GNU Linux-libre 4.19.207-gnu1
[releases.git] / drivers / staging / rtl8192u / ieee80211 / ieee80211_tx.c
1 /******************************************************************************
2  *
3  *  Copyright(c) 2003 - 2004 Intel Corporation. All rights reserved.
4  *
5  *  This program is free software; you can redistribute it and/or modify it
6  *  under the terms of version 2 of the GNU General Public License as
7  *  published by the Free Software Foundation.
8  *
9  *  This program is distributed in the hope that it will be useful, but WITHOUT
10  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  *  more details.
13  *
14  *  You should have received a copy of the GNU General Public License along with
15  *  this program; if not, write to the Free Software Foundation, Inc., 59
16  *  Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17  *
18  *  The full GNU General Public License is included in this distribution in the
19  *  file called LICENSE.
20  *
21  *  Contact Information:
22  *  James P. Ketrenos <ipw2100-admin@linux.intel.com>
23  *  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24  *
25  *
26  *  Few modifications for Realtek's Wi-Fi drivers by
27  *  Andrea Merello <andrea.merello@gmail.com>
28  *
29  *  A special thanks goes to Realtek for their support !
30  *
31  ******************************************************************************/
32
33 #include <linux/compiler.h>
34 #include <linux/errno.h>
35 #include <linux/if_arp.h>
36 #include <linux/in6.h>
37 #include <linux/in.h>
38 #include <linux/ip.h>
39 #include <linux/kernel.h>
40 #include <linux/module.h>
41 #include <linux/netdevice.h>
42 #include <linux/pci.h>
43 #include <linux/proc_fs.h>
44 #include <linux/skbuff.h>
45 #include <linux/slab.h>
46 #include <linux/tcp.h>
47 #include <linux/types.h>
48 #include <linux/wireless.h>
49 #include <linux/etherdevice.h>
50 #include <linux/uaccess.h>
51 #include <linux/if_vlan.h>
52
53 #include "ieee80211.h"
54
55
56 /*
57  *
58  *
59  * 802.11 Data Frame
60  *
61  *
62  * 802.11 frame_contorl for data frames - 2 bytes
63  *      ,-----------------------------------------------------------------------------------------.
64  * bits | 0  |  1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  a  |  b  |  c  |  d  |  e   |
65  *      |----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|
66  * val  | 0  |  0  |  0  |  1  |  x  |  0  |  0  |  0  |  1  |  0  |  x  |  x  |  x  |  x  |  x   |
67  *      |----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|
68  * desc | ^-ver-^  |  ^type-^  |  ^-----subtype-----^  | to  |from |more |retry| pwr |more |wep   |
69  *      |          |           | x=0 data,x=1 data+ack | DS  | DS  |frag |     | mgm |data |      |
70  *      '-----------------------------------------------------------------------------------------'
71  *                                                    /\
72  *                                                    |
73  * 802.11 Data Frame                                  |
74  *           ,--------- 'ctrl' expands to >-----------'
75  *           |
76  *        ,--'---,-------------------------------------------------------------.
77  *  Bytes |  2   |  2   |    6    |    6    |    6    |  2   | 0..2312 |   4  |
78  *        |------|------|---------|---------|---------|------|---------|------|
79  *  Desc. | ctrl | dura |  DA/RA  |   TA    |    SA   | Sequ |  Frame  |  fcs |
80  *        |      | tion | (BSSID) |         |         | ence |  data   |      |
81  *        `--------------------------------------------------|         |------'
82  *  Total: 28 non-data bytes                                 `----.----'
83  *                                                                |
84  *         .- 'Frame data' expands to <---------------------------'
85  *         |
86  *         V
87  *        ,---------------------------------------------------.
88  *  Bytes |  1   |  1   |    1    |    3     |  2   |  0-2304 |
89  *        |------|------|---------|----------|------|---------|
90  *  Desc. | SNAP | SNAP | Control |Eth Tunnel| Type | IP      |
91  *        | DSAP | SSAP |         |          |      | Packet  |
92  *        | 0xAA | 0xAA |0x03 (UI)|0x00-00-F8|      |         |
93  *        `-----------------------------------------|         |
94  *  Total: 8 non-data bytes                         `----.----'
95  *                                                       |
96  *         .- 'IP Packet' expands, if WEP enabled, to <--'
97  *         |
98  *         V
99  *        ,-----------------------.
