GNU Linux-libre 5.10.153-gnu1
[releases.git] / drivers / thunderbolt / nhi.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Thunderbolt driver - NHI driver
4  *
5  * The NHI (native host interface) is the pci device that allows us to send and
6  * receive frames from the thunderbolt bus.
7  *
8  * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
9  * Copyright (C) 2018, Intel Corporation
10  */
11
12 #include <linux/pm_runtime.h>
13 #include <linux/slab.h>
14 #include <linux/errno.h>
15 #include <linux/pci.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/delay.h>
19 #include <linux/property.h>
20 #include <linux/platform_data/x86/apple.h>
21
22 #include "nhi.h"
23 #include "nhi_regs.h"
24 #include "tb.h"
25
26 #define RING_TYPE(ring) ((ring)->is_tx ? "TX ring" : "RX ring")
27
28 #define RING_FIRST_USABLE_HOPID 1
29
30 /*
31  * Minimal number of vectors when we use MSI-X. Two for control channel
32  * Rx/Tx and the rest four are for cross domain DMA paths.
33  */
34 #define MSIX_MIN_VECS           6
35 #define MSIX_MAX_VECS           16
36
37 #define NHI_MAILBOX_TIMEOUT     500 /* ms */
38
39 static int ring_interrupt_index(struct tb_ring *ring)
40 {
41         int bit = ring->hop;
42         if (!ring->is_tx)
43                 bit += ring->nhi->hop_count;
44         return bit;
45 }
46
47 /**
48  * ring_interrupt_active() - activate/deactivate interrupts for a single ring
49  *
50  * ring->nhi->lock must be held.
51  */
52 static void ring_interrupt_active(struct tb_ring *ring, bool active)
53 {
54         int reg = REG_RING_INTERRUPT_BASE +
55                   ring_interrupt_index(ring) / 32 * 4;
56         int bit = ring_interrupt_index(ring) & 31;
57         int mask = 1 << bit;
58         u32 old, new;
59
60         if (ring->irq > 0) {
61                 u32 step, shift, ivr, misc;
62                 void __iomem *ivr_base;
63                 int index;
64
65                 if (ring->is_tx)
66                         index = ring->hop;
67                 else
68                         index = ring->hop + ring->nhi->hop_count;
69
70                 /*
71                  * Ask the hardware to clear interrupt status bits automatically
72                  * since we already know which interrupt was triggered.
73                  */
74                 misc = ioread32(ring->nhi->iobase + REG_DMA_MISC);
75                 if (!(misc & REG_DMA_MISC_INT_AUTO_CLEAR)) {
76                         misc |= REG_DMA_MISC_INT_AUTO_CLEAR;
77                         iowrite32(misc, ring->nhi->iobase + REG_DMA_MISC);
78                 }
79
80                 ivr_base = ring->nhi->iobase + REG_INT_VEC_ALLOC_BASE;
81                 step = index / REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS;
82                 shift = index % REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS;
83                 ivr = ioread32(ivr_base + step);
84                 ivr &= ~(REG_INT_VEC_ALLOC_MASK << shift);
85                 if (active)
86                         ivr |= ring->vector << shift;
87                 iowrite32(ivr, ivr_base + step);
88         }
89
90         old = ioread32(ring->nhi->iobase + reg);
91         if (active)
92                 new = old | mask;
93         else
94                 new = old & ~mask;
95
96         dev_dbg(&ring->nhi->pdev->dev,
97                 "%s interrupt at register %#x bit %d (%#x -> %#x)\n",
98                 active ? "enabling" : "disabling", reg, bit, old, new);
99
100         if (new == old)
101                 dev_WARN(&ring->nhi->pdev->dev,
102                                          "interrupt for %s %d is already %s\n",
103                                          RING_TYPE(ring), ring->hop,
104                                          active ? "enabled" : "disabled");
105         iowrite32(new, ring->nhi->iobase + reg);
106 }
107
108 /**
109  * nhi_disable_interrupts() - disable interrupts for all rings
110  *
111  * Use only during init and shutdown.
112  */
113 static void nhi_disable_interrupts(struct tb_nhi *nhi)
114 {
115         int i = 0;
116         /* disable interrupts */
117         for (i = 0; i < RING_INTERRUPT_REG_COUNT(nhi); i++)
118                 iowrite32(0, nhi->iobase + REG_RING_INTERRUPT_BASE + 4 * i);
119
120         /* clear interrupt status bits */
121         for (i = 0; i < RING_NOTIFY_REG_COUNT(nhi); i++)
122                 ioread32(nhi->iobase + REG_RING_NOTIFY_BASE + 4 * i);
123 }
124
125 /* ring helper methods */
126
127 static void __iomem *ring_desc_base(struct tb_ring *ring)
128 {
129         void __iomem *io = ring->nhi->iobase;
130         io += ring->is_tx ? REG_TX_RING_BASE : REG_RX_RING_BASE;
131         io += ring->hop * 16;
132         return io;
133 }
134
135 static void __iomem *ring_options_base(struct tb_ring *ring)
136 {
137         void __iomem *io = ring->nhi->iobase;
138         io += ring->is_tx ? REG_TX_OPTIONS_BASE : REG_RX_OPTIONS_BASE;
139         io += ring->hop * 32;
140         return io;
141 }
142
143 static void ring_iowrite_cons(struct tb_ring *ring, u16 cons)
144 {
145         /*
146          * The other 16-bits in the register is read-only and writes to it
147          * are ignored by the hardware so we can save one ioread32() by
148          * filling the read-only bits with zeroes.
149          */
150         iowrite32(cons, ring_desc_base(ring) + 8);
151 }
152
153 static void ring_iowrite_prod(struct tb_ring *ring, u16 prod)
154 {
155         /* See ring_iowrite_cons() above for explanation */
156         iowrite32(prod << 16, ring_desc_base(ring) + 8);
157 }
158
159 static void ring_iowrite32desc(struct tb_ring *ring, u32 value, u32 offset)
160 {
161         iowrite32(value, ring_desc_base(ring) + offset);
162 }
163
164 static void ring_iowrite64desc(struct tb_ring *ring, u64 value, u32 offset)
165 {
166         iowrite32(value, ring_desc_base(ring) + offset);
167         iowrite32(value >> 32, ring_desc_base(ring) + offset + 4);
168 }
169
170 static void ring_iowrite32options(struct tb_ring *ring, u32 value, u32 offset)
171 {
172         iowrite32(value, ring_options_base(ring) + offset);
173 }
174
175 static bool ring_full(struct tb_ring *ring)
176 {
177         return ((ring->head + 1) % ring->size) == ring->tail;
178 }
179
180 static bool ring_empty(struct tb_ring *ring)
181 {
182         return ring->head == ring->tail;
183 }
184
185 /**
186  * ring_write_descriptors() - post frames from ring->queue to the controller
187  *
188  * ring->lock is held.
189  */
190 static void ring_write_descriptors(struct tb_ring *ring)
191 {
192         struct ring_frame *frame, *n;
193         struct ring_desc *descriptor;
194         list_for_each_entry_safe(frame, n, &ring->queue, list) {
195                 if (ring_full(ring))
196                         break;
197                 list_move_tail(&frame->list, &ring->in_flight);
198                 descriptor = &ring->descriptors[ring->head];
199                 descriptor->phys = frame->buffer_phy;
200                 descriptor->time = 0;
201                 descriptor->flags = RING_DESC_POSTED | RING_DESC_INTERRUPT;
202                 if (ring->is_tx) {
203                         descriptor->length = frame->size;
204                         descriptor->eof = frame->eof;
205                         descriptor->sof = frame->sof;
206                 }
207                 ring->head = (ring->head + 1) % ring->size;
208                 if (ring->is_tx)
209                         ring_iowrite_prod(ring, ring->head);
210                 else
211                         ring_iowrite_cons(ring, ring->head);
212         }
213 }
214
215 /**
216  * ring_work() - progress completed frames
217  *
218  * If the ring is shutting down then all frames are marked as canceled and
219  * their callbacks are invoked.
220  *
221  * Otherwise we collect all completed frame from the ring buffer, write new
222  * frame to the ring buffer and invoke the callbacks for the completed frames.
223  */
224 static void ring_work(struct work_struct *work)
225 {
226         struct tb_ring *ring = container_of(work, typeof(*ring), work);
227         struct ring_frame *frame;
228         bool canceled = false;
229         unsigned long flags;
230         LIST_HEAD(done);
231
232         spin_lock_irqsave(&ring->lock, flags);
233
234         if (!ring->running) {
235                 /*  Move all frames to done and mark them as canceled. */
236                 list_splice_tail_init(&ring->in_flight, &done);
237                 list_splice_tail_init(&ring->queue, &done);
238                 canceled = true;
239                 goto invoke_callback;
240         }
241
242         while (!ring_empty(ring)) {
243                 if (!(ring->descriptors[ring->tail].flags
244                                 & RING_DESC_COMPLETED))
245                         break;
246                 frame = list_first_entry(&ring->in_flight, typeof(*frame),
247                                          list);
248                 list_move_tail(&frame->list, &done);
249                 if (!ring->is_tx) {
250                         frame->size = ring->descriptors[ring->tail].length;
251                         frame->eof = ring->descriptors[ring->tail].eof;
252                         frame->sof = ring->descriptors[ring->tail].sof;
253                         frame->flags = ring->descriptors[ring->tail].flags;
254                 }
255                 ring->tail = (ring->tail + 1) % ring->size;
256         }
257         ring_write_descriptors(ring);
258
259 invoke_callback:
260         /* allow callbacks to schedule new work */
261         spin_unlock_irqrestore(&ring->lock, flags);
262         while (!list_empty(&done)) {
263                 frame = list_first_entry(&done, typeof(*frame), list);
264                 /*
265                  * The callback may reenqueue or delete frame.
266                  * Do not hold on to it.
267                  */
268                 list_del_init(&frame->list);
269                 if (frame->callback)
270                         frame->callback(ring, frame, canceled);
271         }
272 }
273
274 int __tb_ring_enqueue(struct tb_ring *ring, struct ring_frame *frame)
275 {
276         unsigned long flags;
277         int ret = 0;
278
279         spin_lock_irqsave(&ring->lock, flags);
280         if (ring->running) {
281                 list_add_tail(&frame->list, &ring->queue);
282                 ring_write_descriptors(ring);
283         } else {
284                 ret = -ESHUTDOWN;
285         }
286         spin_unlock_irqrestore(&ring->lock, flags);
287         return ret;
288 }
289 EXPORT_SYMBOL_GPL(__tb_ring_enqueue);
290
291 /**
292  * tb_ring_poll() - Poll one completed frame from the ring
293  * @ring: Ring to poll
294  *
295  * This function can be called when @start_poll callback of the @ring
296  * has been called. It will read one completed frame from the ring and
297  * return it to the caller. Returns %NULL if there is no more completed
298  * frames.
299  */
300 struct ring_frame *tb_ring_poll(struct tb_ring *ring)
301 {
302         struct ring_frame *frame = NULL;
303         unsigned long flags;
304
305         spin_lock_irqsave(&ring->lock, flags);
306         if (!ring->running)
307                 goto unlock;
308         if (ring_empty(ring))
309                 goto unlock;
310
311         if (ring->descriptors[ring->tail].flags & RING_DESC_COMPLETED) {
312                 frame = list_first_entry(&ring->in_flight, typeof(*frame),
313                                          list);
314                 list_del_init(&frame->list);
315
316                 if (!ring->is_tx) {
317                         frame->size = ring->descriptors[ring->tail].length;
318                         frame->eof = ring->descriptors[ring->tail].eof;
319                         frame->sof = ring->descriptors[ring->tail].sof;
320                         frame->flags = ring->descriptors[ring->tail].flags;
321                 }
322
323                 ring->tail = (ring->tail + 1) % ring->size;
324         }
325
326 unlock:
327         spin_unlock_irqrestore(&ring->lock, flags);
328         return frame;
329 }
330 EXPORT_SYMBOL_GPL(tb_ring_poll);
331
332 static void __ring_interrupt_mask(struct tb_ring *ring, bool mask)
333 {
334         int idx = ring_interrupt_index(ring);
335         int reg = REG_RING_INTERRUPT_BASE + idx / 32 * 4;
336         int bit = idx % 32;
337         u32 val;
338
339         val = ioread32(ring->nhi->iobase + reg);
340         if (mask)
341                 val &= ~BIT(bit);
342         else
343                 val |= BIT(bit);
344         iowrite32(val, ring->nhi->iobase + reg);
345 }
346
347 /* Both @nhi->lock and @ring->lock should be held */
348 static void __ring_interrupt(struct tb_ring *ring)
349 {
350         if (!ring->running)
351                 return;
352
353         if (ring->start_poll) {
354                 __ring_interrupt_mask(ring, true);
355                 ring->start_poll(ring->poll_data);
356         } else {
357                 schedule_work(&ring->work);
358         }
359 }
360
361 /**
362  * tb_ring_poll_complete() - Re-start interrupt for the ring
363  * @ring: Ring to re-start the interrupt
364  *
365  * This will re-start (unmask) the ring interrupt once the user is done
366  * with polling.
367  */
368 void tb_ring_poll_complete(struct tb_ring *ring)
369 {
370         unsigned long flags;
371
372         spin_lock_irqsave(&ring->nhi->lock, flags);
373         spin_lock(&ring->lock);
374         if (ring->start_poll)
375                 __ring_interrupt_mask(ring, false);
376         spin_unlock(&ring->lock);
377         spin_unlock_irqrestore(&ring->nhi->lock, flags);
378 }
379 EXPORT_SYMBOL_GPL(tb_ring_poll_complete);
380
381 static irqreturn_t ring_msix(int irq, void *data)
382 {
383         struct tb_ring *ring = data;
384
385         spin_lock(&ring->nhi->lock);
386         spin_lock(&ring->lock);
387         __ring_interrupt(ring);
388         spin_unlock(&ring->lock);
389         spin_unlock(&ring->nhi->lock);
390
391         return IRQ_HANDLED;
392 }
393
394 static int ring_request_msix(struct tb_ring *ring, bool no_suspend)
395 {
396         struct tb_nhi *nhi = ring->nhi;
397         unsigned long irqflags;
398         int ret;
399
400         if (!nhi->pdev->msix_enabled)
401                 return 0;
402
403         ret = ida_simple_get(&nhi->msix_ida, 0, MSIX_MAX_VECS, GFP_KERNEL);
404         if (ret < 0)
405                 return ret;
406
407         ring->vector = ret;
408
409         ret = pci_irq_vector(ring->nhi->pdev, ring->vector);
410         if (ret < 0)
411                 goto err_ida_remove;
412
413         ring->irq = ret;
414
415         irqflags = no_suspend ? IRQF_NO_SUSPEND : 0;
416         ret = request_irq(ring->irq, ring_msix, irqflags, "thunderbolt", ring);
417         if (ret)
418                 goto err_ida_remove;
419
420         return 0;
421
422 err_ida_remove:
423         ida_simple_remove(&nhi->msix_ida, ring->vector);
424
425         return ret;
426 }
427
428 static void ring_release_msix(struct tb_ring *ring)
429 {
430         if (ring->irq <= 0)
431                 return;
432
433         free_irq(ring->irq, ring);
434         ida_simple_remove(&ring->nhi->msix_ida, ring->vector);
435         ring->vector = 0;
436         ring->irq = 0;
437 }
438
439 static int nhi_alloc_hop(struct tb_nhi *nhi, struct tb_ring *ring)
440 {
441         int ret = 0;
442
443         spin_lock_irq(&nhi->lock);
444
445         if (ring->hop < 0) {
446                 unsigned int i;
447
448                 /*
449                  * Automatically allocate HopID from the non-reserved
450                  * range 1 .. hop_count - 1.
451                  */
452                 for (i = RING_FIRST_USABLE_HOPID; i < nhi->hop_count; i++) {
453                         if (ring->is_tx) {
454                                 if (!nhi->tx_rings[i]) {
455                                         ring->hop = i;
456                                         break;
457                                 }
458                         } else {
459                                 if (!nhi->rx_rings[i]) {
460                                         ring->hop = i;
461                                         break;
462                                 }
463                         }
464                 }
465         }
466
467         if (ring->hop < 0 || ring->hop >= nhi->hop_count) {
468                 dev_warn(&nhi->pdev->dev, "invalid hop: %d\n", ring->hop);
469                 ret = -EINVAL;
470                 goto err_unlock;
471         }
472         if (ring->is_tx && nhi->tx_rings[ring->hop]) {
473                 dev_warn(&nhi->pdev->dev, "TX hop %d already allocated\n",
474                          ring->hop);
475                 ret = -EBUSY;
476                 goto err_unlock;
477         } else if (!ring->is_tx && nhi->rx_rings[ring->hop]) {
478                 dev_warn(&nhi->pdev->dev, "RX hop %d already allocated\n",
479                          ring->hop);
480                 ret = -EBUSY;
481                 goto err_unlock;
482         }
483
484         if (ring->is_tx)
485                 nhi->tx_rings[ring->hop] = ring;
486         else
487                 nhi->rx_rings[ring->hop] = ring;
488
489 err_unlock:
490         spin_unlock_irq(&nhi->lock);
491
492         return ret;
493 }
494
495 static struct tb_ring *tb_ring_alloc(struct tb_nhi *nhi, u32 hop, int size,
496                                      bool transmit, unsigned int flags,
497                                      u16 sof_mask, u16 eof_mask,
498                                      void (*start_poll)(void *),
499                                      void *poll_data)
500 {
501         struct tb_ring *ring = NULL;
502
503         dev_dbg(&nhi->pdev->dev, "allocating %s ring %d of size %d\n",
504                 transmit ? "TX" : "RX", hop, size);
505
506         ring = kzalloc(sizeof(*ring), GFP_KERNEL);
507         if (!ring)
508                 return NULL;
509
510         spin_lock_init(&ring->lock);
511         INIT_LIST_HEAD(&ring->queue);
512         INIT_LIST_HEAD(&ring->in_flight);
513         INIT_WORK(&ring->work, ring_work);
514
515         ring->nhi = nhi;
516         ring->hop = hop;
517         ring->is_tx = transmit;
518         ring->size = size;
519         ring->flags = flags;
520         ring->sof_mask = sof_mask;
521         ring->eof_mask = eof_mask;
522         ring->head = 0;
523         ring->tail = 0;
524         ring->running = false;
525         ring->start_poll = start_poll;
526         ring->poll_data = poll_data;
527
528         ring->descriptors = dma_alloc_coherent(&ring->nhi->pdev->dev,
529                         size * sizeof(*ring->descriptors),
530                         &ring->descriptors_dma, GFP_KERNEL | __GFP_ZERO);
531         if (!ring->descriptors)
532                 goto err_free_ring;
533
534         if (ring_request_msix(ring, flags & RING_FLAG_NO_SUSPEND))
535                 goto err_free_descs;
536
537         if (nhi_alloc_hop(nhi, ring))
538                 goto err_release_msix;
539
540         return ring;
541
542 err_release_msix:
543         ring_release_msix(ring);
544 err_free_descs:
545         dma_free_coherent(&ring->nhi->pdev->dev,
546                           ring->size * sizeof(*ring->descriptors),
547                           ring->descriptors, ring->descriptors_dma);
548 err_free_ring:
549         kfree(ring);
550
551         return NULL;
552 }
553
554 /**
555  * tb_ring_alloc_tx() - Allocate DMA ring for transmit
556  * @nhi: Pointer to the NHI the ring is to be allocated
557  * @hop: HopID (ring) to allocate
558  * @size: Number of entries in the ring
559  * @flags: Flags for the ring
560  */
561 struct tb_ring *tb_ring_alloc_tx(struct tb_nhi *nhi, int hop, int size,
562                                  unsigned int flags)
563 {
564         return tb_ring_alloc(nhi, hop, size, true, flags, 0, 0, NULL, NULL);
565 }
566 EXPORT_SYMBOL_GPL(tb_ring_alloc_tx);
567
568 /**
569  * tb_ring_alloc_rx() - Allocate DMA ring for receive
570  * @nhi: Pointer to the NHI the ring is to be allocated
571  * @hop: HopID (ring) to allocate. Pass %-1 for automatic allocation.
572  * @size: Number of entries in the ring
573  * @flags: Flags for the ring
574  * @sof_mask: Mask of PDF values that start a frame
575  * @eof_mask: Mask of PDF values that end a frame
576  * @start_poll: If not %NULL the ring will call this function when an
577  *              interrupt is triggered and masked, instead of callback
578  *              in each Rx frame.
579  * @poll_data: Optional data passed to @start_poll
580  */
581 struct tb_ring *tb_ring_alloc_rx(struct tb_nhi *nhi, int hop, int size,
582                                  unsigned int flags, u16 sof_mask, u16 eof_mask,
583                                  void (*start_poll)(void *), void *poll_data)
584 {
585         return tb_ring_alloc(nhi, hop, size, false, flags, sof_mask, eof_mask,
586                              start_poll, poll_data);
587 }
588 EXPORT_SYMBOL_GPL(tb_ring_alloc_rx);
589
590 /**
591  * tb_ring_start() - enable a ring
592  *
593  * Must not be invoked in parallel with tb_ring_stop().
594  */
595 void tb_ring_start(struct tb_ring *ring)
596 {
597         u16 frame_size;
598         u32 flags;
599
600         spin_lock_irq(&ring->nhi->lock);
601         spin_lock(&ring->lock);
602         if (ring->nhi->going_away)
603                 goto err;
604         if (ring->running) {
605                 dev_WARN(&ring->nhi->pdev->dev, "ring already started\n");
606                 goto err;
607         }
608         dev_dbg(&ring->nhi->pdev->dev, "starting %s %d\n",
609                 RING_TYPE(ring), ring->hop);
610
611         if (ring->flags & RING_FLAG_FRAME) {
612                 /* Means 4096 */
613                 frame_size = 0;
614                 flags = RING_FLAG_ENABLE;
615         } else {
616                 frame_size = TB_FRAME_SIZE;
617                 flags = RING_FLAG_ENABLE | RING_FLAG_RAW;
618         }
619
620         ring_iowrite64desc(ring, ring->descriptors_dma, 0);
621         if (ring->is_tx) {
622                 ring_iowrite32desc(ring, ring->size, 12);
623                 ring_iowrite32options(ring, 0, 4); /* time releated ? */
624                 ring_iowrite32options(ring, flags, 0);
625         } else {
626                 u32 sof_eof_mask = ring->sof_mask << 16 | ring->eof_mask;
627
628                 ring_iowrite32desc(ring, (frame_size << 16) | ring->size, 12);
629                 ring_iowrite32options(ring, sof_eof_mask, 4);
630                 ring_iowrite32options(ring, flags, 0);
631         }
632         ring_interrupt_active(ring, true);
633         ring->running = true;
634 err:
635         spin_unlock(&ring->lock);
636         spin_unlock_irq(&ring->nhi->lock);
637 }
638 EXPORT_SYMBOL_GPL(tb_ring_start);
639
640 /**
641  * tb_ring_stop() - shutdown a ring
642  *
643  * Must not be invoked from a callback.
644  *
645  * This method will disable the ring. Further calls to
646  * tb_ring_tx/tb_ring_rx will return -ESHUTDOWN until ring_stop has been
647  * called.
648  *
649  * All enqueued frames will be canceled and their callbacks will be executed
650  * with frame->canceled set to true (on the callback thread). This method
651  * returns only after all callback invocations have finished.
652  */
653 void tb_ring_stop(struct tb_ring *ring)
654 {
655         spin_lock_irq(&ring->nhi->lock);
656         spin_lock(&ring->lock);
657         dev_dbg(&ring->nhi->pdev->dev, "stopping %s %d\n",
658                 RING_TYPE(ring), ring->hop);
659         if (ring->nhi->going_away)
660                 goto err;
661         if (!ring->running) {
662                 dev_WARN(&ring->nhi->pdev->dev, "%s %d already stopped\n",
663                          RING_TYPE(ring), ring->hop);
664                 goto err;
665         }
666         ring_interrupt_active(ring, false);
667
668         ring_iowrite32options(ring, 0, 0);
669         ring_iowrite64desc(ring, 0, 0);
670         ring_iowrite32desc(ring, 0, 8);
671         ring_iowrite32desc(ring, 0, 12);
672         ring->head = 0;
673         ring->tail = 0;
674         ring->running = false;
675
676 err:
677         spin_unlock(&ring->lock);
678         spin_unlock_irq(&ring->nhi->lock);
679
680         /*
681          * schedule ring->work to invoke callbacks on all remaining frames.
682          */
683         schedule_work(&ring->work);
684         flush_work(&ring->work);
685 }
686 EXPORT_SYMBOL_GPL(tb_ring_stop);
687
688 /*
689  * tb_ring_free() - free ring
690  *
691  * When this method returns all invocations of ring->callback will have
692  * finished.
693  *
694  * Ring must be stopped.
695  *
696  * Must NOT be called from ring_frame->callback!
697  */
698 void tb_ring_free(struct tb_ring *ring)
699 {
700         spin_lock_irq(&ring->nhi->lock);
701         /*
702          * Dissociate the ring from the NHI. This also ensures that
703          * nhi_interrupt_work cannot reschedule ring->work.
704          */
705         if (ring->is_tx)
706                 ring->nhi->tx_rings[ring->hop] = NULL;
707         else
708                 ring->nhi->rx_rings[ring->hop] = NULL;
709
710         if (ring->running) {
711                 dev_WARN(&ring->nhi->pdev->dev, "%s %d still running\n",
712                          RING_TYPE(ring), ring->hop);
713         }
714         spin_unlock_irq(&ring->nhi->lock);
715
716         ring_release_msix(ring);
717
718         dma_free_coherent(&ring->nhi->pdev->dev,
719                           ring->size * sizeof(*ring->descriptors),
720                           ring->descriptors, ring->descriptors_dma);
721
722         ring->descriptors = NULL;
723         ring->descriptors_dma = 0;
724
725
726         dev_dbg(&ring->nhi->pdev->dev, "freeing %s %d\n", RING_TYPE(ring),
727                 ring->hop);
728
729         /**
730          * ring->work can no longer be scheduled (it is scheduled only
731          * by nhi_interrupt_work, ring_stop and ring_msix). Wait for it
732          * to finish before freeing the ring.
733          */
734         flush_work(&ring->work);
735         kfree(ring);
736 }
737 EXPORT_SYMBOL_GPL(tb_ring_free);
738
739 /**
740  * nhi_mailbox_cmd() - Send a command through NHI mailbox
741  * @nhi: Pointer to the NHI structure
742  * @cmd: Command to send
743  * @data: Data to be send with the command
744  *
745  * Sends mailbox command to the firmware running on NHI. Returns %0 in
746  * case of success and negative errno in case of failure.
747  */
748 int nhi_mailbox_cmd(struct tb_nhi *nhi, enum nhi_mailbox_cmd cmd, u32 data)
749 {
750         ktime_t timeout;
751         u32 val;
752
753         iowrite32(data, nhi->iobase + REG_INMAIL_DATA);
754
755         val = ioread32(nhi->iobase + REG_INMAIL_CMD);
756         val &= ~(REG_INMAIL_CMD_MASK | REG_INMAIL_ERROR);
757         val |= REG_INMAIL_OP_REQUEST | cmd;
758         iowrite32(val, nhi->iobase + REG_INMAIL_CMD);
759
760         timeout = ktime_add_ms(ktime_get(), NHI_MAILBOX_TIMEOUT);
761         do {
762                 val = ioread32(nhi->iobase + REG_INMAIL_CMD);
763                 if (!(val & REG_INMAIL_OP_REQUEST))
764                         break;
765                 usleep_range(10, 20);
766         } while (ktime_before(ktime_get(), timeout));
767
768         if (val & REG_INMAIL_OP_REQUEST)
769                 return -ETIMEDOUT;
770         if (val & REG_INMAIL_ERROR)
771                 return -EIO;
772
773         return 0;
774 }
775
776 /**
777  * nhi_mailbox_mode() - Return current firmware operation mode
778  * @nhi: Pointer to the NHI structure
779  *
780  * The function reads current firmware operation mode using NHI mailbox
781  * registers and returns it to the caller.
782  */
783 enum nhi_fw_mode nhi_mailbox_mode(struct tb_nhi *nhi)
784 {
785         u32 val;
786
787         val = ioread32(nhi->iobase + REG_OUTMAIL_CMD);
788         val &= REG_OUTMAIL_CMD_OPMODE_MASK;
789         val >>= REG_OUTMAIL_CMD_OPMODE_SHIFT;
790
791         return (enum nhi_fw_mode)val;
792 }
793
794 static void nhi_interrupt_work(struct work_struct *work)
795 {
796         struct tb_nhi *nhi = container_of(work, typeof(*nhi), interrupt_work);
797         int value = 0; /* Suppress uninitialized usage warning. */
798         int bit;
799         int hop = -1;
800         int type = 0; /* current interrupt type 0: TX, 1: RX, 2: RX overflow */
801         struct tb_ring *ring;
802
803         spin_lock_irq(&nhi->lock);
804
805         /*
806          * Starting at REG_RING_NOTIFY_BASE there are three status bitfields
807          * (TX, RX, RX overflow). We iterate over the bits and read a new
808          * dwords as required. The registers are cleared on read.
809          */
810         for (bit = 0; bit < 3 * nhi->hop_count; bit++) {
811                 if (bit % 32 == 0)
812                         value = ioread32(nhi->iobase
813                                          + REG_RING_NOTIFY_BASE
814                                          + 4 * (bit / 32));
815                 if (++hop == nhi->hop_count) {
816                         hop = 0;
817                         type++;
818                 }
819                 if ((value & (1 << (bit % 32))) == 0)
820                         continue;
821                 if (type == 2) {
822                         dev_warn(&nhi->pdev->dev,
823                                  "RX overflow for ring %d\n",
824                                  hop);
825                         continue;
826                 }
827                 if (type == 0)
828                         ring = nhi->tx_rings[hop];
829                 else
830                         ring = nhi->rx_rings[hop];
831                 if (ring == NULL) {
832                         dev_warn(&nhi->pdev->dev,
833                                  "got interrupt for inactive %s ring %d\n",
834                                  type ? "RX" : "TX",
835                                  hop);
836                         continue;
837                 }
838
839                 spin_lock(&ring->lock);
840                 __ring_interrupt(ring);
841                 spin_unlock(&ring->lock);
842         }
843         spin_unlock_irq(&nhi->lock);
844 }
845
846 static irqreturn_t nhi_msi(int irq, void *data)
847 {
848         struct tb_nhi *nhi = data;
849         schedule_work(&nhi->interrupt_work);
850         return IRQ_HANDLED;
851 }
852
853 static int __nhi_suspend_noirq(struct device *dev, bool wakeup)
854 {
855         struct pci_dev *pdev = to_pci_dev(dev);
856         struct tb *tb = pci_get_drvdata(pdev);
857         struct tb_nhi *nhi = tb->nhi;
858         int ret;
859
860         ret = tb_domain_suspend_noirq(tb);
861         if (ret)
862                 return ret;
863
864         if (nhi->ops && nhi->ops->suspend_noirq) {
865                 ret = nhi->ops->suspend_noirq(tb->nhi, wakeup);
866                 if (ret)
867                         return ret;
868         }
869
870         return 0;
871 }
872
873 static int nhi_suspend_noirq(struct device *dev)
874 {
875         return __nhi_suspend_noirq(dev, device_may_wakeup(dev));
876 }
877
878 static int nhi_freeze_noirq(struct device *dev)
879 {
880         struct pci_dev *pdev = to_pci_dev(dev);
881         struct tb *tb = pci_get_drvdata(pdev);
882
883         return tb_domain_freeze_noirq(tb);
884 }
885
886 static int nhi_thaw_noirq(struct device *dev)
887 {
888         struct pci_dev *pdev = to_pci_dev(dev);
889         struct tb *tb = pci_get_drvdata(pdev);
890
891         return tb_domain_thaw_noirq(tb);
892 }
893
894 static bool nhi_wake_supported(struct pci_dev *pdev)
895 {
896         u8 val;
897
898         /*
899          * If power rails are sustainable for wakeup from S4 this
900          * property is set by the BIOS.
901          */
902         if (device_property_read_u8(&pdev->dev, "WAKE_SUPPORTED", &val))
903                 return !!val;
904
905         return true;
906 }
907
908 static int nhi_poweroff_noirq(struct device *dev)
909 {
910         struct pci_dev *pdev = to_pci_dev(dev);
911         bool wakeup;
912
913         wakeup = device_may_wakeup(dev) && nhi_wake_supported(pdev);
914         return __nhi_suspend_noirq(dev, wakeup);
915 }
916
917 static void nhi_enable_int_throttling(struct tb_nhi *nhi)
918 {
919         /* Throttling is specified in 256ns increments */
920         u32 throttle = DIV_ROUND_UP(128 * NSEC_PER_USEC, 256);
921         unsigned int i;
922
923         /*
924          * Configure interrupt throttling for all vectors even if we
925          * only use few.
926          */
927         for (i = 0; i < MSIX_MAX_VECS; i++) {
928                 u32 reg = REG_INT_THROTTLING_RATE + i * 4;
929                 iowrite32(throttle, nhi->iobase + reg);
930         }
931 }
932
933 static int nhi_resume_noirq(struct device *dev)
934 {
935         struct pci_dev *pdev = to_pci_dev(dev);
936         struct tb *tb = pci_get_drvdata(pdev);
937         struct tb_nhi *nhi = tb->nhi;
938         int ret;
939
940         /*
941          * Check that the device is still there. It may be that the user
942          * unplugged last device which causes the host controller to go
943          * away on PCs.
944          */
945         if (!pci_device_is_present(pdev)) {
946                 nhi->going_away = true;
947         } else {
948                 if (nhi->ops && nhi->ops->resume_noirq) {
949                         ret = nhi->ops->resume_noirq(nhi);
950                         if (ret)
951                                 return ret;
952                 }
953                 nhi_enable_int_throttling(tb->nhi);
954         }
955
956         return tb_domain_resume_noirq(tb);
957 }
958
959 static int nhi_suspend(struct device *dev)
960 {
961         struct pci_dev *pdev = to_pci_dev(dev);
962         struct tb *tb = pci_get_drvdata(pdev);
963
964         return tb_domain_suspend(tb);
965 }
966
967 static void nhi_complete(struct device *dev)
968 {
969         struct pci_dev *pdev = to_pci_dev(dev);
970         struct tb *tb = pci_get_drvdata(pdev);
971
972         /*
973          * If we were runtime suspended when system suspend started,
974          * schedule runtime resume now. It should bring the domain back
975          * to functional state.
976          */
977         if (pm_runtime_suspended(&pdev->dev))
978                 pm_runtime_resume(&pdev->dev);
979         else
980                 tb_domain_complete(tb);
981 }
982
983 static int nhi_runtime_suspend(struct device *dev)
984 {
985         struct pci_dev *pdev = to_pci_dev(dev);
986         struct tb *tb = pci_get_drvdata(pdev);
987         struct tb_nhi *nhi = tb->nhi;
988         int ret;
989
990         ret = tb_domain_runtime_suspend(tb);
991         if (ret)
992                 return ret;
993
994         if (nhi->ops && nhi->ops->runtime_suspend) {
995                 ret = nhi->ops->runtime_suspend(tb->nhi);
996                 if (ret)
997                         return ret;
998         }
999         return 0;
1000 }
1001
1002 static int nhi_runtime_resume(struct device *dev)
1003 {
1004         struct pci_dev *pdev = to_pci_dev(dev);
1005         struct tb *tb = pci_get_drvdata(pdev);
1006         struct tb_nhi *nhi = tb->nhi;
1007         int ret;
1008
1009         if (nhi->ops && nhi->ops->runtime_resume) {
1010                 ret = nhi->ops->runtime_resume(nhi);
1011                 if (ret)
1012                         return ret;
1013         }
1014
1015         nhi_enable_int_throttling(nhi);
1016         return tb_domain_runtime_resume(tb);
1017 }
1018
1019 static void nhi_shutdown(struct tb_nhi *nhi)
1020 {
1021         int i;
1022
1023         dev_dbg(&nhi->pdev->dev, "shutdown\n");
1024
1025         for (i = 0; i < nhi->hop_count; i++) {
1026                 if (nhi->tx_rings[i])
1027                         dev_WARN(&nhi->pdev->dev,
1028                                  "TX ring %d is still active\n", i);
1029                 if (nhi->rx_rings[i])
1030                         dev_WARN(&nhi->pdev->dev,
1031                                  "RX ring %d is still active\n", i);
1032         }
1033         nhi_disable_interrupts(nhi);
1034         /*
1035          * We have to release the irq before calling flush_work. Otherwise an
1036          * already executing IRQ handler could call schedule_work again.
1037          */
1038         if (!nhi->pdev->msix_enabled) {
1039                 devm_free_irq(&nhi->pdev->dev, nhi->pdev->irq, nhi);
1040                 flush_work(&nhi->interrupt_work);
1041         }
1042         ida_destroy(&nhi->msix_ida);
1043
1044         if (nhi->ops && nhi->ops->shutdown)
1045                 nhi->ops->shutdown(nhi);
1046 }
1047
1048 static int nhi_init_msi(struct tb_nhi *nhi)
1049 {
1050         struct pci_dev *pdev = nhi->pdev;
1051         int res, irq, nvec;
1052
1053         /* In case someone left them on. */
1054         nhi_disable_interrupts(nhi);
1055
1056         nhi_enable_int_throttling(nhi);
1057
1058         ida_init(&nhi->msix_ida);
1059
1060         /*
1061          * The NHI has 16 MSI-X vectors or a single MSI. We first try to
1062          * get all MSI-X vectors and if we succeed, each ring will have
1063          * one MSI-X. If for some reason that does not work out, we
1064          * fallback to a single MSI.
1065          */
1066         nvec = pci_alloc_irq_vectors(pdev, MSIX_MIN_VECS, MSIX_MAX_VECS,
1067                                      PCI_IRQ_MSIX);
1068         if (nvec < 0) {
1069                 nvec = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
1070                 if (nvec < 0)
1071                         return nvec;
1072
1073                 INIT_WORK(&nhi->interrupt_work, nhi_interrupt_work);
1074
1075                 irq = pci_irq_vector(nhi->pdev, 0);
1076                 if (irq < 0)
1077                         return irq;
1078
1079                 res = devm_request_irq(&pdev->dev, irq, nhi_msi,
1080                                        IRQF_NO_SUSPEND, "thunderbolt", nhi);
1081                 if (res) {
1082                         dev_err(&pdev->dev, "request_irq failed, aborting\n");
1083                         return res;
1084                 }
1085         }
1086
1087         return 0;
1088 }
1089
1090 static bool nhi_imr_valid(struct pci_dev *pdev)
1091 {
1092         u8 val;
1093
1094         if (!device_property_read_u8(&pdev->dev, "IMR_VALID", &val))
1095                 return !!val;
1096
1097         return true;
1098 }
1099
1100 /*
1101  * During suspend the Thunderbolt controller is reset and all PCIe
1102  * tunnels are lost. The NHI driver will try to reestablish all tunnels
1103  * during resume. This adds device links between the tunneled PCIe
1104  * downstream ports and the NHI so that the device core will make sure
1105  * NHI is resumed first before the rest.
1106  */
1107 static void tb_apple_add_links(struct tb_nhi *nhi)
1108 {
1109         struct pci_dev *upstream, *pdev;
1110
1111         if (!x86_apple_machine)
1112                 return;
1113
1114         switch (nhi->pdev->device) {
1115         case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1116         case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
1117         case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI:
1118         case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI:
1119                 break;
1120         default:
1121                 return;
1122         }
1123
1124         upstream = pci_upstream_bridge(nhi->pdev);
1125         while (upstream) {
1126                 if (!pci_is_pcie(upstream))
1127                         return;
1128                 if (pci_pcie_type(upstream) == PCI_EXP_TYPE_UPSTREAM)
1129                         break;
1130                 upstream = pci_upstream_bridge(upstream);
1131         }
1132
1133         if (!upstream)
1134                 return;
1135
1136         /*
1137          * For each hotplug downstream port, create add device link
1138          * back to NHI so that PCIe tunnels can be re-established after
1139          * sleep.
1140          */
1141         for_each_pci_bridge(pdev, upstream->subordinate) {
1142                 const struct device_link *link;
1143
1144                 if (!pci_is_pcie(pdev))
1145                         continue;
1146                 if (pci_pcie_type(pdev) != PCI_EXP_TYPE_DOWNSTREAM ||
1147                     !pdev->is_hotplug_bridge)
1148                         continue;
1149
1150                 link = device_link_add(&pdev->dev, &nhi->pdev->dev,
1151                                        DL_FLAG_AUTOREMOVE_SUPPLIER |
1152                                        DL_FLAG_PM_RUNTIME);
1153                 if (link) {
1154                         dev_dbg(&nhi->pdev->dev, "created link from %s\n",
1155                                 dev_name(&pdev->dev));
1156                 } else {
1157                         dev_warn(&nhi->pdev->dev, "device link creation from %s failed\n",
1158                                  dev_name(&pdev->dev));
1159                 }
1160         }
1161 }
1162
1163 static int nhi_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1164 {
1165         struct tb_nhi *nhi;
1166         struct tb *tb;
1167         int res;
1168
1169         if (!nhi_imr_valid(pdev)) {
1170                 dev_warn(&pdev->dev, "firmware image not valid, aborting\n");
1171                 return -ENODEV;
1172         }
1173
1174         res = pcim_enable_device(pdev);
1175         if (res) {
1176                 dev_err(&pdev->dev, "cannot enable PCI device, aborting\n");
1177                 return res;
1178         }
1179
1180         res = pcim_iomap_regions(pdev, 1 << 0, "thunderbolt");
1181         if (res) {
1182                 dev_err(&pdev->dev, "cannot obtain PCI resources, aborting\n");
1183                 return res;
1184         }
1185
1186         nhi = devm_kzalloc(&pdev->dev, sizeof(*nhi), GFP_KERNEL);
1187         if (!nhi)
1188                 return -ENOMEM;
1189
1190         nhi->pdev = pdev;
1191         nhi->ops = (const struct tb_nhi_ops *)id->driver_data;
1192         /* cannot fail - table is allocated bin pcim_iomap_regions */
1193         nhi->iobase = pcim_iomap_table(pdev)[0];
1194         nhi->hop_count = ioread32(nhi->iobase + REG_HOP_COUNT) & 0x3ff;
1195         dev_dbg(&pdev->dev, "total paths: %d\n", nhi->hop_count);
1196
1197         nhi->tx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count,
1198                                      sizeof(*nhi->tx_rings), GFP_KERNEL);
1199         nhi->rx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count,
1200                                      sizeof(*nhi->rx_rings), GFP_KERNEL);
1201         if (!nhi->tx_rings || !nhi->rx_rings)
1202                 return -ENOMEM;
1203
1204         res = nhi_init_msi(nhi);
1205         if (res) {
1206                 dev_err(&pdev->dev, "cannot enable MSI, aborting\n");
1207                 return res;
1208         }
1209
1210         spin_lock_init(&nhi->lock);
1211
1212         res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1213         if (res)
1214                 res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1215         if (res) {
1216                 dev_err(&pdev->dev, "failed to set DMA mask\n");
1217                 return res;
1218         }
1219
1220         pci_set_master(pdev);
1221
1222         if (nhi->ops && nhi->ops->init) {
1223                 res = nhi->ops->init(nhi);
1224                 if (res)
1225                         return res;
1226         }
1227
1228         tb_apple_add_links(nhi);
1229         tb_acpi_add_links(nhi);
1230
1231         tb = icm_probe(nhi);
1232         if (!tb)
1233                 tb = tb_probe(nhi);
1234         if (!tb) {
1235                 dev_err(&nhi->pdev->dev,
1236                         "failed to determine connection manager, aborting\n");
1237                 return -ENODEV;
1238         }
1239
1240         dev_dbg(&nhi->pdev->dev, "NHI initialized, starting thunderbolt\n");
1241
1242         res = tb_domain_add(tb);
1243         if (res) {
1244                 /*
1245                  * At this point the RX/TX rings might already have been
1246                  * activated. Do a proper shutdown.
1247                  */
1248                 tb_domain_put(tb);
1249                 nhi_shutdown(nhi);
1250                 return res;
1251         }
1252         pci_set_drvdata(pdev, tb);
1253
1254         device_wakeup_enable(&pdev->dev);
1255
1256         pm_runtime_allow(&pdev->dev);
1257         pm_runtime_set_autosuspend_delay(&pdev->dev, TB_AUTOSUSPEND_DELAY);
1258         pm_runtime_use_autosuspend(&pdev->dev);
1259         pm_runtime_put_autosuspend(&pdev->dev);
1260
1261         return 0;
1262 }
1263
1264 static void nhi_remove(struct pci_dev *pdev)
1265 {
1266         struct tb *tb = pci_get_drvdata(pdev);
1267         struct tb_nhi *nhi = tb->nhi;
1268
1269         pm_runtime_get_sync(&pdev->dev);
1270         pm_runtime_dont_use_autosuspend(&pdev->dev);
1271         pm_runtime_forbid(&pdev->dev);
1272
1273         tb_domain_remove(tb);
1274         nhi_shutdown(nhi);
1275 }
1276
1277 /*
1278  * The tunneled pci bridges are siblings of us. Use resume_noirq to reenable
1279  * the tunnels asap. A corresponding pci quirk blocks the downstream bridges
1280  * resume_noirq until we are done.
1281  */
1282 static const struct dev_pm_ops nhi_pm_ops = {
1283         .suspend_noirq = nhi_suspend_noirq,
1284         .resume_noirq = nhi_resume_noirq,
1285         .freeze_noirq = nhi_freeze_noirq,  /*
1286                                             * we just disable hotplug, the
1287                                             * pci-tunnels stay alive.
1288                                             */
1289         .thaw_noirq = nhi_thaw_noirq,
1290         .restore_noirq = nhi_resume_noirq,
1291         .suspend = nhi_suspend,
1292         .poweroff_noirq = nhi_poweroff_noirq,
1293         .poweroff = nhi_suspend,
1294         .complete = nhi_complete,
1295         .runtime_suspend = nhi_runtime_suspend,
1296         .runtime_resume = nhi_runtime_resume,
1297 };
1298
1299 static struct pci_device_id nhi_ids[] = {
1300         /*
1301          * We have to specify class, the TB bridges use the same device and
1302          * vendor (sub)id on gen 1 and gen 2 controllers.
1303          */
1304         {
1305                 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1306                 .vendor = PCI_VENDOR_ID_INTEL,
1307                 .device = PCI_DEVICE_ID_INTEL_LIGHT_RIDGE,
1308                 .subvendor = 0x2222, .subdevice = 0x1111,
1309         },
1310         {
1311                 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1312                 .vendor = PCI_VENDOR_ID_INTEL,
1313                 .device = PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C,
1314                 .subvendor = 0x2222, .subdevice = 0x1111,
1315         },
1316         {
1317                 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1318                 .vendor = PCI_VENDOR_ID_INTEL,
1319                 .device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI,
1320                 .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID,
1321         },
1322         {
1323                 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1324                 .vendor = PCI_VENDOR_ID_INTEL,
1325                 .device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI,
1326                 .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID,
1327         },
1328
1329         /* Thunderbolt 3 */
1330         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_NHI) },
1331         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_NHI) },
1332         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_USBONLY_NHI) },
1333         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_NHI) },
1334         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_USBONLY_NHI) },
1335         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_NHI) },
1336         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_NHI) },
1337         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_USBONLY_NHI) },
1338         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_NHI) },
1339         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_NHI) },
1340         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI0),
1341           .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1342         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI1),
1343           .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1344         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_NHI0),
1345           .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1346         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_NHI1),
1347           .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1348         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_H_NHI0),
1349           .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1350         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_H_NHI1),
1351           .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1352
1353         /* Any USB4 compliant host */
1354         { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_USB_USB4, ~0) },
1355
1356         { 0,}
1357 };
1358
1359 MODULE_DEVICE_TABLE(pci, nhi_ids);
1360 MODULE_LICENSE("GPL");
1361
1362 static struct pci_driver nhi_driver = {
1363         .name = "thunderbolt",
1364         .id_table = nhi_ids,
1365         .probe = nhi_probe,
1366         .remove = nhi_remove,
1367         .shutdown = nhi_remove,
1368         .driver.pm = &nhi_pm_ops,
1369 };
1370
1371 static int __init nhi_init(void)
1372 {
1373         int ret;
1374
1375         ret = tb_domain_init();
1376         if (ret)
1377                 return ret;
1378         ret = pci_register_driver(&nhi_driver);
1379         if (ret)
1380                 tb_domain_exit();
1381         return ret;
1382 }
1383
1384 static void __exit nhi_unload(void)
1385 {
1386         pci_unregister_driver(&nhi_driver);
1387         tb_domain_exit();
1388 }
1389
1390 rootfs_initcall(nhi_init);
1391 module_exit(nhi_unload);