GNU Linux-libre 4.19.263-gnu1
[releases.git] / drivers / staging / wilc1000 / wilc_spi.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2012 - 2018 Microchip Technology Inc., and its subsidiaries.
4  * All rights reserved.
5  */
6
7 #include <linux/spi/spi.h>
8
9 #include "wilc_wfi_netdevice.h"
10
11 struct wilc_spi {
12         int crc_off;
13         int nint;
14         int has_thrpt_enh;
15 };
16
17 static struct wilc_spi g_spi;
18 static const struct wilc_hif_func wilc_hif_spi;
19
20 /********************************************
21  *
22  *      Crc7
23  *
24  ********************************************/
25
26 static const u8 crc7_syndrome_table[256] = {
27         0x00, 0x09, 0x12, 0x1b, 0x24, 0x2d, 0x36, 0x3f,
28         0x48, 0x41, 0x5a, 0x53, 0x6c, 0x65, 0x7e, 0x77,
29         0x19, 0x10, 0x0b, 0x02, 0x3d, 0x34, 0x2f, 0x26,
30         0x51, 0x58, 0x43, 0x4a, 0x75, 0x7c, 0x67, 0x6e,
31         0x32, 0x3b, 0x20, 0x29, 0x16, 0x1f, 0x04, 0x0d,
32         0x7a, 0x73, 0x68, 0x61, 0x5e, 0x57, 0x4c, 0x45,
33         0x2b, 0x22, 0x39, 0x30, 0x0f, 0x06, 0x1d, 0x14,
34         0x63, 0x6a, 0x71, 0x78, 0x47, 0x4e, 0x55, 0x5c,
35         0x64, 0x6d, 0x76, 0x7f, 0x40, 0x49, 0x52, 0x5b,
36         0x2c, 0x25, 0x3e, 0x37, 0x08, 0x01, 0x1a, 0x13,
37         0x7d, 0x74, 0x6f, 0x66, 0x59, 0x50, 0x4b, 0x42,
38         0x35, 0x3c, 0x27, 0x2e, 0x11, 0x18, 0x03, 0x0a,
39         0x56, 0x5f, 0x44, 0x4d, 0x72, 0x7b, 0x60, 0x69,
40         0x1e, 0x17, 0x0c, 0x05, 0x3a, 0x33, 0x28, 0x21,
41         0x4f, 0x46, 0x5d, 0x54, 0x6b, 0x62, 0x79, 0x70,
42         0x07, 0x0e, 0x15, 0x1c, 0x23, 0x2a, 0x31, 0x38,
43         0x41, 0x48, 0x53, 0x5a, 0x65, 0x6c, 0x77, 0x7e,
44         0x09, 0x00, 0x1b, 0x12, 0x2d, 0x24, 0x3f, 0x36,
45         0x58, 0x51, 0x4a, 0x43, 0x7c, 0x75, 0x6e, 0x67,
46         0x10, 0x19, 0x02, 0x0b, 0x34, 0x3d, 0x26, 0x2f,
47         0x73, 0x7a, 0x61, 0x68, 0x57, 0x5e, 0x45, 0x4c,
48         0x3b, 0x32, 0x29, 0x20, 0x1f, 0x16, 0x0d, 0x04,
49         0x6a, 0x63, 0x78, 0x71, 0x4e, 0x47, 0x5c, 0x55,
50         0x22, 0x2b, 0x30, 0x39, 0x06, 0x0f, 0x14, 0x1d,
51         0x25, 0x2c, 0x37, 0x3e, 0x01, 0x08, 0x13, 0x1a,
52         0x6d, 0x64, 0x7f, 0x76, 0x49, 0x40, 0x5b, 0x52,
53         0x3c, 0x35, 0x2e, 0x27, 0x18, 0x11, 0x0a, 0x03,
54         0x74, 0x7d, 0x66, 0x6f, 0x50, 0x59, 0x42, 0x4b,
55         0x17, 0x1e, 0x05, 0x0c, 0x33, 0x3a, 0x21, 0x28,
56         0x5f, 0x56, 0x4d, 0x44, 0x7b, 0x72, 0x69, 0x60,
57         0x0e, 0x07, 0x1c, 0x15, 0x2a, 0x23, 0x38, 0x31,
58         0x46, 0x4f, 0x54, 0x5d, 0x62, 0x6b, 0x70, 0x79
59 };
60
61 static u8 crc7_byte(u8 crc, u8 data)
62 {
63         return crc7_syndrome_table[(crc << 1) ^ data];
64 }
65
66 static u8 crc7(u8 crc, const u8 *buffer, u32 len)
67 {
68         while (len--)
69                 crc = crc7_byte(crc, *buffer++);
70         return crc;
71 }
72
73 /********************************************
74  *
75  *      Spi protocol Function
76  *
77  ********************************************/
78
79 #define CMD_DMA_WRITE                           0xc1
80 #define CMD_DMA_READ                            0xc2
81 #define CMD_INTERNAL_WRITE                      0xc3
82 #define CMD_INTERNAL_READ                       0xc4
83 #define CMD_TERMINATE                           0xc5
84 #define CMD_REPEAT                              0xc6
85 #define CMD_DMA_EXT_WRITE                       0xc7
86 #define CMD_DMA_EXT_READ                        0xc8
87 #define CMD_SINGLE_WRITE                        0xc9
88 #define CMD_SINGLE_READ                         0xca
89 #define CMD_RESET                               0xcf
90
91 #define N_OK                                    1
92 #define N_FAIL                                  0
93 #define N_RESET                                 -1
94 #define N_RETRY                                 -2
95
96 #define DATA_PKT_SZ_256                         256
97 #define DATA_PKT_SZ_512                         512
98 #define DATA_PKT_SZ_1K                          1024
99 #define DATA_PKT_SZ_4K                          (4 * 1024)
100 #define DATA_PKT_SZ_8K                          (8 * 1024)
101 #define DATA_PKT_SZ                             DATA_PKT_SZ_8K
102
103 #define USE_SPI_DMA                             0
104
105 static int wilc_bus_probe(struct spi_device *spi)
106 {
107         int ret;
108         struct wilc *wilc;
109         struct gpio_desc *gpio;
110
111         gpio = gpiod_get(&spi->dev, "irq", GPIOD_IN);
112         if (IS_ERR(gpio)) {
113                 /* get the GPIO descriptor from hardcode GPIO number */
114                 gpio = gpio_to_desc(GPIO_NUM);
115                 if (!gpio)
116                         dev_err(&spi->dev, "failed to get the irq gpio\n");
117         }
118
119         ret = wilc_netdev_init(&wilc, NULL, HIF_SPI, &wilc_hif_spi);
120         if (ret)
121                 return ret;
122
