GNU Linux-libre 4.4.297-gnu1
[releases.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2  * Filename:  target_core_transport.c
3  *
4  * This file contains the Generic Target Engine Core.
5  *
6  * (c) Copyright 2002-2013 Datera, Inc.
7  *
8  * Nicholas A. Bellinger <nab@kernel.org>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23  *
24  ******************************************************************************/
25
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include <linux/kthread.h>
33 #include <linux/in.h>
34 #include <linux/cdrom.h>
35 #include <linux/module.h>
36 #include <linux/ratelimit.h>
37 #include <linux/vmalloc.h>
38 #include <asm/unaligned.h>
39 #include <net/sock.h>
40 #include <net/tcp.h>
41 #include <scsi/scsi_proto.h>
42 #include <scsi/scsi_common.h>
43
44 #include <target/target_core_base.h>
45 #include <target/target_core_backend.h>
46 #include <target/target_core_fabric.h>
47
48 #include "target_core_internal.h"
49 #include "target_core_alua.h"
50 #include "target_core_pr.h"
51 #include "target_core_ua.h"
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/target.h>
55
56 static struct workqueue_struct *target_completion_wq;
57 static struct kmem_cache *se_sess_cache;
58 struct kmem_cache *se_ua_cache;
59 struct kmem_cache *t10_pr_reg_cache;
60 struct kmem_cache *t10_alua_lu_gp_cache;
61 struct kmem_cache *t10_alua_lu_gp_mem_cache;
62 struct kmem_cache *t10_alua_tg_pt_gp_cache;
63 struct kmem_cache *t10_alua_lba_map_cache;
64 struct kmem_cache *t10_alua_lba_map_mem_cache;
65
66 static void transport_complete_task_attr(struct se_cmd *cmd);
67 static void transport_handle_queue_full(struct se_cmd *cmd,
68                 struct se_device *dev);
69 static int transport_put_cmd(struct se_cmd *cmd);
70 static void target_complete_ok_work(struct work_struct *work);
71
72 int init_se_kmem_caches(void)
73 {
74         se_sess_cache = kmem_cache_create("se_sess_cache",
75                         sizeof(struct se_session), __alignof__(struct se_session),
76                         0, NULL);
77         if (!se_sess_cache) {
78                 pr_err("kmem_cache_create() for struct se_session"
79                                 " failed\n");
80                 goto out;
81         }
82         se_ua_cache = kmem_cache_create("se_ua_cache",
83                         sizeof(struct se_ua), __alignof__(struct se_ua),
84                         0, NULL);
85         if (!se_ua_cache) {
86                 pr_err("kmem_cache_create() for struct se_ua failed\n");
87                 goto out_free_sess_cache;
88         }
89         t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
90                         sizeof(struct t10_pr_registration),
91                         __alignof__(struct t10_pr_registration), 0, NULL);
92         if (!t10_pr_reg_cache) {
93                 pr_err("kmem_cache_create() for struct t10_pr_registration"
94                                 " failed\n");
95                 goto out_free_ua_cache;
96         }
97         t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
98                         sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
99                         0, NULL);
100         if (!t10_alua_lu_gp_cache) {
101                 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
102                                 " failed\n");
103                 goto out_free_pr_reg_cache;
104         }
105         t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
106                         sizeof(struct t10_alua_lu_gp_member),
107                         __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
108         if (!t10_alua_lu_gp_mem_cache) {
109                 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
110                                 "cache failed\n");
111                 goto out_free_lu_gp_cache;
112         }
113         t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
114                         sizeof(struct t10_alua_tg_pt_gp),
115                         __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
116         if (!t10_alua_tg_pt_gp_cache) {
117                 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
118                                 "cache failed\n");
119                 goto out_free_lu_gp_mem_cache;
120         }
121         t10_alua_lba_map_cache = kmem_cache_create(
122                         "t10_alua_lba_map_cache",
123                         sizeof(struct t10_alua_lba_map),
124                         __alignof__(struct t10_alua_lba_map), 0, NULL);
125         if (!t10_alua_lba_map_cache) {
126                 pr_err("kmem_cache_create() for t10_alua_lba_map_"
127                                 "cache failed\n");
128                 goto out_free_tg_pt_gp_cache;
129         }
130         t10_alua_lba_map_mem_cache = kmem_cache_create(
131                         "t10_alua_lba_map_mem_cache",
132                         sizeof(struct t10_alua_lba_map_member),
133                         __alignof__(struct t10_alua_lba_map_member), 0, NULL);
134         if (!t10_alua_lba_map_mem_cache) {
135                 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
136                                 "cache failed\n");
137                 goto out_free_lba_map_cache;
138         }
139
140         target_completion_wq = alloc_workqueue("target_completion",
141                                                WQ_MEM_RECLAIM, 0);
142         if (!target_completion_wq)
143                 goto out_free_lba_map_mem_cache;
144
145         return 0;
146
147 out_free_lba_map_mem_cache:
148         kmem_cache_destroy(t10_alua_lba_map_mem_cache);
149 out_free_lba_map_cache:
150         kmem_cache_destroy(t10_alua_lba_map_cache);
151 out_free_tg_pt_gp_cache:
152         kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
153 out_free_lu_gp_mem_cache:
154         kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
155 out_free_lu_gp_cache:
156         kmem_cache_destroy(t10_alua_lu_gp_cache);
157 out_free_pr_reg_cache:
158         kmem_cache_destroy(t10_pr_reg_cache);
159 out_free_ua_cache:
160         kmem_cache_destroy(se_ua_cache);
161 out_free_sess_cache:
162         kmem_cache_destroy(se_sess_cache);
163 out:
164         return -ENOMEM;
165 }
166
167 void release_se_kmem_caches(void)
168 {
169         destroy_workqueue(target_completion_wq);
170         kmem_cache_destroy(se_sess_cache);
171         kmem_cache_destroy(se_ua_cache);
172         kmem_cache_destroy(t10_pr_reg_cache);
173         kmem_cache_destroy(t10_alua_lu_gp_cache);
174         kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
175         kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
176         kmem_cache_destroy(t10_alua_lba_map_cache);
177         kmem_cache_destroy(t10_alua_lba_map_mem_cache);
178 }
179
180 /* This code ensures unique mib indexes are handed out. */
181 static DEFINE_SPINLOCK(scsi_mib_index_lock);
182 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
183
184 /*
185  * Allocate a new row index for the entry type specified
186  */
187 u32 scsi_get_new_index(scsi_index_t type)
188 {
189         u32 new_index;
190
191         BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
192
193         spin_lock(&scsi_mib_index_lock);
194         new_index = ++scsi_mib_index[type];
195         spin_unlock(&scsi_mib_index_lock);
196
197         return new_index;
198 }
199
200 void transport_subsystem_check_init(void)
201 {
202         int ret;
203         static int sub_api_initialized;
204
205         if (sub_api_initialized)
206                 return;
207
208         ret = request_module("target_core_iblock");
209         if (ret != 0)
210                 pr_err("Unable to load target_core_iblock\n");
211
212         ret = request_module("target_core_file");
213         if (ret != 0)
214                 pr_err("Unable to load target_core_file\n");
215
216         ret = request_module("target_core_pscsi");
217         if (ret != 0)
218                 pr_err("Unable to load target_core_pscsi\n");
219
220         ret = request_module("target_core_user");
221         if (ret != 0)
222                 pr_err("Unable to load target_core_user\n");
223
224         sub_api_initialized = 1;
225 }
226
227 struct se_session *transport_init_session(enum target_prot_op sup_prot_ops)
228 {
229         struct se_session *se_sess;
230
231         se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
232         if (!se_sess) {
233                 pr_err("Unable to allocate struct se_session from"
234                                 " se_sess_cache\n");
235                 return ERR_PTR(-ENOMEM);
236         }
237         INIT_LIST_HEAD(&se_sess->sess_list);
238         INIT_LIST_HEAD(&se_sess->sess_acl_list);
239         INIT_LIST_HEAD(&se_sess->sess_cmd_list);
240         INIT_LIST_HEAD(&se_sess->sess_wait_list);
241         spin_lock_init(&se_sess->sess_cmd_lock);
242         kref_init(&se_sess->sess_kref);
243         se_sess->sup_prot_ops = sup_prot_ops;
244
245         return se_sess;
246 }
247 EXPORT_SYMBOL(transport_init_session);
248
249 int transport_alloc_session_tags(struct se_session *se_sess,
250                                  unsigned int tag_num, unsigned int tag_size)
251 {
252         int rc;
253
254         se_sess->sess_cmd_map = kzalloc(tag_num * tag_size,
255                                         GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
256         if (!se_sess->sess_cmd_map) {
257                 se_sess->sess_cmd_map = vzalloc(tag_num * tag_size);
258                 if (!se_sess->sess_cmd_map) {
259                         pr_err("Unable to allocate se_sess->sess_cmd_map\n");
260                         return -ENOMEM;
261                 }
262         }
263
264         rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num);
265         if (rc < 0) {
266                 pr_err("Unable to init se_sess->sess_tag_pool,"
267                         " tag_num: %u\n", tag_num);
268                 kvfree(se_sess->sess_cmd_map);
269                 se_sess->sess_cmd_map = NULL;
270                 return -ENOMEM;
271         }
272
273         return 0;
274 }
275 EXPORT_SYMBOL(transport_alloc_session_tags);
276
277 struct se_session *transport_init_session_tags(unsigned int tag_num,
278                                                unsigned int tag_size,
279                                                enum target_prot_op sup_prot_ops)
280 {
281         struct se_session *se_sess;
282         int rc;
283
284         se_sess = transport_init_session(sup_prot_ops);
285         if (IS_ERR(se_sess))
286                 return se_sess;
287
288         rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
289         if (rc < 0) {
290                 transport_free_session(se_sess);
291                 return ERR_PTR(-ENOMEM);
292         }
293
294         return se_sess;
295 }
296 EXPORT_SYMBOL(transport_init_session_tags);
297
298 /*
299  * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
300  */
301 void __transport_register_session(
302         struct se_portal_group *se_tpg,
303         struct se_node_acl *se_nacl,
304         struct se_session *se_sess,
305         void *fabric_sess_ptr)
306 {
307         const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo;
308         unsigned char buf[PR_REG_ISID_LEN];
309         unsigned long flags;
310
311         se_sess->se_tpg = se_tpg;
312         se_sess->fabric_sess_ptr = fabric_sess_ptr;
313         /*
314          * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
315          *
316          * Only set for struct se_session's that will actually be moving I/O.
317          * eg: *NOT* discovery sessions.
318          */
319         if (se_nacl) {
320                 /*
321                  *
322                  * Determine if fabric allows for T10-PI feature bits exposed to
323                  * initiators for device backends with !dev->dev_attrib.pi_prot_type.
324                  *
325                  * If so, then always save prot_type on a per se_node_acl node
326                  * basis and re-instate the previous sess_prot_type to avoid
327                  * disabling PI from below any previously initiator side
328                  * registered LUNs.
329                  */
330                 if (se_nacl->saved_prot_type)
331                         se_sess->sess_prot_type = se_nacl->saved_prot_type;
332                 else if (tfo->tpg_check_prot_fabric_only)
333                         se_sess->sess_prot_type = se_nacl->saved_prot_type =
334                                         tfo->tpg_check_prot_fabric_only(se_tpg);
335                 /*
336                  * If the fabric module supports an ISID based TransportID,
337                  * save this value in binary from the fabric I_T Nexus now.
338                  */
339                 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
340                         memset(&buf[0], 0, PR_REG_ISID_LEN);
341                         se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
342                                         &buf[0], PR_REG_ISID_LEN);
343                         se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
344                 }
345
346                 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
347                 /*
348                  * The se_nacl->nacl_sess pointer will be set to the
349                  * last active I_T Nexus for each struct se_node_acl.
350                  */
351                 se_nacl->nacl_sess = se_sess;
352
353                 list_add_tail(&se_sess->sess_acl_list,
354                               &se_nacl->acl_sess_list);
355                 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
356         }
357         list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
358
359         pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
360                 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
361 }
362 EXPORT_SYMBOL(__transport_register_session);
363
364 void transport_register_session(
365         struct se_portal_group *se_tpg,
366         struct se_node_acl *se_nacl,
367         struct se_session *se_sess,
368         void *fabric_sess_ptr)
369 {
370         unsigned long flags;
371
372         spin_lock_irqsave(&se_tpg->session_lock, flags);
373         __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
374         spin_unlock_irqrestore(&se_tpg->session_lock, flags);
375 }
376 EXPORT_SYMBOL(transport_register_session);
377
378 static void target_release_session(struct kref *kref)
379 {
380         struct se_session *se_sess = container_of(kref,
381                         struct se_session, sess_kref);
382         struct se_portal_group *se_tpg = se_sess->se_tpg;
383
384         se_tpg->se_tpg_tfo->close_session(se_sess);
385 }
386
387 int target_get_session(struct se_session *se_sess)
388 {
389         return kref_get_unless_zero(&se_sess->sess_kref);
390 }
391 EXPORT_SYMBOL(target_get_session);
392
393 void target_put_session(struct se_session *se_sess)
394 {
395         kref_put(&se_sess->sess_kref, target_release_session);
396 }
397 EXPORT_SYMBOL(target_put_session);
398
399 ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page)
400 {
401         struct se_session *se_sess;
402         ssize_t len = 0;
403
404         spin_lock_bh(&se_tpg->session_lock);
405         list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) {
406                 if (!se_sess->se_node_acl)
407                         continue;
408                 if (!se_sess->se_node_acl->dynamic_node_acl)
409                         continue;
410                 if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE)
411                         break;
412
413                 len += snprintf(page + len, PAGE_SIZE - len, "%s\n",
414                                 se_sess->se_node_acl->initiatorname);
415                 len += 1; /* Include NULL terminator */
416         }
417         spin_unlock_bh(&se_tpg->session_lock);
418
419         return len;
420 }
421 EXPORT_SYMBOL(target_show_dynamic_sessions);
422
423 static void target_complete_nacl(struct kref *kref)
424 {
425         struct se_node_acl *nacl = container_of(kref,
426                                 struct se_node_acl, acl_kref);
427         struct se_portal_group *se_tpg = nacl->se_tpg;
428
429         if (!nacl->dynamic_stop) {
430                 complete(&nacl->acl_free_comp);
431                 return;
432         }
433
434         mutex_lock(&se_tpg->acl_node_mutex);
435         list_del_init(&nacl->acl_list);
436         mutex_unlock(&se_tpg->acl_node_mutex);
437
438         core_tpg_wait_for_nacl_pr_ref(nacl);
439         core_free_device_list_for_node(nacl, se_tpg);
440         kfree(nacl);
441 }
442
443 void target_put_nacl(struct se_node_acl *nacl)
444 {
445         kref_put(&nacl->acl_kref, target_complete_nacl);
446 }
447 EXPORT_SYMBOL(target_put_nacl);
448
449 void transport_deregister_session_configfs(struct se_session *se_sess)
450 {
451         struct se_node_acl *se_nacl;
452         unsigned long flags;
453         /*
454          * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
455          */
456         se_nacl = se_sess->se_node_acl;
457         if (se_nacl) {
458                 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
459                 if (se_nacl->acl_stop == 0)
460                         list_del(&se_sess->sess_acl_list);
461                 /*
462                  * If the session list is empty, then clear the pointer.
