1 // SPDX-License-Identifier: GPL-2.0+
3 * (C) Copyright Linus Torvalds 1999
4 * (C) Copyright Johannes Erdfelt 1999-2001
5 * (C) Copyright Andreas Gal 1999
6 * (C) Copyright Gregory P. Smith 1999
7 * (C) Copyright Deti Fliegl 1999
8 * (C) Copyright Randy Dunlap 2000
9 * (C) Copyright David Brownell 2000-2002
12 #include <linux/bcd.h>
13 #include <linux/module.h>
14 #include <linux/version.h>
15 #include <linux/kernel.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/slab.h>
18 #include <linux/completion.h>
19 #include <linux/utsname.h>
22 #include <linux/device.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/mutex.h>
26 #include <asm/byteorder.h>
27 #include <asm/unaligned.h>
28 #include <linux/platform_device.h>
29 #include <linux/workqueue.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/types.h>
33 #include <linux/phy/phy.h>
34 #include <linux/usb.h>
35 #include <linux/usb/hcd.h>
36 #include <linux/usb/otg.h>
42 /*-------------------------------------------------------------------------*/
45 * USB Host Controller Driver framework
47 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
48 * HCD-specific behaviors/bugs.
50 * This does error checks, tracks devices and urbs, and delegates to a
51 * "hc_driver" only for code (and data) that really needs to know about
52 * hardware differences. That includes root hub registers, i/o queues,
53 * and so on ... but as little else as possible.
55 * Shared code includes most of the "root hub" code (these are emulated,
56 * though each HC's hardware works differently) and PCI glue, plus request
57 * tracking overhead. The HCD code should only block on spinlocks or on
58 * hardware handshaking; blocking on software events (such as other kernel
59 * threads releasing resources, or completing actions) is all generic.
61 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
62 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
63 * only by the hub driver ... and that neither should be seen or used by
64 * usb client device drivers.
66 * Contributors of ideas or unattributed patches include: David Brownell,
67 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
70 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some
71 * associated cleanup. "usb_hcd" still != "usb_bus".
72 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
75 /*-------------------------------------------------------------------------*/
77 /* Keep track of which host controller drivers are loaded */
78 unsigned long usb_hcds_loaded;
79 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
81 /* host controllers we manage */
82 DEFINE_IDR (usb_bus_idr);
83 EXPORT_SYMBOL_GPL (usb_bus_idr);
85 /* used when allocating bus numbers */
88 /* used when updating list of hcds */
89 DEFINE_MUTEX(usb_bus_idr_lock); /* exported only for usbfs */
90 EXPORT_SYMBOL_GPL (usb_bus_idr_lock);
92 /* used for controlling access to virtual root hubs */
93 static DEFINE_SPINLOCK(hcd_root_hub_lock);
95 /* used when updating an endpoint's URB list */
96 static DEFINE_SPINLOCK(hcd_urb_list_lock);
98 /* used to protect against unlinking URBs after the device is gone */
99 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
101 /* wait queue for synchronous unlinks */
102 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
104 static inline int is_root_hub(struct usb_device *udev)
106 return (udev->parent == NULL);
109 /*-------------------------------------------------------------------------*/
112 * Sharable chunks of root hub code.
115 /*-------------------------------------------------------------------------*/
116 #define KERNEL_REL bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
117 #define KERNEL_VER bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
119 /* usb 3.1 root hub device descriptor */
120 static const u8 usb31_rh_dev_descriptor[18] = {
121 0x12, /* __u8 bLength; */
122 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
123 0x10, 0x03, /* __le16 bcdUSB; v3.1 */
125 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
126 0x00, /* __u8 bDeviceSubClass; */
127 0x03, /* __u8 bDeviceProtocol; USB 3 hub */
128 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
130 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
131 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
132 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
134 0x03, /* __u8 iManufacturer; */
135 0x02, /* __u8 iProduct; */
136 0x01, /* __u8 iSerialNumber; */
137 0x01 /* __u8 bNumConfigurations; */
140 /* usb 3.0 root hub device descriptor */
141 static const u8 usb3_rh_dev_descriptor[18] = {
142 0x12, /* __u8 bLength; */
143 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
144 0x00, 0x03, /* __le16 bcdUSB; v3.0 */
146 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
147 0x00, /* __u8 bDeviceSubClass; */
148 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */
149 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
151 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
152 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
153 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
155 0x03, /* __u8 iManufacturer; */
156 0x02, /* __u8 iProduct; */
157 0x01, /* __u8 iSerialNumber; */
158 0x01 /* __u8 bNumConfigurations; */
161 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */
162 static const u8 usb25_rh_dev_descriptor[18] = {
163 0x12, /* __u8 bLength; */
164 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
165 0x50, 0x02, /* __le16 bcdUSB; v2.5 */
167 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
168 0x00, /* __u8 bDeviceSubClass; */
169 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
170 0xFF, /* __u8 bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
172 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
173 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
174 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
176 0x03, /* __u8 iManufacturer; */
177 0x02, /* __u8 iProduct; */
178 0x01, /* __u8 iSerialNumber; */
179 0x01 /* __u8 bNumConfigurations; */
182 /* usb 2.0 root hub device descriptor */
183 static const u8 usb2_rh_dev_descriptor[18] = {
184 0x12, /* __u8 bLength; */
185 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
186 0x00, 0x02, /* __le16 bcdUSB; v2.0 */
188 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
189 0x00, /* __u8 bDeviceSubClass; */
190 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
191 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
193 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
194 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
195 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
197 0x03, /* __u8 iManufacturer; */
198 0x02, /* __u8 iProduct; */
199 0x01, /* __u8 iSerialNumber; */
200 0x01 /* __u8 bNumConfigurations; */
203 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
205 /* usb 1.1 root hub device descriptor */
206 static const u8 usb11_rh_dev_descriptor[18] = {
207 0x12, /* __u8 bLength; */
208 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
209 0x10, 0x01, /* __le16 bcdUSB; v1.1 */
211 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
212 0x00, /* __u8 bDeviceSubClass; */
213 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
214 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
216 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
217 0x01, 0x00, /* __le16 idProduct; device 0x0001 */
218 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
220 0x03, /* __u8 iManufacturer; */
221 0x02, /* __u8 iProduct; */
222 0x01, /* __u8 iSerialNumber; */
223 0x01 /* __u8 bNumConfigurations; */
227 /*-------------------------------------------------------------------------*/
229 /* Configuration descriptors for our root hubs */
231 static const u8 fs_rh_config_descriptor[] = {
233 /* one configuration */
234 0x09, /* __u8 bLength; */
235 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
236 0x19, 0x00, /* __le16 wTotalLength; */
237 0x01, /* __u8 bNumInterfaces; (1) */
238 0x01, /* __u8 bConfigurationValue; */
239 0x00, /* __u8 iConfiguration; */
240 0xc0, /* __u8 bmAttributes;
245 0x00, /* __u8 MaxPower; */
248 * USB 2.0, single TT organization (mandatory):
249 * one interface, protocol 0
251 * USB 2.0, multiple TT organization (optional):
252 * two interfaces, protocols 1 (like single TT)
253 * and 2 (multiple TT mode) ... config is
259 0x09, /* __u8 if_bLength; */
260 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
261 0x00, /* __u8 if_bInterfaceNumber; */
262 0x00, /* __u8 if_bAlternateSetting; */
263 0x01, /* __u8 if_bNumEndpoints; */
264 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
265 0x00, /* __u8 if_bInterfaceSubClass; */
266 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
267 0x00, /* __u8 if_iInterface; */
269 /* one endpoint (status change endpoint) */
270 0x07, /* __u8 ep_bLength; */
271 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
272 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
273 0x03, /* __u8 ep_bmAttributes; Interrupt */
274 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
275 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
278 static const u8 hs_rh_config_descriptor[] = {
280 /* one configuration */
281 0x09, /* __u8 bLength; */
282 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
283 0x19, 0x00, /* __le16 wTotalLength; */
284 0x01, /* __u8 bNumInterfaces; (1) */
285 0x01, /* __u8 bConfigurationValue; */
286 0x00, /* __u8 iConfiguration; */
287 0xc0, /* __u8 bmAttributes;
292 0x00, /* __u8 MaxPower; */
295 * USB 2.0, single TT organization (mandatory):
296 * one interface, protocol 0
298 * USB 2.0, multiple TT organization (optional):
299 * two interfaces, protocols 1 (like single TT)
300 * and 2 (multiple TT mode) ... config is
306 0x09, /* __u8 if_bLength; */
307 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
308 0x00, /* __u8 if_bInterfaceNumber; */
309 0x00, /* __u8 if_bAlternateSetting; */
310 0x01, /* __u8 if_bNumEndpoints; */
311 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
312 0x00, /* __u8 if_bInterfaceSubClass; */
313 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
314 0x00, /* __u8 if_iInterface; */
316 /* one endpoint (status change endpoint) */
317 0x07, /* __u8 ep_bLength; */
318 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
319 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
320 0x03, /* __u8 ep_bmAttributes; Interrupt */
321 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
322 * see hub.c:hub_configure() for details. */
323 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
324 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
327 static const u8 ss_rh_config_descriptor[] = {
328 /* one configuration */
329 0x09, /* __u8 bLength; */
330 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
331 0x1f, 0x00, /* __le16 wTotalLength; */
332 0x01, /* __u8 bNumInterfaces; (1) */
333 0x01, /* __u8 bConfigurationValue; */
334 0x00, /* __u8 iConfiguration; */
335 0xc0, /* __u8 bmAttributes;
340 0x00, /* __u8 MaxPower; */
343 0x09, /* __u8 if_bLength; */
344 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
345 0x00, /* __u8 if_bInterfaceNumber; */
346 0x00, /* __u8 if_bAlternateSetting; */
347 0x01, /* __u8 if_bNumEndpoints; */
348 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
349 0x00, /* __u8 if_bInterfaceSubClass; */
350 0x00, /* __u8 if_bInterfaceProtocol; */
351 0x00, /* __u8 if_iInterface; */
353 /* one endpoint (status change endpoint) */
354 0x07, /* __u8 ep_bLength; */
355 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
356 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
357 0x03, /* __u8 ep_bmAttributes; Interrupt */
358 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
359 * see hub.c:hub_configure() for details. */
360 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
361 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
363 /* one SuperSpeed endpoint companion descriptor */
364 0x06, /* __u8 ss_bLength */
365 USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */
367 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
368 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */
369 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
372 /* authorized_default behaviour:
373 * -1 is authorized for all devices except wireless (old behaviour)
374 * 0 is unauthorized for all devices
375 * 1 is authorized for all devices
377 static int authorized_default = -1;
378 module_param(authorized_default, int, S_IRUGO|S_IWUSR);
379 MODULE_PARM_DESC(authorized_default,
380 "Default USB device authorization: 0 is not authorized, 1 is "
381 "authorized, -1 is authorized except for wireless USB (default, "
383 /*-------------------------------------------------------------------------*/
386 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
387 * @s: Null-terminated ASCII (actually ISO-8859-1) string
388 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
389 * @len: Length (in bytes; may be odd) of descriptor buffer.