100  *  Bytes |  4  |   0-2296  |  4  |
101  *        |-----|-----------|-----|
102  *  Desc. | IV  | Encrypted | ICV |
103  *        |     | IP Packet |     |
104  *        `-----------------------'
105  *  Total: 8 non-data bytes
106  *
107  *
108  *  802.3 Ethernet Data Frame
109  *
110  *        ,-----------------------------------------.
111  *  Bytes |   6   |   6   |  2   |  Variable |   4  |
112  *        |-------|-------|------|-----------|------|
113  *  Desc. | Dest. | Source| Type | IP Packet |  fcs |
114  *        |  MAC  |  MAC  |      |           |      |
115  *        `-----------------------------------------'
116  *  Total: 18 non-data bytes
117  *
118  *  In the event that fragmentation is required, the incoming payload is split into
119  *  N parts of size ieee->fts.  The first fragment contains the SNAP header and the
120  *  remaining packets are just data.
121  *
122  *  If encryption is enabled, each fragment payload size is reduced by enough space
123  *  to add the prefix and postfix (IV and ICV totalling 8 bytes in the case of WEP)
124  *  So if you have 1500 bytes of payload with ieee->fts set to 500 without
125  *  encryption it will take 3 frames.  With WEP it will take 4 frames as the
126  *  payload of each frame is reduced to 492 bytes.
127  *
128  * SKB visualization
129  *
130  *  ,- skb->data
131  * |
132  * |    ETHERNET HEADER        ,-<-- PAYLOAD
133  * |                           |     14 bytes from skb->data
134  * |  2 bytes for Type --> ,T. |     (sizeof ethhdr)
135  * |                       | | |
136  * |,-Dest.--. ,--Src.---. | | |
137  * |  6 bytes| | 6 bytes | | | |
138  * v         | |         | | | |
139  * 0         | v       1 | v | v           2
140  * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
141  *     ^     | ^         | ^ |
142  *     |     | |         | | |
143  *     |     | |         | `T' <---- 2 bytes for Type
144  *     |     | |         |
145  *     |     | '---SNAP--' <-------- 6 bytes for SNAP
146  *     |     |
147  *     `-IV--' <-------------------- 4 bytes for IV (WEP)
148  *
149  *      SNAP HEADER
150  *
151  */
152
153 static u8 P802_1H_OUI[P80211_OUI_LEN] = { 0x00, 0x00, 0xf8 };
154 static u8 RFC1042_OUI[P80211_OUI_LEN] = { 0x00, 0x00, 0x00 };
155
156 static inline int ieee80211_put_snap(u8 *data, u16 h_proto)
157 {
158         struct ieee80211_snap_hdr *snap;
159         u8 *oui;
160
161         snap = (struct ieee80211_snap_hdr *)data;
162         snap->dsap = 0xaa;
163         snap->ssap = 0xaa;
164         snap->ctrl = 0x03;
165
166         if (h_proto == 0x8137 || h_proto == 0x80f3)
167                 oui = P802_1H_OUI;
168         else
169                 oui = RFC1042_OUI;
170         snap->oui[0] = oui[0];
171         snap->oui[1] = oui[1];
172         snap->oui[2] = oui[2];
173
174         *(__be16 *)(data + SNAP_SIZE) = htons(h_proto);
175
176         return SNAP_SIZE + sizeof(u16);
177 }
178
179 int ieee80211_encrypt_fragment(
180         struct ieee80211_device *ieee,
181         struct sk_buff *frag,
182         int hdr_len)
183 {
184         struct ieee80211_crypt_data *crypt = ieee->crypt[ieee->tx_keyidx];
185         int res;
186
187         if (!(crypt && crypt->ops))
188         {
189                 printk("=========>%s(), crypt is null\n", __func__);
190                 return -1;
191         }
192
193         if (ieee->tkip_countermeasures &&
194             crypt && crypt->ops && strcmp(crypt->ops->name, "TKIP") == 0) {
195                 if (net_ratelimit()) {
196                         struct rtl_80211_hdr_3addrqos *header;
197
198                         header = (struct rtl_80211_hdr_3addrqos *)frag->data;
199                         printk(KERN_DEBUG "%s: TKIP countermeasures: dropped "
200                                "TX packet to %pM\n",
201                                ieee->dev->name, header->addr1);
202                 }
203                 return -1;
204         }
205
206         /* To encrypt, frame format is:
207          * IV (4 bytes), clear payload (including SNAP), ICV (4 bytes)
208          */
209
210         // PR: FIXME: Copied from hostap. Check fragmentation/MSDU/MPDU encryption.
