name, void *data,
1331                                         const struct file_operations *fops)
1332 {
1333         struct ffs_data *ffs = sb->s_fs_info;
1334         struct dentry   *dentry;
1335         struct inode    *inode;
1336
1337         ENTER();
1338
1339         dentry = d_alloc_name(sb->s_root, name);
1340         if (unlikely(!dentry))
1341                 return NULL;
1342
1343         inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1344         if (unlikely(!inode)) {
1345                 dput(dentry);
1346                 return NULL;
1347         }
1348
1349         d_add(dentry, inode);
1350         return dentry;
1351 }
1352
1353 /* Super block */
1354 static const struct super_operations ffs_sb_operations = {
1355         .statfs =       simple_statfs,
1356         .drop_inode =   generic_delete_inode,
1357 };
1358
1359 struct ffs_sb_fill_data {
1360         struct ffs_file_perms perms;
1361         umode_t root_mode;
1362         const char *dev_name;
1363         bool no_disconnect;
1364         struct ffs_data *ffs_data;
1365 };
1366
1367 static int ffs_sb_fill(struct super_block *sb, void *_data, int silent)
1368 {
1369         struct ffs_sb_fill_data *data = _data;
1370         struct inode    *inode;
1371         struct ffs_data *ffs = data->ffs_data;
1372
1373         ENTER();
1374
1375         ffs->sb              = sb;
1376         data->ffs_data       = NULL;
1377         sb->s_fs_info        = ffs;
1378         sb->s_blocksize      = PAGE_SIZE;
1379         sb->s_blocksize_bits = PAGE_SHIFT;
1380         sb->s_magic          = FUNCTIONFS_MAGIC;
1381         sb->s_op             = &ffs_sb_operations;
1382         sb->s_time_gran      = 1;
1383
1384         /* Root inode */
1385         data->perms.mode = data->root_mode;
1386         inode = ffs_sb_make_inode(sb, NULL,
1387                                   &simple_dir_operations,
1388                                   &simple_dir_inode_operations,
1389                                   &data->perms);
1390         sb->s_root = d_make_root(inode);
1391         if (unlikely(!sb->s_root))
1392                 return -ENOMEM;
1393
1394         /* EP0 file */
1395         if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs,
1396                                          &ffs_ep0_operations)))
1397                 return -ENOMEM;
1398
1399         return 0;
1400 }
1401
1402 static int ffs_fs_parse_opts(struct ffs_sb_fill_data *data, char *opts)
1403 {
1404         ENTER();
1405
1406         if (!opts || !*opts)
1407                 return 0;
1408
1409         for (;;) {
1410                 unsigned long value;
1411                 char *eq, *comma;
1412
1413                 /* Option limit */
1414                 comma = strchr(opts, ',');
1415                 if (comma)
1416                         *comma = 0;
1417
1418                 /* Value limit */
1419                 eq = strchr(opts, '=');
1420                 if (unlikely(!eq)) {
1421                         pr_err("'=' missing in %s\n", opts);
1422                         return -EINVAL;
1423                 }
1424                 *eq = 0;
1425
1426                 /* Parse value */
1427                 if (kstrtoul(eq + 1, 0, &value)) {
1428                         pr_err("%s: invalid value: %s\n", opts, eq + 1);
1429                         return -EINVAL;
1430                 }
1431
1432                 /* Interpret option */
1433                 switch (eq - opts) {
1434                 case 13:
1435                         if (!memcmp(opts, "no_disconnect", 13))
1436                                 data->no_disconnect = !!value;
1437                         else
1438                                 goto invalid;
1439                         break;
1440                 case 5:
1441                         if (!memcmp(opts, "rmode", 5))
1442                                 data->root_mode  = (value & 0555) | S_IFDIR;
1443                         else if (!memcmp(opts, "fmode", 5))
1444                                 data->perms.mode = (value & 0666) | S_IFREG;
1445                         else
1446                                 goto invalid;
1447                         break;
1448
1449                 case 4:
1450                         if (!memcmp(opts, "mode", 4)) {
1451                                 data->root_mode  = (value & 0555) | S_IFDIR;
1452                                 data->perms.mode = (value & 0666) | S_IFREG;
1453                         } else {
1454                                 goto invalid;
1455                         }
1456                         break;
1457
1458                 case 3:
1459                         if (!memcmp(opts, "uid", 3)) {
1460                                 data->perms.uid = make_kuid(current_user_ns(), value);
1461                                 if (!uid_valid(data->perms.uid)) {
1462                                         pr_err("%s: unmapped value: %lu\n", opts, value);
1463                                         return -EINVAL;
1464                                 }
1465                         } else if (!memcmp(opts, "gid", 3)) {
1466                                 data->perms.gid = make_kgid(current_user_ns(), value);
1467                                 if (!gid_valid(data->perms.gid)) {
1468                                         pr_err("%s: unmapped value: %lu\n", opts, value);
1469                                         return -EINVAL;
1470                                 }
1471                         } else {
1472                                 goto invalid;
1473                         }
1474                         break;
1475
1476                 default:
1477 invalid:
1478                         pr_err("%s: invalid option\n", opts);
1479                         return -EINVAL;
1480                 }
1481
1482                 /* Next iteration */
1483                 if (!comma)
1484                         break;
1485                 opts = comma + 1;
1486         }
1487
1488         return 0;
1489 }
1490
1491 /* "mount -t functionfs dev_name /dev/function" ends up here */
1492
1493 static struct dentry *
1494 ffs_fs_mount(struct file_system_type *t, int flags,
1495               const char *dev_name, void *opts)
1496 {
1497         struct ffs_sb_fill_data data = {
1498                 .perms = {
1499                         .mode = S_IFREG | 0600,
1500                         .uid = GLOBAL_ROOT_UID,
1501                         .gid = GLOBAL_ROOT_GID,
1502                 },
1503                 .root_mode = S_IFDIR | 0500,
1504                 .no_disconnect = false,
1505         };
1506         struct dentry *rv;
1507         int ret;
1508         struct ffs_data *ffs;
1509
1510         ENTER();
1511
1512         ret = ffs_fs_parse_opts(&data, opts);
1513         if (unlikely(ret < 0))
1514                 return ERR_PTR(ret);
1515
1516         ffs = ffs_data_new(dev_name);
1517         if (unlikely(!ffs))
1518                 return ERR_PTR(-ENOMEM);
1519         ffs->file_perms = data.perms;
1520         ffs->no_disconnect = data.no_disconnect;
1521
1522         ffs->dev_name = kstrdup(dev_name, GFP_KERNEL);
1523         if (unlikely(!ffs->dev_name)) {
1524                 ffs_data_put(ffs);
1525                 return ERR_PTR(-ENOMEM);
1526         }
1527
1528         ret = ffs_acquire_dev(dev_name, ffs);
1529         if (ret) {
1530                 ffs_data_put(ffs);
1531                 return ERR_PTR(ret);
1532         }
1533         data.ffs_data = ffs;
1534
1535         rv = mount_nodev(t, flags, &data, ffs_sb_fill);
1536         if (IS_ERR(rv) && data.ffs_data)
1537                 ffs_data_put(data.ffs_data);
1538         return rv;
1539 }
1540
1541 static void
1542 ffs_fs_kill_sb(struct super_block *sb)
1543 {
1544         ENTER();
1545
1546         kill_litter_super(sb);
1547         if (sb->s_fs_info)
1548                 ffs_data_closed(sb->s_fs_info);
1549 }
1550
1551 static struct file_system_type ffs_fs_type = {
1552         .owner          = THIS_MODULE,
1553         .name           = "functionfs",
1554         .mount          = ffs_fs_mount,
1555         .kill_sb        = ffs_fs_kill_sb,
1556 };
1557 MODULE_ALIAS_FS("functionfs");
1558
1559
1560 /* Driver's main init/cleanup functions *************************************/
1561
1562 static int functionfs_init(void)
1563 {
1564         int ret;
1565
1566         ENTER();
1567
1568         ret = register_filesystem(&ffs_fs_type);
1569         if (likely(!ret))
1570                 pr_info("file system registered\n");
1571         else
1572                 pr_err("failed registering file system (%d)\n", ret);
1573
1574         return ret;
1575 }
1576
1577 static void functionfs_cleanup(void)
1578 {
1579         ENTER();
1580
1581         pr_info("unloading\n");
1582         unregister_filesystem(&ffs_fs_type);
1583 }
1584
1585
1586 /* ffs_data and ffs_function construction and destruction code **************/
1587
1588 static void ffs_data_clear(struct ffs_data *ffs);
1589 static void ffs_data_reset(struct ffs_data *ffs);
1590
1591 static void ffs_data_get(struct ffs_data *ffs)
1592 {
1593         ENTER();
1594
1595         refcount_inc(&ffs->ref);
1596 }
1597
1598 static void ffs_data_opened(struct ffs_data *ffs)
1599 {
1600         ENTER();
1601
1602         refcount_inc(&ffs->ref);
1603         if (atomic_add_return(1, &ffs->opened) == 1 &&
1604                         ffs->state == FFS_DEACTIVATED) {
1605                 ffs->state = FFS_CLOSING;
1606                 ffs_data_reset(ffs);
1607         }
1608 }
1609
1610 static void ffs_data_put(struct ffs_data *ffs)
1611 {
1612         ENTER();
1613
1614         if (unlikely(refcount_dec_and_test(&ffs->ref))) {
1615                 pr_info("%s(): freeing\n", __func__);
1616                 ffs_data_clear(ffs);
1617                 ffs_release_dev(ffs->private_data);
