GNU Linux-libre 4.19.245-gnu1
[releases.git] / drivers / usb / chipidea / otg_fsm.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * otg_fsm.c - ChipIdea USB IP core OTG FSM driver
4  *
5  * Copyright (C) 2014 Freescale Semiconductor, Inc.
6  *
7  * Author: Jun Li
8  */
9
10 /*
11  * This file mainly handles OTG fsm, it includes OTG fsm operations
12  * for HNP and SRP.
13  *
14  * TODO List
15  * - ADP
16  * - OTG test device
17  */
18
19 #include <linux/usb/otg.h>
20 #include <linux/usb/gadget.h>
21 #include <linux/usb/hcd.h>
22 #include <linux/usb/chipidea.h>
23 #include <linux/regulator/consumer.h>
24
25 #include "ci.h"
26 #include "bits.h"
27 #include "otg.h"
28 #include "otg_fsm.h"
29
30 /* Add for otg: interact with user space app */
31 static ssize_t
32 a_bus_req_show(struct device *dev, struct device_attribute *attr, char *buf)
33 {
34         char            *next;
35         unsigned        size, t;
36         struct ci_hdrc  *ci = dev_get_drvdata(dev);
37
38         next = buf;
39         size = PAGE_SIZE;
40         t = scnprintf(next, size, "%d\n", ci->fsm.a_bus_req);
41         size -= t;
42         next += t;
43
44         return PAGE_SIZE - size;
45 }
46
47 static ssize_t
48 a_bus_req_store(struct device *dev, struct device_attribute *attr,
49                                         const char *buf, size_t count)
50 {
51         struct ci_hdrc *ci = dev_get_drvdata(dev);
52
53         if (count > 2)
54                 return -1;
55
56         mutex_lock(&ci->fsm.lock);
57         if (buf[0] == '0') {
58                 ci->fsm.a_bus_req = 0;
59         } else if (buf[0] == '1') {
60                 /* If a_bus_drop is TRUE, a_bus_req can't be set */
61                 if (ci->fsm.a_bus_drop) {
62                         mutex_unlock(&ci->fsm.lock);
63                         return count;
64                 }
65                 ci->fsm.a_bus_req = 1;
66                 if (ci->fsm.otg->state == OTG_STATE_A_PERIPHERAL) {
67                         ci->gadget.host_request_flag = 1;
68                         mutex_unlock(&ci->fsm.lock);
69                         return count;
70                 }
71         }
72
73         ci_otg_queue_work(ci);
74         mutex_unlock(&ci->fsm.lock);
75
76         return count;
77 }
78 static DEVICE_ATTR_RW(a_bus_req);
79
80 static ssize_t
81 a_bus_drop_show(struct device *dev, struct device_attribute *attr, char *buf)
82 {
83         char            *next;
84         unsigned        size, t;
85         struct ci_hdrc  *ci = dev_get_drvdata(dev);
86
87         next = buf;
88         size = PAGE_SIZE;
89         t = scnprintf(next, size, "%d\n", ci->fsm.a_bus_drop);
90         size -= t;
91         next += t;
92
93         return PAGE_SIZE - size;
94 }
95
96 static ssize_t
97 a_bus_drop_store(struct device *dev, struct device_attribute *attr,
98                                         const char *buf, size_t count)
99 {
100         struct ci_hdrc  *ci = dev_get_drvdata(dev);
101
102         if (count > 2)
103                 return -1;
104
105         mutex_lock(&ci->fsm.lock);
106         if (buf[0] == '0') {
107                 ci->fsm.a_bus_drop = 0;
108         } else if (buf[0] == '1') {
109                 ci->fsm.a_bus_drop = 1;
110                 ci->fsm.a_bus_req = 0;
111         }
112
113         ci_otg_queue_work(ci);
114         mutex_unlock(&ci->fsm.lock);
115
116         return count;
117 }
118 static DEVICE_ATTR_RW(a_bus_drop);
119
120 static ssize_t
121 b_bus_req_show(struct device *dev, struct device_attribute *attr, char *buf)
122 {
123         char            *next;
124         unsigned        size, t;
125         struct ci_hdrc  *ci = dev_get_drvdata(dev);
126
127         next = buf;
128         size = PAGE_SIZE;
129         t = scnprintf(next, size, "%d\n", ci->fsm.b_bus_req);