211         /* Host-based IEEE 802.11 fragmentation for TX is not yet supported, so
212          * call both MSDU and MPDU encryption functions from here.
213          */
214         atomic_inc(&crypt->refcnt);
215         res = 0;
216         if (crypt->ops->encrypt_msdu)
217                 res = crypt->ops->encrypt_msdu(frag, hdr_len, crypt->priv);
218         if (res == 0 && crypt->ops->encrypt_mpdu)
219                 res = crypt->ops->encrypt_mpdu(frag, hdr_len, crypt->priv);
220
221         atomic_dec(&crypt->refcnt);
222         if (res < 0) {
223                 printk(KERN_INFO "%s: Encryption failed: len=%d.\n",
224                        ieee->dev->name, frag->len);
225                 ieee->ieee_stats.tx_discards++;
226                 return -1;
227         }
228
229         return 0;
230 }
231
232
233 void ieee80211_txb_free(struct ieee80211_txb *txb) {
234         //int i;
235         if (unlikely(!txb))
236                 return;
237         kfree(txb);
238 }
239 EXPORT_SYMBOL(ieee80211_txb_free);
240
241 static struct ieee80211_txb *ieee80211_alloc_txb(int nr_frags, int txb_size,
242                                                  gfp_t gfp_mask)
243 {
244         struct ieee80211_txb *txb;
245         int i;
246         txb = kmalloc(
247                 sizeof(struct ieee80211_txb) + (sizeof(u8 *) * nr_frags),
248                 gfp_mask);
249         if (!txb)
250                 return NULL;
251
252         memset(txb, 0, sizeof(struct ieee80211_txb));
253         txb->nr_frags = nr_frags;
254         txb->frag_size = __cpu_to_le16(txb_size);
255
256         for (i = 0; i < nr_frags; i++) {
257                 txb->fragments[i] = dev_alloc_skb(txb_size);
258                 if (unlikely(!txb->fragments[i])) {
259                         i--;
260                         break;
261                 }
262                 memset(txb->fragments[i]->cb, 0, sizeof(txb->fragments[i]->cb));
263         }
264         if (unlikely(i != nr_frags)) {
265                 while (i >= 0)
266                         dev_kfree_skb_any(txb->fragments[i--]);
267                 kfree(txb);
268                 return NULL;
269         }
270         return txb;
271 }
272
273 // Classify the to-be send data packet
274 // Need to acquire the sent queue index.
275 static int
276 ieee80211_classify(struct sk_buff *skb, struct ieee80211_network *network)
277 {
278         struct ethhdr *eth;
279         struct iphdr *ip;
280         eth = (struct ethhdr *)skb->data;
281         if (eth->h_proto != htons(ETH_P_IP))
282                 return 0;
283
284         ip = ip_hdr(skb);
285         switch (ip->tos & 0xfc) {
286         case 0x20:
287                 return 2;
288         case 0x40:
289                 return 1;
290         case 0x60:
291                 return 3;
292         case 0x80:
293                 return 4;
294         case 0xa0:
295                 return 5;
296         case 0xc0:
297                 return 6;
298         case 0xe0:
299                 return 7;
300         default:
301                 return 0;
302         }
303 }
304
305 static void ieee80211_tx_query_agg_cap(struct ieee80211_device *ieee,
306                                        struct sk_buff *skb, struct cb_desc *tcb_desc)
307 {
308         PRT_HIGH_THROUGHPUT     pHTInfo = ieee->pHTInfo;
309         struct tx_ts_record        *pTxTs = NULL;
310         struct rtl_80211_hdr_1addr *hdr = (struct rtl_80211_hdr_1addr *)skb->data;
311
312         if (!pHTInfo->bCurrentHTSupport||!pHTInfo->bEnableHT)
313                 return;
314         if (!IsQoSDataFrame(skb->data))
315                 return;
316
317         if (is_multicast_ether_addr(hdr->addr1))
318                 return;
319         //check packet and mode later
320 #ifdef TO_DO_LIST
321         if(pTcb->PacketLength >= 4096)
322                 return;
323         // For RTL819X, if pairwisekey = wep/tkip, we don't aggrregation.
324         if(!Adapter->HalFunc.GetNmodeSupportBySecCfgHandler(Adapter))
325                 return;
326 #endif
327         if(!ieee->GetNmodeSupportBySecCfg(ieee->dev))
328         {
329                 return;
330         }
331         if(pHTInfo->bCurrentAMPDUEnable)
332         {
333                 if (!GetTs(ieee, (struct ts_common_info **)(&pTxTs), hdr->addr1, skb->priority, TX_DIR, true))
334                 {
335                         printk("===>can't get TS\n");
336                         return;
337                 }
338                 if (!pTxTs->tx_admitted_ba_record.bValid)
339                 {
340                         TsStartAddBaProcess(ieee, pTxTs);
341                         goto FORCED_AGG_SETTING;
342                 }
343                 else if (!pTxTs->using_ba)
344                 {
345                         if (SN_LESS(pTxTs->tx_admitted_ba_record.BaStartSeqCtrl.field.SeqNum, (pTxTs->tx_cur_seq + 1) % 4096))
346                                 pTxTs->using_ba = true;
347                         else
348                                 goto FORCED_AGG_SETTING;
349                 }
350
351                 if (ieee->iw_mode == IW_MODE_INFRA)
352                 {
353                         tcb_desc->bAMPDUEnable = true;
354                         tcb_desc->ampdu_factor = pHTInfo->CurrentAMPDUFactor;
355                         tcb_desc->ampdu_density = pHTInfo->CurrentMPDUDensity;
356                 }
357         }
358 FORCED_AGG_SETTING:
359         switch (pHTInfo->ForcedAMPDUMode )
360         {
361                 case HT_AGG_AUTO:
362                         break;
363
364                 case HT_AGG_FORCE_ENABLE:
365                         tcb_desc->bAMPDUEnable = true;
366                         tcb_desc->ampdu_density = pHTInfo->ForcedMPDUDensity;
367                         tcb_desc->ampdu_factor = pHTInfo->ForcedAMPDUFactor;
368                         break;
369
370                 case HT_AGG_FORCE_DISABLE:
371                         tcb_desc->bAMPDUEnable = false;
372                         tcb_desc->ampdu_density = 0;
373                         tcb_desc->ampdu_factor = 0;
374                         break;
375
376         }
377                 return;
378 }
379
380 static void ieee80211_qurey_ShortPreambleMode(struct ieee80211_device *ieee,
381                                               struct cb_desc *tcb_desc)
382 {
383         tcb_desc->bUseShortPreamble = false;
384         if (tcb_desc->data_rate == 2)
385         {//// 1M can only use Long Preamble. 11B spec
386                 return;
387         }
388         else if (ieee->current_network.capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
389         {
390                 tcb_desc->bUseShortPreamble = true;
391         }
392         return;
393 }
394 static void
395 ieee80211_query_HTCapShortGI(struct ieee80211_device *ieee, struct cb_desc *tcb_desc)
396 {
397         PRT_HIGH_THROUGHPUT             pHTInfo = ieee->pHTInfo;
398
399         tcb_desc->bUseShortGI           = false;
400
401         if(!pHTInfo->bCurrentHTSupport||!pHTInfo->bEnableHT)
402                 return;
403
404         if(pHTInfo->bForcedShortGI)
405         {
406                 tcb_desc->bUseShortGI = true;
407                 return;
408         }
409
410         if((pHTInfo->bCurBW40MHz==true) && pHTInfo->bCurShortGI40MHz)
411                 tcb_desc->bUseShortGI = true;
412         else if((pHTInfo->bCurBW40MHz==false) && pHTInfo->bCurShortGI20MHz)
413                 tcb_desc->bUseShortGI = true;
414 }
415
416 static void ieee80211_query_BandwidthMode(struct ieee80211_device *ieee,
417                                           struct cb_desc *tcb_desc)
418 {
419         PRT_HIGH_THROUGHPUT     pHTInfo = ieee->pHTInfo;
420
421         tcb_desc->bPacketBW = false;
422
423         if(!pHTInfo->bCurrentHTSupport||!pHTInfo->bEnableHT)
424                 return;
425
426         if(tcb_desc->bMulticast || tcb_desc->bBroadcast)
427                 return;
428
429         if((tcb_desc->data_rate & 0x80)==0) // If using legacy rate, it shall use 20MHz channel.
430                 return;
431         //BandWidthAutoSwitch is for auto switch to 20 or 40 in long distance
432         if(pHTInfo->bCurBW40MHz && pHTInfo->bCurTxBW40MHz && !ieee->bandwidth_auto_switch.bforced_tx20Mhz)
433                 tcb_desc->bPacketBW = true;
434         return;
435 }
436
437 static void ieee80211_query_protectionmode(struct ieee80211_device *ieee,
438                                            struct cb_desc *tcb_desc,
439                                            struct sk_buff *skb)
440 {
441         // Common Settings
442         tcb_desc->bRTSSTBC                      = false;
443         tcb_desc->bRTSUseShortGI                = false; // Since protection frames are always sent by legacy rate, ShortGI will never be used.
444         tcb_desc->bCTSEnable                    = false; // Most of protection using RTS/CTS
445         tcb_desc->RTSSC                         = 0;            // 20MHz: Don't care;  40MHz: Duplicate.
446         tcb_desc->bRTSBW                        = false; // RTS frame bandwidth is always 20MHz
447
448         if(tcb_desc->bBroadcast || tcb_desc->bMulticast)//only unicast frame will use rts/cts
449                 return;
450
451         if (is_broadcast_ether_addr(skb->data+16))  //check addr3 as infrastructure add3 is DA.
452                 return;
453
454         if (ieee->mode < IEEE_N_24G) //b, g mode
455         {
456                         // (1) RTS_Threshold is compared to the MPDU, not MSDU.
457                         // (2) If there are more than one frag in  this MSDU, only the first frag uses protection frame.
458                         //              Other fragments are protected by previous fragment.
459                         //              So we only need to check the length of first fragment.
460                 if (skb->len > ieee->rts)
461                 {
462                         tcb_desc->bRTSEnable = true;
463                         tcb_desc->rts_rate = MGN_24M;
464                 }
465                 else if (ieee->current_network.buseprotection)
466                 {
467                         // Use CTS-to-SELF in protection mode.
468                         tcb_desc->bRTSEnable = true;
469                         tcb_desc->bCTSEnable = true;
470                         tcb_desc->rts_rate = MGN_24M;
471                 }
472                 //otherwise return;
473                 return;
474         }
475         else
476         {// 11n High throughput case.
477                 PRT_HIGH_THROUGHPUT pHTInfo = ieee->pHTInfo;
478                 while (true)
479                 {
480                         //check ERP protection
481                         if (ieee->current_network.buseprotection)
482                         {// CTS-to-SELF
483                                 tcb_desc->bRTSEnable = true;
484                                 tcb_desc->bCTSEnable = true;
485                                 tcb_desc->rts_rate = MGN_24M;
486                                 break;
487                         }
488                         //check HT op mode
489                         if(pHTInfo->bCurrentHTSupport  && pHTInfo->bEnableHT)
490                         {
491                                 u8 HTOpMode = pHTInfo->CurrentOpMode;
492                                 if((pHTInfo->bCurBW40MHz && (HTOpMode == 2 || HTOpMode == 3)) ||
493                                                         (!pHTInfo->bCurBW40MHz && HTOpMode == 3) )
494                                 {
495                                         tcb_desc->rts_rate = MGN_24M; // Rate is 24Mbps.
496                                         tcb_desc->bRTSEnable = true;
497                                         break;
498                                 }
499                         }
500                         //check rts
501                         if (skb->len > ieee->rts)
502                         {
503                                 tcb_desc->rts_rate = MGN_24M; // Rate is 24Mbps.
504                                 tcb_desc->bRTSEnable = true;
505                                 break;
506                         }
507                         //to do list: check MIMO power save condition.
508                         //check AMPDU aggregation for TXOP
509                         if(tcb_desc->bAMPDUEnable)
510                         {
511                                 tcb_desc->rts_rate = MGN_24M; // Rate is 24Mbps.
512                                 // According to 8190 design, firmware sends CF-End only if RTS/CTS is enabled. However, it degrads
513                                 // throughput around 10M, so we disable of this mechanism. 2007.08.03 by Emily
514                                 tcb_desc->bRTSEnable = false;
515                                 break;
516                         }
517                         //check IOT action
518                         if(pHTInfo->IOTAction & HT_IOT_ACT_FORCED_CTS2SELF)
519                         {
520                                 tcb_desc->bCTSEnable    = true;
521                                 tcb_desc->rts_rate  =   MGN_24M;
522                                 tcb_desc->bRTSEnable = true;
523                                 break;
524                         }
525                         // Totally no protection case!!