463                  * Otherwise, set the struct se_session pointer from the tail
464                  * element of the per struct se_node_acl active session list.
465                  */
466                 if (list_empty(&se_nacl->acl_sess_list))
467                         se_nacl->nacl_sess = NULL;
468                 else {
469                         se_nacl->nacl_sess = container_of(
470                                         se_nacl->acl_sess_list.prev,
471                                         struct se_session, sess_acl_list);
472                 }
473                 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
474         }
475 }
476 EXPORT_SYMBOL(transport_deregister_session_configfs);
477
478 void transport_free_session(struct se_session *se_sess)
479 {
480         struct se_node_acl *se_nacl = se_sess->se_node_acl;
481
482         /*
483          * Drop the se_node_acl->nacl_kref obtained from within
484          * core_tpg_get_initiator_node_acl().
485          */
486         if (se_nacl) {
487                 struct se_portal_group *se_tpg = se_nacl->se_tpg;
488                 const struct target_core_fabric_ops *se_tfo = se_tpg->se_tpg_tfo;
489                 unsigned long flags;
490
491                 se_sess->se_node_acl = NULL;
492
493                 /*
494                  * Also determine if we need to drop the extra ->cmd_kref if
495                  * it had been previously dynamically generated, and
496                  * the endpoint is not caching dynamic ACLs.
497                  */
498                 mutex_lock(&se_tpg->acl_node_mutex);
499                 if (se_nacl->dynamic_node_acl &&
500                     !se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
501                         spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
502                         if (list_empty(&se_nacl->acl_sess_list))
503                                 se_nacl->dynamic_stop = true;
504                         spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
505
506                         if (se_nacl->dynamic_stop)
507                                 list_del_init(&se_nacl->acl_list);
508                 }
509                 mutex_unlock(&se_tpg->acl_node_mutex);
510
511                 if (se_nacl->dynamic_stop)
512                         target_put_nacl(se_nacl);
513
514                 target_put_nacl(se_nacl);
515         }
516         if (se_sess->sess_cmd_map) {
517                 percpu_ida_destroy(&se_sess->sess_tag_pool);
518                 kvfree(se_sess->sess_cmd_map);
519         }
520         kmem_cache_free(se_sess_cache, se_sess);
521 }
522 EXPORT_SYMBOL(transport_free_session);
523
524 void transport_deregister_session(struct se_session *se_sess)
525 {
526         struct se_portal_group *se_tpg = se_sess->se_tpg;
527         unsigned long flags;
528
529         if (!se_tpg) {
530                 transport_free_session(se_sess);
531                 return;
532         }
533
534         spin_lock_irqsave(&se_tpg->session_lock, flags);
535         list_del(&se_sess->sess_list);
536         se_sess->se_tpg = NULL;
537         se_sess->fabric_sess_ptr = NULL;
538         spin_unlock_irqrestore(&se_tpg->session_lock, flags);
539
540         pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
541                 se_tpg->se_tpg_tfo->get_fabric_name());
542         /*
543          * If last kref is dropping now for an explicit NodeACL, awake sleeping
544          * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
545          * removal context from within transport_free_session() code.
546          *
547          * For dynamic ACL, target_put_nacl() uses target_complete_nacl()
548          * to release all remaining generate_node_acl=1 created ACL resources.
549          */
550
551         transport_free_session(se_sess);
552 }
553 EXPORT_SYMBOL(transport_deregister_session);
554
555 static void target_remove_from_state_list(struct se_cmd *cmd)
556 {
557         struct se_device *dev = cmd->se_dev;
558         unsigned long flags;
559
560         if (!dev)
561                 return;
562
563         if (cmd->transport_state & CMD_T_BUSY)
564                 return;
565
566         spin_lock_irqsave(&dev->execute_task_lock, flags);
567         if (cmd->state_active) {
568                 list_del(&cmd->state_list);
569                 cmd->state_active = false;
570         }
571         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
572 }
573
574 static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists,
575                                     bool write_pending)
576 {
577         unsigned long flags;
578
579         if (remove_from_lists) {
580                 target_remove_from_state_list(cmd);
581
582                 /*
583                  * Clear struct se_cmd->se_lun before the handoff to FE.
584                  */
585                 cmd->se_lun = NULL;
586         }
587
588         spin_lock_irqsave(&cmd->t_state_lock, flags);
589         if (write_pending)
590                 cmd->t_state = TRANSPORT_WRITE_PENDING;
591
592         /*
593          * Determine if frontend context caller is requesting the stopping of
594          * this command for frontend exceptions.
595          */
596         if (cmd->transport_state & CMD_T_STOP) {
597                 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
598                         __func__, __LINE__, cmd->tag);
599
600                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
601
602                 complete_all(&cmd->t_transport_stop_comp);
603                 return 1;
604         }
605
606         cmd->transport_state &= ~CMD_T_ACTIVE;
607         if (remove_from_lists) {
608                 /*
609                  * Some fabric modules like tcm_loop can release
610                  * their internally allocated I/O reference now and
611                  * struct se_cmd now.
612                  *
613                  * Fabric modules are expected to return '1' here if the
614                  * se_cmd being passed is released at this point,
615                  * or zero if not being released.
616                  */
617                 if (cmd->se_tfo->check_stop_free != NULL) {
618                         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
619                         return cmd->se_tfo->check_stop_free(cmd);
620                 }
621         }
622
623         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
624         return 0;
625 }
626
627 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
628 {
629         return transport_cmd_check_stop(cmd, true, false);
630 }
631
632 static void transport_lun_remove_cmd(struct se_cmd *cmd)
633 {
634         struct se_lun *lun = cmd->se_lun;
635
636         if (!lun)
637                 return;
638
639         if (cmpxchg(&cmd->lun_ref_active, true, false))
640                 percpu_ref_put(&lun->lun_ref);
641 }
642
643 int transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
644 {
645         bool ack_kref = (cmd->se_cmd_flags & SCF_ACK_KREF);
646         int ret = 0;
647
648         if (cmd->se_cmd_flags & SCF_SE_LUN_CMD)
649                 transport_lun_remove_cmd(cmd);
650         /*
651          * Allow the fabric driver to unmap any resources before
652          * releasing the descriptor via TFO->release_cmd()
653          */
654         if (remove)
655                 cmd->se_tfo->aborted_task(cmd);
656
657         if (transport_cmd_check_stop_to_fabric(cmd))
658                 return 1;
659         if (remove && ack_kref)
660                 ret = transport_put_cmd(cmd);
661
662         return ret;
663 }
664
665 static void target_complete_failure_work(struct work_struct *work)
666 {
667         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
668
669         transport_generic_request_failure(cmd,
670                         TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
671 }
672
673 /*
674  * Used when asking transport to copy Sense Data from the underlying
675  * Linux/SCSI struct scsi_cmnd
676  */
677 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
678 {
679         struct se_device *dev = cmd->se_dev;
680
681         WARN_ON(!cmd->se_lun);
682
683         if (!dev)
684                 return NULL;
685
686         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
687                 return NULL;
688
689         cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
690
691         pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
692                 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
693         return cmd->sense_buffer;
694 }
695
696 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
697 {
698         struct se_device *dev = cmd->se_dev;
699         int success = scsi_status == GOOD;
700         unsigned long flags;
701
702         cmd->scsi_status = scsi_status;
703
704
705         spin_lock_irqsave(&cmd->t_state_lock, flags);
706         cmd->transport_state &= ~CMD_T_BUSY;
707
708         if (dev && dev->transport->transport_complete) {
709                 dev->transport->transport_complete(cmd,
710                                 cmd->t_data_sg,
711                                 transport_get_sense_buffer(cmd));
712                 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
713                         success = 1;
714         }
715
716         /*
717          * See if we are waiting to complete for an exception condition.
718          */
719         if (cmd->transport_state & CMD_T_REQUEST_STOP) {
720                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
721                 complete(&cmd->task_stop_comp);
722                 return;
723         }
724
725         /*
726          * Check for case where an explicit ABORT_TASK has been received
727          * and transport_wait_for_tasks() will be waiting for completion..
728          */
729         if (cmd->transport_state & CMD_T_ABORTED ||
730             cmd->transport_state & CMD_T_STOP) {
731                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
732                 /*
733                  * If COMPARE_AND_WRITE was stopped by __transport_wait_for_tasks(),
734                  * release se_device->caw_sem obtained by sbc_compare_and_write()
735                  * since target_complete_ok_work() or target_complete_failure_work()
736                  * won't be called to invoke the normal CAW completion callbacks.
737                  */
738                 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
739                         up(&dev->caw_sem);
740                 }
741                 complete_all(&cmd->t_transport_stop_comp);
742                 return;
743         } else if (!success) {
744                 INIT_WORK(&cmd->work, target_complete_failure_work);
745         } else {
746                 INIT_WORK(&cmd->work, target_complete_ok_work);
747         }
748
749         cmd->t_state = TRANSPORT_COMPLETE;
750         cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
751         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
752
753         queue_work(target_completion_wq, &cmd->work);
754 }
755 EXPORT_SYMBOL(target_complete_cmd);
756
757 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
758 {
759         if (scsi_status == SAM_STAT_GOOD && length < cmd->data_length) {
760                 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
761                         cmd->residual_count += cmd->data_length - length;
762                 } else {
763                         cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
764                         cmd->residual_count = cmd->data_length - length;
765                 }
766
767                 cmd->data_length = length;
768         }
769
770         target_complete_cmd(cmd, scsi_status);
771 }
772 EXPORT_SYMBOL(target_complete_cmd_with_length);
773
774 static void target_add_to_state_list(struct se_cmd *cmd)
775 {
776         struct se_device *dev = cmd->se_dev;
777         unsigned long flags;
778
779         spin_lock_irqsave(&dev->execute_task_lock, flags);
780         if (!cmd->state_active) {
781                 list_add_tail(&cmd->state_list, &dev->state_list);
782                 cmd->state_active = true;
783         }
784         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
785 }
786
787 /*
788  * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
789  */
790 static void transport_write_pending_qf(struct se_cmd *cmd);
791 static void transport_complete_qf(struct se_cmd *cmd);
792
793 void target_qf_do_work(struct work_struct *work)
794 {
795         struct se_device *dev = container_of(work, struct se_device,
796                                         qf_work_queue);
797         LIST_HEAD(qf_cmd_list);
798         struct se_cmd *cmd, *cmd_tmp;
799
800         spin_lock_irq(&dev->qf_cmd_lock);
801         list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
802         spin_unlock_irq(&dev->qf_cmd_lock);
803
804         list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
805                 list_del(&cmd->se_qf_node);
806                 atomic_dec_mb(&dev->dev_qf_count);
807
808                 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
809                         " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
810                         (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
811                         (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
812                         : "UNKNOWN");
813
814                 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
815                         transport_write_pending_qf(cmd);
816                 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK)
817                         transport_complete_qf(cmd);
818         }
819 }
820
821 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
822 {
823         switch (cmd->data_direction) {
824         case DMA_NONE:
825                 return "NONE";
826         case DMA_FROM_DEVICE:
827                 return "READ";
828         case DMA_TO_DEVICE:
829                 return "WRITE";
830         case DMA_BIDIRECTIONAL:
831                 return "BIDI";
832         default:
833                 break;
834         }
835
836         return "UNKNOWN";
837 }
838
839 void transport_dump_dev_state(
840         struct se_device *dev,
841         char *b,
842         int *bl)
843 {
844         *bl += sprintf(b + *bl, "Status: ");
845         if (dev->export_count)
846                 *bl += sprintf(b + *bl, "ACTIVATED");
847         else
848                 *bl += sprintf(b + *bl, "DEACTIVATED");
849
850         *bl += sprintf(b + *bl, "  Max Queue Depth: %d", dev->queue_depth);
851         *bl += sprintf(b + *bl, "  SectorSize: %u  HwMaxSectors: %u\n",
852                 dev->dev_attrib.block_size,
853                 dev->dev_attrib.hw_max_sectors);
854         *bl += sprintf(b + *bl, "        ");
855 }
856
857 void transport_dump_vpd_proto_id(
858         struct t10_vpd *vpd,
859         unsigned char *p_buf,
860         int p_buf_len)
861 {
862         unsigned char buf[VPD_TMP_BUF_SIZE];
863         int len;
864
865         memset(buf, 0, VPD_TMP_BUF_SIZE);
866         len = sprintf(buf, "T10 VPD Protocol Identifier: ");
867
868         switch (vpd->protocol_identifier) {
869         case 0x00:
870                 sprintf(buf+len, "Fibre Channel\n");
871                 break;
872         case 0x10:
873                 sprintf(buf+len, "Parallel SCSI\n");
874                 break;
875         case 0x20:
876                 sprintf(buf+len, "SSA\n");
877                 break;
878         case 0x30:
879                 sprintf(buf+len, "IEEE 1394\n");
880                 break;
881         case 0x40:
882                 sprintf(buf+len, "SCSI Remote Direct Memory Access"
883                                 " Protocol\n");
884                 break;
885         case 0x50:
886                 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
887                 break;
888         case 0x60:
889                 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
890                 break;
891         case 0x70:
892                 sprintf(buf+len, "Automation/Drive Interface Transport"
893                                 " Protocol\n");
894                 break;
895         case 0x80:
896                 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
897                 break;
898         default:
899                 sprintf(buf+len, "Unknown 0x%02x\n",
900                                 vpd->protocol_identifier);
901                 break;
902         }
903
904         if (p_buf)
905                 strncpy(p_buf, buf, p_buf_len);
906         else
907                 pr_debug("%s", buf);
908 }
909
910 void
911 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
912 {
913         /*
914          * Check if the Protocol Identifier Valid (PIV) bit is set..