123         spi_set_drvdata(spi, wilc);
124         wilc->dev = &spi->dev;
125         wilc->gpio_irq = gpio;
126
127         return 0;
128 }
129
130 static int wilc_bus_remove(struct spi_device *spi)
131 {
132         struct wilc *wilc = spi_get_drvdata(spi);
133
134         /* free the GPIO in module remove */
135         if (wilc->gpio_irq)
136                 gpiod_put(wilc->gpio_irq);
137         wilc_netdev_cleanup(wilc);
138         return 0;
139 }
140
141 static const struct of_device_id wilc_of_match[] = {
142         { .compatible = "microchip,wilc1000-spi", },
143         { /* sentinel */ }
144 };
145 MODULE_DEVICE_TABLE(of, wilc_of_match);
146
147 static struct spi_driver wilc_spi_driver = {
148         .driver = {
149                 .name = MODALIAS,
150                 .of_match_table = wilc_of_match,
151         },
152         .probe =  wilc_bus_probe,
153         .remove = wilc_bus_remove,
154 };
155 module_spi_driver(wilc_spi_driver);
156 MODULE_LICENSE("GPL");
157
158 static int wilc_spi_tx(struct wilc *wilc, u8 *b, u32 len)
159 {
160         struct spi_device *spi = to_spi_device(wilc->dev);
161         int ret;
162         struct spi_message msg;
163
164         if (len > 0 && b) {
165                 struct spi_transfer tr = {
166                         .tx_buf = b,
167                         .len = len,
168                         .delay_usecs = 0,
169                 };
170                 char *r_buffer = kzalloc(len, GFP_KERNEL);
171
172                 if (!r_buffer)
173                         return -ENOMEM;
174
175                 tr.rx_buf = r_buffer;
176                 dev_dbg(&spi->dev, "Request writing %d bytes\n", len);
177
178                 memset(&msg, 0, sizeof(msg));
179                 spi_message_init(&msg);
180                 msg.spi = spi;
181                 msg.is_dma_mapped = USE_SPI_DMA;
182                 spi_message_add_tail(&tr, &msg);
183
184                 ret = spi_sync(spi, &msg);
185                 if (ret < 0)
186                         dev_err(&spi->dev, "SPI transaction failed\n");
187
188                 kfree(r_buffer);
189         } else {
190                 dev_err(&spi->dev,
191                         "can't write data with the following length: %d\n",
192                         len);
193                 ret = -EINVAL;
194         }
195
196         return ret;
197 }
198
199 static int wilc_spi_rx(struct wilc *wilc, u8 *rb, u32 rlen)
200 {
201         struct spi_device *spi = to_spi_device(wilc->dev);
202         int ret;
203
204         if (rlen > 0) {
205                 struct spi_message msg;
206                 struct spi_transfer tr = {
207                         .rx_buf = rb,
208                         .len = rlen,
209                         .delay_usecs = 0,
210
211                 };
212                 char *t_buffer = kzalloc(rlen, GFP_KERNEL);
213
214                 if (!t_buffer)
215                         return -ENOMEM;
216
217                 tr.tx_buf = t_buffer;
218
219                 memset(&msg, 0, sizeof(msg));
220                 spi_message_init(&msg);
221                 msg.spi = spi;
222                 msg.is_dma_mapped = USE_SPI_DMA;
223                 spi_message_add_tail(&tr, &msg);
224
225                 ret = spi_sync(spi, &msg);
226                 if (ret < 0)
227                         dev_err(&spi->dev, "SPI transaction failed\n");
228                 kfree(t_buffer);
229         } else {
230                 dev_err(&spi->dev,
231                         "can't read data with the following length: %u\n",
232                         rlen);
233                 ret = -EINVAL;
234         }
235
236         return ret;
237 }
238
239 static int wilc_spi_tx_rx(struct wilc *wilc, u8 *wb, u8 *rb, u32 rlen)
240 {
241         struct spi_device *spi = to_spi_device(wilc->dev);
242         int ret;
243
244         if (rlen > 0) {
245                 struct spi_message msg;
246                 struct spi_transfer tr = {
247                         .rx_buf = rb,
248                         .tx_buf = wb,
249                         .len = rlen,
250                         .bits_per_word = 8,
251                         .delay_usecs = 0,
252
253                 };
254
255                 memset(&msg, 0, sizeof(msg));
256                 spi_message_init(&msg);
257                 msg.spi = spi;
258                 msg.is_dma_mapped = USE_SPI_DMA;
259
260                 spi_message_add_tail(&tr, &msg);
261                 ret = spi_sync(spi, &msg);
262                 if (ret < 0)
263                         dev_err(&spi->dev, "SPI transaction failed\n");
264         } else {
265                 dev_err(&spi->dev,
266                         "can't read data with the following length: %u\n",
267                         rlen);
268                 ret = -EINVAL;
269         }
270
271         return ret;
272 }
273
274 static int spi_cmd_complete(struct wilc *wilc, u8 cmd, u32 adr, u8 *b, u32 sz,
275                             u8 clockless)
276 {
277         struct spi_device *spi = to_spi_device(wilc->dev);
278         u8 wb[32], rb[32];
279         u8 wix, rix;
280         u32 len2;
281         u8 rsp;
282         int len = 0;
283         int result = N_OK;
284         int retry;
285         u8 crc[2];
286
287         wb[0] = cmd;
288         switch (cmd) {
289         case CMD_SINGLE_READ: /* single word (4 bytes) read */
290                 wb[1] = (u8)(adr >> 16);
291                 wb[2] = (u8)(adr >> 8);
292                 wb[3] = (u8)adr;
293                 len = 5;
294                 break;
295
296         case CMD_INTERNAL_READ: /* internal register read */
297                 wb[1] = (u8)(adr >> 8);
298                 if (clockless == 1)
299                         wb[1] |= BIT(7);
300                 wb[2] = (u8)adr;
301                 wb[3] = 0x00;
302                 len = 5;
303                 break;
304
305         case CMD_TERMINATE:
306                 wb[1] = 0x00;
307                 wb[2] = 0x00;
308                 wb[3] = 0x00;
309                 len = 5;
310                 break;
311
312         case CMD_REPEAT:
313                 wb[1] = 0x00;
314                 wb[2] = 0x00;
315                 wb[3] = 0x00;
316                 len = 5;
317                 break;
318
319         case CMD_RESET:
320                 wb[1] = 0xff;
321                 wb[2] = 0xff;
322                 wb[3] = 0xff;
323                 len = 5;
324                 break;
325
326         case CMD_DMA_WRITE: /* dma write */
327         case CMD_DMA_READ:  /* dma read */
328                 wb[1] = (u8)(adr >> 16);
329                 wb[2] = (u8)(adr >> 8);
330                 wb[3] = (u8)adr;
331                 wb[4] = (u8)(sz >> 8);
332                 wb[5] = (u8)(sz);
333                 len = 7;
334                 break;
335
336         case CMD_DMA_EXT_WRITE: /* dma extended write */
337         case CMD_DMA_EXT_READ:  /* dma extended read */
338                 wb[1] = (u8)(adr >> 16);
339                 wb[2] = (u8)(adr >> 8);
340                 wb[3] = (u8)adr;
341                 wb[4] = (u8)(sz >> 16);
342                 wb[5] = (u8)(sz >> 8);
343                 wb[6] = (u8)(sz);
344                 len = 8;
345                 break;
346
347         case CMD_INTERNAL_WRITE: /* internal register write */
348                 wb[1] = (u8)(adr >> 8);
349                 if (clockless == 1)
350                         wb[1] |= BIT(7);
351                 wb[2] = (u8)(adr);
352                 wb[3] = b[3];
353                 wb[4] = b[2];
354                 wb[5] = b[1];
355                 wb[6] = b[0];
356                 len = 8;
357                 break;
358
359         case CMD_SINGLE_WRITE: /* single word write */
360                 wb[1] = (u8)(adr >> 16);
361                 wb[2] = (u8)(adr >> 8);
362                 wb[3] = (u8)(adr);
363                 wb[4] = b[3];
364                 wb[5] = b[2];
365                 wb[6] = b[1];
366                 wb[7] = b[0];
367                 len = 9;
368                 break;
369
370         default:
371                 result = N_FAIL;
372                 break;
373         }
374
375         if (result != N_OK)
376                 return result;
377
378         if (!g_spi.crc_off)
379                 wb[len - 1] = (crc7(0x7f, (const u8 *)&wb[0], len - 1)) << 1;
380         else
381                 len -= 1;
382
383 #define NUM_SKIP_BYTES (1)
384 #define NUM_RSP_BYTES (2)
385 #define NUM_DATA_HDR_BYTES (1)
386 #define NUM_DATA_BYTES (4)
387 #define NUM_CRC_BYTES (2)
388 #define NUM_DUMMY_BYTES (3)
389         if (cmd == CMD_RESET ||
390             cmd == CMD_TERMINATE ||
391             cmd == CMD_REPEAT) {
392                 len2 = len + (NUM_SKIP_BYTES + NUM_RSP_BYTES + NUM_DUMMY_BYTES);
393         } else if (cmd == CMD_INTERNAL_READ || cmd == CMD_SINGLE_READ) {
394                 int tmp = NUM_RSP_BYTES + NUM_DATA_HDR_BYTES + NUM_DATA_BYTES
395                         + NUM_DUMMY_BYTES;
396                 if (!g_spi.crc_off)
397                         len2 = len + tmp + NUM_CRC_BYTES;
398                 else
399                         len2 = len + tmp;
400         } else {
401                 len2 = len + (NUM_RSP_BYTES + NUM_DUMMY_BYTES);
402         }
403 #undef NUM_DUMMY_BYTES
404
405         if (len2 > ARRAY_SIZE(wb)) {
406                 dev_err(&spi->dev, "spi buffer size too small (%d) (%zu)\n",
407                         len2, ARRAY_SIZE(wb));
408                 return N_FAIL;
409         }
410         /* zero spi write buffers. */
411         for (wix = len; wix < len2; wix++)
412                 wb[wix] = 0;
413         rix = len;
414
415         if (wilc_spi_tx_rx(wilc, wb, rb, len2)) {
416                 dev_err(&spi->dev, "Failed cmd write, bus error...\n");
417                 return N_FAIL;
418         }
419
420         /*
421          * Command/Control response
422          */
423         if (cmd == CMD_RESET || cmd == CMD_TERMINATE || cmd == CMD_REPEAT)
424                 rix++; /* skip 1 byte */
425
426         rsp = rb[rix++];
427
428         if (rsp != cmd) {
429                 dev_err(&spi->dev,
430                         "Failed cmd response, cmd (%02x), resp (%02x)\n",
431                         cmd, rsp);
432                 return N_FAIL;
433         }
434
435         /*
436          * State response
437          */
438         rsp = rb[rix++];
439         if (rsp != 0x00) {
440                 dev_err(&spi->dev, "Failed cmd state response state (%02x)\n",
441                         rsp);
442                 return N_FAIL;
443         }
444
445         if (cmd == CMD_INTERNAL_READ || cmd == CMD_SINGLE_READ ||
446             cmd == CMD_DMA_READ || cmd == CMD_DMA_EXT_READ) {
447                 /*
448                  * Data Respnose header
449                  */
450                 retry = 100;
451                 do {
452                         /*
453                          * ensure there is room in buffer later
454                          * to read data and crc
455                          */
456                         if (rix < len2) {
457                                 rsp = rb[rix++];
458                         } else {
459                                 retry = 0;
460                                 break;
461                         }
462                         if (((rsp >> 4) & 0xf) == 0xf)
463                                 break;
464                 } while (retry--);
465
466                 if (retry <= 0) {
467                         dev_err(&spi->dev,
468                                 "Error, data read response (%02x)\n", rsp);
469                         return N_RESET;
470                 }
471         }
472
473         if (cmd == CMD_INTERNAL_READ || cmd == CMD_SINGLE_READ) {
474                 /*
475                  * Read bytes
476                  */
477                 if ((rix + 3) < len2) {
478                         b[0] = rb[rix++];
479                         b[1] = rb[rix++];
480                         b[2] = rb[rix++];
481                         b[3] = rb[rix++];
482                 } else {
483                         dev_err(&spi->dev,
484                                 "buffer overrun when reading data.\n");
485                         return N_FAIL;
486                 }
487
488                 if (!g_spi.crc_off) {
489                         /*
490                          * Read Crc
491                          */
492                         if ((rix + 1) < len2) {
493                                 crc[0] = rb[rix++];
494                                 crc[1] = rb[rix++];
495                         } else {
496                                 dev_err(&spi->dev,
497                                         "buffer overrun when reading crc.\n");
498                                 return N_FAIL;
499                         }
500                 }
501         } else if ((cmd == CMD_DMA_READ) || (cmd == CMD_DMA_EXT_READ)) {
502                 int ix;
503
504                 /* some data may be read in response to dummy bytes. */
505                 for (ix = 0; (rix < len2) && (ix < sz); )
506                         b[ix++] = rb[rix++];
507
508                 sz -= ix;
509
510                 if (sz > 0) {
511                         int nbytes;
512
513                         if (sz <= (DATA_PKT_SZ - ix))
514                                 nbytes = sz;
515                         else
516                                 nbytes = DATA_PKT_SZ - ix;
517
518                         /*
519                          * Read bytes
520                          */
521                         if (wilc_spi_rx(wilc, &b[ix], nbytes)) {
522                                 dev_err(&spi->dev,
523                                         "Failed block read, bus err\n");
524                                 return N_FAIL;
525                         }
526
527                         /*
528                          * Read Crc
529                          */
530                         if (!g_spi.crc_off && wilc_spi_rx(wilc, crc, 2)) {
531                                 dev_err(&spi->dev,
532                                         "Failed block crc read, bus err\n");
533                                 return N_FAIL;
534                         }
535
536                         ix += nbytes;
537                         sz -= nbytes;
538                 }
539
540                 /*
541                  * if any data in left unread,
542                  * then read the rest using normal DMA code.
543                  */
544                 while (sz > 0) {
545                         int nbytes;
546
547                         if (sz <= DATA_PKT_SZ)
548                                 nbytes = sz;
549                         else
550                                 nbytes = DATA_PKT_SZ;
551
552                         /*
553                          * read data response only on the next DMA cycles not
554                          * the first DMA since data response header is already
555                          * handled above for the first DMA.
556                          */
557                         /*
558                          * Data Respnose header
559                          */
560                         retry = 10;
561                         do {
562                                 if (wilc_spi_rx(wilc, &rsp, 1)) {
563                                         dev_err(&spi->dev,
564                                                 "Failed resp read, bus err\n");
565                                         result = N_FAIL;
566                                         break;
567                                 }
568                                 if (((rsp >> 4) & 0xf) == 0xf)
569                                         break;
570                         } while (retry--);
571
572                         if (result == N_FAIL)
573                                 break;
574
575                         /*
576                          * Read bytes
577                          */
578                         if (wilc_spi_rx(wilc, &b[ix], nbytes)) {
579                                 dev_err(&spi->dev,
580                                         "Failed block read, bus err\n");
581                                 result = N_FAIL;
582                                 break;
583                         }
584
585                         /*
586                          * Read Crc
587                          */
588                         if (!g_spi.crc_off && wilc_spi_rx(wilc, crc, 2)) {
589                                 dev_err(&spi->dev,
590                                         "Failed block crc read, bus err\n");
591                                 result = N_FAIL;
592                                 break;
593                         }
594
595                         ix += nbytes;
596                         sz -= nbytes;
597                 }
598         }
599         return result;
600 }
601
602 static int spi_data_write(struct wilc *wilc, u8 *b, u32 sz)
603 {
604         struct spi_device *spi = to_spi_device(wilc->dev);
605         int ix, nbytes;
606         int result = 1;
607         u8 cmd, order, crc[2] = {0};
608
609         /*
610          * Data
611          */
612         ix = 0;
613         do {
614                 if (sz <= DATA_PKT_SZ) {
615                         nbytes = sz;
616                         order = 0x3;
617                 } else {
618                         nbytes = DATA_PKT_SZ;
619                         if (ix == 0)
620                                 order = 0x1;
621                         else
622                                 order = 0x02;
623                 }
624
625                 /*
626                  * Write command
627                  */
628                 cmd = 0xf0;
629                 cmd |= order;
630
631                 if (wilc_spi_tx(wilc, &cmd, 1)) {
632                         dev_err(&spi->dev,
633                                 "Failed data block cmd write, bus error...\n");
634                         result = N_FAIL;
635                         break;
636                 }
637
638                 /*
639                  * Write data
640                  */
641                 if (wilc_spi_tx(wilc, &b[ix], nbytes)) {
642                         dev_err(&spi->dev,
643                                 "Failed data block write, bus error...\n");
644                         result = N_FAIL;
645                         break;
646                 }
647
648                 /*
649                  * Write Crc
650                  */
651                 if (!g_spi.crc_off) {
652                         if (wilc_spi_tx(wilc, crc, 2)) {
653                                 dev_err(&spi->dev, "Failed data block crc write, bus error...\n");
654                                 result = N_FAIL;
655                                 break;
656                         }
657                 }
658
659                 /*
660                  * No need to wait for response
661                  */
662                 ix += nbytes;
663                 sz -= nbytes;
664         } while (sz);
665
666         return result;
667 }
668
669 /********************************************
670  *
671  *      Spi Internal Read/Write Function
672  *
673  ********************************************/
674
675 static int spi_internal_write(struct wilc *wilc, u32 adr, u32 dat)
676 {
677         struct spi_device *spi = to_spi_device(wilc->dev);
678         int result;
679
680         cpu_to_le32s(&dat);
681         result = spi_cmd_complete(wilc, CMD_INTERNAL_WRITE, adr, (u8 *)&dat, 4,
682                                   0);
683         if (result != N_OK)
684                 dev_err(&spi->dev, "Failed internal write cmd...\n");
685
686         return result;
687 }
688
689 static int spi_internal_read(struct wilc *wilc, u32 adr, u32 *data)
690 {
691         struct spi_device *spi = to_spi_device(wilc->dev);
692         int result;
693
694         result = spi_cmd_complete(wilc, CMD_INTERNAL_READ, adr, (u8 *)data, 4,
695                                   0);
696         if (result != N_OK) {
697                 dev_err(&spi->dev, "Failed internal read cmd...\n");
698                 return 0;
699         }
700
701         le32_to_cpus(data);
702
703         return 1;
704 }
705
706 /********************************************
707  *
708  *      Spi interfaces
709  *
710  ********************************************/
711
712 static int wilc_spi_write_reg(struct wilc *wilc, u32 addr, u32 data)
713 {
714         struct spi_device *spi = to_spi_device(wilc->dev);
715         int result = N_OK;
716         u8 cmd = CMD_SINGLE_WRITE;
717         u8 clockless = 0;
718
719         cpu_to_le32s(&data);
720         if (addr < 0x30) {
721                 /* Clockless register */
722                 cmd = CMD_INTERNAL_WRITE;
723                 clockless = 1;
724         }
725
726         result = spi_cmd_complete(wilc, cmd, addr, (u8 *)&data, 4, clockless);
727         if (result != N_OK)
728                 dev_err(&spi->dev, "Failed cmd, write reg (%08x)...\n", addr);
729
730         return result;
731 }
732
733 static int wilc_spi_write(struct wilc *wilc, u32 addr, u8 *buf, u32 size)
734 {
735         struct spi_device *spi = to_spi_device(wilc->dev);
736         int result;
737
738         /*
739          * has to be greated than 4
740          */
741         if (size <= 4)
742                 return 0;
743
744         result = spi_cmd_complete(wilc, CMD_DMA_EXT_WRITE, addr, NULL, size, 0);
745         if (result != N_OK) {
746                 dev_err(&spi->dev,
747                         "Failed cmd, write block (%08x)...\n", addr);
748                 return 0;
749         }
750
751         /*
752          * Data
753          */
754         result = spi_data_write(wilc, buf, size);
755         if (result != N_OK)
756                 dev_err(&spi->dev, "Failed block data write...\n");
757
758         return 1;
759 }
760
761 static int wilc_spi_read_reg(struct wilc *wilc, u32 addr, u32 *data)
762 {
763         struct spi_device *spi = to_spi_device(wilc->dev);
764         int result = N_OK;
765         u8 cmd = CMD_SINGLE_READ;
766         u8 clockless = 0;
767
768         if (addr < 0x30) {
769                 /* Clockless register */
770                 cmd = CMD_INTERNAL_READ;
771                 clockless = 1;
772         }
773
774         result = spi_cmd_complete(wilc, cmd, addr, (u8 *)data, 4, clockless);
775         if (result != N_OK) {
776                 dev_err(&spi->dev, "Failed cmd, read reg (%08x)...\n", addr);
777                 return 0;
778         }
779
780         le32_to_cpus(data);
781
782         return 1;
783 }
784
785 static int wilc_spi_read(struct wilc *wilc, u32 addr, u8 *buf, u32 size)
786 {
787         struct spi_device *spi = to_spi_device(wilc->dev);
788         int result;
789
790         if (size <= 4)
791                 return 0;
792
793         result = spi_cmd_complete(wilc, CMD_DMA_EXT_READ, addr, buf, size, 0);
794         if (result != N_OK) {
795                 dev_err(&spi->dev, "Failed cmd, read block (%08x)...\n", addr);
796                 return 0;
797         }
798
799         return 1;
800 }
801
802 /********************************************
803  *
804  *      Bus interfaces
805  *
806  ********************************************/
807
808 static int _wilc_spi_deinit(struct wilc *wilc)
809 {
810         /*
811          * TODO:
812          */
813         return 1;
814 }
815
816 static int wilc_spi_init(struct wilc *wilc, bool resume)
817 {
818         struct spi_device *spi = to_spi_device(wilc->dev);
819         u32 reg;
820         u32 chipid;
821         static int isinit;
822
823         if (isinit) {
824                 if (!wilc_spi_read_reg(wilc, 0x1000, &chipid)) {
825                         dev_err(&spi->dev, "Fail cmd read chip id...\n");
826                         return 0;
827                 }
828                 return 1;
829         }
830
831         memset(&g_spi, 0, sizeof(struct wilc_spi));
832
833         /*
834          * configure protocol
835          */
836         g_spi.crc_off = 0;
837
838         /*
839          * TODO: We can remove the CRC trials if there is a definite
840          * way to reset
841          */
842         /* the SPI to it's initial value. */
843         if (!spi_internal_read(wilc, WILC_SPI_PROTOCOL_OFFSET, &reg)) {
844                 /*
845                  * Read failed. Try with CRC off. This might happen when module
846                  * is removed but chip isn't reset
847                  */
848                 g_spi.crc_off = 1;
849                 dev_err(&spi->dev,
850                         "Failed read with CRC on, retrying with CRC off\n");
851                 if (!spi_internal_read(wilc, WILC_SPI_PROTOCOL_OFFSET, &reg)) {
852                         /*
853                          * Read failed with both CRC on and off,
854                          * something went bad
855                          */
856                         dev_err(&spi->dev, "Failed internal read protocol\n");
857                         return 0;
858                 }
859         }
860         if (g_spi.crc_off == 0) {
861                 reg &= ~0xc; /* disable crc checking */
862                 reg &= ~0x70;
863                 reg |= (0x5 << 4);
864                 if (!spi_internal_write(wilc, WILC_SPI_PROTOCOL_OFFSET, reg)) {
865                         dev_err(&spi->dev,
866                                 "[wilc spi %d]: Failed internal write reg\n",
867                                 __LINE__);
868                         return 0;
869                 }
870                 g_spi.crc_off = 1;
871         }
872
873         /*
874          * make sure can read back chip id correctly
875          */
876         if (!wilc_spi_read_reg(wilc, 0x1000, &chipid)) {
877                 dev_err(&spi->dev, "Fail cmd read chip id...\n");
878                 return 0;
879         }
880
881         g_spi.has_thrpt_enh = 1;
882
883         isinit = 1;
884
885         return 1;
886 }
887
888 static int wilc_spi_read_size(struct wilc *wilc, u32 *size)
889 {
890         struct spi_device *spi = to_spi_device(wilc->dev);
891         int ret;
892
893         if (g_spi.has_thrpt_enh) {
894                 ret = spi_internal_read(wilc, 0xe840 - WILC_SPI_REG_BASE,
895                                         size);
896                 *size = *size  & IRQ_DMA_WD_CNT_MASK;
897         } else {
898                 u32 tmp;
899                 u32 byte_cnt;
900
901                 ret = wilc_spi_read_reg(wilc, WILC_VMM_TO_HOST_SIZE,
902                                         &byte_cnt);
903                 if (!ret) {
904                         dev_err(&spi->dev,
905                                 "Failed read WILC_VMM_TO_HOST_SIZE ...\n");
906                         return ret;
907                 }
908                 tmp = (byte_cnt >> 2) & IRQ_DMA_WD_CNT_MASK;
909                 *size = tmp;
910         }
911
912         return ret;
913 }
914
915 static int wilc_spi_read_int(struct wilc *wilc, u32 *int_status)
916 {
917         struct spi_device *spi = to_spi_device(wilc->dev);
918         int ret;
919         u32 tmp;
920         u32 byte_cnt;
921         int happened, j;
922         u32 unknown_mask;
923         u32 irq_flags;
924         int k = IRG_FLAGS_OFFSET + 5;
925
926         if (g_spi.has_thrpt_enh) {
927                 ret = spi_internal_read(wilc, 0xe840 - WILC_SPI_REG_BASE,
928                                         int_status);
929                 return ret;
930         }
931         ret = wilc_spi_read_reg(wilc, WILC_VMM_TO_HOST_SIZE, &byte_cnt);
932         if (!ret) {
933                 dev_err(&spi->dev,
934                         "Failed read WILC_VMM_TO_HOST_SIZE ...\n");
935                 return ret;
936         }
937         tmp = (byte_cnt >> 2) & IRQ_DMA_WD_CNT_MASK;
938
939         j = 0;
940         do {
941                 happened = 0;
942
943                 wilc_spi_read_reg(wilc, 0x1a90, &irq_flags);
944                 tmp |= ((irq_flags >> 27) << IRG_FLAGS_OFFSET);
945
946                 if (g_spi.nint > 5) {
947                         wilc_spi_read_reg(wilc, 0x1a94, &irq_flags);
948                         tmp |= (((irq_flags >> 0) & 0x7) << k);
949                 }
950
951                 unknown_mask = ~((1ul << g_spi.nint) - 1);
952
953                 if ((tmp >> IRG_FLAGS_OFFSET) & unknown_mask) {
954                         dev_err(&spi->dev,
955                                 "Unexpected interrupt(2):j=%d,tmp=%x,mask=%x\n",
956                                 j, tmp, unknown_mask);
957                                 happened = 1;
958                 }
959
960                 j++;
961         } while (happened);
962
963         *int_status = tmp;
964
965         return ret;
966 }
967
968 static int wilc_spi_clear_int_ext(struct wilc *wilc, u32 val)
969 {
970         struct spi_device *spi = to_spi_device(wilc->dev);
971         int ret;
972         u32 flags;
973         u32 tbl_ctl;
974
975         if (g_spi.has_thrpt_enh) {
976                 ret = spi_internal_write(wilc, 0xe844 - WILC_SPI_REG_BASE,
977                                          val);
978                 return ret;
979         }
980
981         flags = val & (BIT(MAX_NUM_INT) - 1);
982         if (flags) {
983                 int i;
984
985                 ret = 1;
986                 for (i = 0; i < g_spi.nint; i++) {
987                         /*
988                          * No matter what you write 1 or 0,
989                          * it will clear interrupt.
990                          */
991                         if (flags & 1)
992                                 ret = wilc_spi_write_reg(wilc,
993                                                          0x10c8 + i * 4, 1);
994                         if (!ret)
995                                 break;
996                         flags >>= 1;
997                 }
998                 if (!ret) {
999                         dev_err(&spi->dev,
1000                                 "Failed wilc_spi_write_reg, set reg %x ...\n",
1001                                 0x10c8 + i * 4);
1002                         return ret;
1003                 }
1004                 for (i = g_spi.nint; i < MAX_NUM_INT; i++) {
1005                         if (flags & 1)
1006                                 dev_err(&spi->dev,
1007                                         "Unexpected interrupt cleared %d...\n",
1008                                         i);
1009                         flags >>= 1;
1010                 }
1011         }
1012
1013         tbl_ctl = 0;
1014         /* select VMM table 0 */
1015         if (val & SEL_VMM_TBL0)
1016                 tbl_ctl |= BIT(0);
1017         /* select VMM table 1 */
1018         if (val & SEL_VMM_TBL1)
1019                 tbl_ctl |= BIT(1);
1020
1021         ret = wilc_spi_write_reg(wilc, WILC_VMM_TBL_CTL, tbl_ctl);
1022         if (!ret) {
1023                 dev_err(&spi->dev, "fail write reg vmm_tbl_ctl...\n");
1024                 return ret;
1025         }
1026
1027         if (val & EN_VMM) {
1028                 /*
1029                  * enable vmm transfer.
1030                  */
1031                 ret = wilc_spi_write_reg(wilc, WILC_VMM_CORE_CTL, 1);
1032                 if (!ret) {
1033                         dev_err(&spi->dev, "fail write reg vmm_core_ctl...\n");
1034                         return ret;
1035                 }
1036         }
1037
1038         return ret;
1039 }
1040
1041 static int wilc_spi_sync_ext(struct wilc *wilc, int nint)
1042 {
1043         struct spi_device *spi = to_spi_device(wilc->dev);
1044         u32 reg;
1045         int ret, i;
1046
1047         if (nint > MAX_NUM_INT) {
1048                 dev_err(&spi->dev, "Too many interrupts (%d)...\n", nint);
1049                 return 0;
1050         }
1051
1052         g_spi.nint = nint;
1053
1054         /*
1055          * interrupt pin mux select
1056          */
1057         ret = wilc_spi_read_reg(wilc, WILC_PIN_MUX_0, &reg);
1058         if (!ret) {
1059                 dev_err(&spi->dev, "Failed read reg (%08x)...\n",
1060                         WILC_PIN_MUX_0);
1061                 return 0;
1062         }
1063         reg |= BIT(8);
1064         ret = wilc_spi_write_reg(wilc, WILC_PIN_MUX_0, reg);
1065         if (!ret) {
1066                 dev_err(&spi->dev, "Failed write reg (%08x)...\n",
1067                         WILC_PIN_MUX_0);
1068                 return 0;
1069         }
1070
1071         /*
1072          * interrupt enable
1073          */
1074         ret = wilc_spi_read_reg(wilc, WILC_INTR_ENABLE, &reg);
1075         if (!ret) {
1076                 dev_err(&spi->dev, "Failed read reg (%08x)...\n",
1077                         WILC_INTR_ENABLE);
1078                 return 0;
1079         }
1080
1081         for (i = 0; (i < 5) && (nint > 0); i++, nint--)
1082                 reg |= (BIT((27 + i)));
1083
1084         ret = wilc_spi_write_reg(wilc, WILC_INTR_ENABLE, reg);
1085         if (!ret) {
1086                 dev_err(&spi->dev, "Failed write reg (%08x)...\n",
1087                         WILC_INTR_ENABLE);
1088                 return 0;
1089         }
1090         if (nint) {
1091                 ret = wilc_spi_read_reg(wilc, WILC_INTR2_ENABLE, &reg);
1092                 if (!ret) {
1093                         dev_err(&spi->dev, "Failed read reg (%08x)...\n",
1094                                 WILC_INTR2_ENABLE);
1095                         return 0;
1096                 }
1097
1098                 for (i = 0; (i < 3) && (nint > 0); i++, nint--)
1099                         reg |= BIT(i);
1100
1101                 ret = wilc_spi_read_reg(wilc, WILC_INTR2_ENABLE, &reg);
1102                 if (!ret) {
1103                         dev_err(&spi->dev, "Failed write reg (%08x)...\n",
1104                                 WILC_INTR2_ENABLE);
1105                         return 0;
1106                 }
1107         }
1108
1109         return 1;
1110 }
1111
1112 /* Global spi HIF function table */
1113 static const struct wilc_hif_func wilc_hif_spi = {
1114         .hif_init = wilc_spi_init,
1115         .hif_deinit = _wilc_spi_deinit,
1116         .hif_read_reg = wilc_spi_read_reg,
1117         .hif_write_reg = wilc_spi_write_reg,
1118         .hif_block_rx = wilc_spi_read,
1119         .hif_block_tx = wilc_spi_write,
1120         .hif_read_int = wilc_spi_read_int,
1121         .hif_clear_int_ext = wilc_spi_clear_int_ext,
1122         .hif_read_size = wilc_spi_read_size,
1123         .hif_block_tx_ext = wilc_spi_write,
1124         .hif_block_rx_ext = wilc_spi_read,
1125         .hif_sync_ext = wilc_spi_sync_ext,
1126 };