526                         goto NO_PROTECTION;
527                 }
528                 }
529         // For test , CTS replace with RTS
530         if (0) {
531                 tcb_desc->bCTSEnable    = true;
532                 tcb_desc->rts_rate = MGN_24M;
533                 tcb_desc->bRTSEnable    = true;
534         }
535         if (ieee->current_network.capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
536                 tcb_desc->bUseShortPreamble = true;
537         if (ieee->mode == IW_MODE_MASTER)
538                         goto NO_PROTECTION;
539         return;
540 NO_PROTECTION:
541         tcb_desc->bRTSEnable    = false;
542         tcb_desc->bCTSEnable    = false;
543         tcb_desc->rts_rate              = 0;
544         tcb_desc->RTSSC         = 0;
545         tcb_desc->bRTSBW                = false;
546 }
547
548
549 static void ieee80211_txrate_selectmode(struct ieee80211_device *ieee,
550                                         struct cb_desc *tcb_desc)
551 {
552 #ifdef TO_DO_LIST
553         if(!IsDataFrame(pFrame))
554         {
555                 pTcb->bTxDisableRateFallBack = true;
556                 pTcb->bTxUseDriverAssingedRate = true;
557                 pTcb->RATRIndex = 7;
558                 return;
559         }
560
561         if(pMgntInfo->ForcedDataRate!= 0)
562         {
563                 pTcb->bTxDisableRateFallBack = true;
564                 pTcb->bTxUseDriverAssingedRate = true;
565                 return;
566         }
567 #endif
568         if(ieee->bTxDisableRateFallBack)
569                 tcb_desc->bTxDisableRateFallBack = true;
570
571         if(ieee->bTxUseDriverAssingedRate)
572                 tcb_desc->bTxUseDriverAssingedRate = true;
573         if(!tcb_desc->bTxDisableRateFallBack || !tcb_desc->bTxUseDriverAssingedRate)
574         {
575                 if (ieee->iw_mode == IW_MODE_INFRA || ieee->iw_mode == IW_MODE_ADHOC)
576                         tcb_desc->RATRIndex = 0;
577         }
578 }
579
580 static void ieee80211_query_seqnum(struct ieee80211_device *ieee,
581                                    struct sk_buff *skb, u8 *dst)
582 {
583         if (is_multicast_ether_addr(dst))
584                 return;
585         if (IsQoSDataFrame(skb->data)) //we deal qos data only
586         {
587                 struct tx_ts_record *pTS = NULL;
588                 if (!GetTs(ieee, (struct ts_common_info **)(&pTS), dst, skb->priority, TX_DIR, true))
589                 {
590                         return;
591                 }
592                 pTS->tx_cur_seq = (pTS->tx_cur_seq + 1) % 4096;
593         }
594 }
595
596 int ieee80211_xmit(struct sk_buff *skb, struct net_device *dev)
597 {
598         struct ieee80211_device *ieee = netdev_priv(dev);
599         struct ieee80211_txb *txb = NULL;
600         struct rtl_80211_hdr_3addrqos *frag_hdr;
601         int i, bytes_per_frag, nr_frags, bytes_last_frag, frag_size;
602         unsigned long flags;
603         struct net_device_stats *stats = &ieee->stats;
604         int ether_type = 0, encrypt;
605         int bytes, fc, qos_ctl = 0, hdr_len;
606         struct sk_buff *skb_frag;
607         struct rtl_80211_hdr_3addrqos header = { /* Ensure zero initialized */
608                 .duration_id = 0,
609                 .seq_ctl = 0,
610                 .qos_ctl = 0
611         };
612         u8 dest[ETH_ALEN], src[ETH_ALEN];
613         int qos_actived = ieee->current_network.qos_data.active;
614
615         struct ieee80211_crypt_data *crypt;
616
617         struct cb_desc *tcb_desc;
618
619         spin_lock_irqsave(&ieee->lock, flags);
620
621         /* If there is no driver handler to take the TXB, dont' bother
622          * creating it...
623          */
624         if ((!ieee->hard_start_xmit && !(ieee->softmac_features & IEEE_SOFTMAC_TX_QUEUE))||
625            ((!ieee->softmac_data_hard_start_xmit && (ieee->softmac_features & IEEE_SOFTMAC_TX_QUEUE)))) {
626                 printk(KERN_WARNING "%s: No xmit handler.\n",
627                        ieee->dev->name);
628                 goto success;
629         }
630
631
632         if(likely(ieee->raw_tx == 0)){
633                 if (unlikely(skb->len < SNAP_SIZE + sizeof(u16))) {
634                         printk(KERN_WARNING "%s: skb too small (%d).\n",
635                         ieee->dev->name, skb->len);
636                         goto success;
637                 }
638
639                 memset(skb->cb, 0, sizeof(skb->cb));
640                 ether_type = ntohs(((struct ethhdr *)skb->data)->h_proto);
641
642                 crypt = ieee->crypt[ieee->tx_keyidx];
643
644                 encrypt = !(ether_type == ETH_P_PAE && ieee->ieee802_1x) &&
645                         ieee->host_encrypt && crypt && crypt->ops;
646
647                 if (!encrypt && ieee->ieee802_1x &&
648                 ieee->drop_unencrypted && ether_type != ETH_P_PAE) {
649                         stats->tx_dropped++;
650                         goto success;
651                 }
652         #ifdef CONFIG_IEEE80211_DEBUG
653                 if (crypt && !encrypt && ether_type == ETH_P_PAE) {
654                         struct eapol *eap = (struct eapol *)(skb->data +
655                                 sizeof(struct ethhdr) - SNAP_SIZE - sizeof(u16));
656                         IEEE80211_DEBUG_EAP("TX: IEEE 802.11 EAPOL frame: %s\n",
657                                 eap_get_type(eap->type));
658                 }
659         #endif
660
661                 /* Save source and destination addresses */
662                 memcpy(&dest, skb->data, ETH_ALEN);
663                 memcpy(&src, skb->data+ETH_ALEN, ETH_ALEN);
664
665                 /* Advance the SKB to the start of the payload */
666                 skb_pull(skb, sizeof(struct ethhdr));
667
668                 /* Determine total amount of storage required for TXB packets */
669                 bytes = skb->len + SNAP_SIZE + sizeof(u16);
670
671                 if (encrypt)
672                         fc = IEEE80211_FTYPE_DATA | IEEE80211_FCTL_WEP;
673                 else
674
675                         fc = IEEE80211_FTYPE_DATA;
676
677                 //if(ieee->current_network.QoS_Enable)
678                 if(qos_actived)
679                         fc |= IEEE80211_STYPE_QOS_DATA;
680                 else
681                         fc |= IEEE80211_STYPE_DATA;
682
683                 if (ieee->iw_mode == IW_MODE_INFRA) {
684                         fc |= IEEE80211_FCTL_TODS;
685                         /* To DS: Addr1 = BSSID, Addr2 = SA,
686                          * Addr3 = DA
687                          */
688                         memcpy(&header.addr1, ieee->current_network.bssid, ETH_ALEN);
689                         memcpy(&header.addr2, &src, ETH_ALEN);
690                         memcpy(&header.addr3, &dest, ETH_ALEN);
691                 } else if (ieee->iw_mode == IW_MODE_ADHOC) {
692                         /* not From/To DS: Addr1 = DA, Addr2 = SA,
693                          * Addr3 = BSSID
694                          */
695                         memcpy(&header.addr1, dest, ETH_ALEN);
696                         memcpy(&header.addr2, src, ETH_ALEN);
697                         memcpy(&header.addr3, ieee->current_network.bssid, ETH_ALEN);
698                 }
699
700                 header.frame_ctl = cpu_to_le16(fc);
701
702                 /* Determine fragmentation size based on destination (multicast
703                  * and broadcast are not fragmented)
704                  */
705                 if (is_multicast_ether_addr(header.addr1)) {
706                         frag_size = MAX_FRAG_THRESHOLD;
707                         qos_ctl |= QOS_CTL_NOTCONTAIN_ACK;
708                 }
709                 else {
710                         frag_size = ieee->fts;//default:392
711                         qos_ctl = 0;
712                 }
713
714                 //if (ieee->current_network.QoS_Enable)
715                 if(qos_actived)
716                 {
717                         hdr_len = IEEE80211_3ADDR_LEN + 2;
718
719                         skb->priority = ieee80211_classify(skb, &ieee->current_network);
720                         qos_ctl |= skb->priority; //set in the ieee80211_classify
721                         header.qos_ctl = cpu_to_le16(qos_ctl & IEEE80211_QOS_TID);
722                 } else {
723                         hdr_len = IEEE80211_3ADDR_LEN;
724                 }
725                 /* Determine amount of payload per fragment.  Regardless of if
726                  * this stack is providing the full 802.11 header, one will
727                  * eventually be affixed to this fragment -- so we must account for
728                  * it when determining the amount of payload space.