915          *
916          * from spc3r23.pdf section 7.5.1
917          */
918          if (page_83[1] & 0x80) {
919                 vpd->protocol_identifier = (page_83[0] & 0xf0);
920                 vpd->protocol_identifier_set = 1;
921                 transport_dump_vpd_proto_id(vpd, NULL, 0);
922         }
923 }
924 EXPORT_SYMBOL(transport_set_vpd_proto_id);
925
926 int transport_dump_vpd_assoc(
927         struct t10_vpd *vpd,
928         unsigned char *p_buf,
929         int p_buf_len)
930 {
931         unsigned char buf[VPD_TMP_BUF_SIZE];
932         int ret = 0;
933         int len;
934
935         memset(buf, 0, VPD_TMP_BUF_SIZE);
936         len = sprintf(buf, "T10 VPD Identifier Association: ");
937
938         switch (vpd->association) {
939         case 0x00:
940                 sprintf(buf+len, "addressed logical unit\n");
941                 break;
942         case 0x10:
943                 sprintf(buf+len, "target port\n");
944                 break;
945         case 0x20:
946                 sprintf(buf+len, "SCSI target device\n");
947                 break;
948         default:
949                 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
950                 ret = -EINVAL;
951                 break;
952         }
953
954         if (p_buf)
955                 strncpy(p_buf, buf, p_buf_len);
956         else
957                 pr_debug("%s", buf);
958
959         return ret;
960 }
961
962 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
963 {
964         /*
965          * The VPD identification association..
966          *
967          * from spc3r23.pdf Section 7.6.3.1 Table 297
968          */
969         vpd->association = (page_83[1] & 0x30);
970         return transport_dump_vpd_assoc(vpd, NULL, 0);
971 }
972 EXPORT_SYMBOL(transport_set_vpd_assoc);
973
974 int transport_dump_vpd_ident_type(
975         struct t10_vpd *vpd,
976         unsigned char *p_buf,
977         int p_buf_len)
978 {
979         unsigned char buf[VPD_TMP_BUF_SIZE];
980         int ret = 0;
981         int len;
982
983         memset(buf, 0, VPD_TMP_BUF_SIZE);
984         len = sprintf(buf, "T10 VPD Identifier Type: ");
985
986         switch (vpd->device_identifier_type) {
987         case 0x00:
988                 sprintf(buf+len, "Vendor specific\n");
989                 break;
990         case 0x01:
991                 sprintf(buf+len, "T10 Vendor ID based\n");
992                 break;
993         case 0x02:
994                 sprintf(buf+len, "EUI-64 based\n");
995                 break;
996         case 0x03:
997                 sprintf(buf+len, "NAA\n");
998                 break;
999         case 0x04:
1000                 sprintf(buf+len, "Relative target port identifier\n");
1001                 break;
1002         case 0x08:
1003                 sprintf(buf+len, "SCSI name string\n");
1004                 break;
1005         default:
1006                 sprintf(buf+len, "Unsupported: 0x%02x\n",
1007                                 vpd->device_identifier_type);
1008                 ret = -EINVAL;
1009                 break;
1010         }
1011
1012         if (p_buf) {
1013                 if (p_buf_len < strlen(buf)+1)
1014                         return -EINVAL;
1015                 strncpy(p_buf, buf, p_buf_len);
1016         } else {
1017                 pr_debug("%s", buf);
1018         }
1019
1020         return ret;
1021 }
1022
1023 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1024 {
1025         /*
1026          * The VPD identifier type..
1027          *
1028          * from spc3r23.pdf Section 7.6.3.1 Table 298
1029          */
1030         vpd->device_identifier_type = (page_83[1] & 0x0f);
1031         return transport_dump_vpd_ident_type(vpd, NULL, 0);
1032 }
1033 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1034
1035 int transport_dump_vpd_ident(
1036         struct t10_vpd *vpd,
1037         unsigned char *p_buf,
1038         int p_buf_len)
1039 {
1040         unsigned char buf[VPD_TMP_BUF_SIZE];
1041         int ret = 0;
1042
1043         memset(buf, 0, VPD_TMP_BUF_SIZE);
1044
1045         switch (vpd->device_identifier_code_set) {
1046         case 0x01: /* Binary */
1047                 snprintf(buf, sizeof(buf),
1048                         "T10 VPD Binary Device Identifier: %s\n",
1049                         &vpd->device_identifier[0]);
1050                 break;
1051         case 0x02: /* ASCII */
1052                 snprintf(buf, sizeof(buf),
1053                         "T10 VPD ASCII Device Identifier: %s\n",
1054                         &vpd->device_identifier[0]);
1055                 break;
1056         case 0x03: /* UTF-8 */
1057                 snprintf(buf, sizeof(buf),
1058                         "T10 VPD UTF-8 Device Identifier: %s\n",
1059                         &vpd->device_identifier[0]);
1060                 break;
1061         default:
1062                 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1063                         " 0x%02x", vpd->device_identifier_code_set);
1064                 ret = -EINVAL;
1065                 break;
1066         }
1067
1068         if (p_buf)
1069                 strncpy(p_buf, buf, p_buf_len);
1070         else
1071                 pr_debug("%s", buf);
1072
1073         return ret;
1074 }
1075
1076 int
1077 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1078 {
1079         static const char hex_str[] = "0123456789abcdef";
1080         int j = 0, i = 4; /* offset to start of the identifier */
1081
1082         /*
1083          * The VPD Code Set (encoding)
1084          *
1085          * from spc3r23.pdf Section 7.6.3.1 Table 296
1086          */
1087         vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1088         switch (vpd->device_identifier_code_set) {
1089         case 0x01: /* Binary */
1090                 vpd->device_identifier[j++] =
1091                                 hex_str[vpd->device_identifier_type];
1092                 while (i < (4 + page_83[3])) {
1093                         vpd->device_identifier[j++] =
1094                                 hex_str[(page_83[i] & 0xf0) >> 4];
1095                         vpd->device_identifier[j++] =
1096                                 hex_str[page_83[i] & 0x0f];
1097                         i++;
1098                 }
1099                 break;
1100         case 0x02: /* ASCII */
1101         case 0x03: /* UTF-8 */
1102                 while (i < (4 + page_83[3]))
1103                         vpd->device_identifier[j++] = page_83[i++];
1104                 break;
1105         default:
1106                 break;
1107         }
1108
1109         return transport_dump_vpd_ident(vpd, NULL, 0);
1110 }
1111 EXPORT_SYMBOL(transport_set_vpd_ident);
1112
1113 static sense_reason_t
1114 target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev,
1115                                unsigned int size)
1116 {
1117         u32 mtl;
1118
1119         if (!cmd->se_tfo->max_data_sg_nents)
1120                 return TCM_NO_SENSE;
1121         /*
1122          * Check if fabric enforced maximum SGL entries per I/O descriptor
1123          * exceeds se_cmd->data_length.  If true, set SCF_UNDERFLOW_BIT +
1124          * residual_count and reduce original cmd->data_length to maximum
1125          * length based on single PAGE_SIZE entry scatter-lists.
1126          */
1127         mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE);
1128         if (cmd->data_length > mtl) {
1129                 /*
1130                  * If an existing CDB overflow is present, calculate new residual
1131                  * based on CDB size minus fabric maximum transfer length.
1132                  *
1133                  * If an existing CDB underflow is present, calculate new residual
1134                  * based on original cmd->data_length minus fabric maximum transfer
1135                  * length.
1136                  *
1137                  * Otherwise, set the underflow residual based on cmd->data_length
1138                  * minus fabric maximum transfer length.
1139                  */
1140                 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1141                         cmd->residual_count = (size - mtl);
1142                 } else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
1143                         u32 orig_dl = size + cmd->residual_count;
1144                         cmd->residual_count = (orig_dl - mtl);
1145                 } else {
1146                         cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1147                         cmd->residual_count = (cmd->data_length - mtl);
1148                 }
1149                 cmd->data_length = mtl;
1150                 /*
1151                  * Reset sbc_check_prot() calculated protection payload
1152                  * length based upon the new smaller MTL.
1153                  */
1154                 if (cmd->prot_length) {
1155                         u32 sectors = (mtl / dev->dev_attrib.block_size);
1156                         cmd->prot_length = dev->prot_length * sectors;
1157                 }
1158         }
1159         return TCM_NO_SENSE;
1160 }
1161
1162 sense_reason_t
1163 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1164 {
1165         struct se_device *dev = cmd->se_dev;
1166
1167         if (cmd->unknown_data_length) {
1168                 cmd->data_length = size;
1169         } else if (size != cmd->data_length) {
1170                 pr_warn_ratelimited("TARGET_CORE[%s]: Expected Transfer Length:"
1171                         " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1172                         " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
1173                                 cmd->data_length, size, cmd->t_task_cdb[0]);
1174
1175                 if (cmd->data_direction == DMA_TO_DEVICE) {
1176                         if (cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) {
1177                                 pr_err_ratelimited("Rejecting underflow/overflow"
1178                                                    " for WRITE data CDB\n");
1179                                 return TCM_INVALID_CDB_FIELD;
1180                         }
1181                         /*
1182                          * Some fabric drivers like iscsi-target still expect to
1183                          * always reject overflow writes.  Reject this case until
1184                          * full fabric driver level support for overflow writes
1185                          * is introduced tree-wide.
1186                          */
1187                         if (size > cmd->data_length) {
1188                                 pr_err_ratelimited("Rejecting overflow for"
1189                                                    " WRITE control CDB\n");
1190                                 return TCM_INVALID_CDB_FIELD;
1191                         }
1192                 }
1193                 /*
1194                  * Reject READ_* or WRITE_* with overflow/underflow for
1195                  * type SCF_SCSI_DATA_CDB.
1196                  */
1197                 if (dev->dev_attrib.block_size != 512)  {
1198                         pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1199                                 " CDB on non 512-byte sector setup subsystem"
1200                                 " plugin: %s\n", dev->transport->name);
1201                         /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1202                         return TCM_INVALID_CDB_FIELD;
1203                 }
1204                 /*
1205                  * For the overflow case keep the existing fabric provided
1206                  * ->data_length.  Otherwise for the underflow case, reset
1207                  * ->data_length to the smaller SCSI expected data transfer
1208                  * length.
1209                  */
1210                 if (size > cmd->data_length) {
1211                         cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1212                         cmd->residual_count = (size - cmd->data_length);
1213                 } else {
1214                         cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1215                         cmd->residual_count = (cmd->data_length - size);
1216                         cmd->data_length = size;
1217                 }
1218         }
1219
1220         return target_check_max_data_sg_nents(cmd, dev, size);
1221
1222 }
1223
1224 /*
1225  * Used by fabric modules containing a local struct se_cmd within their
1226  * fabric dependent per I/O descriptor.
1227  *
1228  * Preserves the value of @cmd->tag.
1229  */
1230 void transport_init_se_cmd(
1231         struct se_cmd *cmd,
1232         const struct target_core_fabric_ops *tfo,
1233         struct se_session *se_sess,
1234         u32 data_length,
1235         int data_direction,
1236         int task_attr,
1237         unsigned char *sense_buffer)
1238 {
1239         INIT_LIST_HEAD(&cmd->se_delayed_node);
1240         INIT_LIST_HEAD(&cmd->se_qf_node);
1241         INIT_LIST_HEAD(&cmd->se_cmd_list);
1242         INIT_LIST_HEAD(&cmd->state_list);
1243         init_completion(&cmd->t_transport_stop_comp);
1244         init_completion(&cmd->cmd_wait_comp);
1245         init_completion(&cmd->task_stop_comp);
1246         spin_lock_init(&cmd->t_state_lock);
1247         kref_init(&cmd->cmd_kref);
1248         cmd->transport_state = CMD_T_DEV_ACTIVE;
1249
1250         cmd->se_tfo = tfo;
1251         cmd->se_sess = se_sess;
1252         cmd->data_length = data_length;
1253         cmd->data_direction = data_direction;
1254         cmd->sam_task_attr = task_attr;
1255         cmd->sense_buffer = sense_buffer;
1256
1257         cmd->state_active = false;
1258 }
1259 EXPORT_SYMBOL(transport_init_se_cmd);
1260
1261 static sense_reason_t
1262 transport_check_alloc_task_attr(struct se_cmd *cmd)
1263 {
1264         struct se_device *dev = cmd->se_dev;
1265
1266         /*
1267          * Check if SAM Task Attribute emulation is enabled for this
1268          * struct se_device storage object
1269          */
1270         if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1271                 return 0;
1272
1273         if (cmd->sam_task_attr == TCM_ACA_TAG) {
1274                 pr_debug("SAM Task Attribute ACA"
1275                         " emulation is not supported\n");
1276                 return TCM_INVALID_CDB_FIELD;
1277         }
1278
1279         return 0;
1280 }
1281
1282 sense_reason_t
1283 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb)
1284 {
1285         struct se_device *dev = cmd->se_dev;
1286         sense_reason_t ret;
1287
1288         /*
1289          * Ensure that the received CDB is less than the max (252 + 8) bytes
1290          * for VARIABLE_LENGTH_CMD
1291          */
1292         if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1293                 pr_err("Received SCSI CDB with command_size: %d that"
1294                         " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1295                         scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1296                 return TCM_INVALID_CDB_FIELD;
1297         }
1298         /*
1299          * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1300          * allocate the additional extended CDB buffer now..  Otherwise
1301          * setup the pointer from __t_task_cdb to t_task_cdb.
1302          */
1303         if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1304                 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1305                                                 GFP_KERNEL);
1306                 if (!cmd->t_task_cdb) {
1307                         pr_err("Unable to allocate cmd->t_task_cdb"
1308                                 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1309                                 scsi_command_size(cdb),
1310                                 (unsigned long)sizeof(cmd->__t_task_cdb));
1311                         return TCM_OUT_OF_RESOURCES;
1312                 }
1313         } else
1314                 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1315         /*
1316          * Copy the original CDB into cmd->
1317          */
1318         memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1319
1320         trace_target_sequencer_start(cmd);
1321
1322         ret = dev->transport->parse_cdb(cmd);
1323         if (ret == TCM_UNSUPPORTED_SCSI_OPCODE)
1324                 pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
1325                                     cmd->se_tfo->get_fabric_name(),
1326                                     cmd->se_sess->se_node_acl->initiatorname,
1327                                     cmd->t_task_cdb[0]);
1328         if (ret)
1329                 return ret;
1330
1331         ret = transport_check_alloc_task_attr(cmd);
1332         if (ret)
1333                 return ret;
1334
1335         cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1336         atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus);
1337         return 0;
1338 }
1339 EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1340
1341 /*
1342  * Used by fabric module frontends to queue tasks directly.
1343  * Many only be used from process context only
1344  */
1345 int transport_handle_cdb_direct(
1346         struct se_cmd *cmd)
1347 {
1348         sense_reason_t ret;
1349
1350         if (!cmd->se_lun) {
1351                 dump_stack();
1352                 pr_err("cmd->se_lun is NULL\n");
1353                 return -EINVAL;
1354         }
1355         if (in_interrupt()) {
1356                 dump_stack();
1357                 pr_err("transport_generic_handle_cdb cannot be called"
1358                                 " from interrupt context\n");
1359                 return -EINVAL;
1360         }
1361         /*
1362          * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1363          * outstanding descriptors are handled correctly during shutdown via
1364          * transport_wait_for_tasks()
1365          *
1366          * Also, we don't take cmd->t_state_lock here as we only expect
1367          * this to be called for initial descriptor submission.
1368          */
1369         cmd->t_state = TRANSPORT_NEW_CMD;
1370         cmd->transport_state |= CMD_T_ACTIVE;
1371
1372         /*
1373          * transport_generic_new_cmd() is already handling QUEUE_FULL,
1374          * so follow TRANSPORT_NEW_CMD processing thread context usage
1375          * and call transport_generic_request_failure() if necessary..
1376          */
1377         ret = transport_generic_new_cmd(cmd);
1378         if (ret)
1379                 transport_generic_request_failure(cmd, ret);
1380         return 0;
1381 }
1382 EXPORT_SYMBOL(transport_handle_cdb_direct);
1383
1384 sense_reason_t
1385 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1386                 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1387 {
1388         if (!sgl || !sgl_count)
1389                 return 0;
1390
1391         /*
1392          * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1393          * scatterlists already have been set to follow what the fabric
1394          * passes for the original expected data transfer length.
1395          */
1396         if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1397                 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1398                         " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1399                 return TCM_INVALID_CDB_FIELD;
1400         }
1401
1402         cmd->t_data_sg = sgl;
1403         cmd->t_data_nents = sgl_count;
1404         cmd->t_bidi_data_sg = sgl_bidi;
1405         cmd->t_bidi_data_nents = sgl_bidi_count;
1406
1407         cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1408         return 0;
1409 }
1410
1411 /*
1412  * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1413  *                       se_cmd + use pre-allocated SGL memory.
1414  *
1415  * @se_cmd: command descriptor to submit
1416  * @se_sess: associated se_sess for endpoint
1417  * @cdb: pointer to SCSI CDB
1418  * @sense: pointer to SCSI sense buffer
1419  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1420  * @data_length: fabric expected data transfer length
1421  * @task_addr: SAM task attribute
1422  * @data_dir: DMA data direction
1423  * @flags: flags for command submission from target_sc_flags_tables
1424  * @sgl: struct scatterlist memory for unidirectional mapping
1425  * @sgl_count: scatterlist count for unidirectional mapping
1426  * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1427  * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1428  * @sgl_prot: struct scatterlist memory protection information
1429  * @sgl_prot_count: scatterlist count for protection information
1430  *
1431  * Task tags are supported if the caller has set @se_cmd->tag.
1432  *
1433  * Returns non zero to signal active I/O shutdown failure.  All other
1434  * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1435  * but still return zero here.
1436  *
1437  * This may only be called from process context, and also currently
1438  * assumes internal allocation of fabric payload buffer by target-core.
1439  */
1440 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
1441                 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1442                 u32 data_length, int task_attr, int data_dir, int flags,
1443                 struct scatterlist *sgl, u32 sgl_count,
1444                 struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
1445                 struct scatterlist *sgl_prot, u32 sgl_prot_count)
1446 {
1447         struct se_portal_group *se_tpg;
1448         sense_reason_t rc;
1449         int ret;
1450
1451         se_tpg = se_sess->se_tpg;
1452         BUG_ON(!se_tpg);
1453         BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1454         BUG_ON(in_interrupt());
1455         /*
1456          * Initialize se_cmd for target operation.  From this point
1457          * exceptions are handled by sending exception status via
1458          * target_core_fabric_ops->queue_status() callback
1459          */
1460         transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1461                                 data_length, data_dir, task_attr, sense);
1462         if (flags & TARGET_SCF_UNKNOWN_SIZE)
1463                 se_cmd->unknown_data_length = 1;
1464         /*
1465          * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1466          * se_sess->sess_cmd_list.  A second kref_get here is necessary
1467          * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1468          * kref_put() to happen during fabric packet acknowledgement.
1469          */
1470         ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1471         if (ret)
1472                 return ret;
1473         /*
1474          * Signal bidirectional data payloads to target-core
1475          */
1476         if (flags & TARGET_SCF_BIDI_OP)
1477                 se_cmd->se_cmd_flags |= SCF_BIDI;
1478         /*
1479          * Locate se_lun pointer and attach it to struct se_cmd
1480          */
1481         rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun);
1482         if (rc) {
1483                 transport_send_check_condition_and_sense(se_cmd, rc, 0);
1484                 target_put_sess_cmd(se_cmd);
1485                 return 0;
1486         }
1487
1488         rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1489         if (rc != 0) {
1490                 transport_generic_request_failure(se_cmd, rc);
1491                 return 0;
1492         }
1493
1494         /*
1495          * Save pointers for SGLs containing protection information,
1496          * if present.
1497          */
1498         if (sgl_prot_count) {
1499                 se_cmd->t_prot_sg = sgl_prot;
1500                 se_cmd->t_prot_nents = sgl_prot_count;
1501                 se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC;
1502         }
1503
1504         /*
1505          * When a non zero sgl_count has been passed perform SGL passthrough
1506          * mapping for pre-allocated fabric memory instead of having target
1507          * core perform an internal SGL allocation..
1508          */
1509         if (sgl_count != 0) {
1510                 BUG_ON(!sgl);
1511
1512                 /*
1513                  * A work-around for tcm_loop as some userspace code via
1514                  * scsi-generic do not memset their associated read buffers,
1515                  * so go ahead and do that here for type non-data CDBs.  Also
1516                  * note that this is currently guaranteed to be a single SGL
1517                  * for this case by target core in target_setup_cmd_from_cdb()
1518                  * -> transport_generic_cmd_sequencer().
1519                  */
1520                 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1521                      se_cmd->data_direction == DMA_FROM_DEVICE) {
1522                         unsigned char *buf = NULL;
1523
1524                         if (sgl)
1525                                 buf = kmap(sg_page(sgl)) + sgl->offset;
1526
1527                         if (buf) {
1528                                 memset(buf, 0, sgl->length);
1529                                 kunmap(sg_page(sgl));
1530                         }
1531                 }
1532
1533                 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1534                                 sgl_bidi, sgl_bidi_count);
1535                 if (rc != 0) {
1536                         transport_generic_request_failure(se_cmd, rc);
1537                         return 0;
1538                 }
1539         }
1540
1541         /*
1542          * Check if we need to delay processing because of ALUA
1543          * Active/NonOptimized primary access state..
1544          */
1545         core_alua_check_nonop_delay(se_cmd);
1546
1547         transport_handle_cdb_direct(se_cmd);
1548         return 0;
1549 }
1550 EXPORT_SYMBOL(target_submit_cmd_map_sgls);
1551
1552 /*
1553  * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1554  *
1555  * @se_cmd: command descriptor to submit
1556  * @se_sess: associated se_sess for endpoint
1557  * @cdb: pointer to SCSI CDB
1558  * @sense: pointer to SCSI sense buffer
1559  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1560  * @data_length: fabric expected data transfer length
1561  * @task_addr: SAM task attribute
1562  * @data_dir: DMA data direction
1563  * @flags: flags for command submission from target_sc_flags_tables
1564  *
1565  * Task tags are supported if the caller has set @se_cmd->tag.
1566  *
1567  * Returns non zero to signal active I/O shutdown failure.  All other
1568  * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1569  * but still return zero here.
1570  *
1571  * This may only be called from process context, and also currently
1572  * assumes internal allocation of fabric payload buffer by target-core.
1573  *
1574  * It also assumes interal target core SGL memory allocation.
1575  */
1576 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1577                 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1578                 u32 data_length, int task_attr, int data_dir, int flags)
1579 {
1580         return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
1581                         unpacked_lun, data_length, task_attr, data_dir,
1582                         flags, NULL, 0, NULL, 0, NULL, 0);
1583 }
1584 EXPORT_SYMBOL(target_submit_cmd);
1585
1586 static void target_complete_tmr_failure(struct work_struct *work)
1587 {
1588         struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1589
1590         se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1591         se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1592
1593         transport_cmd_check_stop_to_fabric(se_cmd);
1594 }
1595
1596 /**
1597  * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1598  *                     for TMR CDBs
1599  *
1600  * @se_cmd: command descriptor to submit
1601  * @se_sess: associated se_sess for endpoint
1602  * @sense: pointer to SCSI sense buffer
1603  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1604  * @fabric_context: fabric context for TMR req
1605  * @tm_type: Type of TM request
1606  * @gfp: gfp type for caller
1607  * @tag: referenced task tag for TMR_ABORT_TASK
1608  * @flags: submit cmd flags
1609  *
1610  * Callable from all contexts.
1611  **/
1612
1613 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1614                 unsigned char *sense, u64 unpacked_lun,
1615                 void *fabric_tmr_ptr, unsigned char tm_type,
1616                 gfp_t gfp, unsigned int tag, int flags)
1617 {
1618         struct se_portal_group *se_tpg;
1619         int ret;
1620
1621         se_tpg = se_sess->se_tpg;
1622         BUG_ON(!se_tpg);
1623
1624         transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1625                               0, DMA_NONE, TCM_SIMPLE_TAG, sense);
1626         /*
1627          * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1628          * allocation failure.
1629          */
1630         ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1631         if (ret < 0)
1632                 return -ENOMEM;
1633
1634         if (tm_type == TMR_ABORT_TASK)
1635                 se_cmd->se_tmr_req->ref_task_tag = tag;
1636
1637         /* See target_submit_cmd for commentary */
1638         ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1639         if (ret) {
1640                 core_tmr_release_req(se_cmd->se_tmr_req);
1641                 return ret;
1642         }
1643
1644         ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1645         if (ret) {
1646                 /*
1647                  * For callback during failure handling, push this work off
1648                  * to process context with TMR_LUN_DOES_NOT_EXIST status.
1649                  */
1650                 INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1651                 schedule_work(&se_cmd->work);
1652                 return 0;
1653         }
1654         transport_generic_handle_tmr(se_cmd);
1655         return 0;
1656 }
1657 EXPORT_SYMBOL(target_submit_tmr);
1658
1659 /*
1660  * If the cmd is active, request it to be stopped and sleep until it
1661  * has completed.