1618                 BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1619                        waitqueue_active(&ffs->ep0req_completion.wait) ||
1620                        waitqueue_active(&ffs->wait));
1621                 destroy_workqueue(ffs->io_completion_wq);
1622                 kfree(ffs->dev_name);
1623                 kfree(ffs);
1624         }
1625 }
1626
1627 static void ffs_data_closed(struct ffs_data *ffs)
1628 {
1629         ENTER();
1630
1631         if (atomic_dec_and_test(&ffs->opened)) {
1632                 if (ffs->no_disconnect) {
1633                         ffs->state = FFS_DEACTIVATED;
1634                         if (ffs->epfiles) {
1635                                 ffs_epfiles_destroy(ffs->epfiles,
1636                                                    ffs->eps_count);
1637                                 ffs->epfiles = NULL;
1638                         }
1639                         if (ffs->setup_state == FFS_SETUP_PENDING)
1640                                 __ffs_ep0_stall(ffs);
1641                 } else {
1642                         ffs->state = FFS_CLOSING;
1643                         ffs_data_reset(ffs);
1644                 }
1645         }
1646         if (atomic_read(&ffs->opened) < 0) {
1647                 ffs->state = FFS_CLOSING;
1648                 ffs_data_reset(ffs);
1649         }
1650
1651         ffs_data_put(ffs);
1652 }
1653
1654 static struct ffs_data *ffs_data_new(const char *dev_name)
1655 {
1656         struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
1657         if (unlikely(!ffs))
1658                 return NULL;
1659
1660         ENTER();
1661
1662         ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name);
1663         if (!ffs->io_completion_wq) {
1664                 kfree(ffs);
1665                 return NULL;
1666         }
1667
1668         refcount_set(&ffs->ref, 1);
1669         atomic_set(&ffs->opened, 0);
1670         ffs->state = FFS_READ_DESCRIPTORS;
1671         mutex_init(&ffs->mutex);
1672         spin_lock_init(&ffs->eps_lock);
1673         init_waitqueue_head(&ffs->ev.waitq);
1674         init_waitqueue_head(&ffs->wait);
1675         init_completion(&ffs->ep0req_completion);
1676
1677         /* XXX REVISIT need to update it in some places, or do we? */
1678         ffs->ev.can_stall = 1;
1679
1680         return ffs;
1681 }
1682
1683 static void ffs_data_clear(struct ffs_data *ffs)
1684 {
1685         ENTER();
1686
1687         ffs_closed(ffs);
1688
1689         BUG_ON(ffs->gadget);
1690
1691         if (ffs->epfiles)
1692                 ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count);
1693
1694         if (ffs->ffs_eventfd)
1695                 eventfd_ctx_put(ffs->ffs_eventfd);
1696
1697         kfree(ffs->raw_descs_data);
1698         kfree(ffs->raw_strings);
1699         kfree(ffs->stringtabs);
1700 }
1701
1702 static void ffs_data_reset(struct ffs_data *ffs)
1703 {
1704         ENTER();
1705
1706         ffs_data_clear(ffs);
1707
1708         ffs->epfiles = NULL;
1709         ffs->raw_descs_data = NULL;
1710         ffs->raw_descs = NULL;
1711         ffs->raw_strings = NULL;
1712         ffs->stringtabs = NULL;
1713
1714         ffs->raw_descs_length = 0;
1715         ffs->fs_descs_count = 0;
1716         ffs->hs_descs_count = 0;
1717         ffs->ss_descs_count = 0;
1718
1719         ffs->strings_count = 0;
1720         ffs->interfaces_count = 0;
1721         ffs->eps_count = 0;
1722
1723         ffs->ev.count = 0;
1724
1725         ffs->state = FFS_READ_DESCRIPTORS;
1726         ffs->setup_state = FFS_NO_SETUP;
1727         ffs->flags = 0;
1728
1729         ffs->ms_os_descs_ext_prop_count = 0;
1730         ffs->ms_os_descs_ext_prop_name_len = 0;
1731         ffs->ms_os_descs_ext_prop_data_len = 0;
1732 }
1733
1734
1735 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
1736 {
1737         struct usb_gadget_strings **lang;
1738         int first_id;
1739
1740         ENTER();
1741
1742         if (WARN_ON(ffs->state != FFS_ACTIVE
1743                  || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
1744                 return -EBADFD;
1745
1746         first_id = usb_string_ids_n(cdev, ffs->strings_count);
1747         if (unlikely(first_id < 0))
1748                 return first_id;
1749
1750         ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
1751         if (unlikely(!ffs->ep0req))
1752                 return -ENOMEM;
1753         ffs->ep0req->complete = ffs_ep0_complete;
1754         ffs->ep0req->context = ffs;
1755
1756         lang = ffs->stringtabs;
1757         if (lang) {
1758                 for (; *lang; ++lang) {
1759                         struct usb_string *str = (*lang)->strings;
1760                         int id = first_id;
1761                         for (; str->s; ++id, ++str)
1762                                 str->id = id;
1763                 }
1764         }
1765
1766         ffs->gadget = cdev->gadget;
1767         ffs_data_get(ffs);
1768         return 0;
1769 }
1770
1771 static void functionfs_unbind(struct ffs_data *ffs)
1772 {
1773         ENTER();
1774
1775         if (!WARN_ON(!ffs->gadget)) {
1776                 usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
1777                 ffs->ep0req = NULL;
1778                 ffs->gadget = NULL;
1779                 clear_bit(FFS_FL_BOUND, &ffs->flags);
1780                 ffs_data_put(ffs);
1781         }
1782 }
1783
1784 static int ffs_epfiles_create(struct ffs_data *ffs)
1785 {
1786         struct ffs_epfile *epfile, *epfiles;
1787         unsigned i, count;
1788
1789         ENTER();
1790
1791         count = ffs->eps_count;
1792         epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1793         if (!epfiles)
1794                 return -ENOMEM;
1795
1796         epfile = epfiles;
1797         for (i = 1; i <= count; ++i, ++epfile) {
1798                 epfile->ffs = ffs;
1799                 mutex_init(&epfile->mutex);
1800                 if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1801                         sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
1802                 else
1803                         sprintf(epfile->name, "ep%u", i);
1804                 epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
1805                                                  epfile,
1806                                                  &ffs_epfile_operations);
1807                 if (unlikely(!epfile->dentry)) {
1808                         ffs_epfiles_destroy(epfiles, i - 1);
1809                         return -ENOMEM;
1810                 }
1811         }
1812
1813         ffs->epfiles = epfiles;
1814         return 0;
1815 }
1816
1817 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
1818 {
1819         struct ffs_epfile *epfile = epfiles;
1820
1821         ENTER();
1822
1823         for (; count; --count, ++epfile) {
1824                 BUG_ON(mutex_is_locked(&epfile->mutex));
1825                 if (epfile->dentry) {
1826                         d_delete(epfile->dentry);
1827                         dput(epfile->dentry);
1828                         epfile->dentry = NULL;
1829                 }
1830         }
1831
1832         kfree(epfiles);
1833 }
1834
1835 static void ffs_func_eps_disable(struct ffs_function *func)
1836 {
1837         struct ffs_ep *ep         = func->eps;
1838         struct ffs_epfile *epfile = func->ffs->epfiles;
1839         unsigned count            = func->ffs->eps_count;
1840         unsigned long flags;
1841
1842         spin_lock_irqsave(&func->ffs->eps_lock, flags);
1843         while (count--) {
1844                 /* pending requests get nuked */
1845                 if (likely(ep->ep))
1846                         usb_ep_disable(ep->ep);
1847                 ++ep;
1848
1849                 if (epfile) {
1850                         epfile->ep = NULL;
1851                         __ffs_epfile_read_buffer_free(epfile);
1852                         ++epfile;
1853                 }
1854         }
1855         spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1856 }
1857
1858 static int ffs_func_eps_enable(struct ffs_function *func)
1859 {
1860         struct ffs_data *ffs      = func->ffs;
1861         struct ffs_ep *ep         = func->eps;
1862         struct ffs_epfile *epfile = ffs->epfiles;
1863         unsigned count            = ffs->eps_count;
1864         unsigned long flags;
1865         int ret = 0;
1866
1867         spin_lock_irqsave(&func->ffs->eps_lock, flags);
1868         while(count--) {
1869                 ep->ep->driver_data = ep;
1870
1871                 ret = config_ep_by_speed(func->gadget, &func->function, ep->ep);
1872                 if (ret) {
1873                         pr_err("%s: config_ep_by_speed(%s) returned %d\n",
1874                                         __func__, ep->ep->name, ret);
1875                         break;
1876                 }
1877
1878                 ret = usb_ep_enable(ep->ep);
1879                 if (likely(!ret)) {
1880                         epfile->ep = ep;
1881                         epfile->in = usb_endpoint_dir_in(ep->ep->desc);
1882                         epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc);
1883                 } else {
1884                         break;
1885                 }
1886
1887                 ++ep;
1888                 ++epfile;
1889         }
1890
1891         wake_up_interruptible(&ffs->wait);
1892         spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1893
1894         return ret;
1895 }
1896
1897
1898 /* Parsing and building descriptors and strings *****************************/
1899
1900 /*
1901  * This validates if data pointed by data is a valid USB descriptor as
1902  * well as record how many interfaces, endpoints and strings are
1903  * required by given configuration.  Returns address after the
1904  * descriptor or NULL if data is invalid.
1905  */
1906
1907 enum ffs_entity_type {
1908         FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
1909 };
1910
1911 enum ffs_os_desc_type {
1912         FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
1913 };
1914
1915 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
1916                                    u8 *valuep,
1917                                    struct usb_descriptor_header *desc,
1918                                    void *priv);
1919
1920 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
1921                                     struct usb_os_desc_header *h, void *data,
1922                                     unsigned len, void *priv);
1923
1924 static int __must_check ffs_do_single_desc(char *data, unsigned len,
1925                                            ffs_entity_callback entity,
1926                                            void *priv)
1927 {
1928         struct usb_descriptor_header *_ds = (void *)data;
1929         u8 length;
1930         int ret;
1931
1932         ENTER();
1933
1934         /* At least two bytes are required: length and type */
1935         if (len < 2) {
1936                 pr_vdebug("descriptor too short\n");
1937                 return -EINVAL;
1938         }
1939
1940         /* If we have at least as many bytes as the descriptor takes? */
1941         length = _ds->bLength;
1942         if (len < length) {
1943                 pr_vdebug("descriptor longer then available data\n");
1944                 return -EINVAL;
1945         }
1946
1947 #define __entity_check_INTERFACE(val)  1
1948 #define __entity_check_STRING(val)     (val)
1949 #define __entity_check_ENDPOINT(val)   ((val) & USB_ENDPOINT_NUMBER_MASK)
1950 #define __entity(type, val) do {                                        \
1951                 pr_vdebug("entity " #type "(%02x)\n", (val));           \
1952                 if (unlikely(!__entity_check_ ##type(val))) {           \
1953                         pr_vdebug("invalid entity's value\n");          \
1954                         return -EINVAL;                                 \
1955                 }                                                       \
1956                 ret = entity(FFS_ ##type, &val, _ds, priv);             \
1957                 if (unlikely(ret < 0)) {                                \
1958                         pr_debug("entity " #type "(%02x); ret = %d\n",  \
1959                                  (val), ret);                           \
1960                         return ret;                                     \
1961                 }                                                       \
1962         } while (0)
1963
1964         /* Parse descriptor depending on type. */
1965         switch (_ds->bDescriptorType) {
1966         case USB_DT_DEVICE:
1967         case USB_DT_CONFIG:
1968         case USB_DT_STRING:
1969         case USB_DT_DEVICE_QUALIFIER:
1970                 /* function can't have any of those */
1971                 pr_vdebug("descriptor reserved for gadget: %d\n",
1972                       _ds->bDescriptorType);
1973                 return -EINVAL;
1974
1975         case USB_DT_INTERFACE: {
1976                 struct usb_interface_descriptor *ds = (void *)_ds;
1977                 pr_vdebug("interface descriptor\n");
1978                 if (length != sizeof *ds)
1979                         goto inv_length;
1980
1981                 __entity(INTERFACE, ds->bInterfaceNumber);
1982                 if (ds->iInterface)
1983                         __entity(STRING, ds->iInterface);
1984         }
1985                 break;
1986
1987         case USB_DT_ENDPOINT: {
1988                 struct usb_endpoint_descriptor *ds = (void *)_ds;
1989                 pr_vdebug("endpoint descriptor\n");
1990                 if (length != USB_DT_ENDPOINT_SIZE &&
1991                     length != USB_DT_ENDPOINT_AUDIO_SIZE)
1992                         goto inv_length;
1993                 __entity(ENDPOINT, ds->bEndpointAddress);
1994         }
1995                 break;
1996
1997         case HID_DT_HID:
1998                 pr_vdebug("hid descriptor\n");
1999                 if (length != sizeof(struct hid_descriptor))
2000                         goto inv_length;
2001                 break;
2002
2003         case USB_DT_OTG:
2004                 if (length != sizeof(struct usb_otg_descriptor))
2005                         goto inv_length;
2006                 break;
2007
2008         case USB_DT_INTERFACE_ASSOCIATION: {
2009                 struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2010                 pr_vdebug("interface association descriptor\n");
2011                 if (length != sizeof *ds)
2012                         goto inv_length;
2013                 if (ds->iFunction)
2014                         __entity(STRING, ds->iFunction);
2015         }
2016                 break;
2017
2018         case USB_DT_SS_ENDPOINT_COMP:
2019                 pr_vdebug("EP SS companion descriptor\n");
2020                 if (length != sizeof(struct usb_ss_ep_comp_descriptor))
2021                         goto inv_length;
2022                 break;
2023
2024         case USB_DT_OTHER_SPEED_CONFIG:
2025         case USB_DT_INTERFACE_POWER:
2026         case USB_DT_DEBUG:
2027         case USB_DT_SECURITY:
2028         case USB_DT_CS_RADIO_CONTROL:
2029                 /* TODO */
2030                 pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2031                 return -EINVAL;
2032
2033         default:
2034                 /* We should never be here */
2035                 pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2036                 return -EINVAL;
2037
2038 inv_length:
2039                 pr_vdebug("invalid length: %d (descriptor %d)\n",
2040                           _ds->bLength, _ds->bDescriptorType);
2041                 return -EINVAL;
2042         }
2043
2044 #undef __entity
2045 #undef __entity_check_DESCRIPTOR
2046 #undef __entity_check_INTERFACE
2047 #undef __entity_check_STRING
2048 #undef __entity_check_ENDPOINT
2049
2050         return length;
2051 }
2052
2053 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
2054                                      ffs_entity_callback entity, void *priv)
2055 {
2056         const unsigned _len = len;
2057         unsigned long num = 0;
2058
2059         ENTER();
2060
2061         for (;;) {
2062                 int ret;
2063
2064                 if (num == count)
2065                         data = NULL;
2066
2067                 /* Record "descriptor" entity */
2068                 ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
2069                 if (unlikely(ret < 0)) {
2070                         pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2071                                  num, ret);
2072                         return ret;
2073                 }
2074
2075                 if (!data)
2076                         return _len - len;
2077
2078                 ret = ffs_do_single_desc(data, len, entity, priv);
2079                 if (unlikely(ret < 0)) {
2080                         pr_debug("%s returns %d\n", __func__, ret);
2081                         return ret;
2082                 }
2083
2084                 len -= ret;
2085                 data += ret;
2086                 ++num;
2087         }
2088 }
2089
2090 static int __ffs_data_do_entity(enum ffs_entity_type type,
2091                                 u8 *valuep, struct usb_descriptor_header *desc,
2092                                 void *priv)
2093 {
2094         struct ffs_desc_helper *helper = priv;
2095         struct usb_endpoint_descriptor *d;
2096
2097         ENTER();
2098
2099         switch (type) {
2100         case FFS_DESCRIPTOR:
2101                 break;
2102
2103         case FFS_INTERFACE:
2104                 /*
2105                  * Interfaces are indexed from zero so if we
2106                  * encountered interface "n" then there are at least
2107                  * "n+1" interfaces.
2108                  */
2109                 if (*valuep >= helper->interfaces_count)
2110                         helper->interfaces_count = *valuep + 1;
2111                 break;
2112
2113         case FFS_STRING:
2114                 /*
2115                  * Strings are indexed from 1 (0 is reserved
2116                  * for languages list)
2117                  */
2118                 if (*valuep > helper->ffs->strings_count)
2119                         helper->ffs->strings_count = *valuep;
2120                 break;
2121
2122         case FFS_ENDPOINT:
2123                 d = (void *)desc;
2124                 helper->eps_count++;
2125                 if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2126                         return -EINVAL;
2127                 /* Check if descriptors for any speed were already parsed */
2128                 if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2129                         helper->ffs->eps_addrmap[helper->eps_count] =
2130                                 d->bEndpointAddress;
2131                 else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2132                                 d->bEndpointAddress)
2133                         return -EINVAL;
2134                 break;
2135         }
2136
2137         return 0;
2138 }
2139
2140 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2141                                    struct usb_os_desc_header *desc)
2142 {
2143         u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2144         u16 w_index = le16_to_cpu(desc->wIndex);
2145
2146         if (bcd_version != 1) {
2147                 pr_vdebug("unsupported os descriptors version: %d",
2148                           bcd_version);
2149                 return -EINVAL;
2150         }
2151         switch (w_index) {
2152         case 0x4:
2153                 *next_type = FFS_OS_DESC_EXT_COMPAT;
2154                 break;
2155         case 0x5:
2156                 *next_type = FFS_OS_DESC_EXT_PROP;
2157                 break;
2158         default:
2159                 pr_vdebug("unsupported os descriptor type: %d", w_index);
2160                 return -EINVAL;
2161         }
2162
2163         return sizeof(*desc);
2164 }
2165
2166 /*
2167  * Process all extended compatibility/extended property descriptors
2168  * of a feature descriptor
2169  */
2170 static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2171                                               enum ffs_os_desc_type type,
2172                                               u16 feature_count,
2173                                               ffs_os_desc_callback entity,
2174                                               void *priv,
2175                                               struct usb_os_desc_header *h)
2176 {
2177         int ret;
2178         const unsigned _len = len;
2179
2180         ENTER();
2181
2182         /* loop over all ext compat/ext prop descriptors */
2183         while (feature_count--) {
2184                 ret = entity(type, h, data, len, priv);
2185                 if (unlikely(ret < 0)) {
2186                         pr_debug("bad OS descriptor, type: %d\n", type);
2187                         return ret;
2188                 }
2189                 data += ret;
2190                 len -= ret;
2191         }
2192         return _len - len;
2193 }
2194
2195 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
2196 static int __must_check ffs_do_os_descs(unsigned count,
2197                                         char *data, unsigned len,
2198                                         ffs_os_desc_callback entity, void *priv)
2199 {
2200         const unsigned _len = len;
2201         unsigned long num = 0;
2202
2203         ENTER();
2204
2205         for (num = 0; num < count; ++num) {
2206                 int ret;
2207                 enum ffs_os_desc_type type;
2208                 u16 feature_count;
2209                 struct usb_os_desc_header *desc = (void *)data;
2210
2211                 if (len < sizeof(*desc))
2212                         return -EINVAL;
2213
2214                 /*
2215                  * Record "descriptor" entity.
2216                  * Process dwLength, bcdVersion, wIndex, get b/wCount.
2217                  * Move the data pointer to the beginning of extended
2218                  * compatibilities proper or extended properties proper
2219                  * portions of the data
2220                  */
2221                 if (le32_to_cpu(desc->dwLength) > len)
2222                         return -EINVAL;
2223
2224                 ret = __ffs_do_os_desc_header(&type, desc);
2225                 if (unlikely(ret < 0)) {
2226                         pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2227                                  num, ret);
2228                         return ret;
2229                 }
2230                 /*
2231                  * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2232                  */
2233                 feature_count = le16_to_cpu(desc->wCount);
2234                 if (type == FFS_OS_DESC_EXT_COMPAT &&
2235                     (feature_count > 255 || desc->Reserved))
2236                                 return -EINVAL;
2237                 len -= ret;
2238                 data += ret;
2239
2240                 /*
2241                  * Process all function/property descriptors
2242                  * of this Feature Descriptor
2243                  */
2244                 ret = ffs_do_single_os_desc(data, len, type,
2245                                             feature_count, entity, priv, desc);
2246                 if (unlikely(ret < 0)) {
2247                         pr_debug("%s returns %d\n", __func__, ret);
2248                         return ret;
2249                 }
2250
2251                 len -= ret;
2252                 data += ret;
2253         }
2254         return _len - len;
2255 }
2256
2257 /**
2258  * Validate contents of the buffer from userspace related to OS descriptors.
2259  */
2260 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2261                                  struct usb_os_desc_header *h, void *data,
2262                                  unsigned len, void *priv)
2263 {
2264         struct ffs_data *ffs = priv;
2265         u8 length;
2266
2267         ENTER();
2268
2269         switch (type) {
2270         case FFS_OS_DESC_EXT_COMPAT: {
2271                 struct usb_ext_compat_desc *d = data;
2272                 int i;
2273
2274                 if (len < sizeof(*d) ||
2275                     d->bFirstInterfaceNumber >= ffs->interfaces_count)
2276                         return -EINVAL;
2277                 if (d->Reserved1 != 1) {
2278                         /*
2279                          * According to the spec, Reserved1 must be set to 1
2280                          * but older kernels incorrectly rejected non-zero
2281                          * values.  We fix it here to avoid returning EINVAL
2282                          * in response to values we used to accept.
2283                          */
2284                         pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n");
2285                         d->Reserved1 = 1;
2286                 }
2287                 for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2288                         if (d->Reserved2[i])
2289                                 return -EINVAL;
2290
2291                 length = sizeof(struct usb_ext_compat_desc);
2292         }
2293                 break;
2294         case FFS_OS_DESC_EXT_PROP: {
2295                 struct usb_ext_prop_desc *d = data;
2296                 u32 type, pdl;
2297                 u16 pnl;
2298
2299                 if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2300                         return -EINVAL;
2301                 length = le32_to_cpu(d->dwSize);
2302                 if (len < length)
2303                         return -EINVAL;
2304                 type = le32_to_cpu(d->dwPropertyDataType);
2305                 if (type < USB_EXT_PROP_UNICODE ||
2306                     type > USB_EXT_PROP_UNICODE_MULTI) {
2307                         pr_vdebug("unsupported os descriptor property type: %d",
2308                                   type);
2309                         return -EINVAL;
2310                 }
2311                 pnl = le16_to_cpu(d->wPropertyNameLength);
2312                 if (length < 14 + pnl) {
2313                         pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
2314                                   length, pnl, type);
2315                         return -EINVAL;
2316                 }
2317                 pdl = le32_to_cpu(*(u32 *)((u8 *)data + 10 + pnl));
2318                 if (length != 14 + pnl + pdl) {
2319                         pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2320                                   length, pnl, pdl, type);
2321                         return -EINVAL;
2322                 }
2323                 ++ffs->ms_os_descs_ext_prop_count;
2324                 /* property name reported to the host as "WCHAR"s */
2325                 ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2326                 ffs->ms_os_descs_ext_prop_data_len += pdl;
2327         }
2328                 break;
2329         default:
2330                 pr_vdebug("unknown descriptor: %d\n", type);
2331                 return -EINVAL;
2332         }
2333         return length;
2334 }
2335
2336 static int __ffs_data_got_descs(struct ffs_data *ffs,
2337                                 char *const _data, size_t len)
2338 {
2339         char *data = _data, *raw_descs;
2340         unsigned os_descs_count = 0, counts[3], flags;
2341         int ret = -EINVAL, i;
2342         struct ffs_desc_helper helper;
2343
2344         ENTER();
2345
2346         if (get_unaligned_le32(data + 4) != len)
2347                 goto error;
2348
2349         switch (get_unaligned_le32(data)) {
2350         case FUNCTIONFS_DESCRIPTORS_MAGIC:
2351                 flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2352                 data += 8;
2353                 len  -= 8;
2354                 break;
2355         case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2356                 flags = get_unaligned_le32(data + 8);
2357                 ffs->user_flags = flags;
2358                 if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2359                               FUNCTIONFS_HAS_HS_DESC |
2360                               FUNCTIONFS_HAS_SS_DESC |
2361                               FUNCTIONFS_HAS_MS_OS_DESC |
2362                               FUNCTIONFS_VIRTUAL_ADDR |
2363                               FUNCTIONFS_EVENTFD |
2364                               FUNCTIONFS_ALL_CTRL_RECIP |
2365                               FUNCTIONFS_CONFIG0_SETUP)) {
2366                         ret = -ENOSYS;
2367                         goto error;
2368                 }
2369                 data += 12;
2370                 len  -= 12;
2371                 break;
2372         default:
2373                 goto error;
2374         }
2375
2376         if (flags & FUNCTIONFS_EVENTFD) {
2377                 if (len < 4)
2378                         goto error;
2379                 ffs->ffs_eventfd =
2380                         eventfd_ctx_fdget((int)get_unaligned_le32(data));
2381                 if (IS_ERR(ffs->ffs_eventfd)) {
2382                         ret = PTR_ERR(ffs->ffs_eventfd);
2383                         ffs->ffs_eventfd = NULL;
2384                         goto error;
2385                 }
2386                 data += 4;
2387                 len  -= 4;
2388         }
2389
2390         /* Read fs_count, hs_count and ss_count (if present) */
2391         for (i = 0; i < 3; ++i) {
2392                 if (!(flags & (1 << i))) {
2393                         counts[i] = 0;
2394                 } else if (len < 4) {
2395                         goto error;
2396                 } else {
2397                         counts[i] = get_unaligned_le32(data);
2398                         data += 4;
2399                         len  -= 4;
2400                 }
2401         }
2402         if (flags & (1 << i)) {
2403                 if (len < 4) {
2404                         goto error;
2405                 }
2406                 os_descs_count = get_unaligned_le32(data);
2407                 data += 4;
2408                 len -= 4;
2409         };
2410
2411         /* Read descriptors */
2412         raw_descs = data;
2413         helper.ffs = ffs;
2414         for (i = 0; i < 3; ++i) {
2415                 if (!counts[i])
2416                         continue;
2417                 helper.interfaces_count = 0;
2418                 helper.eps_count = 0;
2419                 ret = ffs_do_descs(counts[i], data, len,
2420                                    __ffs_data_do_entity, &helper);
2421                 if (ret < 0)
2422                         goto error;
2423                 if (!ffs->eps_count && !ffs->interfaces_count) {
2424                         ffs->eps_count = helper.eps_count;
2425                         ffs->interfaces_count = helper.interfaces_count;
2426                 } else {
2427                         if (ffs->eps_count != helper.eps_count) {
2428                                 ret = -EINVAL;
2429                                 goto error;
2430                         }
2431                         if (ffs->interfaces_count != helper.interfaces_count) {
2432                                 ret = -EINVAL;
2433                                 goto error;
2434                         }
2435                 }
2436                 data += ret;
2437                 len  -= ret;
2438         }
2439         if (os_descs_count) {
2440                 ret = ffs_do_os_descs(os_descs_count, data, len,
2441                                       __ffs_data_do_os_desc, ffs);
2442                 if (ret < 0)
2443                         goto error;
2444                 data += ret;
2445                 len -= ret;
2446         }
2447
2448         if (raw_descs == data || len) {
2449                 ret = -EINVAL;
2450                 goto error;
2451         }
2452
2453         ffs->raw_descs_data     = _data;
2454         ffs->raw_descs          = raw_descs;
2455         ffs->raw_descs_length   = data - raw_descs;
2456         ffs->fs_descs_count     = counts[0];
2457         ffs->hs_descs_count     = counts[1];
2458         ffs->ss_descs_count     = counts[2];
2459         ffs->ms_os_descs_count  = os_descs_count;
2460
2461         return 0;
2462
2463 error:
2464         kfree(_data);
2465         return ret;
2466 }
2467
2468 static int __ffs_data_got_strings(struct ffs_data *ffs,
2469                                   char *const _data, size_t len)
2470 {
2471         u32 str_count, needed_count, lang_count;
2472         struct usb_gadget_strings **stringtabs, *t;
2473         const char *data = _data;
2474         struct usb_string *s;
2475
2476         ENTER();
2477
2478         if (unlikely(len < 16 ||
2479                      get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2480                      get_unaligned_le32(data + 4) != len))
2481                 goto error;
2482         str_count  = get_unaligned_le32(data + 8);
2483         lang_count = get_unaligned_le32(data + 12);
2484
2485         /* if one is zero the other must be zero */
2486         if (unlikely(!str_count != !lang_count))
2487                 goto error;
2488
2489         /* Do we have at least as many strings as descriptors need? */
2490         needed_count = ffs->strings_count;
2491         if (unlikely(str_count < needed_count))
2492                 goto error;
2493
2494         /*
2495          * If we don't need any strings just return and free all
2496          * memory.
2497          */
2498         if (!needed_count) {
2499                 kfree(_data);
2500                 return 0;
2501         }
2502
2503         /* Allocate everything in one chunk so there's less maintenance. */
2504         {
2505                 unsigned i = 0;
2506                 vla_group(d);
2507                 vla_item(d, struct usb_gadget_strings *, stringtabs,
2508                         lang_count + 1);
2509                 vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
2510                 vla_item(d, struct usb_string, strings,
2511                         lang_count*(needed_count+1));
2512
2513                 char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
2514
2515                 if (unlikely(!vlabuf)) {
2516                         kfree(_data);
2517                         return -ENOMEM;
2518                 }
2519
2520                 /* Initialize the VLA pointers */
2521                 stringtabs = vla_ptr(vlabuf, d, stringtabs);
2522                 t = vla_ptr(vlabuf, d, stringtab);
2523                 i = lang_count;
2524                 do {
2525                         *stringtabs++ = t++;
2526                 } while (--i);
2527                 *stringtabs = NULL;
2528
2529                 /* stringtabs = vlabuf = d_stringtabs for later kfree */
2530                 stringtabs = vla_ptr(vlabuf, d, stringtabs);
2531                 t = vla_ptr(vlabuf, d, stringtab);
2532                 s = vla_ptr(vlabuf, d, strings);
2533         }
2534
2535         /* For each language */
2536         data += 16;
2537         len -= 16;
2538
2539         do { /* lang_count > 0 so we can use do-while */
2540                 unsigned needed = needed_count;
2541                 u32 str_per_lang = str_count;
2542
2543                 if (unlikely(len < 3))
2544                         goto error_free;
2545                 t->language = get_unaligned_le16(data);
2546                 t->strings  = s;
2547                 ++t;
2548
2549                 data += 2;
2550                 len -= 2;
2551
2552                 /* For each string */
2553                 do { /* str_count > 0 so we can use do-while */
2554                         size_t length = strnlen(data, len);
2555
2556                         if (unlikely(length == len))
2557                                 goto error_free;
2558
2559                         /*
2560                          * User may provide more strings then we need,
2561                          * if that's the case we simply ignore the
2562                          * rest
2563                          */
2564                         if (likely(needed)) {
2565                                 /*
2566                                  * s->id will be set while adding
2567                                  * function to configuration so for
2568                                  * now just leave garbage here.
2569                                  */
2570                                 s->s = data;
2571                                 --needed;
2572                                 ++s;
2573                         }
2574
2575                         data += length + 1;
2576                         len -= length + 1;
2577                 } while (--str_per_lang);
2578
2579                 s->id = 0;   /* terminator */
2580                 s->s = NULL;
2581                 ++s;
2582
2583         } while (--lang_count);
2584
2585         /* Some garbage left? */
2586         if (unlikely(len))
2587                 goto error_free;
2588
2589         /* Done! */
2590         ffs->stringtabs = stringtabs;
2591         ffs->raw_strings = _data;
2592
2593         return 0;
2594
2595 error_free:
2596         kfree(stringtabs);
2597 error:
2598         kfree(_data);
2599         return -EINVAL;
2600 }
2601
2602
2603 /* Events handling and management *******************************************/
2604
2605 static void __ffs_event_add(struct ffs_data *ffs,
2606                             enum usb_functionfs_event_type type)
2607 {
2608         enum usb_functionfs_event_type rem_type1, rem_type2 = type;
2609         int neg = 0;
2610
2611         /*
2612          * Abort any unhandled setup
2613          *
2614          * We do not need to worry about some cmpxchg() changing value
2615          * of ffs->setup_state without holding the lock because when
2616          * state is FFS_SETUP_PENDING cmpxchg() in several places in
2617          * the source does nothing.
2618          */
2619         if (ffs->setup_state == FFS_SETUP_PENDING)
2620                 ffs->setup_state = FFS_SETUP_CANCELLED;
2621
2622         /*
2623          * Logic of this function guarantees that there are at most four pending
2624          * evens on ffs->ev.types queue.  This is important because the queue
2625          * has space for four elements only and __ffs_ep0_read_events function
2626          * depends on that limit as well.  If more event types are added, those
2627          * limits have to be revisited or guaranteed to still hold.
2628          */
2629         switch (type) {
2630         case FUNCTIONFS_RESUME:
2631                 rem_type2 = FUNCTIONFS_SUSPEND;
2632                 /* FALL THROUGH */
2633         case FUNCTIONFS_SUSPEND:
2634         case FUNCTIONFS_SETUP:
2635                 rem_type1 = type;
2636                 /* Discard all similar events */
2637                 break;
2638
2639         case FUNCTIONFS_BIND:
2640         case FUNCTIONFS_UNBIND:
2641         case FUNCTIONFS_DISABLE:
2642         case FUNCTIONFS_ENABLE:
2643                 /* Discard everything other then power management. */
2644                 rem_type1 = FUNCTIONFS_SUSPEND;
2645                 rem_type2 = FUNCTIONFS_RESUME;
2646                 neg = 1;
2647                 break;
2648
2649         default:
2650                 WARN(1, "%d: unknown event, this should not happen\n", type);
2651                 return;
2652         }
2653
2654         {
2655                 u8 *ev  = ffs->ev.types, *out = ev;
2656                 unsigned n = ffs->ev.count;
2657                 for (; n; --n, ++ev)
2658                         if ((*ev == rem_type1 || *ev == rem_type2) == neg)
2659                                 *out++ = *ev;
2660                         else
2661                                 pr_vdebug("purging event %d\n", *ev);
2662                 ffs->ev.count = out - ffs->ev.types;
2663         }
2664
2665         pr_vdebug("adding event %d\n", type);
2666         ffs->ev.types[ffs->ev.count++] = type;
2667         wake_up_locked(&ffs->ev.waitq);
2668         if (ffs->ffs_eventfd)
2669                 eventfd_signal(ffs->ffs_eventfd, 1);
2670 }
2671
2672 static void ffs_event_add(struct ffs_data *ffs,
2673                           enum usb_functionfs_event_type type)
2674 {
2675         unsigned long flags;
2676         spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
2677         __ffs_event_add(ffs, type);
2678         spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
2679 }
2680
2681 /* Bind/unbind USB function hooks *******************************************/
2682
2683 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
2684 {
2685         int i;
2686
2687         for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
2688                 if (ffs->eps_addrmap[i] == endpoint_address)
2689                         return i;
2690         return -ENOENT;
2691 }
2692
2693 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
2694                                     struct usb_descriptor_header *desc,
2695                                     void *priv)
2696 {
2697         struct usb_endpoint_descriptor *ds = (void *)desc;
2698         struct ffs_function *func = priv;
2699         struct ffs_ep *ffs_ep;
2700         unsigned ep_desc_id;
2701         int idx;
2702         static const char *speed_names[] = { "full", "high", "super" };
2703
2704         if (type != FFS_DESCRIPTOR)
2705                 return 0;
2706
2707         /*
2708          * If ss_descriptors is not NULL, we are reading super speed
2709          * descriptors; if hs_descriptors is not NULL, we are reading high
2710          * speed descriptors; otherwise, we are reading full speed
2711          * descriptors.
2712          */
2713         if (func->function.ss_descriptors) {
2714                 ep_desc_id = 2;
2715                 func->function.ss_descriptors[(long)valuep] = desc;
2716         } else if (func->function.hs_descriptors) {
2717                 ep_desc_id = 1;
2718                 func->function.hs_descriptors[(long)valuep] = desc;
2719         } else {
2720                 ep_desc_id = 0;
2721                 func->function.fs_descriptors[(long)valuep]    = desc;
2722         }
2723
2724         if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
2725                 return 0;
2726
2727         idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
2728         if (idx < 0)
2729                 return idx;
2730
2731         ffs_ep = func->eps + idx;
2732
2733         if (unlikely(ffs_ep->descs[ep_desc_id])) {
2734                 pr_err("two %sspeed descriptors for EP %d\n",
2735                           speed_names[ep_desc_id],
2736                           ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2737                 return -EINVAL;
2738         }
2739         ffs_ep->descs[ep_desc_id] = ds;
2740
2741         ffs_dump_mem(": Original  ep desc", ds, ds->bLength);
2742         if (ffs_ep->ep) {
2743                 ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
2744                 if (!ds->wMaxPacketSize)
2745                         ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
2746         } else {
2747                 struct usb_request *req;
2748                 struct usb_ep *ep;
2749                 u8 bEndpointAddress;
2750
2751                 /*
2752                  * We back up bEndpointAddress because autoconfig overwrites
2753                  * it with physical endpoint address.
2754                  */
2755                 bEndpointAddress = ds->bEndpointAddress;
2756                 pr_vdebug("autoconfig\n");
2757                 ep = usb_ep_autoconfig(func->gadget, ds);
2758                 if (unlikely(!ep))
2759                         return -ENOTSUPP;
2760                 ep->driver_data = func->eps + idx;
2761
2762                 req = usb_ep_alloc_request(ep, GFP_KERNEL);
2763                 if (unlikely(!req))
2764                         return -ENOMEM;
2765
2766                 ffs_ep->ep  = ep;
2767                 ffs_ep->req = req;
2768                 func->eps_revmap[ds->bEndpointAddress &
2769                                  USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2770                 /*
2771                  * If we use virtual address mapping, we restore
2772                  * original bEndpointAddress value.
2773                  */
2774                 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2775                         ds->bEndpointAddress = bEndpointAddress;
2776         }
2777         ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
2778
2779         return 0;
2780 }
2781
2782 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
2783                                    struct usb_descriptor_header *desc,
2784                                    void *priv)
2785 {
2786         struct ffs_function *func = priv;
2787         unsigned idx;
2788         u8 newValue;
2789
2790         switch (type) {
2791         default:
2792         case FFS_DESCRIPTOR:
2793                 /* Handled in previous pass by __ffs_func_bind_do_descs() */
2794                 return 0;
2795
2796         case FFS_INTERFACE:
2797                 idx = *valuep;
2798                 if (func->interfaces_nums[idx] < 0) {
2799                         int id = usb_interface_id(func->conf, &func->function);
2800                         if (unlikely(id < 0))
2801                                 return id;
2802                         func->interfaces_nums[idx] = id;
2803                 }
2804                 newValue = func->interfaces_nums[idx];
2805                 break;
2806
2807         case FFS_STRING:
2808                 /* String' IDs are allocated when fsf_data is bound to cdev */
2809                 newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
2810                 break;
2811
2812         case FFS_ENDPOINT:
2813                 /*
2814                  * USB_DT_ENDPOINT are handled in
2815                  * __ffs_func_bind_do_descs().
2816                  */
2817                 if (desc->bDescriptorType == USB_DT_ENDPOINT)
2818                         return 0;
2819
2820                 idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
2821                 if (unlikely(!func->eps[idx].ep))
2822                         return -EINVAL;
2823
2824                 {
2825                         struct usb_endpoint_descriptor **descs;
2826                         descs = func->eps[idx].descs;
2827                         newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
2828                 }
2829                 break;
2830         }
2831
2832         pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2833         *valuep = newValue;
2834         return 0;
2835 }
2836
2837 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
2838                                       struct usb_os_desc_header *h, void *data,
2839                                       unsigned len, void *priv)
2840 {
2841         struct ffs_function *func = priv;
2842         u8 length = 0;
2843
2844         switch (type) {
2845         case FFS_OS_DESC_EXT_COMPAT: {
2846                 struct usb_ext_compat_desc *desc = data;
2847                 struct usb_os_desc_table *t;
2848
2849                 t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
2850                 t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
2851                 memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
2852                        ARRAY_SIZE(desc->CompatibleID) +
2853                        ARRAY_SIZE(desc->SubCompatibleID));
2854                 length = sizeof(*desc);
2855         }
2856                 break;
2857         case FFS_OS_DESC_EXT_PROP: {
2858                 struct usb_ext_prop_desc *desc = data;
2859                 struct usb_os_desc_table *t;
2860                 struct usb_os_desc_ext_prop *ext_prop;
2861                 char *ext_prop_name;
2862                 char *ext_prop_data;
2863
2864                 t = &func->function.os_desc_table[h->interface];
2865                 t->if_id = func->interfaces_nums[h->interface];
2866
2867                 ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
2868                 func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
2869
2870                 ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
2871                 ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
2872                 ext_prop->data_len = le32_to_cpu(*(u32 *)
2873                         usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
2874                 length = ext_prop->name_len + ext_prop->data_len + 14;
2875
2876                 ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
2877                 func->ffs->ms_os_descs_ext_prop_name_avail +=
2878                         ext_prop->name_len;
2879
2880                 ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
2881                 func->ffs->ms_os_descs_ext_prop_data_avail +=
2882                         ext_prop->data_len;
2883                 memcpy(ext_prop_data,
2884                        usb_ext_prop_data_ptr(data, ext_prop->name_len),
2885                        ext_prop->data_len);
2886                 /* unicode data reported to the host as "WCHAR"s */
2887                 switch (ext_prop->type) {
2888                 case USB_EXT_PROP_UNICODE:
2889                 case USB_EXT_PROP_UNICODE_ENV:
2890                 case USB_EXT_PROP_UNICODE_LINK:
2891                 case USB_EXT_PROP_UNICODE_MULTI:
2892                         ext_prop->data_len *= 2;
2893                         break;
2894                 }
2895                 ext_prop->data = ext_prop_data;
2896
2897                 memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
2898                        ext_prop->name_len);
2899                 /* property name reported to the host as "WCHAR"s */
2900                 ext_prop->name_len *= 2;
2901                 ext_prop->name = ext_prop_name;
2902
2903                 t->os_desc->ext_prop_len +=
2904                         ext_prop->name_len + ext_prop->data_len + 14;
2905                 ++t->os_desc->ext_prop_count;
2906                 list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
2907         }
2908                 break;
2909         default:
2910                 pr_vdebug("unknown descriptor: %d\n", type);
2911         }
2912
2913         return length;
2914 }
2915
2916 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
2917                                                 struct usb_configuration *c)
2918 {
2919         struct ffs_function *func = ffs_func_from_usb(f);
2920         struct f_fs_opts *ffs_opts =
2921                 container_of(f->fi, struct f_fs_opts, func_inst);
2922         struct ffs_data *ffs_data;
2923         int ret;
2924
2925         ENTER();
2926
2927         /*
2928          * Legacy gadget triggers binding in functionfs_ready_callback,
2929          * which already uses locking; taking the same lock here would
2930          * cause a deadlock.
2931          *
2932          * Configfs-enabled gadgets however do need ffs_dev_lock.
2933          */
2934         if (!ffs_opts->no_configfs)
2935                 ffs_dev_lock();
2936         ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
2937         ffs_data = ffs_opts->dev->ffs_data;
2938         if (!ffs_opts->no_configfs)
2939                 ffs_dev_unlock();
2940         if (ret)
2941                 return ERR_PTR(ret);
2942
2943         func->ffs = ffs_data;
2944         func->conf = c;
2945         func->gadget = c->cdev->gadget;
2946
2947         /*
2948          * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
2949          * configurations are bound in sequence with list_for_each_entry,
2950          * in each configuration its functions are bound in sequence
2951          * with list_for_each_entry, so we assume no race condition
2952          * with regard to ffs_opts->bound access
2953          */
2954         if (!ffs_opts->refcnt) {
2955                 ret = functionfs_bind(func->ffs, c->cdev);
2956                 if (ret)
2957                         return ERR_PTR(ret);
2958         }
2959         ffs_opts->refcnt++;
2960         func->function.strings = func->ffs->stringtabs;
2961
2962         return ffs_opts;
2963 }
2964
2965 static int _ffs_func_bind(struct usb_configuration *c,
2966                           struct usb_function *f)
2967 {
2968         struct ffs_function *func = ffs_func_from_usb(f);
2969         struct ffs_data *ffs = func->ffs;
2970
2971         const int full = !!func->ffs->fs_descs_count;
2972         const int high = !!func->ffs->hs_descs_count;
2973         const int super = !!func->ffs->ss_descs_count;
2974
2975         int fs_len, hs_len, ss_len, ret, i;
2976         struct ffs_ep *eps_ptr;
2977
2978         /* Make it a single chunk, less management later on */
2979         vla_group(d);
2980         vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
2981         vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
2982                 full ? ffs->fs_descs_count + 1 : 0);
2983         vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
2984                 high ? ffs->hs_descs_count + 1 : 0);
2985         vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
2986                 super ? ffs->ss_descs_count + 1 : 0);
2987         vla_item_with_sz(d, short, inums, ffs->interfaces_count);
2988         vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
2989                          c->cdev->use_os_string ? ffs->interfaces_count : 0);
2990         vla_item_with_sz(d, char[16], ext_compat,
2991                          c->cdev->use_os_string ? ffs->interfaces_count : 0);
2992         vla_item_with_sz(d, struct usb_os_desc, os_desc,
2993                          c->cdev->use_os_string ? ffs->interfaces_count : 0);
2994         vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
2995                          ffs->ms_os_descs_ext_prop_count);
2996         vla_item_with_sz(d, char, ext_prop_name,
2997                          ffs->ms_os_descs_ext_prop_name_len);
2998         vla_item_with_sz(d, char, ext_prop_data,
2999                          ffs->ms_os_descs_ext_prop_data_len);
3000         vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
3001         char *vlabuf;
3002
3003         ENTER();
3004
3005         /* Has descriptors only for speeds gadget does not support */
3006         if (unlikely(!(full | high | super)))
3007                 return -ENOTSUPP;
3008
3009         /* Allocate a single chunk, less management later on */
3010         vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
3011         if (unlikely(!vlabuf))
3012                 return -ENOMEM;
3013
3014         ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
3015         ffs->ms_os_descs_ext_prop_name_avail =
3016                 vla_ptr(vlabuf, d, ext_prop_name);
3017         ffs->ms_os_descs_ext_prop_data_avail =
3018                 vla_ptr(vlabuf, d, ext_prop_data);
3019
3020         /* Copy descriptors  */
3021         memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
3022                ffs->raw_descs_length);
3023
3024         memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3025         eps_ptr = vla_ptr(vlabuf, d, eps);
3026         for (i = 0; i < ffs->eps_count; i++)
3027                 eps_ptr[i].num = -1;
3028
3029         /* Save pointers
3030          * d_eps == vlabuf, func->eps used to kfree vlabuf later
3031         */
3032         func->eps             = vla_ptr(vlabuf, d, eps);
3033         func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3034
3035         /*
3036          * Go through all the endpoint descriptors and allocate
3037          * endpoints first, so that later we can rewrite the endpoint
3038          * numbers without worrying that it may be described later on.
3039          */
3040         if (likely(full)) {
3041                 func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3042                 fs_len = ffs_do_descs(ffs->fs_descs_count,
3043                                       vla_ptr(vlabuf, d, raw_descs),
3044                                       d_raw_descs__sz,
3045                                       __ffs_func_bind_do_descs, func);
3046                 if (unlikely(fs_len < 0)) {
3047                         ret = fs_len;
3048                         goto error;
3049                 }
3050         } else {
3051                 fs_len = 0;
3052         }
3053
3054         if (likely(high)) {
3055                 func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3056                 hs_len = ffs_do_descs(ffs->hs_descs_count,
3057                                       vla_ptr(vlabuf, d, raw_descs) + fs_len,
3058                                       d_raw_descs__sz - fs_len,
3059                                       __ffs_func_bind_do_descs, func);
3060                 if (unlikely(hs_len < 0)) {
3061                         ret = hs_len;
3062                         goto error;
3063                 }
3064         } else {
3065                 hs_len = 0;
3066         }
3067
3068         if (likely(super)) {
3069                 func->function.ss_descriptors = func->function.ssp_descriptors =
3070                         vla_ptr(vlabuf, d, ss_descs);
3071                 ss_len = ffs_do_descs(ffs->ss_descs_count,
3072                                 vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
3073                                 d_raw_descs__sz - fs_len - hs_len,
3074                                 __ffs_func_bind_do_descs, func);
3075                 if (unlikely(ss_len < 0)) {
3076                         ret = ss_len;
3077                         goto error;
3078                 }
3079         } else {
3080                 ss_len = 0;
3081         }
3082
3083         /*
3084          * Now handle interface numbers allocation and interface and
3085          * endpoint numbers rewriting.  We can do that in one go
3086          * now.
3087          */
3088         ret = ffs_do_descs(ffs->fs_descs_count +
3089                            (high ? ffs->hs_descs_count : 0) +
3090                            (super ? ffs->ss_descs_count : 0),
3091                            vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3092                            __ffs_func_bind_do_nums, func);
3093         if (unlikely(ret < 0))
3094                 goto error;
3095
3096         func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3097         if (c->cdev->use_os_string) {
3098                 for (i = 0; i < ffs->interfaces_count; ++i) {
3099                         struct usb_os_desc *desc;
3100
3101                         desc = func->function.os_desc_table[i].os_desc =
3102                                 vla_ptr(vlabuf, d, os_desc) +
3103                                 i * sizeof(struct usb_os_desc);
3104                         desc->ext_compat_id =
3105                                 vla_ptr(vlabuf, d, ext_compat) + i * 16;
3106                         INIT_LIST_HEAD(&desc->ext_prop);
3107                 }
3108                 ret = ffs_do_os_descs(ffs->ms_os_descs_count,
3109                                       vla_ptr(vlabuf, d, raw_descs) +
3110                                       fs_len + hs_len + ss_len,
3111                                       d_raw_descs__sz - fs_len - hs_len -
3112                                       ss_len,
3113                                       __ffs_func_bind_do_os_desc, func);
3114                 if (unlikely(ret < 0))
3115                         goto error;
3116         }
3117         func->function.os_desc_n =
3118                 c->cdev->use_os_string ? ffs->interfaces_count : 0;
3119
3120         /* And we're done */
3121         ffs_event_add(ffs, FUNCTIONFS_BIND);
3122         return 0;
3123
3124 error:
3125         /* XXX Do we need to release all claimed endpoints here? */
3126         return ret;
3127 }
3128
3129 static int ffs_func_bind(struct usb_configuration *c,
3130                          struct usb_function *f)
3131 {
3132         struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3133         struct ffs_function *func = ffs_func_from_usb(f);
3134         int ret;
3135
3136         if (IS_ERR(ffs_opts))
3137                 return PTR_ERR(ffs_opts);
3138
3139         ret = _ffs_func_bind(c, f);
3140         if (ret && !--ffs_opts->refcnt)
3141                 functionfs_unbind(func->ffs);
3142
3143         return ret;
3144 }
3145
3146
3147 /* Other USB function hooks *************************************************/
3148
3149 static void ffs_reset_work(struct work_struct *work)
3150 {
3151         struct ffs_data *ffs = container_of(work,
3152                 struct ffs_data, reset_work);
3153         ffs_data_reset(ffs);
3154 }
3155
3156 static int ffs_func_set_alt(struct usb_function *f,
3157                             unsigned interface, unsigned alt)
3158 {
3159         struct ffs_function *func = ffs_func_from_usb(f);
3160         struct ffs_data *ffs = func->ffs;
3161         int ret = 0, intf;
3162
3163         if (alt != (unsigned)-1) {
3164                 intf = ffs_func_revmap_intf(func, interface);
3165                 if (unlikely(intf < 0))
3166                         return intf;
3167         }
3168
3169         if (ffs->func)
3170                 ffs_func_eps_disable(ffs->func);
3171
3172         if (ffs->state == FFS_DEACTIVATED) {
3173                 ffs->state = FFS_CLOSING;
3174                 INIT_WORK(&ffs->reset_work, ffs_reset_work);
3175                 schedule_work(&ffs->reset_work);
3176                 return -ENODEV;
3177         }
3178
3179         if (ffs->state != FFS_ACTIVE)
3180                 return -ENODEV;
3181
3182         if (alt == (unsigned)-1) {
3183                 ffs->func = NULL;
3184                 ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3185                 return 0;
3186         }
3187
3188         ffs->func = func;
3189         ret = ffs_func_eps_enable(func);
3190         if (likely(ret >= 0))
3191                 ffs_event_add(ffs, FUNCTIONFS_ENABLE);
3192         return ret;
3193 }
3194
3195 static void ffs_func_disable(struct usb_function *f)
3196 {
3197         ffs_func_set_alt(f, 0, (unsigned)-1);
3198 }
3199
3200 static int ffs_func_setup(struct usb_function *f,
3201                           const struct usb_ctrlrequest *creq)
3202 {
3203         struct ffs_function *func = ffs_func_from_usb(f);
3204         struct ffs_data *ffs = func->ffs;
3205         unsigned long flags;
3206         int ret;
3207
3208         ENTER();
3209
3210         pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3211         pr_vdebug("creq->bRequest     = %02x\n", creq->bRequest);
3212         pr_vdebug("creq->wValue       = %04x\n", le16_to_cpu(creq->wValue));
3213         pr_vdebug("creq->wIndex       = %04x\n", le16_to_cpu(creq->wIndex));
3214         pr_vdebug("creq->wLength      = %04x\n", le16_to_cpu(creq->wLength));
3215
3216         /*
3217          * Most requests directed to interface go through here
3218          * (notable exceptions are set/get interface) so we need to
3219          * handle them.  All other either handled by composite or
3220          * passed to usb_configuration->setup() (if one is set).  No
3221          * matter, we will handle requests directed to endpoint here
3222          * as well (as it's straightforward).  Other request recipient
3223          * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
3224          * is being used.
3225          */
3226         if (ffs->state != FFS_ACTIVE)
3227                 return -ENODEV;
3228
3229         switch (creq->bRequestType & USB_RECIP_MASK) {
3230         case USB_RECIP_INTERFACE:
3231                 ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3232                 if (unlikely(ret < 0))
3233                         return ret;
3234                 break;
3235
3236         case USB_RECIP_ENDPOINT:
3237                 ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3238                 if (unlikely(ret < 0))
3239                         return ret;
3240                 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3241                         ret = func->ffs->eps_addrmap[ret];
3242                 break;
3243
3244         default:
3245                 if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
3246                         ret = le16_to_cpu(creq->wIndex);
3247                 else
3248                         return -EOPNOTSUPP;
3249         }
3250
3251         spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3252         ffs->ev.setup = *creq;
3253         ffs->ev.setup.wIndex = cpu_to_le16(ret);
3254         __ffs_event_add(ffs, FUNCTIONFS_SETUP);
3255         spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3256
3257         return creq->wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0;
3258 }
3259
3260 static bool ffs_func_req_match(struct usb_function *f,
3261                                const struct usb_ctrlrequest *creq,
3262                                bool config0)
3263 {
3264         struct ffs_function *func = ffs_func_from_usb(f);
3265
3266         if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3267                 return false;
3268
3269         switch (creq->bRequestType & USB_RECIP_MASK) {
3270         case USB_RECIP_INTERFACE:
3271                 return (ffs_func_revmap_intf(func,
3272                                              le16_to_cpu(creq->wIndex)) >= 0);
3273         case USB_RECIP_ENDPOINT:
3274                 return (ffs_func_revmap_ep(func,
3275                                            le16_to_cpu(creq->wIndex)) >= 0);
3276         default:
3277                 return (bool) (func->ffs->user_flags &
3278                                FUNCTIONFS_ALL_CTRL_RECIP);
3279         }
3280 }
3281
3282 static void ffs_func_suspend(struct usb_function *f)
3283 {
3284         ENTER();
3285         ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3286 }
3287
3288 static void ffs_func_resume(struct usb_function *f)
3289 {
3290         ENTER();
3291         ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3292 }
3293
3294
3295 /* Endpoint and interface numbers reverse mapping ***************************/
3296
3297 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3298 {
3299         num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3300         return num ? num : -EDOM;
3301 }
3302
3303 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3304 {
3305         short *nums = func->interfaces_nums;
3306         unsigned count = func->ffs->interfaces_count;
3307
3308         for (; count; --count, ++nums) {
3309                 if (*nums >= 0 && *nums == intf)
3310                         return nums - func->interfaces_nums;
3311         }
3312
3313         return -EDOM;
3314 }
3315
3316
3317 /* Devices management *******************************************************/
3318
3319 static LIST_HEAD(ffs_devices);
3320
3321 static struct ffs_dev *_ffs_do_find_dev(const char *name)
3322 {
3323         struct ffs_dev *dev;
3324
3325         if (!name)
3326                 return NULL;
3327
3328         list_for_each_entry(dev, &ffs_devices, entry) {
3329                 if (strcmp(dev->name, name) == 0)
3330                         return dev;
3331         }
3332
3333         return NULL;
3334 }
3335
3336 /*
3337  * ffs_lock must be taken by the caller of this function
3338  */
3339 static struct ffs_dev *_ffs_get_single_dev(void)
3340 {
3341         struct ffs_dev *dev;
3342
3343         if (list_is_singular(&ffs_devices)) {
3344                 dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3345                 if (dev->single)
3346                         return dev;
3347         }
3348
3349         return NULL;
3350 }
3351
3352 /*
3353  * ffs_lock must be taken by the caller of this function
3354  */
3355 static struct ffs_dev *_ffs_find_dev(const char *name)
3356 {
3357         struct ffs_dev *dev;
3358
3359         dev = _ffs_get_single_dev();
3360         if (dev)
3361                 return dev;
3362
3363         return _ffs_do_find_dev(name);
3364 }
3365
3366 /* Configfs support *********************************************************/
3367
3368 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3369 {
3370         return container_of(to_config_group(item), struct f_fs_opts,
3371                             func_inst.group);
3372 }
3373
3374 static void ffs_attr_release(struct config_item *item)
3375 {
3376         struct f_fs_opts *opts = to_ffs_opts(item);
3377
3378         usb_put_function_instance(&opts->func_inst);
3379 }
3380
3381 static struct configfs_item_operations ffs_item_ops = {
3382         .release        = ffs_attr_release,
3383 };
3384
3385 static struct config_item_type ffs_func_type = {
3386         .ct_item_ops    = &ffs_item_ops,
3387         .ct_owner       = THIS_MODULE,
3388 };
3389
3390
3391 /* Function registration interface ******************************************/
3392
3393 static void ffs_free_inst(struct usb_function_instance *f)
3394 {
3395         struct f_fs_opts *opts;
3396
3397         opts = to_f_fs_opts(f);
3398         ffs_release_dev(opts->dev);
3399         ffs_dev_lock();
3400         _ffs_free_dev(opts->dev);
3401         ffs_dev_unlock();
3402         kfree(opts);
3403 }
3404
3405 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
3406 {
3407         if (strlen(name) >= FIELD_SIZEOF(struct ffs_dev, name))
3408                 return -ENAMETOOLONG;
3409         return ffs_name_dev(to_f_fs_opts(fi)->dev, name);
3410 }
3411
3412 static struct usb_function_instance *ffs_alloc_inst(void)
3413 {
3414         struct f_fs_opts *opts;
3415         struct ffs_dev *dev;
3416
3417         opts = kzalloc(sizeof(*opts), GFP_KERNEL);
3418         if (!opts)
3419                 return ERR_PTR(-ENOMEM);
3420
3421         opts->func_inst.set_inst_name = ffs_set_inst_name;
3422         opts->func_inst.free_func_inst = ffs_free_inst;
3423         ffs_dev_lock();
3424         dev = _ffs_alloc_dev();
3425         ffs_dev_unlock();
3426         if (IS_ERR(dev)) {
3427                 kfree(opts);
3428                 return ERR_CAST(dev);
3429         }
3430         opts->dev = dev;
3431         dev->opts = opts;
3432
3433         config_group_init_type_name(&opts->func_inst.group, "",
3434                                     &ffs_func_type);
3435         return &opts->func_inst;
3436 }
3437
3438 static void ffs_free(struct usb_function *f)
3439 {
3440         kfree(ffs_func_from_usb(f));
3441 }
3442
3443 static void ffs_func_unbind(struct usb_configuration *c,
3444                             struct usb_function *f)
3445 {
3446         struct ffs_function *func = ffs_func_from_usb(f);
3447         struct ffs_data *ffs = func->ffs;
3448         struct f_fs_opts *opts =
3449                 container_of(f->fi, struct f_fs_opts, func_inst);
3450         struct ffs_ep *ep = func->eps;
3451         unsigned count = ffs->eps_count;
3452         unsigned long flags;
3453
3454         ENTER();
3455         if (ffs->func == func) {
3456                 ffs_func_eps_disable(func);
3457                 ffs->func = NULL;
3458         }
3459
3460         /* Drain any pending AIO completions */
3461         drain_workqueue(ffs->io_completion_wq);
3462
3463         if (!--opts->refcnt)
3464                 functionfs_unbind(ffs);
3465
3466         /* cleanup after autoconfig */
3467         spin_lock_irqsave(&func->ffs->eps_lock, flags);
3468         while (count--) {
3469                 if (ep->ep && ep->req)
3470                         usb_ep_free_request(ep->ep, ep->req);
3471                 ep->req = NULL;
3472                 ++ep;
3473         }
3474         spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
3475         kfree(func->eps);
3476         func->eps = NULL;
3477         /*
3478          * eps, descriptors and interfaces_nums are allocated in the
3479          * same chunk so only one free is required.