391 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
395 * USB String descriptors can contain at most 126 characters; input
396 * strings longer than that are truncated.
399 ascii2desc(char const *s, u8 *buf, unsigned len)
401 unsigned n, t = 2 + 2*strlen(s);
404 t = 254; /* Longest possible UTF string descriptor */
408 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */
416 t = (unsigned char)*s++;
422 * rh_string() - provides string descriptors for root hub
423 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
424 * @hcd: the host controller for this root hub
425 * @data: buffer for output packet
426 * @len: length of the provided buffer
428 * Produces either a manufacturer, product or serial number string for the
429 * virtual root hub device.
431 * Return: The number of bytes filled in: the length of the descriptor or
432 * of the provided buffer, whichever is less.
435 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
439 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
444 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
445 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
448 memcpy(data, langids, len);
452 s = hcd->self.bus_name;
456 s = hcd->product_desc;
460 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
461 init_utsname()->release, hcd->driver->description);
465 /* Can't happen; caller guarantees it */
469 return ascii2desc(s, data, len);
473 /* Root hub control transfers execute synchronously */
474 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
476 struct usb_ctrlrequest *cmd;
477 u16 typeReq, wValue, wIndex, wLength;
478 u8 *ubuf = urb->transfer_buffer;
482 u8 patch_protocol = 0;
489 spin_lock_irq(&hcd_root_hub_lock);
490 status = usb_hcd_link_urb_to_ep(hcd, urb);
491 spin_unlock_irq(&hcd_root_hub_lock);
494 urb->hcpriv = hcd; /* Indicate it's queued */
496 cmd = (struct usb_ctrlrequest *) urb->setup_packet;
497 typeReq = (cmd->bRequestType << 8) | cmd->bRequest;
498 wValue = le16_to_cpu (cmd->wValue);
499 wIndex = le16_to_cpu (cmd->wIndex);
500 wLength = le16_to_cpu (cmd->wLength);
502 if (wLength > urb->transfer_buffer_length)
506 * tbuf should be at least as big as the
507 * USB hub descriptor.
509 tbuf_size = max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
510 tbuf = kzalloc(tbuf_size, GFP_KERNEL);
519 urb->actual_length = 0;
522 /* DEVICE REQUESTS */
524 /* The root hub's remote wakeup enable bit is implemented using
525 * driver model wakeup flags. If this system supports wakeup
526 * through USB, userspace may change the default "allow wakeup"
527 * policy through sysfs or these calls.
529 * Most root hubs support wakeup from downstream devices, for
530 * runtime power management (disabling USB clocks and reducing
531 * VBUS power usage). However, not all of them do so; silicon,
532 * board, and BIOS bugs here are not uncommon, so these can't
533 * be treated quite like external hubs.
535 * Likewise, not all root hubs will pass wakeup events upstream,
536 * to wake up the whole system. So don't assume root hub and
537 * controller capabilities are identical.
540 case DeviceRequest | USB_REQ_GET_STATUS:
541 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
542 << USB_DEVICE_REMOTE_WAKEUP)
543 | (1 << USB_DEVICE_SELF_POWERED);
547 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
548 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
549 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
553 case DeviceOutRequest | USB_REQ_SET_FEATURE:
554 if (device_can_wakeup(&hcd->self.root_hub->dev)
555 && wValue == USB_DEVICE_REMOTE_WAKEUP)
556 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
560 case DeviceRequest | USB_REQ_GET_CONFIGURATION:
564 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
566 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
567 switch (wValue & 0xff00) {
568 case USB_DT_DEVICE << 8:
569 switch (hcd->speed) {
572 bufp = usb31_rh_dev_descriptor;
575 bufp = usb3_rh_dev_descriptor;
578 bufp = usb25_rh_dev_descriptor;
581 bufp = usb2_rh_dev_descriptor;
584 bufp = usb11_rh_dev_descriptor;
593 case USB_DT_CONFIG << 8:
594 switch (hcd->speed) {
598 bufp = ss_rh_config_descriptor;
599 len = sizeof ss_rh_config_descriptor;
603 bufp = hs_rh_config_descriptor;
604 len = sizeof hs_rh_config_descriptor;
607 bufp = fs_rh_config_descriptor;
608 len = sizeof fs_rh_config_descriptor;
613 if (device_can_wakeup(&hcd->self.root_hub->dev))
616 case USB_DT_STRING << 8:
617 if ((wValue & 0xff) < 4)
618 urb->actual_length = rh_string(wValue & 0xff,
620 else /* unsupported IDs --> "protocol stall" */
623 case USB_DT_BOS << 8:
629 case DeviceRequest | USB_REQ_GET_INTERFACE:
633 case DeviceOutRequest | USB_REQ_SET_INTERFACE:
635 case DeviceOutRequest | USB_REQ_SET_ADDRESS:
636 /* wValue == urb->dev->devaddr */
637 dev_dbg (hcd->self.controller, "root hub device address %d\n",
641 /* INTERFACE REQUESTS (no defined feature/status flags) */
643 /* ENDPOINT REQUESTS */
645 case EndpointRequest | USB_REQ_GET_STATUS:
646 /* ENDPOINT_HALT flag */
651 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
652 case EndpointOutRequest | USB_REQ_SET_FEATURE:
653 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
656 /* CLASS REQUESTS (and errors) */
660 /* non-generic request */
666 if (wValue == HUB_PORT_STATUS)
669 /* other port status types return 8 bytes */
672 case GetHubDescriptor:
673 len = sizeof (struct usb_hub_descriptor);
675 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
676 /* len is returned by hub_control */
679 status = hcd->driver->hub_control (hcd,
680 typeReq, wValue, wIndex,
683 if (typeReq == GetHubDescriptor)
684 usb_hub_adjust_deviceremovable(hcd->self.root_hub,
685 (struct usb_hub_descriptor *)tbuf);
688 /* "protocol stall" on error */
694 if (status != -EPIPE) {
695 dev_dbg (hcd->self.controller,
696 "CTRL: TypeReq=0x%x val=0x%x "
697 "idx=0x%x len=%d ==> %d\n",
698 typeReq, wValue, wIndex,
701 } else if (status > 0) {
702 /* hub_control may return the length of data copied. */
707 if (urb->transfer_buffer_length < len)
708 len = urb->transfer_buffer_length;
709 urb->actual_length = len;
710 /* always USB_DIR_IN, toward host */
711 memcpy (ubuf, bufp, len);
713 /* report whether RH hardware supports remote wakeup */
715 len > offsetof (struct usb_config_descriptor,
717 ((struct usb_config_descriptor *)ubuf)->bmAttributes
718 |= USB_CONFIG_ATT_WAKEUP;
720 /* report whether RH hardware has an integrated TT */
721 if (patch_protocol &&
722 len > offsetof(struct usb_device_descriptor,
724 ((struct usb_device_descriptor *) ubuf)->
725 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
731 /* any errors get returned through the urb completion */
732 spin_lock_irq(&hcd_root_hub_lock);
733 usb_hcd_unlink_urb_from_ep(hcd, urb);
734 usb_hcd_giveback_urb(hcd, urb, status);
735 spin_unlock_irq(&hcd_root_hub_lock);
739 /*-------------------------------------------------------------------------*/
742 * Root Hub interrupt transfers are polled using a timer if the
743 * driver requests it; otherwise the driver is responsible for
744 * calling usb_hcd_poll_rh_status() when an event occurs.
746 * Completions are called in_interrupt(), but they may or may not
749 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
755 char buffer[6]; /* Any root hubs with > 31 ports? */
757 if (unlikely(!hcd->rh_pollable))
759 if (!hcd->uses_new_polling && !hcd->status_urb)
762 length = hcd->driver->hub_status_data(hcd, buffer);
765 /* try to complete the status urb */
766 spin_lock_irqsave(&hcd_root_hub_lock, flags);
767 urb = hcd->status_urb;
769 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
770 hcd->status_urb = NULL;
771 if (urb->transfer_buffer_length >= length) {
775 length = urb->transfer_buffer_length;
777 urb->actual_length = length;
778 memcpy(urb->transfer_buffer, buffer, length);
780 usb_hcd_unlink_urb_from_ep(hcd, urb);
781 usb_hcd_giveback_urb(hcd, urb, status);
784 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
786 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
789 /* The USB 2.0 spec says 256 ms. This is close enough and won't
790 * exceed that limit if HZ is 100. The math is more clunky than
791 * maybe expected, this is to make sure that all timers for USB devices
792 * fire at the same time to give the CPU a break in between */
793 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
794 (length == 0 && hcd->status_urb != NULL))
795 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
797 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
800 static void rh_timer_func (struct timer_list *t)
802 struct usb_hcd *_hcd = from_timer(_hcd, t, rh_timer);
804 usb_hcd_poll_rh_status(_hcd);
807 /*-------------------------------------------------------------------------*/
809 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
813 unsigned len = 1 + (urb->dev->maxchild / 8);
815 spin_lock_irqsave (&hcd_root_hub_lock, flags);
816 if (hcd->status_urb || urb->transfer_buffer_length < len) {
817 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
822 retval = usb_hcd_link_urb_to_ep(hcd, urb);
826 hcd->status_urb = urb;
827 urb->hcpriv = hcd; /* indicate it's queued */
828 if (!hcd->uses_new_polling)
829 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
831 /* If a status change has already occurred, report it ASAP */
832 else if (HCD_POLL_PENDING(hcd))
833 mod_timer(&hcd->rh_timer, jiffies);
836 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
840 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
842 if (usb_endpoint_xfer_int(&urb->ep->desc))
843 return rh_queue_status (hcd, urb);
844 if (usb_endpoint_xfer_control(&urb->ep->desc))
845 return rh_call_control (hcd, urb);
849 /*-------------------------------------------------------------------------*/
851 /* Unlinks of root-hub control URBs are legal, but they don't do anything
852 * since these URBs always execute synchronously.
854 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
859 spin_lock_irqsave(&hcd_root_hub_lock, flags);
860 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
864 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */
867 } else { /* Status URB */
868 if (!hcd->uses_new_polling)
869 del_timer (&hcd->rh_timer);
870 if (urb == hcd->status_urb) {
871 hcd->status_urb = NULL;
872 usb_hcd_unlink_urb_from_ep(hcd, urb);
873 usb_hcd_giveback_urb(hcd, urb, status);
877 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
884 * Show & store the current value of authorized_default
886 static ssize_t authorized_default_show(struct device *dev,
887 struct device_attribute *attr, char *buf)
889 struct usb_device *rh_usb_dev = to_usb_device(dev);
890 struct usb_bus *usb_bus = rh_usb_dev->bus;
893 hcd = bus_to_hcd(usb_bus);
894 return snprintf(buf, PAGE_SIZE, "%u\n", !!HCD_DEV_AUTHORIZED(hcd));
897 static ssize_t authorized_default_store(struct device *dev,
898 struct device_attribute *attr,
899 const char *buf, size_t size)
903 struct usb_device *rh_usb_dev = to_usb_device(dev);
904 struct usb_bus *usb_bus = rh_usb_dev->bus;
907 hcd = bus_to_hcd(usb_bus);
908 result = sscanf(buf, "%u\n", &val);
911 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
913 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
921 static DEVICE_ATTR_RW(authorized_default);
924 * interface_authorized_default_show - show default authorization status
927 * note: interface_authorized_default is the default value
928 * for initializing the authorized attribute of interfaces
930 static ssize_t interface_authorized_default_show(struct device *dev,
931 struct device_attribute *attr, char *buf)
933 struct usb_device *usb_dev = to_usb_device(dev);
934 struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus);
936 return sprintf(buf, "%u\n", !!HCD_INTF_AUTHORIZED(hcd));
940 * interface_authorized_default_store - store default authorization status
943 * note: interface_authorized_default is the default value
944 * for initializing the authorized attribute of interfaces
946 static ssize_t interface_authorized_default_store(struct device *dev,
947 struct device_attribute *attr, const char *buf, size_t count)
949 struct usb_device *usb_dev = to_usb_device(dev);
950 struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus);
954 if (strtobool(buf, &val) != 0)
958 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
960 clear_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
964 static DEVICE_ATTR_RW(interface_authorized_default);
966 /* Group all the USB bus attributes */
967 static struct attribute *usb_bus_attrs[] = {
968 &dev_attr_authorized_default.attr,
969 &dev_attr_interface_authorized_default.attr,
973 static const struct attribute_group usb_bus_attr_group = {
974 .name = NULL, /* we want them in the same directory */
975 .attrs = usb_bus_attrs,
980 /*-------------------------------------------------------------------------*/
983 * usb_bus_init - shared initialization code
984 * @bus: the bus structure being initialized
986 * This code is used to initialize a usb_bus structure, memory for which is
987 * separately managed.
989 static void usb_bus_init (struct usb_bus *bus)
991 memset (&bus->devmap, 0, sizeof(struct usb_devmap));
993 bus->devnum_next = 1;
995 bus->root_hub = NULL;
997 bus->bandwidth_allocated = 0;
998 bus->bandwidth_int_reqs = 0;
999 bus->bandwidth_isoc_reqs = 0;
1000 mutex_init(&bus->devnum_next_mutex);
1003 /*-------------------------------------------------------------------------*/
1006 * usb_register_bus - registers the USB host controller with the usb core
1007 * @bus: pointer to the bus to register
1008 * Context: !in_interrupt()
1010 * Assigns a bus number, and links the controller into usbcore data
1011 * structures so that it can be seen by scanning the bus list.
1013 * Return: 0 if successful. A negative error code otherwise.
1015 static int usb_register_bus(struct usb_bus *bus)
1017 int result = -E2BIG;
1020 mutex_lock(&usb_bus_idr_lock);
1021 busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL);
1023 pr_err("%s: failed to get bus number\n", usbcore_name);
1024 goto error_find_busnum;
1026 bus->busnum = busnum;
1027 mutex_unlock(&usb_bus_idr_lock);
1029 usb_notify_add_bus(bus);
1031 dev_info (bus->controller, "new USB bus registered, assigned bus "
1032 "number %d\n", bus->busnum);
1036 mutex_unlock(&usb_bus_idr_lock);
1041 * usb_deregister_bus - deregisters the USB host controller
1042 * @bus: pointer to the bus to deregister
1043 * Context: !in_interrupt()
1045 * Recycles the bus number, and unlinks the controller from usbcore data
1046 * structures so that it won't be seen by scanning the bus list.
1048 static void usb_deregister_bus (struct usb_bus *bus)
1050 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
1053 * NOTE: make sure that all the devices are removed by the
1054 * controller code, as well as having it call this when cleaning
1057 mutex_lock(&usb_bus_idr_lock);
1058 idr_remove(&usb_bus_idr, bus->busnum);
1059 mutex_unlock(&usb_bus_idr_lock);
1061 usb_notify_remove_bus(bus);
1065 * register_root_hub - called by usb_add_hcd() to register a root hub
1066 * @hcd: host controller for this root hub
1068 * This function registers the root hub with the USB subsystem. It sets up
1069 * the device properly in the device tree and then calls usb_new_device()
1070 * to register the usb device. It also assigns the root hub's USB address
1073 * Return: 0 if successful. A negative error code otherwise.
1075 static int register_root_hub(struct usb_hcd *hcd)
1077 struct device *parent_dev = hcd->self.controller;
1078 struct usb_device *usb_dev = hcd->self.root_hub;
1079 const int devnum = 1;
1082 usb_dev->devnum = devnum;
1083 usb_dev->bus->devnum_next = devnum + 1;
1084 memset (&usb_dev->bus->devmap.devicemap, 0,
1085 sizeof usb_dev->bus->devmap.devicemap);
1086 set_bit (devnum, usb_dev->bus->devmap.devicemap);
1087 usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
1089 mutex_lock(&usb_bus_idr_lock);
1091 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
1092 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
1093 if (retval != sizeof usb_dev->descriptor) {
1094 mutex_unlock(&usb_bus_idr_lock);
1095 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
1096 dev_name(&usb_dev->dev), retval);
1097 return (retval < 0) ? retval : -EMSGSIZE;
1100 if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
1101 retval = usb_get_bos_descriptor(usb_dev);
1103 usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
1104 } else if (usb_dev->speed >= USB_SPEED_SUPER) {
1105 mutex_unlock(&usb_bus_idr_lock);
1106 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1107 dev_name(&usb_dev->dev), retval);
1112 retval = usb_new_device (usb_dev);
1114 dev_err (parent_dev, "can't register root hub for %s, %d\n",
1115 dev_name(&usb_dev->dev), retval);
1117 spin_lock_irq (&hcd_root_hub_lock);
1118 hcd->rh_registered = 1;
1119 spin_unlock_irq (&hcd_root_hub_lock);
1121 /* Did the HC die before the root hub was registered? */
1123 usb_hc_died (hcd); /* This time clean up */
1125 mutex_unlock(&usb_bus_idr_lock);
1131 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1132 * @bus: the bus which the root hub belongs to
1133 * @portnum: the port which is being resumed
1135 * HCDs should call this function when they know that a resume signal is
1136 * being sent to a root-hub port. The root hub will be prevented from
1137 * going into autosuspend until usb_hcd_end_port_resume() is called.
1139 * The bus's private lock must be held by the caller.
1141 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1143 unsigned bit = 1 << portnum;
1145 if (!(bus->resuming_ports & bit)) {
1146 bus->resuming_ports |= bit;
1147 pm_runtime_get_noresume(&bus->root_hub->dev);
1150 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1153 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1154 * @bus: the bus which the root hub belongs to
1155 * @portnum: the port which is being resumed
1157 * HCDs should call this function when they know that a resume signal has
1158 * stopped being sent to a root-hub port. The root hub will be allowed to
1159 * autosuspend again.
1161 * The bus's private lock must be held by the caller.
1163 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1165 unsigned bit = 1 << portnum;
1167 if (bus->resuming_ports & bit) {
1168 bus->resuming_ports &= ~bit;
1169 pm_runtime_put_noidle(&bus->root_hub->dev);
1172 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1174 /*-------------------------------------------------------------------------*/
1177 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1178 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1179 * @is_input: true iff the transaction sends data to the host
1180 * @isoc: true for isochronous transactions, false for interrupt ones
1181 * @bytecount: how many bytes in the transaction.
1183 * Return: Approximate bus time in nanoseconds for a periodic transaction.
1186 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1187 * scheduled in software, this function is only used for such scheduling.
1189 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1194 case USB_SPEED_LOW: /* INTR only */
1196 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1197 return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1199 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1200 return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1202 case USB_SPEED_FULL: /* ISOC or INTR */
1204 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1205 return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1207 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1208 return 9107L + BW_HOST_DELAY + tmp;
1210 case USB_SPEED_HIGH: /* ISOC or INTR */
1211 /* FIXME adjust for input vs output */
1213 tmp = HS_NSECS_ISO (bytecount);
1215 tmp = HS_NSECS (bytecount);
1218 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1222 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1225 /*-------------------------------------------------------------------------*/
1228 * Generic HC operations.
1231 /*-------------------------------------------------------------------------*/
1234 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1235 * @hcd: host controller to which @urb was submitted
1236 * @urb: URB being submitted
1238 * Host controller drivers should call this routine in their enqueue()
1239 * method. The HCD's private spinlock must be held and interrupts must
1240 * be disabled. The actions carried out here are required for URB
1241 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1243 * Return: 0 for no error, otherwise a negative error code (in which case
1244 * the enqueue() method must fail). If no error occurs but enqueue() fails
1245 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1246 * the private spinlock and returning.
1248 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1252 spin_lock(&hcd_urb_list_lock);
1254 /* Check that the URB isn't being killed */
1255 if (unlikely(atomic_read(&urb->reject))) {
1260 if (unlikely(!urb->ep->enabled)) {
1265 if (unlikely(!urb->dev->can_submit)) {
1271 * Check the host controller's state and add the URB to the
1274 if (HCD_RH_RUNNING(hcd)) {
1276 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1282 spin_unlock(&hcd_urb_list_lock);
1285 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1288 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1289 * @hcd: host controller to which @urb was submitted
1290 * @urb: URB being checked for unlinkability
1291 * @status: error code to store in @urb if the unlink succeeds
1293 * Host controller drivers should call this routine in their dequeue()
1294 * method. The HCD's private spinlock must be held and interrupts must
1295 * be disabled. The actions carried out here are required for making
1296 * sure than an unlink is valid.
1298 * Return: 0 for no error, otherwise a negative error code (in which case
1299 * the dequeue() method must fail). The possible error codes are:
1301 * -EIDRM: @urb was not submitted or has already completed.
1302 * The completion function may not have been called yet.
1304 * -EBUSY: @urb has already been unlinked.
1306 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1309 struct list_head *tmp;
1311 /* insist the urb is still queued */
1312 list_for_each(tmp, &urb->ep->urb_list) {
1313 if (tmp == &urb->urb_list)
1316 if (tmp != &urb->urb_list)
1319 /* Any status except -EINPROGRESS means something already started to
1320 * unlink this URB from the hardware. So there's no more work to do.
1324 urb->unlinked = status;
1327 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1330 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1331 * @hcd: host controller to which @urb was submitted
1332 * @urb: URB being unlinked
1334 * Host controller drivers should call this routine before calling
1335 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and
1336 * interrupts must be disabled. The actions carried out here are required
1337 * for URB completion.
1339 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1341 /* clear all state linking urb to this dev (and hcd) */
1342 spin_lock(&hcd_urb_list_lock);
1343 list_del_init(&urb->urb_list);
1344 spin_unlock(&hcd_urb_list_lock);
1346 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1349 * Some usb host controllers can only perform dma using a small SRAM area.
1350 * The usb core itself is however optimized for host controllers that can dma
1351 * using regular system memory - like pci devices doing bus mastering.
1353 * To support host controllers with limited dma capabilities we provide dma
1354 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1355 * For this to work properly the host controller code must first use the
1356 * function dma_declare_coherent_memory() to point out which memory area
1357 * that should be used for dma allocations.
1359 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1360 * dma using dma_alloc_coherent() which in turn allocates from the memory
1361 * area pointed out with dma_declare_coherent_memory().
1363 * So, to summarize...
1365 * - We need "local" memory, canonical example being
1366 * a small SRAM on a discrete controller being the
1367 * only memory that the controller can read ...
1368 * (a) "normal" kernel memory is no good, and
1369 * (b) there's not enough to share
1371 * - The only *portable* hook for such stuff in the
1372 * DMA framework is dma_declare_coherent_memory()
1374 * - So we use that, even though the primary requirement
1375 * is that the memory be "local" (hence addressable
1376 * by that device), not "coherent".
1380 static int hcd_alloc_coherent(struct usb_bus *bus,
1381 gfp_t mem_flags, dma_addr_t *dma_handle,
1382 void **vaddr_handle, size_t size,
1383 enum dma_data_direction dir)
1385 unsigned char *vaddr;
1387 if (*vaddr_handle == NULL) {
1392 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1393 mem_flags, dma_handle);
1398 * Store the virtual address of the buffer at the end
1399 * of the allocated dma buffer. The size of the buffer
1400 * may be uneven so use unaligned functions instead
1401 * of just rounding up. It makes sense to optimize for
1402 * memory footprint over access speed since the amount
1403 * of memory available for dma may be limited.
1405 put_unaligned((unsigned long)*vaddr_handle,
1406 (unsigned long *)(vaddr + size));
1408 if (dir == DMA_TO_DEVICE)
1409 memcpy(vaddr, *vaddr_handle, size);
1411 *vaddr_handle = vaddr;
1415 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1416 void **vaddr_handle, size_t size,
1417 enum dma_data_direction dir)
1419 unsigned char *vaddr = *vaddr_handle;
1421 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1423 if (dir == DMA_FROM_DEVICE)
1424 memcpy(vaddr, *vaddr_handle, size);
1426 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1428 *vaddr_handle = vaddr;
1432 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1434 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1435 (urb->transfer_flags & URB_SETUP_MAP_SINGLE))
1436 dma_unmap_single(hcd->self.sysdev,
1438 sizeof(struct usb_ctrlrequest),
1440 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1441 hcd_free_coherent(urb->dev->bus,
1443 (void **) &urb->setup_packet,
1444 sizeof(struct usb_ctrlrequest),
1447 /* Make it safe to call this routine more than once */
1448 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1450 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1452 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1454 if (hcd->driver->unmap_urb_for_dma)
1455 hcd->driver->unmap_urb_for_dma(hcd, urb);
1457 usb_hcd_unmap_urb_for_dma(hcd, urb);
1460 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1462 enum dma_data_direction dir;
1464 usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1466 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1467 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1468 (urb->transfer_flags & URB_DMA_MAP_SG))
1469 dma_unmap_sg(hcd->self.sysdev,
1473 else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1474 (urb->transfer_flags & URB_DMA_MAP_PAGE))
1475 dma_unmap_page(hcd->self.sysdev,
1477 urb->transfer_buffer_length,
1479 else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1480 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1481 dma_unmap_single(hcd->self.sysdev,
1483 urb->transfer_buffer_length,
1485 else if (urb->transfer_flags & URB_MAP_LOCAL)
1486 hcd_free_coherent(urb->dev->bus,
1488 &urb->transfer_buffer,
1489 urb->transfer_buffer_length,
1492 /* Make it safe to call this routine more than once */
1493 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1494 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1496 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1498 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1501 if (hcd->driver->map_urb_for_dma)
1502 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1504 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1507 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1510 enum dma_data_direction dir;
1513 /* Map the URB's buffers for DMA access.
1514 * Lower level HCD code should use *_dma exclusively,
1515 * unless it uses pio or talks to another transport,
1516 * or uses the provided scatter gather list for bulk.
1519 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1520 if (hcd->self.uses_pio_for_control)
1522 if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) {
1523 if (is_vmalloc_addr(urb->setup_packet)) {
1524 WARN_ONCE(1, "setup packet is not dma capable\n");
1526 } else if (object_is_on_stack(urb->setup_packet)) {
1527 WARN_ONCE(1, "setup packet is on stack\n");
1531 urb->setup_dma = dma_map_single(
1534 sizeof(struct usb_ctrlrequest),
1536 if (dma_mapping_error(hcd->self.sysdev,
1539 urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1540 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1541 ret = hcd_alloc_coherent(
1542 urb->dev->bus, mem_flags,
1544 (void **)&urb->setup_packet,
1545 sizeof(struct usb_ctrlrequest),
1549 urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1553 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1554 if (urb->transfer_buffer_length != 0
1555 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1556 if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) {
1560 /* We don't support sg for isoc transfers ! */
1561 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1574 urb->transfer_flags |= URB_DMA_MAP_SG;
1575 urb->num_mapped_sgs = n;
1576 if (n != urb->num_sgs)
1577 urb->transfer_flags |=
1578 URB_DMA_SG_COMBINED;
1579 } else if (urb->sg) {
1580 struct scatterlist *sg = urb->sg;
1581 urb->transfer_dma = dma_map_page(
1585 urb->transfer_buffer_length,
1587 if (dma_mapping_error(hcd->self.sysdev,
1591 urb->transfer_flags |= URB_DMA_MAP_PAGE;
1592 } else if (is_vmalloc_addr(urb->transfer_buffer)) {
1593 WARN_ONCE(1, "transfer buffer not dma capable\n");
1595 } else if (object_is_on_stack(urb->transfer_buffer)) {
1596 WARN_ONCE(1, "transfer buffer is on stack\n");
1599 urb->transfer_dma = dma_map_single(
1601 urb->transfer_buffer,
1602 urb->transfer_buffer_length,
1604 if (dma_mapping_error(hcd->self.sysdev,
1608 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1610 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1611 ret = hcd_alloc_coherent(
1612 urb->dev->bus, mem_flags,
1614 &urb->transfer_buffer,
1615 urb->transfer_buffer_length,
1618 urb->transfer_flags |= URB_MAP_LOCAL;
1620 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1621 URB_SETUP_MAP_LOCAL)))
1622 usb_hcd_unmap_urb_for_dma(hcd, urb);
1626 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1628 /*-------------------------------------------------------------------------*/
1630 /* may be called in any context with a valid urb->dev usecount
1631 * caller surrenders "ownership" of urb
1632 * expects usb_submit_urb() to have sanity checked and conditioned all
1635 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1638 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1640 /* increment urb's reference count as part of giving it to the HCD
1641 * (which will control it). HCD guarantees that it either returns
1642 * an error or calls giveback(), but not both.