130         size -= t;
131         next += t;
132
133         return PAGE_SIZE - size;
134 }
135
136 static ssize_t
137 b_bus_req_store(struct device *dev, struct device_attribute *attr,
138                                         const char *buf, size_t count)
139 {
140         struct ci_hdrc  *ci = dev_get_drvdata(dev);
141
142         if (count > 2)
143                 return -1;
144
145         mutex_lock(&ci->fsm.lock);
146         if (buf[0] == '0')
147                 ci->fsm.b_bus_req = 0;
148         else if (buf[0] == '1') {
149                 ci->fsm.b_bus_req = 1;
150                 if (ci->fsm.otg->state == OTG_STATE_B_PERIPHERAL) {
151                         ci->gadget.host_request_flag = 1;
152                         mutex_unlock(&ci->fsm.lock);
153                         return count;
154                 }
155         }
156
157         ci_otg_queue_work(ci);
158         mutex_unlock(&ci->fsm.lock);
159
160         return count;
161 }
162 static DEVICE_ATTR_RW(b_bus_req);
163
164 static ssize_t
165 a_clr_err_store(struct device *dev, struct device_attribute *attr,
166                                         const char *buf, size_t count)
167 {
168         struct ci_hdrc  *ci = dev_get_drvdata(dev);
169
170         if (count > 2)
171                 return -1;
172
173         mutex_lock(&ci->fsm.lock);
174         if (buf[0] == '1')
175                 ci->fsm.a_clr_err = 1;
176
177         ci_otg_queue_work(ci);
178         mutex_unlock(&ci->fsm.lock);
179
180         return count;
181 }
182 static DEVICE_ATTR_WO(a_clr_err);
183
184 static struct attribute *inputs_attrs[] = {
185         &dev_attr_a_bus_req.attr,
186         &dev_attr_a_bus_drop.attr,
187         &dev_attr_b_bus_req.attr,
188         &dev_attr_a_clr_err.attr,
189         NULL,
190 };
191
192 static const struct attribute_group inputs_attr_group = {
193         .name = "inputs",
194         .attrs = inputs_attrs,
195 };
196
197 /*
198  * Keep this list in the same order as timers indexed
199  * by enum otg_fsm_timer in include/linux/usb/otg-fsm.h
200  */
201 static unsigned otg_timer_ms[] = {
202         TA_WAIT_VRISE,
203         TA_WAIT_VFALL,
204         TA_WAIT_BCON,
205         TA_AIDL_BDIS,
206         TB_ASE0_BRST,
207         TA_BIDL_ADIS,
208         TB_AIDL_BDIS,
209         TB_SE0_SRP,
210         TB_SRP_FAIL,
211         0,
212         TB_DATA_PLS,
213         TB_SSEND_SRP,
214 };
215
216 /*
217  * Add timer to active timer list
218  */
219 static void ci_otg_add_timer(struct ci_hdrc *ci, enum otg_fsm_timer t)
220 {
221         unsigned long flags, timer_sec, timer_nsec;
222
223         if (t >= NUM_OTG_FSM_TIMERS)
224                 return;
225
226         spin_lock_irqsave(&ci->lock, flags);
227         timer_sec = otg_timer_ms[t] / MSEC_PER_SEC;
228         timer_nsec = (otg_timer_ms[t] % MSEC_PER_SEC) * NSEC_PER_MSEC;
229         ci->hr_timeouts[t] = ktime_add(ktime_get(),
230                                 ktime_set(timer_sec, timer_nsec));
231         ci->enabled_otg_timer_bits |= (1 << t);
232         if ((ci->next_otg_timer == NUM_OTG_FSM_TIMERS) ||
233                         ktime_after(ci->hr_timeouts[ci->next_otg_timer],
234                                                 ci->hr_timeouts[t])) {
235                         ci->next_otg_timer = t;
236                         hrtimer_start_range_ns(&ci->otg_fsm_hrtimer,
237                                         ci->hr_timeouts[t], NSEC_PER_MSEC,
238                                                         HRTIMER_MODE_ABS);
239         }
240         spin_unlock_irqrestore(&ci->lock, flags);
241 }
242
243 /*
244  * Remove timer from active timer list
245  */
246 static void ci_otg_del_timer(struct ci_hdrc *ci, enum otg_fsm_timer t)
247 {
248         unsigned long flags, enabled_timer_bits;
249         enum otg_fsm_timer cur_timer, next_timer = NUM_OTG_FSM_TIMERS;
250
251         if ((t >= NUM_OTG_FSM_TIMERS) ||
252                         !(ci->enabled_otg_timer_bits & (1 << t)))
253                 return;
254
255         spin_lock_irqsave(&ci->lock, flags);
256         ci->enabled_otg_timer_bits &= ~(1 << t);
257         if (ci->next_otg_timer == t) {
258                 if (ci->enabled_otg_timer_bits == 0) {
259                         /* No enabled timers after delete it */
260                         hrtimer_cancel(&ci->otg_fsm_hrtimer);
261                         ci->next_otg_timer = NUM_OTG_FSM_TIMERS;
262                 } else {
263                         /* Find the next timer */
264                         enabled_timer_bits = ci->enabled_otg_timer_bits;
265                         for_each_set_bit(cur_timer, &enabled_timer_bits,
266                                                         NUM_OTG_FSM_TIMERS) {
267                                 if ((next_timer == NUM_OTG_FSM_TIMERS) ||
268                                         ktime_before(ci->hr_timeouts[next_timer],
269                                          ci->hr_timeouts[cur_timer]))
270                                         next_timer = cur_timer;
271                         }
272                 }
273         }
274         if (next_timer != NUM_OTG_FSM_TIMERS) {
275                 ci->next_otg_timer = next_timer;
276                 hrtimer_start_range_ns(&ci->otg_fsm_hrtimer,
277                         ci->hr_timeouts[next_timer], NSEC_PER_MSEC,
278                                                         HRTIMER_MODE_ABS);
279         }
280         spin_unlock_irqrestore(&ci->lock, flags);
281 }
282
283 /* OTG FSM timer handlers */
284 static int a_wait_vrise_tmout(struct ci_hdrc *ci)
285 {
286         ci->fsm.a_wait_vrise_tmout = 1;
287         return 0;
288 }
289
290 static int a_wait_vfall_tmout(struct ci_hdrc *ci)
291 {
292         ci->fsm.a_wait_vfall_tmout = 1;
293         return 0;
294 }
295
296 static int a_wait_bcon_tmout(struct ci_hdrc *ci)
297 {
298         ci->fsm.a_wait_bcon_tmout = 1;
299         return 0;
300 }
301
302 static int a_aidl_bdis_tmout(struct ci_hdrc *ci)
303 {
304         ci->fsm.a_aidl_bdis_tmout = 1;
305         return 0;
306 }
307
308 static int b_ase0_brst_tmout(struct ci_hdrc *ci)
309 {
310         ci->fsm.b_ase0_brst_tmout = 1;
311         return 0;
312 }
313
314 static int a_bidl_adis_tmout(struct ci_hdrc *ci)
315 {
316         ci->fsm.a_bidl_adis_tmout = 1;
317         return 0;
318 }
319
320 static int b_aidl_bdis_tmout(struct ci_hdrc *ci)
321 {
322         ci->fsm.a_bus_suspend = 1;
323         return 0;
324 }
325
326 static int b_se0_srp_tmout(struct ci_hdrc *ci)
327 {
328         ci->fsm.b_se0_srp = 1;
329         return 0;
330 }
331
332 static int b_srp_fail_tmout(struct ci_hdrc *ci)
333 {
334         ci->fsm.b_srp_done = 1;
335         return 1;
336 }
337
338 static int b_data_pls_tmout(struct ci_hdrc *ci)
339 {
340         ci->fsm.b_srp_done = 1;
341         ci->fsm.b_bus_req = 0;
342         if (ci->fsm.power_up)
343                 ci->fsm.power_up = 0;
344         hw_write_otgsc(ci, OTGSC_HABA, 0);
345         pm_runtime_put(ci->dev);
346         return 0;
347 }
348
349 static int b_ssend_srp_tmout(struct ci_hdrc *ci)
350 {
351         ci->fsm.b_ssend_srp = 1;
352         /* only vbus fall below B_sess_vld in b_idle state */
353         if (ci->fsm.otg->state == OTG_STATE_B_IDLE)
354                 return 0;
355         else
356                 return 1;
357 }
358
359 /*
360  * Keep this list in the same order as timers indexed
361  * by enum otg_fsm_timer in include/linux/usb/otg-fsm.h
362  */
363 static int (*otg_timer_handlers[])(struct ci_hdrc *) = {
364         a_wait_vrise_tmout,     /* A_WAIT_VRISE */
365         a_wait_vfall_tmout,     /* A_WAIT_VFALL */
366         a_wait_bcon_tmout,      /* A_WAIT_BCON */
367         a_aidl_bdis_tmout,      /* A_AIDL_BDIS */
368         b_ase0_brst_tmout,      /* B_ASE0_BRST */
369         a_bidl_adis_tmout,      /* A_BIDL_ADIS */
370         b_aidl_bdis_tmout,      /* B_AIDL_BDIS */
371         b_se0_srp_tmout,        /* B_SE0_SRP */
372         b_srp_fail_tmout,       /* B_SRP_FAIL */
373         NULL,                   /* A_WAIT_ENUM */
374         b_data_pls_tmout,       /* B_DATA_PLS */
375         b_ssend_srp_tmout,      /* B_SSEND_SRP */
376 };
377
378 /*
379  * Enable the next nearest enabled timer if have
380  */
381 static enum hrtimer_restart ci_otg_hrtimer_func(struct hrtimer *t)
382 {
383         struct ci_hdrc *ci = container_of(t, struct ci_hdrc, otg_fsm_hrtimer);
384         ktime_t now, *timeout;
385         unsigned long   enabled_timer_bits;
386         unsigned long   flags;
387         enum otg_fsm_timer cur_timer, next_timer = NUM_OTG_FSM_TIMERS;
388         int ret = -EINVAL;
389
390         spin_lock_irqsave(&ci->lock, flags);
391         enabled_timer_bits = ci->enabled_otg_timer_bits;
392         ci->next_otg_timer = NUM_OTG_FSM_TIMERS;
393
394         now = ktime_get();
395         for_each_set_bit(cur_timer, &enabled_timer_bits, NUM_OTG_FSM_TIMERS) {
396                 if (ktime_compare(now, ci->hr_timeouts[cur_timer]) >= 0) {
397                         ci->enabled_otg_timer_bits &= ~(1 << cur_timer);
398                         if (otg_timer_handlers[cur_timer])
399                                 ret = otg_timer_handlers[cur_timer](ci);
400                 } else {
401                         if ((next_timer == NUM_OTG_FSM_TIMERS) ||
402                                 ktime_before(ci->hr_timeouts[cur_timer],
403                                         ci->hr_timeouts[next_timer]))
404                                 next_timer = cur_timer;
405                 }
406         }
407         /* Enable the next nearest timer */
408         if (next_timer < NUM_OTG_FSM_TIMERS) {
409                 timeout = &ci->hr_timeouts[next_timer];
410                 hrtimer_start_range_ns(&ci->otg_fsm_hrtimer, *timeout,
411                                         NSEC_PER_MSEC, HRTIMER_MODE_ABS);
412                 ci->next_otg_timer = next_timer;
413         }
414         spin_unlock_irqrestore(&ci->lock, flags);
415
416         if (!ret)
417                 ci_otg_queue_work(ci);
418
419         return HRTIMER_NORESTART;
420 }
421
422 /* Initialize timers */
423 static int ci_otg_init_timers(struct ci_hdrc *ci)
424 {
425         hrtimer_init(&ci->otg_fsm_hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
426         ci->otg_fsm_hrtimer.function = ci_otg_hrtimer_func;
427
428         return 0;
429 }
430
431 /* -------------------------------------------------------------*/
432 /* Operations that will be called from OTG Finite State Machine */
433 /* -------------------------------------------------------------*/
434 static void ci_otg_fsm_add_timer(struct otg_fsm *fsm, enum otg_fsm_timer t)
435 {
436         struct ci_hdrc  *ci = container_of(fsm, struct ci_hdrc, fsm);
437
438         if (t < NUM_OTG_FSM_TIMERS)
439                 ci_otg_add_timer(ci, t);
440         return;
441 }
442
443 static void ci_otg_fsm_del_timer(struct otg_fsm *fsm, enum otg_fsm_timer t)
444 {
445         struct ci_hdrc  *ci = container_of(fsm, struct ci_hdrc, fsm);
446
447         if (t < NUM_OTG_FSM_TIMERS)
448                 ci_otg_del_timer(ci, t);
449         return;
450 }
451
452 /*
453  * A-device drive vbus: turn on vbus regulator and enable port power
454  * Data pulse irq should be disabled while vbus is on.
455  */
456 static void ci_otg_drv_vbus(struct otg_fsm *fsm, int on)
457 {
458         int ret;
459         struct ci_hdrc  *ci = container_of(fsm, struct ci_hdrc, fsm);
460
461         if (on) {
462                 /* Enable power power */
463                 hw_write(ci, OP_PORTSC, PORTSC_W1C_BITS | PORTSC_PP,
464                                                         PORTSC_PP);
465                 if (ci->platdata->reg_vbus) {
466                         ret = regulator_enable(ci->platdata->reg_vbus);
467                         if (ret) {
468                                 dev_err(ci->dev,
469                                 "Failed to enable vbus regulator, ret=%d\n",
470                                 ret);
471                                 return;
472                         }
473                 }
474                 /* Disable data pulse irq */
475                 hw_write_otgsc(ci, OTGSC_DPIE, 0);
476
477                 fsm->a_srp_det = 0;
478                 fsm->power_up = 0;
479         } else {
480                 if (ci->platdata->reg_vbus)
481                         regulator_disable(ci->platdata->reg_vbus);
482
483                 fsm->a_bus_drop = 1;
484                 fsm->a_bus_req = 0;
485         }
486 }
487
488 /*
489  * Control data line by Run Stop bit.
490  */
491 static void ci_otg_loc_conn(struct otg_fsm *fsm, int on)
492 {
493         struct ci_hdrc  *ci = container_of(fsm, struct ci_hdrc, fsm);
494
495         if (on)
496                 hw_write(ci, OP_USBCMD, USBCMD_RS, USBCMD_RS);
497         else
498                 hw_write(ci, OP_USBCMD, USBCMD_RS, 0);
499 }
500
501 /*
502  * Generate SOF by host.
503  * In host mode, controller will automatically send SOF.
504  * Suspend will block the data on the port.
505  *
506  * This is controlled through usbcore by usb autosuspend,
507  * so the usb device class driver need support autosuspend,
508  * otherwise the bus suspend will not happen.
509  */
510 static void ci_otg_loc_sof(struct otg_fsm *fsm, int on)
511 {
512         struct usb_device *udev;
513
514         if (!fsm->otg->host)
515                 return;
516
517         udev = usb_hub_find_child(fsm->otg->host->root_hub, 1);
518         if (!udev)
519                 return;
520
521         if (on) {
522                 usb_disable_autosuspend(udev);
523         } else {
524                 pm_runtime_set_autosuspend_delay(&udev->dev, 0);
525                 usb_enable_autosuspend(udev);
526         }
527 }
528
529 /*
530  * Start SRP pulsing by data-line pulsing,
531  * no v-bus pulsing followed
532  */
533 static void ci_otg_start_pulse(struct otg_fsm *fsm)
534 {
535         struct ci_hdrc  *ci = container_of(fsm, struct ci_hdrc, fsm);
536
537         /* Hardware Assistant Data pulse */
538         hw_write_otgsc(ci, OTGSC_HADP, OTGSC_HADP);
539
540         pm_runtime_get(ci->dev);
541         ci_otg_add_timer(ci, B_DATA_PLS);
542 }
543
544 static int ci_otg_start_host(struct otg_fsm *fsm, int on)
545 {
546         struct ci_hdrc  *ci = container_of(fsm, struct ci_hdrc, fsm);
547
548         if (on) {
549                 ci_role_stop(ci);
550                 ci_role_start(ci, CI_ROLE_HOST);
551         } else {
552                 ci_role_stop(ci);
553                 ci_role_start(ci, CI_ROLE_GADGET);
554         }
555         return 0;
556 }
557
558 static int ci_otg_start_gadget(struct otg_fsm *fsm, int on)
559 {
560         struct ci_hdrc  *ci = container_of(fsm, struct ci_hdrc, fsm);
561
562         if (on)
563                 usb_gadget_vbus_connect(&ci->gadget);
564         else
565                 usb_gadget_vbus_disconnect(&ci->gadget);
566
567         return 0;
568 }
569
570 static struct otg_fsm_ops ci_otg_ops = {
571         .drv_vbus = ci_otg_drv_vbus,
572         .loc_conn = ci_otg_loc_conn,
573         .loc_sof = ci_otg_loc_sof,
574         .start_pulse = ci_otg_start_pulse,
575         .add_timer = ci_otg_fsm_add_timer,
576         .del_timer = ci_otg_fsm_del_timer,
577         .start_host = ci_otg_start_host,
578         .start_gadget = ci_otg_start_gadget,
579 };
580
581 int ci_otg_fsm_work(struct ci_hdrc *ci)
582 {
583         /*
584          * Don't do fsm transition for B device
585          * when there is no gadget class driver
586          */
587         if (ci->fsm.id && !(ci->driver) &&
588                 ci->fsm.otg->state < OTG_STATE_A_IDLE)
589                 return 0;
590
591         pm_runtime_get_sync(ci->dev);
592         if (otg_statemachine(&ci->fsm)) {
593                 if (ci->fsm.otg->state == OTG_STATE_A_IDLE) {
594                         /*
595                          * Further state change for cases:
596                          * a_idle to b_idle; or
597                          * a_idle to a_wait_vrise due to ID change(1->0), so
598                          * B-dev becomes A-dev can try to start new session
599                          * consequently; or
600                          * a_idle to a_wait_vrise when power up
601                          */
602                         if ((ci->fsm.id) || (ci->id_event) ||
603                                                 (ci->fsm.power_up)) {
604                                 ci_otg_queue_work(ci);
605                         } else {
606                                 /* Enable data pulse irq */
607                                 hw_write(ci, OP_PORTSC, PORTSC_W1C_BITS |
608                                                                 PORTSC_PP, 0);
609                                 hw_write_otgsc(ci, OTGSC_DPIS, OTGSC_DPIS);
610                                 hw_write_otgsc(ci, OTGSC_DPIE, OTGSC_DPIE);
611                         }
612                         if (ci->id_event)
613                                 ci->id_event = false;
614                 } else if (ci->fsm.otg->state == OTG_STATE_B_IDLE) {
615                         if (ci->fsm.b_sess_vld) {
616                                 ci->fsm.power_up = 0;
617                                 /*
618                                  * Further transite to b_periphearl state
619                                  * when register gadget driver with vbus on
620                                  */
621                                 ci_otg_queue_work(ci);
622                         }
623                 } else if (ci->fsm.otg->state == OTG_STATE_A_HOST) {
624                         pm_runtime_mark_last_busy(ci->dev);
625                         pm_runtime_put_autosuspend(ci->dev);
626                         return 0;
627                 }
628         }
629         pm_runtime_put_sync(ci->dev);
630         return 0;
631 }
632
633 /*
634  * Update fsm variables in each state if catching expected interrupts,
635  * called by otg fsm isr.
636  */
637 static void ci_otg_fsm_event(struct ci_hdrc *ci)
638 {
639         u32 intr_sts, otg_bsess_vld, port_conn;
640         struct otg_fsm *fsm = &ci->fsm;
641
642         intr_sts = hw_read_intr_status(ci);
643         otg_bsess_vld = hw_read_otgsc(ci, OTGSC_BSV);
644         port_conn = hw_read(ci, OP_PORTSC, PORTSC_CCS);
645
646         switch (ci->fsm.otg->state) {
647         case OTG_STATE_A_WAIT_BCON:
648                 if (port_conn) {
649                         fsm->b_conn = 1;
650                         fsm->a_bus_req = 1;
651                         ci_otg_queue_work(ci);
652                 }
653                 break;
654         case OTG_STATE_B_IDLE:
655                 if (otg_bsess_vld && (intr_sts & USBi_PCI) && port_conn) {
656                         fsm->b_sess_vld = 1;
657                         ci_otg_queue_work(ci);
658                 }
659                 break;
660         case OTG_STATE_B_PERIPHERAL:
661                 if ((intr_sts & USBi_SLI) && port_conn && otg_bsess_vld) {
662                         ci_otg_add_timer(ci, B_AIDL_BDIS);
663                 } else if (intr_sts & USBi_PCI) {
664                         ci_otg_del_timer(ci, B_AIDL_BDIS);
665                         if (fsm->a_bus_suspend == 1)
666                                 fsm->a_bus_suspend = 0;
667                 }
668                 break;
669         case OTG_STATE_B_HOST:
670                 if ((intr_sts & USBi_PCI) && !port_conn) {
671                         fsm->a_conn = 0;
672                         fsm->b_bus_req = 0;
673                         ci_otg_queue_work(ci);
674                 }
675                 break;
676         case OTG_STATE_A_PERIPHERAL:
677                 if (intr_sts & USBi_SLI) {
678                          fsm->b_bus_suspend = 1;
679                         /*
680                          * Init a timer to know how long this suspend
681                          * will continue, if time out, indicates B no longer
682                          * wants to be host role
683                          */
684                          ci_otg_add_timer(ci, A_BIDL_ADIS);
685                 }
686
687                 if (intr_sts & USBi_URI)
688                         ci_otg_del_timer(ci, A_BIDL_ADIS);
689
690                 if (intr_sts & USBi_PCI) {
691                         if (fsm->b_bus_suspend == 1) {
692                                 ci_otg_del_timer(ci, A_BIDL_ADIS);
693                                 fsm->b_bus_suspend = 0;
694                         }
695                 }
696                 break;
697         case OTG_STATE_A_SUSPEND:
698                 if ((intr_sts & USBi_PCI) && !port_conn) {
699                         fsm->b_conn = 0;
700
701                         /* if gadget driver is binded */
702                         if (ci->driver) {
703                                 /* A device to be peripheral mode */
704                                 ci->gadget.is_a_peripheral = 1;
705                         }
706                         ci_otg_queue_work(ci);
707                 }
708                 break;
709         case OTG_STATE_A_HOST:
710                 if ((intr_sts & USBi_PCI) && !port_conn) {
711                         fsm->b_conn = 0;
712                         ci_otg_queue_work(ci);
713                 }
714                 break;
715         case OTG_STATE_B_WAIT_ACON:
716                 if ((intr_sts & USBi_PCI) && port_conn) {
717                         fsm->a_conn = 1;
718                         ci_otg_queue_work(ci);
719                 }
720                 break;
721         default:
722                 break;
723         }
724 }
725
726 /*
727  * ci_otg_irq - otg fsm related irq handling
728  * and also update otg fsm variable by monitoring usb host and udc
729  * state change interrupts.
730  * @ci: ci_hdrc
731  */
732 irqreturn_t ci_otg_fsm_irq(struct ci_hdrc *ci)
733 {
734         irqreturn_t retval =  IRQ_NONE;
735         u32 otgsc, otg_int_src = 0;
736         struct otg_fsm *fsm = &ci->fsm;
737
738         otgsc = hw_read_otgsc(ci, ~0);
739         otg_int_src = otgsc & OTGSC_INT_STATUS_BITS & (otgsc >> 8);
740         fsm->id = (otgsc & OTGSC_ID) ? 1 : 0;
741
742         if (otg_int_src) {
743                 if (otg_int_src & OTGSC_DPIS) {
744                         hw_write_otgsc(ci, OTGSC_DPIS, OTGSC_DPIS);
745                         fsm->a_srp_det = 1;
746                         fsm->a_bus_drop = 0;
747                 } else if (otg_int_src & OTGSC_IDIS) {
748                         hw_write_otgsc(ci, OTGSC_IDIS, OTGSC_IDIS);
749                         if (fsm->id == 0) {
750                                 fsm->a_bus_drop = 0;
751                                 fsm->a_bus_req = 1;
752                                 ci->id_event = true;
753                         }
754                 } else if (otg_int_src & OTGSC_BSVIS) {
755                         hw_write_otgsc(ci, OTGSC_BSVIS, OTGSC_BSVIS);
756                         if (otgsc & OTGSC_BSV) {
757                                 fsm->b_sess_vld = 1;
758                                 ci_otg_del_timer(ci, B_SSEND_SRP);
759                                 ci_otg_del_timer(ci, B_SRP_FAIL);
760                                 fsm->b_ssend_srp = 0;
761                         } else {
762                                 fsm->b_sess_vld = 0;
763                                 if (fsm->id)
764                                         ci_otg_add_timer(ci, B_SSEND_SRP);
765                         }
766                 } else if (otg_int_src & OTGSC_AVVIS) {
767                         hw_write_otgsc(ci, OTGSC_AVVIS, OTGSC_AVVIS);
768                         if (otgsc & OTGSC_AVV) {
769                                 fsm->a_vbus_vld = 1;
770                         } else {
771                                 fsm->a_vbus_vld = 0;
772                                 fsm->b_conn = 0;
773                         }
774                 }
775                 ci_otg_queue_work(ci);
776                 return IRQ_HANDLED;
777         }
778
779         ci_otg_fsm_event(ci);
780
781         return retval;
782 }
783
784 void ci_hdrc_otg_fsm_start(struct ci_hdrc *ci)
785 {
786         ci_otg_queue_work(ci);
787 }
788
789 int ci_hdrc_otg_fsm_init(struct ci_hdrc *ci)
790 {
791         int retval = 0;
792
793         if (ci->phy)
794                 ci->otg.phy = ci->phy;
795         else
796                 ci->otg.usb_phy = ci->usb_phy;
797
798         ci->otg.gadget = &ci->gadget;
799         ci->fsm.otg = &ci->otg;
800         ci->fsm.power_up = 1;
801         ci->fsm.id = hw_read_otgsc(ci, OTGSC_ID) ? 1 : 0;
802         ci->fsm.otg->state = OTG_STATE_UNDEFINED;
803         ci->fsm.ops = &ci_otg_ops;
804         ci->gadget.hnp_polling_support = 1;
805         ci->fsm.host_req_flag = devm_kzalloc(ci->dev, 1, GFP_KERNEL);
806         if (!ci->fsm.host_req_flag)
807                 return -ENOMEM;
808
809         mutex_init(&ci->fsm.lock);
810
811         retval = ci_otg_init_timers(ci);
812         if (retval) {
813                 dev_err(ci->dev, "Couldn't init OTG timers\n");
814                 return retval;
815         }
816         ci->enabled_otg_timer_bits = 0;
817         ci->next_otg_timer = NUM_OTG_FSM_TIMERS;
818
819         retval = sysfs_create_group(&ci->dev->kobj, &inputs_attr_group);
820         if (retval < 0) {
821                 dev_dbg(ci->dev,
822                         "Can't register sysfs attr group: %d\n", retval);
823                 return retval;
824         }
825
826         /* Enable A vbus valid irq */
827         hw_write_otgsc(ci, OTGSC_AVVIE, OTGSC_AVVIE);
828
829         if (ci->fsm.id) {
830                 ci->fsm.b_ssend_srp =
831                         hw_read_otgsc(ci, OTGSC_BSV) ? 0 : 1;
832                 ci->fsm.b_sess_vld =
833                         hw_read_otgsc(ci, OTGSC_BSV) ? 1 : 0;
834                 /* Enable BSV irq */
835                 hw_write_otgsc(ci, OTGSC_BSVIE, OTGSC_BSVIE);
836         }
837
838         return 0;
839 }
840
841 void ci_hdrc_otg_fsm_remove(struct ci_hdrc *ci)
842 {
843         sysfs_remove_group(&ci->dev->kobj, &inputs_attr_group);
844 }