GNU Linux-libre 4.9.333-gnu1
[releases.git] / drivers / thermal / samsung / exynos_tmu.c
1 /*
2  * exynos_tmu.c - Samsung EXYNOS TMU (Thermal Management Unit)
3  *
4  *  Copyright (C) 2014 Samsung Electronics
5  *  Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
6  *  Lukasz Majewski <l.majewski@samsung.com>
7  *
8  *  Copyright (C) 2011 Samsung Electronics
9  *  Donggeun Kim <dg77.kim@samsung.com>
10  *  Amit Daniel Kachhap <amit.kachhap@linaro.org>
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2 of the License, or
15  * (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
25  *
26  */
27
28 #include <linux/clk.h>
29 #include <linux/io.h>
30 #include <linux/interrupt.h>
31 #include <linux/module.h>
32 #include <linux/of.h>
33 #include <linux/of_address.h>
34 #include <linux/of_irq.h>
35 #include <linux/platform_device.h>
36 #include <linux/regulator/consumer.h>
37
38 #include "exynos_tmu.h"
39 #include "../thermal_core.h"
40
41 /* Exynos generic registers */
42 #define EXYNOS_TMU_REG_TRIMINFO         0x0
43 #define EXYNOS_TMU_REG_CONTROL          0x20
44 #define EXYNOS_TMU_REG_STATUS           0x28
45 #define EXYNOS_TMU_REG_CURRENT_TEMP     0x40
46 #define EXYNOS_TMU_REG_INTEN            0x70
47 #define EXYNOS_TMU_REG_INTSTAT          0x74
48 #define EXYNOS_TMU_REG_INTCLEAR         0x78
49
50 #define EXYNOS_TMU_TEMP_MASK            0xff
51 #define EXYNOS_TMU_REF_VOLTAGE_SHIFT    24
52 #define EXYNOS_TMU_REF_VOLTAGE_MASK     0x1f
53 #define EXYNOS_TMU_BUF_SLOPE_SEL_MASK   0xf
54 #define EXYNOS_TMU_BUF_SLOPE_SEL_SHIFT  8
55 #define EXYNOS_TMU_CORE_EN_SHIFT        0
56
57 /* Exynos3250 specific registers */
58 #define EXYNOS_TMU_TRIMINFO_CON1        0x10
59
60 /* Exynos4210 specific registers */
61 #define EXYNOS4210_TMU_REG_THRESHOLD_TEMP       0x44
62 #define EXYNOS4210_TMU_REG_TRIG_LEVEL0  0x50
63
64 /* Exynos5250, Exynos4412, Exynos3250 specific registers */
65 #define EXYNOS_TMU_TRIMINFO_CON2        0x14
66 #define EXYNOS_THD_TEMP_RISE            0x50
67 #define EXYNOS_THD_TEMP_FALL            0x54
68 #define EXYNOS_EMUL_CON         0x80
69
70 #define EXYNOS_TRIMINFO_RELOAD_ENABLE   1
71 #define EXYNOS_TRIMINFO_25_SHIFT        0
72 #define EXYNOS_TRIMINFO_85_SHIFT        8
73 #define EXYNOS_TMU_TRIP_MODE_SHIFT      13
74 #define EXYNOS_TMU_TRIP_MODE_MASK       0x7
75 #define EXYNOS_TMU_THERM_TRIP_EN_SHIFT  12
76
77 #define EXYNOS_TMU_INTEN_RISE0_SHIFT    0
78 #define EXYNOS_TMU_INTEN_RISE1_SHIFT    4
79 #define EXYNOS_TMU_INTEN_RISE2_SHIFT    8
80 #define EXYNOS_TMU_INTEN_RISE3_SHIFT    12
81 #define EXYNOS_TMU_INTEN_FALL0_SHIFT    16
82
83 #define EXYNOS_EMUL_TIME        0x57F0
84 #define EXYNOS_EMUL_TIME_MASK   0xffff
85 #define EXYNOS_EMUL_TIME_SHIFT  16
86 #define EXYNOS_EMUL_DATA_SHIFT  8
87 #define EXYNOS_EMUL_DATA_MASK   0xFF
88 #define EXYNOS_EMUL_ENABLE      0x1
89
90 /* Exynos5260 specific */
91 #define EXYNOS5260_TMU_REG_INTEN                0xC0
92 #define EXYNOS5260_TMU_REG_INTSTAT              0xC4
93 #define EXYNOS5260_TMU_REG_INTCLEAR             0xC8
94 #define EXYNOS5260_EMUL_CON                     0x100
95
96 /* Exynos4412 specific */
97 #define EXYNOS4412_MUX_ADDR_VALUE          6
98 #define EXYNOS4412_MUX_ADDR_SHIFT          20
99
100 /* Exynos5433 specific registers */
101 #define EXYNOS5433_TMU_REG_CONTROL1             0x024
102 #define EXYNOS5433_TMU_SAMPLING_INTERVAL        0x02c
103 #define EXYNOS5433_TMU_COUNTER_VALUE0           0x030
104 #define EXYNOS5433_TMU_COUNTER_VALUE1           0x034
105 #define EXYNOS5433_TMU_REG_CURRENT_TEMP1        0x044
106 #define EXYNOS5433_THD_TEMP_RISE3_0             0x050
107 #define EXYNOS5433_THD_TEMP_RISE7_4             0x054
108 #define EXYNOS5433_THD_TEMP_FALL3_0             0x060
109 #define EXYNOS5433_THD_TEMP_FALL7_4             0x064
110 #define EXYNOS5433_TMU_REG_INTEN                0x0c0
111 #define EXYNOS5433_TMU_REG_INTPEND              0x0c8
112 #define EXYNOS5433_TMU_EMUL_CON                 0x110
113 #define EXYNOS5433_TMU_PD_DET_EN                0x130
114
115 #define EXYNOS5433_TRIMINFO_SENSOR_ID_SHIFT     16
116 #define EXYNOS5433_TRIMINFO_CALIB_SEL_SHIFT     23
117 #define EXYNOS5433_TRIMINFO_SENSOR_ID_MASK      \
118                         (0xf << EXYNOS5433_TRIMINFO_SENSOR_ID_SHIFT)
119 #define EXYNOS5433_TRIMINFO_CALIB_SEL_MASK      BIT(23)
120
121 #define EXYNOS5433_TRIMINFO_ONE_POINT_TRIMMING  0
122 #define EXYNOS5433_TRIMINFO_TWO_POINT_TRIMMING  1
123
124 #define EXYNOS5433_PD_DET_EN                    1
125
126 /*exynos5440 specific registers*/
127 #define EXYNOS5440_TMU_S0_7_TRIM                0x000
128 #define EXYNOS5440_TMU_S0_7_CTRL                0x020
129 #define EXYNOS5440_TMU_S0_7_DEBUG               0x040
130 #define EXYNOS5440_TMU_S0_7_TEMP                0x0f0
131 #define EXYNOS5440_TMU_S0_7_TH0                 0x110
132 #define EXYNOS5440_TMU_S0_7_TH1                 0x130
133 #define EXYNOS5440_TMU_S0_7_TH2                 0x150
134 #define EXYNOS5440_TMU_S0_7_IRQEN               0x210
135 #define EXYNOS5440_TMU_S0_7_IRQ                 0x230
136 /* exynos5440 common registers */
137 #define EXYNOS5440_TMU_IRQ_STATUS               0x000
138 #define EXYNOS5440_TMU_PMIN                     0x004
139
140 #define EXYNOS5440_TMU_INTEN_RISE0_SHIFT        0
141 #define EXYNOS5440_TMU_INTEN_RISE1_SHIFT        1
142 #define EXYNOS5440_TMU_INTEN_RISE2_SHIFT        2
143 #define EXYNOS5440_TMU_INTEN_RISE3_SHIFT        3
144 #define EXYNOS5440_TMU_INTEN_FALL0_SHIFT        4
145 #define EXYNOS5440_TMU_TH_RISE4_SHIFT           24
146 #define EXYNOS5440_EFUSE_SWAP_OFFSET            8
147
148 /* Exynos7 specific registers */
149 #define EXYNOS7_THD_TEMP_RISE7_6                0x50
150 #define EXYNOS7_THD_TEMP_FALL7_6                0x60
151 #define EXYNOS7_TMU_REG_INTEN                   0x110
152 #define EXYNOS7_TMU_REG_INTPEND                 0x118
153 #define EXYNOS7_TMU_REG_EMUL_CON                0x160
154
155 #define EXYNOS7_TMU_TEMP_MASK                   0x1ff
156 #define EXYNOS7_PD_DET_EN_SHIFT                 23
157 #define EXYNOS7_TMU_INTEN_RISE0_SHIFT           0
158 #define EXYNOS7_TMU_INTEN_RISE1_SHIFT           1
159 #define EXYNOS7_TMU_INTEN_RISE2_SHIFT           2
160 #define EXYNOS7_TMU_INTEN_RISE3_SHIFT           3
161 #define EXYNOS7_TMU_INTEN_RISE4_SHIFT           4
162 #define EXYNOS7_TMU_INTEN_RISE5_SHIFT           5
163 #define EXYNOS7_TMU_INTEN_RISE6_SHIFT           6
164 #define EXYNOS7_TMU_INTEN_RISE7_SHIFT           7
165 #define EXYNOS7_EMUL_DATA_SHIFT                 7
166 #define EXYNOS7_EMUL_DATA_MASK                  0x1ff
167
168 #define MCELSIUS        1000
169 /**
170  * struct exynos_tmu_data : A structure to hold the private data of the TMU
171         driver
172  * @id: identifier of the one instance of the TMU controller.
173  * @pdata: pointer to the tmu platform/configuration data
174  * @base: base address of the single instance of the TMU controller.
175  * @base_second: base address of the common registers of the TMU controller.
176  * @irq: irq number of the TMU controller.
177  * @soc: id of the SOC type.
178  * @irq_work: pointer to the irq work structure.
179  * @lock: lock to implement synchronization.
180  * @clk: pointer to the clock structure.
181  * @clk_sec: pointer to the clock structure for accessing the base_second.
182  * @sclk: pointer to the clock structure for accessing the tmu special clk.
183  * @temp_error1: fused value of the first point trim.
184  * @temp_error2: fused value of the second point trim.
185  * @regulator: pointer to the TMU regulator structure.
186  * @reg_conf: pointer to structure to register with core thermal.
187  * @ntrip: number of supported trip points.
188  * @enabled: current status of TMU device
189  * @tmu_initialize: SoC specific TMU initialization method
190  * @tmu_control: SoC specific TMU control method
191  * @tmu_read: SoC specific TMU temperature read method
192  * @tmu_set_emulation: SoC specific TMU emulation setting method
193  * @tmu_clear_irqs: SoC specific TMU interrupts clearing method
194  */
195 struct exynos_tmu_data {
196         int id;
197         struct exynos_tmu_platform_data *pdata;
198         void __iomem *base;
199         void __iomem *base_second;
200         int irq;
201         enum soc_type soc;
202         struct work_struct irq_work;
203         struct mutex lock;
204         struct clk *clk, *clk_sec, *sclk;
205         u16 temp_error1, temp_error2;
206         struct regulator *regulator;
207         struct thermal_zone_device *tzd;
208         unsigned int ntrip;
209         bool enabled;
210
211         int (*tmu_initialize)(struct platform_device *pdev);
212         void (*tmu_control)(struct platform_device *pdev, bool on);
213         int (*tmu_read)(struct exynos_tmu_data *data);
214         void (*tmu_set_emulation)(struct exynos_tmu_data *data, int temp);
215         void (*tmu_clear_irqs)(struct exynos_tmu_data *data);
216 };
217
218 static void exynos_report_trigger(struct exynos_tmu_data *p)
219 {
220         char data[10], *envp[] = { data, NULL };
221         struct thermal_zone_device *tz = p->tzd;
222         int temp;
223         unsigned int i;
224
225         if (!tz) {
226                 pr_err("No thermal zone device defined\n");
227                 return;
228         }
229
230         thermal_zone_device_update(tz, THERMAL_EVENT_UNSPECIFIED);
231
232         mutex_lock(&tz->lock);
233         /* Find the level for which trip happened */
234         for (i = 0; i < of_thermal_get_ntrips(tz); i++) {
235                 tz->ops->get_trip_temp(tz, i, &temp);
236                 if (tz->last_temperature < temp)
237                         break;
238         }
239
240         snprintf(data, sizeof(data), "%u", i);
241         kobject_uevent_env(&tz->device.kobj, KOBJ_CHANGE, envp);
242         mutex_unlock(&tz->lock);
243 }
244
245 /*
246  * TMU treats temperature as a mapped temperature code.
247  * The temperature is converted differently depending on the calibration type.
248  */
249 static int temp_to_code(struct exynos_tmu_data *data, u8 temp)
250 {
251         struct exynos_tmu_platform_data *pdata = data->pdata;
252         int temp_code;
253
254         switch (pdata->cal_type) {
255         case TYPE_TWO_POINT_TRIMMING:
256                 temp_code = (temp - pdata->first_point_trim) *
257                         (data->temp_error2 - data->temp_error1) /
258                         (pdata->second_point_trim - pdata->first_point_trim) +
259                         data->temp_error1;
260                 break;
261         case TYPE_ONE_POINT_TRIMMING:
262                 temp_code = temp + data->temp_error1 - pdata->first_point_trim;
263                 break;
264         default:
265                 temp_code = temp + pdata->default_temp_offset;
266                 break;
267         }
268
269         return temp_code;
270 }
271
272 /*
273  * Calculate a temperature value from a temperature code.
274  * The unit of the temperature is degree Celsius.
275  */
276 static int code_to_temp(struct exynos_tmu_data *data, u16 temp_code)
277 {
278         struct exynos_tmu_platform_data *pdata = data->pdata;
279         int temp;
280
281         switch (pdata->cal_type) {
282         case TYPE_TWO_POINT_TRIMMING:
283                 temp = (temp_code - data->temp_error1) *
284                         (pdata->second_point_trim - pdata->first_point_trim) /
285                         (data->temp_error2 - data->temp_error1) +
286                         pdata->first_point_trim;
287                 break;
288         case TYPE_ONE_POINT_TRIMMING:
289                 temp = temp_code - data->temp_error1 + pdata->first_point_trim;
290                 break;
291         default:
292                 temp = temp_code - pdata->default_temp_offset;
293                 break;
294         }
295
296         return temp;
297 }
298
299 static void sanitize_temp_error(struct exynos_tmu_data *data, u32 trim_info)
300 {
301         struct exynos_tmu_platform_data *pdata = data->pdata;
302
303         data->temp_error1 = trim_info & EXYNOS_TMU_TEMP_MASK;
304         data->temp_error2 = ((trim_info >> EXYNOS_TRIMINFO_85_SHIFT) &
305                                 EXYNOS_TMU_TEMP_MASK);
306
307         if (!data->temp_error1 ||
308                 (pdata->min_efuse_value > data->temp_error1) ||
309                 (data->temp_error1 > pdata->max_efuse_value))
310                 data->temp_error1 = pdata->efuse_value & EXYNOS_TMU_TEMP_MASK;
311
312         if (!data->temp_error2)
313                 data->temp_error2 =
314                         (pdata->efuse_value >> EXYNOS_TRIMINFO_85_SHIFT) &
315                         EXYNOS_TMU_TEMP_MASK;
316 }
317
318 static u32 get_th_reg(struct exynos_tmu_data *data, u32 threshold, bool falling)
319 {
320         struct thermal_zone_device *tz = data->tzd;
321         const struct thermal_trip * const trips =
322                 of_thermal_get_trip_points(tz);
323         unsigned long temp;
324         int i;
325
326         if (!trips) {
327                 pr_err("%s: Cannot get trip points from of-thermal.c!\n",
328                        __func__);
329                 return 0;
330         }
331
332         for (i = 0; i < of_thermal_get_ntrips(tz); i++) {
333                 if (trips[i].type == THERMAL_TRIP_CRITICAL)
334                         continue;
335
336                 temp = trips[i].temperature / MCELSIUS;
337                 if (falling)
338                         temp -= (trips[i].hysteresis / MCELSIUS);
339                 else
340                         threshold &= ~(0xff << 8 * i);
341
342                 threshold |= temp_to_code(data, temp) << 8 * i;
343         }
344
345         return threshold;
346 }
347
348 static int exynos_tmu_initialize(struct platform_device *pdev)
349 {
350         struct exynos_tmu_data *data = platform_get_drvdata(pdev);
351         int ret;
352
353         if (of_thermal_get_ntrips(data->tzd) > data->ntrip) {
354                 dev_info(&pdev->dev,
355                          "More trip points than supported by this TMU.\n");
356                 dev_info(&pdev->dev,
357                          "%d trip points should be configured in polling mode.\n",
358                          (of_thermal_get_ntrips(data->tzd) - data->ntrip));
359         }
360
361         mutex_lock(&data->lock);
362         clk_enable(data->clk);
363         if (!IS_ERR(data->clk_sec))
364                 clk_enable(data->clk_sec);
365         ret = data->tmu_initialize(pdev);
366         clk_disable(data->clk);
367         mutex_unlock(&data->lock);
368         if (!IS_ERR(data->clk_sec))
369                 clk_disable(data->clk_sec);
370
371         return ret;
372 }
373
374 static u32 get_con_reg(struct exynos_tmu_data *data, u32 con)
375 {
376         struct exynos_tmu_platform_data *pdata = data->pdata;
377
378         if (data->soc == SOC_ARCH_EXYNOS4412 ||
379             data->soc == SOC_ARCH_EXYNOS3250)
380                 con |= (EXYNOS4412_MUX_ADDR_VALUE << EXYNOS4412_MUX_ADDR_SHIFT);
381
382         con &= ~(EXYNOS_TMU_REF_VOLTAGE_MASK << EXYNOS_TMU_REF_VOLTAGE_SHIFT);
383         con |= pdata->reference_voltage << EXYNOS_TMU_REF_VOLTAGE_SHIFT;
384
385         con &= ~(EXYNOS_TMU_BUF_SLOPE_SEL_MASK << EXYNOS_TMU_BUF_SLOPE_SEL_SHIFT);
386         con |= (pdata->gain << EXYNOS_TMU_BUF_SLOPE_SEL_SHIFT);
387
388         if (pdata->noise_cancel_mode) {
389                 con &= ~(EXYNOS_TMU_TRIP_MODE_MASK << EXYNOS_TMU_TRIP_MODE_SHIFT);
390                 con |= (pdata->noise_cancel_mode << EXYNOS_TMU_TRIP_MODE_SHIFT);
391         }
392
393         return con;
394 }
395
396 static void exynos_tmu_control(struct platform_device *pdev, bool on)
397 {
398         struct exynos_tmu_data *data = platform_get_drvdata(pdev);
399
400         mutex_lock(&data->lock);
401         clk_enable(data->clk);
402         data->tmu_control(pdev, on);
403         data->enabled = on;
404         clk_disable(data->clk);
405         mutex_unlock(&data->lock);
406 }
407
408 static int exynos4210_tmu_initialize(struct platform_device *pdev)
409 {
410         struct exynos_tmu_data *data = platform_get_drvdata(pdev);
411         struct thermal_zone_device *tz = data->tzd;
412         const struct thermal_trip * const trips =
413                 of_thermal_get_trip_points(tz);
414         int ret = 0, threshold_code, i;
415         unsigned long reference, temp;
416         unsigned int status;
417
418         if (!trips) {
419                 pr_err("%s: Cannot get trip points from of-thermal.c!\n",
420                        __func__);
421                 ret = -ENODEV;
422                 goto out;
423         }
424
425         status = readb(data->base + EXYNOS_TMU_REG_STATUS);
426         if (!status) {
427                 ret = -EBUSY;
428                 goto out;
429         }
430
431         sanitize_temp_error(data, readl(data->base + EXYNOS_TMU_REG_TRIMINFO));
432
433         /* Write temperature code for threshold */
434         reference = trips[0].temperature / MCELSIUS;
435         threshold_code = temp_to_code(data, reference);
436         if (threshold_code < 0) {
437                 ret = threshold_code;
438                 goto out;
439         }
440         writeb(threshold_code, data->base + EXYNOS4210_TMU_REG_THRESHOLD_TEMP);
441
442         for (i = 0; i < of_thermal_get_ntrips(tz); i++) {
443                 temp = trips[i].temperature / MCELSIUS;
444                 writeb(temp - reference, data->base +
445                        EXYNOS4210_TMU_REG_TRIG_LEVEL0 + i * 4);
446         }
447
448         data->tmu_clear_irqs(data);
449 out:
450         return ret;
451 }
452
453 static int exynos4412_tmu_initialize(struct platform_device *pdev)
454 {
455         struct exynos_tmu_data *data = platform_get_drvdata(pdev);
456         const struct thermal_trip * const trips =
457                 of_thermal_get_trip_points(data->tzd);
458         unsigned int status, trim_info, con, ctrl, rising_threshold;
459         int ret = 0, threshold_code, i;
460         unsigned long crit_temp = 0;
461
462         status = readb(data->base + EXYNOS_TMU_REG_STATUS);
463         if (!status) {
464                 ret = -EBUSY;
465                 goto out;
466         }
467
468         if (data->soc == SOC_ARCH_EXYNOS3250 ||
469             data->soc == SOC_ARCH_EXYNOS4412 ||
470             data->soc == SOC_ARCH_EXYNOS5250) {
471                 if (data->soc == SOC_ARCH_EXYNOS3250) {
472                         ctrl = readl(data->base + EXYNOS_TMU_TRIMINFO_CON1);
473                         ctrl |= EXYNOS_TRIMINFO_RELOAD_ENABLE;
474                         writel(ctrl, data->base + EXYNOS_TMU_TRIMINFO_CON1);
475                 }
476                 ctrl = readl(data->base + EXYNOS_TMU_TRIMINFO_CON2);
477                 ctrl |= EXYNOS_TRIMINFO_RELOAD_ENABLE;
478                 writel(ctrl, data->base + EXYNOS_TMU_TRIMINFO_CON2);
479         }
480
481         /* On exynos5420 the triminfo register is in the shared space */
482         if (data->soc == SOC_ARCH_EXYNOS5420_TRIMINFO)
483                 trim_info = readl(data->base_second + EXYNOS_TMU_REG_TRIMINFO);
484         else
485                 trim_info = readl(data->base + EXYNOS_TMU_REG_TRIMINFO);
486
487         sanitize_temp_error(data, trim_info);
488
489         /* Write temperature code for rising and falling threshold */
490         rising_threshold = readl(data->base + EXYNOS_THD_TEMP_RISE);
491         rising_threshold = get_th_reg(data, rising_threshold, false);
492         writel(rising_threshold, data->base + EXYNOS_THD_TEMP_RISE);
493         writel(get_th_reg(data, 0, true), data->base + EXYNOS_THD_TEMP_FALL);
494
495         data->tmu_clear_irqs(data);
496
497         /* if last threshold limit is also present */
498         for (i = 0; i < of_thermal_get_ntrips(data->tzd); i++) {
499                 if (trips[i].type == THERMAL_TRIP_CRITICAL) {
500                         crit_temp = trips[i].temperature;
501                         break;
502                 }
503         }
504
505         if (i == of_thermal_get_ntrips(data->tzd)) {
506                 pr_err("%s: No CRITICAL trip point defined at of-thermal.c!\n",
507                        __func__);
508                 ret = -EINVAL;
509                 goto out;
510         }
511
512         threshold_code = temp_to_code(data, crit_temp / MCELSIUS);
513         /* 1-4 level to be assigned in th0 reg */
514         rising_threshold &= ~(0xff << 8 * i);
515         rising_threshold |= threshold_code << 8 * i;
516         writel(rising_threshold, data->base + EXYNOS_THD_TEMP_RISE);
517         con = readl(data->base + EXYNOS_TMU_REG_CONTROL);
518         con |= (1 << EXYNOS_TMU_THERM_TRIP_EN_SHIFT);
519         writel(con, data->base + EXYNOS_TMU_REG_CONTROL);
520
521 out:
522         return ret;
523 }
524
525 static int exynos5433_tmu_initialize(struct platform_device *pdev)
526 {
527         struct exynos_tmu_data *data = platform_get_drvdata(pdev);
528         struct exynos_tmu_platform_data *pdata = data->pdata;
529         struct thermal_zone_device *tz = data->tzd;
530         unsigned int status, trim_info;
531         unsigned int rising_threshold = 0, falling_threshold = 0;
532         int temp, temp_hist;
533         int ret = 0, threshold_code, i, sensor_id, cal_type;
534
535         status = readb(data->base + EXYNOS_TMU_REG_STATUS);
536         if (!status) {
537                 ret = -EBUSY;
538                 goto out;
539         }
540
541         trim_info = readl(data->base + EXYNOS_TMU_REG_TRIMINFO);
542         sanitize_temp_error(data, trim_info);
543
544         /* Read the temperature sensor id */
545         sensor_id = (trim_info & EXYNOS5433_TRIMINFO_SENSOR_ID_MASK)
546                                 >> EXYNOS5433_TRIMINFO_SENSOR_ID_SHIFT;
547         dev_info(&pdev->dev, "Temperature sensor ID: 0x%x\n", sensor_id);
548
549         /* Read the calibration mode */
550         writel(trim_info, data->base + EXYNOS_TMU_REG_TRIMINFO);
551         cal_type = (trim_info & EXYNOS5433_TRIMINFO_CALIB_SEL_MASK)
552                                 >> EXYNOS5433_TRIMINFO_CALIB_SEL_SHIFT;
553
554         switch (cal_type) {
555         case EXYNOS5433_TRIMINFO_ONE_POINT_TRIMMING:
556                 pdata->cal_type = TYPE_ONE_POINT_TRIMMING;
557                 break;
558         case EXYNOS5433_TRIMINFO_TWO_POINT_TRIMMING:
559                 pdata->cal_type = TYPE_TWO_POINT_TRIMMING;
560                 break;
561         default:
562                 pdata->cal_type = TYPE_ONE_POINT_TRIMMING;
563                 break;
564         }
565
566         dev_info(&pdev->dev, "Calibration type is %d-point calibration\n",
567                         cal_type ?  2 : 1);
568
569         /* Write temperature code for rising and falling threshold */
570         for (i = 0; i < of_thermal_get_ntrips(tz); i++) {
571                 int rising_reg_offset, falling_reg_offset;
572                 int j = 0;
573
574                 switch (i) {
575                 case 0:
576                 case 1:
577                 case 2:
578                 case 3:
579                         rising_reg_offset = EXYNOS5433_THD_TEMP_RISE3_0;
580                         falling_reg_offset = EXYNOS5433_THD_TEMP_FALL3_0;
581                         j = i;
582                         break;
583                 case 4:
584                 case 5:
585                 case 6:
586                 case 7:
587                         rising_reg_offset = EXYNOS5433_THD_TEMP_RISE7_4;
588                         falling_reg_offset = EXYNOS5433_THD_TEMP_FALL7_4;
589                         j = i - 4;
590                         break;
591                 default:
592                         continue;
593                 }
594
595                 /* Write temperature code for rising threshold */
596                 tz->ops->get_trip_temp(tz, i, &temp);
597                 temp /= MCELSIUS;
598                 threshold_code = temp_to_code(data, temp);
599
600                 rising_threshold = readl(data->base + rising_reg_offset);
601                 rising_threshold &= ~(0xff << j * 8);
602                 rising_threshold |= (threshold_code << j * 8);
603                 writel(rising_threshold, data->base + rising_reg_offset);
604
605                 /* Write temperature code for falling threshold */
606                 tz->ops->get_trip_hyst(tz, i, &temp_hist);
607                 temp_hist = temp - (temp_hist / MCELSIUS);
608                 threshold_code = temp_to_code(data, temp_hist);
609
610                 falling_threshold = readl(data->base + falling_reg_offset);
611                 falling_threshold &= ~(0xff << j * 8);
612                 falling_threshold |= (threshold_code << j * 8);
613                 writel(falling_threshold, data->base + falling_reg_offset);
614         }
615
616         data->tmu_clear_irqs(data);
617 out:
618         return ret;
619 }
620
621 static int exynos5440_tmu_initialize(struct platform_device *pdev)
622 {
623         struct exynos_tmu_data *data = platform_get_drvdata(pdev);
624         unsigned int trim_info = 0, con, rising_threshold;
625         int threshold_code;
626         int crit_temp = 0;
627
628         /*
629          * For exynos5440 soc triminfo value is swapped between TMU0 and
630          * TMU2, so the below logic is needed.
631          */
632         switch (data->id) {
633         case 0:
634                 trim_info = readl(data->base + EXYNOS5440_EFUSE_SWAP_OFFSET +
635                                  EXYNOS5440_TMU_S0_7_TRIM);
636                 break;
637         case 1:
638                 trim_info = readl(data->base + EXYNOS5440_TMU_S0_7_TRIM);
639                 break;
640         case 2:
641                 trim_info = readl(data->base - EXYNOS5440_EFUSE_SWAP_OFFSET +
642                                   EXYNOS5440_TMU_S0_7_TRIM);
643         }
644         sanitize_temp_error(data, trim_info);
645
646         /* Write temperature code for rising and falling threshold */
647         rising_threshold = readl(data->base + EXYNOS5440_TMU_S0_7_TH0);
648         rising_threshold = get_th_reg(data, rising_threshold, false);
649         writel(rising_threshold, data->base + EXYNOS5440_TMU_S0_7_TH0);
650         writel(0, data->base + EXYNOS5440_TMU_S0_7_TH1);
651
652         data->tmu_clear_irqs(data);
653
654         /* if last threshold limit is also present */
655         if (!data->tzd->ops->get_crit_temp(data->tzd, &crit_temp)) {
656                 threshold_code = temp_to_code(data, crit_temp / MCELSIUS);
657                 /* 5th level to be assigned in th2 reg */
658                 rising_threshold =
659                         threshold_code << EXYNOS5440_TMU_TH_RISE4_SHIFT;
660                 writel(rising_threshold, data->base + EXYNOS5440_TMU_S0_7_TH2);
661                 con = readl(data->base + EXYNOS5440_TMU_S0_7_CTRL);
662                 con |= (1 << EXYNOS_TMU_THERM_TRIP_EN_SHIFT);
663                 writel(con, data->base + EXYNOS5440_TMU_S0_7_CTRL);
664         }
665         /* Clear the PMIN in the common TMU register */
666         if (!data->id)
667                 writel(0, data->base_second + EXYNOS5440_TMU_PMIN);
668
669         return 0;
670 }
671
672 static int exynos7_tmu_initialize(struct platform_device *pdev)
673 {
674         struct exynos_tmu_data *data = platform_get_drvdata(pdev);
675         struct thermal_zone_device *tz = data->tzd;
676         struct exynos_tmu_platform_data *pdata = data->pdata;
677         unsigned int status, trim_info;
678         unsigned int rising_threshold = 0, falling_threshold = 0;
679         int ret = 0, threshold_code, i;
680         int temp, temp_hist;
681         unsigned int reg_off, bit_off;
682
683         status = readb(data->base + EXYNOS_TMU_REG_STATUS);
684         if (!status) {
685                 ret = -EBUSY;
686                 goto out;
687         }
688
689         trim_info = readl(data->base + EXYNOS_TMU_REG_TRIMINFO);
690
691         data->temp_error1 = trim_info & EXYNOS7_TMU_TEMP_MASK;
692         if (!data->temp_error1 ||
693             (pdata->min_efuse_value > data->temp_error1) ||
694             (data->temp_error1 > pdata->max_efuse_value))
695                 data->temp_error1 = pdata->efuse_value & EXYNOS_TMU_TEMP_MASK;
696
697         /* Write temperature code for rising and falling threshold */
698         for (i = (of_thermal_get_ntrips(tz) - 1); i >= 0; i--) {
699                 /*
700                  * On exynos7 there are 4 rising and 4 falling threshold
701                  * registers (0x50-0x5c and 0x60-0x6c respectively). Each
702                  * register holds the value of two threshold levels (at bit
703                  * offsets 0 and 16). Based on the fact that there are atmost
704                  * eight possible trigger levels, calculate the register and
705                  * bit offsets where the threshold levels are to be written.
706                  *
707                  * e.g. EXYNOS7_THD_TEMP_RISE7_6 (0x50)
708                  * [24:16] - Threshold level 7
709                  * [8:0] - Threshold level 6
710                  * e.g. EXYNOS7_THD_TEMP_RISE5_4 (0x54)
711                  * [24:16] - Threshold level 5
712                  * [8:0] - Threshold level 4
713                  *
714                  * and similarly for falling thresholds.
715                  *
716                  * Based on the above, calculate the register and bit offsets
717                  * for rising/falling threshold levels and populate them.
718                  */
719                 reg_off = ((7 - i) / 2) * 4;
720                 bit_off = ((8 - i) % 2);
721
722                 tz->ops->get_trip_temp(tz, i, &temp);
723                 temp /= MCELSIUS;
724
725                 tz->ops->get_trip_hyst(tz, i, &temp_hist);
726                 temp_hist = temp - (temp_hist / MCELSIUS);
727
728                 /* Set 9-bit temperature code for rising threshold levels */
729                 threshold_code = temp_to_code(data, temp);
730                 rising_threshold = readl(data->base +
731                         EXYNOS7_THD_TEMP_RISE7_6 + reg_off);
732                 rising_threshold &= ~(EXYNOS7_TMU_TEMP_MASK << (16 * bit_off));
733                 rising_threshold |= threshold_code << (16 * bit_off);
734                 writel(rising_threshold,
735                        data->base + EXYNOS7_THD_TEMP_RISE7_6 + reg_off);
736
737                 /* Set 9-bit temperature code for falling threshold levels */
738                 threshold_code = temp_to_code(data, temp_hist);
739                 falling_threshold &= ~(EXYNOS7_TMU_TEMP_MASK << (16 * bit_off));
740                 falling_threshold |= threshold_code << (16 * bit_off);
741                 writel(falling_threshold,
742                        data->base + EXYNOS7_THD_TEMP_FALL7_6 + reg_off);
743         }
744
745         data->tmu_clear_irqs(data);
746 out:
747         return ret;
748 }
749
750 static void exynos4210_tmu_control(struct platform_device *pdev, bool on)
751 {
752         struct exynos_tmu_data *data = platform_get_drvdata(pdev);
753         struct thermal_zone_device *tz = data->tzd;
754         unsigned int con, interrupt_en;
755
756         con = get_con_reg(data, readl(data->base + EXYNOS_TMU_REG_CONTROL));
757
758         if (on) {
759                 con |= (1 << EXYNOS_TMU_CORE_EN_SHIFT);
760                 interrupt_en =
761                         (of_thermal_is_trip_valid(tz, 3)
762                          << EXYNOS_TMU_INTEN_RISE3_SHIFT) |
763                         (of_thermal_is_trip_valid(tz, 2)
764                          << EXYNOS_TMU_INTEN_RISE2_SHIFT) |
765                         (of_thermal_is_trip_valid(tz, 1)
766                          << EXYNOS_TMU_INTEN_RISE1_SHIFT) |
767                         (of_thermal_is_trip_valid(tz, 0)
768                          << EXYNOS_TMU_INTEN_RISE0_SHIFT);
769
770                 if (data->soc != SOC_ARCH_EXYNOS4210)
771                         interrupt_en |=
772                                 interrupt_en << EXYNOS_TMU_INTEN_FALL0_SHIFT;
773         } else {
774                 con &= ~(1 << EXYNOS_TMU_CORE_EN_SHIFT);
775                 interrupt_en = 0; /* Disable all interrupts */
776         }
777         writel(interrupt_en, data->base + EXYNOS_TMU_REG_INTEN);
778         writel(con, data->base + EXYNOS_TMU_REG_CONTROL);
779 }
780
781 static void exynos5433_tmu_control(struct platform_device *pdev, bool on)
782 {
783         struct exynos_tmu_data *data = platform_get_drvdata(pdev);
784         struct thermal_zone_device *tz = data->tzd;
785         unsigned int con, interrupt_en, pd_det_en;
786
787         con = get_con_reg(data, readl(data->base + EXYNOS_TMU_REG_CONTROL));
788
789         if (on) {
790                 con |= (1 << EXYNOS_TMU_CORE_EN_SHIFT);
791                 interrupt_en =
792                         (of_thermal_is_trip_valid(tz, 7)
793                         << EXYNOS7_TMU_INTEN_RISE7_SHIFT) |
794                         (of_thermal_is_trip_valid(tz, 6)
795                         << EXYNOS7_TMU_INTEN_RISE6_SHIFT) |
796                         (of_thermal_is_trip_valid(tz, 5)
797                         << EXYNOS7_TMU_INTEN_RISE5_SHIFT) |
798                         (of_thermal_is_trip_valid(tz, 4)
799                         << EXYNOS7_TMU_INTEN_RISE4_SHIFT) |
800                         (of_thermal_is_trip_valid(tz, 3)
801                         << EXYNOS7_TMU_INTEN_RISE3_SHIFT) |
802                         (of_thermal_is_trip_valid(tz, 2)
803                         << EXYNOS7_TMU_INTEN_RISE2_SHIFT) |
804                         (of_thermal_is_trip_valid(tz, 1)
805                         << EXYNOS7_TMU_INTEN_RISE1_SHIFT) |
806                         (of_thermal_is_trip_valid(tz, 0)
807                         << EXYNOS7_TMU_INTEN_RISE0_SHIFT);
808
809                 interrupt_en |=
810                         interrupt_en << EXYNOS_TMU_INTEN_FALL0_SHIFT;
811         } else {
812                 con &= ~(1 << EXYNOS_TMU_CORE_EN_SHIFT);
813                 interrupt_en = 0; /* Disable all interrupts */
814         }
815
816         pd_det_en = on ? EXYNOS5433_PD_DET_EN : 0;
817
818         writel(pd_det_en, data->base + EXYNOS5433_TMU_PD_DET_EN);
819         writel(interrupt_en, data->base + EXYNOS5433_TMU_REG_INTEN);
820         writel(con, data->base + EXYNOS_TMU_REG_CONTROL);
821 }
822
823 static void exynos5440_tmu_control(struct platform_device *pdev, bool on)
824 {
825         struct exynos_tmu_data *data = platform_get_drvdata(pdev);
826         struct thermal_zone_device *tz = data->tzd;
827         unsigned int con, interrupt_en;
828
829         con = get_con_reg(data, readl(data->base + EXYNOS5440_TMU_S0_7_CTRL));
830
831         if (on) {
832                 con |= (1 << EXYNOS_TMU_CORE_EN_SHIFT);
833                 interrupt_en =
834                         (of_thermal_is_trip_valid(tz, 3)
835                          << EXYNOS5440_TMU_INTEN_RISE3_SHIFT) |
836                         (of_thermal_is_trip_valid(tz, 2)
837                          << EXYNOS5440_TMU_INTEN_RISE2_SHIFT) |
838                         (of_thermal_is_trip_valid(tz, 1)
839                          << EXYNOS5440_TMU_INTEN_RISE1_SHIFT) |
840                         (of_thermal_is_trip_valid(tz, 0)
841                          << EXYNOS5440_TMU_INTEN_RISE0_SHIFT);
842                 interrupt_en |=
843                         interrupt_en << EXYNOS5440_TMU_INTEN_FALL0_SHIFT;
844         } else {
845                 con &= ~(1 << EXYNOS_TMU_CORE_EN_SHIFT);
846                 interrupt_en = 0; /* Disable all interrupts */
847         }
848         writel(interrupt_en, data->base + EXYNOS5440_TMU_S0_7_IRQEN);
849         writel(con, data->base + EXYNOS5440_TMU_S0_7_CTRL);
850 }
851
852 static void exynos7_tmu_control(struct platform_device *pdev, bool on)
853 {
854         struct exynos_tmu_data *data = platform_get_drvdata(pdev);
855         struct thermal_zone_device *tz = data->tzd;
856         unsigned int con, interrupt_en;
857
858         con = get_con_reg(data, readl(data->base + EXYNOS_TMU_REG_CONTROL));
859
860         if (on) {
861                 con |= (1 << EXYNOS_TMU_CORE_EN_SHIFT);
862                 con |= (1 << EXYNOS7_PD_DET_EN_SHIFT);
863                 interrupt_en =
864                         (of_thermal_is_trip_valid(tz, 7)
865                         << EXYNOS7_TMU_INTEN_RISE7_SHIFT) |
866                         (of_thermal_is_trip_valid(tz, 6)
867                         << EXYNOS7_TMU_INTEN_RISE6_SHIFT) |
868                         (of_thermal_is_trip_valid(tz, 5)
869                         << EXYNOS7_TMU_INTEN_RISE5_SHIFT) |
870                         (of_thermal_is_trip_valid(tz, 4)
871                         << EXYNOS7_TMU_INTEN_RISE4_SHIFT) |
872                         (of_thermal_is_trip_valid(tz, 3)
873                         << EXYNOS7_TMU_INTEN_RISE3_SHIFT) |
874                         (of_thermal_is_trip_valid(tz, 2)
875                         << EXYNOS7_TMU_INTEN_RISE2_SHIFT) |
876                         (of_thermal_is_trip_valid(tz, 1)
877                         << EXYNOS7_TMU_INTEN_RISE1_SHIFT) |
878                         (of_thermal_is_trip_valid(tz, 0)
879                         << EXYNOS7_TMU_INTEN_RISE0_SHIFT);
880
881                 interrupt_en |=
882                         interrupt_en << EXYNOS_TMU_INTEN_FALL0_SHIFT;
883         } else {
884                 con &= ~(1 << EXYNOS_TMU_CORE_EN_SHIFT);
885                 con &= ~(1 << EXYNOS7_PD_DET_EN_SHIFT);
886                 interrupt_en = 0; /* Disable all interrupts */
887         }
888
889         writel(interrupt_en, data->base + EXYNOS7_TMU_REG_INTEN);
890         writel(con, data->base + EXYNOS_TMU_REG_CONTROL);
891 }
892
893 static int exynos_get_temp(void *p, int *temp)
894 {
895         struct exynos_tmu_data *data = p;
896         int value, ret = 0;
897
898         if (!data || !data->tmu_read || !data->enabled)
899                 return -EINVAL;
900
901         mutex_lock(&data->lock);
902         clk_enable(data->clk);
903
904         value = data->tmu_read(data);
905         if (value < 0)
906                 ret = value;
907         else
908                 *temp = code_to_temp(data, value) * MCELSIUS;
909
910         clk_disable(data->clk);
911         mutex_unlock(&data->lock);
912
913         return ret;
914 }
915
916 #ifdef CONFIG_THERMAL_EMULATION
917 static u32 get_emul_con_reg(struct exynos_tmu_data *data, unsigned int val,
918                             int temp)
919 {
920         if (temp) {
921                 temp /= MCELSIUS;
922
923                 if (data->soc != SOC_ARCH_EXYNOS5440) {
924                         val &= ~(EXYNOS_EMUL_TIME_MASK << EXYNOS_EMUL_TIME_SHIFT);
925                         val |= (EXYNOS_EMUL_TIME << EXYNOS_EMUL_TIME_SHIFT);
926                 }
927                 if (data->soc == SOC_ARCH_EXYNOS7) {
928                         val &= ~(EXYNOS7_EMUL_DATA_MASK <<
929                                 EXYNOS7_EMUL_DATA_SHIFT);
930                         val |= (temp_to_code(data, temp) <<
931                                 EXYNOS7_EMUL_DATA_SHIFT) |
932                                 EXYNOS_EMUL_ENABLE;
933                 } else {
934                         val &= ~(EXYNOS_EMUL_DATA_MASK <<
935                                 EXYNOS_EMUL_DATA_SHIFT);
936                         val |= (temp_to_code(data, temp) <<
937                                 EXYNOS_EMUL_DATA_SHIFT) |
938                                 EXYNOS_EMUL_ENABLE;
939                 }
940         } else {
941                 val &= ~EXYNOS_EMUL_ENABLE;
942         }
943
944         return val;
945 }
946
947 static void exynos4412_tmu_set_emulation(struct exynos_tmu_data *data,
948                                          int temp)
949 {
950         unsigned int val;
951         u32 emul_con;
952
953         if (data->soc == SOC_ARCH_EXYNOS5260)
954                 emul_con = EXYNOS5260_EMUL_CON;
955         else if (data->soc == SOC_ARCH_EXYNOS5433)
956                 emul_con = EXYNOS5433_TMU_EMUL_CON;
957         else if (data->soc == SOC_ARCH_EXYNOS7)
958                 emul_con = EXYNOS7_TMU_REG_EMUL_CON;
959         else
960                 emul_con = EXYNOS_EMUL_CON;
961
962         val = readl(data->base + emul_con);
963         val = get_emul_con_reg(data, val, temp);
964         writel(val, data->base + emul_con);
965 }
966
967 static void exynos5440_tmu_set_emulation(struct exynos_tmu_data *data,
968                                          int temp)
969 {
970         unsigned int val;
971
972         val = readl(data->base + EXYNOS5440_TMU_S0_7_DEBUG);
973         val = get_emul_con_reg(data, val, temp);
974         writel(val, data->base + EXYNOS5440_TMU_S0_7_DEBUG);
975 }
976
977 static int exynos_tmu_set_emulation(void *drv_data, int temp)
978 {
979         struct exynos_tmu_data *data = drv_data;
980         int ret = -EINVAL;
981
982         if (data->soc == SOC_ARCH_EXYNOS4210)
983                 goto out;
984
985         if (temp && temp < MCELSIUS)
986                 goto out;
987
988         mutex_lock(&data->lock);
989         clk_enable(data->clk);
990         data->tmu_set_emulation(data, temp);
991         clk_disable(data->clk);
992         mutex_unlock(&data->lock);
993         return 0;
994 out:
995         return ret;
996 }
997 #else
998 #define exynos4412_tmu_set_emulation NULL
999 #define exynos5440_tmu_set_emulation NULL
1000 static int exynos_tmu_set_emulation(void *drv_data, int temp)
1001         { return -EINVAL; }
1002 #endif /* CONFIG_THERMAL_EMULATION */
1003
1004 static int exynos4210_tmu_read(struct exynos_tmu_data *data)
1005 {
1006         int ret = readb(data->base + EXYNOS_TMU_REG_CURRENT_TEMP);
1007
1008         /* "temp_code" should range between 75 and 175 */
1009         return (ret < 75 || ret > 175) ? -ENODATA : ret;
1010 }
1011
1012 static int exynos4412_tmu_read(struct exynos_tmu_data *data)
1013 {
1014         return readb(data->base + EXYNOS_TMU_REG_CURRENT_TEMP);
1015 }
1016
1017 static int exynos5440_tmu_read(struct exynos_tmu_data *data)
1018 {
1019         return readb(data->base + EXYNOS5440_TMU_S0_7_TEMP);
1020 }
1021
1022 static int exynos7_tmu_read(struct exynos_tmu_data *data)
1023 {
1024         return readw(data->base + EXYNOS_TMU_REG_CURRENT_TEMP) &
1025                 EXYNOS7_TMU_TEMP_MASK;
1026 }
1027
1028 static void exynos_tmu_work(struct work_struct *work)
1029 {
1030         struct exynos_tmu_data *data = container_of(work,
1031                         struct exynos_tmu_data, irq_work);
1032         unsigned int val_type;
1033
1034         if (!IS_ERR(data->clk_sec))
1035                 clk_enable(data->clk_sec);
1036         /* Find which sensor generated this interrupt */
1037         if (data->soc == SOC_ARCH_EXYNOS5440) {
1038                 val_type = readl(data->base_second + EXYNOS5440_TMU_IRQ_STATUS);
1039                 if (!((val_type >> data->id) & 0x1))
1040                         goto out;
1041         }
1042         if (!IS_ERR(data->clk_sec))
1043                 clk_disable(data->clk_sec);
1044
1045         exynos_report_trigger(data);
1046         mutex_lock(&data->lock);
1047         clk_enable(data->clk);
1048
1049         /* TODO: take action based on particular interrupt */
1050         data->tmu_clear_irqs(data);
1051
1052         clk_disable(data->clk);
1053         mutex_unlock(&data->lock);
1054 out:
1055         enable_irq(data->irq);
1056 }
1057
1058 static void exynos4210_tmu_clear_irqs(struct exynos_tmu_data *data)
1059 {
1060         unsigned int val_irq;
1061         u32 tmu_intstat, tmu_intclear;
1062
1063         if (data->soc == SOC_ARCH_EXYNOS5260) {
1064                 tmu_intstat = EXYNOS5260_TMU_REG_INTSTAT;
1065                 tmu_intclear = EXYNOS5260_TMU_REG_INTCLEAR;
1066         } else if (data->soc == SOC_ARCH_EXYNOS7) {
1067                 tmu_intstat = EXYNOS7_TMU_REG_INTPEND;
1068                 tmu_intclear = EXYNOS7_TMU_REG_INTPEND;
1069         } else if (data->soc == SOC_ARCH_EXYNOS5433) {
1070                 tmu_intstat = EXYNOS5433_TMU_REG_INTPEND;
1071                 tmu_intclear = EXYNOS5433_TMU_REG_INTPEND;
1072         } else {
1073                 tmu_intstat = EXYNOS_TMU_REG_INTSTAT;
1074                 tmu_intclear = EXYNOS_TMU_REG_INTCLEAR;
1075         }
1076
1077         val_irq = readl(data->base + tmu_intstat);
1078         /*
1079          * Clear the interrupts.  Please note that the documentation for
1080          * Exynos3250, Exynos4412, Exynos5250 and Exynos5260 incorrectly
1081          * states that INTCLEAR register has a different placing of bits
1082          * responsible for FALL IRQs than INTSTAT register.  Exynos5420
1083          * and Exynos5440 documentation is correct (Exynos4210 doesn't
1084          * support FALL IRQs at all).
1085          */
1086         writel(val_irq, data->base + tmu_intclear);
1087 }
1088
1089 static void exynos5440_tmu_clear_irqs(struct exynos_tmu_data *data)
1090 {
1091         unsigned int val_irq;
1092
1093         val_irq = readl(data->base + EXYNOS5440_TMU_S0_7_IRQ);
1094         /* clear the interrupts */
1095         writel(val_irq, data->base + EXYNOS5440_TMU_S0_7_IRQ);
1096 }
1097
1098 static irqreturn_t exynos_tmu_irq(int irq, void *id)
1099 {
1100         struct exynos_tmu_data *data = id;
1101
1102         disable_irq_nosync(irq);
1103         schedule_work(&data->irq_work);
1104
1105         return IRQ_HANDLED;
1106 }
1107
1108 static const struct of_device_id exynos_tmu_match[] = {
1109         { .compatible = "samsung,exynos3250-tmu", },
1110         { .compatible = "samsung,exynos4210-tmu", },
1111         { .compatible = "samsung,exynos4412-tmu", },
1112         { .compatible = "samsung,exynos5250-tmu", },
1113         { .compatible = "samsung,exynos5260-tmu", },
1114         { .compatible = "samsung,exynos5420-tmu", },
1115         { .compatible = "samsung,exynos5420-tmu-ext-triminfo", },
1116         { .compatible = "samsung,exynos5433-tmu", },
1117         { .compatible = "samsung,exynos5440-tmu", },
1118         { .compatible = "samsung,exynos7-tmu", },
1119         { /* sentinel */ },
1120 };
1121 MODULE_DEVICE_TABLE(of, exynos_tmu_match);
1122
1123 static int exynos_of_get_soc_type(struct device_node *np)
1124 {
1125         if (of_device_is_compatible(np, "samsung,exynos3250-tmu"))
1126                 return SOC_ARCH_EXYNOS3250;
1127         else if (of_device_is_compatible(np, "samsung,exynos4210-tmu"))
1128                 return SOC_ARCH_EXYNOS4210;
1129         else if (of_device_is_compatible(np, "samsung,exynos4412-tmu"))
1130                 return SOC_ARCH_EXYNOS4412;
1131         else if (of_device_is_compatible(np, "samsung,exynos5250-tmu"))
1132                 return SOC_ARCH_EXYNOS5250;
1133         else if (of_device_is_compatible(np, "samsung,exynos5260-tmu"))
1134                 return SOC_ARCH_EXYNOS5260;
1135         else if (of_device_is_compatible(np, "samsung,exynos5420-tmu"))
1136                 return SOC_ARCH_EXYNOS5420;
1137         else if (of_device_is_compatible(np,
1138                                          "samsung,exynos5420-tmu-ext-triminfo"))
1139                 return SOC_ARCH_EXYNOS5420_TRIMINFO;
1140         else if (of_device_is_compatible(np, "samsung,exynos5433-tmu"))
1141                 return SOC_ARCH_EXYNOS5433;
1142         else if (of_device_is_compatible(np, "samsung,exynos5440-tmu"))
1143                 return SOC_ARCH_EXYNOS5440;
1144         else if (of_device_is_compatible(np, "samsung,exynos7-tmu"))
1145                 return SOC_ARCH_EXYNOS7;
1146
1147         return -EINVAL;
1148 }
1149
1150 static int exynos_of_sensor_conf(struct device_node *np,
1151                                  struct exynos_tmu_platform_data *pdata)
1152 {
1153         u32 value;
1154         int ret;
1155
1156         of_node_get(np);
1157
1158         ret = of_property_read_u32(np, "samsung,tmu_gain", &value);
1159         pdata->gain = (u8)value;
1160         of_property_read_u32(np, "samsung,tmu_reference_voltage", &value);
1161         pdata->reference_voltage = (u8)value;
1162         of_property_read_u32(np, "samsung,tmu_noise_cancel_mode", &value);
1163         pdata->noise_cancel_mode = (u8)value;
1164
1165         of_property_read_u32(np, "samsung,tmu_efuse_value",
1166                              &pdata->efuse_value);
1167         of_property_read_u32(np, "samsung,tmu_min_efuse_value",
1168                              &pdata->min_efuse_value);
1169         of_property_read_u32(np, "samsung,tmu_max_efuse_value",
1170                              &pdata->max_efuse_value);
1171
1172         of_property_read_u32(np, "samsung,tmu_first_point_trim", &value);
1173         pdata->first_point_trim = (u8)value;
1174         of_property_read_u32(np, "samsung,tmu_second_point_trim", &value);
1175         pdata->second_point_trim = (u8)value;
1176         of_property_read_u32(np, "samsung,tmu_default_temp_offset", &value);
1177         pdata->default_temp_offset = (u8)value;
1178
1179         of_property_read_u32(np, "samsung,tmu_cal_type", &pdata->cal_type);
1180         of_property_read_u32(np, "samsung,tmu_cal_mode", &pdata->cal_mode);
1181
1182         of_node_put(np);
1183         return 0;
1184 }
1185
1186 static int exynos_map_dt_data(struct platform_device *pdev)
1187 {
1188         struct exynos_tmu_data *data = platform_get_drvdata(pdev);
1189         struct exynos_tmu_platform_data *pdata;
1190         struct resource res;
1191
1192         if (!data || !pdev->dev.of_node)
1193                 return -ENODEV;
1194
1195         data->id = of_alias_get_id(pdev->dev.of_node, "tmuctrl");
1196         if (data->id < 0)
1197                 data->id = 0;
1198
1199         data->irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
1200         if (data->irq <= 0) {
1201                 dev_err(&pdev->dev, "failed to get IRQ\n");
1202                 return -ENODEV;
1203         }
1204
1205         if (of_address_to_resource(pdev->dev.of_node, 0, &res)) {
1206                 dev_err(&pdev->dev, "failed to get Resource 0\n");
1207                 return -ENODEV;
1208         }
1209
1210         data->base = devm_ioremap(&pdev->dev, res.start, resource_size(&res));
1211         if (!data->base) {
1212                 dev_err(&pdev->dev, "Failed to ioremap memory\n");
1213                 return -EADDRNOTAVAIL;
1214         }
1215
1216         pdata = devm_kzalloc(&pdev->dev,
1217                              sizeof(struct exynos_tmu_platform_data),
1218                              GFP_KERNEL);
1219         if (!pdata)
1220                 return -ENOMEM;
1221
1222         exynos_of_sensor_conf(pdev->dev.of_node, pdata);
1223         data->pdata = pdata;
1224         data->soc = exynos_of_get_soc_type(pdev->dev.of_node);
1225
1226         switch (data->soc) {
1227         case SOC_ARCH_EXYNOS4210:
1228                 data->tmu_initialize = exynos4210_tmu_initialize;
1229                 data->tmu_control = exynos4210_tmu_control;
1230                 data->tmu_read = exynos4210_tmu_read;
1231                 data->tmu_clear_irqs = exynos4210_tmu_clear_irqs;
1232                 data->ntrip = 4;
1233                 break;
1234         case SOC_ARCH_EXYNOS3250:
1235         case SOC_ARCH_EXYNOS4412:
1236         case SOC_ARCH_EXYNOS5250:
1237         case SOC_ARCH_EXYNOS5260:
1238         case SOC_ARCH_EXYNOS5420:
1239         case SOC_ARCH_EXYNOS5420_TRIMINFO:
1240                 data->tmu_initialize = exynos4412_tmu_initialize;
1241                 data->tmu_control = exynos4210_tmu_control;
1242                 data->tmu_read = exynos4412_tmu_read;
1243                 data->tmu_set_emulation = exynos4412_tmu_set_emulation;
1244                 data->tmu_clear_irqs = exynos4210_tmu_clear_irqs;
1245                 data->ntrip = 4;
1246                 break;
1247         case SOC_ARCH_EXYNOS5433:
1248                 data->tmu_initialize = exynos5433_tmu_initialize;
1249                 data->tmu_control = exynos5433_tmu_control;
1250                 data->tmu_read = exynos4412_tmu_read;
1251                 data->tmu_set_emulation = exynos4412_tmu_set_emulation;
1252                 data->tmu_clear_irqs = exynos4210_tmu_clear_irqs;
1253                 data->ntrip = 8;
1254                 break;
1255         case SOC_ARCH_EXYNOS5440:
1256                 data->tmu_initialize = exynos5440_tmu_initialize;
1257                 data->tmu_control = exynos5440_tmu_control;
1258                 data->tmu_read = exynos5440_tmu_read;
1259                 data->tmu_set_emulation = exynos5440_tmu_set_emulation;
1260                 data->tmu_clear_irqs = exynos5440_tmu_clear_irqs;
1261                 data->ntrip = 4;
1262                 break;
1263         case SOC_ARCH_EXYNOS7:
1264                 data->tmu_initialize = exynos7_tmu_initialize;
1265                 data->tmu_control = exynos7_tmu_control;
1266                 data->tmu_read = exynos7_tmu_read;
1267                 data->tmu_set_emulation = exynos4412_tmu_set_emulation;
1268                 data->tmu_clear_irqs = exynos4210_tmu_clear_irqs;
1269                 data->ntrip = 8;
1270                 break;
1271         default:
1272                 dev_err(&pdev->dev, "Platform not supported\n");
1273                 return -EINVAL;
1274         }
1275
1276         /*
1277          * Check if the TMU shares some registers and then try to map the
1278          * memory of common registers.
1279          */
1280         if (data->soc != SOC_ARCH_EXYNOS5420_TRIMINFO &&
1281             data->soc != SOC_ARCH_EXYNOS5440)
1282                 return 0;
1283
1284         if (of_address_to_resource(pdev->dev.of_node, 1, &res)) {
1285                 dev_err(&pdev->dev, "failed to get Resource 1\n");
1286                 return -ENODEV;
1287         }
1288
1289         data->base_second = devm_ioremap(&pdev->dev, res.start,
1290                                         resource_size(&res));
1291         if (!data->base_second) {
1292                 dev_err(&pdev->dev, "Failed to ioremap memory\n");
1293                 return -ENOMEM;
1294         }
1295
1296         return 0;
1297 }
1298
1299 static struct thermal_zone_of_device_ops exynos_sensor_ops = {
1300         .get_temp = exynos_get_temp,
1301         .set_emul_temp = exynos_tmu_set_emulation,
1302 };
1303
1304 static int exynos_tmu_probe(struct platform_device *pdev)
1305 {
1306         struct exynos_tmu_data *data;
1307         int ret;
1308
1309         data = devm_kzalloc(&pdev->dev, sizeof(struct exynos_tmu_data),
1310                                         GFP_KERNEL);
1311         if (!data)
1312                 return -ENOMEM;
1313
1314         platform_set_drvdata(pdev, data);
1315         mutex_init(&data->lock);
1316
1317         /*
1318          * Try enabling the regulator if found
1319          * TODO: Add regulator as an SOC feature, so that regulator enable
1320          * is a compulsory call.
1321          */
1322         data->regulator = devm_regulator_get_optional(&pdev->dev, "vtmu");
1323         if (!IS_ERR(data->regulator)) {
1324                 ret = regulator_enable(data->regulator);
1325                 if (ret) {
1326                         dev_err(&pdev->dev, "failed to enable vtmu\n");
1327                         return ret;
1328                 }
1329         } else {
1330                 if (PTR_ERR(data->regulator) == -EPROBE_DEFER)
1331                         return -EPROBE_DEFER;
1332                 dev_info(&pdev->dev, "Regulator node (vtmu) not found\n");
1333         }
1334
1335         ret = exynos_map_dt_data(pdev);
1336         if (ret)
1337                 goto err_sensor;
1338
1339         INIT_WORK(&data->irq_work, exynos_tmu_work);
1340
1341         data->clk = devm_clk_get(&pdev->dev, "tmu_apbif");
1342         if (IS_ERR(data->clk)) {
1343                 dev_err(&pdev->dev, "Failed to get clock\n");
1344                 ret = PTR_ERR(data->clk);
1345                 goto err_sensor;
1346         }
1347
1348         data->clk_sec = devm_clk_get(&pdev->dev, "tmu_triminfo_apbif");
1349         if (IS_ERR(data->clk_sec)) {
1350                 if (data->soc == SOC_ARCH_EXYNOS5420_TRIMINFO) {
1351                         dev_err(&pdev->dev, "Failed to get triminfo clock\n");
1352                         ret = PTR_ERR(data->clk_sec);
1353                         goto err_sensor;
1354                 }
1355         } else {
1356                 ret = clk_prepare(data->clk_sec);
1357                 if (ret) {
1358                         dev_err(&pdev->dev, "Failed to get clock\n");
1359                         goto err_sensor;
1360                 }
1361         }
1362
1363         ret = clk_prepare(data->clk);
1364         if (ret) {
1365                 dev_err(&pdev->dev, "Failed to get clock\n");
1366                 goto err_clk_sec;
1367         }
1368
1369         switch (data->soc) {
1370         case SOC_ARCH_EXYNOS5433:
1371         case SOC_ARCH_EXYNOS7:
1372                 data->sclk = devm_clk_get(&pdev->dev, "tmu_sclk");
1373                 if (IS_ERR(data->sclk)) {
1374                         dev_err(&pdev->dev, "Failed to get sclk\n");
1375                         ret = PTR_ERR(data->sclk);
1376                         goto err_clk;
1377                 } else {
1378                         ret = clk_prepare_enable(data->sclk);
1379                         if (ret) {
1380                                 dev_err(&pdev->dev, "Failed to enable sclk\n");
1381                                 goto err_clk;
1382                         }
1383                 }
1384                 break;
1385         default:
1386                 break;
1387         }
1388
1389         /*
1390          * data->tzd must be registered before calling exynos_tmu_initialize(),
1391          * requesting irq and calling exynos_tmu_control().
1392          */
1393         data->tzd = thermal_zone_of_sensor_register(&pdev->dev, 0, data,
1394                                                     &exynos_sensor_ops);
1395         if (IS_ERR(data->tzd)) {
1396                 ret = PTR_ERR(data->tzd);
1397                 dev_err(&pdev->dev, "Failed to register sensor: %d\n", ret);
1398                 goto err_sclk;
1399         }
1400
1401         ret = exynos_tmu_initialize(pdev);
1402         if (ret) {
1403                 dev_err(&pdev->dev, "Failed to initialize TMU\n");
1404                 goto err_thermal;
1405         }
1406
1407         ret = devm_request_irq(&pdev->dev, data->irq, exynos_tmu_irq,
1408                 IRQF_TRIGGER_RISING | IRQF_SHARED, dev_name(&pdev->dev), data);
1409         if (ret) {
1410                 dev_err(&pdev->dev, "Failed to request irq: %d\n", data->irq);
1411                 goto err_thermal;
1412         }
1413
1414         exynos_tmu_control(pdev, true);
1415         return 0;
1416
1417 err_thermal:
1418         thermal_zone_of_sensor_unregister(&pdev->dev, data->tzd);
1419 err_sclk:
1420         clk_disable_unprepare(data->sclk);
1421 err_clk:
1422         clk_unprepare(data->clk);
1423 err_clk_sec:
1424         if (!IS_ERR(data->clk_sec))
1425                 clk_unprepare(data->clk_sec);
1426 err_sensor:
1427         if (!IS_ERR(data->regulator))
1428                 regulator_disable(data->regulator);
1429
1430         return ret;
1431 }
1432
1433 static int exynos_tmu_remove(struct platform_device *pdev)
1434 {
1435         struct exynos_tmu_data *data = platform_get_drvdata(pdev);
1436         struct thermal_zone_device *tzd = data->tzd;
1437
1438         thermal_zone_of_sensor_unregister(&pdev->dev, tzd);
1439         exynos_tmu_control(pdev, false);
1440
1441         clk_disable_unprepare(data->sclk);
1442         clk_unprepare(data->clk);
1443         if (!IS_ERR(data->clk_sec))
1444                 clk_unprepare(data->clk_sec);
1445
1446         if (!IS_ERR(data->regulator))
1447                 regulator_disable(data->regulator);
1448
1449         return 0;
1450 }
1451
1452 #ifdef CONFIG_PM_SLEEP
1453 static int exynos_tmu_suspend(struct device *dev)
1454 {
1455         exynos_tmu_control(to_platform_device(dev), false);
1456
1457         return 0;
1458 }
1459
1460 static int exynos_tmu_resume(struct device *dev)
1461 {
1462         struct platform_device *pdev = to_platform_device(dev);
1463
1464         exynos_tmu_initialize(pdev);
1465         exynos_tmu_control(pdev, true);
1466
1467         return 0;
1468 }
1469
1470 static SIMPLE_DEV_PM_OPS(exynos_tmu_pm,
1471                          exynos_tmu_suspend, exynos_tmu_resume);
1472 #define EXYNOS_TMU_PM   (&exynos_tmu_pm)
1473 #else
1474 #define EXYNOS_TMU_PM   NULL
1475 #endif
1476
1477 static struct platform_driver exynos_tmu_driver = {
1478         .driver = {
1479                 .name   = "exynos-tmu",
1480                 .pm     = EXYNOS_TMU_PM,
1481                 .of_match_table = exynos_tmu_match,
1482         },
1483         .probe = exynos_tmu_probe,
1484         .remove = exynos_tmu_remove,
1485 };
1486
1487 module_platform_driver(exynos_tmu_driver);
1488
1489 MODULE_DESCRIPTION("EXYNOS TMU Driver");
1490 MODULE_AUTHOR("Donggeun Kim <dg77.kim@samsung.com>");
1491 MODULE_LICENSE("GPL");
1492 MODULE_ALIAS("platform:exynos-tmu");