1645 atomic_inc(&urb->use_count);
1646 atomic_inc(&urb->dev->urbnum);
1647 usbmon_urb_submit(&hcd->self, urb);
1649 /* NOTE requirements on root-hub callers (usbfs and the hub
1650 * driver, for now): URBs' urb->transfer_buffer must be
1651 * valid and usb_buffer_{sync,unmap}() not be needed, since
1652 * they could clobber root hub response data. Also, control
1653 * URBs must be submitted in process context with interrupts
1657 if (is_root_hub(urb->dev)) {
1658 status = rh_urb_enqueue(hcd, urb);
1660 status = map_urb_for_dma(hcd, urb, mem_flags);
1661 if (likely(status == 0)) {
1662 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1663 if (unlikely(status))
1664 unmap_urb_for_dma(hcd, urb);
1668 if (unlikely(status)) {
1669 usbmon_urb_submit_error(&hcd->self, urb, status);
1671 INIT_LIST_HEAD(&urb->urb_list);
1672 atomic_dec(&urb->use_count);
1674 * Order the write of urb->use_count above before the read
1675 * of urb->reject below. Pairs with the memory barriers in
1676 * usb_kill_urb() and usb_poison_urb().
1678 smp_mb__after_atomic();
1680 atomic_dec(&urb->dev->urbnum);
1681 if (atomic_read(&urb->reject))
1682 wake_up(&usb_kill_urb_queue);
1688 /*-------------------------------------------------------------------------*/
1690 /* this makes the hcd giveback() the urb more quickly, by kicking it
1691 * off hardware queues (which may take a while) and returning it as
1692 * soon as practical. we've already set up the urb's return status,
1693 * but we can't know if the callback completed already.
1695 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1699 if (is_root_hub(urb->dev))
1700 value = usb_rh_urb_dequeue(hcd, urb, status);
1703 /* The only reason an HCD might fail this call is if
1704 * it has not yet fully queued the urb to begin with.
1705 * Such failures should be harmless. */
1706 value = hcd->driver->urb_dequeue(hcd, urb, status);
1712 * called in any context
1714 * caller guarantees urb won't be recycled till both unlink()
1715 * and the urb's completion function return
1717 int usb_hcd_unlink_urb (struct urb *urb, int status)
1719 struct usb_hcd *hcd;
1720 struct usb_device *udev = urb->dev;
1721 int retval = -EIDRM;
1722 unsigned long flags;
1724 /* Prevent the device and bus from going away while
1725 * the unlink is carried out. If they are already gone
1726 * then urb->use_count must be 0, since disconnected
1727 * devices can't have any active URBs.
1729 spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1730 if (atomic_read(&urb->use_count) > 0) {
1734 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1736 hcd = bus_to_hcd(urb->dev->bus);
1737 retval = unlink1(hcd, urb, status);
1739 retval = -EINPROGRESS;
1740 else if (retval != -EIDRM && retval != -EBUSY)
1741 dev_dbg(&udev->dev, "hcd_unlink_urb %pK fail %d\n",
1748 /*-------------------------------------------------------------------------*/
1750 static void __usb_hcd_giveback_urb(struct urb *urb)
1752 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1753 struct usb_anchor *anchor = urb->anchor;
1754 int status = urb->unlinked;
1755 unsigned long flags;
1758 if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1759 urb->actual_length < urb->transfer_buffer_length &&
1761 status = -EREMOTEIO;
1763 unmap_urb_for_dma(hcd, urb);
1764 usbmon_urb_complete(&hcd->self, urb, status);
1765 usb_anchor_suspend_wakeups(anchor);
1766 usb_unanchor_urb(urb);
1767 if (likely(status == 0))
1768 usb_led_activity(USB_LED_EVENT_HOST);
1770 /* pass ownership to the completion handler */
1771 urb->status = status;
1774 * We disable local IRQs here avoid possible deadlock because
1775 * drivers may call spin_lock() to hold lock which might be
1776 * acquired in one hard interrupt handler.
1778 * The local_irq_save()/local_irq_restore() around complete()
1779 * will be removed if current USB drivers have been cleaned up
1780 * and no one may trigger the above deadlock situation when
1781 * running complete() in tasklet.
1783 local_irq_save(flags);
1785 local_irq_restore(flags);
1787 usb_anchor_resume_wakeups(anchor);
1788 atomic_dec(&urb->use_count);
1790 * Order the write of urb->use_count above before the read
1791 * of urb->reject below. Pairs with the memory barriers in
1792 * usb_kill_urb() and usb_poison_urb().
1794 smp_mb__after_atomic();
1796 if (unlikely(atomic_read(&urb->reject)))
1797 wake_up(&usb_kill_urb_queue);
1801 static void usb_giveback_urb_bh(unsigned long param)
1803 struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param;
1804 struct list_head local_list;
1806 spin_lock_irq(&bh->lock);
1808 list_replace_init(&bh->head, &local_list);
1809 spin_unlock_irq(&bh->lock);
1811 while (!list_empty(&local_list)) {
1814 urb = list_entry(local_list.next, struct urb, urb_list);
1815 list_del_init(&urb->urb_list);
1816 bh->completing_ep = urb->ep;
1817 __usb_hcd_giveback_urb(urb);
1818 bh->completing_ep = NULL;
1822 * giveback new URBs next time to prevent this function
1823 * from not exiting for a long time.
1825 spin_lock_irq(&bh->lock);
1826 if (!list_empty(&bh->head)) {
1828 tasklet_hi_schedule(&bh->bh);
1830 tasklet_schedule(&bh->bh);
1832 bh->running = false;
1833 spin_unlock_irq(&bh->lock);
1837 * usb_hcd_giveback_urb - return URB from HCD to device driver
1838 * @hcd: host controller returning the URB
1839 * @urb: urb being returned to the USB device driver.
1840 * @status: completion status code for the URB.
1841 * Context: in_interrupt()
1843 * This hands the URB from HCD to its USB device driver, using its
1844 * completion function. The HCD has freed all per-urb resources
1845 * (and is done using urb->hcpriv). It also released all HCD locks;
1846 * the device driver won't cause problems if it frees, modifies,
1847 * or resubmits this URB.
1849 * If @urb was unlinked, the value of @status will be overridden by
1850 * @urb->unlinked. Erroneous short transfers are detected in case
1851 * the HCD hasn't checked for them.
1853 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1855 struct giveback_urb_bh *bh;
1858 /* pass status to tasklet via unlinked */
1859 if (likely(!urb->unlinked))
1860 urb->unlinked = status;
1862 if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1863 __usb_hcd_giveback_urb(urb);
1867 if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe))
1868 bh = &hcd->high_prio_bh;
1870 bh = &hcd->low_prio_bh;
1872 spin_lock(&bh->lock);
1873 list_add_tail(&urb->urb_list, &bh->head);
1874 running = bh->running;
1875 spin_unlock(&bh->lock);
1879 else if (bh->high_prio)
1880 tasklet_hi_schedule(&bh->bh);
1882 tasklet_schedule(&bh->bh);
1884 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1886 /*-------------------------------------------------------------------------*/
1888 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1889 * queue to drain completely. The caller must first insure that no more
1890 * URBs can be submitted for this endpoint.
1892 void usb_hcd_flush_endpoint(struct usb_device *udev,
1893 struct usb_host_endpoint *ep)
1895 struct usb_hcd *hcd;
1901 hcd = bus_to_hcd(udev->bus);
1903 /* No more submits can occur */
1904 spin_lock_irq(&hcd_urb_list_lock);
1906 list_for_each_entry_reverse(urb, &ep->urb_list, urb_list) {
1912 is_in = usb_urb_dir_in(urb);
1913 spin_unlock(&hcd_urb_list_lock);
1916 unlink1(hcd, urb, -ESHUTDOWN);
1917 dev_dbg (hcd->self.controller,
1918 "shutdown urb %pK ep%d%s%s\n",
1919 urb, usb_endpoint_num(&ep->desc),
1920 is_in ? "in" : "out",
1923 switch (usb_endpoint_type(&ep->desc)) {
1924 case USB_ENDPOINT_XFER_CONTROL:
1926 case USB_ENDPOINT_XFER_BULK:
1928 case USB_ENDPOINT_XFER_INT:
1937 /* list contents may have changed */
1938 spin_lock(&hcd_urb_list_lock);
1941 spin_unlock_irq(&hcd_urb_list_lock);
1943 /* Wait until the endpoint queue is completely empty */
1944 while (!list_empty (&ep->urb_list)) {
1945 spin_lock_irq(&hcd_urb_list_lock);
1947 /* The list may have changed while we acquired the spinlock */
1949 if (!list_empty (&ep->urb_list)) {
1950 urb = list_entry (ep->urb_list.prev, struct urb,
1954 spin_unlock_irq(&hcd_urb_list_lock);
1964 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1966 * @udev: target &usb_device
1967 * @new_config: new configuration to install
1968 * @cur_alt: the current alternate interface setting
1969 * @new_alt: alternate interface setting that is being installed
1971 * To change configurations, pass in the new configuration in new_config,
1972 * and pass NULL for cur_alt and new_alt.
1974 * To reset a device's configuration (put the device in the ADDRESSED state),
1975 * pass in NULL for new_config, cur_alt, and new_alt.
1977 * To change alternate interface settings, pass in NULL for new_config,
1978 * pass in the current alternate interface setting in cur_alt,
1979 * and pass in the new alternate interface setting in new_alt.
1981 * Return: An error if the requested bandwidth change exceeds the
1982 * bus bandwidth or host controller internal resources.
1984 int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1985 struct usb_host_config *new_config,
1986 struct usb_host_interface *cur_alt,
1987 struct usb_host_interface *new_alt)
1989 int num_intfs, i, j;
1990 struct usb_host_interface *alt = NULL;
1992 struct usb_hcd *hcd;
1993 struct usb_host_endpoint *ep;
1995 hcd = bus_to_hcd(udev->bus);
1996 if (!hcd->driver->check_bandwidth)
1999 /* Configuration is being removed - set configuration 0 */
2000 if (!new_config && !cur_alt) {
2001 for (i = 1; i < 16; ++i) {
2002 ep = udev->ep_out[i];
2004 hcd->driver->drop_endpoint(hcd, udev, ep);
2005 ep = udev->ep_in[i];
2007 hcd->driver->drop_endpoint(hcd, udev, ep);
2009 hcd->driver->check_bandwidth(hcd, udev);
2012 /* Check if the HCD says there's enough bandwidth. Enable all endpoints
2013 * each interface's alt setting 0 and ask the HCD to check the bandwidth
2014 * of the bus. There will always be bandwidth for endpoint 0, so it's
2018 num_intfs = new_config->desc.bNumInterfaces;
2019 /* Remove endpoints (except endpoint 0, which is always on the
2020 * schedule) from the old config from the schedule
2022 for (i = 1; i < 16; ++i) {
2023 ep = udev->ep_out[i];
2025 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
2029 ep = udev->ep_in[i];
2031 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
2036 for (i = 0; i < num_intfs; ++i) {
2037 struct usb_host_interface *first_alt;
2040 first_alt = &new_config->intf_cache[i]->altsetting[0];
2041 iface_num = first_alt->desc.bInterfaceNumber;
2042 /* Set up endpoints for alternate interface setting 0 */
2043 alt = usb_find_alt_setting(new_config, iface_num, 0);
2045 /* No alt setting 0? Pick the first setting. */
2048 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
2049 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
2055 if (cur_alt && new_alt) {
2056 struct usb_interface *iface = usb_ifnum_to_if(udev,
2057 cur_alt->desc.bInterfaceNumber);
2061 if (iface->resetting_device) {
2063 * The USB core just reset the device, so the xHCI host
2064 * and the device will think alt setting 0 is installed.
2065 * However, the USB core will pass in the alternate
2066 * setting installed before the reset as cur_alt. Dig
2067 * out the alternate setting 0 structure, or the first
2068 * alternate setting if a broken device doesn't have alt
2071 cur_alt = usb_altnum_to_altsetting(iface, 0);
2073 cur_alt = &iface->altsetting[0];
2076 /* Drop all the endpoints in the current alt setting */
2077 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
2078 ret = hcd->driver->drop_endpoint(hcd, udev,
2079 &cur_alt->endpoint[i]);
2083 /* Add all the endpoints in the new alt setting */
2084 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
2085 ret = hcd->driver->add_endpoint(hcd, udev,
2086 &new_alt->endpoint[i]);
2091 ret = hcd->driver->check_bandwidth(hcd, udev);
2094 hcd->driver->reset_bandwidth(hcd, udev);
2098 /* Disables the endpoint: synchronizes with the hcd to make sure all
2099 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must
2100 * have been called previously. Use for set_configuration, set_interface,
2101 * driver removal, physical disconnect.
2103 * example: a qh stored in ep->hcpriv, holding state related to endpoint
2104 * type, maxpacket size, toggle, halt status, and scheduling.
2106 void usb_hcd_disable_endpoint(struct usb_device *udev,
2107 struct usb_host_endpoint *ep)
2109 struct usb_hcd *hcd;
2112 hcd = bus_to_hcd(udev->bus);
2113 if (hcd->driver->endpoint_disable)
2114 hcd->driver->endpoint_disable(hcd, ep);
2118 * usb_hcd_reset_endpoint - reset host endpoint state
2119 * @udev: USB device.
2120 * @ep: the endpoint to reset.
2122 * Resets any host endpoint state such as the toggle bit, sequence
2123 * number and current window.
2125 void usb_hcd_reset_endpoint(struct usb_device *udev,
2126 struct usb_host_endpoint *ep)
2128 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2130 if (hcd->driver->endpoint_reset)
2131 hcd->driver->endpoint_reset(hcd, ep);
2133 int epnum = usb_endpoint_num(&ep->desc);
2134 int is_out = usb_endpoint_dir_out(&ep->desc);
2135 int is_control = usb_endpoint_xfer_control(&ep->desc);
2137 usb_settoggle(udev, epnum, is_out, 0);
2139 usb_settoggle(udev, epnum, !is_out, 0);
2144 * usb_alloc_streams - allocate bulk endpoint stream IDs.
2145 * @interface: alternate setting that includes all endpoints.
2146 * @eps: array of endpoints that need streams.
2147 * @num_eps: number of endpoints in the array.
2148 * @num_streams: number of streams to allocate.
2149 * @mem_flags: flags hcd should use to allocate memory.
2151 * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2152 * Drivers may queue multiple transfers to different stream IDs, which may
2153 * complete in a different order than they were queued.
2155 * Return: On success, the number of allocated streams. On failure, a negative
2158 int usb_alloc_streams(struct usb_interface *interface,
2159 struct usb_host_endpoint **eps, unsigned int num_eps,
2160 unsigned int num_streams, gfp_t mem_flags)
2162 struct usb_hcd *hcd;
2163 struct usb_device *dev;
2166 dev = interface_to_usbdev(interface);
2167 hcd = bus_to_hcd(dev->bus);
2168 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2170 if (dev->speed < USB_SPEED_SUPER)
2172 if (dev->state < USB_STATE_CONFIGURED)
2175 for (i = 0; i < num_eps; i++) {
2176 /* Streams only apply to bulk endpoints. */
2177 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2179 /* Re-alloc is not allowed */
2180 if (eps[i]->streams)
2184 ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2185 num_streams, mem_flags);
2189 for (i = 0; i < num_eps; i++)
2190 eps[i]->streams = ret;
2194 EXPORT_SYMBOL_GPL(usb_alloc_streams);
2197 * usb_free_streams - free bulk endpoint stream IDs.
2198 * @interface: alternate setting that includes all endpoints.
2199 * @eps: array of endpoints to remove streams from.
2200 * @num_eps: number of endpoints in the array.
2201 * @mem_flags: flags hcd should use to allocate memory.
2203 * Reverts a group of bulk endpoints back to not using stream IDs.
2204 * Can fail if we are given bad arguments, or HCD is broken.
2206 * Return: 0 on success. On failure, a negative error code.
2208 int usb_free_streams(struct usb_interface *interface,
2209 struct usb_host_endpoint **eps, unsigned int num_eps,
2212 struct usb_hcd *hcd;
2213 struct usb_device *dev;
2216 dev = interface_to_usbdev(interface);
2217 hcd = bus_to_hcd(dev->bus);
2218 if (dev->speed < USB_SPEED_SUPER)
2221 /* Double-free is not allowed */
2222 for (i = 0; i < num_eps; i++)
2223 if (!eps[i] || !eps[i]->streams)
2226 ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2230 for (i = 0; i < num_eps; i++)
2231 eps[i]->streams = 0;
2235 EXPORT_SYMBOL_GPL(usb_free_streams);
2237 /* Protect against drivers that try to unlink URBs after the device
2238 * is gone, by waiting until all unlinks for @udev are finished.
2239 * Since we don't currently track URBs by device, simply wait until
2240 * nothing is running in the locked region of usb_hcd_unlink_urb().
2242 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2244 spin_lock_irq(&hcd_urb_unlink_lock);
2245 spin_unlock_irq(&hcd_urb_unlink_lock);
2248 /*-------------------------------------------------------------------------*/
2250 /* called in any context */
2251 int usb_hcd_get_frame_number (struct usb_device *udev)
2253 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2255 if (!HCD_RH_RUNNING(hcd))
2257 return hcd->driver->get_frame_number (hcd);
2260 /*-------------------------------------------------------------------------*/
2264 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2266 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus);
2268 int old_state = hcd->state;
2270 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2271 (PMSG_IS_AUTO(msg) ? "auto-" : ""),
2272 rhdev->do_remote_wakeup);
2273 if (HCD_DEAD(hcd)) {
2274 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2278 if (!hcd->driver->bus_suspend) {
2281 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2282 hcd->state = HC_STATE_QUIESCING;
2283 status = hcd->driver->bus_suspend(hcd);
2286 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2287 hcd->state = HC_STATE_SUSPENDED;
2289 if (!PMSG_IS_AUTO(msg))
2290 usb_phy_roothub_suspend(hcd->self.sysdev,
2293 /* Did we race with a root-hub wakeup event? */
2294 if (rhdev->do_remote_wakeup) {
2297 status = hcd->driver->hub_status_data(hcd, buffer);
2299 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2300 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2305 spin_lock_irq(&hcd_root_hub_lock);
2306 if (!HCD_DEAD(hcd)) {
2307 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2308 hcd->state = old_state;
2310 spin_unlock_irq(&hcd_root_hub_lock);
2311 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2317 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2319 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus);
2321 int old_state = hcd->state;
2323 dev_dbg(&rhdev->dev, "usb %sresume\n",
2324 (PMSG_IS_AUTO(msg) ? "auto-" : ""));
2325 if (HCD_DEAD(hcd)) {
2326 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2330 if (!PMSG_IS_AUTO(msg)) {
2331 status = usb_phy_roothub_resume(hcd->self.sysdev,
2337 if (!hcd->driver->bus_resume)
2339 if (HCD_RH_RUNNING(hcd))
2342 hcd->state = HC_STATE_RESUMING;
2343 status = hcd->driver->bus_resume(hcd);
2344 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2346 struct usb_device *udev;
2349 spin_lock_irq(&hcd_root_hub_lock);
2350 if (!HCD_DEAD(hcd)) {
2351 usb_set_device_state(rhdev, rhdev->actconfig
2352 ? USB_STATE_CONFIGURED
2353 : USB_STATE_ADDRESS);
2354 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2355 hcd->state = HC_STATE_RUNNING;
2357 spin_unlock_irq(&hcd_root_hub_lock);
2360 * Check whether any of the enabled ports on the root hub are
2361 * unsuspended. If they are then a TRSMRCY delay is needed
2362 * (this is what the USB-2 spec calls a "global resume").
2363 * Otherwise we can skip the delay.
2365 usb_hub_for_each_child(rhdev, port1, udev) {
2366 if (udev->state != USB_STATE_NOTATTACHED &&
2367 !udev->port_is_suspended) {
2368 usleep_range(10000, 11000); /* TRSMRCY */
2373 hcd->state = old_state;
2374 usb_phy_roothub_suspend(hcd->self.sysdev, hcd->phy_roothub);
2375 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2377 if (status != -ESHUTDOWN)
2383 /* Workqueue routine for root-hub remote wakeup */
2384 static void hcd_resume_work(struct work_struct *work)
2386 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2387 struct usb_device *udev = hcd->self.root_hub;
2389 usb_remote_wakeup(udev);
2393 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2394 * @hcd: host controller for this root hub
2396 * The USB host controller calls this function when its root hub is
2397 * suspended (with the remote wakeup feature enabled) and a remote
2398 * wakeup request is received. The routine submits a workqueue request
2399 * to resume the root hub (that is, manage its downstream ports again).
2401 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2403 unsigned long flags;
2405 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2406 if (hcd->rh_registered) {
2407 pm_wakeup_event(&hcd->self.root_hub->dev, 0);
2408 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2409 queue_work(pm_wq, &hcd->wakeup_work);
2411 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2413 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2415 #endif /* CONFIG_PM */
2417 /*-------------------------------------------------------------------------*/
2419 #ifdef CONFIG_USB_OTG
2422 * usb_bus_start_enum - start immediate enumeration (for OTG)
2423 * @bus: the bus (must use hcd framework)
2424 * @port_num: 1-based number of port; usually bus->otg_port
2425 * Context: in_interrupt()
2427 * Starts enumeration, with an immediate reset followed later by
2428 * hub_wq identifying and possibly configuring the device.
2429 * This is needed by OTG controller drivers, where it helps meet
2430 * HNP protocol timing requirements for starting a port reset.
2432 * Return: 0 if successful.
2434 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2436 struct usb_hcd *hcd;
2437 int status = -EOPNOTSUPP;
2439 /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2440 * boards with root hubs hooked up to internal devices (instead of
2441 * just the OTG port) may need more attention to resetting...
2443 hcd = bus_to_hcd(bus);
2444 if (port_num && hcd->driver->start_port_reset)
2445 status = hcd->driver->start_port_reset(hcd, port_num);
2447 /* allocate hub_wq shortly after (first) root port reset finishes;
2448 * it may issue others, until at least 50 msecs have passed.
2451 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2454 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2458 /*-------------------------------------------------------------------------*/
2461 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2462 * @irq: the IRQ being raised
2463 * @__hcd: pointer to the HCD whose IRQ is being signaled
2465 * If the controller isn't HALTed, calls the driver's irq handler.
2466 * Checks whether the controller is now dead.
2468 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2470 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2472 struct usb_hcd *hcd = __hcd;
2475 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2477 else if (hcd->driver->irq(hcd) == IRQ_NONE)
2484 EXPORT_SYMBOL_GPL(usb_hcd_irq);
2486 /*-------------------------------------------------------------------------*/
2489 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2490 * @hcd: pointer to the HCD representing the controller
2492 * This is called by bus glue to report a USB host controller that died
2493 * while operations may still have been pending. It's called automatically
2494 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2496 * Only call this function with the primary HCD.
2498 void usb_hc_died (struct usb_hcd *hcd)
2500 unsigned long flags;
2502 dev_err (hcd->self.controller, "HC died; cleaning up\n");
2504 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2505 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2506 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2507 if (hcd->rh_registered) {
2508 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2510 /* make hub_wq clean up old urbs and devices */
2511 usb_set_device_state (hcd->self.root_hub,
2512 USB_STATE_NOTATTACHED);
2513 usb_kick_hub_wq(hcd->self.root_hub);
2515 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2516 hcd = hcd->shared_hcd;
2517 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2518 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2519 if (hcd->rh_registered) {
2520 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2522 /* make hub_wq clean up old urbs and devices */
2523 usb_set_device_state(hcd->self.root_hub,
2524 USB_STATE_NOTATTACHED);
2525 usb_kick_hub_wq(hcd->self.root_hub);
2528 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2529 /* Make sure that the other roothub is also deallocated. */
2531 EXPORT_SYMBOL_GPL (usb_hc_died);
2533 /*-------------------------------------------------------------------------*/
2535 static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2538 spin_lock_init(&bh->lock);
2539 INIT_LIST_HEAD(&bh->head);
2540 tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh);
2543 struct usb_hcd *__usb_create_hcd(const struct hc_driver *driver,
2544 struct device *sysdev, struct device *dev, const char *bus_name,
2545 struct usb_hcd *primary_hcd)
2547 struct usb_hcd *hcd;
2549 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2552 if (primary_hcd == NULL) {
2553 hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex),
2555 if (!hcd->address0_mutex) {
2557 dev_dbg(dev, "hcd address0 mutex alloc failed\n");
2560 mutex_init(hcd->address0_mutex);
2561 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2563 if (!hcd->bandwidth_mutex) {
2564 kfree(hcd->address0_mutex);
2566 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2569 mutex_init(hcd->bandwidth_mutex);
2570 dev_set_drvdata(dev, hcd);
2572 mutex_lock(&usb_port_peer_mutex);
2573 hcd->address0_mutex = primary_hcd->address0_mutex;
2574 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2575 hcd->primary_hcd = primary_hcd;
2576 primary_hcd->primary_hcd = primary_hcd;
2577 hcd->shared_hcd = primary_hcd;
2578 primary_hcd->shared_hcd = hcd;
2579 mutex_unlock(&usb_port_peer_mutex);
2582 kref_init(&hcd->kref);
2584 usb_bus_init(&hcd->self);
2585 hcd->self.controller = dev;
2586 hcd->self.sysdev = sysdev;
2587 hcd->self.bus_name = bus_name;
2588 hcd->self.uses_dma = (sysdev->dma_mask != NULL);
2590 timer_setup(&hcd->rh_timer, rh_timer_func, 0);
2592 INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2595 hcd->driver = driver;
2596 hcd->speed = driver->flags & HCD_MASK;
2597 hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2598 "USB Host Controller";
2601 EXPORT_SYMBOL_GPL(__usb_create_hcd);
2604 * usb_create_shared_hcd - create and initialize an HCD structure
2605 * @driver: HC driver that will use this hcd
2606 * @dev: device for this HC, stored in hcd->self.controller
2607 * @bus_name: value to store in hcd->self.bus_name
2608 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2609 * PCI device. Only allocate certain resources for the primary HCD
2610 * Context: !in_interrupt()
2612 * Allocate a struct usb_hcd, with extra space at the end for the
2613 * HC driver's private data. Initialize the generic members of the
2616 * Return: On success, a pointer to the created and initialized HCD structure.
2617 * On failure (e.g. if memory is unavailable), %NULL.
2619 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2620 struct device *dev, const char *bus_name,
2621 struct usb_hcd *primary_hcd)
2623 return __usb_create_hcd(driver, dev, dev, bus_name, primary_hcd);
2625 EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2628 * usb_create_hcd - create and initialize an HCD structure
2629 * @driver: HC driver that will use this hcd
2630 * @dev: device for this HC, stored in hcd->self.controller
2631 * @bus_name: value to store in hcd->self.bus_name
2632 * Context: !in_interrupt()
2634 * Allocate a struct usb_hcd, with extra space at the end for the
2635 * HC driver's private data. Initialize the generic members of the
2638 * Return: On success, a pointer to the created and initialized HCD
2639 * structure. On failure (e.g. if memory is unavailable), %NULL.
2641 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2642 struct device *dev, const char *bus_name)
2644 return __usb_create_hcd(driver, dev, dev, bus_name, NULL);
2646 EXPORT_SYMBOL_GPL(usb_create_hcd);
2649 * Roothubs that share one PCI device must also share the bandwidth mutex.
2650 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2653 * Make sure to deallocate the bandwidth_mutex only when the last HCD is
2654 * freed. When hcd_release() is called for either hcd in a peer set,
2655 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers.
2657 static void hcd_release(struct kref *kref)
2659 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2661 mutex_lock(&usb_port_peer_mutex);
2662 if (hcd->shared_hcd) {
2663 struct usb_hcd *peer = hcd->shared_hcd;
2665 peer->shared_hcd = NULL;
2666 peer->primary_hcd = NULL;
2668 kfree(hcd->address0_mutex);
2669 kfree(hcd->bandwidth_mutex);
2671 mutex_unlock(&usb_port_peer_mutex);
2675 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2678 kref_get (&hcd->kref);
2681 EXPORT_SYMBOL_GPL(usb_get_hcd);
2683 void usb_put_hcd (struct usb_hcd *hcd)
2686 kref_put (&hcd->kref, hcd_release);
2688 EXPORT_SYMBOL_GPL(usb_put_hcd);
2690 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2692 if (!hcd->primary_hcd)
2694 return hcd == hcd->primary_hcd;
2696 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2698 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2700 if (!hcd->driver->find_raw_port_number)
2703 return hcd->driver->find_raw_port_number(hcd, port1);
2706 static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2707 unsigned int irqnum, unsigned long irqflags)
2711 if (hcd->driver->irq) {
2713 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2714 hcd->driver->description, hcd->self.busnum);
2715 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2716 hcd->irq_descr, hcd);
2718 dev_err(hcd->self.controller,
2719 "request interrupt %d failed\n",
2724 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2725 (hcd->driver->flags & HCD_MEMORY) ?
2726 "io mem" : "io base",
2727 (unsigned long long)hcd->rsrc_start);
2730 if (hcd->rsrc_start)
2731 dev_info(hcd->self.controller, "%s 0x%08llx\n",
2732 (hcd->driver->flags & HCD_MEMORY) ?
2733 "io mem" : "io base",
2734 (unsigned long long)hcd->rsrc_start);
2740 * Before we free this root hub, flush in-flight peering attempts
2741 * and disable peer lookups
2743 static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2745 struct usb_device *rhdev;
2747 mutex_lock(&usb_port_peer_mutex);
2748 rhdev = hcd->self.root_hub;
2749 hcd->self.root_hub = NULL;
2750 mutex_unlock(&usb_port_peer_mutex);
2755 * usb_add_hcd - finish generic HCD structure initialization and register
2756 * @hcd: the usb_hcd structure to initialize
2757 * @irqnum: Interrupt line to allocate
2758 * @irqflags: Interrupt type flags
2760 * Finish the remaining parts of generic HCD initialization: allocate the
2761 * buffers of consistent memory, register the bus, request the IRQ line,
2762 * and call the driver's reset() and start() routines.
2764 int usb_add_hcd(struct usb_hcd *hcd,
2765 unsigned int irqnum, unsigned long irqflags)
2768 struct usb_device *rhdev;
2770 if (!hcd->skip_phy_initialization && usb_hcd_is_primary_hcd(hcd)) {
2771 hcd->phy_roothub = usb_phy_roothub_alloc(hcd->self.sysdev);
2772 if (IS_ERR(hcd->phy_roothub))
2773 return PTR_ERR(hcd->phy_roothub);
2775 retval = usb_phy_roothub_init(hcd->phy_roothub);
2779 retval = usb_phy_roothub_power_on(hcd->phy_roothub);
2781 goto err_usb_phy_roothub_power_on;
2784 dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2786 /* Keep old behaviour if authorized_default is not in [0, 1]. */
2787 if (authorized_default < 0 || authorized_default > 1) {
2789 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2791 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2793 if (authorized_default)
2794 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2796 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2798 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2800 /* per default all interfaces are authorized */
2801 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
2803 /* HC is in reset state, but accessible. Now do the one-time init,
2804 * bottom up so that hcds can customize the root hubs before hub_wq
2805 * starts talking to them. (Note, bus id is assigned early too.)
2807 retval = hcd_buffer_create(hcd);
2809 dev_dbg(hcd->self.sysdev, "pool alloc failed\n");
2810 goto err_create_buf;
2813 retval = usb_register_bus(&hcd->self);
2815 goto err_register_bus;
2817 rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
2818 if (rhdev == NULL) {
2819 dev_err(hcd->self.sysdev, "unable to allocate root hub\n");
2821 goto err_allocate_root_hub;
2823 mutex_lock(&usb_port_peer_mutex);
2824 hcd->self.root_hub = rhdev;
2825 mutex_unlock(&usb_port_peer_mutex);
2827 rhdev->rx_lanes = 1;
2828 rhdev->tx_lanes = 1;
2830 switch (hcd->speed) {
2832 rhdev->speed = USB_SPEED_FULL;
2835 rhdev->speed = USB_SPEED_HIGH;
2838 rhdev->speed = USB_SPEED_WIRELESS;
2841 rhdev->speed = USB_SPEED_SUPER;
2844 rhdev->rx_lanes = 2;
2845 rhdev->tx_lanes = 2;
2848 rhdev->speed = USB_SPEED_SUPER_PLUS;
2852 goto err_set_rh_speed;
2855 /* wakeup flag init defaults to "everything works" for root hubs,
2856 * but drivers can override it in reset() if needed, along with
2857 * recording the overall controller's system wakeup capability.
2859 device_set_wakeup_capable(&rhdev->dev, 1);
2861 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2862 * registered. But since the controller can die at any time,
2863 * let's initialize the flag before touching the hardware.
2865 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2867 /* "reset" is misnamed; its role is now one-time init. the controller
2868 * should already have been reset (and boot firmware kicked off etc).
2870 if (hcd->driver->reset) {
2871 retval = hcd->driver->reset(hcd);
2873 dev_err(hcd->self.controller, "can't setup: %d\n",
2875 goto err_hcd_driver_setup;
2878 hcd->rh_pollable = 1;
2880 /* NOTE: root hub and controller capabilities may not be the same */
2881 if (device_can_wakeup(hcd->self.controller)
2882 && device_can_wakeup(&hcd->self.root_hub->dev))
2883 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2885 /* initialize tasklets */
2886 init_giveback_urb_bh(&hcd->high_prio_bh);
2887 hcd->high_prio_bh.high_prio = true;
2888 init_giveback_urb_bh(&hcd->low_prio_bh);
2890 /* enable irqs just before we start the controller,
2891 * if the BIOS provides legacy PCI irqs.
2893 if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2894 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2896 goto err_request_irq;
2899 hcd->state = HC_STATE_RUNNING;
2900 retval = hcd->driver->start(hcd);
2902 dev_err(hcd->self.controller, "startup error %d\n", retval);
2903 goto err_hcd_driver_start;
2906 /* starting here, usbcore will pay attention to this root hub */
2907 retval = register_root_hub(hcd);
2909 goto err_register_root_hub;
2911 retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2913 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2915 goto error_create_attr_group;
2917 if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2918 usb_hcd_poll_rh_status(hcd);
2922 error_create_attr_group:
2923 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2924 if (HC_IS_RUNNING(hcd->state))
2925 hcd->state = HC_STATE_QUIESCING;
2926 spin_lock_irq(&hcd_root_hub_lock);
2927 hcd->rh_registered = 0;
2928 spin_unlock_irq(&hcd_root_hub_lock);
2931 cancel_work_sync(&hcd->wakeup_work);
2933 mutex_lock(&usb_bus_idr_lock);
2934 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2935 mutex_unlock(&usb_bus_idr_lock);
2936 err_register_root_hub:
2937 hcd->rh_pollable = 0;
2938 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2939 del_timer_sync(&hcd->rh_timer);
2940 hcd->driver->stop(hcd);
2941 hcd->state = HC_STATE_HALT;
2942 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2943 del_timer_sync(&hcd->rh_timer);
2944 err_hcd_driver_start:
2945 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2946 free_irq(irqnum, hcd);
2948 err_hcd_driver_setup:
2950 usb_put_invalidate_rhdev(hcd);
2951 err_allocate_root_hub:
2952 usb_deregister_bus(&hcd->self);
2954 hcd_buffer_destroy(hcd);
2956 usb_phy_roothub_power_off(hcd->phy_roothub);
2957 err_usb_phy_roothub_power_on:
2958 usb_phy_roothub_exit(hcd->phy_roothub);
2962 EXPORT_SYMBOL_GPL(usb_add_hcd);
2965 * usb_remove_hcd - shutdown processing for generic HCDs
2966 * @hcd: the usb_hcd structure to remove
2967 * Context: !in_interrupt()
2969 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2970 * invoking the HCD's stop() method.
2972 void usb_remove_hcd(struct usb_hcd *hcd)
2974 struct usb_device *rhdev = hcd->self.root_hub;
2976 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2979 sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2981 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2982 if (HC_IS_RUNNING (hcd->state))
2983 hcd->state = HC_STATE_QUIESCING;
2985 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2986 spin_lock_irq (&hcd_root_hub_lock);
2987 hcd->rh_registered = 0;
2988 spin_unlock_irq (&hcd_root_hub_lock);
2991 cancel_work_sync(&hcd->wakeup_work);
2994 mutex_lock(&usb_bus_idr_lock);
2995 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2996 mutex_unlock(&usb_bus_idr_lock);
2999 * tasklet_kill() isn't needed here because:
3000 * - driver's disconnect() called from usb_disconnect() should
3001 * make sure its URBs are completed during the disconnect()
3004 * - it is too late to run complete() here since driver may have
3005 * been removed already now
3008 /* Prevent any more root-hub status calls from the timer.
3009 * The HCD might still restart the timer (if a port status change
3010 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
3011 * the hub_status_data() callback.
3013 hcd->rh_pollable = 0;
3014 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
3015 del_timer_sync(&hcd->rh_timer);
3017 hcd->driver->stop(hcd);
3018 hcd->state = HC_STATE_HALT;
3020 /* In case the HCD restarted the timer, stop it again. */
3021 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
3022 del_timer_sync(&hcd->rh_timer);
3024 if (usb_hcd_is_primary_hcd(hcd)) {
3026 free_irq(hcd->irq, hcd);
3029 usb_deregister_bus(&hcd->self);
3030 hcd_buffer_destroy(hcd);
3032 usb_phy_roothub_power_off(hcd->phy_roothub);
3033 usb_phy_roothub_exit(hcd->phy_roothub);
3035 usb_put_invalidate_rhdev(hcd);
3038 EXPORT_SYMBOL_GPL(usb_remove_hcd);
3041 usb_hcd_platform_shutdown(struct platform_device *dev)
3043 struct usb_hcd *hcd = platform_get_drvdata(dev);
3045 /* No need for pm_runtime_put(), we're shutting down */
3046 pm_runtime_get_sync(&dev->dev);
3048 if (hcd->driver->shutdown)
3049 hcd->driver->shutdown(hcd);
3051 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
3053 /*-------------------------------------------------------------------------*/
3055 #if IS_ENABLED(CONFIG_USB_MON)
3057 const struct usb_mon_operations *mon_ops;
3060 * The registration is unlocked.
3061 * We do it this way because we do not want to lock in hot paths.
3063 * Notice that the code is minimally error-proof. Because usbmon needs
3064 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
3067 int usb_mon_register(const struct usb_mon_operations *ops)
3077 EXPORT_SYMBOL_GPL (usb_mon_register);
3079 void usb_mon_deregister (void)
3082 if (mon_ops == NULL) {
3083 printk(KERN_ERR "USB: monitor was not registered\n");
3089 EXPORT_SYMBOL_GPL (usb_mon_deregister);
3091 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */