GNU Linux-libre 4.9.333-gnu1
[releases.git] / drivers / usb / core / hcd.c
1 /*
2  * (C) Copyright Linus Torvalds 1999
3  * (C) Copyright Johannes Erdfelt 1999-2001
4  * (C) Copyright Andreas Gal 1999
5  * (C) Copyright Gregory P. Smith 1999
6  * (C) Copyright Deti Fliegl 1999
7  * (C) Copyright Randy Dunlap 2000
8  * (C) Copyright David Brownell 2000-2002
9  *
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of the GNU General Public License as published by the
12  * Free Software Foundation; either version 2 of the License, or (at your
13  * option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18  * for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software Foundation,
22  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23  */
24
25 #include <linux/bcd.h>
26 #include <linux/module.h>
27 #include <linux/version.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/completion.h>
31 #include <linux/utsname.h>
32 #include <linux/mm.h>
33 #include <asm/io.h>
34 #include <linux/device.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/mutex.h>
37 #include <asm/irq.h>
38 #include <asm/byteorder.h>
39 #include <asm/unaligned.h>
40 #include <linux/platform_device.h>
41 #include <linux/workqueue.h>
42 #include <linux/pm_runtime.h>
43 #include <linux/types.h>
44
45 #include <linux/phy/phy.h>
46 #include <linux/usb.h>
47 #include <linux/usb/hcd.h>
48 #include <linux/usb/phy.h>
49 #include <linux/usb/otg.h>
50
51 #include "usb.h"
52
53
54 /*-------------------------------------------------------------------------*/
55
56 /*
57  * USB Host Controller Driver framework
58  *
59  * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
60  * HCD-specific behaviors/bugs.
61  *
62  * This does error checks, tracks devices and urbs, and delegates to a
63  * "hc_driver" only for code (and data) that really needs to know about
64  * hardware differences.  That includes root hub registers, i/o queues,
65  * and so on ... but as little else as possible.
66  *
67  * Shared code includes most of the "root hub" code (these are emulated,
68  * though each HC's hardware works differently) and PCI glue, plus request
69  * tracking overhead.  The HCD code should only block on spinlocks or on
70  * hardware handshaking; blocking on software events (such as other kernel
71  * threads releasing resources, or completing actions) is all generic.
72  *
73  * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
74  * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
75  * only by the hub driver ... and that neither should be seen or used by
76  * usb client device drivers.
77  *
78  * Contributors of ideas or unattributed patches include: David Brownell,
79  * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
80  *
81  * HISTORY:
82  * 2002-02-21   Pull in most of the usb_bus support from usb.c; some
83  *              associated cleanup.  "usb_hcd" still != "usb_bus".
84  * 2001-12-12   Initial patch version for Linux 2.5.1 kernel.
85  */
86
87 /*-------------------------------------------------------------------------*/
88
89 /* Keep track of which host controller drivers are loaded */
90 unsigned long usb_hcds_loaded;
91 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
92
93 /* host controllers we manage */
94 DEFINE_IDR (usb_bus_idr);
95 EXPORT_SYMBOL_GPL (usb_bus_idr);
96
97 /* used when allocating bus numbers */
98 #define USB_MAXBUS              64
99
100 /* used when updating list of hcds */
101 DEFINE_MUTEX(usb_bus_idr_lock); /* exported only for usbfs */
102 EXPORT_SYMBOL_GPL (usb_bus_idr_lock);
103
104 /* used for controlling access to virtual root hubs */
105 static DEFINE_SPINLOCK(hcd_root_hub_lock);
106
107 /* used when updating an endpoint's URB list */
108 static DEFINE_SPINLOCK(hcd_urb_list_lock);
109
110 /* used to protect against unlinking URBs after the device is gone */
111 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
112
113 /* wait queue for synchronous unlinks */
114 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
115
116 static inline int is_root_hub(struct usb_device *udev)
117 {
118         return (udev->parent == NULL);
119 }
120
121 /*-------------------------------------------------------------------------*/
122
123 /*
124  * Sharable chunks of root hub code.
125  */
126
127 /*-------------------------------------------------------------------------*/
128 #define KERNEL_REL      bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
129 #define KERNEL_VER      bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
130
131 /* usb 3.1 root hub device descriptor */
132 static const u8 usb31_rh_dev_descriptor[18] = {
133         0x12,       /*  __u8  bLength; */
134         USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
135         0x10, 0x03, /*  __le16 bcdUSB; v3.1 */
136
137         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
138         0x00,       /*  __u8  bDeviceSubClass; */
139         0x03,       /*  __u8  bDeviceProtocol; USB 3 hub */
140         0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
141
142         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
143         0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
144         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
145
146         0x03,       /*  __u8  iManufacturer; */
147         0x02,       /*  __u8  iProduct; */
148         0x01,       /*  __u8  iSerialNumber; */
149         0x01        /*  __u8  bNumConfigurations; */
150 };
151
152 /* usb 3.0 root hub device descriptor */
153 static const u8 usb3_rh_dev_descriptor[18] = {
154         0x12,       /*  __u8  bLength; */
155         USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
156         0x00, 0x03, /*  __le16 bcdUSB; v3.0 */
157
158         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
159         0x00,       /*  __u8  bDeviceSubClass; */
160         0x03,       /*  __u8  bDeviceProtocol; USB 3.0 hub */
161         0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
162
163         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
164         0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
165         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
166
167         0x03,       /*  __u8  iManufacturer; */
168         0x02,       /*  __u8  iProduct; */
169         0x01,       /*  __u8  iSerialNumber; */
170         0x01        /*  __u8  bNumConfigurations; */
171 };
172
173 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */
174 static const u8 usb25_rh_dev_descriptor[18] = {
175         0x12,       /*  __u8  bLength; */
176         USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
177         0x50, 0x02, /*  __le16 bcdUSB; v2.5 */
178
179         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
180         0x00,       /*  __u8  bDeviceSubClass; */
181         0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
182         0xFF,       /*  __u8  bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
183
184         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
185         0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
186         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
187
188         0x03,       /*  __u8  iManufacturer; */
189         0x02,       /*  __u8  iProduct; */
190         0x01,       /*  __u8  iSerialNumber; */
191         0x01        /*  __u8  bNumConfigurations; */
192 };
193
194 /* usb 2.0 root hub device descriptor */
195 static const u8 usb2_rh_dev_descriptor[18] = {
196         0x12,       /*  __u8  bLength; */
197         USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
198         0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
199
200         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
201         0x00,       /*  __u8  bDeviceSubClass; */
202         0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
203         0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
204
205         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
206         0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
207         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
208
209         0x03,       /*  __u8  iManufacturer; */
210         0x02,       /*  __u8  iProduct; */
211         0x01,       /*  __u8  iSerialNumber; */
212         0x01        /*  __u8  bNumConfigurations; */
213 };
214
215 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
216
217 /* usb 1.1 root hub device descriptor */
218 static const u8 usb11_rh_dev_descriptor[18] = {
219         0x12,       /*  __u8  bLength; */
220         USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
221         0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
222
223         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
224         0x00,       /*  __u8  bDeviceSubClass; */
225         0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
226         0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
227
228         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
229         0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
230         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
231
232         0x03,       /*  __u8  iManufacturer; */
233         0x02,       /*  __u8  iProduct; */
234         0x01,       /*  __u8  iSerialNumber; */
235         0x01        /*  __u8  bNumConfigurations; */
236 };
237
238
239 /*-------------------------------------------------------------------------*/
240
241 /* Configuration descriptors for our root hubs */
242
243 static const u8 fs_rh_config_descriptor[] = {
244
245         /* one configuration */
246         0x09,       /*  __u8  bLength; */
247         USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
248         0x19, 0x00, /*  __le16 wTotalLength; */
249         0x01,       /*  __u8  bNumInterfaces; (1) */
250         0x01,       /*  __u8  bConfigurationValue; */
251         0x00,       /*  __u8  iConfiguration; */
252         0xc0,       /*  __u8  bmAttributes;
253                                  Bit 7: must be set,
254                                      6: Self-powered,
255                                      5: Remote wakeup,
256                                      4..0: resvd */
257         0x00,       /*  __u8  MaxPower; */
258
259         /* USB 1.1:
260          * USB 2.0, single TT organization (mandatory):
261          *      one interface, protocol 0
262          *
263          * USB 2.0, multiple TT organization (optional):
264          *      two interfaces, protocols 1 (like single TT)
265          *      and 2 (multiple TT mode) ... config is
266          *      sometimes settable
267          *      NOT IMPLEMENTED
268          */
269
270         /* one interface */
271         0x09,       /*  __u8  if_bLength; */
272         USB_DT_INTERFACE,  /* __u8 if_bDescriptorType; Interface */
273         0x00,       /*  __u8  if_bInterfaceNumber; */
274         0x00,       /*  __u8  if_bAlternateSetting; */
275         0x01,       /*  __u8  if_bNumEndpoints; */
276         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
277         0x00,       /*  __u8  if_bInterfaceSubClass; */
278         0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
279         0x00,       /*  __u8  if_iInterface; */
280
281         /* one endpoint (status change endpoint) */
282         0x07,       /*  __u8  ep_bLength; */
283         USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
284         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
285         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
286         0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
287         0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
288 };
289
290 static const u8 hs_rh_config_descriptor[] = {
291
292         /* one configuration */
293         0x09,       /*  __u8  bLength; */
294         USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
295         0x19, 0x00, /*  __le16 wTotalLength; */
296         0x01,       /*  __u8  bNumInterfaces; (1) */
297         0x01,       /*  __u8  bConfigurationValue; */
298         0x00,       /*  __u8  iConfiguration; */
299         0xc0,       /*  __u8  bmAttributes;
300                                  Bit 7: must be set,
301                                      6: Self-powered,
302                                      5: Remote wakeup,
303                                      4..0: resvd */
304         0x00,       /*  __u8  MaxPower; */
305
306         /* USB 1.1:
307          * USB 2.0, single TT organization (mandatory):
308          *      one interface, protocol 0
309          *
310          * USB 2.0, multiple TT organization (optional):
311          *      two interfaces, protocols 1 (like single TT)
312          *      and 2 (multiple TT mode) ... config is
313          *      sometimes settable
314          *      NOT IMPLEMENTED
315          */
316
317         /* one interface */
318         0x09,       /*  __u8  if_bLength; */
319         USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
320         0x00,       /*  __u8  if_bInterfaceNumber; */
321         0x00,       /*  __u8  if_bAlternateSetting; */
322         0x01,       /*  __u8  if_bNumEndpoints; */
323         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
324         0x00,       /*  __u8  if_bInterfaceSubClass; */
325         0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
326         0x00,       /*  __u8  if_iInterface; */
327
328         /* one endpoint (status change endpoint) */
329         0x07,       /*  __u8  ep_bLength; */
330         USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
331         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
332         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
333                     /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
334                      * see hub.c:hub_configure() for details. */
335         (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
336         0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
337 };
338
339 static const u8 ss_rh_config_descriptor[] = {
340         /* one configuration */
341         0x09,       /*  __u8  bLength; */
342         USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
343         0x1f, 0x00, /*  __le16 wTotalLength; */
344         0x01,       /*  __u8  bNumInterfaces; (1) */
345         0x01,       /*  __u8  bConfigurationValue; */
346         0x00,       /*  __u8  iConfiguration; */
347         0xc0,       /*  __u8  bmAttributes;
348                                  Bit 7: must be set,
349                                      6: Self-powered,
350                                      5: Remote wakeup,
351                                      4..0: resvd */
352         0x00,       /*  __u8  MaxPower; */
353
354         /* one interface */
355         0x09,       /*  __u8  if_bLength; */
356         USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
357         0x00,       /*  __u8  if_bInterfaceNumber; */
358         0x00,       /*  __u8  if_bAlternateSetting; */
359         0x01,       /*  __u8  if_bNumEndpoints; */
360         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
361         0x00,       /*  __u8  if_bInterfaceSubClass; */
362         0x00,       /*  __u8  if_bInterfaceProtocol; */
363         0x00,       /*  __u8  if_iInterface; */
364
365         /* one endpoint (status change endpoint) */
366         0x07,       /*  __u8  ep_bLength; */
367         USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
368         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
369         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
370                     /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
371                      * see hub.c:hub_configure() for details. */
372         (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
373         0x0c,       /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
374
375         /* one SuperSpeed endpoint companion descriptor */
376         0x06,        /* __u8 ss_bLength */
377         USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */
378                      /* Companion */
379         0x00,        /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
380         0x00,        /* __u8 ss_bmAttributes; 1 packet per service interval */
381         0x02, 0x00   /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
382 };
383
384 /* authorized_default behaviour:
385  * -1 is authorized for all devices except wireless (old behaviour)
386  * 0 is unauthorized for all devices
387  * 1 is authorized for all devices
388  */
389 static int authorized_default = -1;
390 module_param(authorized_default, int, S_IRUGO|S_IWUSR);
391 MODULE_PARM_DESC(authorized_default,
392                 "Default USB device authorization: 0 is not authorized, 1 is "
393                 "authorized, -1 is authorized except for wireless USB (default, "
394                 "old behaviour");
395 /*-------------------------------------------------------------------------*/
396
397 /**
398  * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
399  * @s: Null-terminated ASCII (actually ISO-8859-1) string
400  * @buf: Buffer for USB string descriptor (header + UTF-16LE)
401  * @len: Length (in bytes; may be odd) of descriptor buffer.
402  *
403  * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
404  * whichever is less.
405  *
406  * Note:
407  * USB String descriptors can contain at most 126 characters; input
408  * strings longer than that are truncated.
409  */
410 static unsigned
411 ascii2desc(char const *s, u8 *buf, unsigned len)
412 {
413         unsigned n, t = 2 + 2*strlen(s);
414
415         if (t > 254)
416                 t = 254;        /* Longest possible UTF string descriptor */
417         if (len > t)
418                 len = t;
419
420         t += USB_DT_STRING << 8;        /* Now t is first 16 bits to store */
421
422         n = len;
423         while (n--) {
424                 *buf++ = t;
425                 if (!n--)
426                         break;
427                 *buf++ = t >> 8;
428                 t = (unsigned char)*s++;
429         }
430         return len;
431 }
432
433 /**
434  * rh_string() - provides string descriptors for root hub
435  * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
436  * @hcd: the host controller for this root hub
437  * @data: buffer for output packet
438  * @len: length of the provided buffer
439  *
440  * Produces either a manufacturer, product or serial number string for the
441  * virtual root hub device.
442  *
443  * Return: The number of bytes filled in: the length of the descriptor or
444  * of the provided buffer, whichever is less.
445  */
446 static unsigned
447 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
448 {
449         char buf[100];
450         char const *s;
451         static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
452
453         /* language ids */
454         switch (id) {
455         case 0:
456                 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
457                 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
458                 if (len > 4)
459                         len = 4;
460                 memcpy(data, langids, len);
461                 return len;
462         case 1:
463                 /* Serial number */
464                 s = hcd->self.bus_name;
465                 break;
466         case 2:
467                 /* Product name */
468                 s = hcd->product_desc;
469                 break;
470         case 3:
471                 /* Manufacturer */
472                 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
473                         init_utsname()->release, hcd->driver->description);
474                 s = buf;
475                 break;
476         default:
477                 /* Can't happen; caller guarantees it */
478                 return 0;
479         }
480
481         return ascii2desc(s, data, len);
482 }
483
484
485 /* Root hub control transfers execute synchronously */
486 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
487 {
488         struct usb_ctrlrequest *cmd;
489         u16             typeReq, wValue, wIndex, wLength;
490         u8              *ubuf = urb->transfer_buffer;
491         unsigned        len = 0;
492         int             status;
493         u8              patch_wakeup = 0;
494         u8              patch_protocol = 0;
495         u16             tbuf_size;
496         u8              *tbuf = NULL;
497         const u8        *bufp;
498
499         might_sleep();
500
501         spin_lock_irq(&hcd_root_hub_lock);
502         status = usb_hcd_link_urb_to_ep(hcd, urb);
503         spin_unlock_irq(&hcd_root_hub_lock);
504         if (status)
505                 return status;
506         urb->hcpriv = hcd;      /* Indicate it's queued */
507
508         cmd = (struct usb_ctrlrequest *) urb->setup_packet;
509         typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
510         wValue   = le16_to_cpu (cmd->wValue);
511         wIndex   = le16_to_cpu (cmd->wIndex);
512         wLength  = le16_to_cpu (cmd->wLength);
513
514         if (wLength > urb->transfer_buffer_length)
515                 goto error;
516
517         /*
518          * tbuf should be at least as big as the
519          * USB hub descriptor.
520          */
521         tbuf_size =  max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
522         tbuf = kzalloc(tbuf_size, GFP_KERNEL);
523         if (!tbuf) {
524                 status = -ENOMEM;
525                 goto err_alloc;
526         }
527
528         bufp = tbuf;
529
530
531         urb->actual_length = 0;
532         switch (typeReq) {
533
534         /* DEVICE REQUESTS */
535
536         /* The root hub's remote wakeup enable bit is implemented using
537          * driver model wakeup flags.  If this system supports wakeup
538          * through USB, userspace may change the default "allow wakeup"
539          * policy through sysfs or these calls.
540          *
541          * Most root hubs support wakeup from downstream devices, for
542          * runtime power management (disabling USB clocks and reducing
543          * VBUS power usage).  However, not all of them do so; silicon,
544          * board, and BIOS bugs here are not uncommon, so these can't
545          * be treated quite like external hubs.
546          *
547          * Likewise, not all root hubs will pass wakeup events upstream,
548          * to wake up the whole system.  So don't assume root hub and
549          * controller capabilities are identical.
550          */
551
552         case DeviceRequest | USB_REQ_GET_STATUS:
553                 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
554                                         << USB_DEVICE_REMOTE_WAKEUP)
555                                 | (1 << USB_DEVICE_SELF_POWERED);
556                 tbuf[1] = 0;
557                 len = 2;
558                 break;
559         case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
560                 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
561                         device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
562                 else
563                         goto error;
564                 break;
565         case DeviceOutRequest | USB_REQ_SET_FEATURE:
566                 if (device_can_wakeup(&hcd->self.root_hub->dev)
567                                 && wValue == USB_DEVICE_REMOTE_WAKEUP)
568                         device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
569                 else
570                         goto error;
571                 break;
572         case DeviceRequest | USB_REQ_GET_CONFIGURATION:
573                 tbuf[0] = 1;
574                 len = 1;
575                         /* FALLTHROUGH */
576         case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
577                 break;
578         case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
579                 switch (wValue & 0xff00) {
580                 case USB_DT_DEVICE << 8:
581                         switch (hcd->speed) {
582                         case HCD_USB31:
583                                 bufp = usb31_rh_dev_descriptor;
584                                 break;
585                         case HCD_USB3:
586                                 bufp = usb3_rh_dev_descriptor;
587                                 break;
588                         case HCD_USB25:
589                                 bufp = usb25_rh_dev_descriptor;
590                                 break;
591                         case HCD_USB2:
592                                 bufp = usb2_rh_dev_descriptor;
593                                 break;
594                         case HCD_USB11:
595                                 bufp = usb11_rh_dev_descriptor;
596                                 break;
597                         default:
598                                 goto error;
599                         }
600                         len = 18;
601                         if (hcd->has_tt)
602                                 patch_protocol = 1;
603                         break;
604                 case USB_DT_CONFIG << 8:
605                         switch (hcd->speed) {
606                         case HCD_USB31:
607                         case HCD_USB3:
608                                 bufp = ss_rh_config_descriptor;
609                                 len = sizeof ss_rh_config_descriptor;
610                                 break;
611                         case HCD_USB25:
612                         case HCD_USB2:
613                                 bufp = hs_rh_config_descriptor;
614                                 len = sizeof hs_rh_config_descriptor;
615                                 break;
616                         case HCD_USB11:
617                                 bufp = fs_rh_config_descriptor;
618                                 len = sizeof fs_rh_config_descriptor;
619                                 break;
620                         default:
621                                 goto error;
622                         }
623                         if (device_can_wakeup(&hcd->self.root_hub->dev))
624                                 patch_wakeup = 1;
625                         break;
626                 case USB_DT_STRING << 8:
627                         if ((wValue & 0xff) < 4)
628                                 urb->actual_length = rh_string(wValue & 0xff,
629                                                 hcd, ubuf, wLength);
630                         else /* unsupported IDs --> "protocol stall" */
631                                 goto error;
632                         break;
633                 case USB_DT_BOS << 8:
634                         goto nongeneric;
635                 default:
636                         goto error;
637                 }
638                 break;
639         case DeviceRequest | USB_REQ_GET_INTERFACE:
640                 tbuf[0] = 0;
641                 len = 1;
642                         /* FALLTHROUGH */
643         case DeviceOutRequest | USB_REQ_SET_INTERFACE:
644                 break;
645         case DeviceOutRequest | USB_REQ_SET_ADDRESS:
646                 /* wValue == urb->dev->devaddr */
647                 dev_dbg (hcd->self.controller, "root hub device address %d\n",
648                         wValue);
649                 break;
650
651         /* INTERFACE REQUESTS (no defined feature/status flags) */
652
653         /* ENDPOINT REQUESTS */
654
655         case EndpointRequest | USB_REQ_GET_STATUS:
656                 /* ENDPOINT_HALT flag */
657                 tbuf[0] = 0;
658                 tbuf[1] = 0;
659                 len = 2;
660                         /* FALLTHROUGH */
661         case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
662         case EndpointOutRequest | USB_REQ_SET_FEATURE:
663                 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
664                 break;
665
666         /* CLASS REQUESTS (and errors) */
667
668         default:
669 nongeneric:
670                 /* non-generic request */
671                 switch (typeReq) {
672                 case GetHubStatus:
673                         len = 4;
674                         break;
675                 case GetPortStatus:
676                         if (wValue == HUB_PORT_STATUS)
677                                 len = 4;
678                         else
679                                 /* other port status types return 8 bytes */
680                                 len = 8;
681                         break;
682                 case GetHubDescriptor:
683                         len = sizeof (struct usb_hub_descriptor);
684                         break;
685                 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
686                         /* len is returned by hub_control */
687                         break;
688                 }
689                 status = hcd->driver->hub_control (hcd,
690                         typeReq, wValue, wIndex,
691                         tbuf, wLength);
692
693                 if (typeReq == GetHubDescriptor)
694                         usb_hub_adjust_deviceremovable(hcd->self.root_hub,
695                                 (struct usb_hub_descriptor *)tbuf);
696                 break;
697 error:
698                 /* "protocol stall" on error */
699                 status = -EPIPE;
700         }
701
702         if (status < 0) {
703                 len = 0;
704                 if (status != -EPIPE) {
705                         dev_dbg (hcd->self.controller,
706                                 "CTRL: TypeReq=0x%x val=0x%x "
707                                 "idx=0x%x len=%d ==> %d\n",
708                                 typeReq, wValue, wIndex,
709                                 wLength, status);
710                 }
711         } else if (status > 0) {
712                 /* hub_control may return the length of data copied. */
713                 len = status;
714                 status = 0;
715         }
716         if (len) {
717                 if (urb->transfer_buffer_length < len)
718                         len = urb->transfer_buffer_length;
719                 urb->actual_length = len;
720                 /* always USB_DIR_IN, toward host */
721                 memcpy (ubuf, bufp, len);
722
723                 /* report whether RH hardware supports remote wakeup */
724                 if (patch_wakeup &&
725                                 len > offsetof (struct usb_config_descriptor,
726                                                 bmAttributes))
727                         ((struct usb_config_descriptor *)ubuf)->bmAttributes
728                                 |= USB_CONFIG_ATT_WAKEUP;
729
730                 /* report whether RH hardware has an integrated TT */
731                 if (patch_protocol &&
732                                 len > offsetof(struct usb_device_descriptor,
733                                                 bDeviceProtocol))
734                         ((struct usb_device_descriptor *) ubuf)->
735                                 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
736         }
737
738         kfree(tbuf);
739  err_alloc:
740
741         /* any errors get returned through the urb completion */
742         spin_lock_irq(&hcd_root_hub_lock);
743         usb_hcd_unlink_urb_from_ep(hcd, urb);
744         usb_hcd_giveback_urb(hcd, urb, status);
745         spin_unlock_irq(&hcd_root_hub_lock);
746         return 0;
747 }
748
749 /*-------------------------------------------------------------------------*/
750
751 /*
752  * Root Hub interrupt transfers are polled using a timer if the
753  * driver requests it; otherwise the driver is responsible for
754  * calling usb_hcd_poll_rh_status() when an event occurs.
755  *
756  * Completions are called in_interrupt(), but they may or may not
757  * be in_irq().
758  */
759 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
760 {
761         struct urb      *urb;
762         int             length;
763         int             status;
764         unsigned long   flags;
765         char            buffer[6];      /* Any root hubs with > 31 ports? */
766
767         if (unlikely(!hcd->rh_pollable))
768                 return;
769         if (!hcd->uses_new_polling && !hcd->status_urb)
770                 return;
771
772         length = hcd->driver->hub_status_data(hcd, buffer);
773         if (length > 0) {
774
775                 /* try to complete the status urb */
776                 spin_lock_irqsave(&hcd_root_hub_lock, flags);
777                 urb = hcd->status_urb;
778                 if (urb) {
779                         clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
780                         hcd->status_urb = NULL;
781                         if (urb->transfer_buffer_length >= length) {
782                                 status = 0;
783                         } else {
784                                 status = -EOVERFLOW;
785                                 length = urb->transfer_buffer_length;
786                         }
787                         urb->actual_length = length;
788                         memcpy(urb->transfer_buffer, buffer, length);
789
790                         usb_hcd_unlink_urb_from_ep(hcd, urb);
791                         usb_hcd_giveback_urb(hcd, urb, status);
792                 } else {
793                         length = 0;
794                         set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
795                 }
796                 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
797         }
798
799         /* The USB 2.0 spec says 256 ms.  This is close enough and won't
800          * exceed that limit if HZ is 100. The math is more clunky than
801          * maybe expected, this is to make sure that all timers for USB devices
802          * fire at the same time to give the CPU a break in between */
803         if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
804                         (length == 0 && hcd->status_urb != NULL))
805                 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
806 }
807 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
808
809 /* timer callback */
810 static void rh_timer_func (unsigned long _hcd)
811 {
812         usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
813 }
814
815 /*-------------------------------------------------------------------------*/
816
817 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
818 {
819         int             retval;
820         unsigned long   flags;
821         unsigned        len = 1 + (urb->dev->maxchild / 8);
822
823         spin_lock_irqsave (&hcd_root_hub_lock, flags);
824         if (hcd->status_urb || urb->transfer_buffer_length < len) {
825                 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
826                 retval = -EINVAL;
827                 goto done;
828         }
829
830         retval = usb_hcd_link_urb_to_ep(hcd, urb);
831         if (retval)
832                 goto done;
833
834         hcd->status_urb = urb;
835         urb->hcpriv = hcd;      /* indicate it's queued */
836         if (!hcd->uses_new_polling)
837                 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
838
839         /* If a status change has already occurred, report it ASAP */
840         else if (HCD_POLL_PENDING(hcd))
841                 mod_timer(&hcd->rh_timer, jiffies);
842         retval = 0;
843  done:
844         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
845         return retval;
846 }
847
848 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
849 {
850         if (usb_endpoint_xfer_int(&urb->ep->desc))
851                 return rh_queue_status (hcd, urb);
852         if (usb_endpoint_xfer_control(&urb->ep->desc))
853                 return rh_call_control (hcd, urb);
854         return -EINVAL;
855 }
856
857 /*-------------------------------------------------------------------------*/
858
859 /* Unlinks of root-hub control URBs are legal, but they don't do anything
860  * since these URBs always execute synchronously.
861  */
862 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
863 {
864         unsigned long   flags;
865         int             rc;
866
867         spin_lock_irqsave(&hcd_root_hub_lock, flags);
868         rc = usb_hcd_check_unlink_urb(hcd, urb, status);
869         if (rc)
870                 goto done;
871
872         if (usb_endpoint_num(&urb->ep->desc) == 0) {    /* Control URB */
873                 ;       /* Do nothing */
874
875         } else {                                /* Status URB */
876                 if (!hcd->uses_new_polling)
877                         del_timer (&hcd->rh_timer);
878                 if (urb == hcd->status_urb) {
879                         hcd->status_urb = NULL;
880                         usb_hcd_unlink_urb_from_ep(hcd, urb);
881                         usb_hcd_giveback_urb(hcd, urb, status);
882                 }
883         }
884  done:
885         spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
886         return rc;
887 }
888
889
890
891 /*
892  * Show & store the current value of authorized_default
893  */
894 static ssize_t authorized_default_show(struct device *dev,
895                                        struct device_attribute *attr, char *buf)
896 {
897         struct usb_device *rh_usb_dev = to_usb_device(dev);
898         struct usb_bus *usb_bus = rh_usb_dev->bus;
899         struct usb_hcd *hcd;
900
901         hcd = bus_to_hcd(usb_bus);
902         return snprintf(buf, PAGE_SIZE, "%u\n", !!HCD_DEV_AUTHORIZED(hcd));
903 }
904
905 static ssize_t authorized_default_store(struct device *dev,
906                                         struct device_attribute *attr,
907                                         const char *buf, size_t size)
908 {
909         ssize_t result;
910         unsigned val;
911         struct usb_device *rh_usb_dev = to_usb_device(dev);
912         struct usb_bus *usb_bus = rh_usb_dev->bus;
913         struct usb_hcd *hcd;
914
915         hcd = bus_to_hcd(usb_bus);
916         result = sscanf(buf, "%u\n", &val);
917         if (result == 1) {
918                 if (val)
919                         set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
920                 else
921                         clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
922
923                 result = size;
924         } else {
925                 result = -EINVAL;
926         }
927         return result;
928 }
929 static DEVICE_ATTR_RW(authorized_default);
930
931 /*
932  * interface_authorized_default_show - show default authorization status
933  * for USB interfaces
934  *
935  * note: interface_authorized_default is the default value
936  *       for initializing the authorized attribute of interfaces
937  */
938 static ssize_t interface_authorized_default_show(struct device *dev,
939                 struct device_attribute *attr, char *buf)
940 {
941         struct usb_device *usb_dev = to_usb_device(dev);
942         struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus);
943
944         return sprintf(buf, "%u\n", !!HCD_INTF_AUTHORIZED(hcd));
945 }
946
947 /*
948  * interface_authorized_default_store - store default authorization status
949  * for USB interfaces
950  *
951  * note: interface_authorized_default is the default value
952  *       for initializing the authorized attribute of interfaces
953  */
954 static ssize_t interface_authorized_default_store(struct device *dev,
955                 struct device_attribute *attr, const char *buf, size_t count)
956 {
957         struct usb_device *usb_dev = to_usb_device(dev);
958         struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus);
959         int rc = count;
960         bool val;
961
962         if (strtobool(buf, &val) != 0)
963                 return -EINVAL;
964
965         if (val)
966                 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
967         else
968                 clear_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
969
970         return rc;
971 }
972 static DEVICE_ATTR_RW(interface_authorized_default);
973
974 /* Group all the USB bus attributes */
975 static struct attribute *usb_bus_attrs[] = {
976                 &dev_attr_authorized_default.attr,
977                 &dev_attr_interface_authorized_default.attr,
978                 NULL,
979 };
980
981 static struct attribute_group usb_bus_attr_group = {
982         .name = NULL,   /* we want them in the same directory */
983         .attrs = usb_bus_attrs,
984 };
985
986
987
988 /*-------------------------------------------------------------------------*/
989
990 /**
991  * usb_bus_init - shared initialization code
992  * @bus: the bus structure being initialized
993  *
994  * This code is used to initialize a usb_bus structure, memory for which is
995  * separately managed.
996  */
997 static void usb_bus_init (struct usb_bus *bus)
998 {
999         memset (&bus->devmap, 0, sizeof(struct usb_devmap));
1000
1001         bus->devnum_next = 1;
1002
1003         bus->root_hub = NULL;
1004         bus->busnum = -1;
1005         bus->bandwidth_allocated = 0;
1006         bus->bandwidth_int_reqs  = 0;
1007         bus->bandwidth_isoc_reqs = 0;
1008         mutex_init(&bus->devnum_next_mutex);
1009 }
1010
1011 /*-------------------------------------------------------------------------*/
1012
1013 /**
1014  * usb_register_bus - registers the USB host controller with the usb core
1015  * @bus: pointer to the bus to register
1016  * Context: !in_interrupt()
1017  *
1018  * Assigns a bus number, and links the controller into usbcore data
1019  * structures so that it can be seen by scanning the bus list.
1020  *
1021  * Return: 0 if successful. A negative error code otherwise.
1022  */
1023 static int usb_register_bus(struct usb_bus *bus)
1024 {
1025         int result = -E2BIG;
1026         int busnum;
1027
1028         mutex_lock(&usb_bus_idr_lock);
1029         busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL);
1030         if (busnum < 0) {
1031                 pr_err("%s: failed to get bus number\n", usbcore_name);
1032                 goto error_find_busnum;
1033         }
1034         bus->busnum = busnum;
1035         mutex_unlock(&usb_bus_idr_lock);
1036
1037         usb_notify_add_bus(bus);
1038
1039         dev_info (bus->controller, "new USB bus registered, assigned bus "
1040                   "number %d\n", bus->busnum);
1041         return 0;
1042
1043 error_find_busnum:
1044         mutex_unlock(&usb_bus_idr_lock);
1045         return result;
1046 }
1047
1048 /**
1049  * usb_deregister_bus - deregisters the USB host controller
1050  * @bus: pointer to the bus to deregister
1051  * Context: !in_interrupt()
1052  *
1053  * Recycles the bus number, and unlinks the controller from usbcore data
1054  * structures so that it won't be seen by scanning the bus list.
1055  */
1056 static void usb_deregister_bus (struct usb_bus *bus)
1057 {
1058         dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
1059
1060         /*
1061          * NOTE: make sure that all the devices are removed by the
1062          * controller code, as well as having it call this when cleaning
1063          * itself up
1064          */
1065         mutex_lock(&usb_bus_idr_lock);
1066         idr_remove(&usb_bus_idr, bus->busnum);
1067         mutex_unlock(&usb_bus_idr_lock);
1068
1069         usb_notify_remove_bus(bus);
1070 }
1071
1072 /**
1073  * register_root_hub - called by usb_add_hcd() to register a root hub
1074  * @hcd: host controller for this root hub
1075  *
1076  * This function registers the root hub with the USB subsystem.  It sets up
1077  * the device properly in the device tree and then calls usb_new_device()
1078  * to register the usb device.  It also assigns the root hub's USB address
1079  * (always 1).
1080  *
1081  * Return: 0 if successful. A negative error code otherwise.
1082  */
1083 static int register_root_hub(struct usb_hcd *hcd)
1084 {
1085         struct device *parent_dev = hcd->self.controller;
1086         struct usb_device *usb_dev = hcd->self.root_hub;
1087         const int devnum = 1;
1088         int retval;
1089
1090         usb_dev->devnum = devnum;
1091         usb_dev->bus->devnum_next = devnum + 1;
1092         memset (&usb_dev->bus->devmap.devicemap, 0,
1093                         sizeof usb_dev->bus->devmap.devicemap);
1094         set_bit (devnum, usb_dev->bus->devmap.devicemap);
1095         usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
1096
1097         mutex_lock(&usb_bus_idr_lock);
1098
1099         usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
1100         retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
1101         if (retval != sizeof usb_dev->descriptor) {
1102                 mutex_unlock(&usb_bus_idr_lock);
1103                 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
1104                                 dev_name(&usb_dev->dev), retval);
1105                 return (retval < 0) ? retval : -EMSGSIZE;
1106         }
1107
1108         if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
1109                 retval = usb_get_bos_descriptor(usb_dev);
1110                 if (!retval) {
1111                         usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
1112                 } else if (usb_dev->speed >= USB_SPEED_SUPER) {
1113                         mutex_unlock(&usb_bus_idr_lock);
1114                         dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1115                                         dev_name(&usb_dev->dev), retval);
1116                         return retval;
1117                 }
1118         }
1119
1120         retval = usb_new_device (usb_dev);
1121         if (retval) {
1122                 dev_err (parent_dev, "can't register root hub for %s, %d\n",
1123                                 dev_name(&usb_dev->dev), retval);
1124         } else {
1125                 spin_lock_irq (&hcd_root_hub_lock);
1126                 hcd->rh_registered = 1;
1127                 spin_unlock_irq (&hcd_root_hub_lock);
1128
1129                 /* Did the HC die before the root hub was registered? */
1130                 if (HCD_DEAD(hcd))
1131                         usb_hc_died (hcd);      /* This time clean up */
1132                 usb_dev->dev.of_node = parent_dev->of_node;
1133         }
1134         mutex_unlock(&usb_bus_idr_lock);
1135
1136         return retval;
1137 }
1138
1139 /*
1140  * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1141  * @bus: the bus which the root hub belongs to
1142  * @portnum: the port which is being resumed
1143  *
1144  * HCDs should call this function when they know that a resume signal is
1145  * being sent to a root-hub port.  The root hub will be prevented from
1146  * going into autosuspend until usb_hcd_end_port_resume() is called.
1147  *
1148  * The bus's private lock must be held by the caller.
1149  */
1150 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1151 {
1152         unsigned bit = 1 << portnum;
1153
1154         if (!(bus->resuming_ports & bit)) {
1155                 bus->resuming_ports |= bit;
1156                 pm_runtime_get_noresume(&bus->root_hub->dev);
1157         }
1158 }
1159 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1160
1161 /*
1162  * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1163  * @bus: the bus which the root hub belongs to
1164  * @portnum: the port which is being resumed
1165  *
1166  * HCDs should call this function when they know that a resume signal has
1167  * stopped being sent to a root-hub port.  The root hub will be allowed to
1168  * autosuspend again.
1169  *
1170  * The bus's private lock must be held by the caller.
1171  */
1172 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1173 {
1174         unsigned bit = 1 << portnum;
1175
1176         if (bus->resuming_ports & bit) {
1177                 bus->resuming_ports &= ~bit;
1178                 pm_runtime_put_noidle(&bus->root_hub->dev);
1179         }
1180 }
1181 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1182
1183 /*-------------------------------------------------------------------------*/
1184
1185 /**
1186  * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1187  * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1188  * @is_input: true iff the transaction sends data to the host
1189  * @isoc: true for isochronous transactions, false for interrupt ones
1190  * @bytecount: how many bytes in the transaction.
1191  *
1192  * Return: Approximate bus time in nanoseconds for a periodic transaction.
1193  *
1194  * Note:
1195  * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1196  * scheduled in software, this function is only used for such scheduling.
1197  */
1198 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1199 {
1200         unsigned long   tmp;
1201
1202         switch (speed) {
1203         case USB_SPEED_LOW:     /* INTR only */
1204                 if (is_input) {
1205                         tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1206                         return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1207                 } else {
1208                         tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1209                         return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1210                 }
1211         case USB_SPEED_FULL:    /* ISOC or INTR */
1212                 if (isoc) {
1213                         tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1214                         return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1215                 } else {
1216                         tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1217                         return 9107L + BW_HOST_DELAY + tmp;
1218                 }
1219         case USB_SPEED_HIGH:    /* ISOC or INTR */
1220                 /* FIXME adjust for input vs output */
1221                 if (isoc)
1222                         tmp = HS_NSECS_ISO (bytecount);
1223                 else
1224                         tmp = HS_NSECS (bytecount);
1225                 return tmp;
1226         default:
1227                 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1228                 return -1;
1229         }
1230 }
1231 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1232
1233
1234 /*-------------------------------------------------------------------------*/
1235
1236 /*
1237  * Generic HC operations.
1238  */
1239
1240 /*-------------------------------------------------------------------------*/
1241
1242 /**
1243  * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1244  * @hcd: host controller to which @urb was submitted
1245  * @urb: URB being submitted
1246  *
1247  * Host controller drivers should call this routine in their enqueue()
1248  * method.  The HCD's private spinlock must be held and interrupts must
1249  * be disabled.  The actions carried out here are required for URB
1250  * submission, as well as for endpoint shutdown and for usb_kill_urb.
1251  *
1252  * Return: 0 for no error, otherwise a negative error code (in which case
1253  * the enqueue() method must fail).  If no error occurs but enqueue() fails
1254  * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1255  * the private spinlock and returning.
1256  */
1257 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1258 {
1259         int             rc = 0;
1260
1261         spin_lock(&hcd_urb_list_lock);
1262
1263         /* Check that the URB isn't being killed */
1264         if (unlikely(atomic_read(&urb->reject))) {
1265                 rc = -EPERM;
1266                 goto done;
1267         }
1268
1269         if (unlikely(!urb->ep->enabled)) {
1270                 rc = -ENOENT;
1271                 goto done;
1272         }
1273
1274         if (unlikely(!urb->dev->can_submit)) {
1275                 rc = -EHOSTUNREACH;
1276                 goto done;
1277         }
1278
1279         /*
1280          * Check the host controller's state and add the URB to the
1281          * endpoint's queue.
1282          */
1283         if (HCD_RH_RUNNING(hcd)) {
1284                 urb->unlinked = 0;
1285                 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1286         } else {
1287                 rc = -ESHUTDOWN;
1288                 goto done;
1289         }
1290  done:
1291         spin_unlock(&hcd_urb_list_lock);
1292         return rc;
1293 }
1294 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1295
1296 /**
1297  * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1298  * @hcd: host controller to which @urb was submitted
1299  * @urb: URB being checked for unlinkability
1300  * @status: error code to store in @urb if the unlink succeeds
1301  *
1302  * Host controller drivers should call this routine in their dequeue()
1303  * method.  The HCD's private spinlock must be held and interrupts must
1304  * be disabled.  The actions carried out here are required for making
1305  * sure than an unlink is valid.
1306  *
1307  * Return: 0 for no error, otherwise a negative error code (in which case
1308  * the dequeue() method must fail).  The possible error codes are:
1309  *
1310  *      -EIDRM: @urb was not submitted or has already completed.
1311  *              The completion function may not have been called yet.
1312  *
1313  *      -EBUSY: @urb has already been unlinked.
1314  */
1315 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1316                 int status)
1317 {
1318         struct list_head        *tmp;
1319
1320         /* insist the urb is still queued */
1321         list_for_each(tmp, &urb->ep->urb_list) {
1322                 if (tmp == &urb->urb_list)
1323                         break;
1324         }
1325         if (tmp != &urb->urb_list)
1326                 return -EIDRM;
1327
1328         /* Any status except -EINPROGRESS means something already started to
1329          * unlink this URB from the hardware.  So there's no more work to do.
1330          */
1331         if (urb->unlinked)
1332                 return -EBUSY;
1333         urb->unlinked = status;
1334         return 0;
1335 }
1336 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1337
1338 /**
1339  * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1340  * @hcd: host controller to which @urb was submitted
1341  * @urb: URB being unlinked
1342  *
1343  * Host controller drivers should call this routine before calling
1344  * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1345  * interrupts must be disabled.  The actions carried out here are required
1346  * for URB completion.
1347  */
1348 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1349 {
1350         /* clear all state linking urb to this dev (and hcd) */
1351         spin_lock(&hcd_urb_list_lock);
1352         list_del_init(&urb->urb_list);
1353         spin_unlock(&hcd_urb_list_lock);
1354 }
1355 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1356
1357 /*
1358  * Some usb host controllers can only perform dma using a small SRAM area.
1359  * The usb core itself is however optimized for host controllers that can dma
1360  * using regular system memory - like pci devices doing bus mastering.
1361  *
1362  * To support host controllers with limited dma capabilities we provide dma
1363  * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1364  * For this to work properly the host controller code must first use the
1365  * function dma_declare_coherent_memory() to point out which memory area
1366  * that should be used for dma allocations.
1367  *
1368  * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1369  * dma using dma_alloc_coherent() which in turn allocates from the memory
1370  * area pointed out with dma_declare_coherent_memory().
1371  *
1372  * So, to summarize...
1373  *
1374  * - We need "local" memory, canonical example being
1375  *   a small SRAM on a discrete controller being the
1376  *   only memory that the controller can read ...
1377  *   (a) "normal" kernel memory is no good, and
1378  *   (b) there's not enough to share
1379  *
1380  * - The only *portable* hook for such stuff in the
1381  *   DMA framework is dma_declare_coherent_memory()
1382  *
1383  * - So we use that, even though the primary requirement
1384  *   is that the memory be "local" (hence addressable
1385  *   by that device), not "coherent".
1386  *
1387  */
1388
1389 static int hcd_alloc_coherent(struct usb_bus *bus,
1390                               gfp_t mem_flags, dma_addr_t *dma_handle,
1391                               void **vaddr_handle, size_t size,
1392                               enum dma_data_direction dir)
1393 {
1394         unsigned char *vaddr;
1395
1396         if (*vaddr_handle == NULL) {
1397                 WARN_ON_ONCE(1);
1398                 return -EFAULT;
1399         }
1400
1401         vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1402                                  mem_flags, dma_handle);
1403         if (!vaddr)
1404                 return -ENOMEM;
1405
1406         /*
1407          * Store the virtual address of the buffer at the end
1408          * of the allocated dma buffer. The size of the buffer
1409          * may be uneven so use unaligned functions instead
1410          * of just rounding up. It makes sense to optimize for
1411          * memory footprint over access speed since the amount
1412          * of memory available for dma may be limited.
1413          */
1414         put_unaligned((unsigned long)*vaddr_handle,
1415                       (unsigned long *)(vaddr + size));
1416
1417         if (dir == DMA_TO_DEVICE)
1418                 memcpy(vaddr, *vaddr_handle, size);
1419
1420         *vaddr_handle = vaddr;
1421         return 0;
1422 }
1423
1424 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1425                               void **vaddr_handle, size_t size,
1426                               enum dma_data_direction dir)
1427 {
1428         unsigned char *vaddr = *vaddr_handle;
1429
1430         vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1431
1432         if (dir == DMA_FROM_DEVICE)
1433                 memcpy(vaddr, *vaddr_handle, size);
1434
1435         hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1436
1437         *vaddr_handle = vaddr;
1438         *dma_handle = 0;
1439 }
1440
1441 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1442 {
1443         if (IS_ENABLED(CONFIG_HAS_DMA) &&
1444             (urb->transfer_flags & URB_SETUP_MAP_SINGLE))
1445                 dma_unmap_single(hcd->self.controller,
1446                                 urb->setup_dma,
1447                                 sizeof(struct usb_ctrlrequest),
1448                                 DMA_TO_DEVICE);
1449         else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1450                 hcd_free_coherent(urb->dev->bus,
1451                                 &urb->setup_dma,
1452                                 (void **) &urb->setup_packet,
1453                                 sizeof(struct usb_ctrlrequest),
1454                                 DMA_TO_DEVICE);
1455
1456         /* Make it safe to call this routine more than once */
1457         urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1458 }
1459 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1460
1461 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1462 {
1463         if (hcd->driver->unmap_urb_for_dma)
1464                 hcd->driver->unmap_urb_for_dma(hcd, urb);
1465         else
1466                 usb_hcd_unmap_urb_for_dma(hcd, urb);
1467 }
1468
1469 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1470 {
1471         enum dma_data_direction dir;
1472
1473         usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1474
1475         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1476         if (IS_ENABLED(CONFIG_HAS_DMA) &&
1477             (urb->transfer_flags & URB_DMA_MAP_SG))
1478                 dma_unmap_sg(hcd->self.controller,
1479                                 urb->sg,
1480                                 urb->num_sgs,
1481                                 dir);
1482         else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1483                  (urb->transfer_flags & URB_DMA_MAP_PAGE))
1484                 dma_unmap_page(hcd->self.controller,
1485                                 urb->transfer_dma,
1486                                 urb->transfer_buffer_length,
1487                                 dir);
1488         else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1489                  (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1490                 dma_unmap_single(hcd->self.controller,
1491                                 urb->transfer_dma,
1492                                 urb->transfer_buffer_length,
1493                                 dir);
1494         else if (urb->transfer_flags & URB_MAP_LOCAL)
1495                 hcd_free_coherent(urb->dev->bus,
1496                                 &urb->transfer_dma,
1497                                 &urb->transfer_buffer,
1498                                 urb->transfer_buffer_length,
1499                                 dir);
1500
1501         /* Make it safe to call this routine more than once */
1502         urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1503                         URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1504 }
1505 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1506
1507 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1508                            gfp_t mem_flags)
1509 {
1510         if (hcd->driver->map_urb_for_dma)
1511                 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1512         else
1513                 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1514 }
1515
1516 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1517                             gfp_t mem_flags)
1518 {
1519         enum dma_data_direction dir;
1520         int ret = 0;
1521
1522         /* Map the URB's buffers for DMA access.
1523          * Lower level HCD code should use *_dma exclusively,
1524          * unless it uses pio or talks to another transport,
1525          * or uses the provided scatter gather list for bulk.
1526          */
1527
1528         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1529                 if (hcd->self.uses_pio_for_control)
1530                         return ret;
1531                 if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) {
1532                         urb->setup_dma = dma_map_single(
1533                                         hcd->self.controller,
1534                                         urb->setup_packet,
1535                                         sizeof(struct usb_ctrlrequest),
1536                                         DMA_TO_DEVICE);
1537                         if (dma_mapping_error(hcd->self.controller,
1538                                                 urb->setup_dma))
1539                                 return -EAGAIN;
1540                         urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1541                 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1542                         ret = hcd_alloc_coherent(
1543                                         urb->dev->bus, mem_flags,
1544                                         &urb->setup_dma,
1545                                         (void **)&urb->setup_packet,
1546                                         sizeof(struct usb_ctrlrequest),
1547                                         DMA_TO_DEVICE);
1548                         if (ret)
1549                                 return ret;
1550                         urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1551                 }
1552         }
1553
1554         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1555         if (urb->transfer_buffer_length != 0
1556             && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1557                 if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) {
1558                         if (urb->num_sgs) {
1559                                 int n;
1560
1561                                 /* We don't support sg for isoc transfers ! */
1562                                 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1563                                         WARN_ON(1);
1564                                         return -EINVAL;
1565                                 }
1566
1567                                 n = dma_map_sg(
1568                                                 hcd->self.controller,
1569                                                 urb->sg,
1570                                                 urb->num_sgs,
1571                                                 dir);
1572                                 if (n <= 0)
1573                                         ret = -EAGAIN;
1574                                 else
1575                                         urb->transfer_flags |= URB_DMA_MAP_SG;
1576                                 urb->num_mapped_sgs = n;
1577                                 if (n != urb->num_sgs)
1578                                         urb->transfer_flags |=
1579                                                         URB_DMA_SG_COMBINED;
1580                         } else if (urb->sg) {
1581                                 struct scatterlist *sg = urb->sg;
1582                                 urb->transfer_dma = dma_map_page(
1583                                                 hcd->self.controller,
1584                                                 sg_page(sg),
1585                                                 sg->offset,
1586                                                 urb->transfer_buffer_length,
1587                                                 dir);
1588                                 if (dma_mapping_error(hcd->self.controller,
1589                                                 urb->transfer_dma))
1590                                         ret = -EAGAIN;
1591                                 else
1592                                         urb->transfer_flags |= URB_DMA_MAP_PAGE;
1593                         } else if (is_vmalloc_addr(urb->transfer_buffer)) {
1594                                 WARN_ONCE(1, "transfer buffer not dma capable\n");
1595                                 ret = -EAGAIN;
1596                         } else {
1597                                 urb->transfer_dma = dma_map_single(
1598                                                 hcd->self.controller,
1599                                                 urb->transfer_buffer,
1600                                                 urb->transfer_buffer_length,
1601                                                 dir);
1602                                 if (dma_mapping_error(hcd->self.controller,
1603                                                 urb->transfer_dma))
1604                                         ret = -EAGAIN;
1605                                 else
1606                                         urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1607                         }
1608                 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1609                         ret = hcd_alloc_coherent(
1610                                         urb->dev->bus, mem_flags,
1611                                         &urb->transfer_dma,
1612                                         &urb->transfer_buffer,
1613                                         urb->transfer_buffer_length,
1614                                         dir);
1615                         if (ret == 0)
1616                                 urb->transfer_flags |= URB_MAP_LOCAL;
1617                 }
1618                 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1619                                 URB_SETUP_MAP_LOCAL)))
1620                         usb_hcd_unmap_urb_for_dma(hcd, urb);
1621         }
1622         return ret;
1623 }
1624 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1625
1626 /*-------------------------------------------------------------------------*/
1627
1628 /* may be called in any context with a valid urb->dev usecount
1629  * caller surrenders "ownership" of urb
1630  * expects usb_submit_urb() to have sanity checked and conditioned all
1631  * inputs in the urb
1632  */
1633 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1634 {
1635         int                     status;
1636         struct usb_hcd          *hcd = bus_to_hcd(urb->dev->bus);
1637
1638         /* increment urb's reference count as part of giving it to the HCD
1639          * (which will control it).  HCD guarantees that it either returns
1640          * an error or calls giveback(), but not both.
1641          */
1642         usb_get_urb(urb);
1643         atomic_inc(&urb->use_count);
1644         atomic_inc(&urb->dev->urbnum);
1645         usbmon_urb_submit(&hcd->self, urb);
1646
1647         /* NOTE requirements on root-hub callers (usbfs and the hub
1648          * driver, for now):  URBs' urb->transfer_buffer must be
1649          * valid and usb_buffer_{sync,unmap}() not be needed, since
1650          * they could clobber root hub response data.  Also, control
1651          * URBs must be submitted in process context with interrupts
1652          * enabled.
1653          */
1654
1655         if (is_root_hub(urb->dev)) {
1656                 status = rh_urb_enqueue(hcd, urb);
1657         } else {
1658                 status = map_urb_for_dma(hcd, urb, mem_flags);
1659                 if (likely(status == 0)) {
1660                         status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1661                         if (unlikely(status))
1662                                 unmap_urb_for_dma(hcd, urb);
1663                 }
1664         }
1665
1666         if (unlikely(status)) {
1667                 usbmon_urb_submit_error(&hcd->self, urb, status);
1668                 urb->hcpriv = NULL;
1669                 INIT_LIST_HEAD(&urb->urb_list);
1670                 atomic_dec(&urb->use_count);
1671                 /*
1672                  * Order the write of urb->use_count above before the read
1673                  * of urb->reject below.  Pairs with the memory barriers in
1674                  * usb_kill_urb() and usb_poison_urb().
1675                  */
1676                 smp_mb__after_atomic();
1677
1678                 atomic_dec(&urb->dev->urbnum);
1679                 if (atomic_read(&urb->reject))
1680                         wake_up(&usb_kill_urb_queue);
1681                 usb_put_urb(urb);
1682         }
1683         return status;
1684 }
1685
1686 /*-------------------------------------------------------------------------*/
1687
1688 /* this makes the hcd giveback() the urb more quickly, by kicking it
1689  * off hardware queues (which may take a while) and returning it as
1690  * soon as practical.  we've already set up the urb's return status,
1691  * but we can't know if the callback completed already.
1692  */
1693 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1694 {
1695         int             value;
1696
1697         if (is_root_hub(urb->dev))
1698                 value = usb_rh_urb_dequeue(hcd, urb, status);
1699         else {
1700
1701                 /* The only reason an HCD might fail this call is if
1702                  * it has not yet fully queued the urb to begin with.
1703                  * Such failures should be harmless. */
1704                 value = hcd->driver->urb_dequeue(hcd, urb, status);
1705         }
1706         return value;
1707 }
1708
1709 /*
1710  * called in any context
1711  *
1712  * caller guarantees urb won't be recycled till both unlink()
1713  * and the urb's completion function return
1714  */
1715 int usb_hcd_unlink_urb (struct urb *urb, int status)
1716 {
1717         struct usb_hcd          *hcd;
1718         struct usb_device       *udev = urb->dev;
1719         int                     retval = -EIDRM;
1720         unsigned long           flags;
1721
1722         /* Prevent the device and bus from going away while
1723          * the unlink is carried out.  If they are already gone
1724          * then urb->use_count must be 0, since disconnected
1725          * devices can't have any active URBs.
1726          */
1727         spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1728         if (atomic_read(&urb->use_count) > 0) {
1729                 retval = 0;
1730                 usb_get_dev(udev);
1731         }
1732         spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1733         if (retval == 0) {
1734                 hcd = bus_to_hcd(urb->dev->bus);
1735                 retval = unlink1(hcd, urb, status);
1736                 if (retval == 0)
1737                         retval = -EINPROGRESS;
1738                 else if (retval != -EIDRM && retval != -EBUSY)
1739                         dev_dbg(&udev->dev, "hcd_unlink_urb %pK fail %d\n",
1740                                         urb, retval);
1741                 usb_put_dev(udev);
1742         }
1743         return retval;
1744 }
1745
1746 /*-------------------------------------------------------------------------*/
1747
1748 static void __usb_hcd_giveback_urb(struct urb *urb)
1749 {
1750         struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1751         struct usb_anchor *anchor = urb->anchor;
1752         int status = urb->unlinked;
1753         unsigned long flags;
1754
1755         urb->hcpriv = NULL;
1756         if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1757             urb->actual_length < urb->transfer_buffer_length &&
1758             !status))
1759                 status = -EREMOTEIO;
1760
1761         unmap_urb_for_dma(hcd, urb);
1762         usbmon_urb_complete(&hcd->self, urb, status);
1763         usb_anchor_suspend_wakeups(anchor);
1764         usb_unanchor_urb(urb);
1765         if (likely(status == 0))
1766                 usb_led_activity(USB_LED_EVENT_HOST);
1767
1768         /* pass ownership to the completion handler */
1769         urb->status = status;
1770
1771         /*
1772          * We disable local IRQs here avoid possible deadlock because
1773          * drivers may call spin_lock() to hold lock which might be
1774          * acquired in one hard interrupt handler.
1775          *
1776          * The local_irq_save()/local_irq_restore() around complete()
1777          * will be removed if current USB drivers have been cleaned up
1778          * and no one may trigger the above deadlock situation when
1779          * running complete() in tasklet.
1780          */
1781         local_irq_save(flags);
1782         urb->complete(urb);
1783         local_irq_restore(flags);
1784
1785         usb_anchor_resume_wakeups(anchor);
1786         atomic_dec(&urb->use_count);
1787         /*
1788          * Order the write of urb->use_count above before the read
1789          * of urb->reject below.  Pairs with the memory barriers in
1790          * usb_kill_urb() and usb_poison_urb().
1791          */
1792         smp_mb__after_atomic();
1793
1794         if (unlikely(atomic_read(&urb->reject)))
1795                 wake_up(&usb_kill_urb_queue);
1796         usb_put_urb(urb);
1797 }
1798
1799 static void usb_giveback_urb_bh(unsigned long param)
1800 {
1801         struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param;
1802         struct list_head local_list;
1803
1804         spin_lock_irq(&bh->lock);
1805         bh->running = true;
1806         list_replace_init(&bh->head, &local_list);
1807         spin_unlock_irq(&bh->lock);
1808
1809         while (!list_empty(&local_list)) {
1810                 struct urb *urb;
1811
1812                 urb = list_entry(local_list.next, struct urb, urb_list);
1813                 list_del_init(&urb->urb_list);
1814                 bh->completing_ep = urb->ep;
1815                 __usb_hcd_giveback_urb(urb);
1816                 bh->completing_ep = NULL;
1817         }
1818
1819         /*
1820          * giveback new URBs next time to prevent this function
1821          * from not exiting for a long time.
1822          */
1823         spin_lock_irq(&bh->lock);
1824         if (!list_empty(&bh->head)) {
1825                 if (bh->high_prio)
1826                         tasklet_hi_schedule(&bh->bh);
1827                 else
1828                         tasklet_schedule(&bh->bh);
1829         }
1830         bh->running = false;
1831         spin_unlock_irq(&bh->lock);
1832 }
1833
1834 /**
1835  * usb_hcd_giveback_urb - return URB from HCD to device driver
1836  * @hcd: host controller returning the URB
1837  * @urb: urb being returned to the USB device driver.
1838  * @status: completion status code for the URB.
1839  * Context: in_interrupt()
1840  *
1841  * This hands the URB from HCD to its USB device driver, using its
1842  * completion function.  The HCD has freed all per-urb resources
1843  * (and is done using urb->hcpriv).  It also released all HCD locks;
1844  * the device driver won't cause problems if it frees, modifies,
1845  * or resubmits this URB.
1846  *
1847  * If @urb was unlinked, the value of @status will be overridden by
1848  * @urb->unlinked.  Erroneous short transfers are detected in case
1849  * the HCD hasn't checked for them.
1850  */
1851 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1852 {
1853         struct giveback_urb_bh *bh;
1854         bool running;
1855
1856         /* pass status to tasklet via unlinked */
1857         if (likely(!urb->unlinked))
1858                 urb->unlinked = status;
1859
1860         if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1861                 __usb_hcd_giveback_urb(urb);
1862                 return;
1863         }
1864
1865         if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe))
1866                 bh = &hcd->high_prio_bh;
1867         else
1868                 bh = &hcd->low_prio_bh;
1869
1870         spin_lock(&bh->lock);
1871         list_add_tail(&urb->urb_list, &bh->head);
1872         running = bh->running;
1873         spin_unlock(&bh->lock);
1874
1875         if (running)
1876                 ;
1877         else if (bh->high_prio)
1878                 tasklet_hi_schedule(&bh->bh);
1879         else
1880                 tasklet_schedule(&bh->bh);
1881 }
1882 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1883
1884 /*-------------------------------------------------------------------------*/
1885
1886 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1887  * queue to drain completely.  The caller must first insure that no more
1888  * URBs can be submitted for this endpoint.
1889  */
1890 void usb_hcd_flush_endpoint(struct usb_device *udev,
1891                 struct usb_host_endpoint *ep)
1892 {
1893         struct usb_hcd          *hcd;
1894         struct urb              *urb;
1895
1896         if (!ep)
1897                 return;
1898         might_sleep();
1899         hcd = bus_to_hcd(udev->bus);
1900
1901         /* No more submits can occur */
1902         spin_lock_irq(&hcd_urb_list_lock);
1903 rescan:
1904         list_for_each_entry_reverse(urb, &ep->urb_list, urb_list) {
1905                 int     is_in;
1906
1907                 if (urb->unlinked)
1908                         continue;
1909                 usb_get_urb (urb);
1910                 is_in = usb_urb_dir_in(urb);
1911                 spin_unlock(&hcd_urb_list_lock);
1912
1913                 /* kick hcd */
1914                 unlink1(hcd, urb, -ESHUTDOWN);
1915                 dev_dbg (hcd->self.controller,
1916                         "shutdown urb %pK ep%d%s%s\n",
1917                         urb, usb_endpoint_num(&ep->desc),
1918                         is_in ? "in" : "out",
1919                         ({      char *s;
1920
1921                                  switch (usb_endpoint_type(&ep->desc)) {
1922                                  case USB_ENDPOINT_XFER_CONTROL:
1923                                         s = ""; break;
1924                                  case USB_ENDPOINT_XFER_BULK:
1925                                         s = "-bulk"; break;
1926                                  case USB_ENDPOINT_XFER_INT:
1927                                         s = "-intr"; break;
1928                                  default:
1929                                         s = "-iso"; break;
1930                                 };
1931                                 s;
1932                         }));
1933                 usb_put_urb (urb);
1934
1935                 /* list contents may have changed */
1936                 spin_lock(&hcd_urb_list_lock);
1937                 goto rescan;
1938         }
1939         spin_unlock_irq(&hcd_urb_list_lock);
1940
1941         /* Wait until the endpoint queue is completely empty */
1942         while (!list_empty (&ep->urb_list)) {
1943                 spin_lock_irq(&hcd_urb_list_lock);
1944
1945                 /* The list may have changed while we acquired the spinlock */
1946                 urb = NULL;
1947                 if (!list_empty (&ep->urb_list)) {
1948                         urb = list_entry (ep->urb_list.prev, struct urb,
1949                                         urb_list);
1950                         usb_get_urb (urb);
1951                 }
1952                 spin_unlock_irq(&hcd_urb_list_lock);
1953
1954                 if (urb) {
1955                         usb_kill_urb (urb);
1956                         usb_put_urb (urb);
1957                 }
1958         }
1959 }
1960
1961 /**
1962  * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1963  *                              the bus bandwidth
1964  * @udev: target &usb_device
1965  * @new_config: new configuration to install
1966  * @cur_alt: the current alternate interface setting
1967  * @new_alt: alternate interface setting that is being installed
1968  *
1969  * To change configurations, pass in the new configuration in new_config,
1970  * and pass NULL for cur_alt and new_alt.
1971  *
1972  * To reset a device's configuration (put the device in the ADDRESSED state),
1973  * pass in NULL for new_config, cur_alt, and new_alt.
1974  *
1975  * To change alternate interface settings, pass in NULL for new_config,
1976  * pass in the current alternate interface setting in cur_alt,
1977  * and pass in the new alternate interface setting in new_alt.
1978  *
1979  * Return: An error if the requested bandwidth change exceeds the
1980  * bus bandwidth or host controller internal resources.
1981  */
1982 int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1983                 struct usb_host_config *new_config,
1984                 struct usb_host_interface *cur_alt,
1985                 struct usb_host_interface *new_alt)
1986 {
1987         int num_intfs, i, j;
1988         struct usb_host_interface *alt = NULL;
1989         int ret = 0;
1990         struct usb_hcd *hcd;
1991         struct usb_host_endpoint *ep;
1992
1993         hcd = bus_to_hcd(udev->bus);
1994         if (!hcd->driver->check_bandwidth)
1995                 return 0;
1996
1997         /* Configuration is being removed - set configuration 0 */
1998         if (!new_config && !cur_alt) {
1999                 for (i = 1; i < 16; ++i) {
2000                         ep = udev->ep_out[i];
2001                         if (ep)
2002                                 hcd->driver->drop_endpoint(hcd, udev, ep);
2003                         ep = udev->ep_in[i];
2004                         if (ep)
2005                                 hcd->driver->drop_endpoint(hcd, udev, ep);
2006                 }
2007                 hcd->driver->check_bandwidth(hcd, udev);
2008                 return 0;
2009         }
2010         /* Check if the HCD says there's enough bandwidth.  Enable all endpoints
2011          * each interface's alt setting 0 and ask the HCD to check the bandwidth
2012          * of the bus.  There will always be bandwidth for endpoint 0, so it's
2013          * ok to exclude it.
2014          */
2015         if (new_config) {
2016                 num_intfs = new_config->desc.bNumInterfaces;
2017                 /* Remove endpoints (except endpoint 0, which is always on the
2018                  * schedule) from the old config from the schedule
2019                  */
2020                 for (i = 1; i < 16; ++i) {
2021                         ep = udev->ep_out[i];
2022                         if (ep) {
2023                                 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
2024                                 if (ret < 0)
2025                                         goto reset;
2026                         }
2027                         ep = udev->ep_in[i];
2028                         if (ep) {
2029                                 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
2030                                 if (ret < 0)
2031                                         goto reset;
2032                         }
2033                 }
2034                 for (i = 0; i < num_intfs; ++i) {
2035                         struct usb_host_interface *first_alt;
2036                         int iface_num;
2037
2038                         first_alt = &new_config->intf_cache[i]->altsetting[0];
2039                         iface_num = first_alt->desc.bInterfaceNumber;
2040                         /* Set up endpoints for alternate interface setting 0 */
2041                         alt = usb_find_alt_setting(new_config, iface_num, 0);
2042                         if (!alt)
2043                                 /* No alt setting 0? Pick the first setting. */
2044                                 alt = first_alt;
2045
2046                         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
2047                                 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
2048                                 if (ret < 0)
2049                                         goto reset;
2050                         }
2051                 }
2052         }
2053         if (cur_alt && new_alt) {
2054                 struct usb_interface *iface = usb_ifnum_to_if(udev,
2055                                 cur_alt->desc.bInterfaceNumber);
2056
2057                 if (!iface)
2058                         return -EINVAL;
2059                 if (iface->resetting_device) {
2060                         /*
2061                          * The USB core just reset the device, so the xHCI host
2062                          * and the device will think alt setting 0 is installed.
2063                          * However, the USB core will pass in the alternate
2064                          * setting installed before the reset as cur_alt.  Dig
2065                          * out the alternate setting 0 structure, or the first
2066                          * alternate setting if a broken device doesn't have alt
2067                          * setting 0.
2068                          */
2069                         cur_alt = usb_altnum_to_altsetting(iface, 0);
2070                         if (!cur_alt)
2071                                 cur_alt = &iface->altsetting[0];
2072                 }
2073
2074                 /* Drop all the endpoints in the current alt setting */
2075                 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
2076                         ret = hcd->driver->drop_endpoint(hcd, udev,
2077                                         &cur_alt->endpoint[i]);
2078                         if (ret < 0)
2079                                 goto reset;
2080                 }
2081                 /* Add all the endpoints in the new alt setting */
2082                 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
2083                         ret = hcd->driver->add_endpoint(hcd, udev,
2084                                         &new_alt->endpoint[i]);
2085                         if (ret < 0)
2086                                 goto reset;
2087                 }
2088         }
2089         ret = hcd->driver->check_bandwidth(hcd, udev);
2090 reset:
2091         if (ret < 0)
2092                 hcd->driver->reset_bandwidth(hcd, udev);
2093         return ret;
2094 }
2095
2096 /* Disables the endpoint: synchronizes with the hcd to make sure all
2097  * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
2098  * have been called previously.  Use for set_configuration, set_interface,
2099  * driver removal, physical disconnect.
2100  *
2101  * example:  a qh stored in ep->hcpriv, holding state related to endpoint
2102  * type, maxpacket size, toggle, halt status, and scheduling.
2103  */
2104 void usb_hcd_disable_endpoint(struct usb_device *udev,
2105                 struct usb_host_endpoint *ep)
2106 {
2107         struct usb_hcd          *hcd;
2108
2109         might_sleep();
2110         hcd = bus_to_hcd(udev->bus);
2111         if (hcd->driver->endpoint_disable)
2112                 hcd->driver->endpoint_disable(hcd, ep);
2113 }
2114
2115 /**
2116  * usb_hcd_reset_endpoint - reset host endpoint state
2117  * @udev: USB device.
2118  * @ep:   the endpoint to reset.
2119  *
2120  * Resets any host endpoint state such as the toggle bit, sequence
2121  * number and current window.
2122  */
2123 void usb_hcd_reset_endpoint(struct usb_device *udev,
2124                             struct usb_host_endpoint *ep)
2125 {
2126         struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2127
2128         if (hcd->driver->endpoint_reset)
2129                 hcd->driver->endpoint_reset(hcd, ep);
2130         else {
2131                 int epnum = usb_endpoint_num(&ep->desc);
2132                 int is_out = usb_endpoint_dir_out(&ep->desc);
2133                 int is_control = usb_endpoint_xfer_control(&ep->desc);
2134
2135                 usb_settoggle(udev, epnum, is_out, 0);
2136                 if (is_control)
2137                         usb_settoggle(udev, epnum, !is_out, 0);
2138         }
2139 }
2140
2141 /**
2142  * usb_alloc_streams - allocate bulk endpoint stream IDs.
2143  * @interface:          alternate setting that includes all endpoints.
2144  * @eps:                array of endpoints that need streams.
2145  * @num_eps:            number of endpoints in the array.
2146  * @num_streams:        number of streams to allocate.
2147  * @mem_flags:          flags hcd should use to allocate memory.
2148  *
2149  * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2150  * Drivers may queue multiple transfers to different stream IDs, which may
2151  * complete in a different order than they were queued.
2152  *
2153  * Return: On success, the number of allocated streams. On failure, a negative
2154  * error code.
2155  */
2156 int usb_alloc_streams(struct usb_interface *interface,
2157                 struct usb_host_endpoint **eps, unsigned int num_eps,
2158                 unsigned int num_streams, gfp_t mem_flags)
2159 {
2160         struct usb_hcd *hcd;
2161         struct usb_device *dev;
2162         int i, ret;
2163
2164         dev = interface_to_usbdev(interface);
2165         hcd = bus_to_hcd(dev->bus);
2166         if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2167                 return -EINVAL;
2168         if (dev->speed < USB_SPEED_SUPER)
2169                 return -EINVAL;
2170         if (dev->state < USB_STATE_CONFIGURED)
2171                 return -ENODEV;
2172
2173         for (i = 0; i < num_eps; i++) {
2174                 /* Streams only apply to bulk endpoints. */
2175                 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2176                         return -EINVAL;
2177                 /* Re-alloc is not allowed */
2178                 if (eps[i]->streams)
2179                         return -EINVAL;
2180         }
2181
2182         ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2183                         num_streams, mem_flags);
2184         if (ret < 0)
2185                 return ret;
2186
2187         for (i = 0; i < num_eps; i++)
2188                 eps[i]->streams = ret;
2189
2190         return ret;
2191 }
2192 EXPORT_SYMBOL_GPL(usb_alloc_streams);
2193
2194 /**
2195  * usb_free_streams - free bulk endpoint stream IDs.
2196  * @interface:  alternate setting that includes all endpoints.
2197  * @eps:        array of endpoints to remove streams from.
2198  * @num_eps:    number of endpoints in the array.
2199  * @mem_flags:  flags hcd should use to allocate memory.
2200  *
2201  * Reverts a group of bulk endpoints back to not using stream IDs.
2202  * Can fail if we are given bad arguments, or HCD is broken.
2203  *
2204  * Return: 0 on success. On failure, a negative error code.
2205  */
2206 int usb_free_streams(struct usb_interface *interface,
2207                 struct usb_host_endpoint **eps, unsigned int num_eps,
2208                 gfp_t mem_flags)
2209 {
2210         struct usb_hcd *hcd;
2211         struct usb_device *dev;
2212         int i, ret;
2213
2214         dev = interface_to_usbdev(interface);
2215         hcd = bus_to_hcd(dev->bus);
2216         if (dev->speed < USB_SPEED_SUPER)
2217                 return -EINVAL;
2218
2219         /* Double-free is not allowed */
2220         for (i = 0; i < num_eps; i++)
2221                 if (!eps[i] || !eps[i]->streams)
2222                         return -EINVAL;
2223
2224         ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2225         if (ret < 0)
2226                 return ret;
2227
2228         for (i = 0; i < num_eps; i++)
2229                 eps[i]->streams = 0;
2230
2231         return ret;
2232 }
2233 EXPORT_SYMBOL_GPL(usb_free_streams);
2234
2235 /* Protect against drivers that try to unlink URBs after the device
2236  * is gone, by waiting until all unlinks for @udev are finished.
2237  * Since we don't currently track URBs by device, simply wait until
2238  * nothing is running in the locked region of usb_hcd_unlink_urb().
2239  */
2240 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2241 {
2242         spin_lock_irq(&hcd_urb_unlink_lock);
2243         spin_unlock_irq(&hcd_urb_unlink_lock);
2244 }
2245
2246 /*-------------------------------------------------------------------------*/
2247
2248 /* called in any context */
2249 int usb_hcd_get_frame_number (struct usb_device *udev)
2250 {
2251         struct usb_hcd  *hcd = bus_to_hcd(udev->bus);
2252
2253         if (!HCD_RH_RUNNING(hcd))
2254                 return -ESHUTDOWN;
2255         return hcd->driver->get_frame_number (hcd);
2256 }
2257
2258 /*-------------------------------------------------------------------------*/
2259
2260 #ifdef  CONFIG_PM
2261
2262 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2263 {
2264         struct usb_hcd  *hcd = bus_to_hcd(rhdev->bus);
2265         int             status;
2266         int             old_state = hcd->state;
2267
2268         dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2269                         (PMSG_IS_AUTO(msg) ? "auto-" : ""),
2270                         rhdev->do_remote_wakeup);
2271         if (HCD_DEAD(hcd)) {
2272                 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2273                 return 0;
2274         }
2275
2276         if (!hcd->driver->bus_suspend) {
2277                 status = -ENOENT;
2278         } else {
2279                 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2280                 hcd->state = HC_STATE_QUIESCING;
2281                 status = hcd->driver->bus_suspend(hcd);
2282         }
2283         if (status == 0) {
2284                 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2285                 hcd->state = HC_STATE_SUSPENDED;
2286
2287                 /* Did we race with a root-hub wakeup event? */
2288                 if (rhdev->do_remote_wakeup) {
2289                         char    buffer[6];
2290
2291                         status = hcd->driver->hub_status_data(hcd, buffer);
2292                         if (status != 0) {
2293                                 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2294                                 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2295                                 status = -EBUSY;
2296                         }
2297                 }
2298         } else {
2299                 spin_lock_irq(&hcd_root_hub_lock);
2300                 if (!HCD_DEAD(hcd)) {
2301                         set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2302                         hcd->state = old_state;
2303                 }
2304                 spin_unlock_irq(&hcd_root_hub_lock);
2305                 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2306                                 "suspend", status);
2307         }
2308         return status;
2309 }
2310
2311 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2312 {
2313         struct usb_hcd  *hcd = bus_to_hcd(rhdev->bus);
2314         int             status;
2315         int             old_state = hcd->state;
2316
2317         dev_dbg(&rhdev->dev, "usb %sresume\n",
2318                         (PMSG_IS_AUTO(msg) ? "auto-" : ""));
2319         if (HCD_DEAD(hcd)) {
2320                 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2321                 return 0;
2322         }
2323         if (!hcd->driver->bus_resume)
2324                 return -ENOENT;
2325         if (HCD_RH_RUNNING(hcd))
2326                 return 0;
2327
2328         hcd->state = HC_STATE_RESUMING;
2329         status = hcd->driver->bus_resume(hcd);
2330         clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2331         if (status == 0) {
2332                 struct usb_device *udev;
2333                 int port1;
2334
2335                 spin_lock_irq(&hcd_root_hub_lock);
2336                 if (!HCD_DEAD(hcd)) {
2337                         usb_set_device_state(rhdev, rhdev->actconfig
2338                                         ? USB_STATE_CONFIGURED
2339                                         : USB_STATE_ADDRESS);
2340                         set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2341                         hcd->state = HC_STATE_RUNNING;
2342                 }
2343                 spin_unlock_irq(&hcd_root_hub_lock);
2344
2345                 /*
2346                  * Check whether any of the enabled ports on the root hub are
2347                  * unsuspended.  If they are then a TRSMRCY delay is needed
2348                  * (this is what the USB-2 spec calls a "global resume").
2349                  * Otherwise we can skip the delay.
2350                  */
2351                 usb_hub_for_each_child(rhdev, port1, udev) {
2352                         if (udev->state != USB_STATE_NOTATTACHED &&
2353                                         !udev->port_is_suspended) {
2354                                 usleep_range(10000, 11000);     /* TRSMRCY */
2355                                 break;
2356                         }
2357                 }
2358         } else {
2359                 hcd->state = old_state;
2360                 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2361                                 "resume", status);
2362                 if (status != -ESHUTDOWN)
2363                         usb_hc_died(hcd);
2364         }
2365         return status;
2366 }
2367
2368 /* Workqueue routine for root-hub remote wakeup */
2369 static void hcd_resume_work(struct work_struct *work)
2370 {
2371         struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2372         struct usb_device *udev = hcd->self.root_hub;
2373
2374         usb_remote_wakeup(udev);
2375 }
2376
2377 /**
2378  * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2379  * @hcd: host controller for this root hub
2380  *
2381  * The USB host controller calls this function when its root hub is
2382  * suspended (with the remote wakeup feature enabled) and a remote
2383  * wakeup request is received.  The routine submits a workqueue request
2384  * to resume the root hub (that is, manage its downstream ports again).
2385  */
2386 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2387 {
2388         unsigned long flags;
2389
2390         spin_lock_irqsave (&hcd_root_hub_lock, flags);
2391         if (hcd->rh_registered) {
2392                 pm_wakeup_event(&hcd->self.root_hub->dev, 0);
2393                 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2394                 queue_work(pm_wq, &hcd->wakeup_work);
2395         }
2396         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2397 }
2398 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2399
2400 #endif  /* CONFIG_PM */
2401
2402 /*-------------------------------------------------------------------------*/
2403
2404 #ifdef  CONFIG_USB_OTG
2405
2406 /**
2407  * usb_bus_start_enum - start immediate enumeration (for OTG)
2408  * @bus: the bus (must use hcd framework)
2409  * @port_num: 1-based number of port; usually bus->otg_port
2410  * Context: in_interrupt()
2411  *
2412  * Starts enumeration, with an immediate reset followed later by
2413  * hub_wq identifying and possibly configuring the device.
2414  * This is needed by OTG controller drivers, where it helps meet
2415  * HNP protocol timing requirements for starting a port reset.
2416  *
2417  * Return: 0 if successful.
2418  */
2419 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2420 {
2421         struct usb_hcd          *hcd;
2422         int                     status = -EOPNOTSUPP;
2423
2424         /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2425          * boards with root hubs hooked up to internal devices (instead of
2426          * just the OTG port) may need more attention to resetting...
2427          */
2428         hcd = bus_to_hcd(bus);
2429         if (port_num && hcd->driver->start_port_reset)
2430                 status = hcd->driver->start_port_reset(hcd, port_num);
2431
2432         /* allocate hub_wq shortly after (first) root port reset finishes;
2433          * it may issue others, until at least 50 msecs have passed.
2434          */
2435         if (status == 0)
2436                 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2437         return status;
2438 }
2439 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2440
2441 #endif
2442
2443 /*-------------------------------------------------------------------------*/
2444
2445 /**
2446  * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2447  * @irq: the IRQ being raised
2448  * @__hcd: pointer to the HCD whose IRQ is being signaled
2449  *
2450  * If the controller isn't HALTed, calls the driver's irq handler.
2451  * Checks whether the controller is now dead.
2452  *
2453  * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2454  */
2455 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2456 {
2457         struct usb_hcd          *hcd = __hcd;
2458         irqreturn_t             rc;
2459
2460         if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2461                 rc = IRQ_NONE;
2462         else if (hcd->driver->irq(hcd) == IRQ_NONE)
2463                 rc = IRQ_NONE;
2464         else
2465                 rc = IRQ_HANDLED;
2466
2467         return rc;
2468 }
2469 EXPORT_SYMBOL_GPL(usb_hcd_irq);
2470
2471 /*-------------------------------------------------------------------------*/
2472
2473 /**
2474  * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2475  * @hcd: pointer to the HCD representing the controller
2476  *
2477  * This is called by bus glue to report a USB host controller that died
2478  * while operations may still have been pending.  It's called automatically
2479  * by the PCI glue, so only glue for non-PCI busses should need to call it.
2480  *
2481  * Only call this function with the primary HCD.
2482  */
2483 void usb_hc_died (struct usb_hcd *hcd)
2484 {
2485         unsigned long flags;
2486
2487         dev_err (hcd->self.controller, "HC died; cleaning up\n");
2488
2489         spin_lock_irqsave (&hcd_root_hub_lock, flags);
2490         clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2491         set_bit(HCD_FLAG_DEAD, &hcd->flags);
2492         if (hcd->rh_registered) {
2493                 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2494
2495                 /* make hub_wq clean up old urbs and devices */
2496                 usb_set_device_state (hcd->self.root_hub,
2497                                 USB_STATE_NOTATTACHED);
2498                 usb_kick_hub_wq(hcd->self.root_hub);
2499         }
2500         if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2501                 hcd = hcd->shared_hcd;
2502                 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2503                 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2504                 if (hcd->rh_registered) {
2505                         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2506
2507                         /* make hub_wq clean up old urbs and devices */
2508                         usb_set_device_state(hcd->self.root_hub,
2509                                         USB_STATE_NOTATTACHED);
2510                         usb_kick_hub_wq(hcd->self.root_hub);
2511                 }
2512         }
2513         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2514         /* Make sure that the other roothub is also deallocated. */
2515 }
2516 EXPORT_SYMBOL_GPL (usb_hc_died);
2517
2518 /*-------------------------------------------------------------------------*/
2519
2520 static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2521 {
2522
2523         spin_lock_init(&bh->lock);
2524         INIT_LIST_HEAD(&bh->head);
2525         tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh);
2526 }
2527
2528 /**
2529  * usb_create_shared_hcd - create and initialize an HCD structure
2530  * @driver: HC driver that will use this hcd
2531  * @dev: device for this HC, stored in hcd->self.controller
2532  * @bus_name: value to store in hcd->self.bus_name
2533  * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2534  *              PCI device.  Only allocate certain resources for the primary HCD
2535  * Context: !in_interrupt()
2536  *
2537  * Allocate a struct usb_hcd, with extra space at the end for the
2538  * HC driver's private data.  Initialize the generic members of the
2539  * hcd structure.
2540  *
2541  * Return: On success, a pointer to the created and initialized HCD structure.
2542  * On failure (e.g. if memory is unavailable), %NULL.
2543  */
2544 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2545                 struct device *dev, const char *bus_name,
2546                 struct usb_hcd *primary_hcd)
2547 {
2548         struct usb_hcd *hcd;
2549
2550         hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2551         if (!hcd)
2552                 return NULL;
2553         if (primary_hcd == NULL) {
2554                 hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex),
2555                                 GFP_KERNEL);
2556                 if (!hcd->address0_mutex) {
2557                         kfree(hcd);
2558                         dev_dbg(dev, "hcd address0 mutex alloc failed\n");
2559                         return NULL;
2560                 }
2561                 mutex_init(hcd->address0_mutex);
2562                 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2563                                 GFP_KERNEL);
2564                 if (!hcd->bandwidth_mutex) {
2565                         kfree(hcd->address0_mutex);
2566                         kfree(hcd);
2567                         dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2568                         return NULL;
2569                 }
2570                 mutex_init(hcd->bandwidth_mutex);
2571                 dev_set_drvdata(dev, hcd);
2572         } else {
2573                 mutex_lock(&usb_port_peer_mutex);
2574                 hcd->address0_mutex = primary_hcd->address0_mutex;
2575                 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2576                 hcd->primary_hcd = primary_hcd;
2577                 primary_hcd->primary_hcd = primary_hcd;
2578                 hcd->shared_hcd = primary_hcd;
2579                 primary_hcd->shared_hcd = hcd;
2580                 mutex_unlock(&usb_port_peer_mutex);
2581         }
2582
2583         kref_init(&hcd->kref);
2584
2585         usb_bus_init(&hcd->self);
2586         hcd->self.controller = dev;
2587         hcd->self.bus_name = bus_name;
2588         hcd->self.uses_dma = (dev->dma_mask != NULL);
2589
2590         init_timer(&hcd->rh_timer);
2591         hcd->rh_timer.function = rh_timer_func;
2592         hcd->rh_timer.data = (unsigned long) hcd;
2593 #ifdef CONFIG_PM
2594         INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2595 #endif
2596
2597         hcd->driver = driver;
2598         hcd->speed = driver->flags & HCD_MASK;
2599         hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2600                         "USB Host Controller";
2601         return hcd;
2602 }
2603 EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2604
2605 /**
2606  * usb_create_hcd - create and initialize an HCD structure
2607  * @driver: HC driver that will use this hcd
2608  * @dev: device for this HC, stored in hcd->self.controller
2609  * @bus_name: value to store in hcd->self.bus_name
2610  * Context: !in_interrupt()
2611  *
2612  * Allocate a struct usb_hcd, with extra space at the end for the
2613  * HC driver's private data.  Initialize the generic members of the
2614  * hcd structure.
2615  *
2616  * Return: On success, a pointer to the created and initialized HCD
2617  * structure. On failure (e.g. if memory is unavailable), %NULL.
2618  */
2619 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2620                 struct device *dev, const char *bus_name)
2621 {
2622         return usb_create_shared_hcd(driver, dev, bus_name, NULL);
2623 }
2624 EXPORT_SYMBOL_GPL(usb_create_hcd);
2625
2626 /*
2627  * Roothubs that share one PCI device must also share the bandwidth mutex.
2628  * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2629  * deallocated.
2630  *
2631  * Make sure to deallocate the bandwidth_mutex only when the last HCD is
2632  * freed.  When hcd_release() is called for either hcd in a peer set,
2633  * invalidate the peer's ->shared_hcd and ->primary_hcd pointers.
2634  */
2635 static void hcd_release(struct kref *kref)
2636 {
2637         struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2638
2639         mutex_lock(&usb_port_peer_mutex);
2640         if (hcd->shared_hcd) {
2641                 struct usb_hcd *peer = hcd->shared_hcd;
2642
2643                 peer->shared_hcd = NULL;
2644                 peer->primary_hcd = NULL;
2645         } else {
2646                 kfree(hcd->address0_mutex);
2647                 kfree(hcd->bandwidth_mutex);
2648         }
2649         mutex_unlock(&usb_port_peer_mutex);
2650         kfree(hcd);
2651 }
2652
2653 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2654 {
2655         if (hcd)
2656                 kref_get (&hcd->kref);
2657         return hcd;
2658 }
2659 EXPORT_SYMBOL_GPL(usb_get_hcd);
2660
2661 void usb_put_hcd (struct usb_hcd *hcd)
2662 {
2663         if (hcd)
2664                 kref_put (&hcd->kref, hcd_release);
2665 }
2666 EXPORT_SYMBOL_GPL(usb_put_hcd);
2667
2668 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2669 {
2670         if (!hcd->primary_hcd)
2671                 return 1;
2672         return hcd == hcd->primary_hcd;
2673 }
2674 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2675
2676 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2677 {
2678         if (!hcd->driver->find_raw_port_number)
2679                 return port1;
2680
2681         return hcd->driver->find_raw_port_number(hcd, port1);
2682 }
2683
2684 static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2685                 unsigned int irqnum, unsigned long irqflags)
2686 {
2687         int retval;
2688
2689         if (hcd->driver->irq) {
2690
2691                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2692                                 hcd->driver->description, hcd->self.busnum);
2693                 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2694                                 hcd->irq_descr, hcd);
2695                 if (retval != 0) {
2696                         dev_err(hcd->self.controller,
2697                                         "request interrupt %d failed\n",
2698                                         irqnum);
2699                         return retval;
2700                 }
2701                 hcd->irq = irqnum;
2702                 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2703                                 (hcd->driver->flags & HCD_MEMORY) ?
2704                                         "io mem" : "io base",
2705                                         (unsigned long long)hcd->rsrc_start);
2706         } else {
2707                 hcd->irq = 0;
2708                 if (hcd->rsrc_start)
2709                         dev_info(hcd->self.controller, "%s 0x%08llx\n",
2710                                         (hcd->driver->flags & HCD_MEMORY) ?
2711                                         "io mem" : "io base",
2712                                         (unsigned long long)hcd->rsrc_start);
2713         }
2714         return 0;
2715 }
2716
2717 /*
2718  * Before we free this root hub, flush in-flight peering attempts
2719  * and disable peer lookups
2720  */
2721 static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2722 {
2723         struct usb_device *rhdev;
2724
2725         mutex_lock(&usb_port_peer_mutex);
2726         rhdev = hcd->self.root_hub;
2727         hcd->self.root_hub = NULL;
2728         mutex_unlock(&usb_port_peer_mutex);
2729         usb_put_dev(rhdev);
2730 }
2731
2732 /**
2733  * usb_add_hcd - finish generic HCD structure initialization and register
2734  * @hcd: the usb_hcd structure to initialize
2735  * @irqnum: Interrupt line to allocate
2736  * @irqflags: Interrupt type flags
2737  *
2738  * Finish the remaining parts of generic HCD initialization: allocate the
2739  * buffers of consistent memory, register the bus, request the IRQ line,
2740  * and call the driver's reset() and start() routines.
2741  */
2742 int usb_add_hcd(struct usb_hcd *hcd,
2743                 unsigned int irqnum, unsigned long irqflags)
2744 {
2745         int retval;
2746         struct usb_device *rhdev;
2747
2748         if (IS_ENABLED(CONFIG_USB_PHY) && !hcd->usb_phy) {
2749                 struct usb_phy *phy = usb_get_phy_dev(hcd->self.controller, 0);
2750
2751                 if (IS_ERR(phy)) {
2752                         retval = PTR_ERR(phy);
2753                         if (retval == -EPROBE_DEFER)
2754                                 return retval;
2755                 } else {
2756                         retval = usb_phy_init(phy);
2757                         if (retval) {
2758                                 usb_put_phy(phy);
2759                                 return retval;
2760                         }
2761                         hcd->usb_phy = phy;
2762                         hcd->remove_phy = 1;
2763                 }
2764         }
2765
2766         if (IS_ENABLED(CONFIG_GENERIC_PHY) && !hcd->phy) {
2767                 struct phy *phy = phy_get(hcd->self.controller, "usb");
2768
2769                 if (IS_ERR(phy)) {
2770                         retval = PTR_ERR(phy);
2771                         if (retval == -EPROBE_DEFER)
2772                                 goto err_phy;
2773                 } else {
2774                         retval = phy_init(phy);
2775                         if (retval) {
2776                                 phy_put(phy);
2777                                 goto err_phy;
2778                         }
2779                         retval = phy_power_on(phy);
2780                         if (retval) {
2781                                 phy_exit(phy);
2782                                 phy_put(phy);
2783                                 goto err_phy;
2784                         }
2785                         hcd->phy = phy;
2786                         hcd->remove_phy = 1;
2787                 }
2788         }
2789
2790         dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2791
2792         /* Keep old behaviour if authorized_default is not in [0, 1]. */
2793         if (authorized_default < 0 || authorized_default > 1) {
2794                 if (hcd->wireless)
2795                         clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2796                 else
2797                         set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2798         } else {
2799                 if (authorized_default)
2800                         set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2801                 else
2802                         clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2803         }
2804         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2805
2806         /* per default all interfaces are authorized */
2807         set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
2808
2809         /* HC is in reset state, but accessible.  Now do the one-time init,
2810          * bottom up so that hcds can customize the root hubs before hub_wq
2811          * starts talking to them.  (Note, bus id is assigned early too.)
2812          */
2813         retval = hcd_buffer_create(hcd);
2814         if (retval != 0) {
2815                 dev_dbg(hcd->self.controller, "pool alloc failed\n");
2816                 goto err_create_buf;
2817         }
2818
2819         retval = usb_register_bus(&hcd->self);
2820         if (retval < 0)
2821                 goto err_register_bus;
2822
2823         rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
2824         if (rhdev == NULL) {
2825                 dev_err(hcd->self.controller, "unable to allocate root hub\n");
2826                 retval = -ENOMEM;
2827                 goto err_allocate_root_hub;
2828         }
2829         mutex_lock(&usb_port_peer_mutex);
2830         hcd->self.root_hub = rhdev;
2831         mutex_unlock(&usb_port_peer_mutex);
2832
2833         switch (hcd->speed) {
2834         case HCD_USB11:
2835                 rhdev->speed = USB_SPEED_FULL;
2836                 break;
2837         case HCD_USB2:
2838                 rhdev->speed = USB_SPEED_HIGH;
2839                 break;
2840         case HCD_USB25:
2841                 rhdev->speed = USB_SPEED_WIRELESS;
2842                 break;
2843         case HCD_USB3:
2844                 rhdev->speed = USB_SPEED_SUPER;
2845                 break;
2846         case HCD_USB31:
2847                 rhdev->speed = USB_SPEED_SUPER_PLUS;
2848                 break;
2849         default:
2850                 retval = -EINVAL;
2851                 goto err_set_rh_speed;
2852         }
2853
2854         /* wakeup flag init defaults to "everything works" for root hubs,
2855          * but drivers can override it in reset() if needed, along with
2856          * recording the overall controller's system wakeup capability.
2857          */
2858         device_set_wakeup_capable(&rhdev->dev, 1);
2859
2860         /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2861          * registered.  But since the controller can die at any time,
2862          * let's initialize the flag before touching the hardware.
2863          */
2864         set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2865
2866         /* "reset" is misnamed; its role is now one-time init. the controller
2867          * should already have been reset (and boot firmware kicked off etc).
2868          */
2869         if (hcd->driver->reset) {
2870                 retval = hcd->driver->reset(hcd);
2871                 if (retval < 0) {
2872                         dev_err(hcd->self.controller, "can't setup: %d\n",
2873                                         retval);
2874                         goto err_hcd_driver_setup;
2875                 }
2876         }
2877         hcd->rh_pollable = 1;
2878
2879         /* NOTE: root hub and controller capabilities may not be the same */
2880         if (device_can_wakeup(hcd->self.controller)
2881                         && device_can_wakeup(&hcd->self.root_hub->dev))
2882                 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2883
2884         /* initialize tasklets */
2885         init_giveback_urb_bh(&hcd->high_prio_bh);
2886         hcd->high_prio_bh.high_prio = true;
2887         init_giveback_urb_bh(&hcd->low_prio_bh);
2888
2889         /* enable irqs just before we start the controller,
2890          * if the BIOS provides legacy PCI irqs.
2891          */
2892         if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2893                 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2894                 if (retval)
2895                         goto err_request_irq;
2896         }
2897
2898         hcd->state = HC_STATE_RUNNING;
2899         retval = hcd->driver->start(hcd);
2900         if (retval < 0) {
2901                 dev_err(hcd->self.controller, "startup error %d\n", retval);
2902                 goto err_hcd_driver_start;
2903         }
2904
2905         /* starting here, usbcore will pay attention to this root hub */
2906         retval = register_root_hub(hcd);
2907         if (retval != 0)
2908                 goto err_register_root_hub;
2909
2910         retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2911         if (retval < 0) {
2912                 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2913                        retval);
2914                 goto error_create_attr_group;
2915         }
2916         if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2917                 usb_hcd_poll_rh_status(hcd);
2918
2919         return retval;
2920
2921 error_create_attr_group:
2922         clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2923         if (HC_IS_RUNNING(hcd->state))
2924                 hcd->state = HC_STATE_QUIESCING;
2925         spin_lock_irq(&hcd_root_hub_lock);
2926         hcd->rh_registered = 0;
2927         spin_unlock_irq(&hcd_root_hub_lock);
2928
2929 #ifdef CONFIG_PM
2930         cancel_work_sync(&hcd->wakeup_work);
2931 #endif
2932         mutex_lock(&usb_bus_idr_lock);
2933         usb_disconnect(&rhdev);         /* Sets rhdev to NULL */
2934         mutex_unlock(&usb_bus_idr_lock);
2935 err_register_root_hub:
2936         hcd->rh_pollable = 0;
2937         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2938         del_timer_sync(&hcd->rh_timer);
2939         hcd->driver->stop(hcd);
2940         hcd->state = HC_STATE_HALT;
2941         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2942         del_timer_sync(&hcd->rh_timer);
2943 err_hcd_driver_start:
2944         if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2945                 free_irq(irqnum, hcd);
2946 err_request_irq:
2947 err_hcd_driver_setup:
2948 err_set_rh_speed:
2949         usb_put_invalidate_rhdev(hcd);
2950 err_allocate_root_hub:
2951         usb_deregister_bus(&hcd->self);
2952 err_register_bus:
2953         hcd_buffer_destroy(hcd);
2954 err_create_buf:
2955         if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) {
2956                 phy_power_off(hcd->phy);
2957                 phy_exit(hcd->phy);
2958                 phy_put(hcd->phy);
2959                 hcd->phy = NULL;
2960         }
2961 err_phy:
2962         if (hcd->remove_phy && hcd->usb_phy) {
2963                 usb_phy_shutdown(hcd->usb_phy);
2964                 usb_put_phy(hcd->usb_phy);
2965                 hcd->usb_phy = NULL;
2966         }
2967         return retval;
2968 }
2969 EXPORT_SYMBOL_GPL(usb_add_hcd);
2970
2971 /**
2972  * usb_remove_hcd - shutdown processing for generic HCDs
2973  * @hcd: the usb_hcd structure to remove
2974  * Context: !in_interrupt()
2975  *
2976  * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2977  * invoking the HCD's stop() method.
2978  */
2979 void usb_remove_hcd(struct usb_hcd *hcd)
2980 {
2981         struct usb_device *rhdev = hcd->self.root_hub;
2982
2983         dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2984
2985         usb_get_dev(rhdev);
2986         sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2987
2988         clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2989         if (HC_IS_RUNNING (hcd->state))
2990                 hcd->state = HC_STATE_QUIESCING;
2991
2992         dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2993         spin_lock_irq (&hcd_root_hub_lock);
2994         hcd->rh_registered = 0;
2995         spin_unlock_irq (&hcd_root_hub_lock);
2996
2997 #ifdef CONFIG_PM
2998         cancel_work_sync(&hcd->wakeup_work);
2999 #endif
3000
3001         mutex_lock(&usb_bus_idr_lock);
3002         usb_disconnect(&rhdev);         /* Sets rhdev to NULL */
3003         mutex_unlock(&usb_bus_idr_lock);
3004
3005         /*
3006          * tasklet_kill() isn't needed here because:
3007          * - driver's disconnect() called from usb_disconnect() should
3008          *   make sure its URBs are completed during the disconnect()
3009          *   callback
3010          *
3011          * - it is too late to run complete() here since driver may have
3012          *   been removed already now
3013          */
3014
3015         /* Prevent any more root-hub status calls from the timer.
3016          * The HCD might still restart the timer (if a port status change
3017          * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
3018          * the hub_status_data() callback.
3019          */
3020         hcd->rh_pollable = 0;
3021         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
3022         del_timer_sync(&hcd->rh_timer);
3023
3024         hcd->driver->stop(hcd);
3025         hcd->state = HC_STATE_HALT;
3026
3027         /* In case the HCD restarted the timer, stop it again. */
3028         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
3029         del_timer_sync(&hcd->rh_timer);
3030
3031         if (usb_hcd_is_primary_hcd(hcd)) {
3032                 if (hcd->irq > 0)
3033                         free_irq(hcd->irq, hcd);
3034         }
3035
3036         usb_deregister_bus(&hcd->self);
3037         hcd_buffer_destroy(hcd);
3038
3039         if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) {
3040                 phy_power_off(hcd->phy);
3041                 phy_exit(hcd->phy);
3042                 phy_put(hcd->phy);
3043                 hcd->phy = NULL;
3044         }
3045         if (hcd->remove_phy && hcd->usb_phy) {
3046                 usb_phy_shutdown(hcd->usb_phy);
3047                 usb_put_phy(hcd->usb_phy);
3048                 hcd->usb_phy = NULL;
3049         }
3050
3051         usb_put_invalidate_rhdev(hcd);
3052         hcd->flags = 0;
3053 }
3054 EXPORT_SYMBOL_GPL(usb_remove_hcd);
3055
3056 void
3057 usb_hcd_platform_shutdown(struct platform_device *dev)
3058 {
3059         struct usb_hcd *hcd = platform_get_drvdata(dev);
3060
3061         /* No need for pm_runtime_put(), we're shutting down */
3062         pm_runtime_get_sync(&dev->dev);
3063
3064         if (hcd->driver->shutdown)
3065                 hcd->driver->shutdown(hcd);
3066 }
3067 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
3068
3069 /*-------------------------------------------------------------------------*/
3070
3071 #if IS_ENABLED(CONFIG_USB_MON)
3072
3073 const struct usb_mon_operations *mon_ops;
3074
3075 /*
3076  * The registration is unlocked.
3077  * We do it this way because we do not want to lock in hot paths.
3078  *
3079  * Notice that the code is minimally error-proof. Because usbmon needs
3080  * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
3081  */
3082
3083 int usb_mon_register(const struct usb_mon_operations *ops)
3084 {
3085
3086         if (mon_ops)
3087                 return -EBUSY;
3088
3089         mon_ops = ops;
3090         mb();
3091         return 0;
3092 }
3093 EXPORT_SYMBOL_GPL (usb_mon_register);
3094
3095 void usb_mon_deregister (void)
3096 {
3097
3098         if (mon_ops == NULL) {
3099                 printk(KERN_ERR "USB: monitor was not registered\n");
3100                 return;
3101         }
3102         mon_ops = NULL;
3103         mb();
3104 }
3105 EXPORT_SYMBOL_GPL (usb_mon_deregister);
3106
3107 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */