GNU Linux-libre 5.19-rc6-gnu
[releases.git] / drivers / staging / rtl8723bs / hal / rtl8723b_hal_init.c
1 // SPDX-License-Identifier: GPL-2.0
2 /******************************************************************************
3  *
4  * Copyright(c) 2007 - 2013 Realtek Corporation. All rights reserved.
5  *
6  ******************************************************************************/
7
8 #include <linux/firmware.h>
9 #include <linux/slab.h>
10 #include <drv_types.h>
11 #include <rtw_debug.h>
12 #include <rtl8723b_hal.h>
13 #include "hal_com_h2c.h"
14
15 static void _FWDownloadEnable(struct adapter *padapter, bool enable)
16 {
17         u8 tmp, count = 0;
18
19         if (enable) {
20                 /*  8051 enable */
21                 tmp = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
22                 rtw_write8(padapter, REG_SYS_FUNC_EN+1, tmp|0x04);
23
24                 tmp = rtw_read8(padapter, REG_MCUFWDL);
25                 rtw_write8(padapter, REG_MCUFWDL, tmp|0x01);
26
27                 do {
28                         tmp = rtw_read8(padapter, REG_MCUFWDL);
29                         if (tmp & 0x01)
30                                 break;
31                         rtw_write8(padapter, REG_MCUFWDL, tmp|0x01);
32                         msleep(1);
33                 } while (count++ < 100);
34
35                 /*  8051 reset */
36                 tmp = rtw_read8(padapter, REG_MCUFWDL+2);
37                 rtw_write8(padapter, REG_MCUFWDL+2, tmp&0xf7);
38         } else {
39                 /*  MCU firmware download disable. */
40                 tmp = rtw_read8(padapter, REG_MCUFWDL);
41                 rtw_write8(padapter, REG_MCUFWDL, tmp&0xfe);
42         }
43 }
44
45 static int _BlockWrite(struct adapter *padapter, void *buffer, u32 buffSize)
46 {
47         int ret = _SUCCESS;
48
49         u32 blockSize_p1 = 4; /*  (Default) Phase #1 : PCI muse use 4-byte write to download FW */
50         u32 blockSize_p2 = 8; /*  Phase #2 : Use 8-byte, if Phase#1 use big size to write FW. */
51         u32 blockSize_p3 = 1; /*  Phase #3 : Use 1-byte, the remnant of FW image. */
52         u32 blockCount_p1 = 0, blockCount_p2 = 0, blockCount_p3 = 0;
53         u32 remainSize_p1 = 0, remainSize_p2 = 0;
54         u8 *bufferPtr = buffer;
55         u32 i = 0, offset = 0;
56
57 /*      printk("====>%s %d\n", __func__, __LINE__); */
58
59         /* 3 Phase #1 */
60         blockCount_p1 = buffSize / blockSize_p1;
61         remainSize_p1 = buffSize % blockSize_p1;
62
63         for (i = 0; i < blockCount_p1; i++) {
64                 ret = rtw_write32(padapter, (FW_8723B_START_ADDRESS + i * blockSize_p1), *((u32 *)(bufferPtr + i * blockSize_p1)));
65                 if (ret == _FAIL) {
66                         printk("====>%s %d i:%d\n", __func__, __LINE__, i);
67                         goto exit;
68                 }
69         }
70
71         /* 3 Phase #2 */
72         if (remainSize_p1) {
73                 offset = blockCount_p1 * blockSize_p1;
74
75                 blockCount_p2 = remainSize_p1/blockSize_p2;
76                 remainSize_p2 = remainSize_p1%blockSize_p2;
77         }
78
79         /* 3 Phase #3 */
80         if (remainSize_p2) {
81                 offset = (blockCount_p1 * blockSize_p1) + (blockCount_p2 * blockSize_p2);
82
83                 blockCount_p3 = remainSize_p2 / blockSize_p3;
84
85                 for (i = 0; i < blockCount_p3; i++) {
86                         ret = rtw_write8(padapter, (FW_8723B_START_ADDRESS + offset + i), *(bufferPtr + offset + i));
87
88                         if (ret == _FAIL) {
89                                 printk("====>%s %d i:%d\n", __func__, __LINE__, i);
90                                 goto exit;
91                         }
92                 }
93         }
94 exit:
95         return ret;
96 }
97
98 static int _PageWrite(
99         struct adapter *padapter,
100         u32 page,
101         void *buffer,
102         u32 size
103 )
104 {
105         u8 value8;
106         u8 u8Page = (u8) (page & 0x07);
107
108         value8 = (rtw_read8(padapter, REG_MCUFWDL+2) & 0xF8) | u8Page;
109         rtw_write8(padapter, REG_MCUFWDL+2, value8);
110
111         return _BlockWrite(padapter, buffer, size);
112 }
113
114 static int _WriteFW(struct adapter *padapter, void *buffer, u32 size)
115 {
116         /*  Since we need dynamic decide method of dwonload fw, so we call this function to get chip version. */
117         /*  We can remove _ReadChipVersion from ReadpadapterInfo8192C later. */
118         int ret = _SUCCESS;
119         u32 pageNums, remainSize;
120         u32 page, offset;
121         u8 *bufferPtr = buffer;
122
123         pageNums = size / MAX_DLFW_PAGE_SIZE;
124         remainSize = size % MAX_DLFW_PAGE_SIZE;
125
126         for (page = 0; page < pageNums; page++) {
127                 offset = page * MAX_DLFW_PAGE_SIZE;
128                 ret = _PageWrite(padapter, page, bufferPtr+offset, MAX_DLFW_PAGE_SIZE);
129
130                 if (ret == _FAIL) {
131                         printk("====>%s %d\n", __func__, __LINE__);
132                         goto exit;
133                 }
134         }
135
136         if (remainSize) {
137                 offset = pageNums * MAX_DLFW_PAGE_SIZE;
138                 page = pageNums;
139                 ret = _PageWrite(padapter, page, bufferPtr+offset, remainSize);
140
141                 if (ret == _FAIL) {
142                         printk("====>%s %d\n", __func__, __LINE__);
143                         goto exit;
144                 }
145         }
146
147 exit:
148         return ret;
149 }
150
151 void _8051Reset8723(struct adapter *padapter)
152 {
153         u8 cpu_rst;
154         u8 io_rst;
155
156
157         /*  Reset 8051(WLMCU) IO wrapper */
158         /*  0x1c[8] = 0 */
159         /*  Suggested by Isaac@SD1 and Gimmy@SD1, coding by Lucas@20130624 */
160         io_rst = rtw_read8(padapter, REG_RSV_CTRL+1);
161         io_rst &= ~BIT(0);
162         rtw_write8(padapter, REG_RSV_CTRL+1, io_rst);
163
164         cpu_rst = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
165         cpu_rst &= ~BIT(2);
166         rtw_write8(padapter, REG_SYS_FUNC_EN+1, cpu_rst);
167
168         /*  Enable 8051 IO wrapper */
169         /*  0x1c[8] = 1 */
170         io_rst = rtw_read8(padapter, REG_RSV_CTRL+1);
171         io_rst |= BIT(0);
172         rtw_write8(padapter, REG_RSV_CTRL+1, io_rst);
173
174         cpu_rst = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
175         cpu_rst |= BIT(2);
176         rtw_write8(padapter, REG_SYS_FUNC_EN+1, cpu_rst);
177 }
178
179 u8 g_fwdl_chksum_fail;
180
181 static s32 polling_fwdl_chksum(
182         struct adapter *adapter, u32 min_cnt, u32 timeout_ms
183 )
184 {
185         s32 ret = _FAIL;
186         u32 value32;
187         unsigned long start = jiffies;
188         u32 cnt = 0;
189
190         /* polling CheckSum report */
191         do {
192                 cnt++;
193                 value32 = rtw_read32(adapter, REG_MCUFWDL);
194                 if (value32 & FWDL_ChkSum_rpt || adapter->bSurpriseRemoved || adapter->bDriverStopped)
195                         break;
196                 yield();
197         } while (jiffies_to_msecs(jiffies-start) < timeout_ms || cnt < min_cnt);
198
199         if (!(value32 & FWDL_ChkSum_rpt)) {
200                 goto exit;
201         }
202
203         if (g_fwdl_chksum_fail) {
204                 g_fwdl_chksum_fail--;
205                 goto exit;
206         }
207
208         ret = _SUCCESS;
209
210 exit:
211
212         return ret;
213 }
214
215 u8 g_fwdl_wintint_rdy_fail;
216
217 static s32 _FWFreeToGo(struct adapter *adapter, u32 min_cnt, u32 timeout_ms)
218 {
219         s32 ret = _FAIL;
220         u32 value32;
221         unsigned long start = jiffies;
222         u32 cnt = 0;
223
224         value32 = rtw_read32(adapter, REG_MCUFWDL);
225         value32 |= MCUFWDL_RDY;
226         value32 &= ~WINTINI_RDY;
227         rtw_write32(adapter, REG_MCUFWDL, value32);
228
229         _8051Reset8723(adapter);
230
231         /*  polling for FW ready */
232         do {
233                 cnt++;
234                 value32 = rtw_read32(adapter, REG_MCUFWDL);
235                 if (value32 & WINTINI_RDY || adapter->bSurpriseRemoved || adapter->bDriverStopped)
236                         break;
237                 yield();
238         } while (jiffies_to_msecs(jiffies - start) < timeout_ms || cnt < min_cnt);
239
240         if (!(value32 & WINTINI_RDY)) {
241                 goto exit;
242         }
243
244         if (g_fwdl_wintint_rdy_fail) {
245                 g_fwdl_wintint_rdy_fail--;
246                 goto exit;
247         }
248
249         ret = _SUCCESS;
250
251 exit:
252
253         return ret;
254 }
255
256 #define IS_FW_81xxC(padapter)   (((GET_HAL_DATA(padapter))->FirmwareSignature & 0xFFF0) == 0x88C0)
257
258 void rtl8723b_FirmwareSelfReset(struct adapter *padapter)
259 {
260         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
261         u8 u1bTmp;
262         u8 Delay = 100;
263
264         if (
265                 !(IS_FW_81xxC(padapter) && ((pHalData->FirmwareVersion < 0x21) || (pHalData->FirmwareVersion == 0x21 && pHalData->FirmwareSubVersion < 0x01)))
266         ) { /*  after 88C Fw v33.1 */
267                 /* 0x1cf = 0x20. Inform 8051 to reset. 2009.12.25. tynli_test */
268                 rtw_write8(padapter, REG_HMETFR+3, 0x20);
269
270                 u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
271                 while (u1bTmp & BIT2) {
272                         Delay--;
273                         if (Delay == 0)
274                                 break;
275                         udelay(50);
276                         u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
277                 }
278
279                 if (Delay == 0) {
280                         /* force firmware reset */
281                         u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
282                         rtw_write8(padapter, REG_SYS_FUNC_EN+1, u1bTmp&(~BIT2));
283                 }
284         }
285 }
286
287 /*  */
288 /*      Description: */
289 /*              Download 8192C firmware code. */
290 /*  */
291 /*  */
292 s32 rtl8723b_FirmwareDownload(struct adapter *padapter, bool  bUsedWoWLANFw)
293 {
294         s32 rtStatus = _SUCCESS;
295         u8 write_fw = 0;
296         unsigned long fwdl_start_time;
297         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
298         struct rt_firmware *pFirmware;
299         struct rt_firmware *pBTFirmware;
300         struct rt_firmware_hdr *pFwHdr = NULL;
301         u8 *pFirmwareBuf;
302         u32 FirmwareLen;
303         const struct firmware *fw;
304         struct device *device = dvobj_to_dev(padapter->dvobj);
305         u8 *fwfilepath;
306         struct dvobj_priv *psdpriv = padapter->dvobj;
307         struct debug_priv *pdbgpriv = &psdpriv->drv_dbg;
308         u8 tmp_ps;
309
310         pFirmware = kzalloc(sizeof(struct rt_firmware), GFP_KERNEL);
311         if (!pFirmware)
312                 return _FAIL;
313         pBTFirmware = kzalloc(sizeof(struct rt_firmware), GFP_KERNEL);
314         if (!pBTFirmware) {
315                 kfree(pFirmware);
316                 return _FAIL;
317         }
318         tmp_ps = rtw_read8(padapter, 0xa3);
319         tmp_ps &= 0xf8;
320         tmp_ps |= 0x02;
321         /* 1. write 0xA3[:2:0] = 3b'010 */
322         rtw_write8(padapter, 0xa3, tmp_ps);
323         /* 2. read power_state = 0xA0[1:0] */
324         tmp_ps = rtw_read8(padapter, 0xa0);
325         tmp_ps &= 0x03;
326         if (tmp_ps != 0x01)
327                 pdbgpriv->dbg_downloadfw_pwr_state_cnt++;
328
329         fwfilepath = "/*(DEBLOBBED)*/";
330
331         pr_info("rtl8723bs: acquire FW from file:%s\n", fwfilepath);
332
333         rtStatus = reject_firmware(&fw, fwfilepath, device);
334         if (rtStatus) {
335                 pr_err("Request firmware failed with error 0x%x\n", rtStatus);
336                 rtStatus = _FAIL;
337                 goto exit;
338         }
339
340         if (!fw) {
341                 pr_err("Firmware %s not available\n", fwfilepath);
342                 rtStatus = _FAIL;
343                 goto exit;
344         }
345
346         if (fw->size > FW_8723B_SIZE) {
347                 rtStatus = _FAIL;
348                 goto exit;
349         }
350
351         pFirmware->fw_buffer_sz = kmemdup(fw->data, fw->size, GFP_KERNEL);
352         if (!pFirmware->fw_buffer_sz) {
353                 rtStatus = _FAIL;
354                 goto exit;
355         }
356
357         pFirmware->fw_length = fw->size;
358         release_firmware(fw);
359         if (pFirmware->fw_length > FW_8723B_SIZE) {
360                 rtStatus = _FAIL;
361                 netdev_emerg(padapter->pnetdev,
362                              "Firmware size:%u exceed %u\n",
363                              pFirmware->fw_length, FW_8723B_SIZE);
364                 goto release_fw1;
365         }
366
367         pFirmwareBuf = pFirmware->fw_buffer_sz;
368         FirmwareLen = pFirmware->fw_length;
369
370         /*  To Check Fw header. Added by tynli. 2009.12.04. */
371         pFwHdr = (struct rt_firmware_hdr *)pFirmwareBuf;
372
373         pHalData->FirmwareVersion =  le16_to_cpu(pFwHdr->version);
374         pHalData->FirmwareSubVersion = le16_to_cpu(pFwHdr->subversion);
375         pHalData->FirmwareSignature = le16_to_cpu(pFwHdr->signature);
376
377         if (IS_FW_HEADER_EXIST_8723B(pFwHdr)) {
378                 /*  Shift 32 bytes for FW header */
379                 pFirmwareBuf = pFirmwareBuf + 32;
380                 FirmwareLen = FirmwareLen - 32;
381         }
382
383         /*  Suggested by Filen. If 8051 is running in RAM code, driver should inform Fw to reset by itself, */
384         /*  or it will cause download Fw fail. 2010.02.01. by tynli. */
385         if (rtw_read8(padapter, REG_MCUFWDL) & RAM_DL_SEL) { /* 8051 RAM code */
386                 rtw_write8(padapter, REG_MCUFWDL, 0x00);
387                 rtl8723b_FirmwareSelfReset(padapter);
388         }
389
390         _FWDownloadEnable(padapter, true);
391         fwdl_start_time = jiffies;
392         while (
393                 !padapter->bDriverStopped &&
394                 !padapter->bSurpriseRemoved &&
395                 (write_fw++ < 3 || jiffies_to_msecs(jiffies - fwdl_start_time) < 500)
396         ) {
397                 /* reset FWDL chksum */
398                 rtw_write8(padapter, REG_MCUFWDL, rtw_read8(padapter, REG_MCUFWDL)|FWDL_ChkSum_rpt);
399
400                 rtStatus = _WriteFW(padapter, pFirmwareBuf, FirmwareLen);
401                 if (rtStatus != _SUCCESS)
402                         continue;
403
404                 rtStatus = polling_fwdl_chksum(padapter, 5, 50);
405                 if (rtStatus == _SUCCESS)
406                         break;
407         }
408         _FWDownloadEnable(padapter, false);
409         if (_SUCCESS != rtStatus)
410                 goto fwdl_stat;
411
412         rtStatus = _FWFreeToGo(padapter, 10, 200);
413         if (_SUCCESS != rtStatus)
414                 goto fwdl_stat;
415
416 fwdl_stat:
417
418 exit:
419         kfree(pFirmware->fw_buffer_sz);
420         kfree(pFirmware);
421 release_fw1:
422         kfree(pBTFirmware);
423         return rtStatus;
424 }
425
426 void rtl8723b_InitializeFirmwareVars(struct adapter *padapter)
427 {
428         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
429
430         /*  Init Fw LPS related. */
431         adapter_to_pwrctl(padapter)->fw_current_in_ps_mode = false;
432
433         /* Init H2C cmd. */
434         rtw_write8(padapter, REG_HMETFR, 0x0f);
435
436         /*  Init H2C counter. by tynli. 2009.12.09. */
437         pHalData->LastHMEBoxNum = 0;
438 /* pHalData->H2CQueueHead = 0; */
439 /* pHalData->H2CQueueTail = 0; */
440 /* pHalData->H2CStopInsertQueue = false; */
441 }
442
443 static void rtl8723b_free_hal_data(struct adapter *padapter)
444 {
445 }
446
447 /*  */
448 /*                              Efuse related code */
449 /*  */
450 static u8 hal_EfuseSwitchToBank(
451         struct adapter *padapter, u8 bank, bool bPseudoTest
452 )
453 {
454         u8 bRet = false;
455         u32 value32 = 0;
456 #ifdef HAL_EFUSE_MEMORY
457         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
458         struct efuse_hal *pEfuseHal = &pHalData->EfuseHal;
459 #endif
460
461
462         if (bPseudoTest) {
463 #ifdef HAL_EFUSE_MEMORY
464                 pEfuseHal->fakeEfuseBank = bank;
465 #else
466                 fakeEfuseBank = bank;
467 #endif
468                 bRet = true;
469         } else {
470                 value32 = rtw_read32(padapter, EFUSE_TEST);
471                 bRet = true;
472                 switch (bank) {
473                 case 0:
474                         value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_WIFI_SEL_0);
475                         break;
476                 case 1:
477                         value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_0);
478                         break;
479                 case 2:
480                         value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_1);
481                         break;
482                 case 3:
483                         value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_2);
484                         break;
485                 default:
486                         value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_WIFI_SEL_0);
487                         bRet = false;
488                         break;
489                 }
490                 rtw_write32(padapter, EFUSE_TEST, value32);
491         }
492
493         return bRet;
494 }
495
496 static void Hal_GetEfuseDefinition(
497         struct adapter *padapter,
498         u8 efuseType,
499         u8 type,
500         void *pOut,
501         bool bPseudoTest
502 )
503 {
504         switch (type) {
505         case TYPE_EFUSE_MAX_SECTION:
506                 {
507                         u8 *pMax_section;
508                         pMax_section = pOut;
509
510                         if (efuseType == EFUSE_WIFI)
511                                 *pMax_section = EFUSE_MAX_SECTION_8723B;
512                         else
513                                 *pMax_section = EFUSE_BT_MAX_SECTION;
514                 }
515                 break;
516
517         case TYPE_EFUSE_REAL_CONTENT_LEN:
518                 {
519                         u16 *pu2Tmp;
520                         pu2Tmp = pOut;
521
522                         if (efuseType == EFUSE_WIFI)
523                                 *pu2Tmp = EFUSE_REAL_CONTENT_LEN_8723B;
524                         else
525                                 *pu2Tmp = EFUSE_BT_REAL_CONTENT_LEN;
526                 }
527                 break;
528
529         case TYPE_AVAILABLE_EFUSE_BYTES_BANK:
530                 {
531                         u16 *pu2Tmp;
532                         pu2Tmp = pOut;
533
534                         if (efuseType == EFUSE_WIFI)
535                                 *pu2Tmp = (EFUSE_REAL_CONTENT_LEN_8723B-EFUSE_OOB_PROTECT_BYTES);
536                         else
537                                 *pu2Tmp = (EFUSE_BT_REAL_BANK_CONTENT_LEN-EFUSE_PROTECT_BYTES_BANK);
538                 }
539                 break;
540
541         case TYPE_AVAILABLE_EFUSE_BYTES_TOTAL:
542                 {
543                         u16 *pu2Tmp;
544                         pu2Tmp = pOut;
545
546                         if (efuseType == EFUSE_WIFI)
547                                 *pu2Tmp = (EFUSE_REAL_CONTENT_LEN_8723B-EFUSE_OOB_PROTECT_BYTES);
548                         else
549                                 *pu2Tmp = (EFUSE_BT_REAL_CONTENT_LEN-(EFUSE_PROTECT_BYTES_BANK*3));
550                 }
551                 break;
552
553         case TYPE_EFUSE_MAP_LEN:
554                 {
555                         u16 *pu2Tmp;
556                         pu2Tmp = pOut;
557
558                         if (efuseType == EFUSE_WIFI)
559                                 *pu2Tmp = EFUSE_MAX_MAP_LEN;
560                         else
561                                 *pu2Tmp = EFUSE_BT_MAP_LEN;
562                 }
563                 break;
564
565         case TYPE_EFUSE_PROTECT_BYTES_BANK:
566                 {
567                         u8 *pu1Tmp;
568                         pu1Tmp = pOut;
569
570                         if (efuseType == EFUSE_WIFI)
571                                 *pu1Tmp = EFUSE_OOB_PROTECT_BYTES;
572                         else
573                                 *pu1Tmp = EFUSE_PROTECT_BYTES_BANK;
574                 }
575                 break;
576
577         case TYPE_EFUSE_CONTENT_LEN_BANK:
578                 {
579                         u16 *pu2Tmp;
580                         pu2Tmp = pOut;
581
582                         if (efuseType == EFUSE_WIFI)
583                                 *pu2Tmp = EFUSE_REAL_CONTENT_LEN_8723B;
584                         else
585                                 *pu2Tmp = EFUSE_BT_REAL_BANK_CONTENT_LEN;
586                 }
587                 break;
588
589         default:
590                 {
591                         u8 *pu1Tmp;
592                         pu1Tmp = pOut;
593                         *pu1Tmp = 0;
594                 }
595                 break;
596         }
597 }
598
599 #define VOLTAGE_V25             0x03
600
601 /*  */
602 /*      The following is for compile ok */
603 /*      That should be merged with the original in the future */
604 /*  */
605 #define EFUSE_ACCESS_ON_8723                    0x69    /*  For RTL8723 only. */
606 #define REG_EFUSE_ACCESS_8723                   0x00CF  /*  Efuse access protection for RTL8723 */
607
608 /*  */
609 static void Hal_BT_EfusePowerSwitch(
610         struct adapter *padapter, u8 bWrite, u8 PwrState
611 )
612 {
613         u8 tempval;
614         if (PwrState) {
615                 /*  enable BT power cut */
616                 /*  0x6A[14] = 1 */
617                 tempval = rtw_read8(padapter, 0x6B);
618                 tempval |= BIT(6);
619                 rtw_write8(padapter, 0x6B, tempval);
620
621                 /*  Attention!! Between 0x6A[14] and 0x6A[15] setting need 100us delay */
622                 /*  So don't write 0x6A[14]= 1 and 0x6A[15]= 0 together! */
623                 msleep(1);
624                 /*  disable BT output isolation */
625                 /*  0x6A[15] = 0 */
626                 tempval = rtw_read8(padapter, 0x6B);
627                 tempval &= ~BIT(7);
628                 rtw_write8(padapter, 0x6B, tempval);
629         } else {
630                 /*  enable BT output isolation */
631                 /*  0x6A[15] = 1 */
632                 tempval = rtw_read8(padapter, 0x6B);
633                 tempval |= BIT(7);
634                 rtw_write8(padapter, 0x6B, tempval);
635
636                 /*  Attention!! Between 0x6A[14] and 0x6A[15] setting need 100us delay */
637                 /*  So don't write 0x6A[14]= 1 and 0x6A[15]= 0 together! */
638
639                 /*  disable BT power cut */
640                 /*  0x6A[14] = 1 */
641                 tempval = rtw_read8(padapter, 0x6B);
642                 tempval &= ~BIT(6);
643                 rtw_write8(padapter, 0x6B, tempval);
644         }
645
646 }
647 static void Hal_EfusePowerSwitch(
648         struct adapter *padapter, u8 bWrite, u8 PwrState
649 )
650 {
651         u8 tempval;
652         u16 tmpV16;
653
654
655         if (PwrState) {
656                 /*  To avoid cannot access efuse regsiters after disable/enable several times during DTM test. */
657                 /*  Suggested by SD1 IsaacHsu. 2013.07.08, added by tynli. */
658                 tempval = rtw_read8(padapter, SDIO_LOCAL_BASE|SDIO_REG_HSUS_CTRL);
659                 if (tempval & BIT(0)) { /*  SDIO local register is suspend */
660                         u8 count = 0;
661
662
663                         tempval &= ~BIT(0);
664                         rtw_write8(padapter, SDIO_LOCAL_BASE|SDIO_REG_HSUS_CTRL, tempval);
665
666                         /*  check 0x86[1:0]= 10'2h, wait power state to leave suspend */
667                         do {
668                                 tempval = rtw_read8(padapter, SDIO_LOCAL_BASE|SDIO_REG_HSUS_CTRL);
669                                 tempval &= 0x3;
670                                 if (tempval == 0x02)
671                                         break;
672
673                                 count++;
674                                 if (count >= 100)
675                                         break;
676
677                                 mdelay(10);
678                         } while (1);
679                 }
680
681                 rtw_write8(padapter, REG_EFUSE_ACCESS_8723, EFUSE_ACCESS_ON_8723);
682
683                 /*  Reset: 0x0000h[28], default valid */
684                 tmpV16 =  rtw_read16(padapter, REG_SYS_FUNC_EN);
685                 if (!(tmpV16 & FEN_ELDR)) {
686                         tmpV16 |= FEN_ELDR;
687                         rtw_write16(padapter, REG_SYS_FUNC_EN, tmpV16);
688                 }
689
690                 /*  Clock: Gated(0x0008h[5]) 8M(0x0008h[1]) clock from ANA, default valid */
691                 tmpV16 = rtw_read16(padapter, REG_SYS_CLKR);
692                 if ((!(tmpV16 & LOADER_CLK_EN))  || (!(tmpV16 & ANA8M))) {
693                         tmpV16 |= (LOADER_CLK_EN | ANA8M);
694                         rtw_write16(padapter, REG_SYS_CLKR, tmpV16);
695                 }
696
697                 if (bWrite) {
698                         /*  Enable LDO 2.5V before read/write action */
699                         tempval = rtw_read8(padapter, EFUSE_TEST+3);
700                         tempval &= 0x0F;
701                         tempval |= (VOLTAGE_V25 << 4);
702                         rtw_write8(padapter, EFUSE_TEST+3, (tempval | 0x80));
703
704                         /* rtw_write8(padapter, REG_EFUSE_ACCESS, EFUSE_ACCESS_ON); */
705                 }
706         } else {
707                 rtw_write8(padapter, REG_EFUSE_ACCESS, EFUSE_ACCESS_OFF);
708
709                 if (bWrite) {
710                         /*  Disable LDO 2.5V after read/write action */
711                         tempval = rtw_read8(padapter, EFUSE_TEST+3);
712                         rtw_write8(padapter, EFUSE_TEST+3, (tempval & 0x7F));
713                 }
714
715         }
716 }
717
718 static void hal_ReadEFuse_WiFi(
719         struct adapter *padapter,
720         u16 _offset,
721         u16 _size_byte,
722         u8 *pbuf,
723         bool bPseudoTest
724 )
725 {
726 #ifdef HAL_EFUSE_MEMORY
727         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
728         struct efuse_hal *pEfuseHal = &pHalData->EfuseHal;
729 #endif
730         u8 *efuseTbl = NULL;
731         u16 eFuse_Addr = 0;
732         u8 offset, wden;
733         u8 efuseHeader, efuseExtHdr, efuseData;
734         u16 i, total, used;
735         u8 efuse_usage = 0;
736
737         /*  */
738         /*  Do NOT excess total size of EFuse table. Added by Roger, 2008.11.10. */
739         /*  */
740         if ((_offset + _size_byte) > EFUSE_MAX_MAP_LEN)
741                 return;
742
743         efuseTbl = rtw_malloc(EFUSE_MAX_MAP_LEN);
744         if (!efuseTbl)
745                 return;
746
747         /*  0xff will be efuse default value instead of 0x00. */
748         memset(efuseTbl, 0xFF, EFUSE_MAX_MAP_LEN);
749
750         /*  switch bank back to bank 0 for later BT and wifi use. */
751         hal_EfuseSwitchToBank(padapter, 0, bPseudoTest);
752
753         while (AVAILABLE_EFUSE_ADDR(eFuse_Addr)) {
754                 efuse_OneByteRead(padapter, eFuse_Addr++, &efuseHeader, bPseudoTest);
755                 if (efuseHeader == 0xFF)
756                         break;
757
758                 /*  Check PG header for section num. */
759                 if (EXT_HEADER(efuseHeader)) { /* extended header */
760                         offset = GET_HDR_OFFSET_2_0(efuseHeader);
761
762                         efuse_OneByteRead(padapter, eFuse_Addr++, &efuseExtHdr, bPseudoTest);
763                         if (ALL_WORDS_DISABLED(efuseExtHdr))
764                                 continue;
765
766                         offset |= ((efuseExtHdr & 0xF0) >> 1);
767                         wden = (efuseExtHdr & 0x0F);
768                 } else {
769                         offset = ((efuseHeader >> 4) & 0x0f);
770                         wden = (efuseHeader & 0x0f);
771                 }
772
773                 if (offset < EFUSE_MAX_SECTION_8723B) {
774                         u16 addr;
775                         /*  Get word enable value from PG header */
776
777                         addr = offset * PGPKT_DATA_SIZE;
778                         for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
779                                 /*  Check word enable condition in the section */
780                                 if (!(wden & (0x01<<i))) {
781                                         efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData, bPseudoTest);
782                                         efuseTbl[addr] = efuseData;
783
784                                         efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData, bPseudoTest);
785                                         efuseTbl[addr+1] = efuseData;
786                                 }
787                                 addr += 2;
788                         }
789                 } else {
790                         eFuse_Addr += Efuse_CalculateWordCnts(wden)*2;
791                 }
792         }
793
794         /*  Copy from Efuse map to output pointer memory!!! */
795         for (i = 0; i < _size_byte; i++)
796                 pbuf[i] = efuseTbl[_offset+i];
797
798         /*  Calculate Efuse utilization */
799         EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &total, bPseudoTest);
800         used = eFuse_Addr - 1;
801         efuse_usage = (u8)((used*100)/total);
802         if (bPseudoTest) {
803 #ifdef HAL_EFUSE_MEMORY
804                 pEfuseHal->fakeEfuseUsedBytes = used;
805 #else
806                 fakeEfuseUsedBytes = used;
807 #endif
808         } else {
809                 rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8 *)&used);
810                 rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_USAGE, (u8 *)&efuse_usage);
811         }
812
813         kfree(efuseTbl);
814 }
815
816 static void hal_ReadEFuse_BT(
817         struct adapter *padapter,
818         u16 _offset,
819         u16 _size_byte,
820         u8 *pbuf,
821         bool bPseudoTest
822 )
823 {
824 #ifdef HAL_EFUSE_MEMORY
825         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
826         struct efuse_hal *pEfuseHal = &pHalData->EfuseHal;
827 #endif
828         u8 *efuseTbl;
829         u8 bank;
830         u16 eFuse_Addr;
831         u8 efuseHeader, efuseExtHdr, efuseData;
832         u8 offset, wden;
833         u16 i, total, used;
834         u8 efuse_usage;
835
836
837         /*  */
838         /*  Do NOT excess total size of EFuse table. Added by Roger, 2008.11.10. */
839         /*  */
840         if ((_offset + _size_byte) > EFUSE_BT_MAP_LEN)
841                 return;
842
843         efuseTbl = rtw_malloc(EFUSE_BT_MAP_LEN);
844         if (!efuseTbl)
845                 return;
846
847         /*  0xff will be efuse default value instead of 0x00. */
848         memset(efuseTbl, 0xFF, EFUSE_BT_MAP_LEN);
849
850         EFUSE_GetEfuseDefinition(padapter, EFUSE_BT, TYPE_AVAILABLE_EFUSE_BYTES_BANK, &total, bPseudoTest);
851
852         for (bank = 1; bank < 3; bank++) { /*  8723b Max bake 0~2 */
853                 if (hal_EfuseSwitchToBank(padapter, bank, bPseudoTest) == false)
854                         goto exit;
855
856                 eFuse_Addr = 0;
857
858                 while (AVAILABLE_EFUSE_ADDR(eFuse_Addr)) {
859                         efuse_OneByteRead(padapter, eFuse_Addr++, &efuseHeader, bPseudoTest);
860                         if (efuseHeader == 0xFF)
861                                 break;
862
863                         /*  Check PG header for section num. */
864                         if (EXT_HEADER(efuseHeader)) { /* extended header */
865                                 offset = GET_HDR_OFFSET_2_0(efuseHeader);
866
867                                 efuse_OneByteRead(padapter, eFuse_Addr++, &efuseExtHdr, bPseudoTest);
868                                 if (ALL_WORDS_DISABLED(efuseExtHdr))
869                                         continue;
870
871
872                                 offset |= ((efuseExtHdr & 0xF0) >> 1);
873                                 wden = (efuseExtHdr & 0x0F);
874                         } else {
875                                 offset = ((efuseHeader >> 4) & 0x0f);
876                                 wden = (efuseHeader & 0x0f);
877                         }
878
879                         if (offset < EFUSE_BT_MAX_SECTION) {
880                                 u16 addr;
881
882                                 addr = offset * PGPKT_DATA_SIZE;
883                                 for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
884                                         /*  Check word enable condition in the section */
885                                         if (!(wden & (0x01<<i))) {
886                                                 efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData, bPseudoTest);
887                                                 efuseTbl[addr] = efuseData;
888
889                                                 efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData, bPseudoTest);
890                                                 efuseTbl[addr+1] = efuseData;
891                                         }
892                                         addr += 2;
893                                 }
894                         } else {
895                                 eFuse_Addr += Efuse_CalculateWordCnts(wden)*2;
896                         }
897                 }
898
899                 if ((eFuse_Addr - 1) < total)
900                         break;
901
902         }
903
904         /*  switch bank back to bank 0 for later BT and wifi use. */
905         hal_EfuseSwitchToBank(padapter, 0, bPseudoTest);
906
907         /*  Copy from Efuse map to output pointer memory!!! */
908         for (i = 0; i < _size_byte; i++)
909                 pbuf[i] = efuseTbl[_offset+i];
910
911         /*  */
912         /*  Calculate Efuse utilization. */
913         /*  */
914         EFUSE_GetEfuseDefinition(padapter, EFUSE_BT, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &total, bPseudoTest);
915         used = (EFUSE_BT_REAL_BANK_CONTENT_LEN*(bank-1)) + eFuse_Addr - 1;
916         efuse_usage = (u8)((used*100)/total);
917         if (bPseudoTest) {
918 #ifdef HAL_EFUSE_MEMORY
919                 pEfuseHal->fakeBTEfuseUsedBytes = used;
920 #else
921                 fakeBTEfuseUsedBytes = used;
922 #endif
923         } else {
924                 rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BT_BYTES, (u8 *)&used);
925                 rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BT_USAGE, (u8 *)&efuse_usage);
926         }
927
928 exit:
929         kfree(efuseTbl);
930 }
931
932 static void Hal_ReadEFuse(
933         struct adapter *padapter,
934         u8 efuseType,
935         u16 _offset,
936         u16 _size_byte,
937         u8 *pbuf,
938         bool bPseudoTest
939 )
940 {
941         if (efuseType == EFUSE_WIFI)
942                 hal_ReadEFuse_WiFi(padapter, _offset, _size_byte, pbuf, bPseudoTest);
943         else
944                 hal_ReadEFuse_BT(padapter, _offset, _size_byte, pbuf, bPseudoTest);
945 }
946
947 static u16 hal_EfuseGetCurrentSize_WiFi(
948         struct adapter *padapter, bool bPseudoTest
949 )
950 {
951 #ifdef HAL_EFUSE_MEMORY
952         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
953         struct efuse_hal *pEfuseHal = &pHalData->EfuseHal;
954 #endif
955         u16 efuse_addr = 0;
956         u16 start_addr = 0; /*  for debug */
957         u8 hoffset = 0, hworden = 0;
958         u8 efuse_data, word_cnts = 0;
959         u32 count = 0; /*  for debug */
960
961
962         if (bPseudoTest) {
963 #ifdef HAL_EFUSE_MEMORY
964                 efuse_addr = (u16)pEfuseHal->fakeEfuseUsedBytes;
965 #else
966                 efuse_addr = (u16)fakeEfuseUsedBytes;
967 #endif
968         } else
969                 rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_addr);
970
971         start_addr = efuse_addr;
972
973         /*  switch bank back to bank 0 for later BT and wifi use. */
974         hal_EfuseSwitchToBank(padapter, 0, bPseudoTest);
975
976         count = 0;
977         while (AVAILABLE_EFUSE_ADDR(efuse_addr)) {
978                 if (efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest) == false)
979                         goto error;
980
981                 if (efuse_data == 0xFF)
982                         break;
983
984                 if ((start_addr != 0) && (efuse_addr == start_addr)) {
985                         count++;
986
987                         efuse_data = 0xFF;
988                         if (count < 4) {
989                                 /*  try again! */
990
991                                 if (count > 2) {
992                                         /*  try again form address 0 */
993                                         efuse_addr = 0;
994                                         start_addr = 0;
995                                 }
996
997                                 continue;
998                         }
999
1000                         goto error;
1001                 }
1002
1003                 if (EXT_HEADER(efuse_data)) {
1004                         hoffset = GET_HDR_OFFSET_2_0(efuse_data);
1005                         efuse_addr++;
1006                         efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest);
1007                         if (ALL_WORDS_DISABLED(efuse_data))
1008                                 continue;
1009
1010                         hoffset |= ((efuse_data & 0xF0) >> 1);
1011                         hworden = efuse_data & 0x0F;
1012                 } else {
1013                         hoffset = (efuse_data>>4) & 0x0F;
1014                         hworden = efuse_data & 0x0F;
1015                 }
1016
1017                 word_cnts = Efuse_CalculateWordCnts(hworden);
1018                 efuse_addr += (word_cnts*2)+1;
1019         }
1020
1021         if (bPseudoTest) {
1022 #ifdef HAL_EFUSE_MEMORY
1023                 pEfuseHal->fakeEfuseUsedBytes = efuse_addr;
1024 #else
1025                 fakeEfuseUsedBytes = efuse_addr;
1026 #endif
1027         } else
1028                 rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_addr);
1029
1030         goto exit;
1031
1032 error:
1033         /*  report max size to prevent write efuse */
1034         EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &efuse_addr, bPseudoTest);
1035
1036 exit:
1037
1038         return efuse_addr;
1039 }
1040
1041 static u16 hal_EfuseGetCurrentSize_BT(struct adapter *padapter, u8 bPseudoTest)
1042 {
1043 #ifdef HAL_EFUSE_MEMORY
1044         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
1045         struct efuse_hal *pEfuseHal = &pHalData->EfuseHal;
1046 #endif
1047         u16 btusedbytes;
1048         u16 efuse_addr;
1049         u8 bank, startBank;
1050         u8 hoffset = 0, hworden = 0;
1051         u8 efuse_data, word_cnts = 0;
1052         u16 retU2 = 0;
1053
1054         if (bPseudoTest) {
1055 #ifdef HAL_EFUSE_MEMORY
1056                 btusedbytes = pEfuseHal->fakeBTEfuseUsedBytes;
1057 #else
1058                 btusedbytes = fakeBTEfuseUsedBytes;
1059 #endif
1060         } else
1061                 rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BT_BYTES, (u8 *)&btusedbytes);
1062
1063         efuse_addr = (u16)((btusedbytes%EFUSE_BT_REAL_BANK_CONTENT_LEN));
1064         startBank = (u8)(1+(btusedbytes/EFUSE_BT_REAL_BANK_CONTENT_LEN));
1065
1066         EFUSE_GetEfuseDefinition(padapter, EFUSE_BT, TYPE_AVAILABLE_EFUSE_BYTES_BANK, &retU2, bPseudoTest);
1067
1068         for (bank = startBank; bank < 3; bank++) {
1069                 if (hal_EfuseSwitchToBank(padapter, bank, bPseudoTest) == false)
1070                         /* bank = EFUSE_MAX_BANK; */
1071                         break;
1072
1073                 /*  only when bank is switched we have to reset the efuse_addr. */
1074                 if (bank != startBank)
1075                         efuse_addr = 0;
1076 #if 1
1077
1078                 while (AVAILABLE_EFUSE_ADDR(efuse_addr)) {
1079                         if (efuse_OneByteRead(padapter, efuse_addr,
1080                                               &efuse_data, bPseudoTest) == false)
1081                                 /* bank = EFUSE_MAX_BANK; */
1082                                 break;
1083
1084                         if (efuse_data == 0xFF)
1085                                 break;
1086
1087                         if (EXT_HEADER(efuse_data)) {
1088                                 hoffset = GET_HDR_OFFSET_2_0(efuse_data);
1089                                 efuse_addr++;
1090                                 efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest);
1091
1092                                 if (ALL_WORDS_DISABLED(efuse_data)) {
1093                                         efuse_addr++;
1094                                         continue;
1095                                 }
1096
1097 /*                              hoffset = ((hoffset & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1); */
1098                                 hoffset |= ((efuse_data & 0xF0) >> 1);
1099                                 hworden = efuse_data & 0x0F;
1100                         } else {
1101                                 hoffset = (efuse_data>>4) & 0x0F;
1102                                 hworden =  efuse_data & 0x0F;
1103                         }
1104
1105                         word_cnts = Efuse_CalculateWordCnts(hworden);
1106                         /* read next header */
1107                         efuse_addr += (word_cnts*2)+1;
1108                 }
1109 #else
1110         while (
1111                 bContinual &&
1112                 efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest) &&
1113                 AVAILABLE_EFUSE_ADDR(efuse_addr)
1114         ) {
1115                         if (efuse_data != 0xFF) {
1116                                 if ((efuse_data&0x1F) == 0x0F) { /* extended header */
1117                                         hoffset = efuse_data;
1118                                         efuse_addr++;
1119                                         efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest);
1120                                         if ((efuse_data & 0x0F) == 0x0F) {
1121                                                 efuse_addr++;
1122                                                 continue;
1123                                         } else {
1124                                                 hoffset = ((hoffset & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1);
1125                                                 hworden = efuse_data & 0x0F;
1126                                         }
1127                                 } else {
1128                                         hoffset = (efuse_data>>4) & 0x0F;
1129                                         hworden =  efuse_data & 0x0F;
1130                                 }
1131                                 word_cnts = Efuse_CalculateWordCnts(hworden);
1132                                 /* read next header */
1133                                 efuse_addr = efuse_addr + (word_cnts*2)+1;
1134                         } else
1135                                 bContinual = false;
1136                 }
1137 #endif
1138
1139
1140                 /*  Check if we need to check next bank efuse */
1141                 if (efuse_addr < retU2)
1142                         break; /*  don't need to check next bank. */
1143         }
1144
1145         retU2 = ((bank-1)*EFUSE_BT_REAL_BANK_CONTENT_LEN)+efuse_addr;
1146         if (bPseudoTest) {
1147                 pEfuseHal->fakeBTEfuseUsedBytes = retU2;
1148         } else {
1149                 pEfuseHal->BTEfuseUsedBytes = retU2;
1150         }
1151
1152         return retU2;
1153 }
1154
1155 static u16 Hal_EfuseGetCurrentSize(
1156         struct adapter *padapter, u8 efuseType, bool bPseudoTest
1157 )
1158 {
1159         u16 ret = 0;
1160
1161         if (efuseType == EFUSE_WIFI)
1162                 ret = hal_EfuseGetCurrentSize_WiFi(padapter, bPseudoTest);
1163         else
1164                 ret = hal_EfuseGetCurrentSize_BT(padapter, bPseudoTest);
1165
1166         return ret;
1167 }
1168
1169 static u8 Hal_EfuseWordEnableDataWrite(
1170         struct adapter *padapter,
1171         u16 efuse_addr,
1172         u8 word_en,
1173         u8 *data,
1174         bool bPseudoTest
1175 )
1176 {
1177         u16 tmpaddr = 0;
1178         u16 start_addr = efuse_addr;
1179         u8 badworden = 0x0F;
1180         u8 tmpdata[PGPKT_DATA_SIZE];
1181
1182         memset(tmpdata, 0xFF, PGPKT_DATA_SIZE);
1183
1184         if (!(word_en & BIT(0))) {
1185                 tmpaddr = start_addr;
1186                 efuse_OneByteWrite(padapter, start_addr++, data[0], bPseudoTest);
1187                 efuse_OneByteWrite(padapter, start_addr++, data[1], bPseudoTest);
1188
1189                 efuse_OneByteRead(padapter, tmpaddr, &tmpdata[0], bPseudoTest);
1190                 efuse_OneByteRead(padapter, tmpaddr+1, &tmpdata[1], bPseudoTest);
1191                 if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1])) {
1192                         badworden &= (~BIT(0));
1193                 }
1194         }
1195         if (!(word_en & BIT(1))) {
1196                 tmpaddr = start_addr;
1197                 efuse_OneByteWrite(padapter, start_addr++, data[2], bPseudoTest);
1198                 efuse_OneByteWrite(padapter, start_addr++, data[3], bPseudoTest);
1199
1200                 efuse_OneByteRead(padapter, tmpaddr, &tmpdata[2], bPseudoTest);
1201                 efuse_OneByteRead(padapter, tmpaddr+1, &tmpdata[3], bPseudoTest);
1202                 if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3])) {
1203                         badworden &= (~BIT(1));
1204                 }
1205         }
1206
1207         if (!(word_en & BIT(2))) {
1208                 tmpaddr = start_addr;
1209                 efuse_OneByteWrite(padapter, start_addr++, data[4], bPseudoTest);
1210                 efuse_OneByteWrite(padapter, start_addr++, data[5], bPseudoTest);
1211
1212                 efuse_OneByteRead(padapter, tmpaddr, &tmpdata[4], bPseudoTest);
1213                 efuse_OneByteRead(padapter, tmpaddr+1, &tmpdata[5], bPseudoTest);
1214                 if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5])) {
1215                         badworden &= (~BIT(2));
1216                 }
1217         }
1218
1219         if (!(word_en & BIT(3))) {
1220                 tmpaddr = start_addr;
1221                 efuse_OneByteWrite(padapter, start_addr++, data[6], bPseudoTest);
1222                 efuse_OneByteWrite(padapter, start_addr++, data[7], bPseudoTest);
1223
1224                 efuse_OneByteRead(padapter, tmpaddr, &tmpdata[6], bPseudoTest);
1225                 efuse_OneByteRead(padapter, tmpaddr+1, &tmpdata[7], bPseudoTest);
1226                 if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7])) {
1227                         badworden &= (~BIT(3));
1228                 }
1229         }
1230
1231         return badworden;
1232 }
1233
1234 static s32 Hal_EfusePgPacketRead(
1235         struct adapter *padapter,
1236         u8 offset,
1237         u8 *data,
1238         bool bPseudoTest
1239 )
1240 {
1241         u8 efuse_data, word_cnts = 0;
1242         u16 efuse_addr = 0;
1243         u8 hoffset = 0, hworden = 0;
1244         u8 i;
1245         u8 max_section = 0;
1246         s32     ret;
1247
1248
1249         if (!data)
1250                 return false;
1251
1252         EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_EFUSE_MAX_SECTION, &max_section, bPseudoTest);
1253         if (offset > max_section)
1254                 return false;
1255
1256         memset(data, 0xFF, PGPKT_DATA_SIZE);
1257         ret = true;
1258
1259         /*  */
1260         /*  <Roger_TODO> Efuse has been pre-programmed dummy 5Bytes at the end of Efuse by CP. */
1261         /*  Skip dummy parts to prevent unexpected data read from Efuse. */
1262         /*  By pass right now. 2009.02.19. */
1263         /*  */
1264         while (AVAILABLE_EFUSE_ADDR(efuse_addr)) {
1265                 if (efuse_OneByteRead(padapter, efuse_addr++, &efuse_data, bPseudoTest) == false) {
1266                         ret = false;
1267                         break;
1268                 }
1269
1270                 if (efuse_data == 0xFF)
1271                         break;
1272
1273                 if (EXT_HEADER(efuse_data)) {
1274                         hoffset = GET_HDR_OFFSET_2_0(efuse_data);
1275                         efuse_OneByteRead(padapter, efuse_addr++, &efuse_data, bPseudoTest);
1276                         if (ALL_WORDS_DISABLED(efuse_data))
1277                                 continue;
1278
1279                         hoffset |= ((efuse_data & 0xF0) >> 1);
1280                         hworden = efuse_data & 0x0F;
1281                 } else {
1282                         hoffset = (efuse_data>>4) & 0x0F;
1283                         hworden =  efuse_data & 0x0F;
1284                 }
1285
1286                 if (hoffset == offset) {
1287                         for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
1288                                 /*  Check word enable condition in the section */
1289                                 if (!(hworden & (0x01<<i))) {
1290                                         efuse_OneByteRead(padapter, efuse_addr++, &efuse_data, bPseudoTest);
1291                                         data[i*2] = efuse_data;
1292
1293                                         efuse_OneByteRead(padapter, efuse_addr++, &efuse_data, bPseudoTest);
1294                                         data[(i*2)+1] = efuse_data;
1295                                 }
1296                         }
1297                 } else {
1298                         word_cnts = Efuse_CalculateWordCnts(hworden);
1299                         efuse_addr += word_cnts*2;
1300                 }
1301         }
1302
1303         return ret;
1304 }
1305
1306 static u8 hal_EfusePgCheckAvailableAddr(
1307         struct adapter *padapter, u8 efuseType, u8 bPseudoTest
1308 )
1309 {
1310         u16 max_available = 0;
1311         u16 current_size;
1312
1313
1314         EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &max_available, bPseudoTest);
1315
1316         current_size = Efuse_GetCurrentSize(padapter, efuseType, bPseudoTest);
1317         if (current_size >= max_available)
1318                 return false;
1319
1320         return true;
1321 }
1322
1323 static void hal_EfuseConstructPGPkt(
1324         u8 offset,
1325         u8 word_en,
1326         u8 *pData,
1327         struct pgpkt_struct *pTargetPkt
1328 )
1329 {
1330         memset(pTargetPkt->data, 0xFF, PGPKT_DATA_SIZE);
1331         pTargetPkt->offset = offset;
1332         pTargetPkt->word_en = word_en;
1333         efuse_WordEnableDataRead(word_en, pData, pTargetPkt->data);
1334         pTargetPkt->word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en);
1335 }
1336
1337 static u8 hal_EfusePartialWriteCheck(
1338         struct adapter *padapter,
1339         u8 efuseType,
1340         u16 *pAddr,
1341         struct pgpkt_struct *pTargetPkt,
1342         u8 bPseudoTest
1343 )
1344 {
1345         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
1346         struct efuse_hal *pEfuseHal = &pHalData->EfuseHal;
1347         u8 bRet = false;
1348         u16 startAddr = 0, efuse_max_available_len = 0, efuse_max = 0;
1349         u8 efuse_data = 0;
1350
1351         EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &efuse_max_available_len, bPseudoTest);
1352         EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_EFUSE_CONTENT_LEN_BANK, &efuse_max, bPseudoTest);
1353
1354         if (efuseType == EFUSE_WIFI) {
1355                 if (bPseudoTest) {
1356 #ifdef HAL_EFUSE_MEMORY
1357                         startAddr = (u16)pEfuseHal->fakeEfuseUsedBytes;
1358 #else
1359                         startAddr = (u16)fakeEfuseUsedBytes;
1360 #endif
1361                 } else
1362                         rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8 *)&startAddr);
1363         } else {
1364                 if (bPseudoTest) {
1365 #ifdef HAL_EFUSE_MEMORY
1366                         startAddr = (u16)pEfuseHal->fakeBTEfuseUsedBytes;
1367 #else
1368                         startAddr = (u16)fakeBTEfuseUsedBytes;
1369 #endif
1370                 } else
1371                         rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BT_BYTES, (u8 *)&startAddr);
1372         }
1373         startAddr %= efuse_max;
1374
1375         while (1) {
1376                 if (startAddr >= efuse_max_available_len) {
1377                         bRet = false;
1378                         break;
1379                 }
1380
1381                 if (efuse_OneByteRead(padapter, startAddr, &efuse_data, bPseudoTest) && (efuse_data != 0xFF)) {
1382 #if 1
1383                         bRet = false;
1384                         break;
1385 #else
1386                         if (EXT_HEADER(efuse_data)) {
1387                                 cur_header = efuse_data;
1388                                 startAddr++;
1389                                 efuse_OneByteRead(padapter, startAddr, &efuse_data, bPseudoTest);
1390                                 if (ALL_WORDS_DISABLED(efuse_data)) {
1391                                         bRet = false;
1392                                         break;
1393                                 } else {
1394                                         curPkt.offset = ((cur_header & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1);
1395                                         curPkt.word_en = efuse_data & 0x0F;
1396                                 }
1397                         } else {
1398                                 cur_header  =  efuse_data;
1399                                 curPkt.offset = (cur_header>>4) & 0x0F;
1400                                 curPkt.word_en = cur_header & 0x0F;
1401                         }
1402
1403                         curPkt.word_cnts = Efuse_CalculateWordCnts(curPkt.word_en);
1404                         /*  if same header is found but no data followed */
1405                         /*  write some part of data followed by the header. */
1406                         if (
1407                                 (curPkt.offset == pTargetPkt->offset) &&
1408                                 (hal_EfuseCheckIfDatafollowed(padapter, curPkt.word_cnts, startAddr+1, bPseudoTest) == false) &&
1409                                 wordEnMatched(pTargetPkt, &curPkt, &matched_wden) == true
1410                         ) {
1411                                 /*  Here to write partial data */
1412                                 badworden = Efuse_WordEnableDataWrite(padapter, startAddr+1, matched_wden, pTargetPkt->data, bPseudoTest);
1413                                 if (badworden != 0x0F) {
1414                                         u32 PgWriteSuccess = 0;
1415                                         /*  if write fail on some words, write these bad words again */
1416                                         if (efuseType == EFUSE_WIFI)
1417                                                 PgWriteSuccess = Efuse_PgPacketWrite(padapter, pTargetPkt->offset, badworden, pTargetPkt->data, bPseudoTest);
1418                                         else
1419                                                 PgWriteSuccess = Efuse_PgPacketWrite_BT(padapter, pTargetPkt->offset, badworden, pTargetPkt->data, bPseudoTest);
1420
1421                                         if (!PgWriteSuccess) {
1422                                                 bRet = false;   /*  write fail, return */
1423                                                 break;
1424                                         }
1425                                 }
1426                                 /*  partial write ok, update the target packet for later use */
1427                                 for (i = 0; i < 4; i++) {
1428                                         if ((matched_wden & (0x1<<i)) == 0) { /*  this word has been written */
1429                                                 pTargetPkt->word_en |= (0x1<<i);        /*  disable the word */
1430                                         }
1431                                 }
1432                                 pTargetPkt->word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en);
1433                         }
1434                         /*  read from next header */
1435                         startAddr = startAddr + (curPkt.word_cnts*2) + 1;
1436 #endif
1437                 } else {
1438                         /*  not used header, 0xff */
1439                         *pAddr = startAddr;
1440                         bRet = true;
1441                         break;
1442                 }
1443         }
1444
1445         return bRet;
1446 }
1447
1448 static u8 hal_EfusePgPacketWrite1ByteHeader(
1449         struct adapter *padapter,
1450         u8 efuseType,
1451         u16 *pAddr,
1452         struct pgpkt_struct *pTargetPkt,
1453         u8 bPseudoTest
1454 )
1455 {
1456         u8 pg_header = 0, tmp_header = 0;
1457         u16 efuse_addr = *pAddr;
1458         u8 repeatcnt = 0;
1459
1460         pg_header = ((pTargetPkt->offset << 4) & 0xf0) | pTargetPkt->word_en;
1461
1462         do {
1463                 efuse_OneByteWrite(padapter, efuse_addr, pg_header, bPseudoTest);
1464                 efuse_OneByteRead(padapter, efuse_addr, &tmp_header, bPseudoTest);
1465                 if (tmp_header != 0xFF)
1466                         break;
1467                 if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_)
1468                         return false;
1469
1470         } while (1);
1471
1472         if (tmp_header != pg_header)
1473                 return false;
1474
1475         *pAddr = efuse_addr;
1476
1477         return true;
1478 }
1479
1480 static u8 hal_EfusePgPacketWrite2ByteHeader(
1481         struct adapter *padapter,
1482         u8 efuseType,
1483         u16 *pAddr,
1484         struct pgpkt_struct *pTargetPkt,
1485         u8 bPseudoTest
1486 )
1487 {
1488         u16 efuse_addr, efuse_max_available_len = 0;
1489         u8 pg_header = 0, tmp_header = 0;
1490         u8 repeatcnt = 0;
1491
1492         EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_BANK, &efuse_max_available_len, bPseudoTest);
1493
1494         efuse_addr = *pAddr;
1495         if (efuse_addr >= efuse_max_available_len)
1496                 return false;
1497
1498         pg_header = ((pTargetPkt->offset & 0x07) << 5) | 0x0F;
1499
1500         do {
1501                 efuse_OneByteWrite(padapter, efuse_addr, pg_header, bPseudoTest);
1502                 efuse_OneByteRead(padapter, efuse_addr, &tmp_header, bPseudoTest);
1503                 if (tmp_header != 0xFF)
1504                         break;
1505                 if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_)
1506                         return false;
1507
1508         } while (1);
1509
1510         if (tmp_header != pg_header)
1511                 return false;
1512
1513         /*  to write ext_header */
1514         efuse_addr++;
1515         pg_header = ((pTargetPkt->offset & 0x78) << 1) | pTargetPkt->word_en;
1516
1517         do {
1518                 efuse_OneByteWrite(padapter, efuse_addr, pg_header, bPseudoTest);
1519                 efuse_OneByteRead(padapter, efuse_addr, &tmp_header, bPseudoTest);
1520                 if (tmp_header != 0xFF)
1521                         break;
1522                 if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_)
1523                         return false;
1524
1525         } while (1);
1526
1527         if (tmp_header != pg_header) /* offset PG fail */
1528                 return false;
1529
1530         *pAddr = efuse_addr;
1531
1532         return true;
1533 }
1534
1535 static u8 hal_EfusePgPacketWriteHeader(
1536         struct adapter *padapter,
1537         u8 efuseType,
1538         u16 *pAddr,
1539         struct pgpkt_struct *pTargetPkt,
1540         u8 bPseudoTest
1541 )
1542 {
1543         u8 bRet = false;
1544
1545         if (pTargetPkt->offset >= EFUSE_MAX_SECTION_BASE)
1546                 bRet = hal_EfusePgPacketWrite2ByteHeader(padapter, efuseType, pAddr, pTargetPkt, bPseudoTest);
1547         else
1548                 bRet = hal_EfusePgPacketWrite1ByteHeader(padapter, efuseType, pAddr, pTargetPkt, bPseudoTest);
1549
1550         return bRet;
1551 }
1552
1553 static u8 hal_EfusePgPacketWriteData(
1554         struct adapter *padapter,
1555         u8 efuseType,
1556         u16 *pAddr,
1557         struct pgpkt_struct *pTargetPkt,
1558         u8 bPseudoTest
1559 )
1560 {
1561         u16 efuse_addr;
1562         u8 badworden;
1563
1564
1565         efuse_addr = *pAddr;
1566         badworden = Efuse_WordEnableDataWrite(padapter, efuse_addr+1, pTargetPkt->word_en, pTargetPkt->data, bPseudoTest);
1567         if (badworden != 0x0F)
1568                 return false;
1569
1570         return true;
1571 }
1572
1573 static s32 Hal_EfusePgPacketWrite(
1574         struct adapter *padapter,
1575         u8 offset,
1576         u8 word_en,
1577         u8 *pData,
1578         bool bPseudoTest
1579 )
1580 {
1581         struct pgpkt_struct targetPkt;
1582         u16 startAddr = 0;
1583         u8 efuseType = EFUSE_WIFI;
1584
1585         if (!hal_EfusePgCheckAvailableAddr(padapter, efuseType, bPseudoTest))
1586                 return false;
1587
1588         hal_EfuseConstructPGPkt(offset, word_en, pData, &targetPkt);
1589
1590         if (!hal_EfusePartialWriteCheck(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
1591                 return false;
1592
1593         if (!hal_EfusePgPacketWriteHeader(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
1594                 return false;
1595
1596         if (!hal_EfusePgPacketWriteData(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
1597                 return false;
1598
1599         return true;
1600 }
1601
1602 static bool Hal_EfusePgPacketWrite_BT(
1603         struct adapter *padapter,
1604         u8 offset,
1605         u8 word_en,
1606         u8 *pData,
1607         bool bPseudoTest
1608 )
1609 {
1610         struct pgpkt_struct targetPkt;
1611         u16 startAddr = 0;
1612         u8 efuseType = EFUSE_BT;
1613
1614         if (!hal_EfusePgCheckAvailableAddr(padapter, efuseType, bPseudoTest))
1615                 return false;
1616
1617         hal_EfuseConstructPGPkt(offset, word_en, pData, &targetPkt);
1618
1619         if (!hal_EfusePartialWriteCheck(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
1620                 return false;
1621
1622         if (!hal_EfusePgPacketWriteHeader(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
1623                 return false;
1624
1625         if (!hal_EfusePgPacketWriteData(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
1626                 return false;
1627
1628         return true;
1629 }
1630
1631 static struct hal_version ReadChipVersion8723B(struct adapter *padapter)
1632 {
1633         u32 value32;
1634         struct hal_version ChipVersion;
1635         struct hal_com_data *pHalData;
1636
1637 /* YJ, TODO, move read chip type here */
1638         pHalData = GET_HAL_DATA(padapter);
1639
1640         value32 = rtw_read32(padapter, REG_SYS_CFG);
1641         ChipVersion.ICType = CHIP_8723B;
1642         ChipVersion.ChipType = ((value32 & RTL_ID) ? TEST_CHIP : NORMAL_CHIP);
1643         ChipVersion.VendorType = ((value32 & VENDOR_ID) ? CHIP_VENDOR_UMC : CHIP_VENDOR_TSMC);
1644         ChipVersion.CUTVersion = (value32 & CHIP_VER_RTL_MASK)>>CHIP_VER_RTL_SHIFT; /*  IC version (CUT) */
1645
1646         /*  For regulator mode. by tynli. 2011.01.14 */
1647         pHalData->RegulatorMode = ((value32 & SPS_SEL) ? RT_LDO_REGULATOR : RT_SWITCHING_REGULATOR);
1648
1649         value32 = rtw_read32(padapter, REG_GPIO_OUTSTS);
1650         ChipVersion.ROMVer = ((value32 & RF_RL_ID) >> 20);      /*  ROM code version. */
1651
1652         /*  For multi-function consideration. Added by Roger, 2010.10.06. */
1653         pHalData->MultiFunc = RT_MULTI_FUNC_NONE;
1654         value32 = rtw_read32(padapter, REG_MULTI_FUNC_CTRL);
1655         pHalData->MultiFunc |= ((value32 & WL_FUNC_EN) ? RT_MULTI_FUNC_WIFI : 0);
1656         pHalData->MultiFunc |= ((value32 & BT_FUNC_EN) ? RT_MULTI_FUNC_BT : 0);
1657         pHalData->MultiFunc |= ((value32 & GPS_FUNC_EN) ? RT_MULTI_FUNC_GPS : 0);
1658         pHalData->PolarityCtl = ((value32 & WL_HWPDN_SL) ? RT_POLARITY_HIGH_ACT : RT_POLARITY_LOW_ACT);
1659 #if 1
1660         dump_chip_info(ChipVersion);
1661 #endif
1662         pHalData->VersionID = ChipVersion;
1663
1664         return ChipVersion;
1665 }
1666
1667 static void rtl8723b_read_chip_version(struct adapter *padapter)
1668 {
1669         ReadChipVersion8723B(padapter);
1670 }
1671
1672 void rtl8723b_InitBeaconParameters(struct adapter *padapter)
1673 {
1674         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
1675         u16 val16;
1676         u8 val8;
1677
1678
1679         val8 = DIS_TSF_UDT;
1680         val16 = val8 | (val8 << 8); /*  port0 and port1 */
1681
1682         /*  Enable prot0 beacon function for PSTDMA */
1683         val16 |= EN_BCN_FUNCTION;
1684
1685         rtw_write16(padapter, REG_BCN_CTRL, val16);
1686
1687         /*  TODO: Remove these magic number */
1688         rtw_write16(padapter, REG_TBTT_PROHIBIT, 0x6404);/*  ms */
1689         /*  Firmware will control REG_DRVERLYINT when power saving is enable, */
1690         /*  so don't set this register on STA mode. */
1691         if (check_fwstate(&padapter->mlmepriv, WIFI_STATION_STATE) == false)
1692                 rtw_write8(padapter, REG_DRVERLYINT, DRIVER_EARLY_INT_TIME_8723B); /*  5ms */
1693         rtw_write8(padapter, REG_BCNDMATIM, BCN_DMA_ATIME_INT_TIME_8723B); /*  2ms */
1694
1695         /*  Suggested by designer timchen. Change beacon AIFS to the largest number */
1696         /*  beacause test chip does not contension before sending beacon. by tynli. 2009.11.03 */
1697         rtw_write16(padapter, REG_BCNTCFG, 0x660F);
1698
1699         pHalData->RegBcnCtrlVal = rtw_read8(padapter, REG_BCN_CTRL);
1700         pHalData->RegTxPause = rtw_read8(padapter, REG_TXPAUSE);
1701         pHalData->RegFwHwTxQCtrl = rtw_read8(padapter, REG_FWHW_TXQ_CTRL+2);
1702         pHalData->RegReg542 = rtw_read8(padapter, REG_TBTT_PROHIBIT+2);
1703         pHalData->RegCR_1 = rtw_read8(padapter, REG_CR+1);
1704 }
1705
1706 void _InitBurstPktLen_8723BS(struct adapter *Adapter)
1707 {
1708         struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
1709
1710         rtw_write8(Adapter, 0x4c7, rtw_read8(Adapter, 0x4c7)|BIT(7)); /* enable single pkt ampdu */
1711         rtw_write8(Adapter, REG_RX_PKT_LIMIT_8723B, 0x18);              /* for VHT packet length 11K */
1712         rtw_write8(Adapter, REG_MAX_AGGR_NUM_8723B, 0x1F);
1713         rtw_write8(Adapter, REG_PIFS_8723B, 0x00);
1714         rtw_write8(Adapter, REG_FWHW_TXQ_CTRL_8723B, rtw_read8(Adapter, REG_FWHW_TXQ_CTRL)&(~BIT(7)));
1715         if (pHalData->AMPDUBurstMode)
1716                 rtw_write8(Adapter, REG_AMPDU_BURST_MODE_8723B,  0x5F);
1717         rtw_write8(Adapter, REG_AMPDU_MAX_TIME_8723B, 0x70);
1718
1719         /*  ARFB table 9 for 11ac 5G 2SS */
1720         rtw_write32(Adapter, REG_ARFR0_8723B, 0x00000010);
1721         if (IS_NORMAL_CHIP(pHalData->VersionID))
1722                 rtw_write32(Adapter, REG_ARFR0_8723B+4, 0xfffff000);
1723         else
1724                 rtw_write32(Adapter, REG_ARFR0_8723B+4, 0x3e0ff000);
1725
1726         /*  ARFB table 10 for 11ac 5G 1SS */
1727         rtw_write32(Adapter, REG_ARFR1_8723B, 0x00000010);
1728         rtw_write32(Adapter, REG_ARFR1_8723B+4, 0x003ff000);
1729 }
1730
1731 static void ResumeTxBeacon(struct adapter *padapter)
1732 {
1733         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
1734
1735         pHalData->RegFwHwTxQCtrl |= BIT(6);
1736         rtw_write8(padapter, REG_FWHW_TXQ_CTRL+2, pHalData->RegFwHwTxQCtrl);
1737         rtw_write8(padapter, REG_TBTT_PROHIBIT+1, 0xff);
1738         pHalData->RegReg542 |= BIT(0);
1739         rtw_write8(padapter, REG_TBTT_PROHIBIT+2, pHalData->RegReg542);
1740 }
1741
1742 static void StopTxBeacon(struct adapter *padapter)
1743 {
1744         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
1745
1746         pHalData->RegFwHwTxQCtrl &= ~BIT(6);
1747         rtw_write8(padapter, REG_FWHW_TXQ_CTRL+2, pHalData->RegFwHwTxQCtrl);
1748         rtw_write8(padapter, REG_TBTT_PROHIBIT+1, 0x64);
1749         pHalData->RegReg542 &= ~BIT(0);
1750         rtw_write8(padapter, REG_TBTT_PROHIBIT+2, pHalData->RegReg542);
1751
1752         CheckFwRsvdPageContent(padapter);  /*  2010.06.23. Added by tynli. */
1753 }
1754
1755 static void _BeaconFunctionEnable(struct adapter *padapter, u8 Enable, u8 Linked)
1756 {
1757         rtw_write8(padapter, REG_BCN_CTRL, DIS_TSF_UDT | EN_BCN_FUNCTION | DIS_BCNQ_SUB);
1758         rtw_write8(padapter, REG_RD_CTRL+1, 0x6F);
1759 }
1760
1761 static void rtl8723b_SetBeaconRelatedRegisters(struct adapter *padapter)
1762 {
1763         u8 val8;
1764         u32 value32;
1765         struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
1766         struct mlme_ext_info *pmlmeinfo = &pmlmeext->mlmext_info;
1767         u32 bcn_ctrl_reg;
1768
1769         /* reset TSF, enable update TSF, correcting TSF On Beacon */
1770
1771         /* REG_BCN_INTERVAL */
1772         /* REG_BCNDMATIM */
1773         /* REG_ATIMWND */
1774         /* REG_TBTT_PROHIBIT */
1775         /* REG_DRVERLYINT */
1776         /* REG_BCN_MAX_ERR */
1777         /* REG_BCNTCFG (0x510) */
1778         /* REG_DUAL_TSF_RST */
1779         /* REG_BCN_CTRL (0x550) */
1780
1781
1782         bcn_ctrl_reg = REG_BCN_CTRL;
1783
1784         /*  */
1785         /*  ATIM window */
1786         /*  */
1787         rtw_write16(padapter, REG_ATIMWND, 2);
1788
1789         /*  */
1790         /*  Beacon interval (in unit of TU). */
1791         /*  */
1792         rtw_write16(padapter, REG_BCN_INTERVAL, pmlmeinfo->bcn_interval);
1793
1794         rtl8723b_InitBeaconParameters(padapter);
1795
1796         rtw_write8(padapter, REG_SLOT, 0x09);
1797
1798         /*  */
1799         /*  Reset TSF Timer to zero, added by Roger. 2008.06.24 */
1800         /*  */
1801         value32 = rtw_read32(padapter, REG_TCR);
1802         value32 &= ~TSFRST;
1803         rtw_write32(padapter, REG_TCR, value32);
1804
1805         value32 |= TSFRST;
1806         rtw_write32(padapter, REG_TCR, value32);
1807
1808         /*  NOTE: Fix test chip's bug (about contention windows's randomness) */
1809         if (check_fwstate(&padapter->mlmepriv, WIFI_ADHOC_STATE|WIFI_ADHOC_MASTER_STATE|WIFI_AP_STATE) == true) {
1810                 rtw_write8(padapter, REG_RXTSF_OFFSET_CCK, 0x50);
1811                 rtw_write8(padapter, REG_RXTSF_OFFSET_OFDM, 0x50);
1812         }
1813
1814         _BeaconFunctionEnable(padapter, true, true);
1815
1816         ResumeTxBeacon(padapter);
1817         val8 = rtw_read8(padapter, bcn_ctrl_reg);
1818         val8 |= DIS_BCNQ_SUB;
1819         rtw_write8(padapter, bcn_ctrl_reg, val8);
1820 }
1821
1822 static void rtl8723b_GetHalODMVar(
1823         struct adapter *Adapter,
1824         enum hal_odm_variable eVariable,
1825         void *pValue1,
1826         void *pValue2
1827 )
1828 {
1829         GetHalODMVar(Adapter, eVariable, pValue1, pValue2);
1830 }
1831
1832 static void rtl8723b_SetHalODMVar(
1833         struct adapter *Adapter,
1834         enum hal_odm_variable eVariable,
1835         void *pValue1,
1836         bool bSet
1837 )
1838 {
1839         SetHalODMVar(Adapter, eVariable, pValue1, bSet);
1840 }
1841
1842 static void hal_notch_filter_8723b(struct adapter *adapter, bool enable)
1843 {
1844         if (enable)
1845                 rtw_write8(adapter, rOFDM0_RxDSP+1, rtw_read8(adapter, rOFDM0_RxDSP+1) | BIT1);
1846         else
1847                 rtw_write8(adapter, rOFDM0_RxDSP+1, rtw_read8(adapter, rOFDM0_RxDSP+1) & ~BIT1);
1848 }
1849
1850 static void UpdateHalRAMask8723B(struct adapter *padapter, u32 mac_id, u8 rssi_level)
1851 {
1852         u32 mask, rate_bitmap;
1853         u8 shortGIrate = false;
1854         struct sta_info *psta;
1855         struct hal_com_data     *pHalData = GET_HAL_DATA(padapter);
1856         struct dm_priv *pdmpriv = &pHalData->dmpriv;
1857         struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
1858         struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
1859
1860         if (mac_id >= NUM_STA) /* CAM_SIZE */
1861                 return;
1862
1863         psta = pmlmeinfo->FW_sta_info[mac_id].psta;
1864         if (!psta)
1865                 return;
1866
1867         shortGIrate = query_ra_short_GI(psta);
1868
1869         mask = psta->ra_mask;
1870
1871         rate_bitmap = 0xffffffff;
1872         rate_bitmap = ODM_Get_Rate_Bitmap(&pHalData->odmpriv, mac_id, mask, rssi_level);
1873
1874         mask &= rate_bitmap;
1875
1876         rate_bitmap = hal_btcoex_GetRaMask(padapter);
1877         mask &= ~rate_bitmap;
1878
1879         if (pHalData->fw_ractrl) {
1880                 rtl8723b_set_FwMacIdConfig_cmd(padapter, mac_id, psta->raid, psta->bw_mode, shortGIrate, mask);
1881         }
1882
1883         /* set correct initial date rate for each mac_id */
1884         pdmpriv->INIDATA_RATE[mac_id] = psta->init_rate;
1885 }
1886
1887
1888 void rtl8723b_set_hal_ops(struct hal_ops *pHalFunc)
1889 {
1890         pHalFunc->free_hal_data = &rtl8723b_free_hal_data;
1891
1892         pHalFunc->dm_init = &rtl8723b_init_dm_priv;
1893
1894         pHalFunc->read_chip_version = &rtl8723b_read_chip_version;
1895
1896         pHalFunc->UpdateRAMaskHandler = &UpdateHalRAMask8723B;
1897
1898         pHalFunc->set_bwmode_handler = &PHY_SetBWMode8723B;
1899         pHalFunc->set_channel_handler = &PHY_SwChnl8723B;
1900         pHalFunc->set_chnl_bw_handler = &PHY_SetSwChnlBWMode8723B;
1901
1902         pHalFunc->set_tx_power_level_handler = &PHY_SetTxPowerLevel8723B;
1903         pHalFunc->get_tx_power_level_handler = &PHY_GetTxPowerLevel8723B;
1904
1905         pHalFunc->hal_dm_watchdog = &rtl8723b_HalDmWatchDog;
1906         pHalFunc->hal_dm_watchdog_in_lps = &rtl8723b_HalDmWatchDog_in_LPS;
1907
1908
1909         pHalFunc->SetBeaconRelatedRegistersHandler = &rtl8723b_SetBeaconRelatedRegisters;
1910
1911         pHalFunc->Add_RateATid = &rtl8723b_Add_RateATid;
1912
1913         pHalFunc->run_thread = &rtl8723b_start_thread;
1914         pHalFunc->cancel_thread = &rtl8723b_stop_thread;
1915
1916         pHalFunc->read_bbreg = &PHY_QueryBBReg_8723B;
1917         pHalFunc->write_bbreg = &PHY_SetBBReg_8723B;
1918         pHalFunc->read_rfreg = &PHY_QueryRFReg_8723B;
1919         pHalFunc->write_rfreg = &PHY_SetRFReg_8723B;
1920
1921         /*  Efuse related function */
1922         pHalFunc->BTEfusePowerSwitch = &Hal_BT_EfusePowerSwitch;
1923         pHalFunc->EfusePowerSwitch = &Hal_EfusePowerSwitch;
1924         pHalFunc->ReadEFuse = &Hal_ReadEFuse;
1925         pHalFunc->EFUSEGetEfuseDefinition = &Hal_GetEfuseDefinition;
1926         pHalFunc->EfuseGetCurrentSize = &Hal_EfuseGetCurrentSize;
1927         pHalFunc->Efuse_PgPacketRead = &Hal_EfusePgPacketRead;
1928         pHalFunc->Efuse_PgPacketWrite = &Hal_EfusePgPacketWrite;
1929         pHalFunc->Efuse_WordEnableDataWrite = &Hal_EfuseWordEnableDataWrite;
1930         pHalFunc->Efuse_PgPacketWrite_BT = &Hal_EfusePgPacketWrite_BT;
1931
1932         pHalFunc->GetHalODMVarHandler = &rtl8723b_GetHalODMVar;
1933         pHalFunc->SetHalODMVarHandler = &rtl8723b_SetHalODMVar;
1934
1935         pHalFunc->xmit_thread_handler = &hal_xmit_handler;
1936         pHalFunc->hal_notch_filter = &hal_notch_filter_8723b;
1937
1938         pHalFunc->c2h_handler = c2h_handler_8723b;
1939         pHalFunc->c2h_id_filter_ccx = c2h_id_filter_ccx_8723b;
1940
1941         pHalFunc->fill_h2c_cmd = &FillH2CCmd8723B;
1942 }
1943
1944 void rtl8723b_InitAntenna_Selection(struct adapter *padapter)
1945 {
1946         u8 val;
1947
1948         val = rtw_read8(padapter, REG_LEDCFG2);
1949         /*  Let 8051 take control antenna setting */
1950         val |= BIT(7); /*  DPDT_SEL_EN, 0x4C[23] */
1951         rtw_write8(padapter, REG_LEDCFG2, val);
1952 }
1953
1954 void rtl8723b_init_default_value(struct adapter *padapter)
1955 {
1956         struct hal_com_data *pHalData;
1957         struct dm_priv *pdmpriv;
1958         u8 i;
1959
1960
1961         pHalData = GET_HAL_DATA(padapter);
1962         pdmpriv = &pHalData->dmpriv;
1963
1964         padapter->registrypriv.wireless_mode = WIRELESS_11BG_24N;
1965
1966         /*  init default value */
1967         pHalData->fw_ractrl = false;
1968         pHalData->bIQKInitialized = false;
1969         if (!adapter_to_pwrctl(padapter)->bkeepfwalive)
1970                 pHalData->LastHMEBoxNum = 0;
1971
1972         pHalData->bIQKInitialized = false;
1973
1974         /*  init dm default value */
1975         pdmpriv->TM_Trigger = 0;/* for IQK */
1976 /*      pdmpriv->binitialized = false; */
1977 /*      pdmpriv->prv_traffic_idx = 3; */
1978 /*      pdmpriv->initialize = 0; */
1979
1980         pdmpriv->ThermalValue_HP_index = 0;
1981         for (i = 0; i < HP_THERMAL_NUM; i++)
1982                 pdmpriv->ThermalValue_HP[i] = 0;
1983
1984         /*  init Efuse variables */
1985         pHalData->EfuseUsedBytes = 0;
1986         pHalData->EfuseUsedPercentage = 0;
1987 #ifdef HAL_EFUSE_MEMORY
1988         pHalData->EfuseHal.fakeEfuseBank = 0;
1989         pHalData->EfuseHal.fakeEfuseUsedBytes = 0;
1990         memset(pHalData->EfuseHal.fakeEfuseContent, 0xFF, EFUSE_MAX_HW_SIZE);
1991         memset(pHalData->EfuseHal.fakeEfuseInitMap, 0xFF, EFUSE_MAX_MAP_LEN);
1992         memset(pHalData->EfuseHal.fakeEfuseModifiedMap, 0xFF, EFUSE_MAX_MAP_LEN);
1993         pHalData->EfuseHal.BTEfuseUsedBytes = 0;
1994         pHalData->EfuseHal.BTEfuseUsedPercentage = 0;
1995         memset(pHalData->EfuseHal.BTEfuseContent, 0xFF, EFUSE_MAX_BT_BANK*EFUSE_MAX_HW_SIZE);
1996         memset(pHalData->EfuseHal.BTEfuseInitMap, 0xFF, EFUSE_BT_MAX_MAP_LEN);
1997         memset(pHalData->EfuseHal.BTEfuseModifiedMap, 0xFF, EFUSE_BT_MAX_MAP_LEN);
1998         pHalData->EfuseHal.fakeBTEfuseUsedBytes = 0;
1999         memset(pHalData->EfuseHal.fakeBTEfuseContent, 0xFF, EFUSE_MAX_BT_BANK*EFUSE_MAX_HW_SIZE);
2000         memset(pHalData->EfuseHal.fakeBTEfuseInitMap, 0xFF, EFUSE_BT_MAX_MAP_LEN);
2001         memset(pHalData->EfuseHal.fakeBTEfuseModifiedMap, 0xFF, EFUSE_BT_MAX_MAP_LEN);
2002 #endif
2003 }
2004
2005 u8 GetEEPROMSize8723B(struct adapter *padapter)
2006 {
2007         u8 size = 0;
2008         u32 cr;
2009
2010         cr = rtw_read16(padapter, REG_9346CR);
2011         /*  6: EEPROM used is 93C46, 4: boot from E-Fuse. */
2012         size = (cr & BOOT_FROM_EEPROM) ? 6 : 4;
2013
2014         return size;
2015 }
2016
2017 /*  */
2018 /*  */
2019 /*  LLT R/W/Init function */
2020 /*  */
2021 /*  */
2022 s32 rtl8723b_InitLLTTable(struct adapter *padapter)
2023 {
2024         unsigned long start, passing_time;
2025         u32 val32;
2026         s32 ret;
2027
2028
2029         ret = _FAIL;
2030
2031         val32 = rtw_read32(padapter, REG_AUTO_LLT);
2032         val32 |= BIT_AUTO_INIT_LLT;
2033         rtw_write32(padapter, REG_AUTO_LLT, val32);
2034
2035         start = jiffies;
2036
2037         do {
2038                 val32 = rtw_read32(padapter, REG_AUTO_LLT);
2039                 if (!(val32 & BIT_AUTO_INIT_LLT)) {
2040                         ret = _SUCCESS;
2041                         break;
2042                 }
2043
2044                 passing_time = jiffies_to_msecs(jiffies - start);
2045                 if (passing_time > 1000)
2046                         break;
2047
2048                 msleep(1);
2049         } while (1);
2050
2051         return ret;
2052 }
2053
2054 static void hal_get_chnl_group_8723b(u8 channel, u8 *group)
2055 {
2056         if (1  <= channel && channel <= 2)
2057                 *group = 0;
2058         else if (3  <= channel && channel <= 5)
2059                 *group = 1;
2060         else if (6  <= channel && channel <= 8)
2061                 *group = 2;
2062         else if (9  <= channel && channel <= 11)
2063                 *group = 3;
2064         else if (12 <= channel && channel <= 14)
2065                 *group = 4;
2066 }
2067
2068 void Hal_InitPGData(struct adapter *padapter, u8 *PROMContent)
2069 {
2070         struct eeprom_priv *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
2071
2072         if (!pEEPROM->bautoload_fail_flag) { /*  autoload OK. */
2073                 if (!pEEPROM->EepromOrEfuse) {
2074                         /*  Read EFUSE real map to shadow. */
2075                         EFUSE_ShadowMapUpdate(padapter, EFUSE_WIFI, false);
2076                         memcpy((void *)PROMContent, (void *)pEEPROM->efuse_eeprom_data, HWSET_MAX_SIZE_8723B);
2077                 }
2078         } else {/* autoload fail */
2079                 if (!pEEPROM->EepromOrEfuse)
2080                         EFUSE_ShadowMapUpdate(padapter, EFUSE_WIFI, false);
2081                 memcpy((void *)PROMContent, (void *)pEEPROM->efuse_eeprom_data, HWSET_MAX_SIZE_8723B);
2082         }
2083 }
2084
2085 void Hal_EfuseParseIDCode(struct adapter *padapter, u8 *hwinfo)
2086 {
2087         struct eeprom_priv *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
2088 /*      struct hal_com_data     *pHalData = GET_HAL_DATA(padapter); */
2089         u16 EEPROMId;
2090
2091
2092         /*  Checl 0x8129 again for making sure autoload status!! */
2093         EEPROMId = le16_to_cpu(*((__le16 *)hwinfo));
2094         if (EEPROMId != RTL_EEPROM_ID) {
2095                 pEEPROM->bautoload_fail_flag = true;
2096         } else
2097                 pEEPROM->bautoload_fail_flag = false;
2098 }
2099
2100 static void Hal_ReadPowerValueFromPROM_8723B(
2101         struct adapter *Adapter,
2102         struct TxPowerInfo24G *pwrInfo24G,
2103         u8 *PROMContent,
2104         bool AutoLoadFail
2105 )
2106 {
2107         struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
2108         u32 rfPath, eeAddr = EEPROM_TX_PWR_INX_8723B, group, TxCount = 0;
2109
2110         memset(pwrInfo24G, 0, sizeof(struct TxPowerInfo24G));
2111
2112         if (0xFF == PROMContent[eeAddr+1])
2113                 AutoLoadFail = true;
2114
2115         if (AutoLoadFail) {
2116                 for (rfPath = 0; rfPath < MAX_RF_PATH; rfPath++) {
2117                         /* 2.4G default value */
2118                         for (group = 0; group < MAX_CHNL_GROUP_24G; group++) {
2119                                 pwrInfo24G->IndexCCK_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
2120                                 pwrInfo24G->IndexBW40_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
2121                         }
2122
2123                         for (TxCount = 0; TxCount < MAX_TX_COUNT; TxCount++) {
2124                                 if (TxCount == 0) {
2125                                         pwrInfo24G->BW20_Diff[rfPath][0] = EEPROM_DEFAULT_24G_HT20_DIFF;
2126                                         pwrInfo24G->OFDM_Diff[rfPath][0] = EEPROM_DEFAULT_24G_OFDM_DIFF;
2127                                 } else {
2128                                         pwrInfo24G->BW20_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2129                                         pwrInfo24G->BW40_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2130                                         pwrInfo24G->CCK_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2131                                         pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2132                                 }
2133                         }
2134                 }
2135
2136                 return;
2137         }
2138
2139         pHalData->bTXPowerDataReadFromEEPORM = true;            /* YJ, move, 120316 */
2140
2141         for (rfPath = 0; rfPath < MAX_RF_PATH; rfPath++) {
2142                 /* 2 2.4G default value */
2143                 for (group = 0; group < MAX_CHNL_GROUP_24G; group++) {
2144                         pwrInfo24G->IndexCCK_Base[rfPath][group] =      PROMContent[eeAddr++];
2145                         if (pwrInfo24G->IndexCCK_Base[rfPath][group] == 0xFF)
2146                                 pwrInfo24G->IndexCCK_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
2147                 }
2148
2149                 for (group = 0; group < MAX_CHNL_GROUP_24G-1; group++) {
2150                         pwrInfo24G->IndexBW40_Base[rfPath][group] =     PROMContent[eeAddr++];
2151                         if (pwrInfo24G->IndexBW40_Base[rfPath][group] == 0xFF)
2152                                 pwrInfo24G->IndexBW40_Base[rfPath][group] =     EEPROM_DEFAULT_24G_INDEX;
2153                 }
2154
2155                 for (TxCount = 0; TxCount < MAX_TX_COUNT; TxCount++) {
2156                         if (TxCount == 0) {
2157                                 pwrInfo24G->BW40_Diff[rfPath][TxCount] = 0;
2158                                 if (PROMContent[eeAddr] == 0xFF)
2159                                         pwrInfo24G->BW20_Diff[rfPath][TxCount] =        EEPROM_DEFAULT_24G_HT20_DIFF;
2160                                 else {
2161                                         pwrInfo24G->BW20_Diff[rfPath][TxCount] =        (PROMContent[eeAddr]&0xf0)>>4;
2162                                         if (pwrInfo24G->BW20_Diff[rfPath][TxCount] & BIT3)              /* 4bit sign number to 8 bit sign number */
2163                                                 pwrInfo24G->BW20_Diff[rfPath][TxCount] |= 0xF0;
2164                                 }
2165
2166                                 if (PROMContent[eeAddr] == 0xFF)
2167                                         pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_24G_OFDM_DIFF;
2168                                 else {
2169                                         pwrInfo24G->OFDM_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f);
2170                                         if (pwrInfo24G->OFDM_Diff[rfPath][TxCount] & BIT3)              /* 4bit sign number to 8 bit sign number */
2171                                                 pwrInfo24G->OFDM_Diff[rfPath][TxCount] |= 0xF0;
2172                                 }
2173                                 pwrInfo24G->CCK_Diff[rfPath][TxCount] = 0;
2174                                 eeAddr++;
2175                         } else {
2176                                 if (PROMContent[eeAddr] == 0xFF)
2177                                         pwrInfo24G->BW40_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2178                                 else {
2179                                         pwrInfo24G->BW40_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0xf0)>>4;
2180                                         if (pwrInfo24G->BW40_Diff[rfPath][TxCount] & BIT3)              /* 4bit sign number to 8 bit sign number */
2181                                                 pwrInfo24G->BW40_Diff[rfPath][TxCount] |= 0xF0;
2182                                 }
2183
2184                                 if (PROMContent[eeAddr] == 0xFF)
2185                                         pwrInfo24G->BW20_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2186                                 else {
2187                                         pwrInfo24G->BW20_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f);
2188                                         if (pwrInfo24G->BW20_Diff[rfPath][TxCount] & BIT3)              /* 4bit sign number to 8 bit sign number */
2189                                                 pwrInfo24G->BW20_Diff[rfPath][TxCount] |= 0xF0;
2190                                 }
2191                                 eeAddr++;
2192
2193                                 if (PROMContent[eeAddr] == 0xFF)
2194                                         pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2195                                 else {
2196                                         pwrInfo24G->OFDM_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0xf0)>>4;
2197                                         if (pwrInfo24G->OFDM_Diff[rfPath][TxCount] & BIT3)              /* 4bit sign number to 8 bit sign number */
2198                                                 pwrInfo24G->OFDM_Diff[rfPath][TxCount] |= 0xF0;
2199                                 }
2200
2201                                 if (PROMContent[eeAddr] == 0xFF)
2202                                         pwrInfo24G->CCK_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2203                                 else {
2204                                         pwrInfo24G->CCK_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f);
2205                                         if (pwrInfo24G->CCK_Diff[rfPath][TxCount] & BIT3)               /* 4bit sign number to 8 bit sign number */
2206                                                 pwrInfo24G->CCK_Diff[rfPath][TxCount] |= 0xF0;
2207                                 }
2208                                 eeAddr++;
2209                         }
2210                 }
2211         }
2212 }
2213
2214
2215 void Hal_EfuseParseTxPowerInfo_8723B(
2216         struct adapter *padapter, u8 *PROMContent, bool AutoLoadFail
2217 )
2218 {
2219         struct hal_com_data     *pHalData = GET_HAL_DATA(padapter);
2220         struct TxPowerInfo24G   pwrInfo24G;
2221         u8      rfPath, ch, TxCount = 1;
2222
2223         Hal_ReadPowerValueFromPROM_8723B(padapter, &pwrInfo24G, PROMContent, AutoLoadFail);
2224         for (rfPath = 0 ; rfPath < MAX_RF_PATH ; rfPath++) {
2225                 for (ch = 0 ; ch < CHANNEL_MAX_NUMBER; ch++) {
2226                         u8 group = 0;
2227
2228                         hal_get_chnl_group_8723b(ch + 1, &group);
2229
2230                         if (ch == 14-1) {
2231                                 pHalData->Index24G_CCK_Base[rfPath][ch] = pwrInfo24G.IndexCCK_Base[rfPath][5];
2232                                 pHalData->Index24G_BW40_Base[rfPath][ch] = pwrInfo24G.IndexBW40_Base[rfPath][group];
2233                         } else {
2234                                 pHalData->Index24G_CCK_Base[rfPath][ch] = pwrInfo24G.IndexCCK_Base[rfPath][group];
2235                                 pHalData->Index24G_BW40_Base[rfPath][ch] = pwrInfo24G.IndexBW40_Base[rfPath][group];
2236                         }
2237                 }
2238
2239                 for (TxCount = 0; TxCount < MAX_TX_COUNT; TxCount++) {
2240                         pHalData->CCK_24G_Diff[rfPath][TxCount] = pwrInfo24G.CCK_Diff[rfPath][TxCount];
2241                         pHalData->OFDM_24G_Diff[rfPath][TxCount] = pwrInfo24G.OFDM_Diff[rfPath][TxCount];
2242                         pHalData->BW20_24G_Diff[rfPath][TxCount] = pwrInfo24G.BW20_Diff[rfPath][TxCount];
2243                         pHalData->BW40_24G_Diff[rfPath][TxCount] = pwrInfo24G.BW40_Diff[rfPath][TxCount];
2244                 }
2245         }
2246
2247         /*  2010/10/19 MH Add Regulator recognize for CU. */
2248         if (!AutoLoadFail) {
2249                 pHalData->EEPROMRegulatory = (PROMContent[EEPROM_RF_BOARD_OPTION_8723B]&0x7);   /* bit0~2 */
2250                 if (PROMContent[EEPROM_RF_BOARD_OPTION_8723B] == 0xFF)
2251                         pHalData->EEPROMRegulatory = (EEPROM_DEFAULT_BOARD_OPTION&0x7); /* bit0~2 */
2252         } else
2253                 pHalData->EEPROMRegulatory = 0;
2254 }
2255
2256 void Hal_EfuseParseBTCoexistInfo_8723B(
2257         struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2258 )
2259 {
2260         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
2261         u8 tempval;
2262         u32 tmpu4;
2263
2264         if (!AutoLoadFail) {
2265                 tmpu4 = rtw_read32(padapter, REG_MULTI_FUNC_CTRL);
2266                 if (tmpu4 & BT_FUNC_EN)
2267                         pHalData->EEPROMBluetoothCoexist = true;
2268                 else
2269                         pHalData->EEPROMBluetoothCoexist = false;
2270
2271                 pHalData->EEPROMBluetoothType = BT_RTL8723B;
2272
2273                 tempval = hwinfo[EEPROM_RF_BT_SETTING_8723B];
2274                 if (tempval != 0xFF) {
2275                         pHalData->EEPROMBluetoothAntNum = tempval & BIT(0);
2276                         /*  EFUSE_0xC3[6] == 0, S1(Main)-RF_PATH_A; */
2277                         /*  EFUSE_0xC3[6] == 1, S0(Aux)-RF_PATH_B */
2278                         pHalData->ant_path = (tempval & BIT(6))? RF_PATH_B : RF_PATH_A;
2279                 } else {
2280                         pHalData->EEPROMBluetoothAntNum = Ant_x1;
2281                         if (pHalData->PackageType == PACKAGE_QFN68)
2282                                 pHalData->ant_path = RF_PATH_B;
2283                         else
2284                                 pHalData->ant_path = RF_PATH_A;
2285                 }
2286         } else {
2287                 pHalData->EEPROMBluetoothCoexist = false;
2288                 pHalData->EEPROMBluetoothType = BT_RTL8723B;
2289                 pHalData->EEPROMBluetoothAntNum = Ant_x1;
2290                 pHalData->ant_path = RF_PATH_A;
2291         }
2292
2293         if (padapter->registrypriv.ant_num > 0) {
2294                 switch (padapter->registrypriv.ant_num) {
2295                 case 1:
2296                         pHalData->EEPROMBluetoothAntNum = Ant_x1;
2297                         break;
2298                 case 2:
2299                         pHalData->EEPROMBluetoothAntNum = Ant_x2;
2300                         break;
2301                 default:
2302                         break;
2303                 }
2304         }
2305
2306         hal_btcoex_SetBTCoexist(padapter, pHalData->EEPROMBluetoothCoexist);
2307         hal_btcoex_SetChipType(padapter, pHalData->EEPROMBluetoothType);
2308         hal_btcoex_SetPgAntNum(padapter, pHalData->EEPROMBluetoothAntNum == Ant_x2 ? 2 : 1);
2309         if (pHalData->EEPROMBluetoothAntNum == Ant_x1)
2310                 hal_btcoex_SetSingleAntPath(padapter, pHalData->ant_path);
2311 }
2312
2313 void Hal_EfuseParseEEPROMVer_8723B(
2314         struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2315 )
2316 {
2317         struct hal_com_data     *pHalData = GET_HAL_DATA(padapter);
2318
2319         if (!AutoLoadFail)
2320                 pHalData->EEPROMVersion = hwinfo[EEPROM_VERSION_8723B];
2321         else
2322                 pHalData->EEPROMVersion = 1;
2323 }
2324
2325
2326
2327 void Hal_EfuseParsePackageType_8723B(
2328         struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2329 )
2330 {
2331         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
2332         u8 package;
2333         u8 efuseContent;
2334
2335         Efuse_PowerSwitch(padapter, false, true);
2336         efuse_OneByteRead(padapter, 0x1FB, &efuseContent, false);
2337         Efuse_PowerSwitch(padapter, false, false);
2338
2339         package = efuseContent & 0x7;
2340         switch (package) {
2341         case 0x4:
2342                 pHalData->PackageType = PACKAGE_TFBGA79;
2343                 break;
2344         case 0x5:
2345                 pHalData->PackageType = PACKAGE_TFBGA90;
2346                 break;
2347         case 0x6:
2348                 pHalData->PackageType = PACKAGE_QFN68;
2349                 break;
2350         case 0x7:
2351                 pHalData->PackageType = PACKAGE_TFBGA80;
2352                 break;
2353
2354         default:
2355                 pHalData->PackageType = PACKAGE_DEFAULT;
2356                 break;
2357         }
2358 }
2359
2360
2361 void Hal_EfuseParseVoltage_8723B(
2362         struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2363 )
2364 {
2365         struct eeprom_priv *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
2366
2367         /* memcpy(pEEPROM->adjuseVoltageVal, &hwinfo[EEPROM_Voltage_ADDR_8723B], 1); */
2368         pEEPROM->adjuseVoltageVal = (hwinfo[EEPROM_Voltage_ADDR_8723B] & 0xf0) >> 4;
2369 }
2370
2371 void Hal_EfuseParseChnlPlan_8723B(
2372         struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2373 )
2374 {
2375         padapter->mlmepriv.ChannelPlan = hal_com_config_channel_plan(
2376                 padapter,
2377                 hwinfo ? hwinfo[EEPROM_ChannelPlan_8723B] : 0xFF,
2378                 padapter->registrypriv.channel_plan,
2379                 RT_CHANNEL_DOMAIN_WORLD_NULL,
2380                 AutoLoadFail
2381         );
2382
2383         Hal_ChannelPlanToRegulation(padapter, padapter->mlmepriv.ChannelPlan);
2384 }
2385
2386 void Hal_EfuseParseCustomerID_8723B(
2387         struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2388 )
2389 {
2390         struct hal_com_data     *pHalData = GET_HAL_DATA(padapter);
2391
2392         if (!AutoLoadFail)
2393                 pHalData->EEPROMCustomerID = hwinfo[EEPROM_CustomID_8723B];
2394         else
2395                 pHalData->EEPROMCustomerID = 0;
2396 }
2397
2398 void Hal_EfuseParseAntennaDiversity_8723B(
2399         struct adapter *padapter,
2400         u8 *hwinfo,
2401         bool AutoLoadFail
2402 )
2403 {
2404 }
2405
2406 void Hal_EfuseParseXtal_8723B(
2407         struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2408 )
2409 {
2410         struct hal_com_data     *pHalData = GET_HAL_DATA(padapter);
2411
2412         if (!AutoLoadFail) {
2413                 pHalData->CrystalCap = hwinfo[EEPROM_XTAL_8723B];
2414                 if (pHalData->CrystalCap == 0xFF)
2415                         pHalData->CrystalCap = EEPROM_Default_CrystalCap_8723B;    /* what value should 8812 set? */
2416         } else
2417                 pHalData->CrystalCap = EEPROM_Default_CrystalCap_8723B;
2418 }
2419
2420
2421 void Hal_EfuseParseThermalMeter_8723B(
2422         struct adapter *padapter, u8 *PROMContent, u8 AutoLoadFail
2423 )
2424 {
2425         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
2426
2427         /*  */
2428         /*  ThermalMeter from EEPROM */
2429         /*  */
2430         if (!AutoLoadFail)
2431                 pHalData->EEPROMThermalMeter = PROMContent[EEPROM_THERMAL_METER_8723B];
2432         else
2433                 pHalData->EEPROMThermalMeter = EEPROM_Default_ThermalMeter_8723B;
2434
2435         if ((pHalData->EEPROMThermalMeter == 0xff) || AutoLoadFail) {
2436                 pHalData->bAPKThermalMeterIgnore = true;
2437                 pHalData->EEPROMThermalMeter = EEPROM_Default_ThermalMeter_8723B;
2438         }
2439 }
2440
2441
2442 void Hal_ReadRFGainOffset(
2443         struct adapter *Adapter, u8 *PROMContent, bool AutoloadFail
2444 )
2445 {
2446         /*  */
2447         /*  BB_RF Gain Offset from EEPROM */
2448         /*  */
2449
2450         if (!AutoloadFail) {
2451                 Adapter->eeprompriv.EEPROMRFGainOffset = PROMContent[EEPROM_RF_GAIN_OFFSET];
2452                 Adapter->eeprompriv.EEPROMRFGainVal = EFUSE_Read1Byte(Adapter, EEPROM_RF_GAIN_VAL);
2453         } else {
2454                 Adapter->eeprompriv.EEPROMRFGainOffset = 0;
2455                 Adapter->eeprompriv.EEPROMRFGainVal = 0xFF;
2456         }
2457 }
2458
2459 u8 BWMapping_8723B(struct adapter *Adapter, struct pkt_attrib *pattrib)
2460 {
2461         u8 BWSettingOfDesc = 0;
2462         struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
2463
2464         if (pHalData->CurrentChannelBW == CHANNEL_WIDTH_40) {
2465                 if (pattrib->bwmode == CHANNEL_WIDTH_40)
2466                         BWSettingOfDesc = 1;
2467                 else
2468                         BWSettingOfDesc = 0;
2469         } else
2470                 BWSettingOfDesc = 0;
2471
2472         /* if (pTcb->bBTTxPacket) */
2473         /*      BWSettingOfDesc = 0; */
2474
2475         return BWSettingOfDesc;
2476 }
2477
2478 u8 SCMapping_8723B(struct adapter *Adapter, struct pkt_attrib *pattrib)
2479 {
2480         u8 SCSettingOfDesc = 0;
2481         struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
2482
2483         if (pHalData->CurrentChannelBW == CHANNEL_WIDTH_40) {
2484                 if (pattrib->bwmode == CHANNEL_WIDTH_40) {
2485                         SCSettingOfDesc = HT_DATA_SC_DONOT_CARE;
2486                 } else if (pattrib->bwmode == CHANNEL_WIDTH_20) {
2487                         if (pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER) {
2488                                 SCSettingOfDesc = HT_DATA_SC_20_UPPER_OF_40MHZ;
2489                         } else if (pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER) {
2490                                 SCSettingOfDesc = HT_DATA_SC_20_LOWER_OF_40MHZ;
2491                         } else {
2492                                 SCSettingOfDesc = HT_DATA_SC_DONOT_CARE;
2493                         }
2494                 }
2495         } else {
2496                 SCSettingOfDesc = HT_DATA_SC_DONOT_CARE;
2497         }
2498
2499         return SCSettingOfDesc;
2500 }
2501
2502 static void rtl8723b_cal_txdesc_chksum(struct tx_desc *ptxdesc)
2503 {
2504         u16 *usPtr = (u16 *)ptxdesc;
2505         u32 count;
2506         u32 index;
2507         u16 checksum = 0;
2508
2509
2510         /*  Clear first */
2511         ptxdesc->txdw7 &= cpu_to_le32(0xffff0000);
2512
2513         /*  checksume is always calculated by first 32 bytes, */
2514         /*  and it doesn't depend on TX DESC length. */
2515         /*  Thomas, Lucas@SD4, 20130515 */
2516         count = 16;
2517
2518         for (index = 0; index < count; index++) {
2519                 checksum |= le16_to_cpu(*(__le16 *)(usPtr + index));
2520         }
2521
2522         ptxdesc->txdw7 |= cpu_to_le32(checksum & 0x0000ffff);
2523 }
2524
2525 static u8 fill_txdesc_sectype(struct pkt_attrib *pattrib)
2526 {
2527         u8 sectype = 0;
2528         if ((pattrib->encrypt > 0) && !pattrib->bswenc) {
2529                 switch (pattrib->encrypt) {
2530                 /*  SEC_TYPE */
2531                 case _WEP40_:
2532                 case _WEP104_:
2533                 case _TKIP_:
2534                 case _TKIP_WTMIC_:
2535                         sectype = 1;
2536                         break;
2537
2538                 case _AES_:
2539                         sectype = 3;
2540                         break;
2541
2542                 case _NO_PRIVACY_:
2543                 default:
2544                         break;
2545                 }
2546         }
2547         return sectype;
2548 }
2549
2550 static void fill_txdesc_vcs_8723b(struct adapter *padapter, struct pkt_attrib *pattrib, struct txdesc_8723b *ptxdesc)
2551 {
2552         if (pattrib->vcs_mode) {
2553                 switch (pattrib->vcs_mode) {
2554                 case RTS_CTS:
2555                         ptxdesc->rtsen = 1;
2556                         /*  ENABLE HW RTS */
2557                         ptxdesc->hw_rts_en = 1;
2558                         break;
2559
2560                 case CTS_TO_SELF:
2561                         ptxdesc->cts2self = 1;
2562                         break;
2563
2564                 case NONE_VCS:
2565                 default:
2566                         break;
2567                 }
2568
2569                 ptxdesc->rtsrate = 8; /*  RTS Rate =24M */
2570                 ptxdesc->rts_ratefb_lmt = 0xF;
2571
2572                 if (padapter->mlmeextpriv.mlmext_info.preamble_mode == PREAMBLE_SHORT)
2573                         ptxdesc->rts_short = 1;
2574
2575                 /*  Set RTS BW */
2576                 if (pattrib->ht_en)
2577                         ptxdesc->rts_sc = SCMapping_8723B(padapter, pattrib);
2578         }
2579 }
2580
2581 static void fill_txdesc_phy_8723b(struct adapter *padapter, struct pkt_attrib *pattrib, struct txdesc_8723b *ptxdesc)
2582 {
2583         if (pattrib->ht_en) {
2584                 ptxdesc->data_bw = BWMapping_8723B(padapter, pattrib);
2585
2586                 ptxdesc->data_sc = SCMapping_8723B(padapter, pattrib);
2587         }
2588 }
2589
2590 static void rtl8723b_fill_default_txdesc(
2591         struct xmit_frame *pxmitframe, u8 *pbuf
2592 )
2593 {
2594         struct adapter *padapter;
2595         struct hal_com_data *pHalData;
2596         struct mlme_ext_priv *pmlmeext;
2597         struct mlme_ext_info *pmlmeinfo;
2598         struct pkt_attrib *pattrib;
2599         struct txdesc_8723b *ptxdesc;
2600         s32 bmcst;
2601
2602         memset(pbuf, 0, TXDESC_SIZE);
2603
2604         padapter = pxmitframe->padapter;
2605         pHalData = GET_HAL_DATA(padapter);
2606         pmlmeext = &padapter->mlmeextpriv;
2607         pmlmeinfo = &(pmlmeext->mlmext_info);
2608
2609         pattrib = &pxmitframe->attrib;
2610         bmcst = IS_MCAST(pattrib->ra);
2611
2612         ptxdesc = (struct txdesc_8723b *)pbuf;
2613
2614         if (pxmitframe->frame_tag == DATA_FRAMETAG) {
2615                 u8 drv_userate = 0;
2616
2617                 ptxdesc->macid = pattrib->mac_id; /*  CAM_ID(MAC_ID) */
2618                 ptxdesc->rate_id = pattrib->raid;
2619                 ptxdesc->qsel = pattrib->qsel;
2620                 ptxdesc->seq = pattrib->seqnum;
2621
2622                 ptxdesc->sectype = fill_txdesc_sectype(pattrib);
2623                 fill_txdesc_vcs_8723b(padapter, pattrib, ptxdesc);
2624
2625                 if (pattrib->icmp_pkt == 1 && padapter->registrypriv.wifi_spec == 1)
2626                         drv_userate = 1;
2627
2628                 if (
2629                         (pattrib->ether_type != 0x888e) &&
2630                         (pattrib->ether_type != 0x0806) &&
2631                         (pattrib->ether_type != 0x88B4) &&
2632                         (pattrib->dhcp_pkt != 1) &&
2633                         (drv_userate != 1)
2634                 ) {
2635                         /*  Non EAP & ARP & DHCP type data packet */
2636
2637                         if (pattrib->ampdu_en) {
2638                                 ptxdesc->agg_en = 1; /*  AGG EN */
2639                                 ptxdesc->max_agg_num = 0x1f;
2640                                 ptxdesc->ampdu_density = pattrib->ampdu_spacing;
2641                         } else
2642                                 ptxdesc->bk = 1; /*  AGG BK */
2643
2644                         fill_txdesc_phy_8723b(padapter, pattrib, ptxdesc);
2645
2646                         ptxdesc->data_ratefb_lmt = 0x1F;
2647
2648                         if (!pHalData->fw_ractrl) {
2649                                 ptxdesc->userate = 1;
2650
2651                                 if (pHalData->dmpriv.INIDATA_RATE[pattrib->mac_id] & BIT(7))
2652                                         ptxdesc->data_short = 1;
2653
2654                                 ptxdesc->datarate = pHalData->dmpriv.INIDATA_RATE[pattrib->mac_id] & 0x7F;
2655                         }
2656
2657                         if (padapter->fix_rate != 0xFF) { /*  modify data rate by iwpriv */
2658                                 ptxdesc->userate = 1;
2659                                 if (padapter->fix_rate & BIT(7))
2660                                         ptxdesc->data_short = 1;
2661
2662                                 ptxdesc->datarate = (padapter->fix_rate & 0x7F);
2663                                 ptxdesc->disdatafb = 1;
2664                         }
2665
2666                         if (pattrib->ldpc)
2667                                 ptxdesc->data_ldpc = 1;
2668                         if (pattrib->stbc)
2669                                 ptxdesc->data_stbc = 1;
2670                 } else {
2671                         /*  EAP data packet and ARP packet. */
2672                         /*  Use the 1M data rate to send the EAP/ARP packet. */
2673                         /*  This will maybe make the handshake smooth. */
2674
2675                         ptxdesc->bk = 1; /*  AGG BK */
2676                         ptxdesc->userate = 1; /*  driver uses rate */
2677                         if (pmlmeinfo->preamble_mode == PREAMBLE_SHORT)
2678                                 ptxdesc->data_short = 1;/*  DATA_SHORT */
2679                         ptxdesc->datarate = MRateToHwRate(pmlmeext->tx_rate);
2680                 }
2681
2682                 ptxdesc->usb_txagg_num = pxmitframe->agg_num;
2683         } else if (pxmitframe->frame_tag == MGNT_FRAMETAG) {
2684                 ptxdesc->macid = pattrib->mac_id; /*  CAM_ID(MAC_ID) */
2685                 ptxdesc->qsel = pattrib->qsel;
2686                 ptxdesc->rate_id = pattrib->raid; /*  Rate ID */
2687                 ptxdesc->seq = pattrib->seqnum;
2688                 ptxdesc->userate = 1; /*  driver uses rate, 1M */
2689
2690                 ptxdesc->mbssid = pattrib->mbssid & 0xF;
2691
2692                 ptxdesc->rty_lmt_en = 1; /*  retry limit enable */
2693                 if (pattrib->retry_ctrl) {
2694                         ptxdesc->data_rt_lmt = 6;
2695                 } else {
2696                         ptxdesc->data_rt_lmt = 12;
2697                 }
2698
2699                 ptxdesc->datarate = MRateToHwRate(pmlmeext->tx_rate);
2700
2701                 /*  CCX-TXRPT ack for xmit mgmt frames. */
2702                 if (pxmitframe->ack_report) {
2703                         ptxdesc->spe_rpt = 1;
2704                         ptxdesc->sw_define = (u8)(GET_PRIMARY_ADAPTER(padapter)->xmitpriv.seq_no);
2705                 }
2706         } else {
2707                 ptxdesc->macid = pattrib->mac_id; /*  CAM_ID(MAC_ID) */
2708                 ptxdesc->rate_id = pattrib->raid; /*  Rate ID */
2709                 ptxdesc->qsel = pattrib->qsel;
2710                 ptxdesc->seq = pattrib->seqnum;
2711                 ptxdesc->userate = 1; /*  driver uses rate */
2712                 ptxdesc->datarate = MRateToHwRate(pmlmeext->tx_rate);
2713         }
2714
2715         ptxdesc->pktlen = pattrib->last_txcmdsz;
2716         ptxdesc->offset = TXDESC_SIZE + OFFSET_SZ;
2717
2718         if (bmcst)
2719                 ptxdesc->bmc = 1;
2720
2721         /* 2009.11.05. tynli_test. Suggested by SD4 Filen for FW LPS.
2722          * (1) The sequence number of each non-Qos frame / broadcast /
2723          * multicast / mgnt frame should be controlled by Hw because Fw
2724          * will also send null data which we cannot control when Fw LPS
2725          * enable.
2726          * --> default enable non-Qos data sequense number. 2010.06.23.
2727          * by tynli.
2728          * (2) Enable HW SEQ control for beacon packet, because we use
2729          * Hw beacon.
2730          * (3) Use HW Qos SEQ to control the seq num of Ext port non-Qos
2731          * packets.
2732          * 2010.06.23. Added by tynli.
2733          */
2734         if (!pattrib->qos_en) /*  Hw set sequence number */
2735                 ptxdesc->en_hwseq = 1; /*  HWSEQ_EN */
2736 }
2737
2738 /* Description:
2739  *
2740  * Parameters:
2741  *      pxmitframe      xmitframe
2742  *      pbuf            where to fill tx desc
2743  */
2744 void rtl8723b_update_txdesc(struct xmit_frame *pxmitframe, u8 *pbuf)
2745 {
2746         struct tx_desc *pdesc;
2747
2748         rtl8723b_fill_default_txdesc(pxmitframe, pbuf);
2749         pdesc = (struct tx_desc *)pbuf;
2750         rtl8723b_cal_txdesc_chksum(pdesc);
2751 }
2752
2753 /*  */
2754 /*  Description: In normal chip, we should send some packet to Hw which will be used by Fw */
2755 /*                      in FW LPS mode. The function is to fill the Tx descriptor of this packets, then */
2756 /*                      Fw can tell Hw to send these packet derectly. */
2757 /*  Added by tynli. 2009.10.15. */
2758 /*  */
2759 /* type1:pspoll, type2:null */
2760 void rtl8723b_fill_fake_txdesc(
2761         struct adapter *padapter,
2762         u8 *pDesc,
2763         u32 BufferLen,
2764         u8 IsPsPoll,
2765         u8 IsBTQosNull,
2766         u8 bDataFrame
2767 )
2768 {
2769         /*  Clear all status */
2770         memset(pDesc, 0, TXDESC_SIZE);
2771
2772         SET_TX_DESC_FIRST_SEG_8723B(pDesc, 1); /* bFirstSeg; */
2773         SET_TX_DESC_LAST_SEG_8723B(pDesc, 1); /* bLastSeg; */
2774
2775         SET_TX_DESC_OFFSET_8723B(pDesc, 0x28); /*  Offset = 32 */
2776
2777         SET_TX_DESC_PKT_SIZE_8723B(pDesc, BufferLen); /*  Buffer size + command header */
2778         SET_TX_DESC_QUEUE_SEL_8723B(pDesc, QSLT_MGNT); /*  Fixed queue of Mgnt queue */
2779
2780         /*  Set NAVUSEHDR to prevent Ps-poll AId filed to be changed to error vlaue by Hw. */
2781         if (IsPsPoll) {
2782                 SET_TX_DESC_NAV_USE_HDR_8723B(pDesc, 1);
2783         } else {
2784                 SET_TX_DESC_HWSEQ_EN_8723B(pDesc, 1); /*  Hw set sequence number */
2785                 SET_TX_DESC_HWSEQ_SEL_8723B(pDesc, 0);
2786         }
2787
2788         if (IsBTQosNull) {
2789                 SET_TX_DESC_BT_INT_8723B(pDesc, 1);
2790         }
2791
2792         SET_TX_DESC_USE_RATE_8723B(pDesc, 1); /*  use data rate which is set by Sw */
2793         SET_TX_DESC_OWN_8723B((u8 *)pDesc, 1);
2794
2795         SET_TX_DESC_TX_RATE_8723B(pDesc, DESC8723B_RATE1M);
2796
2797         /*  */
2798         /*  Encrypt the data frame if under security mode excepct null data. Suggested by CCW. */
2799         /*  */
2800         if (bDataFrame) {
2801                 u32 EncAlg;
2802
2803                 EncAlg = padapter->securitypriv.dot11PrivacyAlgrthm;
2804                 switch (EncAlg) {
2805                 case _NO_PRIVACY_:
2806                         SET_TX_DESC_SEC_TYPE_8723B(pDesc, 0x0);
2807                         break;
2808                 case _WEP40_:
2809                 case _WEP104_:
2810                 case _TKIP_:
2811                         SET_TX_DESC_SEC_TYPE_8723B(pDesc, 0x1);
2812                         break;
2813                 case _SMS4_:
2814                         SET_TX_DESC_SEC_TYPE_8723B(pDesc, 0x2);
2815                         break;
2816                 case _AES_:
2817                         SET_TX_DESC_SEC_TYPE_8723B(pDesc, 0x3);
2818                         break;
2819                 default:
2820                         SET_TX_DESC_SEC_TYPE_8723B(pDesc, 0x0);
2821                         break;
2822                 }
2823         }
2824
2825         /*  USB interface drop packet if the checksum of descriptor isn't correct. */
2826         /*  Using this checksum can let hardware recovery from packet bulk out error (e.g. Cancel URC, Bulk out error.). */
2827         rtl8723b_cal_txdesc_chksum((struct tx_desc *)pDesc);
2828 }
2829
2830 static void hw_var_set_opmode(struct adapter *padapter, u8 variable, u8 *val)
2831 {
2832         u8 val8;
2833         u8 mode = *((u8 *)val);
2834
2835         {
2836                 /*  disable Port0 TSF update */
2837                 val8 = rtw_read8(padapter, REG_BCN_CTRL);
2838                 val8 |= DIS_TSF_UDT;
2839                 rtw_write8(padapter, REG_BCN_CTRL, val8);
2840
2841                 /*  set net_type */
2842                 Set_MSR(padapter, mode);
2843
2844                 if ((mode == _HW_STATE_STATION_) || (mode == _HW_STATE_NOLINK_)) {
2845                         {
2846                                 StopTxBeacon(padapter);
2847                         }
2848
2849                         /*  disable atim wnd */
2850                         rtw_write8(padapter, REG_BCN_CTRL, DIS_TSF_UDT|EN_BCN_FUNCTION|DIS_ATIM);
2851                         /* rtw_write8(padapter, REG_BCN_CTRL, 0x18); */
2852                 } else if (mode == _HW_STATE_ADHOC_) {
2853                         ResumeTxBeacon(padapter);
2854                         rtw_write8(padapter, REG_BCN_CTRL, DIS_TSF_UDT|EN_BCN_FUNCTION|DIS_BCNQ_SUB);
2855                 } else if (mode == _HW_STATE_AP_) {
2856
2857                         ResumeTxBeacon(padapter);
2858
2859                         rtw_write8(padapter, REG_BCN_CTRL, DIS_TSF_UDT|DIS_BCNQ_SUB);
2860
2861                         /* Set RCR */
2862                         rtw_write32(padapter, REG_RCR, 0x7000208e);/* CBSSID_DATA must set to 0, reject ICV_ERR packet */
2863                         /* enable to rx data frame */
2864                         rtw_write16(padapter, REG_RXFLTMAP2, 0xFFFF);
2865                         /* enable to rx ps-poll */
2866                         rtw_write16(padapter, REG_RXFLTMAP1, 0x0400);
2867
2868                         /* Beacon Control related register for first time */
2869                         rtw_write8(padapter, REG_BCNDMATIM, 0x02); /*  2ms */
2870
2871                         /* rtw_write8(padapter, REG_BCN_MAX_ERR, 0xFF); */
2872                         rtw_write8(padapter, REG_ATIMWND, 0x0a); /*  10ms */
2873                         rtw_write16(padapter, REG_BCNTCFG, 0x00);
2874                         rtw_write16(padapter, REG_TBTT_PROHIBIT, 0xff04);
2875                         rtw_write16(padapter, REG_TSFTR_SYN_OFFSET, 0x7fff);/*  +32767 (~32ms) */
2876
2877                         /* reset TSF */
2878                         rtw_write8(padapter, REG_DUAL_TSF_RST, BIT(0));
2879
2880                         /* enable BCN0 Function for if1 */
2881                         /* don't enable update TSF0 for if1 (due to TSF update when beacon/probe rsp are received) */
2882                         rtw_write8(padapter, REG_BCN_CTRL, (DIS_TSF_UDT|EN_BCN_FUNCTION|EN_TXBCN_RPT|DIS_BCNQ_SUB));
2883
2884                         /* SW_BCN_SEL - Port0 */
2885                         /* rtw_write8(Adapter, REG_DWBCN1_CTRL_8192E+2, rtw_read8(Adapter, REG_DWBCN1_CTRL_8192E+2) & ~BIT4); */
2886                         rtw_hal_set_hwreg(padapter, HW_VAR_DL_BCN_SEL, NULL);
2887
2888                         /*  select BCN on port 0 */
2889                         rtw_write8(
2890                                 padapter,
2891                                 REG_CCK_CHECK_8723B,
2892                                 (rtw_read8(padapter, REG_CCK_CHECK_8723B)&~BIT_BCN_PORT_SEL)
2893                         );
2894
2895                         /*  dis BCN1 ATIM  WND if if2 is station */
2896                         val8 = rtw_read8(padapter, REG_BCN_CTRL_1);
2897                         val8 |= DIS_ATIM;
2898                         rtw_write8(padapter, REG_BCN_CTRL_1, val8);
2899                 }
2900         }
2901 }
2902
2903 static void hw_var_set_macaddr(struct adapter *padapter, u8 variable, u8 *val)
2904 {
2905         u8 idx = 0;
2906         u32 reg_macid;
2907
2908         reg_macid = REG_MACID;
2909
2910         for (idx = 0 ; idx < 6; idx++)
2911                 rtw_write8(GET_PRIMARY_ADAPTER(padapter), (reg_macid+idx), val[idx]);
2912 }
2913
2914 static void hw_var_set_bssid(struct adapter *padapter, u8 variable, u8 *val)
2915 {
2916         u8 idx = 0;
2917         u32 reg_bssid;
2918
2919         reg_bssid = REG_BSSID;
2920
2921         for (idx = 0 ; idx < 6; idx++)
2922                 rtw_write8(padapter, (reg_bssid+idx), val[idx]);
2923 }
2924
2925 static void hw_var_set_bcn_func(struct adapter *padapter, u8 variable, u8 *val)
2926 {
2927         u32 bcn_ctrl_reg;
2928
2929         bcn_ctrl_reg = REG_BCN_CTRL;
2930
2931         if (*(u8 *)val)
2932                 rtw_write8(padapter, bcn_ctrl_reg, (EN_BCN_FUNCTION | EN_TXBCN_RPT));
2933         else {
2934                 u8 val8;
2935                 val8 = rtw_read8(padapter, bcn_ctrl_reg);
2936                 val8 &= ~(EN_BCN_FUNCTION | EN_TXBCN_RPT);
2937
2938                 /*  Always enable port0 beacon function for PSTDMA */
2939                 if (REG_BCN_CTRL == bcn_ctrl_reg)
2940                         val8 |= EN_BCN_FUNCTION;
2941
2942                 rtw_write8(padapter, bcn_ctrl_reg, val8);
2943         }
2944 }
2945
2946 static void hw_var_set_correct_tsf(struct adapter *padapter, u8 variable, u8 *val)
2947 {
2948         u8 val8;
2949         u64 tsf;
2950         struct mlme_ext_priv *pmlmeext;
2951         struct mlme_ext_info *pmlmeinfo;
2952
2953
2954         pmlmeext = &padapter->mlmeextpriv;
2955         pmlmeinfo = &pmlmeext->mlmext_info;
2956
2957         tsf = pmlmeext->TSFValue-do_div(pmlmeext->TSFValue, (pmlmeinfo->bcn_interval*1024))-1024; /* us */
2958
2959         if (
2960                 ((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE) ||
2961                 ((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE)
2962         )
2963                 StopTxBeacon(padapter);
2964
2965         {
2966                 /*  disable related TSF function */
2967                 val8 = rtw_read8(padapter, REG_BCN_CTRL);
2968                 val8 &= ~EN_BCN_FUNCTION;
2969                 rtw_write8(padapter, REG_BCN_CTRL, val8);
2970
2971                 rtw_write32(padapter, REG_TSFTR, tsf);
2972                 rtw_write32(padapter, REG_TSFTR+4, tsf>>32);
2973
2974                 /*  enable related TSF function */
2975                 val8 = rtw_read8(padapter, REG_BCN_CTRL);
2976                 val8 |= EN_BCN_FUNCTION;
2977                 rtw_write8(padapter, REG_BCN_CTRL, val8);
2978         }
2979
2980         if (
2981                 ((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE) ||
2982                 ((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE)
2983         )
2984                 ResumeTxBeacon(padapter);
2985 }
2986
2987 static void hw_var_set_mlme_disconnect(struct adapter *padapter, u8 variable, u8 *val)
2988 {
2989         u8 val8;
2990
2991         /*  Set RCR to not to receive data frame when NO LINK state */
2992         /* rtw_write32(padapter, REG_RCR, rtw_read32(padapter, REG_RCR) & ~RCR_ADF); */
2993         /*  reject all data frames */
2994         rtw_write16(padapter, REG_RXFLTMAP2, 0);
2995
2996         /*  reset TSF */
2997         rtw_write8(padapter, REG_DUAL_TSF_RST, BIT(0));
2998
2999         /*  disable update TSF */
3000         val8 = rtw_read8(padapter, REG_BCN_CTRL);
3001         val8 |= DIS_TSF_UDT;
3002         rtw_write8(padapter, REG_BCN_CTRL, val8);
3003 }
3004
3005 static void hw_var_set_mlme_sitesurvey(struct adapter *padapter, u8 variable, u8 *val)
3006 {
3007         u32 value_rcr, rcr_clear_bit, reg_bcn_ctl;
3008         u16 value_rxfltmap2;
3009         u8 val8;
3010         struct hal_com_data *pHalData;
3011         struct mlme_priv *pmlmepriv;
3012
3013
3014         pHalData = GET_HAL_DATA(padapter);
3015         pmlmepriv = &padapter->mlmepriv;
3016
3017         reg_bcn_ctl = REG_BCN_CTRL;
3018
3019         rcr_clear_bit = RCR_CBSSID_BCN;
3020
3021         /*  config RCR to receive different BSSID & not to receive data frame */
3022         value_rxfltmap2 = 0;
3023
3024         if ((check_fwstate(pmlmepriv, WIFI_AP_STATE) == true))
3025                 rcr_clear_bit = RCR_CBSSID_BCN;
3026
3027         value_rcr = rtw_read32(padapter, REG_RCR);
3028
3029         if (*((u8 *)val)) {
3030                 /*  under sitesurvey */
3031                 value_rcr &= ~(rcr_clear_bit);
3032                 rtw_write32(padapter, REG_RCR, value_rcr);
3033
3034                 rtw_write16(padapter, REG_RXFLTMAP2, value_rxfltmap2);
3035
3036                 if (check_fwstate(pmlmepriv, WIFI_STATION_STATE | WIFI_ADHOC_STATE | WIFI_ADHOC_MASTER_STATE)) {
3037                         /*  disable update TSF */
3038                         val8 = rtw_read8(padapter, reg_bcn_ctl);
3039                         val8 |= DIS_TSF_UDT;
3040                         rtw_write8(padapter, reg_bcn_ctl, val8);
3041                 }
3042
3043                 /*  Save original RRSR setting. */
3044                 pHalData->RegRRSR = rtw_read16(padapter, REG_RRSR);
3045         } else {
3046                 /*  sitesurvey done */
3047                 if (check_fwstate(pmlmepriv, (_FW_LINKED|WIFI_AP_STATE)))
3048                         /*  enable to rx data frame */
3049                         rtw_write16(padapter, REG_RXFLTMAP2, 0xFFFF);
3050
3051                 if (check_fwstate(pmlmepriv, WIFI_STATION_STATE | WIFI_ADHOC_STATE | WIFI_ADHOC_MASTER_STATE)) {
3052                         /*  enable update TSF */
3053                         val8 = rtw_read8(padapter, reg_bcn_ctl);
3054                         val8 &= ~DIS_TSF_UDT;
3055                         rtw_write8(padapter, reg_bcn_ctl, val8);
3056                 }
3057
3058                 value_rcr |= rcr_clear_bit;
3059                 rtw_write32(padapter, REG_RCR, value_rcr);
3060
3061                 /*  Restore original RRSR setting. */
3062                 rtw_write16(padapter, REG_RRSR, pHalData->RegRRSR);
3063         }
3064 }
3065
3066 static void hw_var_set_mlme_join(struct adapter *padapter, u8 variable, u8 *val)
3067 {
3068         u8 val8;
3069         u16 val16;
3070         u32 val32;
3071         u8 RetryLimit;
3072         u8 type;
3073         struct mlme_priv *pmlmepriv;
3074         struct eeprom_priv *pEEPROM;
3075
3076
3077         RetryLimit = 0x30;
3078         type = *(u8 *)val;
3079         pmlmepriv = &padapter->mlmepriv;
3080         pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
3081
3082         if (type == 0) { /*  prepare to join */
3083                 /* enable to rx data frame.Accept all data frame */
3084                 /* rtw_write32(padapter, REG_RCR, rtw_read32(padapter, REG_RCR)|RCR_ADF); */
3085                 rtw_write16(padapter, REG_RXFLTMAP2, 0xFFFF);
3086
3087                 val32 = rtw_read32(padapter, REG_RCR);
3088                 if (padapter->in_cta_test)
3089                         val32 &= ~(RCR_CBSSID_DATA | RCR_CBSSID_BCN);/*  RCR_ADF */
3090                 else
3091                         val32 |= RCR_CBSSID_DATA|RCR_CBSSID_BCN;
3092                 rtw_write32(padapter, REG_RCR, val32);
3093
3094                 if (check_fwstate(pmlmepriv, WIFI_STATION_STATE) == true)
3095                         RetryLimit = (pEEPROM->CustomerID == RT_CID_CCX) ? 7 : 48;
3096                 else /*  Ad-hoc Mode */
3097                         RetryLimit = 0x7;
3098         } else if (type == 1) /* joinbss_event call back when join res < 0 */
3099                 rtw_write16(padapter, REG_RXFLTMAP2, 0x00);
3100         else if (type == 2) { /* sta add event call back */
3101                 /* enable update TSF */
3102                 val8 = rtw_read8(padapter, REG_BCN_CTRL);
3103                 val8 &= ~DIS_TSF_UDT;
3104                 rtw_write8(padapter, REG_BCN_CTRL, val8);
3105
3106                 if (check_fwstate(pmlmepriv, WIFI_ADHOC_STATE|WIFI_ADHOC_MASTER_STATE))
3107                         RetryLimit = 0x7;
3108         }
3109
3110         val16 = (RetryLimit << RETRY_LIMIT_SHORT_SHIFT) | (RetryLimit << RETRY_LIMIT_LONG_SHIFT);
3111         rtw_write16(padapter, REG_RL, val16);
3112 }
3113
3114 void CCX_FwC2HTxRpt_8723b(struct adapter *padapter, u8 *pdata, u8 len)
3115 {
3116
3117 #define GET_8723B_C2H_TX_RPT_LIFE_TIME_OVER(_Header)    LE_BITS_TO_1BYTE((_Header + 0), 6, 1)
3118 #define GET_8723B_C2H_TX_RPT_RETRY_OVER(_Header)        LE_BITS_TO_1BYTE((_Header + 0), 7, 1)
3119
3120         if (GET_8723B_C2H_TX_RPT_RETRY_OVER(pdata) | GET_8723B_C2H_TX_RPT_LIFE_TIME_OVER(pdata)) {
3121                 rtw_ack_tx_done(&padapter->xmitpriv, RTW_SCTX_DONE_CCX_PKT_FAIL);
3122         }
3123 /*
3124         else if (seq_no != padapter->xmitpriv.seq_no) {
3125                 rtw_ack_tx_done(&padapter->xmitpriv, RTW_SCTX_DONE_CCX_PKT_FAIL);
3126         }
3127 */
3128         else
3129                 rtw_ack_tx_done(&padapter->xmitpriv, RTW_SCTX_DONE_SUCCESS);
3130 }
3131
3132 s32 c2h_id_filter_ccx_8723b(u8 *buf)
3133 {
3134         struct c2h_evt_hdr_88xx *c2h_evt = (struct c2h_evt_hdr_88xx *)buf;
3135         s32 ret = false;
3136         if (c2h_evt->id == C2H_CCX_TX_RPT)
3137                 ret = true;
3138
3139         return ret;
3140 }
3141
3142
3143 s32 c2h_handler_8723b(struct adapter *padapter, u8 *buf)
3144 {
3145         struct c2h_evt_hdr_88xx *pC2hEvent = (struct c2h_evt_hdr_88xx *)buf;
3146         s32 ret = _SUCCESS;
3147
3148         if (!pC2hEvent) {
3149                 ret = _FAIL;
3150                 goto exit;
3151         }
3152
3153         switch (pC2hEvent->id) {
3154         case C2H_AP_RPT_RSP:
3155                 break;
3156         case C2H_DBG:
3157                 {
3158                 }
3159                 break;
3160
3161         case C2H_CCX_TX_RPT:
3162 /*                      CCX_FwC2HTxRpt(padapter, QueueID, pC2hEvent->payload); */
3163                 break;
3164
3165         case C2H_EXT_RA_RPT:
3166 /*                      C2HExtRaRptHandler(padapter, pC2hEvent->payload, C2hEvent.CmdLen); */
3167                 break;
3168
3169         case C2H_HW_INFO_EXCH:
3170                 break;
3171
3172         case C2H_8723B_BT_INFO:
3173                 hal_btcoex_BtInfoNotify(padapter, pC2hEvent->plen, pC2hEvent->payload);
3174                 break;
3175
3176         default:
3177                 break;
3178         }
3179
3180         /*  Clear event to notify FW we have read the command. */
3181         /*  Note: */
3182         /*      If this field isn't clear, the FW won't update the next command message. */
3183 /*      rtw_write8(padapter, REG_C2HEVT_CLEAR, C2H_EVT_HOST_CLOSE); */
3184 exit:
3185         return ret;
3186 }
3187
3188 static void process_c2h_event(struct adapter *padapter, struct c2h_evt_hdr_t *pC2hEvent, u8 *c2hBuf)
3189 {
3190         if (!c2hBuf)
3191                 return;
3192
3193         switch (pC2hEvent->CmdID) {
3194         case C2H_AP_RPT_RSP:
3195                 break;
3196         case C2H_DBG:
3197                 {
3198                 }
3199                 break;
3200
3201         case C2H_CCX_TX_RPT:
3202 /*                      CCX_FwC2HTxRpt(padapter, QueueID, tmpBuf); */
3203                 break;
3204
3205         case C2H_EXT_RA_RPT:
3206 /*                      C2HExtRaRptHandler(padapter, tmpBuf, C2hEvent.CmdLen); */
3207                 break;
3208
3209         case C2H_HW_INFO_EXCH:
3210                 break;
3211
3212         case C2H_8723B_BT_INFO:
3213                 hal_btcoex_BtInfoNotify(padapter, pC2hEvent->CmdLen, c2hBuf);
3214                 break;
3215
3216         default:
3217                 break;
3218         }
3219 }
3220
3221 void C2HPacketHandler_8723B(struct adapter *padapter, u8 *pbuffer, u16 length)
3222 {
3223         struct c2h_evt_hdr_t    C2hEvent;
3224         u8 *tmpBuf = NULL;
3225         C2hEvent.CmdID = pbuffer[0];
3226         C2hEvent.CmdSeq = pbuffer[1];
3227         C2hEvent.CmdLen = length-2;
3228         tmpBuf = pbuffer+2;
3229
3230         process_c2h_event(padapter, &C2hEvent, tmpBuf);
3231         /* c2h_handler_8723b(padapter,&C2hEvent); */
3232 }
3233
3234 void SetHwReg8723B(struct adapter *padapter, u8 variable, u8 *val)
3235 {
3236         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
3237         u8 val8;
3238         u32 val32;
3239
3240         switch (variable) {
3241         case HW_VAR_MEDIA_STATUS:
3242                 val8 = rtw_read8(padapter, MSR) & 0x0c;
3243                 val8 |= *val;
3244                 rtw_write8(padapter, MSR, val8);
3245                 break;
3246
3247         case HW_VAR_MEDIA_STATUS1:
3248                 val8 = rtw_read8(padapter, MSR) & 0x03;
3249                 val8 |= *val << 2;
3250                 rtw_write8(padapter, MSR, val8);
3251                 break;
3252
3253         case HW_VAR_SET_OPMODE:
3254                 hw_var_set_opmode(padapter, variable, val);
3255                 break;
3256
3257         case HW_VAR_MAC_ADDR:
3258                 hw_var_set_macaddr(padapter, variable, val);
3259                 break;
3260
3261         case HW_VAR_BSSID:
3262                 hw_var_set_bssid(padapter, variable, val);
3263                 break;
3264
3265         case HW_VAR_BASIC_RATE:
3266         {
3267                 struct mlme_ext_info *mlmext_info = &padapter->mlmeextpriv.mlmext_info;
3268                 u16 BrateCfg = 0;
3269                 u16 rrsr_2g_force_mask = (RRSR_11M|RRSR_5_5M|RRSR_1M);
3270                 u16 rrsr_2g_allow_mask = (RRSR_24M|RRSR_12M|RRSR_6M|RRSR_CCK_RATES);
3271
3272                 HalSetBrateCfg(padapter, val, &BrateCfg);
3273
3274                 /* apply force and allow mask */
3275                 BrateCfg |= rrsr_2g_force_mask;
3276                 BrateCfg &= rrsr_2g_allow_mask;
3277
3278                 /* IOT consideration */
3279                 if (mlmext_info->assoc_AP_vendor == HT_IOT_PEER_CISCO) {
3280                         /* if peer is cisco and didn't use ofdm rate, we enable 6M ack */
3281                         if ((BrateCfg & (RRSR_24M|RRSR_12M|RRSR_6M)) == 0)
3282                                 BrateCfg |= RRSR_6M;
3283                 }
3284
3285                 pHalData->BasicRateSet = BrateCfg;
3286
3287                 /*  Set RRSR rate table. */
3288                 rtw_write16(padapter, REG_RRSR, BrateCfg);
3289                 rtw_write8(padapter, REG_RRSR+2, rtw_read8(padapter, REG_RRSR+2)&0xf0);
3290         }
3291                 break;
3292
3293         case HW_VAR_TXPAUSE:
3294                 rtw_write8(padapter, REG_TXPAUSE, *val);
3295                 break;
3296
3297         case HW_VAR_BCN_FUNC:
3298                 hw_var_set_bcn_func(padapter, variable, val);
3299                 break;
3300
3301         case HW_VAR_CORRECT_TSF:
3302                 hw_var_set_correct_tsf(padapter, variable, val);
3303                 break;
3304
3305         case HW_VAR_CHECK_BSSID:
3306                 {
3307                         u32 val32;
3308                         val32 = rtw_read32(padapter, REG_RCR);
3309                         if (*val)
3310                                 val32 |= RCR_CBSSID_DATA|RCR_CBSSID_BCN;
3311                         else
3312                                 val32 &= ~(RCR_CBSSID_DATA|RCR_CBSSID_BCN);
3313                         rtw_write32(padapter, REG_RCR, val32);
3314                 }
3315                 break;
3316
3317         case HW_VAR_MLME_DISCONNECT:
3318                 hw_var_set_mlme_disconnect(padapter, variable, val);
3319                 break;
3320
3321         case HW_VAR_MLME_SITESURVEY:
3322                 hw_var_set_mlme_sitesurvey(padapter, variable,  val);
3323
3324                 hal_btcoex_ScanNotify(padapter, *val?true:false);
3325                 break;
3326
3327         case HW_VAR_MLME_JOIN:
3328                 hw_var_set_mlme_join(padapter, variable, val);
3329
3330                 switch (*val) {
3331                 case 0:
3332                         /*  prepare to join */
3333                         hal_btcoex_ConnectNotify(padapter, true);
3334                         break;
3335                 case 1:
3336                         /*  joinbss_event callback when join res < 0 */
3337                         hal_btcoex_ConnectNotify(padapter, false);
3338                         break;
3339                 case 2:
3340                         /*  sta add event callback */
3341 /*                              rtw_btcoex_MediaStatusNotify(padapter, RT_MEDIA_CONNECT); */
3342                         break;
3343                 }
3344                 break;
3345
3346         case HW_VAR_ON_RCR_AM:
3347                 val32 = rtw_read32(padapter, REG_RCR);
3348                 val32 |= RCR_AM;
3349                 rtw_write32(padapter, REG_RCR, val32);
3350                 break;
3351
3352         case HW_VAR_OFF_RCR_AM:
3353                 val32 = rtw_read32(padapter, REG_RCR);
3354                 val32 &= ~RCR_AM;
3355                 rtw_write32(padapter, REG_RCR, val32);
3356                 break;
3357
3358         case HW_VAR_BEACON_INTERVAL:
3359                 rtw_write16(padapter, REG_BCN_INTERVAL, *((u16 *)val));
3360                 break;
3361
3362         case HW_VAR_SLOT_TIME:
3363                 rtw_write8(padapter, REG_SLOT, *val);
3364                 break;
3365
3366         case HW_VAR_RESP_SIFS:
3367                 /* SIFS_Timer = 0x0a0a0808; */
3368                 /* RESP_SIFS for CCK */
3369                 rtw_write8(padapter, REG_RESP_SIFS_CCK, val[0]); /*  SIFS_T2T_CCK (0x08) */
3370                 rtw_write8(padapter, REG_RESP_SIFS_CCK+1, val[1]); /* SIFS_R2T_CCK(0x08) */
3371                 /* RESP_SIFS for OFDM */
3372                 rtw_write8(padapter, REG_RESP_SIFS_OFDM, val[2]); /* SIFS_T2T_OFDM (0x0a) */
3373                 rtw_write8(padapter, REG_RESP_SIFS_OFDM+1, val[3]); /* SIFS_R2T_OFDM(0x0a) */
3374                 break;
3375
3376         case HW_VAR_ACK_PREAMBLE:
3377                 {
3378                         u8 regTmp;
3379                         u8 bShortPreamble = *val;
3380
3381                         /*  Joseph marked out for Netgear 3500 TKIP channel 7 issue.(Temporarily) */
3382                         /* regTmp = (pHalData->nCur40MhzPrimeSC)<<5; */
3383                         regTmp = 0;
3384                         if (bShortPreamble)
3385                                 regTmp |= 0x80;
3386                         rtw_write8(padapter, REG_RRSR+2, regTmp);
3387                 }
3388                 break;
3389
3390         case HW_VAR_CAM_EMPTY_ENTRY:
3391                 {
3392                         u8 ucIndex = *val;
3393                         u8 i;
3394                         u32 ulCommand = 0;
3395                         u32 ulContent = 0;
3396                         u32 ulEncAlgo = CAM_AES;
3397
3398                         for (i = 0; i < CAM_CONTENT_COUNT; i++) {
3399                                 /*  filled id in CAM config 2 byte */
3400                                 if (i == 0) {
3401                                         ulContent |= (ucIndex & 0x03) | ((u16)(ulEncAlgo)<<2);
3402                                         /* ulContent |= CAM_VALID; */
3403                                 } else
3404                                         ulContent = 0;
3405
3406                                 /*  polling bit, and No Write enable, and address */
3407                                 ulCommand = CAM_CONTENT_COUNT*ucIndex+i;
3408                                 ulCommand = ulCommand | CAM_POLLINIG | CAM_WRITE;
3409                                 /*  write content 0 is equall to mark invalid */
3410                                 rtw_write32(padapter, WCAMI, ulContent);  /* mdelay(40); */
3411                                 rtw_write32(padapter, RWCAM, ulCommand);  /* mdelay(40); */
3412                         }
3413                 }
3414                 break;
3415
3416         case HW_VAR_CAM_INVALID_ALL:
3417                 rtw_write32(padapter, RWCAM, BIT(31)|BIT(30));
3418                 break;
3419
3420         case HW_VAR_CAM_WRITE:
3421                 {
3422                         u32 cmd;
3423                         u32 *cam_val = (u32 *)val;
3424
3425                         rtw_write32(padapter, WCAMI, cam_val[0]);
3426
3427                         cmd = CAM_POLLINIG | CAM_WRITE | cam_val[1];
3428                         rtw_write32(padapter, RWCAM, cmd);
3429                 }
3430                 break;
3431
3432         case HW_VAR_AC_PARAM_VO:
3433                 rtw_write32(padapter, REG_EDCA_VO_PARAM, *((u32 *)val));
3434                 break;
3435
3436         case HW_VAR_AC_PARAM_VI:
3437                 rtw_write32(padapter, REG_EDCA_VI_PARAM, *((u32 *)val));
3438                 break;
3439
3440         case HW_VAR_AC_PARAM_BE:
3441                 pHalData->AcParam_BE = ((u32 *)(val))[0];
3442                 rtw_write32(padapter, REG_EDCA_BE_PARAM, *((u32 *)val));
3443                 break;
3444
3445         case HW_VAR_AC_PARAM_BK:
3446                 rtw_write32(padapter, REG_EDCA_BK_PARAM, *((u32 *)val));
3447                 break;
3448
3449         case HW_VAR_ACM_CTRL:
3450                 {
3451                         u8 ctrl = *((u8 *)val);
3452                         u8 hwctrl = 0;
3453
3454                         if (ctrl != 0) {
3455                                 hwctrl |= AcmHw_HwEn;
3456
3457                                 if (ctrl & BIT(1)) /*  BE */
3458                                         hwctrl |= AcmHw_BeqEn;
3459
3460                                 if (ctrl & BIT(2)) /*  VI */
3461                                         hwctrl |= AcmHw_ViqEn;
3462
3463                                 if (ctrl & BIT(3)) /*  VO */
3464                                         hwctrl |= AcmHw_VoqEn;
3465                         }
3466
3467                         rtw_write8(padapter, REG_ACMHWCTRL, hwctrl);
3468                 }
3469                 break;
3470
3471         case HW_VAR_AMPDU_FACTOR:
3472                 {
3473                         u32 AMPDULen =  (*((u8 *)val));
3474
3475                         if (AMPDULen < HT_AGG_SIZE_32K)
3476                                 AMPDULen = (0x2000 << (*((u8 *)val)))-1;
3477                         else
3478                                 AMPDULen = 0x7fff;
3479
3480                         rtw_write32(padapter, REG_AMPDU_MAX_LENGTH_8723B, AMPDULen);
3481                 }
3482                 break;
3483
3484         case HW_VAR_H2C_FW_PWRMODE:
3485                 {
3486                         u8 psmode = *val;
3487
3488                         /*  Forece leave RF low power mode for 1T1R to prevent conficting setting in Fw power */
3489                         /*  saving sequence. 2010.06.07. Added by tynli. Suggested by SD3 yschang. */
3490                         if (psmode != PS_MODE_ACTIVE) {
3491                                 ODM_RF_Saving(&pHalData->odmpriv, true);
3492                         }
3493
3494                         /* if (psmode != PS_MODE_ACTIVE)        { */
3495                         /*      rtl8723b_set_lowpwr_lps_cmd(padapter, true); */
3496                         /*  else { */
3497                         /*      rtl8723b_set_lowpwr_lps_cmd(padapter, false); */
3498                         /*  */
3499                         rtl8723b_set_FwPwrMode_cmd(padapter, psmode);
3500                 }
3501                 break;
3502         case HW_VAR_H2C_PS_TUNE_PARAM:
3503                 rtl8723b_set_FwPsTuneParam_cmd(padapter);
3504                 break;
3505
3506         case HW_VAR_H2C_FW_JOINBSSRPT:
3507                 rtl8723b_set_FwJoinBssRpt_cmd(padapter, *val);
3508                 break;
3509
3510         case HW_VAR_INITIAL_GAIN:
3511                 {
3512                         struct dig_t *pDigTable = &pHalData->odmpriv.DM_DigTable;
3513                         u32 rx_gain = *(u32 *)val;
3514
3515                         if (rx_gain == 0xff) {/* restore rx gain */
3516                                 ODM_Write_DIG(&pHalData->odmpriv, pDigTable->BackupIGValue);
3517                         } else {
3518                                 pDigTable->BackupIGValue = pDigTable->CurIGValue;
3519                                 ODM_Write_DIG(&pHalData->odmpriv, rx_gain);
3520                         }
3521                 }
3522                 break;
3523
3524         case HW_VAR_EFUSE_USAGE:
3525                 pHalData->EfuseUsedPercentage = *val;
3526                 break;
3527
3528         case HW_VAR_EFUSE_BYTES:
3529                 pHalData->EfuseUsedBytes = *((u16 *)val);
3530                 break;
3531
3532         case HW_VAR_EFUSE_BT_USAGE:
3533 #ifdef HAL_EFUSE_MEMORY
3534                 pHalData->EfuseHal.BTEfuseUsedPercentage = *val;
3535 #endif
3536                 break;
3537
3538         case HW_VAR_EFUSE_BT_BYTES:
3539 #ifdef HAL_EFUSE_MEMORY
3540                 pHalData->EfuseHal.BTEfuseUsedBytes = *((u16 *)val);
3541 #else
3542                 BTEfuseUsedBytes = *((u16 *)val);
3543 #endif
3544                 break;
3545
3546         case HW_VAR_FIFO_CLEARN_UP:
3547                 {
3548                         #define RW_RELEASE_EN           BIT(18)
3549                         #define RXDMA_IDLE                      BIT(17)
3550
3551                         struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(padapter);
3552                         u8 trycnt = 100;
3553
3554                         /*  pause tx */
3555                         rtw_write8(padapter, REG_TXPAUSE, 0xff);
3556
3557                         /*  keep sn */
3558                         padapter->xmitpriv.nqos_ssn = rtw_read16(padapter, REG_NQOS_SEQ);
3559
3560                         if (!pwrpriv->bkeepfwalive) {
3561                                 /* RX DMA stop */
3562                                 val32 = rtw_read32(padapter, REG_RXPKT_NUM);
3563                                 val32 |= RW_RELEASE_EN;
3564                                 rtw_write32(padapter, REG_RXPKT_NUM, val32);
3565                                 do {
3566                                         val32 = rtw_read32(padapter, REG_RXPKT_NUM);
3567                                         val32 &= RXDMA_IDLE;
3568                                         if (val32)
3569                                                 break;
3570                                 } while (--trycnt);
3571
3572                                 /*  RQPN Load 0 */
3573                                 rtw_write16(padapter, REG_RQPN_NPQ, 0);
3574                                 rtw_write32(padapter, REG_RQPN, 0x80000000);
3575                                 mdelay(2);
3576                         }
3577                 }
3578                 break;
3579
3580         case HW_VAR_APFM_ON_MAC:
3581                 pHalData->bMacPwrCtrlOn = *val;
3582                 break;
3583
3584         case HW_VAR_NAV_UPPER:
3585                 {
3586                         u32 usNavUpper = *((u32 *)val);
3587
3588                         if (usNavUpper > HAL_NAV_UPPER_UNIT_8723B * 0xFF)
3589                                 break;
3590
3591                         usNavUpper = DIV_ROUND_UP(usNavUpper,
3592                                                   HAL_NAV_UPPER_UNIT_8723B);
3593                         rtw_write8(padapter, REG_NAV_UPPER, (u8)usNavUpper);
3594                 }
3595                 break;
3596
3597         case HW_VAR_H2C_MEDIA_STATUS_RPT:
3598                 {
3599                         u16 mstatus_rpt = (*(u16 *)val);
3600                         u8 mstatus, macId;
3601
3602                         mstatus = (u8) (mstatus_rpt & 0xFF);
3603                         macId = (u8)(mstatus_rpt >> 8);
3604                         rtl8723b_set_FwMediaStatusRpt_cmd(padapter, mstatus, macId);
3605                 }
3606                 break;
3607         case HW_VAR_BCN_VALID:
3608                 {
3609                         /*  BCN_VALID, BIT16 of REG_TDECTRL = BIT0 of REG_TDECTRL+2, write 1 to clear, Clear by sw */
3610                         val8 = rtw_read8(padapter, REG_TDECTRL+2);
3611                         val8 |= BIT(0);
3612                         rtw_write8(padapter, REG_TDECTRL+2, val8);
3613                 }
3614                 break;
3615
3616         case HW_VAR_DL_BCN_SEL:
3617                 {
3618                         /*  SW_BCN_SEL - Port0 */
3619                         val8 = rtw_read8(padapter, REG_DWBCN1_CTRL_8723B+2);
3620                         val8 &= ~BIT(4);
3621                         rtw_write8(padapter, REG_DWBCN1_CTRL_8723B+2, val8);
3622                 }
3623                 break;
3624
3625         case HW_VAR_DO_IQK:
3626                 pHalData->bNeedIQK = true;
3627                 break;
3628
3629         case HW_VAR_DL_RSVD_PAGE:
3630                 if (check_fwstate(&padapter->mlmepriv, WIFI_AP_STATE) == true)
3631                         rtl8723b_download_BTCoex_AP_mode_rsvd_page(padapter);
3632                 else
3633                         rtl8723b_download_rsvd_page(padapter, RT_MEDIA_CONNECT);
3634                 break;
3635
3636         case HW_VAR_MACID_SLEEP:
3637                 /*  Input is MACID */
3638                 val32 = *(u32 *)val;
3639                 if (val32 > 31)
3640                         break;
3641
3642                 val8 = (u8)val32; /*  macid is between 0~31 */
3643
3644                 val32 = rtw_read32(padapter, REG_MACID_SLEEP);
3645                 if (val32 & BIT(val8))
3646                         break;
3647                 val32 |= BIT(val8);
3648                 rtw_write32(padapter, REG_MACID_SLEEP, val32);
3649                 break;
3650
3651         case HW_VAR_MACID_WAKEUP:
3652                 /*  Input is MACID */
3653                 val32 = *(u32 *)val;
3654                 if (val32 > 31)
3655                         break;
3656
3657                 val8 = (u8)val32; /*  macid is between 0~31 */
3658
3659                 val32 = rtw_read32(padapter, REG_MACID_SLEEP);
3660                 if (!(val32 & BIT(val8)))
3661                         break;
3662                 val32 &= ~BIT(val8);
3663                 rtw_write32(padapter, REG_MACID_SLEEP, val32);
3664                 break;
3665
3666         default:
3667                 SetHwReg(padapter, variable, val);
3668                 break;
3669         }
3670 }
3671
3672 void GetHwReg8723B(struct adapter *padapter, u8 variable, u8 *val)
3673 {
3674         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
3675         u8 val8;
3676         u16 val16;
3677
3678         switch (variable) {
3679         case HW_VAR_TXPAUSE:
3680                 *val = rtw_read8(padapter, REG_TXPAUSE);
3681                 break;
3682
3683         case HW_VAR_BCN_VALID:
3684                 {
3685                         /*  BCN_VALID, BIT16 of REG_TDECTRL = BIT0 of REG_TDECTRL+2 */
3686                         val8 = rtw_read8(padapter, REG_TDECTRL+2);
3687                         *val = (BIT(0) & val8) ? true : false;
3688                 }
3689                 break;
3690
3691         case HW_VAR_FWLPS_RF_ON:
3692                 {
3693                         /*  When we halt NIC, we should check if FW LPS is leave. */
3694                         u32 valRCR;
3695
3696                         if (
3697                                 padapter->bSurpriseRemoved  ||
3698                                 (adapter_to_pwrctl(padapter)->rf_pwrstate == rf_off)
3699                         ) {
3700                                 /*  If it is in HW/SW Radio OFF or IPS state, we do not check Fw LPS Leave, */
3701                                 /*  because Fw is unload. */
3702                                 *val = true;
3703                         } else {
3704                                 valRCR = rtw_read32(padapter, REG_RCR);
3705                                 valRCR &= 0x00070000;
3706                                 if (valRCR)
3707                                         *val = false;
3708                                 else
3709                                         *val = true;
3710                         }
3711                 }
3712                 break;
3713
3714         case HW_VAR_EFUSE_USAGE:
3715                 *val = pHalData->EfuseUsedPercentage;
3716                 break;
3717
3718         case HW_VAR_EFUSE_BYTES:
3719                 *((u16 *)val) = pHalData->EfuseUsedBytes;
3720                 break;
3721
3722         case HW_VAR_EFUSE_BT_USAGE:
3723 #ifdef HAL_EFUSE_MEMORY
3724                 *val = pHalData->EfuseHal.BTEfuseUsedPercentage;
3725 #endif
3726                 break;
3727
3728         case HW_VAR_EFUSE_BT_BYTES:
3729 #ifdef HAL_EFUSE_MEMORY
3730                 *((u16 *)val) = pHalData->EfuseHal.BTEfuseUsedBytes;
3731 #else
3732                 *((u16 *)val) = BTEfuseUsedBytes;
3733 #endif
3734                 break;
3735
3736         case HW_VAR_APFM_ON_MAC:
3737                 *val = pHalData->bMacPwrCtrlOn;
3738                 break;
3739         case HW_VAR_CHK_HI_QUEUE_EMPTY:
3740                 val16 = rtw_read16(padapter, REG_TXPKT_EMPTY);
3741                 *val = (val16 & BIT(10)) ? true:false;
3742                 break;
3743         default:
3744                 GetHwReg(padapter, variable, val);
3745                 break;
3746         }
3747 }
3748
3749 /* Description:
3750  *      Change default setting of specified variable.
3751  */
3752 u8 SetHalDefVar8723B(struct adapter *padapter, enum hal_def_variable variable, void *pval)
3753 {
3754         u8 bResult;
3755
3756         bResult = _SUCCESS;
3757
3758         switch (variable) {
3759         default:
3760                 bResult = SetHalDefVar(padapter, variable, pval);
3761                 break;
3762         }
3763
3764         return bResult;
3765 }
3766
3767 /* Description:
3768  *      Query setting of specified variable.
3769  */
3770 u8 GetHalDefVar8723B(struct adapter *padapter, enum hal_def_variable variable, void *pval)
3771 {
3772         u8 bResult;
3773
3774         bResult = _SUCCESS;
3775
3776         switch (variable) {
3777         case HAL_DEF_MAX_RECVBUF_SZ:
3778                 *((u32 *)pval) = MAX_RECVBUF_SZ;
3779                 break;
3780
3781         case HAL_DEF_RX_PACKET_OFFSET:
3782                 *((u32 *)pval) = RXDESC_SIZE + DRVINFO_SZ*8;
3783                 break;
3784
3785         case HW_VAR_MAX_RX_AMPDU_FACTOR:
3786                 /*  Stanley@BB.SD3 suggests 16K can get stable performance */
3787                 /*  The experiment was done on SDIO interface */
3788                 /*  coding by Lucas@20130730 */
3789                 *(u32 *)pval = IEEE80211_HT_MAX_AMPDU_16K;
3790                 break;
3791         case HAL_DEF_TX_LDPC:
3792         case HAL_DEF_RX_LDPC:
3793                 *((u8 *)pval) = false;
3794                 break;
3795         case HAL_DEF_TX_STBC:
3796                 *((u8 *)pval) = 0;
3797                 break;
3798         case HAL_DEF_RX_STBC:
3799                 *((u8 *)pval) = 1;
3800                 break;
3801         case HAL_DEF_EXPLICIT_BEAMFORMER:
3802         case HAL_DEF_EXPLICIT_BEAMFORMEE:
3803                 *((u8 *)pval) = false;
3804                 break;
3805
3806         case HW_DEF_RA_INFO_DUMP:
3807                 {
3808                         u8 mac_id = *(u8 *)pval;
3809                         u32 cmd;
3810
3811                         cmd = 0x40000100 | mac_id;
3812                         rtw_write32(padapter, REG_HMEBOX_DBG_2_8723B, cmd);
3813                         msleep(10);
3814                         rtw_read32(padapter, 0x2F0);    // info 1
3815
3816                         cmd = 0x40000400 | mac_id;
3817                         rtw_write32(padapter, REG_HMEBOX_DBG_2_8723B, cmd);
3818                         msleep(10);
3819                         rtw_read32(padapter, 0x2F0);    // info 1
3820                         rtw_read32(padapter, 0x2F4);    // info 2
3821                         rtw_read32(padapter, 0x2F8);    // rate mask 1
3822                         rtw_read32(padapter, 0x2FC);    // rate mask 2
3823                 }
3824                 break;
3825
3826         case HAL_DEF_TX_PAGE_BOUNDARY:
3827                 if (!padapter->registrypriv.wifi_spec) {
3828                         *(u8 *)pval = TX_PAGE_BOUNDARY_8723B;
3829                 } else {
3830                         *(u8 *)pval = WMM_NORMAL_TX_PAGE_BOUNDARY_8723B;
3831                 }
3832                 break;
3833
3834         case HAL_DEF_MACID_SLEEP:
3835                 *(u8 *)pval = true; /*  support macid sleep */
3836                 break;
3837
3838         default:
3839                 bResult = GetHalDefVar(padapter, variable, pval);
3840                 break;
3841         }
3842
3843         return bResult;
3844 }
3845
3846 void rtl8723b_start_thread(struct adapter *padapter)
3847 {
3848         struct xmit_priv *xmitpriv = &padapter->xmitpriv;
3849
3850         xmitpriv->SdioXmitThread = kthread_run(rtl8723bs_xmit_thread, padapter, "RTWHALXT");
3851 }
3852
3853 void rtl8723b_stop_thread(struct adapter *padapter)
3854 {
3855         struct xmit_priv *xmitpriv = &padapter->xmitpriv;
3856
3857         /*  stop xmit_buf_thread */
3858         if (xmitpriv->SdioXmitThread) {
3859                 complete(&xmitpriv->SdioXmitStart);
3860                 wait_for_completion(&xmitpriv->SdioXmitTerminate);
3861                 xmitpriv->SdioXmitThread = NULL;
3862         }
3863 }