GNU Linux-libre 4.9.333-gnu1
[releases.git] / drivers / thermal / intel_powerclamp.c
1 /*
2  * intel_powerclamp.c - package c-state idle injection
3  *
4  * Copyright (c) 2012, Intel Corporation.
5  *
6  * Authors:
7  *     Arjan van de Ven <arjan@linux.intel.com>
8  *     Jacob Pan <jacob.jun.pan@linux.intel.com>
9  *
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms and conditions of the GNU General Public License,
12  * version 2, as published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope it will be useful, but WITHOUT
15  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
17  * more details.
18  *
19  * You should have received a copy of the GNU General Public License along with
20  * this program; if not, write to the Free Software Foundation, Inc.,
21  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
22  *
23  *
24  *      TODO:
25  *           1. better handle wakeup from external interrupts, currently a fixed
26  *              compensation is added to clamping duration when excessive amount
27  *              of wakeups are observed during idle time. the reason is that in
28  *              case of external interrupts without need for ack, clamping down
29  *              cpu in non-irq context does not reduce irq. for majority of the
30  *              cases, clamping down cpu does help reduce irq as well, we should
31  *              be able to differenciate the two cases and give a quantitative
32  *              solution for the irqs that we can control. perhaps based on
33  *              get_cpu_iowait_time_us()
34  *
35  *           2. synchronization with other hw blocks
36  *
37  *
38  */
39
40 #define pr_fmt(fmt)     KBUILD_MODNAME ": " fmt
41
42 #include <linux/module.h>
43 #include <linux/kernel.h>
44 #include <linux/delay.h>
45 #include <linux/kthread.h>
46 #include <linux/freezer.h>
47 #include <linux/cpu.h>
48 #include <linux/thermal.h>
49 #include <linux/slab.h>
50 #include <linux/tick.h>
51 #include <linux/debugfs.h>
52 #include <linux/seq_file.h>
53 #include <linux/sched/rt.h>
54
55 #include <asm/nmi.h>
56 #include <asm/msr.h>
57 #include <asm/mwait.h>
58 #include <asm/cpu_device_id.h>
59 #include <asm/idle.h>
60 #include <asm/hardirq.h>
61
62 #define MAX_TARGET_RATIO (50U)
63 /* For each undisturbed clamping period (no extra wake ups during idle time),
64  * we increment the confidence counter for the given target ratio.
65  * CONFIDENCE_OK defines the level where runtime calibration results are
66  * valid.
67  */
68 #define CONFIDENCE_OK (3)
69 /* Default idle injection duration, driver adjust sleep time to meet target
70  * idle ratio. Similar to frequency modulation.
71  */
72 #define DEFAULT_DURATION_JIFFIES (6)
73
74 static unsigned int target_mwait;
75 static struct dentry *debug_dir;
76
77 /* user selected target */
78 static unsigned int set_target_ratio;
79 static unsigned int current_ratio;
80 static bool should_skip;
81 static bool reduce_irq;
82 static atomic_t idle_wakeup_counter;
83 static unsigned int control_cpu; /* The cpu assigned to collect stat and update
84                                   * control parameters. default to BSP but BSP
85                                   * can be offlined.
86                                   */
87 static bool clamping;
88
89
90 static struct task_struct * __percpu *powerclamp_thread;
91 static struct thermal_cooling_device *cooling_dev;
92 static unsigned long *cpu_clamping_mask;  /* bit map for tracking per cpu
93                                            * clamping thread
94                                            */
95
96 static unsigned int duration;
97 static unsigned int pkg_cstate_ratio_cur;
98 static unsigned int window_size;
99
100 static int duration_set(const char *arg, const struct kernel_param *kp)
101 {
102         int ret = 0;
103         unsigned long new_duration;
104
105         ret = kstrtoul(arg, 10, &new_duration);
106         if (ret)
107                 goto exit;
108         if (new_duration > 25 || new_duration < 6) {
109                 pr_err("Out of recommended range %lu, between 6-25ms\n",
110                         new_duration);
111                 ret = -EINVAL;
112         }
113
114         duration = clamp(new_duration, 6ul, 25ul);
115         smp_mb();
116
117 exit:
118
119         return ret;
120 }
121
122 static const struct kernel_param_ops duration_ops = {
123         .set = duration_set,
124         .get = param_get_int,
125 };
126
127
128 module_param_cb(duration, &duration_ops, &duration, 0644);
129 MODULE_PARM_DESC(duration, "forced idle time for each attempt in msec.");
130
131 struct powerclamp_calibration_data {
132         unsigned long confidence;  /* used for calibration, basically a counter
133                                     * gets incremented each time a clamping
134                                     * period is completed without extra wakeups
135                                     * once that counter is reached given level,
136                                     * compensation is deemed usable.
