GNU Linux-libre 6.7.9-gnu
[releases.git] / drivers / usb / dwc2 / hcd.c
1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 /*
3  * hcd.c - DesignWare HS OTG Controller host-mode routines
4  *
5  * Copyright (C) 2004-2013 Synopsys, Inc.
6  */
7
8 /*
9  * This file contains the core HCD code, and implements the Linux hc_driver
10  * API
11  */
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/spinlock.h>
15 #include <linux/interrupt.h>
16 #include <linux/platform_device.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/delay.h>
19 #include <linux/io.h>
20 #include <linux/slab.h>
21 #include <linux/usb.h>
22
23 #include <linux/usb/hcd.h>
24 #include <linux/usb/ch11.h>
25 #include <linux/usb/of.h>
26
27 #include "core.h"
28 #include "hcd.h"
29
30 /*
31  * =========================================================================
32  *  Host Core Layer Functions
33  * =========================================================================
34  */
35
36 /**
37  * dwc2_enable_common_interrupts() - Initializes the commmon interrupts,
38  * used in both device and host modes
39  *
40  * @hsotg: Programming view of the DWC_otg controller
41  */
42 static void dwc2_enable_common_interrupts(struct dwc2_hsotg *hsotg)
43 {
44         u32 intmsk;
45
46         /* Clear any pending OTG Interrupts */
47         dwc2_writel(hsotg, 0xffffffff, GOTGINT);
48
49         /* Clear any pending interrupts */
50         dwc2_writel(hsotg, 0xffffffff, GINTSTS);
51
52         /* Enable the interrupts in the GINTMSK */
53         intmsk = GINTSTS_MODEMIS | GINTSTS_OTGINT;
54
55         if (!hsotg->params.host_dma)
56                 intmsk |= GINTSTS_RXFLVL;
57         if (!hsotg->params.external_id_pin_ctl)
58                 intmsk |= GINTSTS_CONIDSTSCHNG;
59
60         intmsk |= GINTSTS_WKUPINT | GINTSTS_USBSUSP |
61                   GINTSTS_SESSREQINT;
62
63         if (dwc2_is_device_mode(hsotg) && hsotg->params.lpm)
64                 intmsk |= GINTSTS_LPMTRANRCVD;
65
66         dwc2_writel(hsotg, intmsk, GINTMSK);
67 }
68
69 static int dwc2_gahbcfg_init(struct dwc2_hsotg *hsotg)
70 {
71         u32 ahbcfg = dwc2_readl(hsotg, GAHBCFG);
72
73         switch (hsotg->hw_params.arch) {
74         case GHWCFG2_EXT_DMA_ARCH:
75                 dev_err(hsotg->dev, "External DMA Mode not supported\n");
76                 return -EINVAL;
77
78         case GHWCFG2_INT_DMA_ARCH:
79                 dev_dbg(hsotg->dev, "Internal DMA Mode\n");
80                 if (hsotg->params.ahbcfg != -1) {
81                         ahbcfg &= GAHBCFG_CTRL_MASK;
82                         ahbcfg |= hsotg->params.ahbcfg &
83                                   ~GAHBCFG_CTRL_MASK;
84                 }
85                 break;
86
87         case GHWCFG2_SLAVE_ONLY_ARCH:
88         default:
89                 dev_dbg(hsotg->dev, "Slave Only Mode\n");
90                 break;
91         }
92
93         if (hsotg->params.host_dma)
94                 ahbcfg |= GAHBCFG_DMA_EN;
95         else
96                 hsotg->params.dma_desc_enable = false;
97
98         dwc2_writel(hsotg, ahbcfg, GAHBCFG);
99
100         return 0;
101 }
102
103 static void dwc2_gusbcfg_init(struct dwc2_hsotg *hsotg)
104 {
105         u32 usbcfg;
106
107         usbcfg = dwc2_readl(hsotg, GUSBCFG);
108         usbcfg &= ~(GUSBCFG_HNPCAP | GUSBCFG_SRPCAP);
109
110         switch (hsotg->hw_params.op_mode) {
111         case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
112                 if (hsotg->params.otg_caps.hnp_support &&
113                     hsotg->params.otg_caps.srp_support)
114                         usbcfg |= GUSBCFG_HNPCAP;
115                 fallthrough;
116
117         case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
118         case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
119         case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
120                 if (hsotg->params.otg_caps.srp_support)
121                         usbcfg |= GUSBCFG_SRPCAP;
122                 break;
123
124         case GHWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE:
125         case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE:
126         case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST:
127         default:
128                 break;
129         }
130
131         dwc2_writel(hsotg, usbcfg, GUSBCFG);
132 }
133
134 static int dwc2_vbus_supply_init(struct dwc2_hsotg *hsotg)
135 {
136         if (hsotg->vbus_supply)
137                 return regulator_enable(hsotg->vbus_supply);
138
139         return 0;
140 }
141
142 static int dwc2_vbus_supply_exit(struct dwc2_hsotg *hsotg)
143 {
144         if (hsotg->vbus_supply)
145                 return regulator_disable(hsotg->vbus_supply);
146
147         return 0;
148 }
149
150 /**
151  * dwc2_enable_host_interrupts() - Enables the Host mode interrupts
152  *
153  * @hsotg: Programming view of DWC_otg controller
154  */
155 static void dwc2_enable_host_interrupts(struct dwc2_hsotg *hsotg)
156 {
157         u32 intmsk;
158
159         dev_dbg(hsotg->dev, "%s()\n", __func__);
160
161         /* Disable all interrupts */
162         dwc2_writel(hsotg, 0, GINTMSK);
163         dwc2_writel(hsotg, 0, HAINTMSK);
164
165         /* Enable the common interrupts */
166         dwc2_enable_common_interrupts(hsotg);
167
168         /* Enable host mode interrupts without disturbing common interrupts */
169         intmsk = dwc2_readl(hsotg, GINTMSK);
170         intmsk |= GINTSTS_DISCONNINT | GINTSTS_PRTINT | GINTSTS_HCHINT;
171         dwc2_writel(hsotg, intmsk, GINTMSK);
172 }
173
174 /**
175  * dwc2_disable_host_interrupts() - Disables the Host Mode interrupts
176  *
177  * @hsotg: Programming view of DWC_otg controller
178  */
179 static void dwc2_disable_host_interrupts(struct dwc2_hsotg *hsotg)
180 {
181         u32 intmsk = dwc2_readl(hsotg, GINTMSK);
182
183         /* Disable host mode interrupts without disturbing common interrupts */
184         intmsk &= ~(GINTSTS_SOF | GINTSTS_PRTINT | GINTSTS_HCHINT |
185                     GINTSTS_PTXFEMP | GINTSTS_NPTXFEMP | GINTSTS_DISCONNINT);
186         dwc2_writel(hsotg, intmsk, GINTMSK);
187 }
188
189 /*
190  * dwc2_calculate_dynamic_fifo() - Calculates the default fifo size
191  * For system that have a total fifo depth that is smaller than the default
192  * RX + TX fifo size.
193  *
194  * @hsotg: Programming view of DWC_otg controller
195  */
196 static void dwc2_calculate_dynamic_fifo(struct dwc2_hsotg *hsotg)
197 {
198         struct dwc2_core_params *params = &hsotg->params;
199         struct dwc2_hw_params *hw = &hsotg->hw_params;
200         u32 rxfsiz, nptxfsiz, ptxfsiz, total_fifo_size;
201
202         total_fifo_size = hw->total_fifo_size;
203         rxfsiz = params->host_rx_fifo_size;
204         nptxfsiz = params->host_nperio_tx_fifo_size;
205         ptxfsiz = params->host_perio_tx_fifo_size;
206
207         /*
208          * Will use Method 2 defined in the DWC2 spec: minimum FIFO depth
209          * allocation with support for high bandwidth endpoints. Synopsys
210          * defines MPS(Max Packet size) for a periodic EP=1024, and for
211          * non-periodic as 512.
212          */
213         if (total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)) {
214                 /*
215                  * For Buffer DMA mode/Scatter Gather DMA mode
216                  * 2 * ((Largest Packet size / 4) + 1 + 1) + n
217                  * with n = number of host channel.
218                  * 2 * ((1024/4) + 2) = 516
219                  */
220                 rxfsiz = 516 + hw->host_channels;
221
222                 /*
223                  * min non-periodic tx fifo depth
224                  * 2 * (largest non-periodic USB packet used / 4)
225                  * 2 * (512/4) = 256
226                  */
227                 nptxfsiz = 256;
228
229                 /*
230                  * min periodic tx fifo depth
231                  * (largest packet size*MC)/4
232                  * (1024 * 3)/4 = 768
233                  */
234                 ptxfsiz = 768;
235
236                 params->host_rx_fifo_size = rxfsiz;
237                 params->host_nperio_tx_fifo_size = nptxfsiz;
238                 params->host_perio_tx_fifo_size = ptxfsiz;
239         }
240
241         /*
242          * If the summation of RX, NPTX and PTX fifo sizes is still
243          * bigger than the total_fifo_size, then we have a problem.
244          *
245          * We won't be able to allocate as many endpoints. Right now,
246          * we're just printing an error message, but ideally this FIFO
247          * allocation algorithm would be improved in the future.
248          *
249          * FIXME improve this FIFO allocation algorithm.
250          */
251         if (unlikely(total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)))
252                 dev_err(hsotg->dev, "invalid fifo sizes\n");
253 }
254
255 static void dwc2_config_fifos(struct dwc2_hsotg *hsotg)
256 {
257         struct dwc2_core_params *params = &hsotg->params;
258         u32 nptxfsiz, hptxfsiz, dfifocfg, grxfsiz;
259
260         if (!params->enable_dynamic_fifo)
261                 return;
262
263         dwc2_calculate_dynamic_fifo(hsotg);
264
265         /* Rx FIFO */
266         grxfsiz = dwc2_readl(hsotg, GRXFSIZ);
267         dev_dbg(hsotg->dev, "initial grxfsiz=%08x\n", grxfsiz);
268         grxfsiz &= ~GRXFSIZ_DEPTH_MASK;
269         grxfsiz |= params->host_rx_fifo_size <<
270                    GRXFSIZ_DEPTH_SHIFT & GRXFSIZ_DEPTH_MASK;
271         dwc2_writel(hsotg, grxfsiz, GRXFSIZ);
272         dev_dbg(hsotg->dev, "new grxfsiz=%08x\n",
273                 dwc2_readl(hsotg, GRXFSIZ));
274
275         /* Non-periodic Tx FIFO */
276         dev_dbg(hsotg->dev, "initial gnptxfsiz=%08x\n",
277                 dwc2_readl(hsotg, GNPTXFSIZ));
278         nptxfsiz = params->host_nperio_tx_fifo_size <<
279                    FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
280         nptxfsiz |= params->host_rx_fifo_size <<
281                     FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
282         dwc2_writel(hsotg, nptxfsiz, GNPTXFSIZ);
283         dev_dbg(hsotg->dev, "new gnptxfsiz=%08x\n",
284                 dwc2_readl(hsotg, GNPTXFSIZ));
285
286         /* Periodic Tx FIFO */
287         dev_dbg(hsotg->dev, "initial hptxfsiz=%08x\n",
288                 dwc2_readl(hsotg, HPTXFSIZ));
289         hptxfsiz = params->host_perio_tx_fifo_size <<
290                    FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
291         hptxfsiz |= (params->host_rx_fifo_size +
292                      params->host_nperio_tx_fifo_size) <<
293                     FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
294         dwc2_writel(hsotg, hptxfsiz, HPTXFSIZ);
295         dev_dbg(hsotg->dev, "new hptxfsiz=%08x\n",
296                 dwc2_readl(hsotg, HPTXFSIZ));
297
298         if (hsotg->params.en_multiple_tx_fifo &&
299             hsotg->hw_params.snpsid >= DWC2_CORE_REV_2_91a) {
300                 /*
301                  * This feature was implemented in 2.91a version
302                  * Global DFIFOCFG calculation for Host mode -
303                  * include RxFIFO, NPTXFIFO and HPTXFIFO
304                  */
305                 dfifocfg = dwc2_readl(hsotg, GDFIFOCFG);
306                 dfifocfg &= ~GDFIFOCFG_EPINFOBASE_MASK;
307                 dfifocfg |= (params->host_rx_fifo_size +
308                              params->host_nperio_tx_fifo_size +
309                              params->host_perio_tx_fifo_size) <<
310                             GDFIFOCFG_EPINFOBASE_SHIFT &
311                             GDFIFOCFG_EPINFOBASE_MASK;
312                 dwc2_writel(hsotg, dfifocfg, GDFIFOCFG);
313         }
314 }
315
316 /**
317  * dwc2_calc_frame_interval() - Calculates the correct frame Interval value for
318  * the HFIR register according to PHY type and speed
319  *
320  * @hsotg: Programming view of DWC_otg controller
321  *
322  * NOTE: The caller can modify the value of the HFIR register only after the
323  * Port Enable bit of the Host Port Control and Status register (HPRT.EnaPort)
324  * has been set
325  */
326 u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg)
327 {
328         u32 usbcfg;
329         u32 hprt0;
330         int clock = 60; /* default value */
331
332         usbcfg = dwc2_readl(hsotg, GUSBCFG);
333         hprt0 = dwc2_readl(hsotg, HPRT0);
334
335         if (!(usbcfg & GUSBCFG_PHYSEL) && (usbcfg & GUSBCFG_ULPI_UTMI_SEL) &&
336             !(usbcfg & GUSBCFG_PHYIF16))
337                 clock = 60;
338         if ((usbcfg & GUSBCFG_PHYSEL) && hsotg->hw_params.fs_phy_type ==
339             GHWCFG2_FS_PHY_TYPE_SHARED_ULPI)
340                 clock = 48;
341         if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
342             !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
343                 clock = 30;
344         if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
345             !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && !(usbcfg & GUSBCFG_PHYIF16))
346                 clock = 60;
347         if ((usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
348             !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
349                 clock = 48;
350         if ((usbcfg & GUSBCFG_PHYSEL) && !(usbcfg & GUSBCFG_PHYIF16) &&
351             hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_SHARED_UTMI)
352                 clock = 48;
353         if ((usbcfg & GUSBCFG_PHYSEL) &&
354             hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED)
355                 clock = 48;
356
357         if ((hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT == HPRT0_SPD_HIGH_SPEED)
358                 /* High speed case */
359                 return 125 * clock - 1;
360
361         /* FS/LS case */
362         return 1000 * clock - 1;
363 }
364
365 /**
366  * dwc2_read_packet() - Reads a packet from the Rx FIFO into the destination
367  * buffer
368  *
369  * @hsotg: Programming view of DWC_otg controller
370  * @dest:    Destination buffer for the packet
371  * @bytes:   Number of bytes to copy to the destination
372  */
373 void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes)
374 {
375         u32 *data_buf = (u32 *)dest;
376         int word_count = (bytes + 3) / 4;
377         int i;
378
379         /*
380          * Todo: Account for the case where dest is not dword aligned. This
381          * requires reading data from the FIFO into a u32 temp buffer, then
382          * moving it into the data buffer.
383          */
384
385         dev_vdbg(hsotg->dev, "%s(%p,%p,%d)\n", __func__, hsotg, dest, bytes);
386
387         for (i = 0; i < word_count; i++, data_buf++)
388                 *data_buf = dwc2_readl(hsotg, HCFIFO(0));
389 }
390
391 /**
392  * dwc2_dump_channel_info() - Prints the state of a host channel
393  *
394  * @hsotg: Programming view of DWC_otg controller
395  * @chan:  Pointer to the channel to dump
396  *
397  * Must be called with interrupt disabled and spinlock held
398  *
399  * NOTE: This function will be removed once the peripheral controller code
400  * is integrated and the driver is stable
401  */
402 static void dwc2_dump_channel_info(struct dwc2_hsotg *hsotg,
403                                    struct dwc2_host_chan *chan)
404 {
405 #ifdef VERBOSE_DEBUG
406         int num_channels = hsotg->params.host_channels;
407         struct dwc2_qh *qh;
408         u32 hcchar;
409         u32 hcsplt;
410         u32 hctsiz;
411         u32 hc_dma;
412         int i;
413
414         if (!chan)
415                 return;
416
417         hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
418         hcsplt = dwc2_readl(hsotg, HCSPLT(chan->hc_num));
419         hctsiz = dwc2_readl(hsotg, HCTSIZ(chan->hc_num));
420         hc_dma = dwc2_readl(hsotg, HCDMA(chan->hc_num));
421
422         dev_dbg(hsotg->dev, "  Assigned to channel %p:\n", chan);
423         dev_dbg(hsotg->dev, "    hcchar 0x%08x, hcsplt 0x%08x\n",
424                 hcchar, hcsplt);
425         dev_dbg(hsotg->dev, "    hctsiz 0x%08x, hc_dma 0x%08x\n",
426                 hctsiz, hc_dma);
427         dev_dbg(hsotg->dev, "    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
428                 chan->dev_addr, chan->ep_num, chan->ep_is_in);
429         dev_dbg(hsotg->dev, "    ep_type: %d\n", chan->ep_type);
430         dev_dbg(hsotg->dev, "    max_packet: %d\n", chan->max_packet);
431         dev_dbg(hsotg->dev, "    data_pid_start: %d\n", chan->data_pid_start);
432         dev_dbg(hsotg->dev, "    xfer_started: %d\n", chan->xfer_started);
433         dev_dbg(hsotg->dev, "    halt_status: %d\n", chan->halt_status);
434         dev_dbg(hsotg->dev, "    xfer_buf: %p\n", chan->xfer_buf);
435         dev_dbg(hsotg->dev, "    xfer_dma: %08lx\n",
436                 (unsigned long)chan->xfer_dma);
437         dev_dbg(hsotg->dev, "    xfer_len: %d\n", chan->xfer_len);
438         dev_dbg(hsotg->dev, "    qh: %p\n", chan->qh);
439         dev_dbg(hsotg->dev, "  NP inactive sched:\n");
440         list_for_each_entry(qh, &hsotg->non_periodic_sched_inactive,
441                             qh_list_entry)
442                 dev_dbg(hsotg->dev, "    %p\n", qh);
443         dev_dbg(hsotg->dev, "  NP waiting sched:\n");
444         list_for_each_entry(qh, &hsotg->non_periodic_sched_waiting,
445                             qh_list_entry)
446                 dev_dbg(hsotg->dev, "    %p\n", qh);
447         dev_dbg(hsotg->dev, "  NP active sched:\n");
448         list_for_each_entry(qh, &hsotg->non_periodic_sched_active,
449                             qh_list_entry)
450                 dev_dbg(hsotg->dev, "    %p\n", qh);
451         dev_dbg(hsotg->dev, "  Channels:\n");
452         for (i = 0; i < num_channels; i++) {
453                 struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
454
455                 dev_dbg(hsotg->dev, "    %2d: %p\n", i, chan);
456         }
457 #endif /* VERBOSE_DEBUG */
458 }
459
460 static int _dwc2_hcd_start(struct usb_hcd *hcd);
461
462 static void dwc2_host_start(struct dwc2_hsotg *hsotg)
463 {
464         struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
465
466         hcd->self.is_b_host = dwc2_hcd_is_b_host(hsotg);
467         _dwc2_hcd_start(hcd);
468 }
469
470 static void dwc2_host_disconnect(struct dwc2_hsotg *hsotg)
471 {
472         struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
473
474         hcd->self.is_b_host = 0;
475 }
476
477 static void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
478                                int *hub_addr, int *hub_port)
479 {
480         struct urb *urb = context;
481
482         if (urb->dev->tt)
483                 *hub_addr = urb->dev->tt->hub->devnum;
484         else
485                 *hub_addr = 0;
486         *hub_port = urb->dev->ttport;
487 }
488
489 /*
490  * =========================================================================
491  *  Low Level Host Channel Access Functions
492  * =========================================================================
493  */
494
495 static void dwc2_hc_enable_slave_ints(struct dwc2_hsotg *hsotg,
496                                       struct dwc2_host_chan *chan)
497 {
498         u32 hcintmsk = HCINTMSK_CHHLTD;
499
500         switch (chan->ep_type) {
501         case USB_ENDPOINT_XFER_CONTROL:
502         case USB_ENDPOINT_XFER_BULK:
503                 dev_vdbg(hsotg->dev, "control/bulk\n");
504                 hcintmsk |= HCINTMSK_XFERCOMPL;
505                 hcintmsk |= HCINTMSK_STALL;
506                 hcintmsk |= HCINTMSK_XACTERR;
507                 hcintmsk |= HCINTMSK_DATATGLERR;
508                 if (chan->ep_is_in) {
509                         hcintmsk |= HCINTMSK_BBLERR;
510                 } else {
511                         hcintmsk |= HCINTMSK_NAK;
512                         hcintmsk |= HCINTMSK_NYET;
513                         if (chan->do_ping)
514                                 hcintmsk |= HCINTMSK_ACK;
515                 }
516
517                 if (chan->do_split) {
518                         hcintmsk |= HCINTMSK_NAK;
519                         if (chan->complete_split)
520                                 hcintmsk |= HCINTMSK_NYET;
521                         else
522                                 hcintmsk |= HCINTMSK_ACK;
523                 }
524
525                 if (chan->error_state)
526                         hcintmsk |= HCINTMSK_ACK;
527                 break;
528
529         case USB_ENDPOINT_XFER_INT:
530                 if (dbg_perio())
531                         dev_vdbg(hsotg->dev, "intr\n");
532                 hcintmsk |= HCINTMSK_XFERCOMPL;
533                 hcintmsk |= HCINTMSK_NAK;
534                 hcintmsk |= HCINTMSK_STALL;
535                 hcintmsk |= HCINTMSK_XACTERR;
536                 hcintmsk |= HCINTMSK_DATATGLERR;
537                 hcintmsk |= HCINTMSK_FRMOVRUN;
538
539                 if (chan->ep_is_in)
540                         hcintmsk |= HCINTMSK_BBLERR;
541                 if (chan->error_state)
542                         hcintmsk |= HCINTMSK_ACK;
543                 if (chan->do_split) {
544                         if (chan->complete_split)
545                                 hcintmsk |= HCINTMSK_NYET;
546                         else
547                                 hcintmsk |= HCINTMSK_ACK;
548                 }
549                 break;
550
551         case USB_ENDPOINT_XFER_ISOC:
552                 if (dbg_perio())
553                         dev_vdbg(hsotg->dev, "isoc\n");
554                 hcintmsk |= HCINTMSK_XFERCOMPL;
555                 hcintmsk |= HCINTMSK_FRMOVRUN;
556                 hcintmsk |= HCINTMSK_ACK;
557
558                 if (chan->ep_is_in) {
559                         hcintmsk |= HCINTMSK_XACTERR;
560                         hcintmsk |= HCINTMSK_BBLERR;
561                 }
562                 break;
563         default:
564                 dev_err(hsotg->dev, "## Unknown EP type ##\n");
565                 break;
566         }
567
568         dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
569         if (dbg_hc(chan))
570                 dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
571 }
572
573 static void dwc2_hc_enable_dma_ints(struct dwc2_hsotg *hsotg,
574                                     struct dwc2_host_chan *chan)
575 {
576         u32 hcintmsk = HCINTMSK_CHHLTD;
577
578         /*
579          * For Descriptor DMA mode core halts the channel on AHB error.
580          * Interrupt is not required.
581          */
582         if (!hsotg->params.dma_desc_enable) {
583                 if (dbg_hc(chan))
584                         dev_vdbg(hsotg->dev, "desc DMA disabled\n");
585                 hcintmsk |= HCINTMSK_AHBERR;
586         } else {
587                 if (dbg_hc(chan))
588                         dev_vdbg(hsotg->dev, "desc DMA enabled\n");
589                 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
590                         hcintmsk |= HCINTMSK_XFERCOMPL;
591         }
592
593         if (chan->error_state && !chan->do_split &&
594             chan->ep_type != USB_ENDPOINT_XFER_ISOC) {
595                 if (dbg_hc(chan))
596                         dev_vdbg(hsotg->dev, "setting ACK\n");
597                 hcintmsk |= HCINTMSK_ACK;
598                 if (chan->ep_is_in) {
599                         hcintmsk |= HCINTMSK_DATATGLERR;
600                         if (chan->ep_type != USB_ENDPOINT_XFER_INT)
601                                 hcintmsk |= HCINTMSK_NAK;
602                 }
603         }
604
605         dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
606         if (dbg_hc(chan))
607                 dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
608 }
609
610 static void dwc2_hc_enable_ints(struct dwc2_hsotg *hsotg,
611                                 struct dwc2_host_chan *chan)
612 {
613         u32 intmsk;
614
615         if (hsotg->params.host_dma) {
616                 if (dbg_hc(chan))
617                         dev_vdbg(hsotg->dev, "DMA enabled\n");
618                 dwc2_hc_enable_dma_ints(hsotg, chan);
619         } else {
620                 if (dbg_hc(chan))
621                         dev_vdbg(hsotg->dev, "DMA disabled\n");
622                 dwc2_hc_enable_slave_ints(hsotg, chan);
623         }
624
625         /* Enable the top level host channel interrupt */
626         intmsk = dwc2_readl(hsotg, HAINTMSK);
627         intmsk |= 1 << chan->hc_num;
628         dwc2_writel(hsotg, intmsk, HAINTMSK);
629         if (dbg_hc(chan))
630                 dev_vdbg(hsotg->dev, "set HAINTMSK to %08x\n", intmsk);
631
632         /* Make sure host channel interrupts are enabled */
633         intmsk = dwc2_readl(hsotg, GINTMSK);
634         intmsk |= GINTSTS_HCHINT;
635         dwc2_writel(hsotg, intmsk, GINTMSK);
636         if (dbg_hc(chan))
637                 dev_vdbg(hsotg->dev, "set GINTMSK to %08x\n", intmsk);
638 }
639
640 /**
641  * dwc2_hc_init() - Prepares a host channel for transferring packets to/from
642  * a specific endpoint
643  *
644  * @hsotg: Programming view of DWC_otg controller
645  * @chan:  Information needed to initialize the host channel
646  *
647  * The HCCHARn register is set up with the characteristics specified in chan.
648  * Host channel interrupts that may need to be serviced while this transfer is
649  * in progress are enabled.
650  */
651 static void dwc2_hc_init(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
652 {
653         u8 hc_num = chan->hc_num;
654         u32 hcintmsk;
655         u32 hcchar;
656         u32 hcsplt = 0;
657
658         if (dbg_hc(chan))
659                 dev_vdbg(hsotg->dev, "%s()\n", __func__);
660
661         /* Clear old interrupt conditions for this host channel */
662         hcintmsk = 0xffffffff;
663         hcintmsk &= ~HCINTMSK_RESERVED14_31;
664         dwc2_writel(hsotg, hcintmsk, HCINT(hc_num));
665
666         /* Enable channel interrupts required for this transfer */
667         dwc2_hc_enable_ints(hsotg, chan);
668
669         /*
670          * Program the HCCHARn register with the endpoint characteristics for
671          * the current transfer
672          */
673         hcchar = chan->dev_addr << HCCHAR_DEVADDR_SHIFT & HCCHAR_DEVADDR_MASK;
674         hcchar |= chan->ep_num << HCCHAR_EPNUM_SHIFT & HCCHAR_EPNUM_MASK;
675         if (chan->ep_is_in)
676                 hcchar |= HCCHAR_EPDIR;
677         if (chan->speed == USB_SPEED_LOW)
678                 hcchar |= HCCHAR_LSPDDEV;
679         hcchar |= chan->ep_type << HCCHAR_EPTYPE_SHIFT & HCCHAR_EPTYPE_MASK;
680         hcchar |= chan->max_packet << HCCHAR_MPS_SHIFT & HCCHAR_MPS_MASK;
681         dwc2_writel(hsotg, hcchar, HCCHAR(hc_num));
682         if (dbg_hc(chan)) {
683                 dev_vdbg(hsotg->dev, "set HCCHAR(%d) to %08x\n",
684                          hc_num, hcchar);
685
686                 dev_vdbg(hsotg->dev, "%s: Channel %d\n",
687                          __func__, hc_num);
688                 dev_vdbg(hsotg->dev, "   Dev Addr: %d\n",
689                          chan->dev_addr);
690                 dev_vdbg(hsotg->dev, "   Ep Num: %d\n",
691                          chan->ep_num);
692                 dev_vdbg(hsotg->dev, "   Is In: %d\n",
693                          chan->ep_is_in);
694                 dev_vdbg(hsotg->dev, "   Is Low Speed: %d\n",
695                          chan->speed == USB_SPEED_LOW);
696                 dev_vdbg(hsotg->dev, "   Ep Type: %d\n",
697                          chan->ep_type);
698                 dev_vdbg(hsotg->dev, "   Max Pkt: %d\n",
699                          chan->max_packet);
700         }
701
702         /* Program the HCSPLT register for SPLITs */
703         if (chan->do_split) {
704                 if (dbg_hc(chan))
705                         dev_vdbg(hsotg->dev,
706                                  "Programming HC %d with split --> %s\n",
707                                  hc_num,
708                                  chan->complete_split ? "CSPLIT" : "SSPLIT");
709                 if (chan->complete_split)
710                         hcsplt |= HCSPLT_COMPSPLT;
711                 hcsplt |= chan->xact_pos << HCSPLT_XACTPOS_SHIFT &
712                           HCSPLT_XACTPOS_MASK;
713                 hcsplt |= chan->hub_addr << HCSPLT_HUBADDR_SHIFT &
714                           HCSPLT_HUBADDR_MASK;
715                 hcsplt |= chan->hub_port << HCSPLT_PRTADDR_SHIFT &
716                           HCSPLT_PRTADDR_MASK;
717                 if (dbg_hc(chan)) {
718                         dev_vdbg(hsotg->dev, "    comp split %d\n",
719                                  chan->complete_split);
720                         dev_vdbg(hsotg->dev, "    xact pos %d\n",
721                                  chan->xact_pos);
722                         dev_vdbg(hsotg->dev, "    hub addr %d\n",
723                                  chan->hub_addr);
724                         dev_vdbg(hsotg->dev, "    hub port %d\n",
725                                  chan->hub_port);
726                         dev_vdbg(hsotg->dev, "    is_in %d\n",
727                                  chan->ep_is_in);
728                         dev_vdbg(hsotg->dev, "    Max Pkt %d\n",
729                                  chan->max_packet);
730                         dev_vdbg(hsotg->dev, "    xferlen %d\n",
731                                  chan->xfer_len);
732                 }
733         }
734
735         dwc2_writel(hsotg, hcsplt, HCSPLT(hc_num));
736 }
737
738 /**
739  * dwc2_hc_halt() - Attempts to halt a host channel
740  *
741  * @hsotg:       Controller register interface
742  * @chan:        Host channel to halt
743  * @halt_status: Reason for halting the channel
744  *
745  * This function should only be called in Slave mode or to abort a transfer in
746  * either Slave mode or DMA mode. Under normal circumstances in DMA mode, the
747  * controller halts the channel when the transfer is complete or a condition
748  * occurs that requires application intervention.
749  *
750  * In slave mode, checks for a free request queue entry, then sets the Channel
751  * Enable and Channel Disable bits of the Host Channel Characteristics
752  * register of the specified channel to intiate the halt. If there is no free
753  * request queue entry, sets only the Channel Disable bit of the HCCHARn
754  * register to flush requests for this channel. In the latter case, sets a
755  * flag to indicate that the host channel needs to be halted when a request
756  * queue slot is open.
757  *
758  * In DMA mode, always sets the Channel Enable and Channel Disable bits of the
759  * HCCHARn register. The controller ensures there is space in the request
760  * queue before submitting the halt request.
761  *
762  * Some time may elapse before the core flushes any posted requests for this
763  * host channel and halts. The Channel Halted interrupt handler completes the
764  * deactivation of the host channel.
765  */
766 void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
767                   enum dwc2_halt_status halt_status)
768 {
769         u32 nptxsts, hptxsts, hcchar;
770
771         if (dbg_hc(chan))
772                 dev_vdbg(hsotg->dev, "%s()\n", __func__);
773
774         /*
775          * In buffer DMA or external DMA mode channel can't be halted
776          * for non-split periodic channels. At the end of the next
777          * uframe/frame (in the worst case), the core generates a channel
778          * halted and disables the channel automatically.
779          */
780         if ((hsotg->params.g_dma && !hsotg->params.g_dma_desc) ||
781             hsotg->hw_params.arch == GHWCFG2_EXT_DMA_ARCH) {
782                 if (!chan->do_split &&
783                     (chan->ep_type == USB_ENDPOINT_XFER_ISOC ||
784                      chan->ep_type == USB_ENDPOINT_XFER_INT)) {
785                         dev_err(hsotg->dev, "%s() Channel can't be halted\n",
786                                 __func__);
787                         return;
788                 }
789         }
790
791         if (halt_status == DWC2_HC_XFER_NO_HALT_STATUS)
792                 dev_err(hsotg->dev, "!!! halt_status = %d !!!\n", halt_status);
793
794         if (halt_status == DWC2_HC_XFER_URB_DEQUEUE ||
795             halt_status == DWC2_HC_XFER_AHB_ERR) {
796                 /*
797                  * Disable all channel interrupts except Ch Halted. The QTD
798                  * and QH state associated with this transfer has been cleared
799                  * (in the case of URB_DEQUEUE), so the channel needs to be
800                  * shut down carefully to prevent crashes.
801                  */
802                 u32 hcintmsk = HCINTMSK_CHHLTD;
803
804                 dev_vdbg(hsotg->dev, "dequeue/error\n");
805                 dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
806
807                 /*
808                  * Make sure no other interrupts besides halt are currently
809                  * pending. Handling another interrupt could cause a crash due
810                  * to the QTD and QH state.
811                  */
812                 dwc2_writel(hsotg, ~hcintmsk, HCINT(chan->hc_num));
813
814                 /*
815                  * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
816                  * even if the channel was already halted for some other
817                  * reason
818                  */
819                 chan->halt_status = halt_status;
820
821                 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
822                 if (!(hcchar & HCCHAR_CHENA)) {
823                         /*
824                          * The channel is either already halted or it hasn't
825                          * started yet. In DMA mode, the transfer may halt if
826                          * it finishes normally or a condition occurs that
827                          * requires driver intervention. Don't want to halt
828                          * the channel again. In either Slave or DMA mode,
829                          * it's possible that the transfer has been assigned
830                          * to a channel, but not started yet when an URB is
831                          * dequeued. Don't want to halt a channel that hasn't
832                          * started yet.
833                          */
834                         return;
835                 }
836         }
837         if (chan->halt_pending) {
838                 /*
839                  * A halt has already been issued for this channel. This might
840                  * happen when a transfer is aborted by a higher level in
841                  * the stack.
842                  */
843                 dev_vdbg(hsotg->dev,
844                          "*** %s: Channel %d, chan->halt_pending already set ***\n",
845                          __func__, chan->hc_num);
846                 return;
847         }
848
849         hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
850
851         /* No need to set the bit in DDMA for disabling the channel */
852         /* TODO check it everywhere channel is disabled */
853         if (!hsotg->params.dma_desc_enable) {
854                 if (dbg_hc(chan))
855                         dev_vdbg(hsotg->dev, "desc DMA disabled\n");
856                 hcchar |= HCCHAR_CHENA;
857         } else {
858                 if (dbg_hc(chan))
859                         dev_dbg(hsotg->dev, "desc DMA enabled\n");
860         }
861         hcchar |= HCCHAR_CHDIS;
862
863         if (!hsotg->params.host_dma) {
864                 if (dbg_hc(chan))
865                         dev_vdbg(hsotg->dev, "DMA not enabled\n");
866                 hcchar |= HCCHAR_CHENA;
867
868                 /* Check for space in the request queue to issue the halt */
869                 if (chan->ep_type == USB_ENDPOINT_XFER_CONTROL ||
870                     chan->ep_type == USB_ENDPOINT_XFER_BULK) {
871                         dev_vdbg(hsotg->dev, "control/bulk\n");
872                         nptxsts = dwc2_readl(hsotg, GNPTXSTS);
873                         if ((nptxsts & TXSTS_QSPCAVAIL_MASK) == 0) {
874                                 dev_vdbg(hsotg->dev, "Disabling channel\n");
875                                 hcchar &= ~HCCHAR_CHENA;
876                         }
877                 } else {
878                         if (dbg_perio())
879                                 dev_vdbg(hsotg->dev, "isoc/intr\n");
880                         hptxsts = dwc2_readl(hsotg, HPTXSTS);
881                         if ((hptxsts & TXSTS_QSPCAVAIL_MASK) == 0 ||
882                             hsotg->queuing_high_bandwidth) {
883                                 if (dbg_perio())
884                                         dev_vdbg(hsotg->dev, "Disabling channel\n");
885                                 hcchar &= ~HCCHAR_CHENA;
886                         }
887                 }
888         } else {
889                 if (dbg_hc(chan))
890                         dev_vdbg(hsotg->dev, "DMA enabled\n");
891         }
892
893         dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
894         chan->halt_status = halt_status;
895
896         if (hcchar & HCCHAR_CHENA) {
897                 if (dbg_hc(chan))
898                         dev_vdbg(hsotg->dev, "Channel enabled\n");
899                 chan->halt_pending = 1;
900                 chan->halt_on_queue = 0;
901         } else {
902                 if (dbg_hc(chan))
903                         dev_vdbg(hsotg->dev, "Channel disabled\n");
904                 chan->halt_on_queue = 1;
905         }
906
907         if (dbg_hc(chan)) {
908                 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
909                          chan->hc_num);
910                 dev_vdbg(hsotg->dev, "   hcchar: 0x%08x\n",
911                          hcchar);
912                 dev_vdbg(hsotg->dev, "   halt_pending: %d\n",
913                          chan->halt_pending);
914                 dev_vdbg(hsotg->dev, "   halt_on_queue: %d\n",
915                          chan->halt_on_queue);
916                 dev_vdbg(hsotg->dev, "   halt_status: %d\n",
917                          chan->halt_status);
918         }
919 }
920
921 /**
922  * dwc2_hc_cleanup() - Clears the transfer state for a host channel
923  *
924  * @hsotg: Programming view of DWC_otg controller
925  * @chan:  Identifies the host channel to clean up
926  *
927  * This function is normally called after a transfer is done and the host
928  * channel is being released
929  */
930 void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
931 {
932         u32 hcintmsk;
933
934         chan->xfer_started = 0;
935
936         list_del_init(&chan->split_order_list_entry);
937
938         /*
939          * Clear channel interrupt enables and any unhandled channel interrupt
940          * conditions
941          */
942         dwc2_writel(hsotg, 0, HCINTMSK(chan->hc_num));
943         hcintmsk = 0xffffffff;
944         hcintmsk &= ~HCINTMSK_RESERVED14_31;
945         dwc2_writel(hsotg, hcintmsk, HCINT(chan->hc_num));
946 }
947
948 /**
949  * dwc2_hc_set_even_odd_frame() - Sets the channel property that indicates in
950  * which frame a periodic transfer should occur
951  *
952  * @hsotg:  Programming view of DWC_otg controller
953  * @chan:   Identifies the host channel to set up and its properties
954  * @hcchar: Current value of the HCCHAR register for the specified host channel
955  *
956  * This function has no effect on non-periodic transfers
957  */
958 static void dwc2_hc_set_even_odd_frame(struct dwc2_hsotg *hsotg,
959                                        struct dwc2_host_chan *chan, u32 *hcchar)
960 {
961         if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
962             chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
963                 int host_speed;
964                 int xfer_ns;
965                 int xfer_us;
966                 int bytes_in_fifo;
967                 u16 fifo_space;
968                 u16 frame_number;
969                 u16 wire_frame;
970
971                 /*
972                  * Try to figure out if we're an even or odd frame. If we set
973                  * even and the current frame number is even the transfer
974                  * will happen immediately.  Similar if both are odd. If one is
975                  * even and the other is odd then the transfer will happen when
976                  * the frame number ticks.
977                  *
978                  * There's a bit of a balancing act to get this right.
979                  * Sometimes we may want to send data in the current frame (AK
980                  * right away).  We might want to do this if the frame number
981                  * _just_ ticked, but we might also want to do this in order
982                  * to continue a split transaction that happened late in a
983                  * microframe (so we didn't know to queue the next transfer
984                  * until the frame number had ticked).  The problem is that we
985                  * need a lot of knowledge to know if there's actually still
986                  * time to send things or if it would be better to wait until
987                  * the next frame.
988                  *
989                  * We can look at how much time is left in the current frame
990                  * and make a guess about whether we'll have time to transfer.
991                  * We'll do that.
992                  */
993
994                 /* Get speed host is running at */
995                 host_speed = (chan->speed != USB_SPEED_HIGH &&
996                               !chan->do_split) ? chan->speed : USB_SPEED_HIGH;
997
998                 /* See how many bytes are in the periodic FIFO right now */
999                 fifo_space = (dwc2_readl(hsotg, HPTXSTS) &
1000                               TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT;
1001                 bytes_in_fifo = sizeof(u32) *
1002                                 (hsotg->params.host_perio_tx_fifo_size -
1003                                  fifo_space);
1004
1005                 /*
1006                  * Roughly estimate bus time for everything in the periodic
1007                  * queue + our new transfer.  This is "rough" because we're
1008                  * using a function that makes takes into account IN/OUT
1009                  * and INT/ISO and we're just slamming in one value for all
1010                  * transfers.  This should be an over-estimate and that should
1011                  * be OK, but we can probably tighten it.
1012                  */
1013                 xfer_ns = usb_calc_bus_time(host_speed, false, false,
1014                                             chan->xfer_len + bytes_in_fifo);
1015                 xfer_us = NS_TO_US(xfer_ns);
1016
1017                 /* See what frame number we'll be at by the time we finish */
1018                 frame_number = dwc2_hcd_get_future_frame_number(hsotg, xfer_us);
1019
1020                 /* This is when we were scheduled to be on the wire */
1021                 wire_frame = dwc2_frame_num_inc(chan->qh->next_active_frame, 1);
1022
1023                 /*
1024                  * If we'd finish _after_ the frame we're scheduled in then
1025                  * it's hopeless.  Just schedule right away and hope for the
1026                  * best.  Note that it _might_ be wise to call back into the
1027                  * scheduler to pick a better frame, but this is better than
1028                  * nothing.
1029                  */
1030                 if (dwc2_frame_num_gt(frame_number, wire_frame)) {
1031                         dwc2_sch_vdbg(hsotg,
1032                                       "QH=%p EO MISS fr=%04x=>%04x (%+d)\n",
1033                                       chan->qh, wire_frame, frame_number,
1034                                       dwc2_frame_num_dec(frame_number,
1035                                                          wire_frame));
1036                         wire_frame = frame_number;
1037
1038                         /*
1039                          * We picked a different frame number; communicate this
1040                          * back to the scheduler so it doesn't try to schedule
1041                          * another in the same frame.
1042                          *
1043                          * Remember that next_active_frame is 1 before the wire
1044                          * frame.
1045                          */
1046                         chan->qh->next_active_frame =
1047                                 dwc2_frame_num_dec(frame_number, 1);
1048                 }
1049
1050                 if (wire_frame & 1)
1051                         *hcchar |= HCCHAR_ODDFRM;
1052                 else
1053                         *hcchar &= ~HCCHAR_ODDFRM;
1054         }
1055 }
1056
1057 static void dwc2_set_pid_isoc(struct dwc2_host_chan *chan)
1058 {
1059         /* Set up the initial PID for the transfer */
1060         if (chan->speed == USB_SPEED_HIGH) {
1061                 if (chan->ep_is_in) {
1062                         if (chan->multi_count == 1)
1063                                 chan->data_pid_start = DWC2_HC_PID_DATA0;
1064                         else if (chan->multi_count == 2)
1065                                 chan->data_pid_start = DWC2_HC_PID_DATA1;
1066                         else
1067                                 chan->data_pid_start = DWC2_HC_PID_DATA2;
1068                 } else {
1069                         if (chan->multi_count == 1)
1070                                 chan->data_pid_start = DWC2_HC_PID_DATA0;
1071                         else
1072                                 chan->data_pid_start = DWC2_HC_PID_MDATA;
1073                 }
1074         } else {
1075                 chan->data_pid_start = DWC2_HC_PID_DATA0;
1076         }
1077 }
1078
1079 /**
1080  * dwc2_hc_write_packet() - Writes a packet into the Tx FIFO associated with
1081  * the Host Channel
1082  *
1083  * @hsotg: Programming view of DWC_otg controller
1084  * @chan:  Information needed to initialize the host channel
1085  *
1086  * This function should only be called in Slave mode. For a channel associated
1087  * with a non-periodic EP, the non-periodic Tx FIFO is written. For a channel
1088  * associated with a periodic EP, the periodic Tx FIFO is written.
1089  *
1090  * Upon return the xfer_buf and xfer_count fields in chan are incremented by
1091  * the number of bytes written to the Tx FIFO.
1092  */
1093 static void dwc2_hc_write_packet(struct dwc2_hsotg *hsotg,
1094                                  struct dwc2_host_chan *chan)
1095 {
1096         u32 i;
1097         u32 remaining_count;
1098         u32 byte_count;
1099         u32 dword_count;
1100         u32 *data_buf = (u32 *)chan->xfer_buf;
1101
1102         if (dbg_hc(chan))
1103                 dev_vdbg(hsotg->dev, "%s()\n", __func__);
1104
1105         remaining_count = chan->xfer_len - chan->xfer_count;
1106         if (remaining_count > chan->max_packet)
1107                 byte_count = chan->max_packet;
1108         else
1109                 byte_count = remaining_count;
1110
1111         dword_count = (byte_count + 3) / 4;
1112
1113         if (((unsigned long)data_buf & 0x3) == 0) {
1114                 /* xfer_buf is DWORD aligned */
1115                 for (i = 0; i < dword_count; i++, data_buf++)
1116                         dwc2_writel(hsotg, *data_buf, HCFIFO(chan->hc_num));
1117         } else {
1118                 /* xfer_buf is not DWORD aligned */
1119                 for (i = 0; i < dword_count; i++, data_buf++) {
1120                         u32 data = data_buf[0] | data_buf[1] << 8 |
1121                                    data_buf[2] << 16 | data_buf[3] << 24;
1122                         dwc2_writel(hsotg, data, HCFIFO(chan->hc_num));
1123                 }
1124         }
1125
1126         chan->xfer_count += byte_count;
1127         chan->xfer_buf += byte_count;
1128 }
1129
1130 /**
1131  * dwc2_hc_do_ping() - Starts a PING transfer
1132  *
1133  * @hsotg: Programming view of DWC_otg controller
1134  * @chan:  Information needed to initialize the host channel
1135  *
1136  * This function should only be called in Slave mode. The Do Ping bit is set in
1137  * the HCTSIZ register, then the channel is enabled.
1138  */
1139 static void dwc2_hc_do_ping(struct dwc2_hsotg *hsotg,
1140                             struct dwc2_host_chan *chan)
1141 {
1142         u32 hcchar;
1143         u32 hctsiz;
1144
1145         if (dbg_hc(chan))
1146                 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1147                          chan->hc_num);
1148
1149         hctsiz = TSIZ_DOPNG;
1150         hctsiz |= 1 << TSIZ_PKTCNT_SHIFT;
1151         dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1152
1153         hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1154         hcchar |= HCCHAR_CHENA;
1155         hcchar &= ~HCCHAR_CHDIS;
1156         dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1157 }
1158
1159 /**
1160  * dwc2_hc_start_transfer() - Does the setup for a data transfer for a host
1161  * channel and starts the transfer
1162  *
1163  * @hsotg: Programming view of DWC_otg controller
1164  * @chan:  Information needed to initialize the host channel. The xfer_len value
1165  *         may be reduced to accommodate the max widths of the XferSize and
1166  *         PktCnt fields in the HCTSIZn register. The multi_count value may be
1167  *         changed to reflect the final xfer_len value.
1168  *
1169  * This function may be called in either Slave mode or DMA mode. In Slave mode,
1170  * the caller must ensure that there is sufficient space in the request queue
1171  * and Tx Data FIFO.
1172  *
1173  * For an OUT transfer in Slave mode, it loads a data packet into the
1174  * appropriate FIFO. If necessary, additional data packets are loaded in the
1175  * Host ISR.
1176  *
1177  * For an IN transfer in Slave mode, a data packet is requested. The data
1178  * packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
1179  * additional data packets are requested in the Host ISR.
1180  *
1181  * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
1182  * register along with a packet count of 1 and the channel is enabled. This
1183  * causes a single PING transaction to occur. Other fields in HCTSIZ are
1184  * simply set to 0 since no data transfer occurs in this case.
1185  *
1186  * For a PING transfer in DMA mode, the HCTSIZ register is initialized with
1187  * all the information required to perform the subsequent data transfer. In
1188  * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
1189  * controller performs the entire PING protocol, then starts the data
1190  * transfer.
1191  */
1192 static void dwc2_hc_start_transfer(struct dwc2_hsotg *hsotg,
1193                                    struct dwc2_host_chan *chan)
1194 {
1195         u32 max_hc_xfer_size = hsotg->params.max_transfer_size;
1196         u16 max_hc_pkt_count = hsotg->params.max_packet_count;
1197         u32 hcchar;
1198         u32 hctsiz = 0;
1199         u16 num_packets;
1200         u32 ec_mc;
1201
1202         if (dbg_hc(chan))
1203                 dev_vdbg(hsotg->dev, "%s()\n", __func__);
1204
1205         if (chan->do_ping) {
1206                 if (!hsotg->params.host_dma) {
1207                         if (dbg_hc(chan))
1208                                 dev_vdbg(hsotg->dev, "ping, no DMA\n");
1209                         dwc2_hc_do_ping(hsotg, chan);
1210                         chan->xfer_started = 1;
1211                         return;
1212                 }
1213
1214                 if (dbg_hc(chan))
1215                         dev_vdbg(hsotg->dev, "ping, DMA\n");
1216
1217                 hctsiz |= TSIZ_DOPNG;
1218         }
1219
1220         if (chan->do_split) {
1221                 if (dbg_hc(chan))
1222                         dev_vdbg(hsotg->dev, "split\n");
1223                 num_packets = 1;
1224
1225                 if (chan->complete_split && !chan->ep_is_in)
1226                         /*
1227                          * For CSPLIT OUT Transfer, set the size to 0 so the
1228                          * core doesn't expect any data written to the FIFO
1229                          */
1230                         chan->xfer_len = 0;
1231                 else if (chan->ep_is_in || chan->xfer_len > chan->max_packet)
1232                         chan->xfer_len = chan->max_packet;
1233                 else if (!chan->ep_is_in && chan->xfer_len > 188)
1234                         chan->xfer_len = 188;
1235
1236                 hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1237                           TSIZ_XFERSIZE_MASK;
1238
1239                 /* For split set ec_mc for immediate retries */
1240                 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1241                     chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1242                         ec_mc = 3;
1243                 else
1244                         ec_mc = 1;
1245         } else {
1246                 if (dbg_hc(chan))
1247                         dev_vdbg(hsotg->dev, "no split\n");
1248                 /*
1249                  * Ensure that the transfer length and packet count will fit
1250                  * in the widths allocated for them in the HCTSIZn register
1251                  */
1252                 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1253                     chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1254                         /*
1255                          * Make sure the transfer size is no larger than one
1256                          * (micro)frame's worth of data. (A check was done
1257                          * when the periodic transfer was accepted to ensure
1258                          * that a (micro)frame's worth of data can be
1259                          * programmed into a channel.)
1260                          */
1261                         u32 max_periodic_len =
1262                                 chan->multi_count * chan->max_packet;
1263
1264                         if (chan->xfer_len > max_periodic_len)
1265                                 chan->xfer_len = max_periodic_len;
1266                 } else if (chan->xfer_len > max_hc_xfer_size) {
1267                         /*
1268                          * Make sure that xfer_len is a multiple of max packet
1269                          * size
1270                          */
1271                         chan->xfer_len =
1272                                 max_hc_xfer_size - chan->max_packet + 1;
1273                 }
1274
1275                 if (chan->xfer_len > 0) {
1276                         num_packets = (chan->xfer_len + chan->max_packet - 1) /
1277                                         chan->max_packet;
1278                         if (num_packets > max_hc_pkt_count) {
1279                                 num_packets = max_hc_pkt_count;
1280                                 chan->xfer_len = num_packets * chan->max_packet;
1281                         } else if (chan->ep_is_in) {
1282                                 /*
1283                                  * Always program an integral # of max packets
1284                                  * for IN transfers.
1285                                  * Note: This assumes that the input buffer is
1286                                  * aligned and sized accordingly.
1287                                  */
1288                                 chan->xfer_len = num_packets * chan->max_packet;
1289                         }
1290                 } else {
1291                         /* Need 1 packet for transfer length of 0 */
1292                         num_packets = 1;
1293                 }
1294
1295                 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1296                     chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1297                         /*
1298                          * Make sure that the multi_count field matches the
1299                          * actual transfer length
1300                          */
1301                         chan->multi_count = num_packets;
1302
1303                 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1304                         dwc2_set_pid_isoc(chan);
1305
1306                 hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1307                           TSIZ_XFERSIZE_MASK;
1308
1309                 /* The ec_mc gets the multi_count for non-split */
1310                 ec_mc = chan->multi_count;
1311         }
1312
1313         chan->start_pkt_count = num_packets;
1314         hctsiz |= num_packets << TSIZ_PKTCNT_SHIFT & TSIZ_PKTCNT_MASK;
1315         hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1316                   TSIZ_SC_MC_PID_MASK;
1317         dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1318         if (dbg_hc(chan)) {
1319                 dev_vdbg(hsotg->dev, "Wrote %08x to HCTSIZ(%d)\n",
1320                          hctsiz, chan->hc_num);
1321
1322                 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1323                          chan->hc_num);
1324                 dev_vdbg(hsotg->dev, "   Xfer Size: %d\n",
1325                          (hctsiz & TSIZ_XFERSIZE_MASK) >>
1326                          TSIZ_XFERSIZE_SHIFT);
1327                 dev_vdbg(hsotg->dev, "   Num Pkts: %d\n",
1328                          (hctsiz & TSIZ_PKTCNT_MASK) >>
1329                          TSIZ_PKTCNT_SHIFT);
1330                 dev_vdbg(hsotg->dev, "   Start PID: %d\n",
1331                          (hctsiz & TSIZ_SC_MC_PID_MASK) >>
1332                          TSIZ_SC_MC_PID_SHIFT);
1333         }
1334
1335         if (hsotg->params.host_dma) {
1336                 dma_addr_t dma_addr;
1337
1338                 if (chan->align_buf) {
1339                         if (dbg_hc(chan))
1340                                 dev_vdbg(hsotg->dev, "align_buf\n");
1341                         dma_addr = chan->align_buf;
1342                 } else {
1343                         dma_addr = chan->xfer_dma;
1344                 }
1345                 dwc2_writel(hsotg, (u32)dma_addr, HCDMA(chan->hc_num));
1346
1347                 if (dbg_hc(chan))
1348                         dev_vdbg(hsotg->dev, "Wrote %08lx to HCDMA(%d)\n",
1349                                  (unsigned long)dma_addr, chan->hc_num);
1350         }
1351
1352         /* Start the split */
1353         if (chan->do_split) {
1354                 u32 hcsplt = dwc2_readl(hsotg, HCSPLT(chan->hc_num));
1355
1356                 hcsplt |= HCSPLT_SPLTENA;
1357                 dwc2_writel(hsotg, hcsplt, HCSPLT(chan->hc_num));
1358         }
1359
1360         hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1361         hcchar &= ~HCCHAR_MULTICNT_MASK;
1362         hcchar |= (ec_mc << HCCHAR_MULTICNT_SHIFT) & HCCHAR_MULTICNT_MASK;
1363         dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1364
1365         if (hcchar & HCCHAR_CHDIS)
1366                 dev_warn(hsotg->dev,
1367                          "%s: chdis set, channel %d, hcchar 0x%08x\n",
1368                          __func__, chan->hc_num, hcchar);
1369
1370         /* Set host channel enable after all other setup is complete */
1371         hcchar |= HCCHAR_CHENA;
1372         hcchar &= ~HCCHAR_CHDIS;
1373
1374         if (dbg_hc(chan))
1375                 dev_vdbg(hsotg->dev, "   Multi Cnt: %d\n",
1376                          (hcchar & HCCHAR_MULTICNT_MASK) >>
1377                          HCCHAR_MULTICNT_SHIFT);
1378
1379         dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1380         if (dbg_hc(chan))
1381                 dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1382                          chan->hc_num);
1383
1384         chan->xfer_started = 1;
1385         chan->requests++;
1386
1387         if (!hsotg->params.host_dma &&
1388             !chan->ep_is_in && chan->xfer_len > 0)
1389                 /* Load OUT packet into the appropriate Tx FIFO */
1390                 dwc2_hc_write_packet(hsotg, chan);
1391 }
1392
1393 /**
1394  * dwc2_hc_start_transfer_ddma() - Does the setup for a data transfer for a
1395  * host channel and starts the transfer in Descriptor DMA mode
1396  *
1397  * @hsotg: Programming view of DWC_otg controller
1398  * @chan:  Information needed to initialize the host channel
1399  *
1400  * Initializes HCTSIZ register. For a PING transfer the Do Ping bit is set.
1401  * Sets PID and NTD values. For periodic transfers initializes SCHED_INFO field
1402  * with micro-frame bitmap.
1403  *
1404  * Initializes HCDMA register with descriptor list address and CTD value then
1405  * starts the transfer via enabling the channel.
1406  */
1407 void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
1408                                  struct dwc2_host_chan *chan)
1409 {
1410         u32 hcchar;
1411         u32 hctsiz = 0;
1412
1413         if (chan->do_ping)
1414                 hctsiz |= TSIZ_DOPNG;
1415
1416         if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1417                 dwc2_set_pid_isoc(chan);
1418
1419         /* Packet Count and Xfer Size are not used in Descriptor DMA mode */
1420         hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1421                   TSIZ_SC_MC_PID_MASK;
1422
1423         /* 0 - 1 descriptor, 1 - 2 descriptors, etc */
1424         hctsiz |= (chan->ntd - 1) << TSIZ_NTD_SHIFT & TSIZ_NTD_MASK;
1425
1426         /* Non-zero only for high-speed interrupt endpoints */
1427         hctsiz |= chan->schinfo << TSIZ_SCHINFO_SHIFT & TSIZ_SCHINFO_MASK;
1428
1429         if (dbg_hc(chan)) {
1430                 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1431                          chan->hc_num);
1432                 dev_vdbg(hsotg->dev, "   Start PID: %d\n",
1433                          chan->data_pid_start);
1434                 dev_vdbg(hsotg->dev, "   NTD: %d\n", chan->ntd - 1);
1435         }
1436
1437         dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1438
1439         dma_sync_single_for_device(hsotg->dev, chan->desc_list_addr,
1440                                    chan->desc_list_sz, DMA_TO_DEVICE);
1441
1442         dwc2_writel(hsotg, chan->desc_list_addr, HCDMA(chan->hc_num));
1443
1444         if (dbg_hc(chan))
1445                 dev_vdbg(hsotg->dev, "Wrote %pad to HCDMA(%d)\n",
1446                          &chan->desc_list_addr, chan->hc_num);
1447
1448         hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1449         hcchar &= ~HCCHAR_MULTICNT_MASK;
1450         hcchar |= chan->multi_count << HCCHAR_MULTICNT_SHIFT &
1451                   HCCHAR_MULTICNT_MASK;
1452
1453         if (hcchar & HCCHAR_CHDIS)
1454                 dev_warn(hsotg->dev,
1455                          "%s: chdis set, channel %d, hcchar 0x%08x\n",
1456                          __func__, chan->hc_num, hcchar);
1457
1458         /* Set host channel enable after all other setup is complete */
1459         hcchar |= HCCHAR_CHENA;
1460         hcchar &= ~HCCHAR_CHDIS;
1461
1462         if (dbg_hc(chan))
1463                 dev_vdbg(hsotg->dev, "   Multi Cnt: %d\n",
1464                          (hcchar & HCCHAR_MULTICNT_MASK) >>
1465                          HCCHAR_MULTICNT_SHIFT);
1466
1467         dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1468         if (dbg_hc(chan))
1469                 dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1470                          chan->hc_num);
1471
1472         chan->xfer_started = 1;
1473         chan->requests++;
1474 }
1475
1476 /**
1477  * dwc2_hc_continue_transfer() - Continues a data transfer that was started by
1478  * a previous call to dwc2_hc_start_transfer()
1479  *
1480  * @hsotg: Programming view of DWC_otg controller
1481  * @chan:  Information needed to initialize the host channel
1482  *
1483  * The caller must ensure there is sufficient space in the request queue and Tx
1484  * Data FIFO. This function should only be called in Slave mode. In DMA mode,
1485  * the controller acts autonomously to complete transfers programmed to a host
1486  * channel.
1487  *
1488  * For an OUT transfer, a new data packet is loaded into the appropriate FIFO
1489  * if there is any data remaining to be queued. For an IN transfer, another
1490  * data packet is always requested. For the SETUP phase of a control transfer,
1491  * this function does nothing.
1492  *
1493  * Return: 1 if a new request is queued, 0 if no more requests are required
1494  * for this transfer
1495  */
1496 static int dwc2_hc_continue_transfer(struct dwc2_hsotg *hsotg,
1497                                      struct dwc2_host_chan *chan)
1498 {
1499         if (dbg_hc(chan))
1500                 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1501                          chan->hc_num);
1502
1503         if (chan->do_split)
1504                 /* SPLITs always queue just once per channel */
1505                 return 0;
1506
1507         if (chan->data_pid_start == DWC2_HC_PID_SETUP)
1508                 /* SETUPs are queued only once since they can't be NAK'd */
1509                 return 0;
1510
1511         if (chan->ep_is_in) {
1512                 /*
1513                  * Always queue another request for other IN transfers. If
1514                  * back-to-back INs are issued and NAKs are received for both,
1515                  * the driver may still be processing the first NAK when the
1516                  * second NAK is received. When the interrupt handler clears
1517                  * the NAK interrupt for the first NAK, the second NAK will
1518                  * not be seen. So we can't depend on the NAK interrupt
1519                  * handler to requeue a NAK'd request. Instead, IN requests
1520                  * are issued each time this function is called. When the
1521                  * transfer completes, the extra requests for the channel will
1522                  * be flushed.
1523                  */
1524                 u32 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1525
1526                 dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1527                 hcchar |= HCCHAR_CHENA;
1528                 hcchar &= ~HCCHAR_CHDIS;
1529                 if (dbg_hc(chan))
1530                         dev_vdbg(hsotg->dev, "   IN xfer: hcchar = 0x%08x\n",
1531                                  hcchar);
1532                 dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1533                 chan->requests++;
1534                 return 1;
1535         }
1536
1537         /* OUT transfers */
1538
1539         if (chan->xfer_count < chan->xfer_len) {
1540                 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1541                     chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1542                         u32 hcchar = dwc2_readl(hsotg,
1543                                                 HCCHAR(chan->hc_num));
1544
1545                         dwc2_hc_set_even_odd_frame(hsotg, chan,
1546                                                    &hcchar);
1547                 }
1548
1549                 /* Load OUT packet into the appropriate Tx FIFO */
1550                 dwc2_hc_write_packet(hsotg, chan);
1551                 chan->requests++;
1552                 return 1;
1553         }
1554
1555         return 0;
1556 }
1557
1558 /*
1559  * =========================================================================
1560  *  HCD
1561  * =========================================================================
1562  */
1563
1564 /*
1565  * Processes all the URBs in a single list of QHs. Completes them with
1566  * -ETIMEDOUT and frees the QTD.
1567  *
1568  * Must be called with interrupt disabled and spinlock held
1569  */
1570 static void dwc2_kill_urbs_in_qh_list(struct dwc2_hsotg *hsotg,
1571                                       struct list_head *qh_list)
1572 {
1573         struct dwc2_qh *qh, *qh_tmp;
1574         struct dwc2_qtd *qtd, *qtd_tmp;
1575
1576         list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1577                 list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1578                                          qtd_list_entry) {
1579                         dwc2_host_complete(hsotg, qtd, -ECONNRESET);
1580                         dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1581                 }
1582         }
1583 }
1584
1585 static void dwc2_qh_list_free(struct dwc2_hsotg *hsotg,
1586                               struct list_head *qh_list)
1587 {
1588         struct dwc2_qtd *qtd, *qtd_tmp;
1589         struct dwc2_qh *qh, *qh_tmp;
1590         unsigned long flags;
1591
1592         if (!qh_list->next)
1593                 /* The list hasn't been initialized yet */
1594                 return;
1595
1596         spin_lock_irqsave(&hsotg->lock, flags);
1597
1598         /* Ensure there are no QTDs or URBs left */
1599         dwc2_kill_urbs_in_qh_list(hsotg, qh_list);
1600
1601         list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1602                 dwc2_hcd_qh_unlink(hsotg, qh);
1603
1604                 /* Free each QTD in the QH's QTD list */
1605                 list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1606                                          qtd_list_entry)
1607                         dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1608
1609                 if (qh->channel && qh->channel->qh == qh)
1610                         qh->channel->qh = NULL;
1611
1612                 spin_unlock_irqrestore(&hsotg->lock, flags);
1613                 dwc2_hcd_qh_free(hsotg, qh);
1614                 spin_lock_irqsave(&hsotg->lock, flags);
1615         }
1616
1617         spin_unlock_irqrestore(&hsotg->lock, flags);
1618 }
1619
1620 /*
1621  * Responds with an error status of -ETIMEDOUT to all URBs in the non-periodic
1622  * and periodic schedules. The QTD associated with each URB is removed from
1623  * the schedule and freed. This function may be called when a disconnect is
1624  * detected or when the HCD is being stopped.
1625  *
1626  * Must be called with interrupt disabled and spinlock held
1627  */
1628 static void dwc2_kill_all_urbs(struct dwc2_hsotg *hsotg)
1629 {
1630         dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_inactive);
1631         dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_waiting);
1632         dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_active);
1633         dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_inactive);
1634         dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_ready);
1635         dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_assigned);
1636         dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_queued);
1637 }
1638
1639 /**
1640  * dwc2_hcd_start() - Starts the HCD when switching to Host mode
1641  *
1642  * @hsotg: Pointer to struct dwc2_hsotg
1643  */
1644 void dwc2_hcd_start(struct dwc2_hsotg *hsotg)
1645 {
1646         u32 hprt0;
1647
1648         if (hsotg->op_state == OTG_STATE_B_HOST) {
1649                 /*
1650                  * Reset the port. During a HNP mode switch the reset
1651                  * needs to occur within 1ms and have a duration of at
1652                  * least 50ms.
1653                  */
1654                 hprt0 = dwc2_read_hprt0(hsotg);
1655                 hprt0 |= HPRT0_RST;
1656                 dwc2_writel(hsotg, hprt0, HPRT0);
1657         }
1658
1659         queue_delayed_work(hsotg->wq_otg, &hsotg->start_work,
1660                            msecs_to_jiffies(50));
1661 }
1662
1663 /* Must be called with interrupt disabled and spinlock held */
1664 static void dwc2_hcd_cleanup_channels(struct dwc2_hsotg *hsotg)
1665 {
1666         int num_channels = hsotg->params.host_channels;
1667         struct dwc2_host_chan *channel;
1668         u32 hcchar;
1669         int i;
1670
1671         if (!hsotg->params.host_dma) {
1672                 /* Flush out any channel requests in slave mode */
1673                 for (i = 0; i < num_channels; i++) {
1674                         channel = hsotg->hc_ptr_array[i];
1675                         if (!list_empty(&channel->hc_list_entry))
1676                                 continue;
1677                         hcchar = dwc2_readl(hsotg, HCCHAR(i));
1678                         if (hcchar & HCCHAR_CHENA) {
1679                                 hcchar &= ~(HCCHAR_CHENA | HCCHAR_EPDIR);
1680                                 hcchar |= HCCHAR_CHDIS;
1681                                 dwc2_writel(hsotg, hcchar, HCCHAR(i));
1682                         }
1683                 }
1684         }
1685
1686         for (i = 0; i < num_channels; i++) {
1687                 channel = hsotg->hc_ptr_array[i];
1688                 if (!list_empty(&channel->hc_list_entry))
1689                         continue;
1690                 hcchar = dwc2_readl(hsotg, HCCHAR(i));
1691                 if (hcchar & HCCHAR_CHENA) {
1692                         /* Halt the channel */
1693                         hcchar |= HCCHAR_CHDIS;
1694                         dwc2_writel(hsotg, hcchar, HCCHAR(i));
1695                 }
1696
1697                 dwc2_hc_cleanup(hsotg, channel);
1698                 list_add_tail(&channel->hc_list_entry, &hsotg->free_hc_list);
1699                 /*
1700                  * Added for Descriptor DMA to prevent channel double cleanup in
1701                  * release_channel_ddma(), which is called from ep_disable when
1702                  * device disconnects
1703                  */
1704                 channel->qh = NULL;
1705         }
1706         /* All channels have been freed, mark them available */
1707         if (hsotg->params.uframe_sched) {
1708                 hsotg->available_host_channels =
1709                         hsotg->params.host_channels;
1710         } else {
1711                 hsotg->non_periodic_channels = 0;
1712                 hsotg->periodic_channels = 0;
1713         }
1714 }
1715
1716 /**
1717  * dwc2_hcd_connect() - Handles connect of the HCD
1718  *
1719  * @hsotg: Pointer to struct dwc2_hsotg
1720  *
1721  * Must be called with interrupt disabled and spinlock held
1722  */
1723 void dwc2_hcd_connect(struct dwc2_hsotg *hsotg)
1724 {
1725         if (hsotg->lx_state != DWC2_L0)
1726                 usb_hcd_resume_root_hub(hsotg->priv);
1727
1728         hsotg->flags.b.port_connect_status_change = 1;
1729         hsotg->flags.b.port_connect_status = 1;
1730 }
1731
1732 /**
1733  * dwc2_hcd_disconnect() - Handles disconnect of the HCD
1734  *
1735  * @hsotg: Pointer to struct dwc2_hsotg
1736  * @force: If true, we won't try to reconnect even if we see device connected.
1737  *
1738  * Must be called with interrupt disabled and spinlock held
1739  */
1740 void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force)
1741 {
1742         u32 intr;
1743         u32 hprt0;
1744
1745         /* Set status flags for the hub driver */
1746         hsotg->flags.b.port_connect_status_change = 1;
1747         hsotg->flags.b.port_connect_status = 0;
1748
1749         /*
1750          * Shutdown any transfers in process by clearing the Tx FIFO Empty
1751          * interrupt mask and status bits and disabling subsequent host
1752          * channel interrupts.
1753          */
1754         intr = dwc2_readl(hsotg, GINTMSK);
1755         intr &= ~(GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT);
1756         dwc2_writel(hsotg, intr, GINTMSK);
1757         intr = GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT;
1758         dwc2_writel(hsotg, intr, GINTSTS);
1759
1760         /*
1761          * Turn off the vbus power only if the core has transitioned to device
1762          * mode. If still in host mode, need to keep power on to detect a
1763          * reconnection.
1764          */
1765         if (dwc2_is_device_mode(hsotg)) {
1766                 if (hsotg->op_state != OTG_STATE_A_SUSPEND) {
1767                         dev_dbg(hsotg->dev, "Disconnect: PortPower off\n");
1768                         dwc2_writel(hsotg, 0, HPRT0);
1769                 }
1770
1771                 dwc2_disable_host_interrupts(hsotg);
1772         }
1773
1774         /* Respond with an error status to all URBs in the schedule */
1775         dwc2_kill_all_urbs(hsotg);
1776
1777         if (dwc2_is_host_mode(hsotg))
1778                 /* Clean up any host channels that were in use */
1779                 dwc2_hcd_cleanup_channels(hsotg);
1780
1781         dwc2_host_disconnect(hsotg);
1782
1783         /*
1784          * Add an extra check here to see if we're actually connected but
1785          * we don't have a detection interrupt pending.  This can happen if:
1786          *   1. hardware sees connect
1787          *   2. hardware sees disconnect
1788          *   3. hardware sees connect
1789          *   4. dwc2_port_intr() - clears connect interrupt
1790          *   5. dwc2_handle_common_intr() - calls here
1791          *
1792          * Without the extra check here we will end calling disconnect
1793          * and won't get any future interrupts to handle the connect.
1794          */
1795         if (!force) {
1796                 hprt0 = dwc2_readl(hsotg, HPRT0);
1797                 if (!(hprt0 & HPRT0_CONNDET) && (hprt0 & HPRT0_CONNSTS))
1798                         dwc2_hcd_connect(hsotg);
1799         }
1800 }
1801
1802 /**
1803  * dwc2_hcd_rem_wakeup() - Handles Remote Wakeup
1804  *
1805  * @hsotg: Pointer to struct dwc2_hsotg
1806  */
1807 static void dwc2_hcd_rem_wakeup(struct dwc2_hsotg *hsotg)
1808 {
1809         if (hsotg->bus_suspended) {
1810                 hsotg->flags.b.port_suspend_change = 1;
1811                 usb_hcd_resume_root_hub(hsotg->priv);
1812         }
1813
1814         if (hsotg->lx_state == DWC2_L1)
1815                 hsotg->flags.b.port_l1_change = 1;
1816 }
1817
1818 /**
1819  * dwc2_hcd_stop() - Halts the DWC_otg host mode operations in a clean manner
1820  *
1821  * @hsotg: Pointer to struct dwc2_hsotg
1822  *
1823  * Must be called with interrupt disabled and spinlock held
1824  */
1825 void dwc2_hcd_stop(struct dwc2_hsotg *hsotg)
1826 {
1827         dev_dbg(hsotg->dev, "DWC OTG HCD STOP\n");
1828
1829         /*
1830          * The root hub should be disconnected before this function is called.
1831          * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue)
1832          * and the QH lists (via ..._hcd_endpoint_disable).
1833          */
1834
1835         /* Turn off all host-specific interrupts */
1836         dwc2_disable_host_interrupts(hsotg);
1837
1838         /* Turn off the vbus power */
1839         dev_dbg(hsotg->dev, "PortPower off\n");
1840         dwc2_writel(hsotg, 0, HPRT0);
1841 }
1842
1843 /* Caller must hold driver lock */
1844 static int dwc2_hcd_urb_enqueue(struct dwc2_hsotg *hsotg,
1845                                 struct dwc2_hcd_urb *urb, struct dwc2_qh *qh,
1846                                 struct dwc2_qtd *qtd)
1847 {
1848         u32 intr_mask;
1849         int retval;
1850         int dev_speed;
1851
1852         if (!hsotg->flags.b.port_connect_status) {
1853                 /* No longer connected */
1854                 dev_err(hsotg->dev, "Not connected\n");
1855                 return -ENODEV;
1856         }
1857
1858         dev_speed = dwc2_host_get_speed(hsotg, urb->priv);
1859
1860         /* Some configurations cannot support LS traffic on a FS root port */
1861         if ((dev_speed == USB_SPEED_LOW) &&
1862             (hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED) &&
1863             (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI)) {
1864                 u32 hprt0 = dwc2_readl(hsotg, HPRT0);
1865                 u32 prtspd = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
1866
1867                 if (prtspd == HPRT0_SPD_FULL_SPEED)
1868                         return -ENODEV;
1869         }
1870
1871         if (!qtd)
1872                 return -EINVAL;
1873
1874         dwc2_hcd_qtd_init(qtd, urb);
1875         retval = dwc2_hcd_qtd_add(hsotg, qtd, qh);
1876         if (retval) {
1877                 dev_err(hsotg->dev,
1878                         "DWC OTG HCD URB Enqueue failed adding QTD. Error status %d\n",
1879                         retval);
1880                 return retval;
1881         }
1882
1883         intr_mask = dwc2_readl(hsotg, GINTMSK);
1884         if (!(intr_mask & GINTSTS_SOF)) {
1885                 enum dwc2_transaction_type tr_type;
1886
1887                 if (qtd->qh->ep_type == USB_ENDPOINT_XFER_BULK &&
1888                     !(qtd->urb->flags & URB_GIVEBACK_ASAP))
1889                         /*
1890                          * Do not schedule SG transactions until qtd has
1891                          * URB_GIVEBACK_ASAP set
1892                          */
1893                         return 0;
1894
1895                 tr_type = dwc2_hcd_select_transactions(hsotg);
1896                 if (tr_type != DWC2_TRANSACTION_NONE)
1897                         dwc2_hcd_queue_transactions(hsotg, tr_type);
1898         }
1899
1900         return 0;
1901 }
1902
1903 /* Must be called with interrupt disabled and spinlock held */
1904 static int dwc2_hcd_urb_dequeue(struct dwc2_hsotg *hsotg,
1905                                 struct dwc2_hcd_urb *urb)
1906 {
1907         struct dwc2_qh *qh;
1908         struct dwc2_qtd *urb_qtd;
1909
1910         urb_qtd = urb->qtd;
1911         if (!urb_qtd) {
1912                 dev_dbg(hsotg->dev, "## Urb QTD is NULL ##\n");
1913                 return -EINVAL;
1914         }
1915
1916         qh = urb_qtd->qh;
1917         if (!qh) {
1918                 dev_dbg(hsotg->dev, "## Urb QTD QH is NULL ##\n");
1919                 return -EINVAL;
1920         }
1921
1922         urb->priv = NULL;
1923
1924         if (urb_qtd->in_process && qh->channel) {
1925                 dwc2_dump_channel_info(hsotg, qh->channel);
1926
1927                 /* The QTD is in process (it has been assigned to a channel) */
1928                 if (hsotg->flags.b.port_connect_status)
1929                         /*
1930                          * If still connected (i.e. in host mode), halt the
1931                          * channel so it can be used for other transfers. If
1932                          * no longer connected, the host registers can't be
1933                          * written to halt the channel since the core is in
1934                          * device mode.
1935                          */
1936                         dwc2_hc_halt(hsotg, qh->channel,
1937                                      DWC2_HC_XFER_URB_DEQUEUE);
1938         }
1939
1940         /*
1941          * Free the QTD and clean up the associated QH. Leave the QH in the
1942          * schedule if it has any remaining QTDs.
1943          */
1944         if (!hsotg->params.dma_desc_enable) {
1945                 u8 in_process = urb_qtd->in_process;
1946
1947                 dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
1948                 if (in_process) {
1949                         dwc2_hcd_qh_deactivate(hsotg, qh, 0);
1950                         qh->channel = NULL;
1951                 } else if (list_empty(&qh->qtd_list)) {
1952                         dwc2_hcd_qh_unlink(hsotg, qh);
1953                 }
1954         } else {
1955                 dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
1956         }
1957
1958         return 0;
1959 }
1960
1961 /* Must NOT be called with interrupt disabled or spinlock held */
1962 static int dwc2_hcd_endpoint_disable(struct dwc2_hsotg *hsotg,
1963                                      struct usb_host_endpoint *ep, int retry)
1964 {
1965         struct dwc2_qtd *qtd, *qtd_tmp;
1966         struct dwc2_qh *qh;
1967         unsigned long flags;
1968         int rc;
1969
1970         spin_lock_irqsave(&hsotg->lock, flags);
1971
1972         qh = ep->hcpriv;
1973         if (!qh) {
1974                 rc = -EINVAL;
1975                 goto err;
1976         }
1977
1978         while (!list_empty(&qh->qtd_list) && retry--) {
1979                 if (retry == 0) {
1980                         dev_err(hsotg->dev,
1981                                 "## timeout in dwc2_hcd_endpoint_disable() ##\n");
1982                         rc = -EBUSY;
1983                         goto err;
1984                 }
1985
1986                 spin_unlock_irqrestore(&hsotg->lock, flags);
1987                 msleep(20);
1988                 spin_lock_irqsave(&hsotg->lock, flags);
1989                 qh = ep->hcpriv;
1990                 if (!qh) {
1991                         rc = -EINVAL;
1992                         goto err;
1993                 }
1994         }
1995
1996         dwc2_hcd_qh_unlink(hsotg, qh);
1997
1998         /* Free each QTD in the QH's QTD list */
1999         list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, qtd_list_entry)
2000                 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
2001
2002         ep->hcpriv = NULL;
2003
2004         if (qh->channel && qh->channel->qh == qh)
2005                 qh->channel->qh = NULL;
2006
2007         spin_unlock_irqrestore(&hsotg->lock, flags);
2008
2009         dwc2_hcd_qh_free(hsotg, qh);
2010
2011         return 0;
2012
2013 err:
2014         ep->hcpriv = NULL;
2015         spin_unlock_irqrestore(&hsotg->lock, flags);
2016
2017         return rc;
2018 }
2019
2020 /* Must be called with interrupt disabled and spinlock held */
2021 static int dwc2_hcd_endpoint_reset(struct dwc2_hsotg *hsotg,
2022                                    struct usb_host_endpoint *ep)
2023 {
2024         struct dwc2_qh *qh = ep->hcpriv;
2025
2026         if (!qh)
2027                 return -EINVAL;
2028
2029         qh->data_toggle = DWC2_HC_PID_DATA0;
2030
2031         return 0;
2032 }
2033
2034 /**
2035  * dwc2_core_init() - Initializes the DWC_otg controller registers and
2036  * prepares the core for device mode or host mode operation
2037  *
2038  * @hsotg:         Programming view of the DWC_otg controller
2039  * @initial_setup: If true then this is the first init for this instance.
2040  */
2041 int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup)
2042 {
2043         u32 usbcfg, otgctl;
2044         int retval;
2045
2046         dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2047
2048         usbcfg = dwc2_readl(hsotg, GUSBCFG);
2049
2050         /* Set ULPI External VBUS bit if needed */
2051         usbcfg &= ~GUSBCFG_ULPI_EXT_VBUS_DRV;
2052         if (hsotg->params.phy_ulpi_ext_vbus)
2053                 usbcfg |= GUSBCFG_ULPI_EXT_VBUS_DRV;
2054
2055         /* Set external TS Dline pulsing bit if needed */
2056         usbcfg &= ~GUSBCFG_TERMSELDLPULSE;
2057         if (hsotg->params.ts_dline)
2058                 usbcfg |= GUSBCFG_TERMSELDLPULSE;
2059
2060         dwc2_writel(hsotg, usbcfg, GUSBCFG);
2061
2062         /*
2063          * Reset the Controller
2064          *
2065          * We only need to reset the controller if this is a re-init.
2066          * For the first init we know for sure that earlier code reset us (it
2067          * needed to in order to properly detect various parameters).
2068          */
2069         if (!initial_setup) {
2070                 retval = dwc2_core_reset(hsotg, false);
2071                 if (retval) {
2072                         dev_err(hsotg->dev, "%s(): Reset failed, aborting\n",
2073                                 __func__);
2074                         return retval;
2075                 }
2076         }
2077
2078         /*
2079          * This needs to happen in FS mode before any other programming occurs
2080          */
2081         retval = dwc2_phy_init(hsotg, initial_setup);
2082         if (retval)
2083                 return retval;
2084
2085         /* Program the GAHBCFG Register */
2086         retval = dwc2_gahbcfg_init(hsotg);
2087         if (retval)
2088                 return retval;
2089
2090         /* Program the GUSBCFG register */
2091         dwc2_gusbcfg_init(hsotg);
2092
2093         /* Program the GOTGCTL register */
2094         otgctl = dwc2_readl(hsotg, GOTGCTL);
2095         otgctl &= ~GOTGCTL_OTGVER;
2096         dwc2_writel(hsotg, otgctl, GOTGCTL);
2097
2098         /* Clear the SRP success bit for FS-I2c */
2099         hsotg->srp_success = 0;
2100
2101         /* Enable common interrupts */
2102         dwc2_enable_common_interrupts(hsotg);
2103
2104         /*
2105          * Do device or host initialization based on mode during PCD and
2106          * HCD initialization
2107          */
2108         if (dwc2_is_host_mode(hsotg)) {
2109                 dev_dbg(hsotg->dev, "Host Mode\n");
2110                 hsotg->op_state = OTG_STATE_A_HOST;
2111         } else {
2112                 dev_dbg(hsotg->dev, "Device Mode\n");
2113                 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
2114         }
2115
2116         return 0;
2117 }
2118
2119 /**
2120  * dwc2_core_host_init() - Initializes the DWC_otg controller registers for
2121  * Host mode
2122  *
2123  * @hsotg: Programming view of DWC_otg controller
2124  *
2125  * This function flushes the Tx and Rx FIFOs and flushes any entries in the
2126  * request queues. Host channels are reset to ensure that they are ready for
2127  * performing transfers.
2128  */
2129 static void dwc2_core_host_init(struct dwc2_hsotg *hsotg)
2130 {
2131         u32 hcfg, hfir, otgctl, usbcfg;
2132
2133         dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2134
2135         /* Set HS/FS Timeout Calibration to 7 (max available value).
2136          * The number of PHY clocks that the application programs in
2137          * this field is added to the high/full speed interpacket timeout
2138          * duration in the core to account for any additional delays
2139          * introduced by the PHY. This can be required, because the delay
2140          * introduced by the PHY in generating the linestate condition
2141          * can vary from one PHY to another.
2142          */
2143         usbcfg = dwc2_readl(hsotg, GUSBCFG);
2144         usbcfg |= GUSBCFG_TOUTCAL(7);
2145         dwc2_writel(hsotg, usbcfg, GUSBCFG);
2146
2147         /* Restart the Phy Clock */
2148         dwc2_writel(hsotg, 0, PCGCTL);
2149
2150         /* Initialize Host Configuration Register */
2151         dwc2_init_fs_ls_pclk_sel(hsotg);
2152         if (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
2153             hsotg->params.speed == DWC2_SPEED_PARAM_LOW) {
2154                 hcfg = dwc2_readl(hsotg, HCFG);
2155                 hcfg |= HCFG_FSLSSUPP;
2156                 dwc2_writel(hsotg, hcfg, HCFG);
2157         }
2158
2159         /*
2160          * This bit allows dynamic reloading of the HFIR register during
2161          * runtime. This bit needs to be programmed during initial configuration
2162          * and its value must not be changed during runtime.
2163          */
2164         if (hsotg->params.reload_ctl) {
2165                 hfir = dwc2_readl(hsotg, HFIR);
2166                 hfir |= HFIR_RLDCTRL;
2167                 dwc2_writel(hsotg, hfir, HFIR);
2168         }
2169
2170         if (hsotg->params.dma_desc_enable) {
2171                 u32 op_mode = hsotg->hw_params.op_mode;
2172
2173                 if (hsotg->hw_params.snpsid < DWC2_CORE_REV_2_90a ||
2174                     !hsotg->hw_params.dma_desc_enable ||
2175                     op_mode == GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE ||
2176                     op_mode == GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE ||
2177                     op_mode == GHWCFG2_OP_MODE_UNDEFINED) {
2178                         dev_err(hsotg->dev,
2179                                 "Hardware does not support descriptor DMA mode -\n");
2180                         dev_err(hsotg->dev,
2181                                 "falling back to buffer DMA mode.\n");
2182                         hsotg->params.dma_desc_enable = false;
2183                 } else {
2184                         hcfg = dwc2_readl(hsotg, HCFG);
2185                         hcfg |= HCFG_DESCDMA;
2186                         dwc2_writel(hsotg, hcfg, HCFG);
2187                 }
2188         }
2189
2190         /* Configure data FIFO sizes */
2191         dwc2_config_fifos(hsotg);
2192
2193         /* TODO - check this */
2194         /* Clear Host Set HNP Enable in the OTG Control Register */
2195         otgctl = dwc2_readl(hsotg, GOTGCTL);
2196         otgctl &= ~GOTGCTL_HSTSETHNPEN;
2197         dwc2_writel(hsotg, otgctl, GOTGCTL);
2198
2199         /* Make sure the FIFOs are flushed */
2200         dwc2_flush_tx_fifo(hsotg, 0x10 /* all TX FIFOs */);
2201         dwc2_flush_rx_fifo(hsotg);
2202
2203         /* Clear Host Set HNP Enable in the OTG Control Register */
2204         otgctl = dwc2_readl(hsotg, GOTGCTL);
2205         otgctl &= ~GOTGCTL_HSTSETHNPEN;
2206         dwc2_writel(hsotg, otgctl, GOTGCTL);
2207
2208         if (!hsotg->params.dma_desc_enable) {
2209                 int num_channels, i;
2210                 u32 hcchar;
2211
2212                 /* Flush out any leftover queued requests */
2213                 num_channels = hsotg->params.host_channels;
2214                 for (i = 0; i < num_channels; i++) {
2215                         hcchar = dwc2_readl(hsotg, HCCHAR(i));
2216                         if (hcchar & HCCHAR_CHENA) {
2217                                 hcchar &= ~HCCHAR_CHENA;
2218                                 hcchar |= HCCHAR_CHDIS;
2219                                 hcchar &= ~HCCHAR_EPDIR;
2220                                 dwc2_writel(hsotg, hcchar, HCCHAR(i));
2221                         }
2222                 }
2223
2224                 /* Halt all channels to put them into a known state */
2225                 for (i = 0; i < num_channels; i++) {
2226                         hcchar = dwc2_readl(hsotg, HCCHAR(i));
2227                         if (hcchar & HCCHAR_CHENA) {
2228                                 hcchar |= HCCHAR_CHENA | HCCHAR_CHDIS;
2229                                 hcchar &= ~HCCHAR_EPDIR;
2230                                 dwc2_writel(hsotg, hcchar, HCCHAR(i));
2231                                 dev_dbg(hsotg->dev, "%s: Halt channel %d\n",
2232                                         __func__, i);
2233
2234                                 if (dwc2_hsotg_wait_bit_clear(hsotg, HCCHAR(i),
2235                                                               HCCHAR_CHENA,
2236                                                               1000)) {
2237                                         dev_warn(hsotg->dev,
2238                                                  "Unable to clear enable on channel %d\n",
2239                                                  i);
2240                                 }
2241                         }
2242                 }
2243         }
2244
2245         /* Enable ACG feature in host mode, if supported */
2246         dwc2_enable_acg(hsotg);
2247
2248         /* Turn on the vbus power */
2249         dev_dbg(hsotg->dev, "Init: Port Power? op_state=%d\n", hsotg->op_state);
2250         if (hsotg->op_state == OTG_STATE_A_HOST) {
2251                 u32 hprt0 = dwc2_read_hprt0(hsotg);
2252
2253                 dev_dbg(hsotg->dev, "Init: Power Port (%d)\n",
2254                         !!(hprt0 & HPRT0_PWR));
2255                 if (!(hprt0 & HPRT0_PWR)) {
2256                         hprt0 |= HPRT0_PWR;
2257                         dwc2_writel(hsotg, hprt0, HPRT0);
2258                 }
2259         }
2260
2261         dwc2_enable_host_interrupts(hsotg);
2262 }
2263
2264 /*
2265  * Initializes dynamic portions of the DWC_otg HCD state
2266  *
2267  * Must be called with interrupt disabled and spinlock held
2268  */
2269 static void dwc2_hcd_reinit(struct dwc2_hsotg *hsotg)
2270 {
2271         struct dwc2_host_chan *chan, *chan_tmp;
2272         int num_channels;
2273         int i;
2274
2275         hsotg->flags.d32 = 0;
2276         hsotg->non_periodic_qh_ptr = &hsotg->non_periodic_sched_active;
2277
2278         if (hsotg->params.uframe_sched) {
2279                 hsotg->available_host_channels =
2280                         hsotg->params.host_channels;
2281         } else {
2282                 hsotg->non_periodic_channels = 0;
2283                 hsotg->periodic_channels = 0;
2284         }
2285
2286         /*
2287          * Put all channels in the free channel list and clean up channel
2288          * states
2289          */
2290         list_for_each_entry_safe(chan, chan_tmp, &hsotg->free_hc_list,
2291                                  hc_list_entry)
2292                 list_del_init(&chan->hc_list_entry);
2293
2294         num_channels = hsotg->params.host_channels;
2295         for (i = 0; i < num_channels; i++) {
2296                 chan = hsotg->hc_ptr_array[i];
2297                 list_add_tail(&chan->hc_list_entry, &hsotg->free_hc_list);
2298                 dwc2_hc_cleanup(hsotg, chan);
2299         }
2300
2301         /* Initialize the DWC core for host mode operation */
2302         dwc2_core_host_init(hsotg);
2303 }
2304
2305 static void dwc2_hc_init_split(struct dwc2_hsotg *hsotg,
2306                                struct dwc2_host_chan *chan,
2307                                struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb)
2308 {
2309         int hub_addr, hub_port;
2310
2311         chan->do_split = 1;
2312         chan->xact_pos = qtd->isoc_split_pos;
2313         chan->complete_split = qtd->complete_split;
2314         dwc2_host_hub_info(hsotg, urb->priv, &hub_addr, &hub_port);
2315         chan->hub_addr = (u8)hub_addr;
2316         chan->hub_port = (u8)hub_port;
2317 }
2318
2319 static void dwc2_hc_init_xfer(struct dwc2_hsotg *hsotg,
2320                               struct dwc2_host_chan *chan,
2321                               struct dwc2_qtd *qtd)
2322 {
2323         struct dwc2_hcd_urb *urb = qtd->urb;
2324         struct dwc2_hcd_iso_packet_desc *frame_desc;
2325
2326         switch (dwc2_hcd_get_pipe_type(&urb->pipe_info)) {
2327         case USB_ENDPOINT_XFER_CONTROL:
2328                 chan->ep_type = USB_ENDPOINT_XFER_CONTROL;
2329
2330                 switch (qtd->control_phase) {
2331                 case DWC2_CONTROL_SETUP:
2332                         dev_vdbg(hsotg->dev, "  Control setup transaction\n");
2333                         chan->do_ping = 0;
2334                         chan->ep_is_in = 0;
2335                         chan->data_pid_start = DWC2_HC_PID_SETUP;
2336                         if (hsotg->params.host_dma)
2337                                 chan->xfer_dma = urb->setup_dma;
2338                         else
2339                                 chan->xfer_buf = urb->setup_packet;
2340                         chan->xfer_len = 8;
2341                         break;
2342
2343                 case DWC2_CONTROL_DATA:
2344                         dev_vdbg(hsotg->dev, "  Control data transaction\n");
2345                         chan->data_pid_start = qtd->data_toggle;
2346                         break;
2347
2348                 case DWC2_CONTROL_STATUS:
2349                         /*
2350                          * Direction is opposite of data direction or IN if no
2351                          * data
2352                          */
2353                         dev_vdbg(hsotg->dev, "  Control status transaction\n");
2354                         if (urb->length == 0)
2355                                 chan->ep_is_in = 1;
2356                         else
2357                                 chan->ep_is_in =
2358                                         dwc2_hcd_is_pipe_out(&urb->pipe_info);
2359                         if (chan->ep_is_in)
2360                                 chan->do_ping = 0;
2361                         chan->data_pid_start = DWC2_HC_PID_DATA1;
2362                         chan->xfer_len = 0;
2363                         if (hsotg->params.host_dma)
2364                                 chan->xfer_dma = hsotg->status_buf_dma;
2365                         else
2366                                 chan->xfer_buf = hsotg->status_buf;
2367                         break;
2368                 }
2369                 break;
2370
2371         case USB_ENDPOINT_XFER_BULK:
2372                 chan->ep_type = USB_ENDPOINT_XFER_BULK;
2373                 break;
2374
2375         case USB_ENDPOINT_XFER_INT:
2376                 chan->ep_type = USB_ENDPOINT_XFER_INT;
2377                 break;
2378
2379         case USB_ENDPOINT_XFER_ISOC:
2380                 chan->ep_type = USB_ENDPOINT_XFER_ISOC;
2381                 if (hsotg->params.dma_desc_enable)
2382                         break;
2383
2384                 frame_desc = &urb->iso_descs[qtd->isoc_frame_index];
2385                 frame_desc->status = 0;
2386
2387                 if (hsotg->params.host_dma) {
2388                         chan->xfer_dma = urb->dma;
2389                         chan->xfer_dma += frame_desc->offset +
2390                                         qtd->isoc_split_offset;
2391                 } else {
2392                         chan->xfer_buf = urb->buf;
2393                         chan->xfer_buf += frame_desc->offset +
2394                                         qtd->isoc_split_offset;
2395                 }
2396
2397                 chan->xfer_len = frame_desc->length - qtd->isoc_split_offset;
2398
2399                 if (chan->xact_pos == DWC2_HCSPLT_XACTPOS_ALL) {
2400                         if (chan->xfer_len <= 188)
2401                                 chan->xact_pos = DWC2_HCSPLT_XACTPOS_ALL;
2402                         else
2403                                 chan->xact_pos = DWC2_HCSPLT_XACTPOS_BEGIN;
2404                 }
2405                 break;
2406         }
2407 }
2408
2409 static int dwc2_alloc_split_dma_aligned_buf(struct dwc2_hsotg *hsotg,
2410                                             struct dwc2_qh *qh,
2411                                             struct dwc2_host_chan *chan)
2412 {
2413         if (!hsotg->unaligned_cache ||
2414             chan->max_packet > DWC2_KMEM_UNALIGNED_BUF_SIZE)
2415                 return -ENOMEM;
2416
2417         if (!qh->dw_align_buf) {
2418                 qh->dw_align_buf = kmem_cache_alloc(hsotg->unaligned_cache,
2419                                                     GFP_ATOMIC | GFP_DMA);
2420                 if (!qh->dw_align_buf)
2421                         return -ENOMEM;
2422         }
2423
2424         qh->dw_align_buf_dma = dma_map_single(hsotg->dev, qh->dw_align_buf,
2425                                               DWC2_KMEM_UNALIGNED_BUF_SIZE,
2426                                               DMA_FROM_DEVICE);
2427
2428         if (dma_mapping_error(hsotg->dev, qh->dw_align_buf_dma)) {
2429                 dev_err(hsotg->dev, "can't map align_buf\n");
2430                 chan->align_buf = 0;
2431                 return -EINVAL;
2432         }
2433
2434         chan->align_buf = qh->dw_align_buf_dma;
2435         return 0;
2436 }
2437
2438 #define DWC2_USB_DMA_ALIGN 4
2439
2440 static void dwc2_free_dma_aligned_buffer(struct urb *urb)
2441 {
2442         void *stored_xfer_buffer;
2443         size_t length;
2444
2445         if (!(urb->transfer_flags & URB_ALIGNED_TEMP_BUFFER))
2446                 return;
2447
2448         /* Restore urb->transfer_buffer from the end of the allocated area */
2449         memcpy(&stored_xfer_buffer,
2450                PTR_ALIGN(urb->transfer_buffer + urb->transfer_buffer_length,
2451                          dma_get_cache_alignment()),
2452                sizeof(urb->transfer_buffer));
2453
2454         if (usb_urb_dir_in(urb)) {
2455                 if (usb_pipeisoc(urb->pipe))
2456                         length = urb->transfer_buffer_length;
2457                 else
2458                         length = urb->actual_length;
2459
2460                 memcpy(stored_xfer_buffer, urb->transfer_buffer, length);
2461         }
2462         kfree(urb->transfer_buffer);
2463         urb->transfer_buffer = stored_xfer_buffer;
2464
2465         urb->transfer_flags &= ~URB_ALIGNED_TEMP_BUFFER;
2466 }
2467
2468 static int dwc2_alloc_dma_aligned_buffer(struct urb *urb, gfp_t mem_flags)
2469 {
2470         void *kmalloc_ptr;
2471         size_t kmalloc_size;
2472
2473         if (urb->num_sgs || urb->sg ||
2474             urb->transfer_buffer_length == 0 ||
2475             !((uintptr_t)urb->transfer_buffer & (DWC2_USB_DMA_ALIGN - 1)))
2476                 return 0;
2477
2478         /*
2479          * Allocate a buffer with enough padding for original transfer_buffer
2480          * pointer. This allocation is guaranteed to be aligned properly for
2481          * DMA
2482          */
2483         kmalloc_size = urb->transfer_buffer_length +
2484                 (dma_get_cache_alignment() - 1) +
2485                 sizeof(urb->transfer_buffer);
2486
2487         kmalloc_ptr = kmalloc(kmalloc_size, mem_flags);
2488         if (!kmalloc_ptr)
2489                 return -ENOMEM;
2490
2491         /*
2492          * Position value of original urb->transfer_buffer pointer to the end
2493          * of allocation for later referencing
2494          */
2495         memcpy(PTR_ALIGN(kmalloc_ptr + urb->transfer_buffer_length,
2496                          dma_get_cache_alignment()),
2497                &urb->transfer_buffer, sizeof(urb->transfer_buffer));
2498
2499         if (usb_urb_dir_out(urb))
2500                 memcpy(kmalloc_ptr, urb->transfer_buffer,
2501                        urb->transfer_buffer_length);
2502         urb->transfer_buffer = kmalloc_ptr;
2503
2504         urb->transfer_flags |= URB_ALIGNED_TEMP_BUFFER;
2505
2506         return 0;
2507 }
2508
2509 static int dwc2_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
2510                                 gfp_t mem_flags)
2511 {
2512         int ret;
2513
2514         /* We assume setup_dma is always aligned; warn if not */
2515         WARN_ON_ONCE(urb->setup_dma &&
2516                      (urb->setup_dma & (DWC2_USB_DMA_ALIGN - 1)));
2517
2518         ret = dwc2_alloc_dma_aligned_buffer(urb, mem_flags);
2519         if (ret)
2520                 return ret;
2521
2522         ret = usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
2523         if (ret)
2524                 dwc2_free_dma_aligned_buffer(urb);
2525
2526         return ret;
2527 }
2528
2529 static void dwc2_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
2530 {
2531         usb_hcd_unmap_urb_for_dma(hcd, urb);
2532         dwc2_free_dma_aligned_buffer(urb);
2533 }
2534
2535 /**
2536  * dwc2_assign_and_init_hc() - Assigns transactions from a QTD to a free host
2537  * channel and initializes the host channel to perform the transactions. The
2538  * host channel is removed from the free list.
2539  *
2540  * @hsotg: The HCD state structure
2541  * @qh:    Transactions from the first QTD for this QH are selected and assigned
2542  *         to a free host channel
2543  */
2544 static int dwc2_assign_and_init_hc(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
2545 {
2546         struct dwc2_host_chan *chan;
2547         struct dwc2_hcd_urb *urb;
2548         struct dwc2_qtd *qtd;
2549
2550         if (dbg_qh(qh))
2551                 dev_vdbg(hsotg->dev, "%s(%p,%p)\n", __func__, hsotg, qh);
2552
2553         if (list_empty(&qh->qtd_list)) {
2554                 dev_dbg(hsotg->dev, "No QTDs in QH list\n");
2555                 return -ENOMEM;
2556         }
2557
2558         if (list_empty(&hsotg->free_hc_list)) {
2559                 dev_dbg(hsotg->dev, "No free channel to assign\n");
2560                 return -ENOMEM;
2561         }
2562
2563         chan = list_first_entry(&hsotg->free_hc_list, struct dwc2_host_chan,
2564                                 hc_list_entry);
2565
2566         /* Remove host channel from free list */
2567         list_del_init(&chan->hc_list_entry);
2568
2569         qtd = list_first_entry(&qh->qtd_list, struct dwc2_qtd, qtd_list_entry);
2570         urb = qtd->urb;
2571         qh->channel = chan;
2572         qtd->in_process = 1;
2573
2574         /*
2575          * Use usb_pipedevice to determine device address. This address is
2576          * 0 before the SET_ADDRESS command and the correct address afterward.
2577          */
2578         chan->dev_addr = dwc2_hcd_get_dev_addr(&urb->pipe_info);
2579         chan->ep_num = dwc2_hcd_get_ep_num(&urb->pipe_info);
2580         chan->speed = qh->dev_speed;
2581         chan->max_packet = qh->maxp;
2582
2583         chan->xfer_started = 0;
2584         chan->halt_status = DWC2_HC_XFER_NO_HALT_STATUS;
2585         chan->error_state = (qtd->error_count > 0);
2586         chan->halt_on_queue = 0;
2587         chan->halt_pending = 0;
2588         chan->requests = 0;
2589
2590         /*
2591          * The following values may be modified in the transfer type section
2592          * below. The xfer_len value may be reduced when the transfer is
2593          * started to accommodate the max widths of the XferSize and PktCnt
2594          * fields in the HCTSIZn register.
2595          */
2596
2597         chan->ep_is_in = (dwc2_hcd_is_pipe_in(&urb->pipe_info) != 0);
2598         if (chan->ep_is_in)
2599                 chan->do_ping = 0;
2600         else
2601                 chan->do_ping = qh->ping_state;
2602
2603         chan->data_pid_start = qh->data_toggle;
2604         chan->multi_count = 1;
2605
2606         if (urb->actual_length > urb->length &&
2607             !dwc2_hcd_is_pipe_in(&urb->pipe_info))
2608                 urb->actual_length = urb->length;
2609
2610         if (hsotg->params.host_dma)
2611                 chan->xfer_dma = urb->dma + urb->actual_length;
2612         else
2613                 chan->xfer_buf = (u8 *)urb->buf + urb->actual_length;
2614
2615         chan->xfer_len = urb->length - urb->actual_length;
2616         chan->xfer_count = 0;
2617
2618         /* Set the split attributes if required */
2619         if (qh->do_split)
2620                 dwc2_hc_init_split(hsotg, chan, qtd, urb);
2621         else
2622                 chan->do_split = 0;
2623
2624         /* Set the transfer attributes */
2625         dwc2_hc_init_xfer(hsotg, chan, qtd);
2626
2627         /* For non-dword aligned buffers */
2628         if (hsotg->params.host_dma && qh->do_split &&
2629             chan->ep_is_in && (chan->xfer_dma & 0x3)) {
2630                 dev_vdbg(hsotg->dev, "Non-aligned buffer\n");
2631                 if (dwc2_alloc_split_dma_aligned_buf(hsotg, qh, chan)) {
2632                         dev_err(hsotg->dev,
2633                                 "Failed to allocate memory to handle non-aligned buffer\n");
2634                         /* Add channel back to free list */
2635                         chan->align_buf = 0;
2636                         chan->multi_count = 0;
2637                         list_add_tail(&chan->hc_list_entry,
2638                                       &hsotg->free_hc_list);
2639                         qtd->in_process = 0;
2640                         qh->channel = NULL;
2641                         return -ENOMEM;
2642                 }
2643         } else {
2644                 /*
2645                  * We assume that DMA is always aligned in non-split
2646                  * case or split out case. Warn if not.
2647                  */
2648                 WARN_ON_ONCE(hsotg->params.host_dma &&
2649                              (chan->xfer_dma & 0x3));
2650                 chan->align_buf = 0;
2651         }
2652
2653         if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
2654             chan->ep_type == USB_ENDPOINT_XFER_ISOC)
2655                 /*
2656                  * This value may be modified when the transfer is started
2657                  * to reflect the actual transfer length
2658                  */
2659                 chan->multi_count = qh->maxp_mult;
2660
2661         if (hsotg->params.dma_desc_enable) {
2662                 chan->desc_list_addr = qh->desc_list_dma;
2663                 chan->desc_list_sz = qh->desc_list_sz;
2664         }
2665
2666         dwc2_hc_init(hsotg, chan);
2667         chan->qh = qh;
2668
2669         return 0;
2670 }
2671
2672 /**
2673  * dwc2_hcd_select_transactions() - Selects transactions from the HCD transfer
2674  * schedule and assigns them to available host channels. Called from the HCD
2675  * interrupt handler functions.
2676  *
2677  * @hsotg: The HCD state structure
2678  *
2679  * Return: The types of new transactions that were assigned to host channels
2680  */
2681 enum dwc2_transaction_type dwc2_hcd_select_transactions(
2682                 struct dwc2_hsotg *hsotg)
2683 {
2684         enum dwc2_transaction_type ret_val = DWC2_TRANSACTION_NONE;
2685         struct list_head *qh_ptr;
2686         struct dwc2_qh *qh;
2687         int num_channels;
2688
2689 #ifdef DWC2_DEBUG_SOF
2690         dev_vdbg(hsotg->dev, "  Select Transactions\n");
2691 #endif
2692
2693         /* Process entries in the periodic ready list */
2694         qh_ptr = hsotg->periodic_sched_ready.next;
2695         while (qh_ptr != &hsotg->periodic_sched_ready) {
2696                 if (list_empty(&hsotg->free_hc_list))
2697                         break;
2698                 if (hsotg->params.uframe_sched) {
2699                         if (hsotg->available_host_channels <= 1)
2700                                 break;
2701                         hsotg->available_host_channels--;
2702                 }
2703                 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2704                 if (dwc2_assign_and_init_hc(hsotg, qh))
2705                         break;
2706
2707                 /*
2708                  * Move the QH from the periodic ready schedule to the
2709                  * periodic assigned schedule
2710                  */
2711                 qh_ptr = qh_ptr->next;
2712                 list_move_tail(&qh->qh_list_entry,
2713                                &hsotg->periodic_sched_assigned);
2714                 ret_val = DWC2_TRANSACTION_PERIODIC;
2715         }
2716
2717         /*
2718          * Process entries in the inactive portion of the non-periodic
2719          * schedule. Some free host channels may not be used if they are
2720          * reserved for periodic transfers.
2721          */
2722         num_channels = hsotg->params.host_channels;
2723         qh_ptr = hsotg->non_periodic_sched_inactive.next;
2724         while (qh_ptr != &hsotg->non_periodic_sched_inactive) {
2725                 if (!hsotg->params.uframe_sched &&
2726                     hsotg->non_periodic_channels >= num_channels -
2727                                                 hsotg->periodic_channels)
2728                         break;
2729                 if (list_empty(&hsotg->free_hc_list))
2730                         break;
2731                 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2732                 if (hsotg->params.uframe_sched) {
2733                         if (hsotg->available_host_channels < 1)
2734                                 break;
2735                         hsotg->available_host_channels--;
2736                 }
2737
2738                 if (dwc2_assign_and_init_hc(hsotg, qh))
2739                         break;
2740
2741                 /*
2742                  * Move the QH from the non-periodic inactive schedule to the
2743                  * non-periodic active schedule
2744                  */
2745                 qh_ptr = qh_ptr->next;
2746                 list_move_tail(&qh->qh_list_entry,
2747                                &hsotg->non_periodic_sched_active);
2748
2749                 if (ret_val == DWC2_TRANSACTION_NONE)
2750                         ret_val = DWC2_TRANSACTION_NON_PERIODIC;
2751                 else
2752                         ret_val = DWC2_TRANSACTION_ALL;
2753
2754                 if (!hsotg->params.uframe_sched)
2755                         hsotg->non_periodic_channels++;
2756         }
2757
2758         return ret_val;
2759 }
2760
2761 /**
2762  * dwc2_queue_transaction() - Attempts to queue a single transaction request for
2763  * a host channel associated with either a periodic or non-periodic transfer
2764  *
2765  * @hsotg: The HCD state structure
2766  * @chan:  Host channel descriptor associated with either a periodic or
2767  *         non-periodic transfer
2768  * @fifo_dwords_avail: Number of DWORDs available in the periodic Tx FIFO
2769  *                     for periodic transfers or the non-periodic Tx FIFO
2770  *                     for non-periodic transfers
2771  *
2772  * Return: 1 if a request is queued and more requests may be needed to
2773  * complete the transfer, 0 if no more requests are required for this
2774  * transfer, -1 if there is insufficient space in the Tx FIFO
2775  *
2776  * This function assumes that there is space available in the appropriate
2777  * request queue. For an OUT transfer or SETUP transaction in Slave mode,
2778  * it checks whether space is available in the appropriate Tx FIFO.
2779  *
2780  * Must be called with interrupt disabled and spinlock held
2781  */
2782 static int dwc2_queue_transaction(struct dwc2_hsotg *hsotg,
2783                                   struct dwc2_host_chan *chan,
2784                                   u16 fifo_dwords_avail)
2785 {
2786         int retval = 0;
2787
2788         if (chan->do_split)
2789                 /* Put ourselves on the list to keep order straight */
2790                 list_move_tail(&chan->split_order_list_entry,
2791                                &hsotg->split_order);
2792
2793         if (hsotg->params.host_dma && chan->qh) {
2794                 if (hsotg->params.dma_desc_enable) {
2795                         if (!chan->xfer_started ||
2796                             chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
2797                                 dwc2_hcd_start_xfer_ddma(hsotg, chan->qh);
2798                                 chan->qh->ping_state = 0;
2799                         }
2800                 } else if (!chan->xfer_started) {
2801                         dwc2_hc_start_transfer(hsotg, chan);
2802                         chan->qh->ping_state = 0;
2803                 }
2804         } else if (chan->halt_pending) {
2805                 /* Don't queue a request if the channel has been halted */
2806         } else if (chan->halt_on_queue) {
2807                 dwc2_hc_halt(hsotg, chan, chan->halt_status);
2808         } else if (chan->do_ping) {
2809                 if (!chan->xfer_started)
2810                         dwc2_hc_start_transfer(hsotg, chan);
2811         } else if (!chan->ep_is_in ||
2812                    chan->data_pid_start == DWC2_HC_PID_SETUP) {
2813                 if ((fifo_dwords_avail * 4) >= chan->max_packet) {
2814                         if (!chan->xfer_started) {
2815                                 dwc2_hc_start_transfer(hsotg, chan);
2816                                 retval = 1;
2817                         } else {
2818                                 retval = dwc2_hc_continue_transfer(hsotg, chan);
2819                         }
2820                 } else {
2821                         retval = -1;
2822                 }
2823         } else {
2824                 if (!chan->xfer_started) {
2825                         dwc2_hc_start_transfer(hsotg, chan);
2826                         retval = 1;
2827                 } else {
2828                         retval = dwc2_hc_continue_transfer(hsotg, chan);
2829                 }
2830         }
2831
2832         return retval;
2833 }
2834
2835 /*
2836  * Processes periodic channels for the next frame and queues transactions for
2837  * these channels to the DWC_otg controller. After queueing transactions, the
2838  * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions
2839  * to queue as Periodic Tx FIFO or request queue space becomes available.
2840  * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled.
2841  *
2842  * Must be called with interrupt disabled and spinlock held
2843  */
2844 static void dwc2_process_periodic_channels(struct dwc2_hsotg *hsotg)
2845 {
2846         struct list_head *qh_ptr;
2847         struct dwc2_qh *qh;
2848         u32 tx_status;
2849         u32 fspcavail;
2850         u32 gintmsk;
2851         int status;
2852         bool no_queue_space = false;
2853         bool no_fifo_space = false;
2854         u32 qspcavail;
2855
2856         /* If empty list then just adjust interrupt enables */
2857         if (list_empty(&hsotg->periodic_sched_assigned))
2858                 goto exit;
2859
2860         if (dbg_perio())
2861                 dev_vdbg(hsotg->dev, "Queue periodic transactions\n");
2862
2863         tx_status = dwc2_readl(hsotg, HPTXSTS);
2864         qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
2865                     TXSTS_QSPCAVAIL_SHIFT;
2866         fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
2867                     TXSTS_FSPCAVAIL_SHIFT;
2868
2869         if (dbg_perio()) {
2870                 dev_vdbg(hsotg->dev, "  P Tx Req Queue Space Avail (before queue): %d\n",
2871                          qspcavail);
2872                 dev_vdbg(hsotg->dev, "  P Tx FIFO Space Avail (before queue): %d\n",
2873                          fspcavail);
2874         }
2875
2876         qh_ptr = hsotg->periodic_sched_assigned.next;
2877         while (qh_ptr != &hsotg->periodic_sched_assigned) {
2878                 tx_status = dwc2_readl(hsotg, HPTXSTS);
2879                 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
2880                             TXSTS_QSPCAVAIL_SHIFT;
2881                 if (qspcavail == 0) {
2882                         no_queue_space = true;
2883                         break;
2884                 }
2885
2886                 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2887                 if (!qh->channel) {
2888                         qh_ptr = qh_ptr->next;
2889                         continue;
2890                 }
2891
2892                 /* Make sure EP's TT buffer is clean before queueing qtds */
2893                 if (qh->tt_buffer_dirty) {
2894                         qh_ptr = qh_ptr->next;
2895                         continue;
2896                 }
2897
2898                 /*
2899                  * Set a flag if we're queuing high-bandwidth in slave mode.
2900                  * The flag prevents any halts to get into the request queue in
2901                  * the middle of multiple high-bandwidth packets getting queued.
2902                  */
2903                 if (!hsotg->params.host_dma &&
2904                     qh->channel->multi_count > 1)
2905                         hsotg->queuing_high_bandwidth = 1;
2906
2907                 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
2908                             TXSTS_FSPCAVAIL_SHIFT;
2909                 status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
2910                 if (status < 0) {
2911                         no_fifo_space = true;
2912                         break;
2913                 }
2914
2915                 /*
2916                  * In Slave mode, stay on the current transfer until there is
2917                  * nothing more to do or the high-bandwidth request count is
2918                  * reached. In DMA mode, only need to queue one request. The
2919                  * controller automatically handles multiple packets for
2920                  * high-bandwidth transfers.
2921                  */
2922                 if (hsotg->params.host_dma || status == 0 ||
2923                     qh->channel->requests == qh->channel->multi_count) {
2924                         qh_ptr = qh_ptr->next;
2925                         /*
2926                          * Move the QH from the periodic assigned schedule to
2927                          * the periodic queued schedule
2928                          */
2929                         list_move_tail(&qh->qh_list_entry,
2930                                        &hsotg->periodic_sched_queued);
2931
2932                         /* done queuing high bandwidth */
2933                         hsotg->queuing_high_bandwidth = 0;
2934                 }
2935         }
2936
2937 exit:
2938         if (no_queue_space || no_fifo_space ||
2939             (!hsotg->params.host_dma &&
2940              !list_empty(&hsotg->periodic_sched_assigned))) {
2941                 /*
2942                  * May need to queue more transactions as the request
2943                  * queue or Tx FIFO empties. Enable the periodic Tx
2944                  * FIFO empty interrupt. (Always use the half-empty
2945                  * level to ensure that new requests are loaded as
2946                  * soon as possible.)
2947                  */
2948                 gintmsk = dwc2_readl(hsotg, GINTMSK);
2949                 if (!(gintmsk & GINTSTS_PTXFEMP)) {
2950                         gintmsk |= GINTSTS_PTXFEMP;
2951                         dwc2_writel(hsotg, gintmsk, GINTMSK);
2952                 }
2953         } else {
2954                 /*
2955                  * Disable the Tx FIFO empty interrupt since there are
2956                  * no more transactions that need to be queued right
2957                  * now. This function is called from interrupt
2958                  * handlers to queue more transactions as transfer
2959                  * states change.
2960                  */
2961                 gintmsk = dwc2_readl(hsotg, GINTMSK);
2962                 if (gintmsk & GINTSTS_PTXFEMP) {
2963                         gintmsk &= ~GINTSTS_PTXFEMP;
2964                         dwc2_writel(hsotg, gintmsk, GINTMSK);
2965                 }
2966         }
2967 }
2968
2969 /*
2970  * Processes active non-periodic channels and queues transactions for these
2971  * channels to the DWC_otg controller. After queueing transactions, the NP Tx
2972  * FIFO Empty interrupt is enabled if there are more transactions to queue as
2973  * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx
2974  * FIFO Empty interrupt is disabled.
2975  *
2976  * Must be called with interrupt disabled and spinlock held
2977  */
2978 static void dwc2_process_non_periodic_channels(struct dwc2_hsotg *hsotg)
2979 {
2980         struct list_head *orig_qh_ptr;
2981         struct dwc2_qh *qh;
2982         u32 tx_status;
2983         u32 qspcavail;
2984         u32 fspcavail;
2985         u32 gintmsk;
2986         int status;
2987         int no_queue_space = 0;
2988         int no_fifo_space = 0;
2989         int more_to_do = 0;
2990
2991         dev_vdbg(hsotg->dev, "Queue non-periodic transactions\n");
2992
2993         tx_status = dwc2_readl(hsotg, GNPTXSTS);
2994         qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
2995                     TXSTS_QSPCAVAIL_SHIFT;
2996         fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
2997                     TXSTS_FSPCAVAIL_SHIFT;
2998         dev_vdbg(hsotg->dev, "  NP Tx Req Queue Space Avail (before queue): %d\n",
2999                  qspcavail);
3000         dev_vdbg(hsotg->dev, "  NP Tx FIFO Space Avail (before queue): %d\n",
3001                  fspcavail);
3002
3003         /*
3004          * Keep track of the starting point. Skip over the start-of-list
3005          * entry.
3006          */
3007         if (hsotg->non_periodic_qh_ptr == &hsotg->non_periodic_sched_active)
3008                 hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3009         orig_qh_ptr = hsotg->non_periodic_qh_ptr;
3010
3011         /*
3012          * Process once through the active list or until no more space is
3013          * available in the request queue or the Tx FIFO
3014          */
3015         do {
3016                 tx_status = dwc2_readl(hsotg, GNPTXSTS);
3017                 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3018                             TXSTS_QSPCAVAIL_SHIFT;
3019                 if (!hsotg->params.host_dma && qspcavail == 0) {
3020                         no_queue_space = 1;
3021                         break;
3022                 }
3023
3024                 qh = list_entry(hsotg->non_periodic_qh_ptr, struct dwc2_qh,
3025                                 qh_list_entry);
3026                 if (!qh->channel)
3027                         goto next;
3028
3029                 /* Make sure EP's TT buffer is clean before queueing qtds */
3030                 if (qh->tt_buffer_dirty)
3031                         goto next;
3032
3033                 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3034                             TXSTS_FSPCAVAIL_SHIFT;
3035                 status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
3036
3037                 if (status > 0) {
3038                         more_to_do = 1;
3039                 } else if (status < 0) {
3040                         no_fifo_space = 1;
3041                         break;
3042                 }
3043 next:
3044                 /* Advance to next QH, skipping start-of-list entry */
3045                 hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3046                 if (hsotg->non_periodic_qh_ptr ==
3047                                 &hsotg->non_periodic_sched_active)
3048                         hsotg->non_periodic_qh_ptr =
3049                                         hsotg->non_periodic_qh_ptr->next;
3050         } while (hsotg->non_periodic_qh_ptr != orig_qh_ptr);
3051
3052         if (!hsotg->params.host_dma) {
3053                 tx_status = dwc2_readl(hsotg, GNPTXSTS);
3054                 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3055                             TXSTS_QSPCAVAIL_SHIFT;
3056                 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3057                             TXSTS_FSPCAVAIL_SHIFT;
3058                 dev_vdbg(hsotg->dev,
3059                          "  NP Tx Req Queue Space Avail (after queue): %d\n",
3060                          qspcavail);
3061                 dev_vdbg(hsotg->dev,
3062                          "  NP Tx FIFO Space Avail (after queue): %d\n",
3063                          fspcavail);
3064
3065                 if (more_to_do || no_queue_space || no_fifo_space) {
3066                         /*
3067                          * May need to queue more transactions as the request
3068                          * queue or Tx FIFO empties. Enable the non-periodic
3069                          * Tx FIFO empty interrupt. (Always use the half-empty
3070                          * level to ensure that new requests are loaded as
3071                          * soon as possible.)
3072                          */
3073                         gintmsk = dwc2_readl(hsotg, GINTMSK);
3074                         gintmsk |= GINTSTS_NPTXFEMP;
3075                         dwc2_writel(hsotg, gintmsk, GINTMSK);
3076                 } else {
3077                         /*
3078                          * Disable the Tx FIFO empty interrupt since there are
3079                          * no more transactions that need to be queued right
3080                          * now. This function is called from interrupt
3081                          * handlers to queue more transactions as transfer
3082                          * states change.
3083                          */
3084                         gintmsk = dwc2_readl(hsotg, GINTMSK);
3085                         gintmsk &= ~GINTSTS_NPTXFEMP;
3086                         dwc2_writel(hsotg, gintmsk, GINTMSK);
3087                 }
3088         }
3089 }
3090
3091 /**
3092  * dwc2_hcd_queue_transactions() - Processes the currently active host channels
3093  * and queues transactions for these channels to the DWC_otg controller. Called
3094  * from the HCD interrupt handler functions.
3095  *
3096  * @hsotg:   The HCD state structure
3097  * @tr_type: The type(s) of transactions to queue (non-periodic, periodic,
3098  *           or both)
3099  *
3100  * Must be called with interrupt disabled and spinlock held
3101  */
3102 void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
3103                                  enum dwc2_transaction_type tr_type)
3104 {
3105 #ifdef DWC2_DEBUG_SOF
3106         dev_vdbg(hsotg->dev, "Queue Transactions\n");
3107 #endif
3108         /* Process host channels associated with periodic transfers */
3109         if (tr_type == DWC2_TRANSACTION_PERIODIC ||
3110             tr_type == DWC2_TRANSACTION_ALL)
3111                 dwc2_process_periodic_channels(hsotg);
3112
3113         /* Process host channels associated with non-periodic transfers */
3114         if (tr_type == DWC2_TRANSACTION_NON_PERIODIC ||
3115             tr_type == DWC2_TRANSACTION_ALL) {
3116                 if (!list_empty(&hsotg->non_periodic_sched_active)) {
3117                         dwc2_process_non_periodic_channels(hsotg);
3118                 } else {
3119                         /*
3120                          * Ensure NP Tx FIFO empty interrupt is disabled when
3121                          * there are no non-periodic transfers to process
3122                          */
3123                         u32 gintmsk = dwc2_readl(hsotg, GINTMSK);
3124
3125                         gintmsk &= ~GINTSTS_NPTXFEMP;
3126                         dwc2_writel(hsotg, gintmsk, GINTMSK);
3127                 }
3128         }
3129 }
3130
3131 static void dwc2_conn_id_status_change(struct work_struct *work)
3132 {
3133         struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
3134                                                 wf_otg);
3135         u32 count = 0;
3136         u32 gotgctl;
3137         unsigned long flags;
3138
3139         dev_dbg(hsotg->dev, "%s()\n", __func__);
3140
3141         gotgctl = dwc2_readl(hsotg, GOTGCTL);
3142         dev_dbg(hsotg->dev, "gotgctl=%0x\n", gotgctl);
3143         dev_dbg(hsotg->dev, "gotgctl.b.conidsts=%d\n",
3144                 !!(gotgctl & GOTGCTL_CONID_B));
3145
3146         /* B-Device connector (Device Mode) */
3147         if (gotgctl & GOTGCTL_CONID_B) {
3148                 dwc2_vbus_supply_exit(hsotg);
3149                 /* Wait for switch to device mode */
3150                 dev_dbg(hsotg->dev, "connId B\n");
3151                 if (hsotg->bus_suspended) {
3152                         dev_info(hsotg->dev,
3153                                  "Do port resume before switching to device mode\n");
3154                         dwc2_port_resume(hsotg);
3155                 }
3156                 while (!dwc2_is_device_mode(hsotg)) {
3157                         dev_info(hsotg->dev,
3158                                  "Waiting for Peripheral Mode, Mode=%s\n",
3159                                  dwc2_is_host_mode(hsotg) ? "Host" :
3160                                  "Peripheral");
3161                         msleep(20);
3162                         /*
3163                          * Sometimes the initial GOTGCTRL read is wrong, so
3164                          * check it again and jump to host mode if that was
3165                          * the case.
3166                          */
3167                         gotgctl = dwc2_readl(hsotg, GOTGCTL);
3168                         if (!(gotgctl & GOTGCTL_CONID_B))
3169                                 goto host;
3170                         if (++count > 250)
3171                                 break;
3172                 }
3173                 if (count > 250)
3174                         dev_err(hsotg->dev,
3175                                 "Connection id status change timed out\n");
3176
3177                 /*
3178                  * Exit Partial Power Down without restoring registers.
3179                  * No need to check the return value as registers
3180                  * are not being restored.
3181                  */
3182                 if (hsotg->in_ppd && hsotg->lx_state == DWC2_L2)
3183                         dwc2_exit_partial_power_down(hsotg, 0, false);
3184
3185                 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3186                 dwc2_core_init(hsotg, false);
3187                 dwc2_enable_global_interrupts(hsotg);
3188                 spin_lock_irqsave(&hsotg->lock, flags);
3189                 dwc2_hsotg_core_init_disconnected(hsotg, false);
3190                 spin_unlock_irqrestore(&hsotg->lock, flags);
3191                 /* Enable ACG feature in device mode,if supported */
3192                 dwc2_enable_acg(hsotg);
3193                 dwc2_hsotg_core_connect(hsotg);
3194         } else {
3195 host:
3196                 /* A-Device connector (Host Mode) */
3197                 dev_dbg(hsotg->dev, "connId A\n");
3198                 while (!dwc2_is_host_mode(hsotg)) {
3199                         dev_info(hsotg->dev, "Waiting for Host Mode, Mode=%s\n",
3200                                  dwc2_is_host_mode(hsotg) ?
3201                                  "Host" : "Peripheral");
3202                         msleep(20);
3203                         if (++count > 250)
3204                                 break;
3205                 }
3206                 if (count > 250)
3207                         dev_err(hsotg->dev,
3208                                 "Connection id status change timed out\n");
3209
3210                 spin_lock_irqsave(&hsotg->lock, flags);
3211                 dwc2_hsotg_disconnect(hsotg);
3212                 spin_unlock_irqrestore(&hsotg->lock, flags);
3213
3214                 hsotg->op_state = OTG_STATE_A_HOST;
3215                 /* Initialize the Core for Host mode */
3216                 dwc2_core_init(hsotg, false);
3217                 dwc2_enable_global_interrupts(hsotg);
3218                 dwc2_hcd_start(hsotg);
3219         }
3220 }
3221
3222 static void dwc2_wakeup_detected(struct timer_list *t)
3223 {
3224         struct dwc2_hsotg *hsotg = from_timer(hsotg, t, wkp_timer);
3225         u32 hprt0;
3226
3227         dev_dbg(hsotg->dev, "%s()\n", __func__);
3228
3229         /*
3230          * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms
3231          * so that OPT tests pass with all PHYs.)
3232          */
3233         hprt0 = dwc2_read_hprt0(hsotg);
3234         dev_dbg(hsotg->dev, "Resume: HPRT0=%0x\n", hprt0);
3235         hprt0 &= ~HPRT0_RES;
3236         dwc2_writel(hsotg, hprt0, HPRT0);
3237         dev_dbg(hsotg->dev, "Clear Resume: HPRT0=%0x\n",
3238                 dwc2_readl(hsotg, HPRT0));
3239
3240         dwc2_hcd_rem_wakeup(hsotg);
3241         hsotg->bus_suspended = false;
3242
3243         /* Change to L0 state */
3244         hsotg->lx_state = DWC2_L0;
3245 }
3246
3247 static int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg *hsotg)
3248 {
3249         struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
3250
3251         return hcd->self.b_hnp_enable;
3252 }
3253
3254 /**
3255  * dwc2_port_suspend() - Put controller in suspend mode for host.
3256  *
3257  * @hsotg: Programming view of the DWC_otg controller
3258  * @windex: The control request wIndex field
3259  *
3260  * Return: non-zero if failed to enter suspend mode for host.
3261  *
3262  * This function is for entering Host mode suspend.
3263  * Must NOT be called with interrupt disabled or spinlock held.
3264  */
3265 int dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex)
3266 {
3267         unsigned long flags;
3268         u32 pcgctl;
3269         u32 gotgctl;
3270         int ret = 0;
3271
3272         dev_dbg(hsotg->dev, "%s()\n", __func__);
3273
3274         spin_lock_irqsave(&hsotg->lock, flags);
3275
3276         if (windex == hsotg->otg_port && dwc2_host_is_b_hnp_enabled(hsotg)) {
3277                 gotgctl = dwc2_readl(hsotg, GOTGCTL);
3278                 gotgctl |= GOTGCTL_HSTSETHNPEN;
3279                 dwc2_writel(hsotg, gotgctl, GOTGCTL);
3280                 hsotg->op_state = OTG_STATE_A_SUSPEND;
3281         }
3282
3283         switch (hsotg->params.power_down) {
3284         case DWC2_POWER_DOWN_PARAM_PARTIAL:
3285                 ret = dwc2_enter_partial_power_down(hsotg);
3286                 if (ret)
3287                         dev_err(hsotg->dev,
3288                                 "enter partial_power_down failed.\n");
3289                 break;
3290         case DWC2_POWER_DOWN_PARAM_HIBERNATION:
3291                 /*
3292                  * Perform spin unlock and lock because in
3293                  * "dwc2_host_enter_hibernation()" function there is a spinlock
3294                  * logic which prevents servicing of any IRQ during entering
3295                  * hibernation.
3296                  */
3297                 spin_unlock_irqrestore(&hsotg->lock, flags);
3298                 ret = dwc2_enter_hibernation(hsotg, 1);
3299                 if (ret)
3300                         dev_err(hsotg->dev, "enter hibernation failed.\n");
3301                 spin_lock_irqsave(&hsotg->lock, flags);
3302                 break;
3303         case DWC2_POWER_DOWN_PARAM_NONE:
3304                 /*
3305                  * If not hibernation nor partial power down are supported,
3306                  * clock gating is used to save power.
3307                  */
3308                 if (!hsotg->params.no_clock_gating)
3309                         dwc2_host_enter_clock_gating(hsotg);
3310                 break;
3311         }
3312
3313         /* For HNP the bus must be suspended for at least 200ms */
3314         if (dwc2_host_is_b_hnp_enabled(hsotg)) {
3315                 pcgctl = dwc2_readl(hsotg, PCGCTL);
3316                 pcgctl &= ~PCGCTL_STOPPCLK;
3317                 dwc2_writel(hsotg, pcgctl, PCGCTL);
3318
3319                 spin_unlock_irqrestore(&hsotg->lock, flags);
3320
3321                 msleep(200);
3322         } else {
3323                 spin_unlock_irqrestore(&hsotg->lock, flags);
3324         }
3325
3326         return ret;
3327 }
3328
3329 /**
3330  * dwc2_port_resume() - Exit controller from suspend mode for host.
3331  *
3332  * @hsotg: Programming view of the DWC_otg controller
3333  *
3334  * Return: non-zero if failed to exit suspend mode for host.
3335  *
3336  * This function is for exiting Host mode suspend.
3337  * Must NOT be called with interrupt disabled or spinlock held.
3338  */
3339 int dwc2_port_resume(struct dwc2_hsotg *hsotg)
3340 {
3341         unsigned long flags;
3342         int ret = 0;
3343
3344         spin_lock_irqsave(&hsotg->lock, flags);
3345
3346         switch (hsotg->params.power_down) {
3347         case DWC2_POWER_DOWN_PARAM_PARTIAL:
3348                 ret = dwc2_exit_partial_power_down(hsotg, 0, true);
3349                 if (ret)
3350                         dev_err(hsotg->dev,
3351                                 "exit partial_power_down failed.\n");
3352                 break;
3353         case DWC2_POWER_DOWN_PARAM_HIBERNATION:
3354                 /* Exit host hibernation. */
3355                 ret = dwc2_exit_hibernation(hsotg, 0, 0, 1);
3356                 if (ret)
3357                         dev_err(hsotg->dev, "exit hibernation failed.\n");
3358                 break;
3359         case DWC2_POWER_DOWN_PARAM_NONE:
3360                 /*
3361                  * If not hibernation nor partial power down are supported,
3362                  * port resume is done using the clock gating programming flow.
3363                  */
3364                 spin_unlock_irqrestore(&hsotg->lock, flags);
3365                 dwc2_host_exit_clock_gating(hsotg, 0);
3366                 spin_lock_irqsave(&hsotg->lock, flags);
3367                 break;
3368         }
3369
3370         spin_unlock_irqrestore(&hsotg->lock, flags);
3371
3372         return ret;
3373 }
3374
3375 /* Handles hub class-specific requests */
3376 static int dwc2_hcd_hub_control(struct dwc2_hsotg *hsotg, u16 typereq,
3377                                 u16 wvalue, u16 windex, char *buf, u16 wlength)
3378 {
3379         struct usb_hub_descriptor *hub_desc;
3380         int retval = 0;
3381         u32 hprt0;
3382         u32 port_status;
3383         u32 speed;
3384         u32 pcgctl;
3385         u32 pwr;
3386
3387         switch (typereq) {
3388         case ClearHubFeature:
3389                 dev_dbg(hsotg->dev, "ClearHubFeature %1xh\n", wvalue);
3390
3391                 switch (wvalue) {
3392                 case C_HUB_LOCAL_POWER:
3393                 case C_HUB_OVER_CURRENT:
3394                         /* Nothing required here */
3395                         break;
3396
3397                 default:
3398                         retval = -EINVAL;
3399                         dev_err(hsotg->dev,
3400                                 "ClearHubFeature request %1xh unknown\n",
3401                                 wvalue);
3402                 }
3403                 break;
3404
3405         case ClearPortFeature:
3406                 if (wvalue != USB_PORT_FEAT_L1)
3407                         if (!windex || windex > 1)
3408                                 goto error;
3409                 switch (wvalue) {
3410                 case USB_PORT_FEAT_ENABLE:
3411                         dev_dbg(hsotg->dev,
3412                                 "ClearPortFeature USB_PORT_FEAT_ENABLE\n");
3413                         hprt0 = dwc2_read_hprt0(hsotg);
3414                         hprt0 |= HPRT0_ENA;
3415                         dwc2_writel(hsotg, hprt0, HPRT0);
3416                         break;
3417
3418                 case USB_PORT_FEAT_SUSPEND:
3419                         dev_dbg(hsotg->dev,
3420                                 "ClearPortFeature USB_PORT_FEAT_SUSPEND\n");
3421
3422                         if (hsotg->bus_suspended)
3423                                 retval = dwc2_port_resume(hsotg);
3424                         break;
3425
3426                 case USB_PORT_FEAT_POWER:
3427                         dev_dbg(hsotg->dev,
3428                                 "ClearPortFeature USB_PORT_FEAT_POWER\n");
3429                         hprt0 = dwc2_read_hprt0(hsotg);
3430                         pwr = hprt0 & HPRT0_PWR;
3431                         hprt0 &= ~HPRT0_PWR;
3432                         dwc2_writel(hsotg, hprt0, HPRT0);
3433                         if (pwr)
3434                                 dwc2_vbus_supply_exit(hsotg);
3435                         break;
3436
3437                 case USB_PORT_FEAT_INDICATOR:
3438                         dev_dbg(hsotg->dev,
3439                                 "ClearPortFeature USB_PORT_FEAT_INDICATOR\n");
3440                         /* Port indicator not supported */
3441                         break;
3442
3443                 case USB_PORT_FEAT_C_CONNECTION:
3444                         /*
3445                          * Clears driver's internal Connect Status Change flag
3446                          */
3447                         dev_dbg(hsotg->dev,
3448                                 "ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n");
3449                         hsotg->flags.b.port_connect_status_change = 0;
3450                         break;
3451
3452                 case USB_PORT_FEAT_C_RESET:
3453                         /* Clears driver's internal Port Reset Change flag */
3454                         dev_dbg(hsotg->dev,
3455                                 "ClearPortFeature USB_PORT_FEAT_C_RESET\n");
3456                         hsotg->flags.b.port_reset_change = 0;
3457                         break;
3458
3459                 case USB_PORT_FEAT_C_ENABLE:
3460                         /*
3461                          * Clears the driver's internal Port Enable/Disable
3462                          * Change flag
3463                          */
3464                         dev_dbg(hsotg->dev,
3465                                 "ClearPortFeature USB_PORT_FEAT_C_ENABLE\n");
3466                         hsotg->flags.b.port_enable_change = 0;
3467                         break;
3468
3469                 case USB_PORT_FEAT_C_SUSPEND:
3470                         /*
3471                          * Clears the driver's internal Port Suspend Change
3472                          * flag, which is set when resume signaling on the host
3473                          * port is complete
3474                          */
3475                         dev_dbg(hsotg->dev,
3476                                 "ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n");
3477                         hsotg->flags.b.port_suspend_change = 0;
3478                         break;
3479
3480                 case USB_PORT_FEAT_C_PORT_L1:
3481                         dev_dbg(hsotg->dev,
3482                                 "ClearPortFeature USB_PORT_FEAT_C_PORT_L1\n");
3483                         hsotg->flags.b.port_l1_change = 0;
3484                         break;
3485
3486                 case USB_PORT_FEAT_C_OVER_CURRENT:
3487                         dev_dbg(hsotg->dev,
3488                                 "ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n");
3489                         hsotg->flags.b.port_over_current_change = 0;
3490                         break;
3491
3492                 default:
3493                         retval = -EINVAL;
3494                         dev_err(hsotg->dev,
3495                                 "ClearPortFeature request %1xh unknown or unsupported\n",
3496                                 wvalue);
3497                 }
3498                 break;
3499
3500         case GetHubDescriptor:
3501                 dev_dbg(hsotg->dev, "GetHubDescriptor\n");
3502                 hub_desc = (struct usb_hub_descriptor *)buf;
3503                 hub_desc->bDescLength = 9;
3504                 hub_desc->bDescriptorType = USB_DT_HUB;
3505                 hub_desc->bNbrPorts = 1;
3506                 hub_desc->wHubCharacteristics =
3507                         cpu_to_le16(HUB_CHAR_COMMON_LPSM |
3508                                     HUB_CHAR_INDV_PORT_OCPM);
3509                 hub_desc->bPwrOn2PwrGood = 1;
3510                 hub_desc->bHubContrCurrent = 0;
3511                 hub_desc->u.hs.DeviceRemovable[0] = 0;
3512                 hub_desc->u.hs.DeviceRemovable[1] = 0xff;
3513                 break;
3514
3515         case GetHubStatus:
3516                 dev_dbg(hsotg->dev, "GetHubStatus\n");
3517                 memset(buf, 0, 4);
3518                 break;
3519
3520         case GetPortStatus:
3521                 dev_vdbg(hsotg->dev,
3522                          "GetPortStatus wIndex=0x%04x flags=0x%08x\n", windex,
3523                          hsotg->flags.d32);
3524                 if (!windex || windex > 1)
3525                         goto error;
3526
3527                 port_status = 0;
3528                 if (hsotg->flags.b.port_connect_status_change)
3529                         port_status |= USB_PORT_STAT_C_CONNECTION << 16;
3530                 if (hsotg->flags.b.port_enable_change)
3531                         port_status |= USB_PORT_STAT_C_ENABLE << 16;
3532                 if (hsotg->flags.b.port_suspend_change)
3533                         port_status |= USB_PORT_STAT_C_SUSPEND << 16;
3534                 if (hsotg->flags.b.port_l1_change)
3535                         port_status |= USB_PORT_STAT_C_L1 << 16;
3536                 if (hsotg->flags.b.port_reset_change)
3537                         port_status |= USB_PORT_STAT_C_RESET << 16;
3538                 if (hsotg->flags.b.port_over_current_change) {
3539                         dev_warn(hsotg->dev, "Overcurrent change detected\n");
3540                         port_status |= USB_PORT_STAT_C_OVERCURRENT << 16;
3541                 }
3542
3543                 if (!hsotg->flags.b.port_connect_status) {
3544                         /*
3545                          * The port is disconnected, which means the core is
3546                          * either in device mode or it soon will be. Just
3547                          * return 0's for the remainder of the port status
3548                          * since the port register can't be read if the core
3549                          * is in device mode.
3550                          */
3551                         *(__le32 *)buf = cpu_to_le32(port_status);
3552                         break;
3553                 }
3554
3555                 hprt0 = dwc2_readl(hsotg, HPRT0);
3556                 dev_vdbg(hsotg->dev, "  HPRT0: 0x%08x\n", hprt0);
3557
3558                 if (hprt0 & HPRT0_CONNSTS)
3559                         port_status |= USB_PORT_STAT_CONNECTION;
3560                 if (hprt0 & HPRT0_ENA)
3561                         port_status |= USB_PORT_STAT_ENABLE;
3562                 if (hprt0 & HPRT0_SUSP)
3563                         port_status |= USB_PORT_STAT_SUSPEND;
3564                 if (hprt0 & HPRT0_OVRCURRACT)
3565                         port_status |= USB_PORT_STAT_OVERCURRENT;
3566                 if (hprt0 & HPRT0_RST)
3567                         port_status |= USB_PORT_STAT_RESET;
3568                 if (hprt0 & HPRT0_PWR)
3569                         port_status |= USB_PORT_STAT_POWER;
3570
3571                 speed = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
3572                 if (speed == HPRT0_SPD_HIGH_SPEED)
3573                         port_status |= USB_PORT_STAT_HIGH_SPEED;
3574                 else if (speed == HPRT0_SPD_LOW_SPEED)
3575                         port_status |= USB_PORT_STAT_LOW_SPEED;
3576
3577                 if (hprt0 & HPRT0_TSTCTL_MASK)
3578                         port_status |= USB_PORT_STAT_TEST;
3579                 /* USB_PORT_FEAT_INDICATOR unsupported always 0 */
3580
3581                 if (hsotg->params.dma_desc_fs_enable) {
3582                         /*
3583                          * Enable descriptor DMA only if a full speed
3584                          * device is connected.
3585                          */
3586                         if (hsotg->new_connection &&
3587                             ((port_status &
3588                               (USB_PORT_STAT_CONNECTION |
3589                                USB_PORT_STAT_HIGH_SPEED |
3590                                USB_PORT_STAT_LOW_SPEED)) ==
3591                                USB_PORT_STAT_CONNECTION)) {
3592                                 u32 hcfg;
3593
3594                                 dev_info(hsotg->dev, "Enabling descriptor DMA mode\n");
3595                                 hsotg->params.dma_desc_enable = true;
3596                                 hcfg = dwc2_readl(hsotg, HCFG);
3597                                 hcfg |= HCFG_DESCDMA;
3598                                 dwc2_writel(hsotg, hcfg, HCFG);
3599                                 hsotg->new_connection = false;
3600                         }
3601                 }
3602
3603                 dev_vdbg(hsotg->dev, "port_status=%08x\n", port_status);
3604                 *(__le32 *)buf = cpu_to_le32(port_status);
3605                 break;
3606
3607         case SetHubFeature:
3608                 dev_dbg(hsotg->dev, "SetHubFeature\n");
3609                 /* No HUB features supported */
3610                 break;
3611
3612         case SetPortFeature:
3613                 dev_dbg(hsotg->dev, "SetPortFeature\n");
3614                 if (wvalue != USB_PORT_FEAT_TEST && (!windex || windex > 1))
3615                         goto error;
3616
3617                 if (!hsotg->flags.b.port_connect_status) {
3618                         /*
3619                          * The port is disconnected, which means the core is
3620                          * either in device mode or it soon will be. Just
3621                          * return without doing anything since the port
3622                          * register can't be written if the core is in device
3623                          * mode.
3624                          */
3625                         break;
3626                 }
3627
3628                 switch (wvalue) {
3629                 case USB_PORT_FEAT_SUSPEND:
3630                         dev_dbg(hsotg->dev,
3631                                 "SetPortFeature - USB_PORT_FEAT_SUSPEND\n");
3632                         if (windex != hsotg->otg_port)
3633                                 goto error;
3634                         if (!hsotg->bus_suspended)
3635                                 retval = dwc2_port_suspend(hsotg, windex);
3636                         break;
3637
3638                 case USB_PORT_FEAT_POWER:
3639                         dev_dbg(hsotg->dev,
3640                                 "SetPortFeature - USB_PORT_FEAT_POWER\n");
3641                         hprt0 = dwc2_read_hprt0(hsotg);
3642                         pwr = hprt0 & HPRT0_PWR;
3643                         hprt0 |= HPRT0_PWR;
3644                         dwc2_writel(hsotg, hprt0, HPRT0);
3645                         if (!pwr)
3646                                 dwc2_vbus_supply_init(hsotg);
3647                         break;
3648
3649                 case USB_PORT_FEAT_RESET:
3650                         dev_dbg(hsotg->dev,
3651                                 "SetPortFeature - USB_PORT_FEAT_RESET\n");
3652
3653                         hprt0 = dwc2_read_hprt0(hsotg);
3654
3655                         if (hsotg->hibernated) {
3656                                 retval = dwc2_exit_hibernation(hsotg, 0, 1, 1);
3657                                 if (retval)
3658                                         dev_err(hsotg->dev,
3659                                                 "exit hibernation failed\n");
3660                         }
3661
3662                         if (hsotg->in_ppd) {
3663                                 retval = dwc2_exit_partial_power_down(hsotg, 1,
3664                                                                       true);
3665                                 if (retval)
3666                                         dev_err(hsotg->dev,
3667                                                 "exit partial_power_down failed\n");
3668                         }
3669
3670                         if (hsotg->params.power_down ==
3671                             DWC2_POWER_DOWN_PARAM_NONE && hsotg->bus_suspended)
3672                                 dwc2_host_exit_clock_gating(hsotg, 0);
3673
3674                         pcgctl = dwc2_readl(hsotg, PCGCTL);
3675                         pcgctl &= ~(PCGCTL_ENBL_SLEEP_GATING | PCGCTL_STOPPCLK);
3676                         dwc2_writel(hsotg, pcgctl, PCGCTL);
3677                         /* ??? Original driver does this */
3678                         dwc2_writel(hsotg, 0, PCGCTL);
3679
3680                         hprt0 = dwc2_read_hprt0(hsotg);
3681                         pwr = hprt0 & HPRT0_PWR;
3682                         /* Clear suspend bit if resetting from suspend state */
3683                         hprt0 &= ~HPRT0_SUSP;
3684
3685                         /*
3686                          * When B-Host the Port reset bit is set in the Start
3687                          * HCD Callback function, so that the reset is started
3688                          * within 1ms of the HNP success interrupt
3689                          */
3690                         if (!dwc2_hcd_is_b_host(hsotg)) {
3691                                 hprt0 |= HPRT0_PWR | HPRT0_RST;
3692                                 dev_dbg(hsotg->dev,
3693                                         "In host mode, hprt0=%08x\n", hprt0);
3694                                 dwc2_writel(hsotg, hprt0, HPRT0);
3695                                 if (!pwr)
3696                                         dwc2_vbus_supply_init(hsotg);
3697                         }
3698
3699                         /* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */
3700                         msleep(50);
3701                         hprt0 &= ~HPRT0_RST;
3702                         dwc2_writel(hsotg, hprt0, HPRT0);
3703                         hsotg->lx_state = DWC2_L0; /* Now back to On state */
3704                         break;
3705
3706                 case USB_PORT_FEAT_INDICATOR:
3707                         dev_dbg(hsotg->dev,
3708                                 "SetPortFeature - USB_PORT_FEAT_INDICATOR\n");
3709                         /* Not supported */
3710                         break;
3711
3712                 case USB_PORT_FEAT_TEST:
3713                         hprt0 = dwc2_read_hprt0(hsotg);
3714                         dev_dbg(hsotg->dev,
3715                                 "SetPortFeature - USB_PORT_FEAT_TEST\n");
3716                         hprt0 &= ~HPRT0_TSTCTL_MASK;
3717                         hprt0 |= (windex >> 8) << HPRT0_TSTCTL_SHIFT;
3718                         dwc2_writel(hsotg, hprt0, HPRT0);
3719                         break;
3720
3721                 default:
3722                         retval = -EINVAL;
3723                         dev_err(hsotg->dev,
3724                                 "SetPortFeature %1xh unknown or unsupported\n",
3725                                 wvalue);
3726                         break;
3727                 }
3728                 break;
3729
3730         default:
3731 error:
3732                 retval = -EINVAL;
3733                 dev_dbg(hsotg->dev,
3734                         "Unknown hub control request: %1xh wIndex: %1xh wValue: %1xh\n",
3735                         typereq, windex, wvalue);
3736                 break;
3737         }
3738
3739         return retval;
3740 }
3741
3742 static int dwc2_hcd_is_status_changed(struct dwc2_hsotg *hsotg, int port)
3743 {
3744         int retval;
3745
3746         if (port != 1)
3747                 return -EINVAL;
3748
3749         retval = (hsotg->flags.b.port_connect_status_change ||
3750                   hsotg->flags.b.port_reset_change ||
3751                   hsotg->flags.b.port_enable_change ||
3752                   hsotg->flags.b.port_suspend_change ||
3753                   hsotg->flags.b.port_over_current_change);
3754
3755         if (retval) {
3756                 dev_dbg(hsotg->dev,
3757                         "DWC OTG HCD HUB STATUS DATA: Root port status changed\n");
3758                 dev_dbg(hsotg->dev, "  port_connect_status_change: %d\n",
3759                         hsotg->flags.b.port_connect_status_change);
3760                 dev_dbg(hsotg->dev, "  port_reset_change: %d\n",
3761                         hsotg->flags.b.port_reset_change);
3762                 dev_dbg(hsotg->dev, "  port_enable_change: %d\n",
3763                         hsotg->flags.b.port_enable_change);
3764                 dev_dbg(hsotg->dev, "  port_suspend_change: %d\n",
3765                         hsotg->flags.b.port_suspend_change);
3766                 dev_dbg(hsotg->dev, "  port_over_current_change: %d\n",
3767                         hsotg->flags.b.port_over_current_change);
3768         }
3769
3770         return retval;
3771 }
3772
3773 int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
3774 {
3775         u32 hfnum = dwc2_readl(hsotg, HFNUM);
3776
3777 #ifdef DWC2_DEBUG_SOF
3778         dev_vdbg(hsotg->dev, "DWC OTG HCD GET FRAME NUMBER %d\n",
3779                  (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT);
3780 #endif
3781         return (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3782 }
3783
3784 int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us)
3785 {
3786         u32 hprt = dwc2_readl(hsotg, HPRT0);
3787         u32 hfir = dwc2_readl(hsotg, HFIR);
3788         u32 hfnum = dwc2_readl(hsotg, HFNUM);
3789         unsigned int us_per_frame;
3790         unsigned int frame_number;
3791         unsigned int remaining;
3792         unsigned int interval;
3793         unsigned int phy_clks;
3794
3795         /* High speed has 125 us per (micro) frame; others are 1 ms per */
3796         us_per_frame = (hprt & HPRT0_SPD_MASK) ? 1000 : 125;
3797
3798         /* Extract fields */
3799         frame_number = (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3800         remaining = (hfnum & HFNUM_FRREM_MASK) >> HFNUM_FRREM_SHIFT;
3801         interval = (hfir & HFIR_FRINT_MASK) >> HFIR_FRINT_SHIFT;
3802
3803         /*
3804          * Number of phy clocks since the last tick of the frame number after
3805          * "us" has passed.
3806          */
3807         phy_clks = (interval - remaining) +
3808                    DIV_ROUND_UP(interval * us, us_per_frame);
3809
3810         return dwc2_frame_num_inc(frame_number, phy_clks / interval);
3811 }
3812
3813 int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg)
3814 {
3815         return hsotg->op_state == OTG_STATE_B_HOST;
3816 }
3817
3818 static struct dwc2_hcd_urb *dwc2_hcd_urb_alloc(struct dwc2_hsotg *hsotg,
3819                                                int iso_desc_count,
3820                                                gfp_t mem_flags)
3821 {
3822         struct dwc2_hcd_urb *urb;
3823
3824         urb = kzalloc(struct_size(urb, iso_descs, iso_desc_count), mem_flags);
3825         if (urb)
3826                 urb->packet_count = iso_desc_count;
3827         return urb;
3828 }
3829
3830 static void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg *hsotg,
3831                                       struct dwc2_hcd_urb *urb, u8 dev_addr,
3832                                       u8 ep_num, u8 ep_type, u8 ep_dir,
3833                                       u16 maxp, u16 maxp_mult)
3834 {
3835         if (dbg_perio() ||
3836             ep_type == USB_ENDPOINT_XFER_BULK ||
3837             ep_type == USB_ENDPOINT_XFER_CONTROL)
3838                 dev_vdbg(hsotg->dev,
3839                          "addr=%d, ep_num=%d, ep_dir=%1x, ep_type=%1x, maxp=%d (%d mult)\n",
3840                          dev_addr, ep_num, ep_dir, ep_type, maxp, maxp_mult);
3841         urb->pipe_info.dev_addr = dev_addr;
3842         urb->pipe_info.ep_num = ep_num;
3843         urb->pipe_info.pipe_type = ep_type;
3844         urb->pipe_info.pipe_dir = ep_dir;
3845         urb->pipe_info.maxp = maxp;
3846         urb->pipe_info.maxp_mult = maxp_mult;
3847 }
3848
3849 /*
3850  * NOTE: This function will be removed once the peripheral controller code
3851  * is integrated and the driver is stable
3852  */
3853 void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg)
3854 {
3855 #ifdef DEBUG
3856         struct dwc2_host_chan *chan;
3857         struct dwc2_hcd_urb *urb;
3858         struct dwc2_qtd *qtd;
3859         int num_channels;
3860         u32 np_tx_status;
3861         u32 p_tx_status;
3862         int i;
3863
3864         num_channels = hsotg->params.host_channels;
3865         dev_dbg(hsotg->dev, "\n");
3866         dev_dbg(hsotg->dev,
3867                 "************************************************************\n");
3868         dev_dbg(hsotg->dev, "HCD State:\n");
3869         dev_dbg(hsotg->dev, "  Num channels: %d\n", num_channels);
3870
3871         for (i = 0; i < num_channels; i++) {
3872                 chan = hsotg->hc_ptr_array[i];
3873                 dev_dbg(hsotg->dev, "  Channel %d:\n", i);
3874                 dev_dbg(hsotg->dev,
3875                         "    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
3876                         chan->dev_addr, chan->ep_num, chan->ep_is_in);
3877                 dev_dbg(hsotg->dev, "    speed: %d\n", chan->speed);
3878                 dev_dbg(hsotg->dev, "    ep_type: %d\n", chan->ep_type);
3879                 dev_dbg(hsotg->dev, "    max_packet: %d\n", chan->max_packet);
3880                 dev_dbg(hsotg->dev, "    data_pid_start: %d\n",
3881                         chan->data_pid_start);
3882                 dev_dbg(hsotg->dev, "    multi_count: %d\n", chan->multi_count);
3883                 dev_dbg(hsotg->dev, "    xfer_started: %d\n",
3884                         chan->xfer_started);
3885                 dev_dbg(hsotg->dev, "    xfer_buf: %p\n", chan->xfer_buf);
3886                 dev_dbg(hsotg->dev, "    xfer_dma: %08lx\n",
3887                         (unsigned long)chan->xfer_dma);
3888                 dev_dbg(hsotg->dev, "    xfer_len: %d\n", chan->xfer_len);
3889                 dev_dbg(hsotg->dev, "    xfer_count: %d\n", chan->xfer_count);
3890                 dev_dbg(hsotg->dev, "    halt_on_queue: %d\n",
3891                         chan->halt_on_queue);
3892                 dev_dbg(hsotg->dev, "    halt_pending: %d\n",
3893                         chan->halt_pending);
3894                 dev_dbg(hsotg->dev, "    halt_status: %d\n", chan->halt_status);
3895                 dev_dbg(hsotg->dev, "    do_split: %d\n", chan->do_split);
3896                 dev_dbg(hsotg->dev, "    complete_split: %d\n",
3897                         chan->complete_split);
3898                 dev_dbg(hsotg->dev, "    hub_addr: %d\n", chan->hub_addr);
3899                 dev_dbg(hsotg->dev, "    hub_port: %d\n", chan->hub_port);
3900                 dev_dbg(hsotg->dev, "    xact_pos: %d\n", chan->xact_pos);
3901                 dev_dbg(hsotg->dev, "    requests: %d\n", chan->requests);
3902                 dev_dbg(hsotg->dev, "    qh: %p\n", chan->qh);
3903
3904                 if (chan->xfer_started) {
3905                         u32 hfnum, hcchar, hctsiz, hcint, hcintmsk;
3906
3907                         hfnum = dwc2_readl(hsotg, HFNUM);
3908                         hcchar = dwc2_readl(hsotg, HCCHAR(i));
3909                         hctsiz = dwc2_readl(hsotg, HCTSIZ(i));
3910                         hcint = dwc2_readl(hsotg, HCINT(i));
3911                         hcintmsk = dwc2_readl(hsotg, HCINTMSK(i));
3912                         dev_dbg(hsotg->dev, "    hfnum: 0x%08x\n", hfnum);
3913                         dev_dbg(hsotg->dev, "    hcchar: 0x%08x\n", hcchar);
3914                         dev_dbg(hsotg->dev, "    hctsiz: 0x%08x\n", hctsiz);
3915                         dev_dbg(hsotg->dev, "    hcint: 0x%08x\n", hcint);
3916                         dev_dbg(hsotg->dev, "    hcintmsk: 0x%08x\n", hcintmsk);
3917                 }
3918
3919                 if (!(chan->xfer_started && chan->qh))
3920                         continue;
3921
3922                 list_for_each_entry(qtd, &chan->qh->qtd_list, qtd_list_entry) {
3923                         if (!qtd->in_process)
3924                                 break;
3925                         urb = qtd->urb;
3926                         dev_dbg(hsotg->dev, "    URB Info:\n");
3927                         dev_dbg(hsotg->dev, "      qtd: %p, urb: %p\n",
3928                                 qtd, urb);
3929                         if (urb) {
3930                                 dev_dbg(hsotg->dev,
3931                                         "      Dev: %d, EP: %d %s\n",
3932                                         dwc2_hcd_get_dev_addr(&urb->pipe_info),
3933                                         dwc2_hcd_get_ep_num(&urb->pipe_info),
3934                                         dwc2_hcd_is_pipe_in(&urb->pipe_info) ?
3935                                         "IN" : "OUT");
3936                                 dev_dbg(hsotg->dev,
3937                                         "      Max packet size: %d (%d mult)\n",
3938                                         dwc2_hcd_get_maxp(&urb->pipe_info),
3939                                         dwc2_hcd_get_maxp_mult(&urb->pipe_info));
3940                                 dev_dbg(hsotg->dev,
3941                                         "      transfer_buffer: %p\n",
3942                                         urb->buf);
3943                                 dev_dbg(hsotg->dev,
3944                                         "      transfer_dma: %08lx\n",
3945                                         (unsigned long)urb->dma);
3946                                 dev_dbg(hsotg->dev,
3947                                         "      transfer_buffer_length: %d\n",
3948                                         urb->length);
3949                                 dev_dbg(hsotg->dev, "      actual_length: %d\n",
3950                                         urb->actual_length);
3951                         }
3952                 }
3953         }
3954
3955         dev_dbg(hsotg->dev, "  non_periodic_channels: %d\n",
3956                 hsotg->non_periodic_channels);
3957         dev_dbg(hsotg->dev, "  periodic_channels: %d\n",
3958                 hsotg->periodic_channels);
3959         dev_dbg(hsotg->dev, "  periodic_usecs: %d\n", hsotg->periodic_usecs);
3960         np_tx_status = dwc2_readl(hsotg, GNPTXSTS);
3961         dev_dbg(hsotg->dev, "  NP Tx Req Queue Space Avail: %d\n",
3962                 (np_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
3963         dev_dbg(hsotg->dev, "  NP Tx FIFO Space Avail: %d\n",
3964                 (np_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
3965         p_tx_status = dwc2_readl(hsotg, HPTXSTS);
3966         dev_dbg(hsotg->dev, "  P Tx Req Queue Space Avail: %d\n",
3967                 (p_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
3968         dev_dbg(hsotg->dev, "  P Tx FIFO Space Avail: %d\n",
3969                 (p_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
3970         dwc2_dump_global_registers(hsotg);
3971         dwc2_dump_host_registers(hsotg);
3972         dev_dbg(hsotg->dev,
3973                 "************************************************************\n");
3974         dev_dbg(hsotg->dev, "\n");
3975 #endif
3976 }
3977
3978 struct wrapper_priv_data {
3979         struct dwc2_hsotg *hsotg;
3980 };
3981
3982 /* Gets the dwc2_hsotg from a usb_hcd */
3983 static struct dwc2_hsotg *dwc2_hcd_to_hsotg(struct usb_hcd *hcd)
3984 {
3985         struct wrapper_priv_data *p;
3986
3987         p = (struct wrapper_priv_data *)&hcd->hcd_priv;
3988         return p->hsotg;
3989 }
3990
3991 /**
3992  * dwc2_host_get_tt_info() - Get the dwc2_tt associated with context
3993  *
3994  * This will get the dwc2_tt structure (and ttport) associated with the given
3995  * context (which is really just a struct urb pointer).
3996  *
3997  * The first time this is called for a given TT we allocate memory for our
3998  * structure.  When everyone is done and has called dwc2_host_put_tt_info()
3999  * then the refcount for the structure will go to 0 and we'll free it.
4000  *
4001  * @hsotg:     The HCD state structure for the DWC OTG controller.
4002  * @context:   The priv pointer from a struct dwc2_hcd_urb.
4003  * @mem_flags: Flags for allocating memory.
4004  * @ttport:    We'll return this device's port number here.  That's used to
4005  *             reference into the bitmap if we're on a multi_tt hub.
4006  *
4007  * Return: a pointer to a struct dwc2_tt.  Don't forget to call
4008  *         dwc2_host_put_tt_info()!  Returns NULL upon memory alloc failure.
4009  */
4010
4011 struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg, void *context,
4012                                       gfp_t mem_flags, int *ttport)
4013 {
4014         struct urb *urb = context;
4015         struct dwc2_tt *dwc_tt = NULL;
4016
4017         if (urb->dev->tt) {
4018                 *ttport = urb->dev->ttport;
4019
4020                 dwc_tt = urb->dev->tt->hcpriv;
4021                 if (!dwc_tt) {
4022                         size_t bitmap_size;
4023
4024                         /*
4025                          * For single_tt we need one schedule.  For multi_tt
4026                          * we need one per port.
4027                          */
4028                         bitmap_size = DWC2_ELEMENTS_PER_LS_BITMAP *
4029                                       sizeof(dwc_tt->periodic_bitmaps[0]);
4030                         if (urb->dev->tt->multi)
4031                                 bitmap_size *= urb->dev->tt->hub->maxchild;
4032
4033                         dwc_tt = kzalloc(sizeof(*dwc_tt) + bitmap_size,
4034                                          mem_flags);
4035                         if (!dwc_tt)
4036                                 return NULL;
4037
4038                         dwc_tt->usb_tt = urb->dev->tt;
4039                         dwc_tt->usb_tt->hcpriv = dwc_tt;
4040                 }
4041
4042                 dwc_tt->refcount++;
4043         }
4044
4045         return dwc_tt;
4046 }
4047
4048 /**
4049  * dwc2_host_put_tt_info() - Put the dwc2_tt from dwc2_host_get_tt_info()
4050  *
4051  * Frees resources allocated by dwc2_host_get_tt_info() if all current holders
4052  * of the structure are done.
4053  *
4054  * It's OK to call this with NULL.
4055  *
4056  * @hsotg:     The HCD state structure for the DWC OTG controller.
4057  * @dwc_tt:    The pointer returned by dwc2_host_get_tt_info.
4058  */
4059 void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg, struct dwc2_tt *dwc_tt)
4060 {
4061         /* Model kfree and make put of NULL a no-op */
4062         if (!dwc_tt)
4063                 return;
4064
4065         WARN_ON(dwc_tt->refcount < 1);
4066
4067         dwc_tt->refcount--;
4068         if (!dwc_tt->refcount) {
4069                 dwc_tt->usb_tt->hcpriv = NULL;
4070                 kfree(dwc_tt);
4071         }
4072 }
4073
4074 int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context)
4075 {
4076         struct urb *urb = context;
4077
4078         return urb->dev->speed;
4079 }
4080
4081 static void dwc2_allocate_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4082                                         struct urb *urb)
4083 {
4084         struct usb_bus *bus = hcd_to_bus(hcd);
4085
4086         if (urb->interval)
4087                 bus->bandwidth_allocated += bw / urb->interval;
4088         if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4089                 bus->bandwidth_isoc_reqs++;
4090         else
4091                 bus->bandwidth_int_reqs++;
4092 }
4093
4094 static void dwc2_free_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4095                                     struct urb *urb)
4096 {
4097         struct usb_bus *bus = hcd_to_bus(hcd);
4098
4099         if (urb->interval)
4100                 bus->bandwidth_allocated -= bw / urb->interval;
4101         if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4102                 bus->bandwidth_isoc_reqs--;
4103         else
4104                 bus->bandwidth_int_reqs--;
4105 }
4106
4107 /*
4108  * Sets the final status of an URB and returns it to the upper layer. Any
4109  * required cleanup of the URB is performed.
4110  *
4111  * Must be called with interrupt disabled and spinlock held
4112  */
4113 void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
4114                         int status)
4115 {
4116         struct urb *urb;
4117         int i;
4118
4119         if (!qtd) {
4120                 dev_dbg(hsotg->dev, "## %s: qtd is NULL ##\n", __func__);
4121                 return;
4122         }
4123
4124         if (!qtd->urb) {
4125                 dev_dbg(hsotg->dev, "## %s: qtd->urb is NULL ##\n", __func__);
4126                 return;
4127         }
4128
4129         urb = qtd->urb->priv;
4130         if (!urb) {
4131                 dev_dbg(hsotg->dev, "## %s: urb->priv is NULL ##\n", __func__);
4132                 return;
4133         }
4134
4135         urb->actual_length = dwc2_hcd_urb_get_actual_length(qtd->urb);
4136
4137         if (dbg_urb(urb))
4138                 dev_vdbg(hsotg->dev,
4139                          "%s: urb %p device %d ep %d-%s status %d actual %d\n",
4140                          __func__, urb, usb_pipedevice(urb->pipe),
4141                          usb_pipeendpoint(urb->pipe),
4142                          usb_pipein(urb->pipe) ? "IN" : "OUT", status,
4143                          urb->actual_length);
4144
4145         if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4146                 urb->error_count = dwc2_hcd_urb_get_error_count(qtd->urb);
4147                 for (i = 0; i < urb->number_of_packets; ++i) {
4148                         urb->iso_frame_desc[i].actual_length =
4149                                 dwc2_hcd_urb_get_iso_desc_actual_length(
4150                                                 qtd->urb, i);
4151                         urb->iso_frame_desc[i].status =
4152                                 dwc2_hcd_urb_get_iso_desc_status(qtd->urb, i);
4153                 }
4154         }
4155
4156         if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS && dbg_perio()) {
4157                 for (i = 0; i < urb->number_of_packets; i++)
4158                         dev_vdbg(hsotg->dev, " ISO Desc %d status %d\n",
4159                                  i, urb->iso_frame_desc[i].status);
4160         }
4161
4162         urb->status = status;
4163         if (!status) {
4164                 if ((urb->transfer_flags & URB_SHORT_NOT_OK) &&
4165                     urb->actual_length < urb->transfer_buffer_length)
4166                         urb->status = -EREMOTEIO;
4167         }
4168
4169         if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4170             usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4171                 struct usb_host_endpoint *ep = urb->ep;
4172
4173                 if (ep)
4174                         dwc2_free_bus_bandwidth(dwc2_hsotg_to_hcd(hsotg),
4175                                         dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4176                                         urb);
4177         }
4178
4179         usb_hcd_unlink_urb_from_ep(dwc2_hsotg_to_hcd(hsotg), urb);
4180         urb->hcpriv = NULL;
4181         kfree(qtd->urb);
4182         qtd->urb = NULL;
4183
4184         usb_hcd_giveback_urb(dwc2_hsotg_to_hcd(hsotg), urb, status);
4185 }
4186
4187 /*
4188  * Work queue function for starting the HCD when A-Cable is connected
4189  */
4190 static void dwc2_hcd_start_func(struct work_struct *work)
4191 {
4192         struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4193                                                 start_work.work);
4194
4195         dev_dbg(hsotg->dev, "%s() %p\n", __func__, hsotg);
4196         dwc2_host_start(hsotg);
4197 }
4198
4199 /*
4200  * Reset work queue function
4201  */
4202 static void dwc2_hcd_reset_func(struct work_struct *work)
4203 {
4204         struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4205                                                 reset_work.work);
4206         unsigned long flags;
4207         u32 hprt0;
4208
4209         dev_dbg(hsotg->dev, "USB RESET function called\n");
4210
4211         spin_lock_irqsave(&hsotg->lock, flags);
4212
4213         hprt0 = dwc2_read_hprt0(hsotg);
4214         hprt0 &= ~HPRT0_RST;
4215         dwc2_writel(hsotg, hprt0, HPRT0);
4216         hsotg->flags.b.port_reset_change = 1;
4217
4218         spin_unlock_irqrestore(&hsotg->lock, flags);
4219 }
4220
4221 static void dwc2_hcd_phy_reset_func(struct work_struct *work)
4222 {
4223         struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4224                                                 phy_reset_work);
4225         int ret;
4226
4227         ret = phy_reset(hsotg->phy);
4228         if (ret)
4229                 dev_warn(hsotg->dev, "PHY reset failed\n");
4230 }
4231
4232 /*
4233  * =========================================================================
4234  *  Linux HC Driver Functions
4235  * =========================================================================
4236  */
4237
4238 /*
4239  * Initializes the DWC_otg controller and its root hub and prepares it for host
4240  * mode operation. Activates the root port. Returns 0 on success and a negative
4241  * error code on failure.
4242  */
4243 static int _dwc2_hcd_start(struct usb_hcd *hcd)
4244 {
4245         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4246         struct usb_bus *bus = hcd_to_bus(hcd);
4247         unsigned long flags;
4248         u32 hprt0;
4249         int ret;
4250
4251         dev_dbg(hsotg->dev, "DWC OTG HCD START\n");
4252
4253         spin_lock_irqsave(&hsotg->lock, flags);
4254         hsotg->lx_state = DWC2_L0;
4255         hcd->state = HC_STATE_RUNNING;
4256         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4257
4258         if (dwc2_is_device_mode(hsotg)) {
4259                 spin_unlock_irqrestore(&hsotg->lock, flags);
4260                 return 0;       /* why 0 ?? */
4261         }
4262
4263         dwc2_hcd_reinit(hsotg);
4264
4265         hprt0 = dwc2_read_hprt0(hsotg);
4266         /* Has vbus power been turned on in dwc2_core_host_init ? */
4267         if (hprt0 & HPRT0_PWR) {
4268                 /* Enable external vbus supply before resuming root hub */
4269                 spin_unlock_irqrestore(&hsotg->lock, flags);
4270                 ret = dwc2_vbus_supply_init(hsotg);
4271                 if (ret)
4272                         return ret;
4273                 spin_lock_irqsave(&hsotg->lock, flags);
4274         }
4275
4276         /* Initialize and connect root hub if one is not already attached */
4277         if (bus->root_hub) {
4278                 dev_dbg(hsotg->dev, "DWC OTG HCD Has Root Hub\n");
4279                 /* Inform the HUB driver to resume */
4280                 usb_hcd_resume_root_hub(hcd);
4281         }
4282
4283         spin_unlock_irqrestore(&hsotg->lock, flags);
4284
4285         return 0;
4286 }
4287
4288 /*
4289  * Halts the DWC_otg host mode operations in a clean manner. USB transfers are
4290  * stopped.
4291  */
4292 static void _dwc2_hcd_stop(struct usb_hcd *hcd)
4293 {
4294         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4295         unsigned long flags;
4296         u32 hprt0;
4297
4298         /* Turn off all host-specific interrupts */
4299         dwc2_disable_host_interrupts(hsotg);
4300
4301         /* Wait for interrupt processing to finish */
4302         synchronize_irq(hcd->irq);
4303
4304         spin_lock_irqsave(&hsotg->lock, flags);
4305         hprt0 = dwc2_read_hprt0(hsotg);
4306         /* Ensure hcd is disconnected */
4307         dwc2_hcd_disconnect(hsotg, true);
4308         dwc2_hcd_stop(hsotg);
4309         hsotg->lx_state = DWC2_L3;
4310         hcd->state = HC_STATE_HALT;
4311         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4312         spin_unlock_irqrestore(&hsotg->lock, flags);
4313
4314         /* keep balanced supply init/exit by checking HPRT0_PWR */
4315         if (hprt0 & HPRT0_PWR)
4316                 dwc2_vbus_supply_exit(hsotg);
4317
4318         usleep_range(1000, 3000);
4319 }
4320
4321 static int _dwc2_hcd_suspend(struct usb_hcd *hcd)
4322 {
4323         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4324         unsigned long flags;
4325         int ret = 0;
4326
4327         spin_lock_irqsave(&hsotg->lock, flags);
4328
4329         if (dwc2_is_device_mode(hsotg))
4330                 goto unlock;
4331
4332         if (hsotg->lx_state != DWC2_L0)
4333                 goto unlock;
4334
4335         if (!HCD_HW_ACCESSIBLE(hcd))
4336                 goto unlock;
4337
4338         if (hsotg->op_state == OTG_STATE_B_PERIPHERAL)
4339                 goto unlock;
4340
4341         if (hsotg->bus_suspended)
4342                 goto skip_power_saving;
4343
4344         if (hsotg->flags.b.port_connect_status == 0)
4345                 goto skip_power_saving;
4346
4347         switch (hsotg->params.power_down) {
4348         case DWC2_POWER_DOWN_PARAM_PARTIAL:
4349                 /* Enter partial_power_down */
4350                 ret = dwc2_enter_partial_power_down(hsotg);
4351                 if (ret)
4352                         dev_err(hsotg->dev,
4353                                 "enter partial_power_down failed\n");
4354                 /* After entering suspend, hardware is not accessible */
4355                 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4356                 break;
4357         case DWC2_POWER_DOWN_PARAM_HIBERNATION:
4358                 /* Enter hibernation */
4359                 spin_unlock_irqrestore(&hsotg->lock, flags);
4360                 ret = dwc2_enter_hibernation(hsotg, 1);
4361                 if (ret)
4362                         dev_err(hsotg->dev, "enter hibernation failed\n");
4363                 spin_lock_irqsave(&hsotg->lock, flags);
4364
4365                 /* After entering suspend, hardware is not accessible */
4366                 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4367                 break;
4368         case DWC2_POWER_DOWN_PARAM_NONE:
4369                 /*
4370                  * If not hibernation nor partial power down are supported,
4371                  * clock gating is used to save power.
4372                  */
4373                 if (!hsotg->params.no_clock_gating) {
4374                         dwc2_host_enter_clock_gating(hsotg);
4375
4376                         /* After entering suspend, hardware is not accessible */
4377                         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4378                 }
4379                 break;
4380         default:
4381                 goto skip_power_saving;
4382         }
4383
4384         spin_unlock_irqrestore(&hsotg->lock, flags);
4385         dwc2_vbus_supply_exit(hsotg);
4386         spin_lock_irqsave(&hsotg->lock, flags);
4387
4388         /* Ask phy to be suspended */
4389         if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4390                 spin_unlock_irqrestore(&hsotg->lock, flags);
4391                 usb_phy_set_suspend(hsotg->uphy, true);
4392                 spin_lock_irqsave(&hsotg->lock, flags);
4393         }
4394
4395 skip_power_saving:
4396         hsotg->lx_state = DWC2_L2;
4397 unlock:
4398         spin_unlock_irqrestore(&hsotg->lock, flags);
4399
4400         return ret;
4401 }
4402
4403 static int _dwc2_hcd_resume(struct usb_hcd *hcd)
4404 {
4405         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4406         unsigned long flags;
4407         u32 hprt0;
4408         int ret = 0;
4409
4410         spin_lock_irqsave(&hsotg->lock, flags);
4411
4412         if (dwc2_is_device_mode(hsotg))
4413                 goto unlock;
4414
4415         if (hsotg->lx_state != DWC2_L2)
4416                 goto unlock;
4417
4418         hprt0 = dwc2_read_hprt0(hsotg);
4419
4420         /*
4421          * Added port connection status checking which prevents exiting from
4422          * Partial Power Down mode from _dwc2_hcd_resume() if not in Partial
4423          * Power Down mode.
4424          */
4425         if (hprt0 & HPRT0_CONNSTS) {
4426                 hsotg->lx_state = DWC2_L0;
4427                 goto unlock;
4428         }
4429
4430         switch (hsotg->params.power_down) {
4431         case DWC2_POWER_DOWN_PARAM_PARTIAL:
4432                 ret = dwc2_exit_partial_power_down(hsotg, 0, true);
4433                 if (ret)
4434                         dev_err(hsotg->dev,
4435                                 "exit partial_power_down failed\n");
4436                 /*
4437                  * Set HW accessible bit before powering on the controller
4438                  * since an interrupt may rise.
4439                  */
4440                 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4441                 break;
4442         case DWC2_POWER_DOWN_PARAM_HIBERNATION:
4443                 ret = dwc2_exit_hibernation(hsotg, 0, 0, 1);
4444                 if (ret)
4445                         dev_err(hsotg->dev, "exit hibernation failed.\n");
4446
4447                 /*
4448                  * Set HW accessible bit before powering on the controller
4449                  * since an interrupt may rise.
4450                  */
4451                 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4452                 break;
4453         case DWC2_POWER_DOWN_PARAM_NONE:
4454                 /*
4455                  * If not hibernation nor partial power down are supported,
4456                  * port resume is done using the clock gating programming flow.
4457                  */
4458                 spin_unlock_irqrestore(&hsotg->lock, flags);
4459                 dwc2_host_exit_clock_gating(hsotg, 0);
4460
4461                 /*
4462                  * Initialize the Core for Host mode, as after system resume
4463                  * the global interrupts are disabled.
4464                  */
4465                 dwc2_core_init(hsotg, false);
4466                 dwc2_enable_global_interrupts(hsotg);
4467                 dwc2_hcd_reinit(hsotg);
4468                 spin_lock_irqsave(&hsotg->lock, flags);
4469
4470                 /*
4471                  * Set HW accessible bit before powering on the controller
4472                  * since an interrupt may rise.
4473                  */
4474                 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4475                 break;
4476         default:
4477                 hsotg->lx_state = DWC2_L0;
4478                 goto unlock;
4479         }
4480
4481         /* Change Root port status, as port status change occurred after resume.*/
4482         hsotg->flags.b.port_suspend_change = 1;
4483
4484         /*
4485          * Enable power if not already done.
4486          * This must not be spinlocked since duration
4487          * of this call is unknown.
4488          */
4489         if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4490                 spin_unlock_irqrestore(&hsotg->lock, flags);
4491                 usb_phy_set_suspend(hsotg->uphy, false);
4492                 spin_lock_irqsave(&hsotg->lock, flags);
4493         }
4494
4495         /* Enable external vbus supply after resuming the port. */
4496         spin_unlock_irqrestore(&hsotg->lock, flags);
4497         dwc2_vbus_supply_init(hsotg);
4498
4499         /* Wait for controller to correctly update D+/D- level */
4500         usleep_range(3000, 5000);
4501         spin_lock_irqsave(&hsotg->lock, flags);
4502
4503         /*
4504          * Clear Port Enable and Port Status changes.
4505          * Enable Port Power.
4506          */
4507         dwc2_writel(hsotg, HPRT0_PWR | HPRT0_CONNDET |
4508                         HPRT0_ENACHG, HPRT0);
4509
4510         /* Wait for controller to detect Port Connect */
4511         spin_unlock_irqrestore(&hsotg->lock, flags);
4512         usleep_range(5000, 7000);
4513         spin_lock_irqsave(&hsotg->lock, flags);
4514 unlock:
4515         spin_unlock_irqrestore(&hsotg->lock, flags);
4516
4517         return ret;
4518 }
4519
4520 /* Returns the current frame number */
4521 static int _dwc2_hcd_get_frame_number(struct usb_hcd *hcd)
4522 {
4523         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4524
4525         return dwc2_hcd_get_frame_number(hsotg);
4526 }
4527
4528 static void dwc2_dump_urb_info(struct usb_hcd *hcd, struct urb *urb,
4529                                char *fn_name)
4530 {
4531 #ifdef VERBOSE_DEBUG
4532         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4533         char *pipetype = NULL;
4534         char *speed = NULL;
4535
4536         dev_vdbg(hsotg->dev, "%s, urb %p\n", fn_name, urb);
4537         dev_vdbg(hsotg->dev, "  Device address: %d\n",
4538                  usb_pipedevice(urb->pipe));
4539         dev_vdbg(hsotg->dev, "  Endpoint: %d, %s\n",
4540                  usb_pipeendpoint(urb->pipe),
4541                  usb_pipein(urb->pipe) ? "IN" : "OUT");
4542
4543         switch (usb_pipetype(urb->pipe)) {
4544         case PIPE_CONTROL:
4545                 pipetype = "CONTROL";
4546                 break;
4547         case PIPE_BULK:
4548                 pipetype = "BULK";
4549                 break;
4550         case PIPE_INTERRUPT:
4551                 pipetype = "INTERRUPT";
4552                 break;
4553         case PIPE_ISOCHRONOUS:
4554                 pipetype = "ISOCHRONOUS";
4555                 break;
4556         }
4557
4558         dev_vdbg(hsotg->dev, "  Endpoint type: %s %s (%s)\n", pipetype,
4559                  usb_urb_dir_in(urb) ? "IN" : "OUT", usb_pipein(urb->pipe) ?
4560                  "IN" : "OUT");
4561
4562         switch (urb->dev->speed) {
4563         case USB_SPEED_HIGH:
4564                 speed = "HIGH";
4565                 break;
4566         case USB_SPEED_FULL:
4567                 speed = "FULL";
4568                 break;
4569         case USB_SPEED_LOW:
4570                 speed = "LOW";
4571                 break;
4572         default:
4573                 speed = "UNKNOWN";
4574                 break;
4575         }
4576
4577         dev_vdbg(hsotg->dev, "  Speed: %s\n", speed);
4578         dev_vdbg(hsotg->dev, "  Max packet size: %d (%d mult)\n",
4579                  usb_endpoint_maxp(&urb->ep->desc),
4580                  usb_endpoint_maxp_mult(&urb->ep->desc));
4581
4582         dev_vdbg(hsotg->dev, "  Data buffer length: %d\n",
4583                  urb->transfer_buffer_length);
4584         dev_vdbg(hsotg->dev, "  Transfer buffer: %p, Transfer DMA: %08lx\n",
4585                  urb->transfer_buffer, (unsigned long)urb->transfer_dma);
4586         dev_vdbg(hsotg->dev, "  Setup buffer: %p, Setup DMA: %08lx\n",
4587                  urb->setup_packet, (unsigned long)urb->setup_dma);
4588         dev_vdbg(hsotg->dev, "  Interval: %d\n", urb->interval);
4589
4590         if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4591                 int i;
4592
4593                 for (i = 0; i < urb->number_of_packets; i++) {
4594                         dev_vdbg(hsotg->dev, "  ISO Desc %d:\n", i);
4595                         dev_vdbg(hsotg->dev, "    offset: %d, length %d\n",
4596                                  urb->iso_frame_desc[i].offset,
4597                                  urb->iso_frame_desc[i].length);
4598                 }
4599         }
4600 #endif
4601 }
4602
4603 /*
4604  * Starts processing a USB transfer request specified by a USB Request Block
4605  * (URB). mem_flags indicates the type of memory allocation to use while
4606  * processing this URB.
4607  */
4608 static int _dwc2_hcd_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
4609                                  gfp_t mem_flags)
4610 {
4611         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4612         struct usb_host_endpoint *ep = urb->ep;
4613         struct dwc2_hcd_urb *dwc2_urb;
4614         int i;
4615         int retval;
4616         int alloc_bandwidth = 0;
4617         u8 ep_type = 0;
4618         u32 tflags = 0;
4619         void *buf;
4620         unsigned long flags;
4621         struct dwc2_qh *qh;
4622         bool qh_allocated = false;
4623         struct dwc2_qtd *qtd;
4624         struct dwc2_gregs_backup *gr;
4625
4626         gr = &hsotg->gr_backup;
4627
4628         if (dbg_urb(urb)) {
4629                 dev_vdbg(hsotg->dev, "DWC OTG HCD URB Enqueue\n");
4630                 dwc2_dump_urb_info(hcd, urb, "urb_enqueue");
4631         }
4632
4633         if (hsotg->hibernated) {
4634                 if (gr->gotgctl & GOTGCTL_CURMODE_HOST)
4635                         retval = dwc2_exit_hibernation(hsotg, 0, 0, 1);
4636                 else
4637                         retval = dwc2_exit_hibernation(hsotg, 0, 0, 0);
4638
4639                 if (retval)
4640                         dev_err(hsotg->dev,
4641                                 "exit hibernation failed.\n");
4642         }
4643
4644         if (hsotg->in_ppd) {
4645                 retval = dwc2_exit_partial_power_down(hsotg, 0, true);
4646                 if (retval)
4647                         dev_err(hsotg->dev,
4648                                 "exit partial_power_down failed\n");
4649         }
4650
4651         if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_NONE &&
4652             hsotg->bus_suspended) {
4653                 if (dwc2_is_device_mode(hsotg))
4654                         dwc2_gadget_exit_clock_gating(hsotg, 0);
4655                 else
4656                         dwc2_host_exit_clock_gating(hsotg, 0);
4657         }
4658
4659         if (!ep)
4660                 return -EINVAL;
4661
4662         if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4663             usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4664                 spin_lock_irqsave(&hsotg->lock, flags);
4665                 if (!dwc2_hcd_is_bandwidth_allocated(hsotg, ep))
4666                         alloc_bandwidth = 1;
4667                 spin_unlock_irqrestore(&hsotg->lock, flags);
4668         }
4669
4670         switch (usb_pipetype(urb->pipe)) {
4671         case PIPE_CONTROL:
4672                 ep_type = USB_ENDPOINT_XFER_CONTROL;
4673                 break;
4674         case PIPE_ISOCHRONOUS:
4675                 ep_type = USB_ENDPOINT_XFER_ISOC;
4676                 break;
4677         case PIPE_BULK:
4678                 ep_type = USB_ENDPOINT_XFER_BULK;
4679                 break;
4680         case PIPE_INTERRUPT:
4681                 ep_type = USB_ENDPOINT_XFER_INT;
4682                 break;
4683         }
4684
4685         dwc2_urb = dwc2_hcd_urb_alloc(hsotg, urb->number_of_packets,
4686                                       mem_flags);
4687         if (!dwc2_urb)
4688                 return -ENOMEM;
4689
4690         dwc2_hcd_urb_set_pipeinfo(hsotg, dwc2_urb, usb_pipedevice(urb->pipe),
4691                                   usb_pipeendpoint(urb->pipe), ep_type,
4692                                   usb_pipein(urb->pipe),
4693                                   usb_endpoint_maxp(&ep->desc),
4694                                   usb_endpoint_maxp_mult(&ep->desc));
4695
4696         buf = urb->transfer_buffer;
4697
4698         if (hcd_uses_dma(hcd)) {
4699                 if (!buf && (urb->transfer_dma & 3)) {
4700                         dev_err(hsotg->dev,
4701                                 "%s: unaligned transfer with no transfer_buffer",
4702                                 __func__);
4703                         retval = -EINVAL;
4704                         goto fail0;
4705                 }
4706         }
4707
4708         if (!(urb->transfer_flags & URB_NO_INTERRUPT))
4709                 tflags |= URB_GIVEBACK_ASAP;
4710         if (urb->transfer_flags & URB_ZERO_PACKET)
4711                 tflags |= URB_SEND_ZERO_PACKET;
4712
4713         dwc2_urb->priv = urb;
4714         dwc2_urb->buf = buf;
4715         dwc2_urb->dma = urb->transfer_dma;
4716         dwc2_urb->length = urb->transfer_buffer_length;
4717         dwc2_urb->setup_packet = urb->setup_packet;
4718         dwc2_urb->setup_dma = urb->setup_dma;
4719         dwc2_urb->flags = tflags;
4720         dwc2_urb->interval = urb->interval;
4721         dwc2_urb->status = -EINPROGRESS;
4722
4723         for (i = 0; i < urb->number_of_packets; ++i)
4724                 dwc2_hcd_urb_set_iso_desc_params(dwc2_urb, i,
4725                                                  urb->iso_frame_desc[i].offset,
4726                                                  urb->iso_frame_desc[i].length);
4727
4728         urb->hcpriv = dwc2_urb;
4729         qh = (struct dwc2_qh *)ep->hcpriv;
4730         /* Create QH for the endpoint if it doesn't exist */
4731         if (!qh) {
4732                 qh = dwc2_hcd_qh_create(hsotg, dwc2_urb, mem_flags);
4733                 if (!qh) {
4734                         retval = -ENOMEM;
4735                         goto fail0;
4736                 }
4737                 ep->hcpriv = qh;
4738                 qh_allocated = true;
4739         }
4740
4741         qtd = kzalloc(sizeof(*qtd), mem_flags);
4742         if (!qtd) {
4743                 retval = -ENOMEM;
4744                 goto fail1;
4745         }
4746
4747         spin_lock_irqsave(&hsotg->lock, flags);
4748         retval = usb_hcd_link_urb_to_ep(hcd, urb);
4749         if (retval)
4750                 goto fail2;
4751
4752         retval = dwc2_hcd_urb_enqueue(hsotg, dwc2_urb, qh, qtd);
4753         if (retval)
4754                 goto fail3;
4755
4756         if (alloc_bandwidth) {
4757                 dwc2_allocate_bus_bandwidth(hcd,
4758                                 dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4759                                 urb);
4760         }
4761
4762         spin_unlock_irqrestore(&hsotg->lock, flags);
4763
4764         return 0;
4765
4766 fail3:
4767         dwc2_urb->priv = NULL;
4768         usb_hcd_unlink_urb_from_ep(hcd, urb);
4769         if (qh_allocated && qh->channel && qh->channel->qh == qh)
4770                 qh->channel->qh = NULL;
4771 fail2:
4772         urb->hcpriv = NULL;
4773         spin_unlock_irqrestore(&hsotg->lock, flags);
4774         kfree(qtd);
4775 fail1:
4776         if (qh_allocated) {
4777                 struct dwc2_qtd *qtd2, *qtd2_tmp;
4778
4779                 ep->hcpriv = NULL;
4780                 dwc2_hcd_qh_unlink(hsotg, qh);
4781                 /* Free each QTD in the QH's QTD list */
4782                 list_for_each_entry_safe(qtd2, qtd2_tmp, &qh->qtd_list,
4783                                          qtd_list_entry)
4784                         dwc2_hcd_qtd_unlink_and_free(hsotg, qtd2, qh);
4785                 dwc2_hcd_qh_free(hsotg, qh);
4786         }
4787 fail0:
4788         kfree(dwc2_urb);
4789
4790         return retval;
4791 }
4792
4793 /*
4794  * Aborts/cancels a USB transfer request. Always returns 0 to indicate success.
4795  */
4796 static int _dwc2_hcd_urb_dequeue(struct usb_hcd *hcd, struct urb *urb,
4797                                  int status)
4798 {
4799         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4800         int rc;
4801         unsigned long flags;
4802
4803         dev_dbg(hsotg->dev, "DWC OTG HCD URB Dequeue\n");
4804         dwc2_dump_urb_info(hcd, urb, "urb_dequeue");
4805
4806         spin_lock_irqsave(&hsotg->lock, flags);
4807
4808         rc = usb_hcd_check_unlink_urb(hcd, urb, status);
4809         if (rc)
4810                 goto out;
4811
4812         if (!urb->hcpriv) {
4813                 dev_dbg(hsotg->dev, "## urb->hcpriv is NULL ##\n");
4814                 goto out;
4815         }
4816
4817         rc = dwc2_hcd_urb_dequeue(hsotg, urb->hcpriv);
4818
4819         usb_hcd_unlink_urb_from_ep(hcd, urb);
4820
4821         kfree(urb->hcpriv);
4822         urb->hcpriv = NULL;
4823
4824         /* Higher layer software sets URB status */
4825         spin_unlock(&hsotg->lock);
4826         usb_hcd_giveback_urb(hcd, urb, status);
4827         spin_lock(&hsotg->lock);
4828
4829         dev_dbg(hsotg->dev, "Called usb_hcd_giveback_urb()\n");
4830         dev_dbg(hsotg->dev, "  urb->status = %d\n", urb->status);
4831 out:
4832         spin_unlock_irqrestore(&hsotg->lock, flags);
4833
4834         return rc;
4835 }
4836
4837 /*
4838  * Frees resources in the DWC_otg controller related to a given endpoint. Also
4839  * clears state in the HCD related to the endpoint. Any URBs for the endpoint
4840  * must already be dequeued.
4841  */
4842 static void _dwc2_hcd_endpoint_disable(struct usb_hcd *hcd,
4843                                        struct usb_host_endpoint *ep)
4844 {
4845         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4846
4847         dev_dbg(hsotg->dev,
4848                 "DWC OTG HCD EP DISABLE: bEndpointAddress=0x%02x, ep->hcpriv=%p\n",
4849                 ep->desc.bEndpointAddress, ep->hcpriv);
4850         dwc2_hcd_endpoint_disable(hsotg, ep, 250);
4851 }
4852
4853 /*
4854  * Resets endpoint specific parameter values, in current version used to reset
4855  * the data toggle (as a WA). This function can be called from usb_clear_halt
4856  * routine.
4857  */
4858 static void _dwc2_hcd_endpoint_reset(struct usb_hcd *hcd,
4859                                      struct usb_host_endpoint *ep)
4860 {
4861         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4862         unsigned long flags;
4863
4864         dev_dbg(hsotg->dev,
4865                 "DWC OTG HCD EP RESET: bEndpointAddress=0x%02x\n",
4866                 ep->desc.bEndpointAddress);
4867
4868         spin_lock_irqsave(&hsotg->lock, flags);
4869         dwc2_hcd_endpoint_reset(hsotg, ep);
4870         spin_unlock_irqrestore(&hsotg->lock, flags);
4871 }
4872
4873 /*
4874  * Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if
4875  * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid
4876  * interrupt.
4877  *
4878  * This function is called by the USB core when an interrupt occurs
4879  */
4880 static irqreturn_t _dwc2_hcd_irq(struct usb_hcd *hcd)
4881 {
4882         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4883
4884         return dwc2_handle_hcd_intr(hsotg);
4885 }
4886
4887 /*
4888  * Creates Status Change bitmap for the root hub and root port. The bitmap is
4889  * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1
4890  * is the status change indicator for the single root port. Returns 1 if either
4891  * change indicator is 1, otherwise returns 0.
4892  */
4893 static int _dwc2_hcd_hub_status_data(struct usb_hcd *hcd, char *buf)
4894 {
4895         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4896
4897         buf[0] = dwc2_hcd_is_status_changed(hsotg, 1) << 1;
4898         return buf[0] != 0;
4899 }
4900
4901 /* Handles hub class-specific requests */
4902 static int _dwc2_hcd_hub_control(struct usb_hcd *hcd, u16 typereq, u16 wvalue,
4903                                  u16 windex, char *buf, u16 wlength)
4904 {
4905         int retval = dwc2_hcd_hub_control(dwc2_hcd_to_hsotg(hcd), typereq,
4906                                           wvalue, windex, buf, wlength);
4907         return retval;
4908 }
4909
4910 /* Handles hub TT buffer clear completions */
4911 static void _dwc2_hcd_clear_tt_buffer_complete(struct usb_hcd *hcd,
4912                                                struct usb_host_endpoint *ep)
4913 {
4914         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4915         struct dwc2_qh *qh;
4916         unsigned long flags;
4917
4918         qh = ep->hcpriv;
4919         if (!qh)
4920                 return;
4921
4922         spin_lock_irqsave(&hsotg->lock, flags);
4923         qh->tt_buffer_dirty = 0;
4924
4925         if (hsotg->flags.b.port_connect_status)
4926                 dwc2_hcd_queue_transactions(hsotg, DWC2_TRANSACTION_ALL);
4927
4928         spin_unlock_irqrestore(&hsotg->lock, flags);
4929 }
4930
4931 /*
4932  * HPRT0_SPD_HIGH_SPEED: high speed
4933  * HPRT0_SPD_FULL_SPEED: full speed
4934  */
4935 static void dwc2_change_bus_speed(struct usb_hcd *hcd, int speed)
4936 {
4937         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4938
4939         if (hsotg->params.speed == speed)
4940                 return;
4941
4942         hsotg->params.speed = speed;
4943         queue_work(hsotg->wq_otg, &hsotg->wf_otg);
4944 }
4945
4946 static void dwc2_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
4947 {
4948         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4949
4950         if (!hsotg->params.change_speed_quirk)
4951                 return;
4952
4953         /*
4954          * On removal, set speed to default high-speed.
4955          */
4956         if (udev->parent && udev->parent->speed > USB_SPEED_UNKNOWN &&
4957             udev->parent->speed < USB_SPEED_HIGH) {
4958                 dev_info(hsotg->dev, "Set speed to default high-speed\n");
4959                 dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
4960         }
4961 }
4962
4963 static int dwc2_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
4964 {
4965         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4966
4967         if (!hsotg->params.change_speed_quirk)
4968                 return 0;
4969
4970         if (udev->speed == USB_SPEED_HIGH) {
4971                 dev_info(hsotg->dev, "Set speed to high-speed\n");
4972                 dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
4973         } else if ((udev->speed == USB_SPEED_FULL ||
4974                                 udev->speed == USB_SPEED_LOW)) {
4975                 /*
4976                  * Change speed setting to full-speed if there's
4977                  * a full-speed or low-speed device plugged in.
4978                  */
4979                 dev_info(hsotg->dev, "Set speed to full-speed\n");
4980                 dwc2_change_bus_speed(hcd, HPRT0_SPD_FULL_SPEED);
4981         }
4982
4983         return 0;
4984 }
4985
4986 static struct hc_driver dwc2_hc_driver = {
4987         .description = "dwc2_hsotg",
4988         .product_desc = "DWC OTG Controller",
4989         .hcd_priv_size = sizeof(struct wrapper_priv_data),
4990
4991         .irq = _dwc2_hcd_irq,
4992         .flags = HCD_MEMORY | HCD_USB2 | HCD_BH,
4993
4994         .start = _dwc2_hcd_start,
4995         .stop = _dwc2_hcd_stop,
4996         .urb_enqueue = _dwc2_hcd_urb_enqueue,
4997         .urb_dequeue = _dwc2_hcd_urb_dequeue,
4998         .endpoint_disable = _dwc2_hcd_endpoint_disable,
4999         .endpoint_reset = _dwc2_hcd_endpoint_reset,
5000         .get_frame_number = _dwc2_hcd_get_frame_number,
5001
5002         .hub_status_data = _dwc2_hcd_hub_status_data,
5003         .hub_control = _dwc2_hcd_hub_control,
5004         .clear_tt_buffer_complete = _dwc2_hcd_clear_tt_buffer_complete,
5005
5006         .bus_suspend = _dwc2_hcd_suspend,
5007         .bus_resume = _dwc2_hcd_resume,
5008
5009         .map_urb_for_dma        = dwc2_map_urb_for_dma,
5010         .unmap_urb_for_dma      = dwc2_unmap_urb_for_dma,
5011 };
5012
5013 /*
5014  * Frees secondary storage associated with the dwc2_hsotg structure contained
5015  * in the struct usb_hcd field
5016  */
5017 static void dwc2_hcd_free(struct dwc2_hsotg *hsotg)
5018 {
5019         u32 ahbcfg;
5020         u32 dctl;
5021         int i;
5022
5023         dev_dbg(hsotg->dev, "DWC OTG HCD FREE\n");
5024
5025         /* Free memory for QH/QTD lists */
5026         dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_inactive);
5027         dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_waiting);
5028         dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_active);
5029         dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_inactive);
5030         dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_ready);
5031         dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_assigned);
5032         dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_queued);
5033
5034         /* Free memory for the host channels */
5035         for (i = 0; i < MAX_EPS_CHANNELS; i++) {
5036                 struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
5037
5038                 if (chan) {
5039                         dev_dbg(hsotg->dev, "HCD Free channel #%i, chan=%p\n",
5040                                 i, chan);
5041                         hsotg->hc_ptr_array[i] = NULL;
5042                         kfree(chan);
5043                 }
5044         }
5045
5046         if (hsotg->params.host_dma) {
5047                 if (hsotg->status_buf) {
5048                         dma_free_coherent(hsotg->dev, DWC2_HCD_STATUS_BUF_SIZE,
5049                                           hsotg->status_buf,
5050                                           hsotg->status_buf_dma);
5051                         hsotg->status_buf = NULL;
5052                 }
5053         } else {
5054                 kfree(hsotg->status_buf);
5055                 hsotg->status_buf = NULL;
5056         }
5057
5058         ahbcfg = dwc2_readl(hsotg, GAHBCFG);
5059
5060         /* Disable all interrupts */
5061         ahbcfg &= ~GAHBCFG_GLBL_INTR_EN;
5062         dwc2_writel(hsotg, ahbcfg, GAHBCFG);
5063         dwc2_writel(hsotg, 0, GINTMSK);
5064
5065         if (hsotg->hw_params.snpsid >= DWC2_CORE_REV_3_00a) {
5066                 dctl = dwc2_readl(hsotg, DCTL);
5067                 dctl |= DCTL_SFTDISCON;
5068                 dwc2_writel(hsotg, dctl, DCTL);
5069         }
5070
5071         if (hsotg->wq_otg) {
5072                 if (!cancel_work_sync(&hsotg->wf_otg))
5073                         flush_workqueue(hsotg->wq_otg);
5074                 destroy_workqueue(hsotg->wq_otg);
5075         }
5076
5077         cancel_work_sync(&hsotg->phy_reset_work);
5078
5079         del_timer(&hsotg->wkp_timer);
5080 }
5081
5082 static void dwc2_hcd_release(struct dwc2_hsotg *hsotg)
5083 {
5084         /* Turn off all host-specific interrupts */
5085         dwc2_disable_host_interrupts(hsotg);
5086
5087         dwc2_hcd_free(hsotg);
5088 }
5089
5090 /*
5091  * Initializes the HCD. This function allocates memory for and initializes the
5092  * static parts of the usb_hcd and dwc2_hsotg structures. It also registers the
5093  * USB bus with the core and calls the hc_driver->start() function. It returns
5094  * a negative error on failure.
5095  */
5096 int dwc2_hcd_init(struct dwc2_hsotg *hsotg)
5097 {
5098         struct platform_device *pdev = to_platform_device(hsotg->dev);
5099         struct resource *res;
5100         struct usb_hcd *hcd;
5101         struct dwc2_host_chan *channel;
5102         u32 hcfg;
5103         int i, num_channels;
5104         int retval;
5105
5106         if (usb_disabled())
5107                 return -ENODEV;
5108
5109         dev_dbg(hsotg->dev, "DWC OTG HCD INIT\n");
5110
5111         retval = -ENOMEM;
5112
5113         hcfg = dwc2_readl(hsotg, HCFG);
5114         dev_dbg(hsotg->dev, "hcfg=%08x\n", hcfg);
5115
5116 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5117         hsotg->frame_num_array = kcalloc(FRAME_NUM_ARRAY_SIZE,
5118                                          sizeof(*hsotg->frame_num_array),
5119                                          GFP_KERNEL);
5120         if (!hsotg->frame_num_array)
5121                 goto error1;
5122         hsotg->last_frame_num_array =
5123                 kcalloc(FRAME_NUM_ARRAY_SIZE,
5124                         sizeof(*hsotg->last_frame_num_array), GFP_KERNEL);
5125         if (!hsotg->last_frame_num_array)
5126                 goto error1;
5127 #endif
5128         hsotg->last_frame_num = HFNUM_MAX_FRNUM;
5129
5130         /* Check if the bus driver or platform code has setup a dma_mask */
5131         if (hsotg->params.host_dma &&
5132             !hsotg->dev->dma_mask) {
5133                 dev_warn(hsotg->dev,
5134                          "dma_mask not set, disabling DMA\n");
5135                 hsotg->params.host_dma = false;
5136                 hsotg->params.dma_desc_enable = false;
5137         }
5138
5139         /* Set device flags indicating whether the HCD supports DMA */
5140         if (hsotg->params.host_dma) {
5141                 if (dma_set_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5142                         dev_warn(hsotg->dev, "can't set DMA mask\n");
5143                 if (dma_set_coherent_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5144                         dev_warn(hsotg->dev, "can't set coherent DMA mask\n");
5145         }
5146
5147         if (hsotg->params.change_speed_quirk) {
5148                 dwc2_hc_driver.free_dev = dwc2_free_dev;
5149                 dwc2_hc_driver.reset_device = dwc2_reset_device;
5150         }
5151
5152         if (hsotg->params.host_dma)
5153                 dwc2_hc_driver.flags |= HCD_DMA;
5154
5155         hcd = usb_create_hcd(&dwc2_hc_driver, hsotg->dev, dev_name(hsotg->dev));
5156         if (!hcd)
5157                 goto error1;
5158
5159         hcd->has_tt = 1;
5160
5161         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
5162         if (!res) {
5163                 retval = -EINVAL;
5164                 goto error2;
5165         }
5166         hcd->rsrc_start = res->start;
5167         hcd->rsrc_len = resource_size(res);
5168
5169         ((struct wrapper_priv_data *)&hcd->hcd_priv)->hsotg = hsotg;
5170         hsotg->priv = hcd;
5171
5172         /*
5173          * Disable the global interrupt until all the interrupt handlers are
5174          * installed
5175          */
5176         dwc2_disable_global_interrupts(hsotg);
5177
5178         /* Initialize the DWC_otg core, and select the Phy type */
5179         retval = dwc2_core_init(hsotg, true);
5180         if (retval)
5181                 goto error2;
5182
5183         /* Create new workqueue and init work */
5184         retval = -ENOMEM;
5185         hsotg->wq_otg = alloc_ordered_workqueue("dwc2", 0);
5186         if (!hsotg->wq_otg) {
5187                 dev_err(hsotg->dev, "Failed to create workqueue\n");
5188                 goto error2;
5189         }
5190         INIT_WORK(&hsotg->wf_otg, dwc2_conn_id_status_change);
5191
5192         timer_setup(&hsotg->wkp_timer, dwc2_wakeup_detected, 0);
5193
5194         /* Initialize the non-periodic schedule */
5195         INIT_LIST_HEAD(&hsotg->non_periodic_sched_inactive);
5196         INIT_LIST_HEAD(&hsotg->non_periodic_sched_waiting);
5197         INIT_LIST_HEAD(&hsotg->non_periodic_sched_active);
5198
5199         /* Initialize the periodic schedule */
5200         INIT_LIST_HEAD(&hsotg->periodic_sched_inactive);
5201         INIT_LIST_HEAD(&hsotg->periodic_sched_ready);
5202         INIT_LIST_HEAD(&hsotg->periodic_sched_assigned);
5203         INIT_LIST_HEAD(&hsotg->periodic_sched_queued);
5204
5205         INIT_LIST_HEAD(&hsotg->split_order);
5206
5207         /*
5208          * Create a host channel descriptor for each host channel implemented
5209          * in the controller. Initialize the channel descriptor array.
5210          */
5211         INIT_LIST_HEAD(&hsotg->free_hc_list);
5212         num_channels = hsotg->params.host_channels;
5213         memset(&hsotg->hc_ptr_array[0], 0, sizeof(hsotg->hc_ptr_array));
5214
5215         for (i = 0; i < num_channels; i++) {
5216                 channel = kzalloc(sizeof(*channel), GFP_KERNEL);
5217                 if (!channel)
5218                         goto error3;
5219                 channel->hc_num = i;
5220                 INIT_LIST_HEAD(&channel->split_order_list_entry);
5221                 hsotg->hc_ptr_array[i] = channel;
5222         }
5223
5224         /* Initialize work */
5225         INIT_DELAYED_WORK(&hsotg->start_work, dwc2_hcd_start_func);
5226         INIT_DELAYED_WORK(&hsotg->reset_work, dwc2_hcd_reset_func);
5227         INIT_WORK(&hsotg->phy_reset_work, dwc2_hcd_phy_reset_func);
5228
5229         /*
5230          * Allocate space for storing data on status transactions. Normally no
5231          * data is sent, but this space acts as a bit bucket. This must be
5232          * done after usb_add_hcd since that function allocates the DMA buffer
5233          * pool.
5234          */
5235         if (hsotg->params.host_dma)
5236                 hsotg->status_buf = dma_alloc_coherent(hsotg->dev,
5237                                         DWC2_HCD_STATUS_BUF_SIZE,
5238                                         &hsotg->status_buf_dma, GFP_KERNEL);
5239         else
5240                 hsotg->status_buf = kzalloc(DWC2_HCD_STATUS_BUF_SIZE,
5241                                           GFP_KERNEL);
5242
5243         if (!hsotg->status_buf)
5244                 goto error3;
5245
5246         /*
5247          * Create kmem caches to handle descriptor buffers in descriptor
5248          * DMA mode.
5249          * Alignment must be set to 512 bytes.
5250          */
5251         if (hsotg->params.dma_desc_enable ||
5252             hsotg->params.dma_desc_fs_enable) {
5253                 hsotg->desc_gen_cache = kmem_cache_create("dwc2-gen-desc",
5254                                 sizeof(struct dwc2_dma_desc) *
5255                                 MAX_DMA_DESC_NUM_GENERIC, 512, SLAB_CACHE_DMA,
5256                                 NULL);
5257                 if (!hsotg->desc_gen_cache) {
5258                         dev_err(hsotg->dev,
5259                                 "unable to create dwc2 generic desc cache\n");
5260
5261                         /*
5262                          * Disable descriptor dma mode since it will not be
5263                          * usable.
5264                          */
5265                         hsotg->params.dma_desc_enable = false;
5266                         hsotg->params.dma_desc_fs_enable = false;
5267                 }
5268
5269                 hsotg->desc_hsisoc_cache = kmem_cache_create("dwc2-hsisoc-desc",
5270                                 sizeof(struct dwc2_dma_desc) *
5271                                 MAX_DMA_DESC_NUM_HS_ISOC, 512, 0, NULL);
5272                 if (!hsotg->desc_hsisoc_cache) {
5273                         dev_err(hsotg->dev,
5274                                 "unable to create dwc2 hs isoc desc cache\n");
5275
5276                         kmem_cache_destroy(hsotg->desc_gen_cache);
5277
5278                         /*
5279                          * Disable descriptor dma mode since it will not be
5280                          * usable.
5281                          */
5282                         hsotg->params.dma_desc_enable = false;
5283                         hsotg->params.dma_desc_fs_enable = false;
5284                 }
5285         }
5286
5287         if (hsotg->params.host_dma) {
5288                 /*
5289                  * Create kmem caches to handle non-aligned buffer
5290                  * in Buffer DMA mode.
5291                  */
5292                 hsotg->unaligned_cache = kmem_cache_create("dwc2-unaligned-dma",
5293                                                 DWC2_KMEM_UNALIGNED_BUF_SIZE, 4,
5294                                                 SLAB_CACHE_DMA, NULL);
5295                 if (!hsotg->unaligned_cache)
5296                         dev_err(hsotg->dev,
5297                                 "unable to create dwc2 unaligned cache\n");
5298         }
5299
5300         hsotg->otg_port = 1;
5301         hsotg->frame_list = NULL;
5302         hsotg->frame_list_dma = 0;
5303         hsotg->periodic_qh_count = 0;
5304
5305         /* Initiate lx_state to L3 disconnected state */
5306         hsotg->lx_state = DWC2_L3;
5307
5308         hcd->self.otg_port = hsotg->otg_port;
5309
5310         /* Don't support SG list at this point */
5311         hcd->self.sg_tablesize = 0;
5312
5313         hcd->tpl_support = of_usb_host_tpl_support(hsotg->dev->of_node);
5314
5315         if (!IS_ERR_OR_NULL(hsotg->uphy))
5316                 otg_set_host(hsotg->uphy->otg, &hcd->self);
5317
5318         /*
5319          * Finish generic HCD initialization and start the HCD. This function
5320          * allocates the DMA buffer pool, registers the USB bus, requests the
5321          * IRQ line, and calls hcd_start method.
5322          */
5323         retval = usb_add_hcd(hcd, hsotg->irq, IRQF_SHARED);
5324         if (retval < 0)
5325                 goto error4;
5326
5327         device_wakeup_enable(hcd->self.controller);
5328
5329         dwc2_hcd_dump_state(hsotg);
5330
5331         dwc2_enable_global_interrupts(hsotg);
5332
5333         return 0;
5334
5335 error4:
5336         kmem_cache_destroy(hsotg->unaligned_cache);
5337         kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5338         kmem_cache_destroy(hsotg->desc_gen_cache);
5339 error3:
5340         dwc2_hcd_release(hsotg);
5341 error2:
5342         usb_put_hcd(hcd);
5343 error1:
5344
5345 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5346         kfree(hsotg->last_frame_num_array);
5347         kfree(hsotg->frame_num_array);
5348 #endif
5349
5350         dev_err(hsotg->dev, "%s() FAILED, returning %d\n", __func__, retval);
5351         return retval;
5352 }
5353
5354 /*
5355  * Removes the HCD.
5356  * Frees memory and resources associated with the HCD and deregisters the bus.
5357  */
5358 void dwc2_hcd_remove(struct dwc2_hsotg *hsotg)
5359 {
5360         struct usb_hcd *hcd;
5361
5362         dev_dbg(hsotg->dev, "DWC OTG HCD REMOVE\n");
5363
5364         hcd = dwc2_hsotg_to_hcd(hsotg);
5365         dev_dbg(hsotg->dev, "hsotg->hcd = %p\n", hcd);
5366
5367         if (!hcd) {
5368                 dev_dbg(hsotg->dev, "%s: dwc2_hsotg_to_hcd(hsotg) NULL!\n",
5369                         __func__);
5370                 return;
5371         }
5372
5373         if (!IS_ERR_OR_NULL(hsotg->uphy))
5374                 otg_set_host(hsotg->uphy->otg, NULL);
5375
5376         usb_remove_hcd(hcd);
5377         hsotg->priv = NULL;
5378
5379         kmem_cache_destroy(hsotg->unaligned_cache);
5380         kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5381         kmem_cache_destroy(hsotg->desc_gen_cache);
5382
5383         dwc2_hcd_release(hsotg);
5384         usb_put_hcd(hcd);
5385
5386 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5387         kfree(hsotg->last_frame_num_array);
5388         kfree(hsotg->frame_num_array);
5389 #endif
5390 }
5391
5392 /**
5393  * dwc2_backup_host_registers() - Backup controller host registers.
5394  * When suspending usb bus, registers needs to be backuped
5395  * if controller power is disabled once suspended.
5396  *
5397  * @hsotg: Programming view of the DWC_otg controller
5398  */
5399 int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
5400 {
5401         struct dwc2_hregs_backup *hr;
5402         int i;
5403
5404         dev_dbg(hsotg->dev, "%s\n", __func__);
5405
5406         /* Backup Host regs */
5407         hr = &hsotg->hr_backup;
5408         hr->hcfg = dwc2_readl(hsotg, HCFG);
5409         hr->haintmsk = dwc2_readl(hsotg, HAINTMSK);
5410         for (i = 0; i < hsotg->params.host_channels; ++i)
5411                 hr->hcintmsk[i] = dwc2_readl(hsotg, HCINTMSK(i));
5412
5413         hr->hprt0 = dwc2_read_hprt0(hsotg);
5414         hr->hfir = dwc2_readl(hsotg, HFIR);
5415         hr->hptxfsiz = dwc2_readl(hsotg, HPTXFSIZ);
5416         hr->valid = true;
5417
5418         return 0;
5419 }
5420
5421 /**
5422  * dwc2_restore_host_registers() - Restore controller host registers.
5423  * When resuming usb bus, device registers needs to be restored
5424  * if controller power were disabled.
5425  *
5426  * @hsotg: Programming view of the DWC_otg controller
5427  */
5428 int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
5429 {
5430         struct dwc2_hregs_backup *hr;
5431         int i;
5432
5433         dev_dbg(hsotg->dev, "%s\n", __func__);
5434
5435         /* Restore host regs */
5436         hr = &hsotg->hr_backup;
5437         if (!hr->valid) {
5438                 dev_err(hsotg->dev, "%s: no host registers to restore\n",
5439                         __func__);
5440                 return -EINVAL;
5441         }
5442         hr->valid = false;
5443
5444         dwc2_writel(hsotg, hr->hcfg, HCFG);
5445         dwc2_writel(hsotg, hr->haintmsk, HAINTMSK);
5446
5447         for (i = 0; i < hsotg->params.host_channels; ++i)
5448                 dwc2_writel(hsotg, hr->hcintmsk[i], HCINTMSK(i));
5449
5450         dwc2_writel(hsotg, hr->hprt0, HPRT0);
5451         dwc2_writel(hsotg, hr->hfir, HFIR);
5452         dwc2_writel(hsotg, hr->hptxfsiz, HPTXFSIZ);
5453         hsotg->frame_number = 0;
5454
5455         return 0;
5456 }
5457
5458 /**
5459  * dwc2_host_enter_hibernation() - Put controller in Hibernation.
5460  *
5461  * @hsotg: Programming view of the DWC_otg controller
5462  */
5463 int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg)
5464 {
5465         unsigned long flags;
5466         int ret = 0;
5467         u32 hprt0;
5468         u32 pcgcctl;
5469         u32 gusbcfg;
5470         u32 gpwrdn;
5471
5472         dev_dbg(hsotg->dev, "Preparing host for hibernation\n");
5473         ret = dwc2_backup_global_registers(hsotg);
5474         if (ret) {
5475                 dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5476                         __func__);
5477                 return ret;
5478         }
5479         ret = dwc2_backup_host_registers(hsotg);
5480         if (ret) {
5481                 dev_err(hsotg->dev, "%s: failed to backup host registers\n",
5482                         __func__);
5483                 return ret;
5484         }
5485
5486         /* Enter USB Suspend Mode */
5487         hprt0 = dwc2_readl(hsotg, HPRT0);
5488         hprt0 |= HPRT0_SUSP;
5489         hprt0 &= ~HPRT0_ENA;
5490         dwc2_writel(hsotg, hprt0, HPRT0);
5491
5492         /* Wait for the HPRT0.PrtSusp register field to be set */
5493         if (dwc2_hsotg_wait_bit_set(hsotg, HPRT0, HPRT0_SUSP, 5000))
5494                 dev_warn(hsotg->dev, "Suspend wasn't generated\n");
5495
5496         /*
5497          * We need to disable interrupts to prevent servicing of any IRQ
5498          * during going to hibernation
5499          */
5500         spin_lock_irqsave(&hsotg->lock, flags);
5501         hsotg->lx_state = DWC2_L2;
5502
5503         gusbcfg = dwc2_readl(hsotg, GUSBCFG);
5504         if (gusbcfg & GUSBCFG_ULPI_UTMI_SEL) {
5505                 /* ULPI interface */
5506                 /* Suspend the Phy Clock */
5507                 pcgcctl = dwc2_readl(hsotg, PCGCTL);
5508                 pcgcctl |= PCGCTL_STOPPCLK;
5509                 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5510                 udelay(10);
5511
5512                 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5513                 gpwrdn |= GPWRDN_PMUACTV;
5514                 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5515                 udelay(10);
5516         } else {
5517                 /* UTMI+ Interface */
5518                 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5519                 gpwrdn |= GPWRDN_PMUACTV;
5520                 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5521                 udelay(10);
5522
5523                 pcgcctl = dwc2_readl(hsotg, PCGCTL);
5524                 pcgcctl |= PCGCTL_STOPPCLK;
5525                 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5526                 udelay(10);
5527         }
5528
5529         /* Enable interrupts from wake up logic */
5530         gpwrdn = dwc2_readl(hsotg, GPWRDN);
5531         gpwrdn |= GPWRDN_PMUINTSEL;
5532         dwc2_writel(hsotg, gpwrdn, GPWRDN);
5533         udelay(10);
5534
5535         /* Unmask host mode interrupts in GPWRDN */
5536         gpwrdn = dwc2_readl(hsotg, GPWRDN);
5537         gpwrdn |= GPWRDN_DISCONN_DET_MSK;
5538         gpwrdn |= GPWRDN_LNSTSCHG_MSK;
5539         gpwrdn |= GPWRDN_STS_CHGINT_MSK;
5540         dwc2_writel(hsotg, gpwrdn, GPWRDN);
5541         udelay(10);
5542
5543         /* Enable Power Down Clamp */
5544         gpwrdn = dwc2_readl(hsotg, GPWRDN);
5545         gpwrdn |= GPWRDN_PWRDNCLMP;
5546         dwc2_writel(hsotg, gpwrdn, GPWRDN);
5547         udelay(10);
5548
5549         /* Switch off VDD */
5550         gpwrdn = dwc2_readl(hsotg, GPWRDN);
5551         gpwrdn |= GPWRDN_PWRDNSWTCH;
5552         dwc2_writel(hsotg, gpwrdn, GPWRDN);
5553
5554         hsotg->hibernated = 1;
5555         hsotg->bus_suspended = 1;
5556         dev_dbg(hsotg->dev, "Host hibernation completed\n");
5557         spin_unlock_irqrestore(&hsotg->lock, flags);
5558         return ret;
5559 }
5560
5561 /*
5562  * dwc2_host_exit_hibernation()
5563  *
5564  * @hsotg: Programming view of the DWC_otg controller
5565  * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5566  * @param reset: indicates whether resume is initiated by Reset.
5567  *
5568  * Return: non-zero if failed to enter to hibernation.
5569  *
5570  * This function is for exiting from Host mode hibernation by
5571  * Host Initiated Resume/Reset and Device Initiated Remote-Wakeup.
5572  */
5573 int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg, int rem_wakeup,
5574                                int reset)
5575 {
5576         u32 gpwrdn;
5577         u32 hprt0;
5578         int ret = 0;
5579         struct dwc2_gregs_backup *gr;
5580         struct dwc2_hregs_backup *hr;
5581
5582         gr = &hsotg->gr_backup;
5583         hr = &hsotg->hr_backup;
5584
5585         dev_dbg(hsotg->dev,
5586                 "%s: called with rem_wakeup = %d reset = %d\n",
5587                 __func__, rem_wakeup, reset);
5588
5589         dwc2_hib_restore_common(hsotg, rem_wakeup, 1);
5590         hsotg->hibernated = 0;
5591
5592         /*
5593          * This step is not described in functional spec but if not wait for
5594          * this delay, mismatch interrupts occurred because just after restore
5595          * core is in Device mode(gintsts.curmode == 0)
5596          */
5597         mdelay(100);
5598
5599         /* Clear all pending interupts */
5600         dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5601
5602         /* De-assert Restore */
5603         gpwrdn = dwc2_readl(hsotg, GPWRDN);
5604         gpwrdn &= ~GPWRDN_RESTORE;
5605         dwc2_writel(hsotg, gpwrdn, GPWRDN);
5606         udelay(10);
5607
5608         /* Restore GUSBCFG, HCFG */
5609         dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG);
5610         dwc2_writel(hsotg, hr->hcfg, HCFG);
5611
5612         /* De-assert Wakeup Logic */
5613         gpwrdn = dwc2_readl(hsotg, GPWRDN);
5614         gpwrdn &= ~GPWRDN_PMUACTV;
5615         dwc2_writel(hsotg, gpwrdn, GPWRDN);
5616         udelay(10);
5617
5618         hprt0 = hr->hprt0;
5619         hprt0 |= HPRT0_PWR;
5620         hprt0 &= ~HPRT0_ENA;
5621         hprt0 &= ~HPRT0_SUSP;
5622         dwc2_writel(hsotg, hprt0, HPRT0);
5623
5624         hprt0 = hr->hprt0;
5625         hprt0 |= HPRT0_PWR;
5626         hprt0 &= ~HPRT0_ENA;
5627         hprt0 &= ~HPRT0_SUSP;
5628
5629         if (reset) {
5630                 hprt0 |= HPRT0_RST;
5631                 dwc2_writel(hsotg, hprt0, HPRT0);
5632
5633                 /* Wait for Resume time and then program HPRT again */
5634                 mdelay(60);
5635                 hprt0 &= ~HPRT0_RST;
5636                 dwc2_writel(hsotg, hprt0, HPRT0);
5637         } else {
5638                 hprt0 |= HPRT0_RES;
5639                 dwc2_writel(hsotg, hprt0, HPRT0);
5640
5641                 /* Wait for Resume time and then program HPRT again */
5642                 mdelay(100);
5643                 hprt0 &= ~HPRT0_RES;
5644                 dwc2_writel(hsotg, hprt0, HPRT0);
5645         }
5646         /* Clear all interrupt status */
5647         hprt0 = dwc2_readl(hsotg, HPRT0);
5648         hprt0 |= HPRT0_CONNDET;
5649         hprt0 |= HPRT0_ENACHG;
5650         hprt0 &= ~HPRT0_ENA;
5651         dwc2_writel(hsotg, hprt0, HPRT0);
5652
5653         hprt0 = dwc2_readl(hsotg, HPRT0);
5654
5655         /* Clear all pending interupts */
5656         dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5657
5658         /* Restore global registers */
5659         ret = dwc2_restore_global_registers(hsotg);
5660         if (ret) {
5661                 dev_err(hsotg->dev, "%s: failed to restore registers\n",
5662                         __func__);
5663                 return ret;
5664         }
5665
5666         /* Restore host registers */
5667         ret = dwc2_restore_host_registers(hsotg);
5668         if (ret) {
5669                 dev_err(hsotg->dev, "%s: failed to restore host registers\n",
5670                         __func__);
5671                 return ret;
5672         }
5673
5674         if (rem_wakeup) {
5675                 dwc2_hcd_rem_wakeup(hsotg);
5676                 /*
5677                  * Change "port_connect_status_change" flag to re-enumerate,
5678                  * because after exit from hibernation port connection status
5679                  * is not detected.
5680                  */
5681                 hsotg->flags.b.port_connect_status_change = 1;
5682         }
5683
5684         hsotg->hibernated = 0;
5685         hsotg->bus_suspended = 0;
5686         hsotg->lx_state = DWC2_L0;
5687         dev_dbg(hsotg->dev, "Host hibernation restore complete\n");
5688         return ret;
5689 }
5690
5691 bool dwc2_host_can_poweroff_phy(struct dwc2_hsotg *dwc2)
5692 {
5693         struct usb_device *root_hub = dwc2_hsotg_to_hcd(dwc2)->self.root_hub;
5694
5695         /* If the controller isn't allowed to wakeup then we can power off. */
5696         if (!device_may_wakeup(dwc2->dev))
5697                 return true;
5698
5699         /*
5700          * We don't want to power off the PHY if something under the
5701          * root hub has wakeup enabled.
5702          */
5703         if (usb_wakeup_enabled_descendants(root_hub))
5704                 return false;
5705
5706         /* No reason to keep the PHY powered, so allow poweroff */
5707         return true;
5708 }
5709
5710 /**
5711  * dwc2_host_enter_partial_power_down() - Put controller in partial
5712  * power down.
5713  *
5714  * @hsotg: Programming view of the DWC_otg controller
5715  *
5716  * Return: non-zero if failed to enter host partial power down.
5717  *
5718  * This function is for entering Host mode partial power down.
5719  */
5720 int dwc2_host_enter_partial_power_down(struct dwc2_hsotg *hsotg)
5721 {
5722         u32 pcgcctl;
5723         u32 hprt0;
5724         int ret = 0;
5725
5726         dev_dbg(hsotg->dev, "Entering host partial power down started.\n");
5727
5728         /* Put this port in suspend mode. */
5729         hprt0 = dwc2_read_hprt0(hsotg);
5730         hprt0 |= HPRT0_SUSP;
5731         dwc2_writel(hsotg, hprt0, HPRT0);
5732         udelay(5);
5733
5734         /* Wait for the HPRT0.PrtSusp register field to be set */
5735         if (dwc2_hsotg_wait_bit_set(hsotg, HPRT0, HPRT0_SUSP, 3000))
5736                 dev_warn(hsotg->dev, "Suspend wasn't generated\n");
5737
5738         /* Backup all registers */
5739         ret = dwc2_backup_global_registers(hsotg);
5740         if (ret) {
5741                 dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5742                         __func__);
5743                 return ret;
5744         }
5745
5746         ret = dwc2_backup_host_registers(hsotg);
5747         if (ret) {
5748                 dev_err(hsotg->dev, "%s: failed to backup host registers\n",
5749                         __func__);
5750                 return ret;
5751         }
5752
5753         /*
5754          * Clear any pending interrupts since dwc2 will not be able to
5755          * clear them after entering partial_power_down.
5756          */
5757         dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5758
5759         /* Put the controller in low power state */
5760         pcgcctl = dwc2_readl(hsotg, PCGCTL);
5761
5762         pcgcctl |= PCGCTL_PWRCLMP;
5763         dwc2_writel(hsotg, pcgcctl, PCGCTL);
5764         udelay(5);
5765
5766         pcgcctl |= PCGCTL_RSTPDWNMODULE;
5767         dwc2_writel(hsotg, pcgcctl, PCGCTL);
5768         udelay(5);
5769
5770         pcgcctl |= PCGCTL_STOPPCLK;
5771         dwc2_writel(hsotg, pcgcctl, PCGCTL);
5772
5773         /* Set in_ppd flag to 1 as here core enters suspend. */
5774         hsotg->in_ppd = 1;
5775         hsotg->lx_state = DWC2_L2;
5776         hsotg->bus_suspended = true;
5777
5778         dev_dbg(hsotg->dev, "Entering host partial power down completed.\n");
5779
5780         return ret;
5781 }
5782
5783 /*
5784  * dwc2_host_exit_partial_power_down() - Exit controller from host partial
5785  * power down.
5786  *
5787  * @hsotg: Programming view of the DWC_otg controller
5788  * @rem_wakeup: indicates whether resume is initiated by Reset.
5789  * @restore: indicates whether need to restore the registers or not.
5790  *
5791  * Return: non-zero if failed to exit host partial power down.
5792  *
5793  * This function is for exiting from Host mode partial power down.
5794  */
5795 int dwc2_host_exit_partial_power_down(struct dwc2_hsotg *hsotg,
5796                                       int rem_wakeup, bool restore)
5797 {
5798         u32 pcgcctl;
5799         int ret = 0;
5800         u32 hprt0;
5801
5802         dev_dbg(hsotg->dev, "Exiting host partial power down started.\n");
5803
5804         pcgcctl = dwc2_readl(hsotg, PCGCTL);
5805         pcgcctl &= ~PCGCTL_STOPPCLK;
5806         dwc2_writel(hsotg, pcgcctl, PCGCTL);
5807         udelay(5);
5808
5809         pcgcctl = dwc2_readl(hsotg, PCGCTL);
5810         pcgcctl &= ~PCGCTL_PWRCLMP;
5811         dwc2_writel(hsotg, pcgcctl, PCGCTL);
5812         udelay(5);
5813
5814         pcgcctl = dwc2_readl(hsotg, PCGCTL);
5815         pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
5816         dwc2_writel(hsotg, pcgcctl, PCGCTL);
5817
5818         udelay(100);
5819         if (restore) {
5820                 ret = dwc2_restore_global_registers(hsotg);
5821                 if (ret) {
5822                         dev_err(hsotg->dev, "%s: failed to restore registers\n",
5823                                 __func__);
5824                         return ret;
5825                 }
5826
5827                 ret = dwc2_restore_host_registers(hsotg);
5828                 if (ret) {
5829                         dev_err(hsotg->dev, "%s: failed to restore host registers\n",
5830                                 __func__);
5831                         return ret;
5832                 }
5833         }
5834
5835         /* Drive resume signaling and exit suspend mode on the port. */
5836         hprt0 = dwc2_read_hprt0(hsotg);
5837         hprt0 |= HPRT0_RES;
5838         hprt0 &= ~HPRT0_SUSP;
5839         dwc2_writel(hsotg, hprt0, HPRT0);
5840         udelay(5);
5841
5842         if (!rem_wakeup) {
5843                 /* Stop driveing resume signaling on the port. */
5844                 hprt0 = dwc2_read_hprt0(hsotg);
5845                 hprt0 &= ~HPRT0_RES;
5846                 dwc2_writel(hsotg, hprt0, HPRT0);
5847
5848                 hsotg->bus_suspended = false;
5849         } else {
5850                 /* Turn on the port power bit. */
5851                 hprt0 = dwc2_read_hprt0(hsotg);
5852                 hprt0 |= HPRT0_PWR;
5853                 dwc2_writel(hsotg, hprt0, HPRT0);
5854
5855                 /* Connect hcd. */
5856                 dwc2_hcd_connect(hsotg);
5857
5858                 mod_timer(&hsotg->wkp_timer,
5859                           jiffies + msecs_to_jiffies(71));
5860         }
5861
5862         /* Set lx_state to and in_ppd to 0 as here core exits from suspend. */
5863         hsotg->in_ppd = 0;
5864         hsotg->lx_state = DWC2_L0;
5865
5866         dev_dbg(hsotg->dev, "Exiting host partial power down completed.\n");
5867         return ret;
5868 }
5869
5870 /**
5871  * dwc2_host_enter_clock_gating() - Put controller in clock gating.
5872  *
5873  * @hsotg: Programming view of the DWC_otg controller
5874  *
5875  * This function is for entering Host mode clock gating.
5876  */
5877 void dwc2_host_enter_clock_gating(struct dwc2_hsotg *hsotg)
5878 {
5879         u32 hprt0;
5880         u32 pcgctl;
5881
5882         dev_dbg(hsotg->dev, "Entering host clock gating.\n");
5883
5884         /* Put this port in suspend mode. */
5885         hprt0 = dwc2_read_hprt0(hsotg);
5886         hprt0 |= HPRT0_SUSP;
5887         dwc2_writel(hsotg, hprt0, HPRT0);
5888
5889         /* Set the Phy Clock bit as suspend is received. */
5890         pcgctl = dwc2_readl(hsotg, PCGCTL);
5891         pcgctl |= PCGCTL_STOPPCLK;
5892         dwc2_writel(hsotg, pcgctl, PCGCTL);
5893         udelay(5);
5894
5895         /* Set the Gate hclk as suspend is received. */
5896         pcgctl = dwc2_readl(hsotg, PCGCTL);
5897         pcgctl |= PCGCTL_GATEHCLK;
5898         dwc2_writel(hsotg, pcgctl, PCGCTL);
5899         udelay(5);
5900
5901         hsotg->bus_suspended = true;
5902         hsotg->lx_state = DWC2_L2;
5903 }
5904
5905 /**
5906  * dwc2_host_exit_clock_gating() - Exit controller from clock gating.
5907  *
5908  * @hsotg: Programming view of the DWC_otg controller
5909  * @rem_wakeup: indicates whether resume is initiated by remote wakeup
5910  *
5911  * This function is for exiting Host mode clock gating.
5912  */
5913 void dwc2_host_exit_clock_gating(struct dwc2_hsotg *hsotg, int rem_wakeup)
5914 {
5915         u32 hprt0;
5916         u32 pcgctl;
5917
5918         dev_dbg(hsotg->dev, "Exiting host clock gating.\n");
5919
5920         /* Clear the Gate hclk. */
5921         pcgctl = dwc2_readl(hsotg, PCGCTL);
5922         pcgctl &= ~PCGCTL_GATEHCLK;
5923         dwc2_writel(hsotg, pcgctl, PCGCTL);
5924         udelay(5);
5925
5926         /* Phy Clock bit. */
5927         pcgctl = dwc2_readl(hsotg, PCGCTL);
5928         pcgctl &= ~PCGCTL_STOPPCLK;
5929         dwc2_writel(hsotg, pcgctl, PCGCTL);
5930         udelay(5);
5931
5932         /* Drive resume signaling and exit suspend mode on the port. */
5933         hprt0 = dwc2_read_hprt0(hsotg);
5934         hprt0 |= HPRT0_RES;
5935         hprt0 &= ~HPRT0_SUSP;
5936         dwc2_writel(hsotg, hprt0, HPRT0);
5937         udelay(5);
5938
5939         if (!rem_wakeup) {
5940                 /* In case of port resume need to wait for 40 ms */
5941                 msleep(USB_RESUME_TIMEOUT);
5942
5943                 /* Stop driveing resume signaling on the port. */
5944                 hprt0 = dwc2_read_hprt0(hsotg);
5945                 hprt0 &= ~HPRT0_RES;
5946                 dwc2_writel(hsotg, hprt0, HPRT0);
5947
5948                 hsotg->bus_suspended = false;
5949                 hsotg->lx_state = DWC2_L0;
5950         } else {
5951                 mod_timer(&hsotg->wkp_timer,
5952                           jiffies + msecs_to_jiffies(71));
5953         }
5954 }