1662  */
1663 bool target_stop_cmd(struct se_cmd *cmd, unsigned long *flags)
1664         __releases(&cmd->t_state_lock)
1665         __acquires(&cmd->t_state_lock)
1666 {
1667         bool was_active = false;
1668
1669         if (cmd->transport_state & CMD_T_BUSY) {
1670                 cmd->transport_state |= CMD_T_REQUEST_STOP;
1671                 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1672
1673                 pr_debug("cmd %p waiting to complete\n", cmd);
1674                 wait_for_completion(&cmd->task_stop_comp);
1675                 pr_debug("cmd %p stopped successfully\n", cmd);
1676
1677                 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1678                 cmd->transport_state &= ~CMD_T_REQUEST_STOP;
1679                 cmd->transport_state &= ~CMD_T_BUSY;
1680                 was_active = true;
1681         }
1682
1683         return was_active;
1684 }
1685
1686 /*
1687  * Handle SAM-esque emulation for generic transport request failures.
1688  */
1689 void transport_generic_request_failure(struct se_cmd *cmd,
1690                 sense_reason_t sense_reason)
1691 {
1692         int ret = 0, post_ret = 0;
1693
1694         pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08llx"
1695                 " CDB: 0x%02x\n", cmd, cmd->tag, cmd->t_task_cdb[0]);
1696         pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n",
1697                 cmd->se_tfo->get_cmd_state(cmd),
1698                 cmd->t_state, sense_reason);
1699         pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1700                 (cmd->transport_state & CMD_T_ACTIVE) != 0,
1701                 (cmd->transport_state & CMD_T_STOP) != 0,
1702                 (cmd->transport_state & CMD_T_SENT) != 0);
1703
1704         /*
1705          * For SAM Task Attribute emulation for failed struct se_cmd
1706          */
1707         transport_complete_task_attr(cmd);
1708         /*
1709          * Handle special case for COMPARE_AND_WRITE failure, where the
1710          * callback is expected to drop the per device ->caw_sem.
1711          */
1712         if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
1713              cmd->transport_complete_callback)
1714                 cmd->transport_complete_callback(cmd, false, &post_ret);
1715
1716         switch (sense_reason) {
1717         case TCM_NON_EXISTENT_LUN:
1718         case TCM_UNSUPPORTED_SCSI_OPCODE:
1719         case TCM_INVALID_CDB_FIELD:
1720         case TCM_INVALID_PARAMETER_LIST:
1721         case TCM_PARAMETER_LIST_LENGTH_ERROR:
1722         case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1723         case TCM_UNKNOWN_MODE_PAGE:
1724         case TCM_WRITE_PROTECTED:
1725         case TCM_ADDRESS_OUT_OF_RANGE:
1726         case TCM_CHECK_CONDITION_ABORT_CMD:
1727         case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1728         case TCM_CHECK_CONDITION_NOT_READY:
1729         case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
1730         case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
1731         case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
1732         case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE:
1733         case TCM_TOO_MANY_TARGET_DESCS:
1734         case TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE:
1735         case TCM_TOO_MANY_SEGMENT_DESCS:
1736         case TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE:
1737                 break;
1738         case TCM_OUT_OF_RESOURCES:
1739                 sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1740                 break;
1741         case TCM_RESERVATION_CONFLICT:
1742                 /*
1743                  * No SENSE Data payload for this case, set SCSI Status
1744                  * and queue the response to $FABRIC_MOD.
1745                  *
1746                  * Uses linux/include/scsi/scsi.h SAM status codes defs
1747                  */
1748                 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1749                 /*
1750                  * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1751                  * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1752                  * CONFLICT STATUS.
1753                  *
1754                  * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1755                  */
1756                 if (cmd->se_sess &&
1757                     cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2) {
1758                         target_ua_allocate_lun(cmd->se_sess->se_node_acl,
1759                                                cmd->orig_fe_lun, 0x2C,
1760                                         ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1761                 }
1762                 trace_target_cmd_complete(cmd);
1763                 ret = cmd->se_tfo->queue_status(cmd);
1764                 if (ret == -EAGAIN || ret == -ENOMEM)
1765                         goto queue_full;
1766                 goto check_stop;
1767         default:
1768                 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1769                         cmd->t_task_cdb[0], sense_reason);
1770                 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1771                 break;
1772         }
1773
1774         ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1775         if (ret == -EAGAIN || ret == -ENOMEM)
1776                 goto queue_full;
1777
1778 check_stop:
1779         transport_lun_remove_cmd(cmd);
1780         transport_cmd_check_stop_to_fabric(cmd);
1781         return;
1782
1783 queue_full:
1784         cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1785         transport_handle_queue_full(cmd, cmd->se_dev);
1786 }
1787 EXPORT_SYMBOL(transport_generic_request_failure);
1788
1789 void __target_execute_cmd(struct se_cmd *cmd, bool do_checks)
1790 {
1791         sense_reason_t ret;
1792
1793         if (!cmd->execute_cmd) {
1794                 ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1795                 goto err;
1796         }
1797         if (do_checks) {
1798                 /*
1799                  * Check for an existing UNIT ATTENTION condition after
1800                  * target_handle_task_attr() has done SAM task attr
1801                  * checking, and possibly have already defered execution
1802                  * out to target_restart_delayed_cmds() context.
1803                  */
1804                 ret = target_scsi3_ua_check(cmd);
1805                 if (ret)
1806                         goto err;
1807
1808                 ret = target_alua_state_check(cmd);
1809                 if (ret)
1810                         goto err;
1811
1812                 ret = target_check_reservation(cmd);
1813                 if (ret) {
1814                         cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1815                         goto err;
1816                 }
1817         }
1818
1819         ret = cmd->execute_cmd(cmd);
1820         if (!ret)
1821                 return;
1822 err:
1823         spin_lock_irq(&cmd->t_state_lock);
1824         cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1825         spin_unlock_irq(&cmd->t_state_lock);
1826
1827         transport_generic_request_failure(cmd, ret);
1828 }
1829
1830 static int target_write_prot_action(struct se_cmd *cmd)
1831 {
1832         u32 sectors;
1833         /*
1834          * Perform WRITE_INSERT of PI using software emulation when backend
1835          * device has PI enabled, if the transport has not already generated
1836          * PI using hardware WRITE_INSERT offload.
1837          */
1838         switch (cmd->prot_op) {
1839         case TARGET_PROT_DOUT_INSERT:
1840                 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
1841                         sbc_dif_generate(cmd);
1842                 break;
1843         case TARGET_PROT_DOUT_STRIP:
1844                 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP)
1845                         break;
1846
1847                 sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size);
1848                 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
1849                                              sectors, 0, cmd->t_prot_sg, 0);
1850                 if (unlikely(cmd->pi_err)) {
1851                         spin_lock_irq(&cmd->t_state_lock);
1852                         cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1853                         spin_unlock_irq(&cmd->t_state_lock);
1854                         transport_generic_request_failure(cmd, cmd->pi_err);
1855                         return -1;
1856                 }
1857                 break;
1858         default:
1859                 break;
1860         }
1861
1862         return 0;
1863 }
1864
1865 static bool target_handle_task_attr(struct se_cmd *cmd)
1866 {
1867         struct se_device *dev = cmd->se_dev;
1868
1869         if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1870                 return false;
1871
1872         cmd->se_cmd_flags |= SCF_TASK_ATTR_SET;
1873
1874         /*
1875          * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1876          * to allow the passed struct se_cmd list of tasks to the front of the list.
1877          */
1878         switch (cmd->sam_task_attr) {
1879         case TCM_HEAD_TAG:
1880                 atomic_inc_mb(&dev->non_ordered);
1881                 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
1882                          cmd->t_task_cdb[0]);
1883                 return false;
1884         case TCM_ORDERED_TAG:
1885                 atomic_inc_mb(&dev->delayed_cmd_count);
1886
1887                 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
1888                          cmd->t_task_cdb[0]);
1889                 break;
1890         default:
1891                 /*
1892                  * For SIMPLE and UNTAGGED Task Attribute commands
1893                  */
1894                 atomic_inc_mb(&dev->non_ordered);
1895
1896                 if (atomic_read(&dev->delayed_cmd_count) == 0)
1897                         return false;
1898                 break;
1899         }
1900
1901         if (cmd->sam_task_attr != TCM_ORDERED_TAG) {
1902                 atomic_inc_mb(&dev->delayed_cmd_count);
1903                 /*
1904                  * We will account for this when we dequeue from the delayed
1905                  * list.
1906                  */
1907                 atomic_dec_mb(&dev->non_ordered);
1908         }
1909
1910         spin_lock(&dev->delayed_cmd_lock);
1911         list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
1912         spin_unlock(&dev->delayed_cmd_lock);
1913
1914         pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
1915                 cmd->t_task_cdb[0], cmd->sam_task_attr);
1916         /*
1917          * We may have no non ordered cmds when this function started or we
1918          * could have raced with the last simple/head cmd completing, so kick
1919          * the delayed handler here.
1920          */
1921         schedule_work(&dev->delayed_cmd_work);
1922         return true;
1923 }
1924
1925 static int __transport_check_aborted_status(struct se_cmd *, int);
1926
1927 void target_execute_cmd(struct se_cmd *cmd)
1928 {
1929         /*
1930          * Determine if frontend context caller is requesting the stopping of
1931          * this command for frontend exceptions.
1932          *
1933          * If the received CDB has aleady been aborted stop processing it here.
1934          */
1935         spin_lock_irq(&cmd->t_state_lock);
1936         if (__transport_check_aborted_status(cmd, 1)) {
1937                 spin_unlock_irq(&cmd->t_state_lock);
1938                 return;
1939         }
1940         if (cmd->transport_state & CMD_T_STOP) {
1941                 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
1942                         __func__, __LINE__, cmd->tag);
1943
1944                 spin_unlock_irq(&cmd->t_state_lock);
1945                 complete_all(&cmd->t_transport_stop_comp);
1946                 return;
1947         }
1948
1949         cmd->t_state = TRANSPORT_PROCESSING;
1950         cmd->transport_state &= ~CMD_T_PRE_EXECUTE;
1951         cmd->transport_state |= CMD_T_ACTIVE|CMD_T_BUSY|CMD_T_SENT;
1952         spin_unlock_irq(&cmd->t_state_lock);
1953
1954         if (target_write_prot_action(cmd))
1955                 return;
1956
1957         if (target_handle_task_attr(cmd)) {
1958                 spin_lock_irq(&cmd->t_state_lock);
1959                 cmd->transport_state &= ~(CMD_T_BUSY | CMD_T_SENT);
1960                 spin_unlock_irq(&cmd->t_state_lock);
1961                 return;
1962         }
1963
1964         __target_execute_cmd(cmd, true);
1965 }
1966 EXPORT_SYMBOL(target_execute_cmd);
1967
1968 /*
1969  * Process all commands up to the last received ORDERED task attribute which
1970  * requires another blocking boundary
1971  */
1972 void target_do_delayed_work(struct work_struct *work)
1973 {
1974         struct se_device *dev = container_of(work, struct se_device,
1975                                              delayed_cmd_work);
1976
1977         spin_lock(&dev->delayed_cmd_lock);
1978         while (!dev->ordered_sync_in_progress) {
1979                 struct se_cmd *cmd;
1980
1981                 if (list_empty(&dev->delayed_cmd_list))
1982                         break;
1983
1984                 cmd = list_entry(dev->delayed_cmd_list.next,
1985                                  struct se_cmd, se_delayed_node);
1986
1987                 if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
1988                         /*
1989                          * Check if we started with:
1990                          * [ordered] [simple] [ordered]
1991                          * and we are now at the last ordered so we have to wait
1992                          * for the simple cmd.
1993                          */
1994                         if (atomic_read(&dev->non_ordered) > 0)
1995                                 break;
1996
1997                         dev->ordered_sync_in_progress = true;
1998                 }
1999
2000                 list_del(&cmd->se_delayed_node);
2001                 atomic_dec_mb(&dev->delayed_cmd_count);
2002                 spin_unlock(&dev->delayed_cmd_lock);
2003
2004                 if (cmd->sam_task_attr != TCM_ORDERED_TAG)
2005                         atomic_inc_mb(&dev->non_ordered);
2006
2007                 cmd->transport_state |= CMD_T_SENT;
2008
2009                 __target_execute_cmd(cmd, true);
2010
2011                 spin_lock(&dev->delayed_cmd_lock);
2012         }
2013         spin_unlock(&dev->delayed_cmd_lock);
2014 }
2015
2016 /*
2017  * Called from I/O completion to determine which dormant/delayed
2018  * and ordered cmds need to have their tasks added to the execution queue.
2019  */
2020 static void transport_complete_task_attr(struct se_cmd *cmd)
2021 {
2022         struct se_device *dev = cmd->se_dev;
2023
2024         if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
2025                 return;
2026
2027         if (!(cmd->se_cmd_flags & SCF_TASK_ATTR_SET))
2028                 goto restart;
2029
2030         if (cmd->sam_task_attr == TCM_SIMPLE_TAG) {
2031                 atomic_dec_mb(&dev->non_ordered);
2032                 dev->dev_cur_ordered_id++;
2033                 pr_debug("Incremented dev->dev_cur_ordered_id: %u for SIMPLE\n",
2034                          dev->dev_cur_ordered_id);
2035         } else if (cmd->sam_task_attr == TCM_HEAD_TAG) {
2036                 atomic_dec_mb(&dev->non_ordered);
2037                 dev->dev_cur_ordered_id++;
2038                 pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n",
2039                          dev->dev_cur_ordered_id);
2040         } else if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
2041                 spin_lock(&dev->delayed_cmd_lock);
2042                 dev->ordered_sync_in_progress = false;
2043                 spin_unlock(&dev->delayed_cmd_lock);
2044
2045                 dev->dev_cur_ordered_id++;
2046                 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n",
2047                          dev->dev_cur_ordered_id);
2048         }
2049         cmd->se_cmd_flags &= ~SCF_TASK_ATTR_SET;
2050
2051 restart:
2052         if (atomic_read(&dev->delayed_cmd_count) > 0)
2053                 schedule_work(&dev->delayed_cmd_work);
2054 }
2055
2056 static void transport_complete_qf(struct se_cmd *cmd)
2057 {
2058         int ret = 0;
2059
2060         transport_complete_task_attr(cmd);
2061
2062         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2063                 trace_target_cmd_complete(cmd);
2064                 ret = cmd->se_tfo->queue_status(cmd);
2065                 goto out;
2066         }
2067
2068         switch (cmd->data_direction) {
2069         case DMA_FROM_DEVICE:
2070                 trace_target_cmd_complete(cmd);
2071                 ret = cmd->se_tfo->queue_data_in(cmd);
2072                 break;
2073         case DMA_TO_DEVICE:
2074                 if (cmd->se_cmd_flags & SCF_BIDI) {
2075                         ret = cmd->se_tfo->queue_data_in(cmd);
2076                         break;
2077                 }
2078                 /* Fall through for DMA_TO_DEVICE */
2079         case DMA_NONE:
2080                 trace_target_cmd_complete(cmd);
2081                 ret = cmd->se_tfo->queue_status(cmd);
2082                 break;
2083         default:
2084                 break;
2085         }
2086
2087 out:
2088         if (ret < 0) {
2089                 transport_handle_queue_full(cmd, cmd->se_dev);
2090                 return;
2091         }
2092         transport_lun_remove_cmd(cmd);
2093         transport_cmd_check_stop_to_fabric(cmd);
2094 }
2095
2096 static void transport_handle_queue_full(
2097         struct se_cmd *cmd,
2098         struct se_device *dev)
2099 {
2100         spin_lock_irq(&dev->qf_cmd_lock);
2101         list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
2102         atomic_inc_mb(&dev->dev_qf_count);
2103         spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
2104
2105         schedule_work(&cmd->se_dev->qf_work_queue);
2106 }
2107
2108 static bool target_read_prot_action(struct se_cmd *cmd)
2109 {
2110         switch (cmd->prot_op) {
2111         case TARGET_PROT_DIN_STRIP:
2112                 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) {
2113                         u32 sectors = cmd->data_length >>
2114                                   ilog2(cmd->se_dev->dev_attrib.block_size);
2115
2116                         cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
2117                                                      sectors, 0, cmd->t_prot_sg,
2118                                                      0);
2119                         if (cmd->pi_err)
2120                                 return true;
2121                 }
2122                 break;
2123         case TARGET_PROT_DIN_INSERT:
2124                 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT)
2125                         break;
2126
2127                 sbc_dif_generate(cmd);
2128                 break;
2129         default:
2130                 break;
2131         }
2132
2133         return false;
2134 }
2135
2136 static void target_complete_ok_work(struct work_struct *work)
2137 {
2138         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2139         int ret;
2140
2141         /*
2142          * Check if we need to move delayed/dormant tasks from cmds on the
2143          * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2144          * Attribute.
2145          */
2146         transport_complete_task_attr(cmd);
2147
2148         /*
2149          * Check to schedule QUEUE_FULL work, or execute an existing
2150          * cmd->transport_qf_callback()
2151          */
2152         if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
2153                 schedule_work(&cmd->se_dev->qf_work_queue);
2154
2155         /*
2156          * Check if we need to send a sense buffer from
2157          * the struct se_cmd in question.
2158          */
2159         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2160                 WARN_ON(!cmd->scsi_status);
2161                 ret = transport_send_check_condition_and_sense(
2162                                         cmd, 0, 1);
2163                 if (ret == -EAGAIN || ret == -ENOMEM)
2164                         goto queue_full;
2165
2166                 transport_lun_remove_cmd(cmd);
2167                 transport_cmd_check_stop_to_fabric(cmd);
2168                 return;
2169         }
2170         /*
2171          * Check for a callback, used by amongst other things
2172          * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2173          */
2174         if (cmd->transport_complete_callback) {
2175                 sense_reason_t rc;
2176                 bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE);
2177                 bool zero_dl = !(cmd->data_length);
2178                 int post_ret = 0;
2179
2180                 rc = cmd->transport_complete_callback(cmd, true, &post_ret);
2181                 if (!rc && !post_ret) {
2182                         if (caw && zero_dl)
2183                                 goto queue_rsp;
2184
2185                         return;
2186                 } else if (rc) {
2187                         ret = transport_send_check_condition_and_sense(cmd,
2188                                                 rc, 0);
2189                         if (ret == -EAGAIN || ret == -ENOMEM)
2190                                 goto queue_full;
2191
2192                         transport_lun_remove_cmd(cmd);
2193                         transport_cmd_check_stop_to_fabric(cmd);
2194                         return;
2195                 }
2196         }
2197
2198 queue_rsp:
2199         switch (cmd->data_direction) {
2200         case DMA_FROM_DEVICE:
2201                 atomic_long_add(cmd->data_length,
2202                                 &cmd->se_lun->lun_stats.tx_data_octets);
2203                 /*
2204                  * Perform READ_STRIP of PI using software emulation when
2205                  * backend had PI enabled, if the transport will not be
2206                  * performing hardware READ_STRIP offload.
2207                  */
2208                 if (target_read_prot_action(cmd)) {
2209                         ret = transport_send_check_condition_and_sense(cmd,
2210                                                 cmd->pi_err, 0);
2211                         if (ret == -EAGAIN || ret == -ENOMEM)
2212                                 goto queue_full;
2213
2214                         transport_lun_remove_cmd(cmd);
2215                         transport_cmd_check_stop_to_fabric(cmd);
2216                         return;
2217                 }
2218
2219                 trace_target_cmd_complete(cmd);
2220                 ret = cmd->se_tfo->queue_data_in(cmd);
2221                 if (ret == -EAGAIN || ret == -ENOMEM)
2222                         goto queue_full;
2223                 break;
2224         case DMA_TO_DEVICE:
2225                 atomic_long_add(cmd->data_length,
2226                                 &cmd->se_lun->lun_stats.rx_data_octets);
2227                 /*
2228                  * Check if we need to send READ payload for BIDI-COMMAND
2229                  */
2230                 if (cmd->se_cmd_flags & SCF_BIDI) {
2231                         atomic_long_add(cmd->data_length,
2232                                         &cmd->se_lun->lun_stats.tx_data_octets);
2233                         ret = cmd->se_tfo->queue_data_in(cmd);
2234                         if (ret == -EAGAIN || ret == -ENOMEM)
2235                                 goto queue_full;
2236                         break;
2237                 }
2238                 /* Fall through for DMA_TO_DEVICE */
2239         case DMA_NONE:
2240                 trace_target_cmd_complete(cmd);
2241                 ret = cmd->se_tfo->queue_status(cmd);
2242                 if (ret == -EAGAIN || ret == -ENOMEM)
2243                         goto queue_full;
2244                 break;
2245         default:
2246                 break;
2247         }
2248
2249         transport_lun_remove_cmd(cmd);
2250         transport_cmd_check_stop_to_fabric(cmd);
2251         return;
2252
2253 queue_full:
2254         pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2255                 " data_direction: %d\n", cmd, cmd->data_direction);
2256         cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
2257         transport_handle_queue_full(cmd, cmd->se_dev);
2258 }
2259
2260 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
2261 {
2262         struct scatterlist *sg;
2263         int count;
2264
2265         for_each_sg(sgl, sg, nents, count)
2266                 __free_page(sg_page(sg));
2267
2268         kfree(sgl);
2269 }
2270
2271 static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
2272 {
2273         /*
2274          * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2275          * emulation, and free + reset pointers if necessary..
2276          */
2277         if (!cmd->t_data_sg_orig)
2278                 return;
2279
2280         kfree(cmd->t_data_sg);
2281         cmd->t_data_sg = cmd->t_data_sg_orig;
2282         cmd->t_data_sg_orig = NULL;
2283         cmd->t_data_nents = cmd->t_data_nents_orig;
2284         cmd->t_data_nents_orig = 0;
2285 }
2286
2287 static inline void transport_free_pages(struct se_cmd *cmd)
2288 {
2289         if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2290                 transport_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
2291                 cmd->t_prot_sg = NULL;
2292                 cmd->t_prot_nents = 0;
2293         }
2294
2295         if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2296                 /*
2297                  * Release special case READ buffer payload required for
2298                  * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2299                  */
2300                 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
2301                         transport_free_sgl(cmd->t_bidi_data_sg,
2302                                            cmd->t_bidi_data_nents);
2303                         cmd->t_bidi_data_sg = NULL;
2304                         cmd->t_bidi_data_nents = 0;
2305                 }
2306                 transport_reset_sgl_orig(cmd);
2307                 return;
2308         }
2309         transport_reset_sgl_orig(cmd);
2310
2311         transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2312         cmd->t_data_sg = NULL;
2313         cmd->t_data_nents = 0;
2314
2315         transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2316         cmd->t_bidi_data_sg = NULL;
2317         cmd->t_bidi_data_nents = 0;
2318 }
2319
2320 /**
2321  * transport_put_cmd - release a reference to a command
2322  * @cmd:       command to release
2323  *
2324  * This routine releases our reference to the command and frees it if possible.
2325  */
2326 static int transport_put_cmd(struct se_cmd *cmd)
2327 {
2328         BUG_ON(!cmd->se_tfo);
2329         /*
2330          * If this cmd has been setup with target_get_sess_cmd(), drop
2331          * the kref and call ->release_cmd() in kref callback.
2332          */
2333         return target_put_sess_cmd(cmd);
2334 }
2335
2336 void *transport_kmap_data_sg(struct se_cmd *cmd)
2337 {
2338         struct scatterlist *sg = cmd->t_data_sg;
2339         struct page **pages;
2340         int i;
2341
2342         /*
2343          * We need to take into account a possible offset here for fabrics like
2344          * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2345          * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2346          */
2347         if (!cmd->t_data_nents)
2348                 return NULL;
2349
2350         BUG_ON(!sg);
2351         if (cmd->t_data_nents == 1)
2352                 return kmap(sg_page(sg)) + sg->offset;
2353
2354         /* >1 page. use vmap */
2355         pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
2356         if (!pages)
2357                 return NULL;
2358
2359         /* convert sg[] to pages[] */
2360         for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2361                 pages[i] = sg_page(sg);
2362         }
2363
2364         cmd->t_data_vmap = vmap(pages, cmd->t_data_nents,  VM_MAP, PAGE_KERNEL);
2365         kfree(pages);
2366         if (!cmd->t_data_vmap)
2367                 return NULL;
2368
2369         return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2370 }
2371 EXPORT_SYMBOL(transport_kmap_data_sg);
2372
2373 void transport_kunmap_data_sg(struct se_cmd *cmd)
2374 {
2375         if (!cmd->t_data_nents) {
2376                 return;
2377         } else if (cmd->t_data_nents == 1) {
2378                 kunmap(sg_page(cmd->t_data_sg));
2379                 return;
2380         }
2381
2382         vunmap(cmd->t_data_vmap);
2383         cmd->t_data_vmap = NULL;
2384 }
2385 EXPORT_SYMBOL(transport_kunmap_data_sg);
2386
2387 int
2388 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2389                  bool zero_page)
2390 {
2391         struct scatterlist *sg;
2392         struct page *page;
2393         gfp_t zero_flag = (zero_page) ? __GFP_ZERO : 0;
2394         unsigned int nent;
2395         int i = 0;
2396
2397         nent = DIV_ROUND_UP(length, PAGE_SIZE);
2398         sg = kmalloc(sizeof(struct scatterlist) * nent, GFP_KERNEL);
2399         if (!sg)
2400                 return -ENOMEM;
2401
2402         sg_init_table(sg, nent);
2403
2404         while (length) {
2405                 u32 page_len = min_t(u32, length, PAGE_SIZE);
2406                 page = alloc_page(GFP_KERNEL | zero_flag);
2407                 if (!page)
2408                         goto out;
2409
2410                 sg_set_page(&sg[i], page, page_len, 0);
2411                 length -= page_len;
2412                 i++;
2413         }
2414         *sgl = sg;
2415         *nents = nent;
2416         return 0;
2417
2418 out:
2419         while (i > 0) {
2420                 i--;
2421                 __free_page(sg_page(&sg[i]));
2422         }
2423         kfree(sg);
2424         return -ENOMEM;
2425 }
2426
2427 /*
2428  * Allocate any required resources to execute the command.  For writes we
2429  * might not have the payload yet, so notify the fabric via a call to
2430  * ->write_pending instead. Otherwise place it on the execution queue.
2431  */
2432 sense_reason_t
2433 transport_generic_new_cmd(struct se_cmd *cmd)
2434 {
2435         int ret = 0;
2436         bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2437
2438         if (cmd->prot_op != TARGET_PROT_NORMAL &&
2439             !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2440                 ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents,
2441                                        cmd->prot_length, true);
2442                 if (ret < 0)
2443                         return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2444         }
2445
2446         /*
2447          * Determine is the TCM fabric module has already allocated physical
2448          * memory, and is directly calling transport_generic_map_mem_to_cmd()
2449          * beforehand.
2450          */
2451         if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2452             cmd->data_length) {
2453
2454                 if ((cmd->se_cmd_flags & SCF_BIDI) ||
2455                     (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2456                         u32 bidi_length;
2457
2458                         if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2459                                 bidi_length = cmd->t_task_nolb *
2460                                               cmd->se_dev->dev_attrib.block_size;
2461                         else
2462                                 bidi_length = cmd->data_length;
2463
2464                         ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2465                                                &cmd->t_bidi_data_nents,
2466                                                bidi_length, zero_flag);
2467                         if (ret < 0)
2468                                 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2469                 }
2470
2471                 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2472                                        cmd->data_length, zero_flag);
2473                 if (ret < 0)
2474                         return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2475         } else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
2476                     cmd->data_length) {
2477                 /*
2478                  * Special case for COMPARE_AND_WRITE with fabrics
2479                  * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2480                  */
2481                 u32 caw_length = cmd->t_task_nolb *
2482                                  cmd->se_dev->dev_attrib.block_size;
2483
2484                 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2485                                        &cmd->t_bidi_data_nents,
2486                                        caw_length, zero_flag);
2487                 if (ret < 0)
2488                         return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2489         }
2490         /*
2491          * If this command is not a write we can execute it right here,
2492          * for write buffers we need to notify the fabric driver first
2493          * and let it call back once the write buffers are ready.
2494          */
2495         target_add_to_state_list(cmd);
2496         if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) {
2497                 target_execute_cmd(cmd);
2498                 return 0;
2499         }
2500         transport_cmd_check_stop(cmd, false, true);
2501
2502         ret = cmd->se_tfo->write_pending(cmd);
2503         if (ret == -EAGAIN || ret == -ENOMEM)
2504                 goto queue_full;
2505
2506         /* fabric drivers should only return -EAGAIN or -ENOMEM as error */
2507         WARN_ON(ret);
2508
2509         return (!ret) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2510
2511 queue_full:
2512         pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2513         cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
2514         transport_handle_queue_full(cmd, cmd->se_dev);
2515         return 0;
2516 }
2517 EXPORT_SYMBOL(transport_generic_new_cmd);
2518
2519 static void transport_write_pending_qf(struct se_cmd *cmd)
2520 {
2521         int ret;
2522
2523         ret = cmd->se_tfo->write_pending(cmd);
2524         if (ret == -EAGAIN || ret == -ENOMEM) {
2525                 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2526                          cmd);
2527                 transport_handle_queue_full(cmd, cmd->se_dev);
2528         }
2529 }
2530
2531 static bool
2532 __transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *,
2533                            unsigned long *flags);
2534
2535 static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas)
2536 {
2537         unsigned long flags;
2538
2539         spin_lock_irqsave(&cmd->t_state_lock, flags);
2540         __transport_wait_for_tasks(cmd, true, aborted, tas, &flags);
2541         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2542 }
2543
2544 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2545 {
2546         int ret = 0;
2547         bool aborted = false, tas = false;
2548
2549         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
2550                 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2551                         target_wait_free_cmd(cmd, &aborted, &tas);
2552
2553                 if (!aborted || tas)
2554                         ret = transport_put_cmd(cmd);
2555         } else {
2556                 if (wait_for_tasks)
2557                         target_wait_free_cmd(cmd, &aborted, &tas);
2558                 /*
2559                  * Handle WRITE failure case where transport_generic_new_cmd()
2560                  * has already added se_cmd to state_list, but fabric has
2561                  * failed command before I/O submission.
2562                  */
2563                 if (cmd->state_active)
2564                         target_remove_from_state_list(cmd);
2565
2566                 if (cmd->se_lun)
2567                         transport_lun_remove_cmd(cmd);
2568
2569                 if (!aborted || tas)
2570                         ret = transport_put_cmd(cmd);
2571         }
2572         /*
2573          * If the task has been internally aborted due to TMR ABORT_TASK
2574          * or LUN_RESET, target_core_tmr.c is responsible for performing
2575          * the remaining calls to target_put_sess_cmd(), and not the
2576          * callers of this function.
2577          */
2578         if (aborted) {
2579                 pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag);
2580                 wait_for_completion(&cmd->cmd_wait_comp);
2581                 cmd->se_tfo->release_cmd(cmd);
2582                 ret = 1;
2583         }
2584         return ret;
2585 }
2586 EXPORT_SYMBOL(transport_generic_free_cmd);
2587
2588 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2589  * @se_cmd:     command descriptor to add
2590  * @ack_kref:   Signal that fabric will perform an ack target_put_sess_cmd()
2591  */
2592 int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref)
2593 {
2594         struct se_session *se_sess = se_cmd->se_sess;
2595         unsigned long flags;
2596         int ret = 0;
2597
2598         /*
2599          * Add a second kref if the fabric caller is expecting to handle
2600          * fabric acknowledgement that requires two target_put_sess_cmd()
2601          * invocations before se_cmd descriptor release.
2602          */
2603         if (ack_kref) {
2604                 kref_get(&se_cmd->cmd_kref);
2605                 se_cmd->se_cmd_flags |= SCF_ACK_KREF;
2606         }
2607
2608         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2609         if (se_sess->sess_tearing_down) {
2610                 ret = -ESHUTDOWN;
2611                 goto out;
2612         }
2613         se_cmd->transport_state |= CMD_T_PRE_EXECUTE;
2614         list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2615 out:
2616         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2617
2618         if (ret && ack_kref)
2619                 target_put_sess_cmd(se_cmd);
2620
2621         return ret;
2622 }
2623 EXPORT_SYMBOL(target_get_sess_cmd);
2624
2625 static void target_free_cmd_mem(struct se_cmd *cmd)
2626 {
2627         transport_free_pages(cmd);
2628
2629         if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2630                 core_tmr_release_req(cmd->se_tmr_req);
2631         if (cmd->t_task_cdb != cmd->__t_task_cdb)
2632                 kfree(cmd->t_task_cdb);
2633 }
2634
2635 static void target_release_cmd_kref(struct kref *kref)
2636 {
2637         struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2638         struct se_session *se_sess = se_cmd->se_sess;
2639         unsigned long flags;
2640         bool fabric_stop;
2641
2642         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2643
2644         spin_lock(&se_cmd->t_state_lock);
2645         fabric_stop = (se_cmd->transport_state & CMD_T_FABRIC_STOP) &&
2646                       (se_cmd->transport_state & CMD_T_ABORTED);
2647         spin_unlock(&se_cmd->t_state_lock);
2648
2649         if (se_cmd->cmd_wait_set || fabric_stop) {
2650                 list_del_init(&se_cmd->se_cmd_list);
2651                 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2652                 target_free_cmd_mem(se_cmd);
2653                 complete(&se_cmd->cmd_wait_comp);
2654                 return;
2655         }
2656         list_del_init(&se_cmd->se_cmd_list);
2657         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2658
2659         target_free_cmd_mem(se_cmd);
2660         se_cmd->se_tfo->release_cmd(se_cmd);
2661 }
2662
2663 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
2664  * @se_cmd:     command descriptor to drop
2665  */
2666 int target_put_sess_cmd(struct se_cmd *se_cmd)
2667 {
2668         struct se_session *se_sess = se_cmd->se_sess;
2669
2670         if (!se_sess) {
2671                 target_free_cmd_mem(se_cmd);
2672                 se_cmd->se_tfo->release_cmd(se_cmd);
2673                 return 1;
2674         }
2675         return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
2676 }
2677 EXPORT_SYMBOL(target_put_sess_cmd);
2678
2679 /* target_sess_cmd_list_set_waiting - Flag all commands in
2680  *         sess_cmd_list to complete cmd_wait_comp.  Set
2681  *         sess_tearing_down so no more commands are queued.
2682  * @se_sess:    session to flag
2683  */
2684 void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2685 {
2686         struct se_cmd *se_cmd;
2687         unsigned long flags;
2688         int rc;
2689
2690         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2691         if (se_sess->sess_tearing_down) {
2692                 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2693                 return;
2694         }
2695         se_sess->sess_tearing_down = 1;
2696         list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
2697
2698         list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list) {
2699                 rc = kref_get_unless_zero(&se_cmd->cmd_kref);
2700                 if (rc) {
2701                         se_cmd->cmd_wait_set = 1;
2702                         spin_lock(&se_cmd->t_state_lock);
2703                         se_cmd->transport_state |= CMD_T_FABRIC_STOP;
2704                         spin_unlock(&se_cmd->t_state_lock);
2705                 }
2706         }
2707
2708         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2709 }
2710 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2711
2712 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2713  * @se_sess:    session to wait for active I/O
2714  */
2715 void target_wait_for_sess_cmds(struct se_session *se_sess)
2716 {
2717         struct se_cmd *se_cmd, *tmp_cmd;
2718         unsigned long flags;
2719         bool tas;
2720
2721         list_for_each_entry_safe(se_cmd, tmp_cmd,
2722                                 &se_sess->sess_wait_list, se_cmd_list) {
2723                 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2724                         " %d\n", se_cmd, se_cmd->t_state,
2725                         se_cmd->se_tfo->get_cmd_state(se_cmd));
2726
2727                 spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2728                 tas = (se_cmd->transport_state & CMD_T_TAS);
2729                 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2730
2731                 if (!target_put_sess_cmd(se_cmd)) {
2732                         if (tas)
2733                                 target_put_sess_cmd(se_cmd);
2734                 }
2735
2736                 wait_for_completion(&se_cmd->cmd_wait_comp);
2737                 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2738                         " fabric state: %d\n", se_cmd, se_cmd->t_state,
2739                         se_cmd->se_tfo->get_cmd_state(se_cmd));
2740
2741                 se_cmd->se_tfo->release_cmd(se_cmd);
2742         }
2743
2744         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2745         WARN_ON(!list_empty(&se_sess->sess_cmd_list));
2746         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2747
2748 }
2749 EXPORT_SYMBOL(target_wait_for_sess_cmds);
2750
2751 static void target_lun_confirm(struct percpu_ref *ref)
2752 {
2753         struct se_lun *lun = container_of(ref, struct se_lun, lun_ref);
2754
2755         complete(&lun->lun_ref_comp);
2756 }
2757
2758 void transport_clear_lun_ref(struct se_lun *lun)
2759 {
2760         /*
2761          * Mark the percpu-ref as DEAD, switch to atomic_t mode, drop
2762          * the initial reference and schedule confirm kill to be
2763          * executed after one full RCU grace period has completed.
2764          */
2765         percpu_ref_kill_and_confirm(&lun->lun_ref, target_lun_confirm);
2766         /*
2767          * The first completion waits for percpu_ref_switch_to_atomic_rcu()
2768          * to call target_lun_confirm after lun->lun_ref has been marked
2769          * as __PERCPU_REF_DEAD on all CPUs, and switches to atomic_t
2770          * mode so that percpu_ref_tryget_live() lookup of lun->lun_ref
2771          * fails for all new incoming I/O.
2772          */
2773         wait_for_completion(&lun->lun_ref_comp);
2774         /*
2775          * The second completion waits for percpu_ref_put_many() to
2776          * invoke ->release() after lun->lun_ref has switched to
2777          * atomic_t mode, and lun->lun_ref.count has reached zero.
2778          *
2779          * At this point all target-core lun->lun_ref references have
2780          * been dropped via transport_lun_remove_cmd(), and it's safe
2781          * to proceed with the remaining LUN shutdown.
2782          */
2783         wait_for_completion(&lun->lun_shutdown_comp);
2784 }
2785
2786 static bool
2787 __transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop,
2788                            bool *aborted, bool *tas, unsigned long *flags)
2789         __releases(&cmd->t_state_lock)
2790         __acquires(&cmd->t_state_lock)
2791 {
2792         lockdep_assert_held(&cmd->t_state_lock);
2793
2794         if (fabric_stop)
2795                 cmd->transport_state |= CMD_T_FABRIC_STOP;
2796
2797         if (cmd->transport_state & CMD_T_ABORTED)
2798                 *aborted = true;
2799
2800         if (cmd->transport_state & CMD_T_TAS)
2801                 *tas = true;
2802
2803         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
2804             !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2805                 return false;
2806
2807         if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
2808             !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2809                 return false;
2810
2811         if (!(cmd->transport_state & CMD_T_ACTIVE))
2812                 return false;
2813
2814         if (fabric_stop && *aborted)
2815                 return false;
2816
2817         cmd->transport_state |= CMD_T_STOP;
2818
2819         pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08llx i_state: %d,"
2820                  " t_state: %d, CMD_T_STOP\n", cmd, cmd->tag,
2821                  cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2822
2823         spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
2824
2825         wait_for_completion(&cmd->t_transport_stop_comp);
2826
2827         spin_lock_irqsave(&cmd->t_state_lock, *flags);
2828         cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
2829
2830         pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
2831                  "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag);
2832
2833         return true;
2834 }
2835
2836 /**
2837  * transport_wait_for_tasks - wait for completion to occur
2838  * @cmd:        command to wait
2839  *
2840  * Called from frontend fabric context to wait for storage engine
2841  * to pause and/or release frontend generated struct se_cmd.
2842  */
2843 bool transport_wait_for_tasks(struct se_cmd *cmd)
2844 {
2845         unsigned long flags;
2846         bool ret, aborted = false, tas = false;
2847
2848         spin_lock_irqsave(&cmd->t_state_lock, flags);
2849         ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags);
2850         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2851
2852         return ret;
2853 }
2854 EXPORT_SYMBOL(transport_wait_for_tasks);
2855
2856 struct sense_info {
2857         u8 key;
2858         u8 asc;
2859         u8 ascq;
2860         bool add_sector_info;
2861 };
2862
2863 static const struct sense_info sense_info_table[] = {
2864         [TCM_NO_SENSE] = {
2865                 .key = NOT_READY
2866         },
2867         [TCM_NON_EXISTENT_LUN] = {
2868                 .key = ILLEGAL_REQUEST,
2869                 .asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */
2870         },
2871         [TCM_UNSUPPORTED_SCSI_OPCODE] = {
2872                 .key = ILLEGAL_REQUEST,
2873                 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */
2874         },
2875         [TCM_SECTOR_COUNT_TOO_MANY] = {
2876                 .key = ILLEGAL_REQUEST,
2877                 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */
2878         },
2879         [TCM_UNKNOWN_MODE_PAGE] = {
2880                 .key = ILLEGAL_REQUEST,
2881                 .asc = 0x24, /* INVALID FIELD IN CDB */
2882         },
2883         [TCM_CHECK_CONDITION_ABORT_CMD] = {
2884                 .key = ABORTED_COMMAND,
2885                 .asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
2886                 .ascq = 0x03,
2887         },
2888         [TCM_INCORRECT_AMOUNT_OF_DATA] = {
2889                 .key = ABORTED_COMMAND,
2890                 .asc = 0x0c, /* WRITE ERROR */
2891                 .ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
2892         },
2893         [TCM_INVALID_CDB_FIELD] = {
2894                 .key = ILLEGAL_REQUEST,
2895                 .asc = 0x24, /* INVALID FIELD IN CDB */
2896         },
2897         [TCM_INVALID_PARAMETER_LIST] = {
2898                 .key = ILLEGAL_REQUEST,
2899                 .asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */
2900         },
2901         [TCM_TOO_MANY_TARGET_DESCS] = {
2902                 .key = ILLEGAL_REQUEST,
2903                 .asc = 0x26,
2904                 .ascq = 0x06, /* TOO MANY TARGET DESCRIPTORS */
2905         },
2906         [TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE] = {
2907                 .key = ILLEGAL_REQUEST,
2908                 .asc = 0x26,
2909                 .ascq = 0x07, /* UNSUPPORTED TARGET DESCRIPTOR TYPE CODE */
2910         },
2911         [TCM_TOO_MANY_SEGMENT_DESCS] = {
2912                 .key = ILLEGAL_REQUEST,
2913                 .asc = 0x26,
2914                 .ascq = 0x08, /* TOO MANY SEGMENT DESCRIPTORS */
2915         },
2916         [TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE] = {
2917                 .key = ILLEGAL_REQUEST,
2918                 .asc = 0x26,
2919                 .ascq = 0x09, /* UNSUPPORTED SEGMENT DESCRIPTOR TYPE CODE */
2920         },
2921         [TCM_PARAMETER_LIST_LENGTH_ERROR] = {
2922                 .key = ILLEGAL_REQUEST,
2923                 .asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */
2924         },
2925         [TCM_UNEXPECTED_UNSOLICITED_DATA] = {
2926                 .key = ILLEGAL_REQUEST,
2927                 .asc = 0x0c, /* WRITE ERROR */
2928                 .ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
2929         },
2930         [TCM_SERVICE_CRC_ERROR] = {
2931                 .key = ABORTED_COMMAND,
2932                 .asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */
2933                 .ascq = 0x05, /* N/A */
2934         },
2935         [TCM_SNACK_REJECTED] = {
2936                 .key = ABORTED_COMMAND,
2937                 .asc = 0x11, /* READ ERROR */
2938                 .ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */
2939         },
2940         [TCM_WRITE_PROTECTED] = {
2941                 .key = DATA_PROTECT,
2942                 .asc = 0x27, /* WRITE PROTECTED */
2943         },
2944         [TCM_ADDRESS_OUT_OF_RANGE] = {
2945                 .key = ILLEGAL_REQUEST,
2946                 .asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
2947         },
2948         [TCM_CHECK_CONDITION_UNIT_ATTENTION] = {
2949                 .key = UNIT_ATTENTION,
2950         },
2951         [TCM_CHECK_CONDITION_NOT_READY] = {
2952                 .key = NOT_READY,
2953         },
2954         [TCM_MISCOMPARE_VERIFY] = {
2955                 .key = MISCOMPARE,
2956                 .asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
2957                 .ascq = 0x00,
2958         },
2959         [TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = {
2960                 .key = ABORTED_COMMAND,
2961                 .asc = 0x10,
2962                 .ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
2963                 .add_sector_info = true,
2964         },
2965         [TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = {
2966                 .key = ABORTED_COMMAND,
2967                 .asc = 0x10,
2968                 .ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
2969                 .add_sector_info = true,
2970         },
2971         [TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = {
2972                 .key = ABORTED_COMMAND,
2973                 .asc = 0x10,
2974                 .ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
2975                 .add_sector_info = true,
2976         },
2977         [TCM_COPY_TARGET_DEVICE_NOT_REACHABLE] = {
2978                 .key = COPY_ABORTED,
2979                 .asc = 0x0d,
2980                 .ascq = 0x02, /* COPY TARGET DEVICE NOT REACHABLE */
2981
2982         },
2983         [TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = {
2984                 /*
2985                  * Returning ILLEGAL REQUEST would cause immediate IO errors on
2986                  * Solaris initiators.  Returning NOT READY instead means the
2987                  * operations will be retried a finite number of times and we
2988                  * can survive intermittent errors.
2989                  */
2990                 .key = NOT_READY,
2991                 .asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
2992         },
2993 };
2994
2995 static int translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason)
2996 {
2997         const struct sense_info *si;
2998         u8 *buffer = cmd->sense_buffer;
2999         int r = (__force int)reason;
3000         u8 asc, ascq;
3001         bool desc_format = target_sense_desc_format(cmd->se_dev);
3002
3003         if (r < ARRAY_SIZE(sense_info_table) && sense_info_table[r].key)
3004                 si = &sense_info_table[r];
3005         else
3006                 si = &sense_info_table[(__force int)
3007                                        TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE];
3008
3009         if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) {
3010                 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
3011                 WARN_ON_ONCE(asc == 0);
3012         } else if (si->asc == 0) {
3013                 WARN_ON_ONCE(cmd->scsi_asc == 0);
3014                 asc = cmd->scsi_asc;
3015                 ascq = cmd->scsi_ascq;
3016         } else {
3017                 asc = si->asc;
3018                 ascq = si->ascq;
3019         }
3020
3021         scsi_build_sense_buffer(desc_format, buffer, si->key, asc, ascq);
3022         if (si->add_sector_info)
3023                 return scsi_set_sense_information(buffer,
3024                                                   cmd->scsi_sense_length,
3025                                                   cmd->bad_sector);
3026
3027         return 0;
3028 }
3029
3030 int
3031 transport_send_check_condition_and_sense(struct se_cmd *cmd,
3032                 sense_reason_t reason, int from_transport)
3033 {
3034         unsigned long flags;
3035
3036         spin_lock_irqsave(&cmd->t_state_lock, flags);
3037         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
3038                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3039                 return 0;
3040         }
3041         cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
3042         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3043
3044         if (!from_transport) {
3045                 int rc;
3046
3047                 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
3048                 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
3049                 cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER;
3050                 rc = translate_sense_reason(cmd, reason);
3051                 if (rc)
3052                         return rc;
3053         }
3054
3055         trace_target_cmd_complete(cmd);
3056         return cmd->se_tfo->queue_status(cmd);
3057 }
3058 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
3059
3060 static int __transport_check_aborted_status(struct se_cmd *cmd, int send_status)
3061         __releases(&cmd->t_state_lock)
3062         __acquires(&cmd->t_state_lock)
3063 {
3064         assert_spin_locked(&cmd->t_state_lock);
3065         WARN_ON_ONCE(!irqs_disabled());
3066
3067         if (!(cmd->transport_state & CMD_T_ABORTED))
3068                 return 0;
3069         /*
3070          * If cmd has been aborted but either no status is to be sent or it has
3071          * already been sent, just return
3072          */
3073         if (!send_status || !(cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS)) {
3074                 if (send_status)
3075                         cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
3076                 return 1;
3077         }
3078
3079         pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB:"
3080                 " 0x%02x ITT: 0x%08llx\n", cmd->t_task_cdb[0], cmd->tag);
3081
3082         cmd->se_cmd_flags &= ~SCF_SEND_DELAYED_TAS;
3083         cmd->scsi_status = SAM_STAT_TASK_ABORTED;
3084         trace_target_cmd_complete(cmd);
3085
3086         spin_unlock_irq(&cmd->t_state_lock);
3087         cmd->se_tfo->queue_status(cmd);
3088         spin_lock_irq(&cmd->t_state_lock);
3089
3090         return 1;
3091 }
3092
3093 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
3094 {
3095         int ret;
3096
3097         spin_lock_irq(&cmd->t_state_lock);
3098         ret = __transport_check_aborted_status(cmd, send_status);
3099         spin_unlock_irq(&cmd->t_state_lock);
3100
3101         return ret;
3102 }
3103 EXPORT_SYMBOL(transport_check_aborted_status);
3104
3105 void transport_send_task_abort(struct se_cmd *cmd)
3106 {
3107         unsigned long flags;
3108
3109         spin_lock_irqsave(&cmd->t_state_lock, flags);
3110         if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION)) {
3111                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3112                 return;
3113         }
3114         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3115
3116         /*
3117          * If there are still expected incoming fabric WRITEs, we wait
3118          * until until they have completed before sending a TASK_ABORTED
3119          * response.  This response with TASK_ABORTED status will be
3120          * queued back to fabric module by transport_check_aborted_status().
3121          */
3122         if (cmd->data_direction == DMA_TO_DEVICE) {
3123                 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
3124                         spin_lock_irqsave(&cmd->t_state_lock, flags);
3125                         if (cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS) {
3126                                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3127                                 goto send_abort;
3128                         }
3129                         cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
3130                         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3131                         return;
3132                 }
3133         }
3134 send_abort:
3135         cmd->scsi_status = SAM_STAT_TASK_ABORTED;
3136
3137         transport_lun_remove_cmd(cmd);
3138
3139         pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
3140                  cmd->t_task_cdb[0], cmd->tag);
3141
3142         trace_target_cmd_complete(cmd);
3143         cmd->se_tfo->queue_status(cmd);
3144 }
3145
3146 static void target_tmr_work(struct work_struct *work)
3147 {
3148         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3149         struct se_device *dev = cmd->se_dev;
3150         struct se_tmr_req *tmr = cmd->se_tmr_req;
3151         unsigned long flags;
3152         int ret;
3153
3154         spin_lock_irqsave(&cmd->t_state_lock, flags);
3155         if (cmd->transport_state & CMD_T_ABORTED) {
3156                 tmr->response = TMR_FUNCTION_REJECTED;
3157                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3158                 goto check_stop;
3159         }
3160         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3161
3162         switch (tmr->function) {
3163         case TMR_ABORT_TASK:
3164                 core_tmr_abort_task(dev, tmr, cmd->se_sess);
3165                 break;
3166         case TMR_ABORT_TASK_SET:
3167         case TMR_CLEAR_ACA:
3168         case TMR_CLEAR_TASK_SET:
3169                 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
3170                 break;
3171         case TMR_LUN_RESET:
3172                 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
3173                 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
3174                                          TMR_FUNCTION_REJECTED;
3175                 if (tmr->response == TMR_FUNCTION_COMPLETE) {
3176                         target_ua_allocate_lun(cmd->se_sess->se_node_acl,
3177                                                cmd->orig_fe_lun, 0x29,
3178                                                ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED);
3179                 }
3180                 break;
3181         case TMR_TARGET_WARM_RESET:
3182                 tmr->response = TMR_FUNCTION_REJECTED;
3183                 break;
3184         case TMR_TARGET_COLD_RESET:
3185                 tmr->response = TMR_FUNCTION_REJECTED;
3186                 break;
3187         default:
3188                 pr_err("Uknown TMR function: 0x%02x.\n",
3189                                 tmr->function);
3190                 tmr->response = TMR_FUNCTION_REJECTED;
3191                 break;
3192         }
3193
3194         spin_lock_irqsave(&cmd->t_state_lock, flags);
3195         if (cmd->transport_state & CMD_T_ABORTED) {
3196                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3197                 goto check_stop;
3198         }
3199         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3200
3201         cmd->se_tfo->queue_tm_rsp(cmd);
3202
3203 check_stop:
3204         transport_cmd_check_stop_to_fabric(cmd);
3205 }
3206
3207 int transport_generic_handle_tmr(
3208         struct se_cmd *cmd)
3209 {
3210         unsigned long flags;
3211         bool aborted = false;
3212
3213         spin_lock_irqsave(&cmd->t_state_lock, flags);
3214         if (cmd->transport_state & CMD_T_ABORTED) {
3215                 aborted = true;
3216         } else {
3217                 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
3218                 cmd->transport_state |= CMD_T_ACTIVE;
3219         }
3220         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3221
3222         if (aborted) {
3223                 pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d"
3224                         "ref_tag: %llu tag: %llu\n", cmd->se_tmr_req->function,
3225                         cmd->se_tmr_req->ref_task_tag, cmd->tag);
3226                 transport_cmd_check_stop_to_fabric(cmd);
3227                 return 0;
3228         }
3229
3230         INIT_WORK(&cmd->work, target_tmr_work);
3231         queue_work(cmd->se_dev->tmr_wq, &cmd->work);
3232         return 0;
3233 }
3234 EXPORT_SYMBOL(transport_generic_handle_tmr);
3235
3236 bool
3237 target_check_wce(struct se_device *dev)
3238 {
3239         bool wce = false;
3240
3241         if (dev->transport->get_write_cache)
3242                 wce = dev->transport->get_write_cache(dev);
3243         else if (dev->dev_attrib.emulate_write_cache > 0)
3244                 wce = true;
3245
3246         return wce;
3247 }
3248
3249 bool
3250 target_check_fua(struct se_device *dev)
3251 {
3252         return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0;
3253 }