137                                     */
138         unsigned long steady_comp; /* steady state compensation used when
139                                     * no extra wakeups occurred.
140                                     */
141         unsigned long dynamic_comp; /* compensate excessive wakeup from idle
142                                      * mostly from external interrupts.
143                                      */
144 };
145
146 static struct powerclamp_calibration_data cal_data[MAX_TARGET_RATIO];
147
148 static int window_size_set(const char *arg, const struct kernel_param *kp)
149 {
150         int ret = 0;
151         unsigned long new_window_size;
152
153         ret = kstrtoul(arg, 10, &new_window_size);
154         if (ret)
155                 goto exit_win;
156         if (new_window_size > 10 || new_window_size < 2) {
157                 pr_err("Out of recommended window size %lu, between 2-10\n",
158                         new_window_size);
159                 ret = -EINVAL;
160         }
161
162         window_size = clamp(new_window_size, 2ul, 10ul);
163         smp_mb();
164
165 exit_win:
166
167         return ret;
168 }
169
170 static const struct kernel_param_ops window_size_ops = {
171         .set = window_size_set,
172         .get = param_get_int,
173 };
174
175 module_param_cb(window_size, &window_size_ops, &window_size, 0644);
176 MODULE_PARM_DESC(window_size, "sliding window in number of clamping cycles\n"
177         "\tpowerclamp controls idle ratio within this window. larger\n"
178         "\twindow size results in slower response time but more smooth\n"
179         "\tclamping results. default to 2.");
180
181 static void find_target_mwait(void)
182 {
183         unsigned int eax, ebx, ecx, edx;
184         unsigned int highest_cstate = 0;
185         unsigned int highest_subcstate = 0;
186         int i;
187
188         if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF)
189                 return;
190
191         cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
192
193         if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) ||
194             !(ecx & CPUID5_ECX_INTERRUPT_BREAK))
195                 return;
196
197         edx >>= MWAIT_SUBSTATE_SIZE;
198         for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
199                 if (edx & MWAIT_SUBSTATE_MASK) {
200                         highest_cstate = i;
201                         highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
202                 }
203         }
204         target_mwait = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
205                 (highest_subcstate - 1);
206
207 }
208
209 struct pkg_cstate_info {
210         bool skip;
211         int msr_index;
212         int cstate_id;
213 };
214
215 #define PKG_CSTATE_INIT(id) {                           \
216                 .msr_index = MSR_PKG_C##id##_RESIDENCY, \
217                 .cstate_id = id                         \
218                         }
219
220 static struct pkg_cstate_info pkg_cstates[] = {
221         PKG_CSTATE_INIT(2),
222         PKG_CSTATE_INIT(3),
223         PKG_CSTATE_INIT(6),
224         PKG_CSTATE_INIT(7),
225         PKG_CSTATE_INIT(8),
226         PKG_CSTATE_INIT(9),
227         PKG_CSTATE_INIT(10),
228         {NULL},
229 };
230
231 static bool has_pkg_state_counter(void)
232 {
233         u64 val;
234         struct pkg_cstate_info *info = pkg_cstates;
235
236         /* check if any one of the counter msrs exists */
237         while (info->msr_index) {
238                 if (!rdmsrl_safe(info->msr_index, &val))
239                         return true;
240                 info++;
241         }
242
243         return false;
244 }
245
246 static u64 pkg_state_counter(void)
247 {
248         u64 val;
249         u64 count = 0;
250         struct pkg_cstate_info *info = pkg_cstates;
251
252         while (info->msr_index) {
253                 if (!info->skip) {
254                         if (!rdmsrl_safe(info->msr_index, &val))
255                                 count += val;
256                         else
257                                 info->skip = true;
258                 }
259                 info++;
260         }
261
262         return count;
263 }
264
265 static void noop_timer(unsigned long foo)
266 {
267         /* empty... just the fact that we get the interrupt wakes us up */
268 }
269
270 static unsigned int get_compensation(int ratio)
271 {
272         unsigned int comp = 0;
273
274         /* we only use compensation if all adjacent ones are good */
275         if (ratio == 1 &&
276                 cal_data[ratio].confidence >= CONFIDENCE_OK &&
277                 cal_data[ratio + 1].confidence >= CONFIDENCE_OK &&
278                 cal_data[ratio + 2].confidence >= CONFIDENCE_OK) {
279                 comp = (cal_data[ratio].steady_comp +
280                         cal_data[ratio + 1].steady_comp +
281                         cal_data[ratio + 2].steady_comp) / 3;
282         } else if (ratio == MAX_TARGET_RATIO - 1 &&
283                 cal_data[ratio].confidence >= CONFIDENCE_OK &&
284                 cal_data[ratio - 1].confidence >= CONFIDENCE_OK &&
285                 cal_data[ratio - 2].confidence >= CONFIDENCE_OK) {
286                 comp = (cal_data[ratio].steady_comp +
287                         cal_data[ratio - 1].steady_comp +
288                         cal_data[ratio - 2].steady_comp) / 3;
289         } else if (cal_data[ratio].confidence >= CONFIDENCE_OK &&
290                 cal_data[ratio - 1].confidence >= CONFIDENCE_OK &&
291                 cal_data[ratio + 1].confidence >= CONFIDENCE_OK) {
292                 comp = (cal_data[ratio].steady_comp +
293                         cal_data[ratio - 1].steady_comp +
294                         cal_data[ratio + 1].steady_comp) / 3;
295         }
296
297         /* REVISIT: simple penalty of double idle injection */
298         if (reduce_irq)
299                 comp = ratio;
300         /* do not exceed limit */
301         if (comp + ratio >= MAX_TARGET_RATIO)
302                 comp = MAX_TARGET_RATIO - ratio - 1;
303
304         return comp;
305 }
306
307 static void adjust_compensation(int target_ratio, unsigned int win)
308 {
309         int delta;
310         struct powerclamp_calibration_data *d = &cal_data[target_ratio];
311
312         /*
313          * adjust compensations if confidence level has not been reached or
314          * there are too many wakeups during the last idle injection period, we
315          * cannot trust the data for compensation.
316          */
317         if (d->confidence >= CONFIDENCE_OK ||
318                 atomic_read(&idle_wakeup_counter) >
319                 win * num_online_cpus())
320                 return;
321
322         delta = set_target_ratio - current_ratio;
323         /* filter out bad data */
324         if (delta >= 0 && delta <= (1+target_ratio/10)) {
325                 if (d->steady_comp)
326                         d->steady_comp =
327                                 roundup(delta+d->steady_comp, 2)/2;
328                 else
329                         d->steady_comp = delta;
330                 d->confidence++;
331         }
332 }
333
334 static bool powerclamp_adjust_controls(unsigned int target_ratio,
335                                 unsigned int guard, unsigned int win)
336 {
337         static u64 msr_last, tsc_last;
338         u64 msr_now, tsc_now;
339         u64 val64;
340
341         /* check result for the last window */
342         msr_now = pkg_state_counter();
343         tsc_now = rdtsc();
344
345         /* calculate pkg cstate vs tsc ratio */
346         if (!msr_last || !tsc_last)
347                 current_ratio = 1;
348         else if (tsc_now-tsc_last) {
349                 val64 = 100*(msr_now-msr_last);
350                 do_div(val64, (tsc_now-tsc_last));
351                 current_ratio = val64;
352         }
353
354         /* update record */
355         msr_last = msr_now;
356         tsc_last = tsc_now;
357
358         adjust_compensation(target_ratio, win);
359         /*
360          * too many external interrupts, set flag such
361          * that we can take measure later.
362          */
363         reduce_irq = atomic_read(&idle_wakeup_counter) >=
364                 2 * win * num_online_cpus();
365
366         atomic_set(&idle_wakeup_counter, 0);
367         /* if we are above target+guard, skip */
368         return set_target_ratio + guard <= current_ratio;
369 }
370
371 static int clamp_thread(void *arg)
372 {
373         int cpunr = (unsigned long)arg;
374         DEFINE_TIMER(wakeup_timer, noop_timer, 0, 0);
375         static const struct sched_param param = {
376                 .sched_priority = MAX_USER_RT_PRIO/2,
377         };
378         unsigned int count = 0;
379         unsigned int target_ratio;
380
381         set_bit(cpunr, cpu_clamping_mask);
382         set_freezable();
383         init_timer_on_stack(&wakeup_timer);
384         sched_setscheduler(current, SCHED_FIFO, &param);
385
386         while (true == clamping && !kthread_should_stop() &&
387                 cpu_online(cpunr)) {
388                 int sleeptime;
389                 unsigned long target_jiffies;
390                 unsigned int guard;
391                 unsigned int compensated_ratio;
392                 int interval; /* jiffies to sleep for each attempt */
393                 unsigned int duration_jiffies = msecs_to_jiffies(duration);
394                 unsigned int window_size_now;
395
396                 try_to_freeze();
397                 /*
398                  * make sure user selected ratio does not take effect until
399                  * the next round. adjust target_ratio if user has changed
400                  * target such that we can converge quickly.
401                  */
402                 target_ratio = set_target_ratio;
403                 guard = 1 + target_ratio/20;
404                 window_size_now = window_size;
405                 count++;
406
407                 /*
408                  * systems may have different ability to enter package level
409                  * c-states, thus we need to compensate the injected idle ratio
410                  * to achieve the actual target reported by the HW.
411                  */
412                 compensated_ratio = target_ratio +
413                         get_compensation(target_ratio);
414                 if (compensated_ratio <= 0)
415                         compensated_ratio = 1;
416                 interval = duration_jiffies * 100 / compensated_ratio;
417
418                 /* align idle time */
419                 target_jiffies = roundup(jiffies, interval);
420                 sleeptime = target_jiffies - jiffies;
421                 if (sleeptime <= 0)
422                         sleeptime = 1;
423                 schedule_timeout_interruptible(sleeptime);
424                 /*
425                  * only elected controlling cpu can collect stats and update
426                  * control parameters.
427                  */
428                 if (cpunr == control_cpu && !(count%window_size_now)) {
429                         should_skip =
430                                 powerclamp_adjust_controls(target_ratio,
431                                                         guard, window_size_now);
432                         smp_mb();
433                 }
434
435                 if (should_skip)
436                         continue;
437
438                 target_jiffies = jiffies + duration_jiffies;
439                 mod_timer(&wakeup_timer, target_jiffies);
440                 if (unlikely(local_softirq_pending()))
441                         continue;
442                 /*
443                  * stop tick sched during idle time, interrupts are still
444                  * allowed. thus jiffies are updated properly.
445                  */
446                 preempt_disable();
447                 /* mwait until target jiffies is reached */
448                 while (time_before(jiffies, target_jiffies)) {
449                         unsigned long ecx = 1;
450                         unsigned long eax = target_mwait;
451
452                         /*
453                          * REVISIT: may call enter_idle() to notify drivers who
454                          * can save power during cpu idle. same for exit_idle()
455                          */
456                         local_touch_nmi();
457                         stop_critical_timings();
458                         mwait_idle_with_hints(eax, ecx);
459                         start_critical_timings();
460                         atomic_inc(&idle_wakeup_counter);
461                 }
462                 preempt_enable();
463         }
464         del_timer_sync(&wakeup_timer);
465         clear_bit(cpunr, cpu_clamping_mask);
466
467         return 0;
468 }
469
470 /*
471  * 1 HZ polling while clamping is active, useful for userspace
472  * to monitor actual idle ratio.
473  */
474 static void poll_pkg_cstate(struct work_struct *dummy);
475 static DECLARE_DELAYED_WORK(poll_pkg_cstate_work, poll_pkg_cstate);
476 static void poll_pkg_cstate(struct work_struct *dummy)
477 {
478         static u64 msr_last;
479         static u64 tsc_last;
480         static unsigned long jiffies_last;
481
482         u64 msr_now;
483         unsigned long jiffies_now;
484         u64 tsc_now;
485         u64 val64;
486
487         msr_now = pkg_state_counter();
488         tsc_now = rdtsc();
489         jiffies_now = jiffies;
490
491         /* calculate pkg cstate vs tsc ratio */
492         if (!msr_last || !tsc_last)
493                 pkg_cstate_ratio_cur = 1;
494         else {
495                 if (tsc_now - tsc_last) {
496                         val64 = 100 * (msr_now - msr_last);
497                         do_div(val64, (tsc_now - tsc_last));
498                         pkg_cstate_ratio_cur = val64;
499                 }
500         }
501
502         /* update record */
503         msr_last = msr_now;
504         jiffies_last = jiffies_now;
505         tsc_last = tsc_now;
506
507         if (true == clamping)
508                 schedule_delayed_work(&poll_pkg_cstate_work, HZ);
509 }
510
511 static int start_power_clamp(void)
512 {
513         unsigned long cpu;
514         struct task_struct *thread;
515
516         set_target_ratio = clamp(set_target_ratio, 0U, MAX_TARGET_RATIO - 1);
517         /* prevent cpu hotplug */
518         get_online_cpus();
519
520         /* prefer BSP */
521         control_cpu = cpumask_first(cpu_online_mask);
522
523         clamping = true;
524         schedule_delayed_work(&poll_pkg_cstate_work, 0);
525
526         /* start one thread per online cpu */
527         for_each_online_cpu(cpu) {
528                 struct task_struct **p =
529                         per_cpu_ptr(powerclamp_thread, cpu);
530
531                 thread = kthread_create_on_node(clamp_thread,
532                                                 (void *) cpu,
533                                                 cpu_to_node(cpu),
534                                                 "kidle_inject/%ld", cpu);
535                 /* bind to cpu here */
536                 if (likely(!IS_ERR(thread))) {
537                         kthread_bind(thread, cpu);
538                         wake_up_process(thread);
539                         *p = thread;
540                 }
541
542         }
543         put_online_cpus();
544
545         return 0;
546 }
547
548 static void end_power_clamp(void)
549 {
550         int i;
551         struct task_struct *thread;
552
553         clamping = false;
554         /*
555          * make clamping visible to other cpus and give per cpu clamping threads
556          * sometime to exit, or gets killed later.
557          */
558         smp_mb();
559         msleep(20);
560         if (bitmap_weight(cpu_clamping_mask, num_possible_cpus())) {
561                 for_each_set_bit(i, cpu_clamping_mask, num_possible_cpus()) {
562                         pr_debug("clamping thread for cpu %d alive, kill\n", i);
563                         thread = *per_cpu_ptr(powerclamp_thread, i);
564                         kthread_stop(thread);
565                 }
566         }
567 }
568
569 static int powerclamp_cpu_callback(struct notifier_block *nfb,
570                                 unsigned long action, void *hcpu)
571 {
572         unsigned long cpu = (unsigned long)hcpu;
573         struct task_struct *thread;
574         struct task_struct **percpu_thread =
575                 per_cpu_ptr(powerclamp_thread, cpu);
576
577         if (false == clamping)
578                 goto exit_ok;
579
580         switch (action) {
581         case CPU_ONLINE:
582                 thread = kthread_create_on_node(clamp_thread,
583                                                 (void *) cpu,
584                                                 cpu_to_node(cpu),
585                                                 "kidle_inject/%lu", cpu);
586                 if (likely(!IS_ERR(thread))) {
587                         kthread_bind(thread, cpu);
588                         wake_up_process(thread);
589                         *percpu_thread = thread;
590                 }
591                 /* prefer BSP as controlling CPU */
592                 if (cpu == 0) {
593                         control_cpu = 0;
594                         smp_mb();
595                 }
596                 break;
597         case CPU_DEAD:
598                 if (test_bit(cpu, cpu_clamping_mask)) {
599                         pr_err("cpu %lu dead but powerclamping thread is not\n",
600                                 cpu);
601                         kthread_stop(*percpu_thread);
602                 }
603                 if (cpu == control_cpu) {
604                         control_cpu = smp_processor_id();
605                         smp_mb();
606                 }
607         }
608
609 exit_ok:
610         return NOTIFY_OK;
611 }
612
613 static struct notifier_block powerclamp_cpu_notifier = {
614         .notifier_call = powerclamp_cpu_callback,
615 };
616
617 static int powerclamp_get_max_state(struct thermal_cooling_device *cdev,
618                                  unsigned long *state)
619 {
620         *state = MAX_TARGET_RATIO;
621
622         return 0;
623 }
624
625 static int powerclamp_get_cur_state(struct thermal_cooling_device *cdev,
626                                  unsigned long *state)
627 {
628         if (true == clamping)
629                 *state = pkg_cstate_ratio_cur;
630         else
631                 /* to save power, do not poll idle ratio while not clamping */
632                 *state = -1; /* indicates invalid state */
633
634         return 0;
635 }
636
637 static int powerclamp_set_cur_state(struct thermal_cooling_device *cdev,
638                                  unsigned long new_target_ratio)
639 {
640         int ret = 0;
641
642         new_target_ratio = clamp(new_target_ratio, 0UL,
643                                 (unsigned long) (MAX_TARGET_RATIO-1));
644         if (set_target_ratio == 0 && new_target_ratio > 0) {
645                 pr_info("Start idle injection to reduce power\n");
646                 set_target_ratio = new_target_ratio;
647                 ret = start_power_clamp();
648                 goto exit_set;
649         } else  if (set_target_ratio > 0 && new_target_ratio == 0) {
650                 pr_info("Stop forced idle injection\n");
651                 end_power_clamp();
652                 set_target_ratio = 0;
653         } else  /* adjust currently running */ {
654                 set_target_ratio = new_target_ratio;
655                 /* make new set_target_ratio visible to other cpus */
656                 smp_mb();
657         }
658
659 exit_set:
660         return ret;
661 }
662
663 /* bind to generic thermal layer as cooling device*/
664 static struct thermal_cooling_device_ops powerclamp_cooling_ops = {
665         .get_max_state = powerclamp_get_max_state,
666         .get_cur_state = powerclamp_get_cur_state,
667         .set_cur_state = powerclamp_set_cur_state,
668 };
669
670 static const struct x86_cpu_id __initconst intel_powerclamp_ids[] = {
671         { X86_VENDOR_INTEL, X86_FAMILY_ANY, X86_MODEL_ANY, X86_FEATURE_MWAIT },
672         {}
673 };
674 MODULE_DEVICE_TABLE(x86cpu, intel_powerclamp_ids);
675
676 static int __init powerclamp_probe(void)
677 {
678
679         if (!x86_match_cpu(intel_powerclamp_ids)) {
680                 pr_err("CPU does not support MWAIT");
681                 return -ENODEV;
682         }
683
684         /* The goal for idle time alignment is to achieve package cstate. */
685         if (!has_pkg_state_counter()) {
686                 pr_info("No package C-state available");
687                 return -ENODEV;
688         }
689
690         /* find the deepest mwait value */
691         find_target_mwait();
692
693         return 0;
694 }
695
696 static int powerclamp_debug_show(struct seq_file *m, void *unused)
697 {
698         int i = 0;
699
700         seq_printf(m, "controlling cpu: %d\n", control_cpu);
701         seq_printf(m, "pct confidence steady dynamic (compensation)\n");
702         for (i = 0; i < MAX_TARGET_RATIO; i++) {
703                 seq_printf(m, "%d\t%lu\t%lu\t%lu\n",
704                         i,
705                         cal_data[i].confidence,
706                         cal_data[i].steady_comp,
707                         cal_data[i].dynamic_comp);
708         }
709
710         return 0;
711 }
712
713 static int powerclamp_debug_open(struct inode *inode,
714                         struct file *file)
715 {
716         return single_open(file, powerclamp_debug_show, inode->i_private);
717 }
718
719 static const struct file_operations powerclamp_debug_fops = {
720         .open           = powerclamp_debug_open,
721         .read           = seq_read,
722         .llseek         = seq_lseek,
723         .release        = single_release,
724         .owner          = THIS_MODULE,
725 };
726
727 static inline void powerclamp_create_debug_files(void)
728 {
729         debug_dir = debugfs_create_dir("intel_powerclamp", NULL);
730         if (!debug_dir)
731                 return;
732
733         if (!debugfs_create_file("powerclamp_calib", S_IRUGO, debug_dir,
734                                         cal_data, &powerclamp_debug_fops))
735                 goto file_error;
736
737         return;
738
739 file_error:
740         debugfs_remove_recursive(debug_dir);
741 }
742
743 static int __init powerclamp_init(void)
744 {
745         int retval;
746         int bitmap_size;
747
748         bitmap_size = BITS_TO_LONGS(num_possible_cpus()) * sizeof(long);
749         cpu_clamping_mask = kzalloc(bitmap_size, GFP_KERNEL);
750         if (!cpu_clamping_mask)
751                 return -ENOMEM;
752
753         /* probe cpu features and ids here */
754         retval = powerclamp_probe();
755         if (retval)
756                 goto exit_free;
757
758         /* set default limit, maybe adjusted during runtime based on feedback */
759         window_size = 2;
760         register_hotcpu_notifier(&powerclamp_cpu_notifier);
761
762         powerclamp_thread = alloc_percpu(struct task_struct *);
763         if (!powerclamp_thread) {
764                 retval = -ENOMEM;
765                 goto exit_unregister;
766         }
767
768         cooling_dev = thermal_cooling_device_register("intel_powerclamp", NULL,
769                                                 &powerclamp_cooling_ops);
770         if (IS_ERR(cooling_dev)) {
771                 retval = -ENODEV;
772                 goto exit_free_thread;
773         }
774
775         if (!duration)
776                 duration = jiffies_to_msecs(DEFAULT_DURATION_JIFFIES);
777
778         powerclamp_create_debug_files();
779
780         return 0;
781
782 exit_free_thread:
783         free_percpu(powerclamp_thread);
784 exit_unregister:
785         unregister_hotcpu_notifier(&powerclamp_cpu_notifier);
786 exit_free:
787         kfree(cpu_clamping_mask);
788         return retval;
789 }
790 module_init(powerclamp_init);
791
792 static void __exit powerclamp_exit(void)
793 {
794         unregister_hotcpu_notifier(&powerclamp_cpu_notifier);
795         end_power_clamp();
796         free_percpu(powerclamp_thread);
797         thermal_cooling_device_unregister(cooling_dev);
798         kfree(cpu_clamping_mask);
799
800         cancel_delayed_work_sync(&poll_pkg_cstate_work);
801         debugfs_remove_recursive(debug_dir);
802 }
803 module_exit(powerclamp_exit);
804
805 MODULE_LICENSE("GPL");
806 MODULE_AUTHOR("Arjan van de Ven <arjan@linux.intel.com>");
807 MODULE_AUTHOR("Jacob Pan <jacob.jun.pan@linux.intel.com>");
808 MODULE_DESCRIPTION("Package Level C-state Idle Injection for Intel CPUs");