GNU Linux-libre 4.14.251-gnu1
[releases.git] / drivers / staging / rtlwifi / efuse.c
1 /******************************************************************************
2  *
3  * Copyright(c) 2009-2012  Realtek Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of version 2 of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * The full GNU General Public License is included in this distribution in the
15  * file called LICENSE.
16  *
17  * Contact Information:
18  * wlanfae <wlanfae@realtek.com>
19  * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
20  * Hsinchu 300, Taiwan.
21  *
22  * Larry Finger <Larry.Finger@lwfinger.net>
23  *
24  *****************************************************************************/
25 #include "wifi.h"
26 #include "efuse.h"
27 #include "pci.h"
28 #include <linux/export.h>
29
30 static const u8 MAX_PGPKT_SIZE = 9;
31 static const u8 PGPKT_DATA_SIZE = 8;
32 static const int EFUSE_MAX_SIZE = 512;
33
34 #define START_ADDRESS           0x1000
35 #define REG_MCUFWDL             0x0080
36
37 static const struct efuse_map RTL8712_SDIO_EFUSE_TABLE[] = {
38         {0, 0, 0, 2},
39         {0, 1, 0, 2},
40         {0, 2, 0, 2},
41         {1, 0, 0, 1},
42         {1, 0, 1, 1},
43         {1, 1, 0, 1},
44         {1, 1, 1, 3},
45         {1, 3, 0, 17},
46         {3, 3, 1, 48},
47         {10, 0, 0, 6},
48         {10, 3, 0, 1},
49         {10, 3, 1, 1},
50         {11, 0, 0, 28}
51 };
52
53 static void efuse_shadow_read_1byte(struct ieee80211_hw *hw, u16 offset,
54                                     u8 *value);
55 static void efuse_shadow_read_2byte(struct ieee80211_hw *hw, u16 offset,
56                                     u16 *value);
57 static void efuse_shadow_read_4byte(struct ieee80211_hw *hw, u16 offset,
58                                     u32 *value);
59 static void efuse_shadow_write_1byte(struct ieee80211_hw *hw, u16 offset,
60                                      u8 value);
61 static void efuse_shadow_write_2byte(struct ieee80211_hw *hw, u16 offset,
62                                      u16 value);
63 static void efuse_shadow_write_4byte(struct ieee80211_hw *hw, u16 offset,
64                                      u32 value);
65 static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr,
66                                 u8 data);
67 static void efuse_read_all_map(struct ieee80211_hw *hw, u8 *efuse);
68 static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset,
69                                 u8 *data);
70 static int efuse_pg_packet_write(struct ieee80211_hw *hw, u8 offset,
71                                  u8 word_en, u8 *data);
72 static void efuse_word_enable_data_read(u8 word_en, u8 *sourdata,
73                                         u8 *targetdata);
74 static u8 enable_efuse_data_write(struct ieee80211_hw *hw,
75                                   u16 efuse_addr, u8 word_en, u8 *data);
76 static u16 efuse_get_current_size(struct ieee80211_hw *hw);
77 static u8 efuse_calculate_word_cnts(u8 word_en);
78
79 void efuse_initialize(struct ieee80211_hw *hw)
80 {
81         struct rtl_priv *rtlpriv = rtl_priv(hw);
82         u8 bytetemp;
83         u8 temp;
84
85         bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1);
86         temp = bytetemp | 0x20;
87         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1, temp);
88
89         bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1);
90         temp = bytetemp & 0xFE;
91         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1, temp);
92
93         bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3);
94         temp = bytetemp | 0x80;
95         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3, temp);
96
97         rtl_write_byte(rtlpriv, 0x2F8, 0x3);
98
99         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
100 }
101
102 u8 efuse_read_1byte(struct ieee80211_hw *hw, u16 address)
103 {
104         struct rtl_priv *rtlpriv = rtl_priv(hw);
105         u8 data;
106         u8 bytetemp;
107         u8 temp;
108         u32 k = 0;
109         const u32 efuse_len =
110                 rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
111
112         if (address < efuse_len) {
113                 temp = address & 0xFF;
114                 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
115                                temp);
116                 bytetemp = rtl_read_byte(rtlpriv,
117                                          rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
118                 temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
119                 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
120                                temp);
121
122                 bytetemp = rtl_read_byte(rtlpriv,
123                                          rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
124                 temp = bytetemp & 0x7F;
125                 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
126                                temp);
127
128                 bytetemp = rtl_read_byte(rtlpriv,
129                                          rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
130                 while (!(bytetemp & 0x80)) {
131                         bytetemp =
132                            rtl_read_byte(rtlpriv,
133                                          rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
134                         k++;
135                         if (k == 1000) {
136                                 k = 0;
137                                 break;
138                         }
139                 }
140                 data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
141                 return data;
142         }
143         return 0xFF;
144 }
145
146 void efuse_write_1byte(struct ieee80211_hw *hw, u16 address, u8 value)
147 {
148         struct rtl_priv *rtlpriv = rtl_priv(hw);
149         u8 bytetemp;
150         u8 temp;
151         u32 k = 0;
152         const u32 efuse_len =
153                 rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
154
155         RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "Addr=%x Data =%x\n",
156                  address, value);
157
158         if (address < efuse_len) {
159                 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], value);
160
161                 temp = address & 0xFF;
162                 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
163                                temp);
164                 bytetemp = rtl_read_byte(rtlpriv,
165                                          rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
166
167                 temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
168                 rtl_write_byte(rtlpriv,
169                                rtlpriv->cfg->maps[EFUSE_CTRL] + 2, temp);
170
171                 bytetemp = rtl_read_byte(rtlpriv,
172                                          rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
173                 temp = bytetemp | 0x80;
174                 rtl_write_byte(rtlpriv,
175                                rtlpriv->cfg->maps[EFUSE_CTRL] + 3, temp);
176
177                 bytetemp = rtl_read_byte(rtlpriv,
178                                          rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
179
180                 while (bytetemp & 0x80) {
181                         bytetemp =
182                             rtl_read_byte(rtlpriv,
183                                           rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
184                         k++;
185                         if (k == 100) {
186                                 k = 0;
187                                 break;
188                         }
189                 }
190         }
191 }
192
193 void read_efuse_byte(struct ieee80211_hw *hw, u16 _offset, u8 *pbuf)
194 {
195         struct rtl_priv *rtlpriv = rtl_priv(hw);
196         u32 value32;
197         u8 readbyte;
198         u16 retry;
199
200         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
201                        (_offset & 0xff));
202         readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
203         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
204                        ((_offset >> 8) & 0x03) | (readbyte & 0xfc));
205
206         readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
207         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
208                        (readbyte & 0x7f));
209
210         retry = 0;
211         value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
212         while (!(((value32 >> 24) & 0xff) & 0x80) && (retry < 10000)) {
213                 value32 = rtl_read_dword(rtlpriv,
214                                          rtlpriv->cfg->maps[EFUSE_CTRL]);
215                 retry++;
216         }
217
218         udelay(50);
219         value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
220
221         *pbuf = (u8)(value32 & 0xff);
222 }
223
224 void read_efuse(struct ieee80211_hw *hw, u16 _offset, u16 _size_byte, u8 *pbuf)
225 {
226         struct rtl_priv *rtlpriv = rtl_priv(hw);
227         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
228         u8 *efuse_tbl;
229         u8 rtemp8[1];
230         u16 efuse_addr = 0;
231         u8 offset, wren;
232         u8 u1temp = 0;
233         u16 i;
234         u16 j;
235         const u16 efuse_max_section =
236                 rtlpriv->cfg->maps[EFUSE_MAX_SECTION_MAP];
237         const u32 efuse_len =
238                 rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
239         u16 **efuse_word;
240         u16 efuse_utilized = 0;
241         u8 efuse_usage;
242
243         if ((_offset + _size_byte) > rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]) {
244                 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
245                          "%s(): Invalid offset(%#x) with read bytes(%#x)!!\n",
246                          __func__, _offset, _size_byte);
247                 return;
248         }
249
250         /* allocate memory for efuse_tbl and efuse_word */
251         efuse_tbl = kzalloc(rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE] *
252                             sizeof(u8), GFP_ATOMIC);
253         if (!efuse_tbl)
254                 return;
255         efuse_word = kzalloc(EFUSE_MAX_WORD_UNIT * sizeof(u16 *), GFP_ATOMIC);
256         if (!efuse_word)
257                 goto out;
258         for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
259                 efuse_word[i] = kzalloc(efuse_max_section * sizeof(u16),
260                                         GFP_ATOMIC);
261                 if (!efuse_word[i])
262                         goto done;
263         }
264
265         for (i = 0; i < efuse_max_section; i++)
266                 for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++)
267                         efuse_word[j][i] = 0xFFFF;
268
269         read_efuse_byte(hw, efuse_addr, rtemp8);
270         if (*rtemp8 != 0xFF) {
271                 efuse_utilized++;
272                 RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
273                         "Addr=%d\n", efuse_addr);
274                 efuse_addr++;
275         }
276
277         while ((*rtemp8 != 0xFF) && (efuse_addr < efuse_len)) {
278                 /*  Check PG header for section num.  */
279                 if ((*rtemp8 & 0x1F) == 0x0F) {/* extended header */
280                         u1temp = ((*rtemp8 & 0xE0) >> 5);
281                         read_efuse_byte(hw, efuse_addr, rtemp8);
282
283                         if ((*rtemp8 & 0x0F) == 0x0F) {
284                                 efuse_addr++;
285                                 read_efuse_byte(hw, efuse_addr, rtemp8);
286
287                                 if (*rtemp8 != 0xFF &&
288                                     (efuse_addr < efuse_len)) {
289                                         efuse_addr++;
290                                 }
291                                 continue;
292                         } else {
293                                 offset = ((*rtemp8 & 0xF0) >> 1) | u1temp;
294                                 wren = (*rtemp8 & 0x0F);
295                                 efuse_addr++;
296                         }
297                 } else {
298                         offset = ((*rtemp8 >> 4) & 0x0f);
299                         wren = (*rtemp8 & 0x0f);
300                 }
301
302                 if (offset < efuse_max_section) {
303                         RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
304                                 "offset-%d Worden=%x\n", offset, wren);
305
306                         for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
307                                 if (!(wren & 0x01)) {
308                                         RTPRINT(rtlpriv, FEEPROM,
309                                                 EFUSE_READ_ALL,
310                                                 "Addr=%d\n", efuse_addr);
311
312                                         read_efuse_byte(hw, efuse_addr, rtemp8);
313                                         efuse_addr++;
314                                         efuse_utilized++;
315                                         efuse_word[i][offset] =
316                                                          (*rtemp8 & 0xff);
317
318                                         if (efuse_addr >= efuse_len)
319                                                 break;
320
321                                         RTPRINT(rtlpriv, FEEPROM,
322                                                 EFUSE_READ_ALL,
323                                                 "Addr=%d\n", efuse_addr);
324
325                                         read_efuse_byte(hw, efuse_addr, rtemp8);
326                                         efuse_addr++;
327                                         efuse_utilized++;
328                                         efuse_word[i][offset] |=
329                                             (((u16)*rtemp8 << 8) & 0xff00);
330
331                                         if (efuse_addr >= efuse_len)
332                                                 break;
333                                 }
334
335                                 wren >>= 1;
336                         }
337                 }
338
339                 RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
340                         "Addr=%d\n", efuse_addr);
341                 read_efuse_byte(hw, efuse_addr, rtemp8);
342                 if (*rtemp8 != 0xFF && (efuse_addr < efuse_len)) {
343                         efuse_utilized++;
344                         efuse_addr++;
345                 }
346         }
347
348         for (i = 0; i < efuse_max_section; i++) {
349                 for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) {
350                         efuse_tbl[(i * 8) + (j * 2)] =
351                             (efuse_word[j][i] & 0xff);
352                         efuse_tbl[(i * 8) + ((j * 2) + 1)] =
353                             ((efuse_word[j][i] >> 8) & 0xff);
354                 }
355         }
356
357         for (i = 0; i < _size_byte; i++)
358                 pbuf[i] = efuse_tbl[_offset + i];
359
360         rtlefuse->efuse_usedbytes = efuse_utilized;
361         efuse_usage = (u8)((efuse_utilized * 100) / efuse_len);
362         rtlefuse->efuse_usedpercentage = efuse_usage;
363         rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_BYTES,
364                                       (u8 *)&efuse_utilized);
365         rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_USAGE,
366                                       &efuse_usage);
367 done:
368         for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++)
369                 kfree(efuse_word[i]);
370         kfree(efuse_word);
371 out:
372         kfree(efuse_tbl);
373 }
374
375 bool efuse_shadow_update_chk(struct ieee80211_hw *hw)
376 {
377         struct rtl_priv *rtlpriv = rtl_priv(hw);
378         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
379         u8 section_idx, i, base;
380         u16 words_need = 0, hdr_num = 0, totalbytes, efuse_used;
381         bool wordchanged, result = true;
382
383         for (section_idx = 0; section_idx < 16; section_idx++) {
384                 base = section_idx * 8;
385                 wordchanged = false;
386
387                 for (i = 0; i < 8; i = i + 2) {
388                         if ((rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] !=
389                              rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i]) ||
390                             (rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i + 1] !=
391                              rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i +
392                                                                    1])) {
393                                 words_need++;
394                                 wordchanged = true;
395                         }
396                 }
397
398                 if (wordchanged)
399                         hdr_num++;
400         }
401
402         totalbytes = hdr_num + words_need * 2;
403         efuse_used = rtlefuse->efuse_usedbytes;
404
405         if ((totalbytes + efuse_used) >=
406             (EFUSE_MAX_SIZE - rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN]))
407                 result = false;
408
409         RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
410                  "%s(): totalbytes(%#x), hdr_num(%#x), words_need(%#x), efuse_used(%d)\n",
411                  __func__, totalbytes, hdr_num, words_need, efuse_used);
412
413         return result;
414 }
415
416 void efuse_shadow_read(struct ieee80211_hw *hw, u8 type,
417                        u16 offset, u32 *value)
418 {
419         if (type == 1)
420                 efuse_shadow_read_1byte(hw, offset, (u8 *)value);
421         else if (type == 2)
422                 efuse_shadow_read_2byte(hw, offset, (u16 *)value);
423         else if (type == 4)
424                 efuse_shadow_read_4byte(hw, offset, value);
425 }
426
427 void efuse_shadow_write(struct ieee80211_hw *hw, u8 type, u16 offset,
428                         u32 value)
429 {
430         if (type == 1)
431                 efuse_shadow_write_1byte(hw, offset, (u8)value);
432         else if (type == 2)
433                 efuse_shadow_write_2byte(hw, offset, (u16)value);
434         else if (type == 4)
435                 efuse_shadow_write_4byte(hw, offset, value);
436 }
437
438 bool efuse_shadow_update(struct ieee80211_hw *hw)
439 {
440         struct rtl_priv *rtlpriv = rtl_priv(hw);
441         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
442         u16 i, offset, base;
443         u8 word_en = 0x0F;
444         u8 first_pg = false;
445
446         RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "\n");
447
448         if (!efuse_shadow_update_chk(hw)) {
449                 efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
450                 memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
451                        &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
452                        rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
453
454                 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
455                          "efuse out of capacity!!\n");
456                 return false;
457         }
458         efuse_power_switch(hw, true, true);
459
460         for (offset = 0; offset < 16; offset++) {
461                 word_en = 0x0F;
462                 base = offset * 8;
463
464                 for (i = 0; i < 8; i++) {
465                         if (first_pg) {
466                                 word_en &= ~(BIT(i / 2));
467
468                                 rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
469                                     rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
470                         } else {
471                                 if (rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] !=
472                                     rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i]) {
473                                         word_en &= ~(BIT(i / 2));
474
475                                         rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
476                                             rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
477                                 }
478                         }
479                 }
480                 if (word_en != 0x0F) {
481                         u8 tmpdata[8];
482
483                         memcpy(tmpdata,
484                                &rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base],
485                                8);
486                         RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_LOUD,
487                                       "U-efuse\n", tmpdata, 8);
488
489                         if (!efuse_pg_packet_write(hw, (u8)offset, word_en,
490                                                    tmpdata)) {
491                                 RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
492                                          "PG section(%#x) fail!!\n", offset);
493                                 break;
494                         }
495                 }
496         }
497
498         efuse_power_switch(hw, true, false);
499         efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
500
501         memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
502                &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
503                rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
504
505         RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "\n");
506         return true;
507 }
508
509 void rtl_efuse_shadow_map_update(struct ieee80211_hw *hw)
510 {
511         struct rtl_priv *rtlpriv = rtl_priv(hw);
512         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
513
514         if (rtlefuse->autoload_failflag)
515                 memset((&rtlefuse->efuse_map[EFUSE_INIT_MAP][0]),
516                        0xFF, rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
517         else
518                 efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
519
520         memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
521                &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
522                rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
523 }
524
525 void efuse_force_write_vendor_id(struct ieee80211_hw *hw)
526 {
527         u8 tmpdata[8] = { 0xFF, 0xFF, 0xEC, 0x10, 0xFF, 0xFF, 0xFF, 0xFF };
528
529         efuse_power_switch(hw, true, true);
530
531         efuse_pg_packet_write(hw, 1, 0xD, tmpdata);
532
533         efuse_power_switch(hw, true, false);
534 }
535
536 void efuse_re_pg_section(struct ieee80211_hw *hw, u8 section_idx)
537 {
538 }
539
540 static void efuse_shadow_read_1byte(struct ieee80211_hw *hw,
541                                     u16 offset, u8 *value)
542 {
543         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
544         *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
545 }
546
547 static void efuse_shadow_read_2byte(struct ieee80211_hw *hw,
548                                     u16 offset, u16 *value)
549 {
550         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
551
552         *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
553         *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
554 }
555
556 static void efuse_shadow_read_4byte(struct ieee80211_hw *hw,
557                                     u16 offset, u32 *value)
558 {
559         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
560
561         *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
562         *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
563         *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] << 16;
564         *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] << 24;
565 }
566
567 static void efuse_shadow_write_1byte(struct ieee80211_hw *hw,
568                                      u16 offset, u8 value)
569 {
570         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
571
572         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value;
573 }
574
575 static void efuse_shadow_write_2byte(struct ieee80211_hw *hw,
576                                      u16 offset, u16 value)
577 {
578         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
579
580         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value & 0x00FF;
581         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] = value >> 8;
582 }
583
584 static void efuse_shadow_write_4byte(struct ieee80211_hw *hw,
585                                      u16 offset, u32 value)
586 {
587         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
588
589         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] =
590             (u8)(value & 0x000000FF);
591         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] =
592             (u8)((value >> 8) & 0x0000FF);
593         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] =
594             (u8)((value >> 16) & 0x00FF);
595         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] =
596             (u8)((value >> 24) & 0xFF);
597 }
598
599 int efuse_one_byte_read(struct ieee80211_hw *hw, u16 addr, u8 *data)
600 {
601         struct rtl_priv *rtlpriv = rtl_priv(hw);
602         u8 tmpidx = 0;
603         int result;
604
605         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
606                        (u8)(addr & 0xff));
607         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
608                        ((u8)((addr >> 8) & 0x03)) |
609                        (rtl_read_byte(rtlpriv,
610                                       rtlpriv->cfg->maps[EFUSE_CTRL] + 2) &
611                         0xFC));
612
613         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
614
615         while (!(0x80 & rtl_read_byte(rtlpriv,
616                                       rtlpriv->cfg->maps[EFUSE_CTRL] + 3)) &&
617                (tmpidx < 100)) {
618                 tmpidx++;
619         }
620
621         if (tmpidx < 100) {
622                 *data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
623                 result = true;
624         } else {
625                 *data = 0xff;
626                 result = false;
627         }
628         return result;
629 }
630
631 static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr, u8 data)
632 {
633         struct rtl_priv *rtlpriv = rtl_priv(hw);
634         u8 tmpidx = 0;
635
636         RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
637                  "Addr = %x Data=%x\n", addr, data);
638
639         rtl_write_byte(rtlpriv,
640                        rtlpriv->cfg->maps[EFUSE_CTRL] + 1, (u8)(addr & 0xff));
641         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
642                        (rtl_read_byte(rtlpriv,
643                          rtlpriv->cfg->maps[EFUSE_CTRL] +
644                          2) & 0xFC) | (u8)((addr >> 8) & 0x03));
645
646         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], data);
647         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0xF2);
648
649         while ((0x80 &
650                 rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3)) &&
651                (tmpidx < 100)) {
652                 tmpidx++;
653         }
654
655         if (tmpidx < 100)
656                 return true;
657         return false;
658 }
659
660 static void efuse_read_all_map(struct ieee80211_hw *hw, u8 *efuse)
661 {
662         struct rtl_priv *rtlpriv = rtl_priv(hw);
663
664         efuse_power_switch(hw, false, true);
665         read_efuse(hw, 0, rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE], efuse);
666         efuse_power_switch(hw, false, false);
667 }
668
669 static void efuse_read_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
670                                   u8 efuse_data, u8 offset, u8 *tmpdata,
671                                   u8 *readstate)
672 {
673         bool dataempty = true;
674         u8 hoffset;
675         u8 tmpidx;
676         u8 hworden;
677         u8 word_cnts;
678
679         hoffset = (efuse_data >> 4) & 0x0F;
680         hworden = efuse_data & 0x0F;
681         word_cnts = efuse_calculate_word_cnts(hworden);
682
683         if (hoffset == offset) {
684                 for (tmpidx = 0; tmpidx < word_cnts * 2; tmpidx++) {
685                         if (efuse_one_byte_read(hw, *efuse_addr + 1 + tmpidx,
686                                                 &efuse_data)) {
687                                 tmpdata[tmpidx] = efuse_data;
688                                 if (efuse_data != 0xff)
689                                         dataempty = false;
690                         }
691                 }
692
693                 if (!dataempty) {
694                         *readstate = PG_STATE_DATA;
695                 } else {
696                         *efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
697                         *readstate = PG_STATE_HEADER;
698                 }
699
700         } else {
701                 *efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
702                 *readstate = PG_STATE_HEADER;
703         }
704 }
705
706 static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset, u8 *data)
707 {
708         u8 readstate = PG_STATE_HEADER;
709
710         bool continual = true;
711
712         u8 efuse_data, word_cnts = 0;
713         u16 efuse_addr = 0;
714         u8 tmpdata[8];
715
716         if (!data)
717                 return false;
718         if (offset > 15)
719                 return false;
720
721         memset(data, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
722         memset(tmpdata, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
723
724         while (continual && (efuse_addr < EFUSE_MAX_SIZE)) {
725                 if (readstate & PG_STATE_HEADER) {
726                         if (efuse_one_byte_read(hw, efuse_addr, &efuse_data) &&
727                             (efuse_data != 0xFF))
728                                 efuse_read_data_case1(hw, &efuse_addr,
729                                                       efuse_data, offset,
730                                                       tmpdata, &readstate);
731                         else
732                                 continual = false;
733                 } else if (readstate & PG_STATE_DATA) {
734                         efuse_word_enable_data_read(0, tmpdata, data);
735                         efuse_addr = efuse_addr + (word_cnts * 2) + 1;
736                         readstate = PG_STATE_HEADER;
737                 }
738         }
739
740         if ((data[0] == 0xff) && (data[1] == 0xff) &&
741             (data[2] == 0xff) && (data[3] == 0xff) &&
742             (data[4] == 0xff) && (data[5] == 0xff) &&
743             (data[6] == 0xff) && (data[7] == 0xff))
744                 return false;
745         return true;
746 }
747
748 static void efuse_write_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
749                                    u8 efuse_data, u8 offset,
750                                    int *continual, u8 *write_state,
751                                    struct pgpkt_struct *target_pkt,
752                                    int *repeat_times, int *result, u8 word_en)
753 {
754         struct rtl_priv *rtlpriv = rtl_priv(hw);
755         struct pgpkt_struct tmp_pkt;
756         int dataempty = true;
757         u8 originaldata[8 * sizeof(u8)];
758         u8 badworden = 0x0F;
759         u8 match_word_en, tmp_word_en;
760         u8 tmpindex;
761         u8 tmp_header = efuse_data;
762         u8 tmp_word_cnts;
763
764         tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
765         tmp_pkt.word_en = tmp_header & 0x0F;
766         tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
767
768         if (tmp_pkt.offset != target_pkt->offset) {
769                 *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
770                 *write_state = PG_STATE_HEADER;
771         } else {
772                 for (tmpindex = 0; tmpindex < (tmp_word_cnts * 2); tmpindex++) {
773                         if (efuse_one_byte_read(hw,
774                                                 (*efuse_addr + 1 + tmpindex),
775                                                 &efuse_data) &&
776                             (efuse_data != 0xFF))
777                                 dataempty = false;
778                 }
779
780                 if (!dataempty) {
781                         *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
782                         *write_state = PG_STATE_HEADER;
783                 } else {
784                         match_word_en = 0x0F;
785                         if (!((target_pkt->word_en & BIT(0)) |
786                             (tmp_pkt.word_en & BIT(0))))
787                                 match_word_en &= (~BIT(0));
788
789                         if (!((target_pkt->word_en & BIT(1)) |
790                             (tmp_pkt.word_en & BIT(1))))
791                                 match_word_en &= (~BIT(1));
792
793                         if (!((target_pkt->word_en & BIT(2)) |
794                             (tmp_pkt.word_en & BIT(2))))
795                                 match_word_en &= (~BIT(2));
796
797                         if (!((target_pkt->word_en & BIT(3)) |
798                             (tmp_pkt.word_en & BIT(3))))
799                                 match_word_en &= (~BIT(3));
800
801                         if ((match_word_en & 0x0F) != 0x0F) {
802                                 badworden =
803                                   enable_efuse_data_write(hw,
804                                                           *efuse_addr + 1,
805                                                           tmp_pkt.word_en,
806                                                           target_pkt->data);
807
808                                 if (0x0F != (badworden & 0x0F)) {
809                                         u8 reorg_offset = offset;
810                                         u8 reorg_worden = badworden;
811
812                                         efuse_pg_packet_write(hw, reorg_offset,
813                                                               reorg_worden,
814                                                               originaldata);
815                                 }
816
817                                 tmp_word_en = 0x0F;
818                                 if ((target_pkt->word_en & BIT(0)) ^
819                                     (match_word_en & BIT(0)))
820                                         tmp_word_en &= (~BIT(0));
821
822                                 if ((target_pkt->word_en & BIT(1)) ^
823                                     (match_word_en & BIT(1)))
824                                         tmp_word_en &= (~BIT(1));
825
826                                 if ((target_pkt->word_en & BIT(2)) ^
827                                     (match_word_en & BIT(2)))
828                                         tmp_word_en &= (~BIT(2));
829
830                                 if ((target_pkt->word_en & BIT(3)) ^
831                                     (match_word_en & BIT(3)))
832                                         tmp_word_en &= (~BIT(3));
833
834                                 if ((tmp_word_en & 0x0F) != 0x0F) {
835                                         *efuse_addr =
836                                             efuse_get_current_size(hw);
837                                         target_pkt->offset = offset;
838                                         target_pkt->word_en = tmp_word_en;
839                                 } else {
840                                         *continual = false;
841                                 }
842                                 *write_state = PG_STATE_HEADER;
843                                 *repeat_times += 1;
844                                 if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
845                                         *continual = false;
846                                         *result = false;
847                                 }
848                         } else {
849                                 *efuse_addr += (2 * tmp_word_cnts) + 1;
850                                 target_pkt->offset = offset;
851                                 target_pkt->word_en = word_en;
852                                 *write_state = PG_STATE_HEADER;
853                         }
854                 }
855         }
856         RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, "efuse PG_STATE_HEADER-1\n");
857 }
858
859 static void efuse_write_data_case2(struct ieee80211_hw *hw, u16 *efuse_addr,
860                                    int *continual, u8 *write_state,
861                                    struct pgpkt_struct target_pkt,
862                                    int *repeat_times, int *result)
863 {
864         struct rtl_priv *rtlpriv = rtl_priv(hw);
865         struct pgpkt_struct tmp_pkt;
866         u8 pg_header;
867         u8 tmp_header;
868         u8 originaldata[8 * sizeof(u8)];
869         u8 tmp_word_cnts;
870         u8 badworden = 0x0F;
871
872         pg_header = ((target_pkt.offset << 4) & 0xf0) | target_pkt.word_en;
873         efuse_one_byte_write(hw, *efuse_addr, pg_header);
874         efuse_one_byte_read(hw, *efuse_addr, &tmp_header);
875
876         if (tmp_header == pg_header) {
877                 *write_state = PG_STATE_DATA;
878         } else if (tmp_header == 0xFF) {
879                 *write_state = PG_STATE_HEADER;
880                 *repeat_times += 1;
881                 if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
882                         *continual = false;
883                         *result = false;
884                 }
885         } else {
886                 tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
887                 tmp_pkt.word_en = tmp_header & 0x0F;
888
889                 tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
890
891                 memset(originaldata, 0xff,  8 * sizeof(u8));
892
893                 if (efuse_pg_packet_read(hw, tmp_pkt.offset, originaldata)) {
894                         badworden = enable_efuse_data_write(hw,
895                                                             *efuse_addr + 1,
896                                                             tmp_pkt.word_en,
897                                                             originaldata);
898
899                         if (0x0F != (badworden & 0x0F)) {
900                                 u8 reorg_offset = tmp_pkt.offset;
901                                 u8 reorg_worden = badworden;
902
903                                 efuse_pg_packet_write(hw, reorg_offset,
904                                                       reorg_worden,
905                                                       originaldata);
906                                 *efuse_addr = efuse_get_current_size(hw);
907                         } else {
908                                 *efuse_addr = *efuse_addr +
909                                               (tmp_word_cnts * 2) + 1;
910                         }
911                 } else {
912                         *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
913                 }
914
915                 *write_state = PG_STATE_HEADER;
916                 *repeat_times += 1;
917                 if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
918                         *continual = false;
919                         *result = false;
920                 }
921
922                 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
923                         "efuse PG_STATE_HEADER-2\n");
924         }
925 }
926
927 static int efuse_pg_packet_write(struct ieee80211_hw *hw,
928                                  u8 offset, u8 word_en, u8 *data)
929 {
930         struct rtl_priv *rtlpriv = rtl_priv(hw);
931         struct pgpkt_struct target_pkt;
932         u8 write_state = PG_STATE_HEADER;
933         int continual = true, dataempty = true, result = true;
934         u16 efuse_addr = 0;
935         u8 efuse_data;
936         u8 target_word_cnts = 0;
937         u8 badworden = 0x0F;
938         static int repeat_times;
939
940         if (efuse_get_current_size(hw) >= (EFUSE_MAX_SIZE -
941                 rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN])) {
942                 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
943                         "%s error\n", __func__);
944                 return false;
945         }
946
947         target_pkt.offset = offset;
948         target_pkt.word_en = word_en;
949
950         memset(target_pkt.data, 0xFF,  8 * sizeof(u8));
951
952         efuse_word_enable_data_read(word_en, data, target_pkt.data);
953         target_word_cnts = efuse_calculate_word_cnts(target_pkt.word_en);
954
955         RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, "efuse Power ON\n");
956
957         while (continual && (efuse_addr < (EFUSE_MAX_SIZE -
958                rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN]))) {
959                 if (write_state == PG_STATE_HEADER) {
960                         dataempty = true;
961                         badworden = 0x0F;
962                         RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
963                                 "efuse PG_STATE_HEADER\n");
964
965                         if (efuse_one_byte_read(hw, efuse_addr, &efuse_data) &&
966                             (efuse_data != 0xFF))
967                                 efuse_write_data_case1(hw, &efuse_addr,
968                                                        efuse_data, offset,
969                                                        &continual,
970                                                        &write_state,
971                                                        &target_pkt,
972                                                        &repeat_times, &result,
973                                                        word_en);
974                         else
975                                 efuse_write_data_case2(hw, &efuse_addr,
976                                                        &continual,
977                                                        &write_state,
978                                                        target_pkt,
979                                                        &repeat_times,
980                                                        &result);
981
982                 } else if (write_state == PG_STATE_DATA) {
983                         RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
984                                 "efuse PG_STATE_DATA\n");
985                         badworden = 0x0f;
986                         badworden =
987                             enable_efuse_data_write(hw, efuse_addr + 1,
988                                                     target_pkt.word_en,
989                                                     target_pkt.data);
990
991                         if ((badworden & 0x0F) == 0x0F) {
992                                 continual = false;
993                         } else {
994                                 efuse_addr =
995                                     efuse_addr + (2 * target_word_cnts) + 1;
996
997                                 target_pkt.offset = offset;
998                                 target_pkt.word_en = badworden;
999                                 target_word_cnts =
1000                                     efuse_calculate_word_cnts(target_pkt.word_en);
1001                                 write_state = PG_STATE_HEADER;
1002                                 repeat_times++;
1003                                 if (repeat_times > EFUSE_REPEAT_THRESHOLD_) {
1004                                         continual = false;
1005                                         result = false;
1006                                 }
1007                                 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
1008                                         "efuse PG_STATE_HEADER-3\n");
1009                         }
1010                 }
1011         }
1012
1013         if (efuse_addr >= (EFUSE_MAX_SIZE -
1014                 rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN])) {
1015                 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
1016                          "efuse_addr(%#x) Out of size!!\n", efuse_addr);
1017         }
1018
1019         return true;
1020 }
1021
1022 static void efuse_word_enable_data_read(u8 word_en, u8 *sourdata,
1023                                         u8 *targetdata)
1024 {
1025         if (!(word_en & BIT(0))) {
1026                 targetdata[0] = sourdata[0];
1027                 targetdata[1] = sourdata[1];
1028         }
1029
1030         if (!(word_en & BIT(1))) {
1031                 targetdata[2] = sourdata[2];
1032                 targetdata[3] = sourdata[3];
1033         }
1034
1035         if (!(word_en & BIT(2))) {
1036                 targetdata[4] = sourdata[4];
1037                 targetdata[5] = sourdata[5];
1038         }
1039
1040         if (!(word_en & BIT(3))) {
1041                 targetdata[6] = sourdata[6];
1042                 targetdata[7] = sourdata[7];
1043         }
1044 }
1045
1046 static u8 enable_efuse_data_write(struct ieee80211_hw *hw,
1047                                   u16 efuse_addr, u8 word_en, u8 *data)
1048 {
1049         struct rtl_priv *rtlpriv = rtl_priv(hw);
1050         u16 tmpaddr;
1051         u16 start_addr = efuse_addr;
1052         u8 badworden = 0x0F;
1053         u8 tmpdata[8];
1054
1055         memset(tmpdata, 0xff, PGPKT_DATA_SIZE);
1056         RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
1057                  "word_en = %x efuse_addr=%x\n", word_en, efuse_addr);
1058
1059         if (!(word_en & BIT(0))) {
1060                 tmpaddr = start_addr;
1061                 efuse_one_byte_write(hw, start_addr++, data[0]);
1062                 efuse_one_byte_write(hw, start_addr++, data[1]);
1063
1064                 efuse_one_byte_read(hw, tmpaddr, &tmpdata[0]);
1065                 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[1]);
1066                 if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1]))
1067                         badworden &= (~BIT(0));
1068         }
1069
1070         if (!(word_en & BIT(1))) {
1071                 tmpaddr = start_addr;
1072                 efuse_one_byte_write(hw, start_addr++, data[2]);
1073                 efuse_one_byte_write(hw, start_addr++, data[3]);
1074
1075                 efuse_one_byte_read(hw, tmpaddr, &tmpdata[2]);
1076                 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[3]);
1077                 if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3]))
1078                         badworden &= (~BIT(1));
1079         }
1080
1081         if (!(word_en & BIT(2))) {
1082                 tmpaddr = start_addr;
1083                 efuse_one_byte_write(hw, start_addr++, data[4]);
1084                 efuse_one_byte_write(hw, start_addr++, data[5]);
1085
1086                 efuse_one_byte_read(hw, tmpaddr, &tmpdata[4]);
1087                 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[5]);
1088                 if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5]))
1089                         badworden &= (~BIT(2));
1090         }
1091
1092         if (!(word_en & BIT(3))) {
1093                 tmpaddr = start_addr;
1094                 efuse_one_byte_write(hw, start_addr++, data[6]);
1095                 efuse_one_byte_write(hw, start_addr++, data[7]);
1096
1097                 efuse_one_byte_read(hw, tmpaddr, &tmpdata[6]);
1098                 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[7]);
1099                 if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7]))
1100                         badworden &= (~BIT(3));
1101         }
1102
1103         return badworden;
1104 }
1105
1106 void efuse_power_switch(struct ieee80211_hw *hw, u8 write, u8 pwrstate)
1107 {
1108         struct rtl_priv *rtlpriv = rtl_priv(hw);
1109         struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1110         u8 tempval;
1111         u16 tmpv16;
1112
1113         if (pwrstate && (rtlhal->hw_type != HARDWARE_TYPE_RTL8192SE)) {
1114                 if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192CE &&
1115                     rtlhal->hw_type != HARDWARE_TYPE_RTL8192DE) {
1116                         rtl_write_byte(rtlpriv,
1117                                        rtlpriv->cfg->maps[EFUSE_ACCESS], 0x69);
1118                 } else {
1119                         tmpv16 =
1120                           rtl_read_word(rtlpriv,
1121                                         rtlpriv->cfg->maps[SYS_ISO_CTRL]);
1122                         if (!(tmpv16 & rtlpriv->cfg->maps[EFUSE_PWC_EV12V])) {
1123                                 tmpv16 |= rtlpriv->cfg->maps[EFUSE_PWC_EV12V];
1124                                 rtl_write_word(rtlpriv,
1125                                                rtlpriv->cfg->maps[SYS_ISO_CTRL],
1126                                                tmpv16);
1127                         }
1128                 }
1129                 tmpv16 = rtl_read_word(rtlpriv,
1130                                        rtlpriv->cfg->maps[SYS_FUNC_EN]);
1131                 if (!(tmpv16 & rtlpriv->cfg->maps[EFUSE_FEN_ELDR])) {
1132                         tmpv16 |= rtlpriv->cfg->maps[EFUSE_FEN_ELDR];
1133                         rtl_write_word(rtlpriv,
1134                                        rtlpriv->cfg->maps[SYS_FUNC_EN], tmpv16);
1135                 }
1136
1137                 tmpv16 = rtl_read_word(rtlpriv, rtlpriv->cfg->maps[SYS_CLK]);
1138                 if ((!(tmpv16 & rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN])) ||
1139                     (!(tmpv16 & rtlpriv->cfg->maps[EFUSE_ANA8M]))) {
1140                         tmpv16 |= (rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN] |
1141                                    rtlpriv->cfg->maps[EFUSE_ANA8M]);
1142                         rtl_write_word(rtlpriv,
1143                                        rtlpriv->cfg->maps[SYS_CLK], tmpv16);
1144                 }
1145         }
1146
1147         if (pwrstate) {
1148                 if (write) {
1149                         tempval = rtl_read_byte(rtlpriv,
1150                                                 rtlpriv->cfg->maps[EFUSE_TEST] +
1151                                                 3);
1152
1153                         if (rtlhal->hw_type == HARDWARE_TYPE_RTL8812AE) {
1154                                 tempval &= ~(BIT(3) | BIT(4) | BIT(5) | BIT(6));
1155                                 tempval |= (VOLTAGE_V25 << 3);
1156                         } else if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192SE) {
1157                                 tempval &= 0x0F;
1158                                 tempval |= (VOLTAGE_V25 << 4);
1159                         }
1160
1161                         rtl_write_byte(rtlpriv,
1162                                        rtlpriv->cfg->maps[EFUSE_TEST] + 3,
1163                                        (tempval | 0x80));
1164                 }
1165
1166                 if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) {
1167                         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK],
1168                                        0x03);
1169                 }
1170         } else {
1171                 if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192CE &&
1172                     rtlhal->hw_type != HARDWARE_TYPE_RTL8192DE)
1173                         rtl_write_byte(rtlpriv,
1174                                        rtlpriv->cfg->maps[EFUSE_ACCESS], 0);
1175
1176                 if (write) {
1177                         tempval = rtl_read_byte(rtlpriv,
1178                                                 rtlpriv->cfg->maps[EFUSE_TEST] +
1179                                                 3);
1180                         rtl_write_byte(rtlpriv,
1181                                        rtlpriv->cfg->maps[EFUSE_TEST] + 3,
1182                                        (tempval & 0x7F));
1183                 }
1184
1185                 if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) {
1186                         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK],
1187                                        0x02);
1188                 }
1189         }
1190 }
1191
1192 static u16 efuse_get_current_size(struct ieee80211_hw *hw)
1193 {
1194         int continual = true;
1195         u16 efuse_addr = 0;
1196         u8 hoffset, hworden;
1197         u8 efuse_data, word_cnts;
1198
1199         while (continual && efuse_one_byte_read(hw, efuse_addr, &efuse_data) &&
1200                (efuse_addr < EFUSE_MAX_SIZE)) {
1201                 if (efuse_data != 0xFF) {
1202                         hoffset = (efuse_data >> 4) & 0x0F;
1203                         hworden = efuse_data & 0x0F;
1204                         word_cnts = efuse_calculate_word_cnts(hworden);
1205                         efuse_addr = efuse_addr + (word_cnts * 2) + 1;
1206                 } else {
1207                         continual = false;
1208                 }
1209         }
1210
1211         return efuse_addr;
1212 }
1213
1214 static u8 efuse_calculate_word_cnts(u8 word_en)
1215 {
1216         u8 word_cnts = 0;
1217
1218         if (!(word_en & BIT(0)))
1219                 word_cnts++;
1220         if (!(word_en & BIT(1)))
1221                 word_cnts++;
1222         if (!(word_en & BIT(2)))
1223                 word_cnts++;
1224         if (!(word_en & BIT(3)))
1225                 word_cnts++;
1226         return word_cnts;
1227 }
1228
1229 int rtl_get_hwinfo(struct ieee80211_hw *hw, struct rtl_priv *rtlpriv,
1230                    int max_size, u8 *hwinfo, int *params)
1231 {
1232         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1233         struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw);
1234         struct device *dev = &rtlpcipriv->dev.pdev->dev;
1235         u16 eeprom_id;
1236         u16 i, usvalue;
1237
1238         switch (rtlefuse->epromtype) {
1239         case EEPROM_BOOT_EFUSE:
1240                 rtl_efuse_shadow_map_update(hw);
1241                 break;
1242
1243         case EEPROM_93C46:
1244                 pr_err("RTL8XXX did not boot from eeprom, check it !!\n");
1245                 return 1;
1246
1247         default:
1248                 dev_warn(dev, "no efuse data\n");
1249                 return 1;
1250         }
1251
1252         memcpy(hwinfo, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0], max_size);
1253
1254         RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG, "MAP",
1255                       hwinfo, max_size);
1256
1257         eeprom_id = *((u16 *)&hwinfo[0]);
1258         if (eeprom_id != params[0]) {
1259                 RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
1260                          "EEPROM ID(%#x) is invalid!!\n", eeprom_id);
1261                 rtlefuse->autoload_failflag = true;
1262         } else {
1263                 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
1264                 rtlefuse->autoload_failflag = false;
1265         }
1266
1267         if (rtlefuse->autoload_failflag)
1268                 return 1;
1269
1270         rtlefuse->eeprom_vid = *(u16 *)&hwinfo[params[1]];
1271         rtlefuse->eeprom_did = *(u16 *)&hwinfo[params[2]];
1272         rtlefuse->eeprom_svid = *(u16 *)&hwinfo[params[3]];
1273         rtlefuse->eeprom_smid = *(u16 *)&hwinfo[params[4]];
1274         RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1275                  "EEPROMId = 0x%4x\n", eeprom_id);
1276         RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1277                  "EEPROM VID = 0x%4x\n", rtlefuse->eeprom_vid);
1278         RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1279                  "EEPROM DID = 0x%4x\n", rtlefuse->eeprom_did);
1280         RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1281                  "EEPROM SVID = 0x%4x\n", rtlefuse->eeprom_svid);
1282         RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1283                  "EEPROM SMID = 0x%4x\n", rtlefuse->eeprom_smid);
1284
1285         for (i = 0; i < 6; i += 2) {
1286                 usvalue = *(u16 *)&hwinfo[params[5] + i];
1287                 *((u16 *)(&rtlefuse->dev_addr[i])) = usvalue;
1288         }
1289         RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "%pM\n", rtlefuse->dev_addr);
1290
1291         rtlefuse->eeprom_channelplan = *&hwinfo[params[6]];
1292         rtlefuse->eeprom_version = *(u16 *)&hwinfo[params[7]];
1293         rtlefuse->txpwr_fromeprom = true;
1294         rtlefuse->eeprom_oemid = *&hwinfo[params[8]];
1295
1296         RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1297                  "EEPROM Customer ID: 0x%2x\n", rtlefuse->eeprom_oemid);
1298
1299         /* set channel plan to world wide 13 */
1300         rtlefuse->channel_plan = params[9];
1301
1302         return 0;
1303 }
1304
1305 void rtl_fw_block_write(struct ieee80211_hw *hw, const u8 *buffer, u32 size)
1306 {
1307         struct rtl_priv *rtlpriv = rtl_priv(hw);
1308         u8 *pu4byteptr = (u8 *)buffer;
1309         u32 i;
1310
1311         for (i = 0; i < size; i++)
1312                 rtl_write_byte(rtlpriv, (START_ADDRESS + i), *(pu4byteptr + i));
1313 }
1314
1315 void rtl_fw_page_write(struct ieee80211_hw *hw, u32 page, const u8 *buffer,
1316                        u32 size)
1317 {
1318         struct rtl_priv *rtlpriv = rtl_priv(hw);
1319         u8 value8;
1320         u8 u8page = (u8)(page & 0x07);
1321
1322         value8 = (rtl_read_byte(rtlpriv, REG_MCUFWDL + 2) & 0xF8) | u8page;
1323
1324         rtl_write_byte(rtlpriv, (REG_MCUFWDL + 2), value8);
1325         rtl_fw_block_write(hw, buffer, size);
1326 }
1327
1328 void rtl_fill_dummy(u8 *pfwbuf, u32 *pfwlen)
1329 {
1330         u32 fwlen = *pfwlen;
1331         u8 remain = (u8)(fwlen % 4);
1332
1333         remain = (remain == 0) ? 0 : (4 - remain);
1334
1335         while (remain > 0) {
1336                 pfwbuf[fwlen] = 0;
1337                 fwlen++;
1338                 remain--;
1339         }
1340
1341         *pfwlen = fwlen;
1342 }