3480          */
3481         func->function.fs_descriptors = NULL;
3482         func->function.hs_descriptors = NULL;
3483         func->function.ss_descriptors = NULL;
3484         func->function.ssp_descriptors = NULL;
3485         func->interfaces_nums = NULL;
3486
3487         ffs_event_add(ffs, FUNCTIONFS_UNBIND);
3488 }
3489
3490 static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
3491 {
3492         struct ffs_function *func;
3493
3494         ENTER();
3495
3496         func = kzalloc(sizeof(*func), GFP_KERNEL);
3497         if (unlikely(!func))
3498                 return ERR_PTR(-ENOMEM);
3499
3500         func->function.name    = "Function FS Gadget";
3501
3502         func->function.bind    = ffs_func_bind;
3503         func->function.unbind  = ffs_func_unbind;
3504         func->function.set_alt = ffs_func_set_alt;
3505         func->function.disable = ffs_func_disable;
3506         func->function.setup   = ffs_func_setup;
3507         func->function.req_match = ffs_func_req_match;
3508         func->function.suspend = ffs_func_suspend;
3509         func->function.resume  = ffs_func_resume;
3510         func->function.free_func = ffs_free;
3511
3512         return &func->function;
3513 }
3514
3515 /*
3516  * ffs_lock must be taken by the caller of this function
3517  */
3518 static struct ffs_dev *_ffs_alloc_dev(void)
3519 {
3520         struct ffs_dev *dev;
3521         int ret;
3522
3523         if (_ffs_get_single_dev())
3524                         return ERR_PTR(-EBUSY);
3525
3526         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3527         if (!dev)
3528                 return ERR_PTR(-ENOMEM);
3529
3530         if (list_empty(&ffs_devices)) {
3531                 ret = functionfs_init();
3532                 if (ret) {
3533                         kfree(dev);
3534                         return ERR_PTR(ret);
3535                 }
3536         }
3537
3538         list_add(&dev->entry, &ffs_devices);
3539
3540         return dev;
3541 }
3542
3543 int ffs_name_dev(struct ffs_dev *dev, const char *name)
3544 {
3545         struct ffs_dev *existing;
3546         int ret = 0;
3547
3548         ffs_dev_lock();
3549
3550         existing = _ffs_do_find_dev(name);
3551         if (!existing)
3552                 strlcpy(dev->name, name, ARRAY_SIZE(dev->name));
3553         else if (existing != dev)
3554                 ret = -EBUSY;
3555
3556         ffs_dev_unlock();
3557
3558         return ret;
3559 }
3560 EXPORT_SYMBOL_GPL(ffs_name_dev);
3561
3562 int ffs_single_dev(struct ffs_dev *dev)
3563 {
3564         int ret;
3565
3566         ret = 0;
3567         ffs_dev_lock();
3568
3569         if (!list_is_singular(&ffs_devices))
3570                 ret = -EBUSY;
3571         else
3572                 dev->single = true;
3573
3574         ffs_dev_unlock();
3575         return ret;
3576 }
3577 EXPORT_SYMBOL_GPL(ffs_single_dev);
3578
3579 /*
3580  * ffs_lock must be taken by the caller of this function
3581  */
3582 static void _ffs_free_dev(struct ffs_dev *dev)
3583 {
3584         list_del(&dev->entry);
3585
3586         kfree(dev);
3587         if (list_empty(&ffs_devices))
3588                 functionfs_cleanup();
3589 }
3590
3591 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data)
3592 {
3593         int ret = 0;
3594         struct ffs_dev *ffs_dev;
3595
3596         ENTER();
3597         ffs_dev_lock();
3598
3599         ffs_dev = _ffs_find_dev(dev_name);
3600         if (!ffs_dev) {
3601                 ret = -ENOENT;
3602         } else if (ffs_dev->mounted) {
3603                 ret = -EBUSY;
3604         } else if (ffs_dev->ffs_acquire_dev_callback &&
3605                    ffs_dev->ffs_acquire_dev_callback(ffs_dev)) {
3606                 ret = -ENOENT;
3607         } else {
3608                 ffs_dev->mounted = true;
3609                 ffs_dev->ffs_data = ffs_data;
3610                 ffs_data->private_data = ffs_dev;
3611         }
3612
3613         ffs_dev_unlock();
3614         return ret;
3615 }
3616
3617 static void ffs_release_dev(struct ffs_dev *ffs_dev)
3618 {
3619         ENTER();
3620         ffs_dev_lock();
3621
3622         if (ffs_dev && ffs_dev->mounted) {
3623                 ffs_dev->mounted = false;
3624                 if (ffs_dev->ffs_data) {
3625                         ffs_dev->ffs_data->private_data = NULL;
3626                         ffs_dev->ffs_data = NULL;
3627                 }
3628
3629                 if (ffs_dev->ffs_release_dev_callback)
3630                         ffs_dev->ffs_release_dev_callback(ffs_dev);
3631         }
3632
3633         ffs_dev_unlock();
3634 }
3635
3636 static int ffs_ready(struct ffs_data *ffs)
3637 {
3638         struct ffs_dev *ffs_obj;
3639         int ret = 0;
3640
3641         ENTER();
3642         ffs_dev_lock();
3643
3644         ffs_obj = ffs->private_data;
3645         if (!ffs_obj) {
3646                 ret = -EINVAL;
3647                 goto done;
3648         }
3649         if (WARN_ON(ffs_obj->desc_ready)) {
3650                 ret = -EBUSY;
3651                 goto done;
3652         }
3653
3654         ffs_obj->desc_ready = true;
3655
3656         if (ffs_obj->ffs_ready_callback) {
3657                 ret = ffs_obj->ffs_ready_callback(ffs);
3658                 if (ret)
3659                         goto done;
3660         }
3661
3662         set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
3663 done:
3664         ffs_dev_unlock();
3665         return ret;
3666 }
3667
3668 static void ffs_closed(struct ffs_data *ffs)
3669 {
3670         struct ffs_dev *ffs_obj;
3671         struct f_fs_opts *opts;
3672         struct config_item *ci;
3673
3674         ENTER();
3675         ffs_dev_lock();
3676
3677         ffs_obj = ffs->private_data;
3678         if (!ffs_obj)
3679                 goto done;
3680
3681         ffs_obj->desc_ready = false;
3682
3683         if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
3684             ffs_obj->ffs_closed_callback)
3685                 ffs_obj->ffs_closed_callback(ffs);
3686
3687         if (ffs_obj->opts)
3688                 opts = ffs_obj->opts;
3689         else
3690                 goto done;
3691
3692         if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
3693             || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
3694                 goto done;
3695
3696         ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
3697         ffs_dev_unlock();
3698
3699         if (test_bit(FFS_FL_BOUND, &ffs->flags))
3700                 unregister_gadget_item(ci);
3701         return;
3702 done:
3703         ffs_dev_unlock();
3704 }
3705
3706 /* Misc helper functions ****************************************************/
3707
3708 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
3709 {
3710         return nonblock
3711                 ? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN
3712                 : mutex_lock_interruptible(mutex);
3713 }
3714
3715 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3716 {
3717         char *data;
3718
3719         if (unlikely(!len))
3720                 return NULL;
3721
3722         data = kmalloc(len, GFP_KERNEL);
3723         if (unlikely(!data))
3724                 return ERR_PTR(-ENOMEM);
3725
3726         if (unlikely(copy_from_user(data, buf, len))) {
3727                 kfree(data);
3728                 return ERR_PTR(-EFAULT);
3729         }
3730
3731         pr_vdebug("Buffer from user space:\n");
3732         ffs_dump_mem("", data, len);
3733
3734         return data;
3735 }
3736
3737 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
3738 MODULE_LICENSE("GPL");
3739 MODULE_AUTHOR("Michal Nazarewicz");