729                  */
730                 bytes_per_frag = frag_size - hdr_len;
731                 if (ieee->config &
732                 (CFG_IEEE80211_COMPUTE_FCS | CFG_IEEE80211_RESERVE_FCS))
733                         bytes_per_frag -= IEEE80211_FCS_LEN;
734
735                 /* Each fragment may need to have room for encryption pre/postfix */
736                 if (encrypt)
737                         bytes_per_frag -= crypt->ops->extra_prefix_len +
738                                 crypt->ops->extra_postfix_len;
739
740                 /* Number of fragments is the total bytes_per_frag /
741                  * payload_per_fragment
742                  */
743                 nr_frags = bytes / bytes_per_frag;
744                 bytes_last_frag = bytes % bytes_per_frag;
745                 if (bytes_last_frag)
746                         nr_frags++;
747                 else
748                         bytes_last_frag = bytes_per_frag;
749
750                 /* When we allocate the TXB we allocate enough space for the reserve
751                  * and full fragment bytes (bytes_per_frag doesn't include prefix,
752                  * postfix, header, FCS, etc.)
753                  */
754                 txb = ieee80211_alloc_txb(nr_frags, frag_size + ieee->tx_headroom, GFP_ATOMIC);
755                 if (unlikely(!txb)) {
756                         printk(KERN_WARNING "%s: Could not allocate TXB\n",
757                         ieee->dev->name);
758                         goto failed;
759                 }
760                 txb->encrypted = encrypt;
761                 txb->payload_size = __cpu_to_le16(bytes);
762
763                 //if (ieee->current_network.QoS_Enable)
764                 if(qos_actived)
765                 {
766                         txb->queue_index = UP2AC(skb->priority);
767                 } else {
768                         txb->queue_index = WME_AC_BK;
769                 }
770
771
772
773                 for (i = 0; i < nr_frags; i++) {
774                         skb_frag = txb->fragments[i];
775                         tcb_desc = (struct cb_desc *)(skb_frag->cb + MAX_DEV_ADDR_SIZE);
776                         if(qos_actived){
777                                 skb_frag->priority = skb->priority;//UP2AC(skb->priority);
778                                 tcb_desc->queue_index =  UP2AC(skb->priority);
779                         } else {
780                                 skb_frag->priority = WME_AC_BK;
781                                 tcb_desc->queue_index = WME_AC_BK;
782                         }
783                         skb_reserve(skb_frag, ieee->tx_headroom);
784
785                         if (encrypt){
786                                 if (ieee->hwsec_active)
787                                         tcb_desc->bHwSec = 1;
788                                 else
789                                         tcb_desc->bHwSec = 0;
790                                 skb_reserve(skb_frag, crypt->ops->extra_prefix_len);
791                         }
792                         else
793                         {
794                                 tcb_desc->bHwSec = 0;
795                         }
796                         frag_hdr = skb_put_data(skb_frag, &header, hdr_len);
797
798                         /* If this is not the last fragment, then add the MOREFRAGS
799                          * bit to the frame control
800                          */
801                         if (i != nr_frags - 1) {
802                                 frag_hdr->frame_ctl = cpu_to_le16(
803                                         fc | IEEE80211_FCTL_MOREFRAGS);
804                                 bytes = bytes_per_frag;
805
806                         } else {
807                                 /* The last fragment takes the remaining length */
808                                 bytes = bytes_last_frag;
809                         }
810                         //if(ieee->current_network.QoS_Enable)
811                         if(qos_actived)
812                         {
813                                 // add 1 only indicate to corresponding seq number control 2006/7/12
814                                 frag_hdr->seq_ctl = cpu_to_le16(ieee->seq_ctrl[UP2AC(skb->priority)+1]<<4 | i);
815                         } else {
816                                 frag_hdr->seq_ctl = cpu_to_le16(ieee->seq_ctrl[0]<<4 | i);
817                         }
818
819                         /* Put a SNAP header on the first fragment */
820                         if (i == 0) {
821                                 ieee80211_put_snap(
822                                         skb_put(skb_frag, SNAP_SIZE + sizeof(u16)),
823                                         ether_type);
824                                 bytes -= SNAP_SIZE + sizeof(u16);
825                         }
826
827                         skb_put_data(skb_frag, skb->data, bytes);
828
829                         /* Advance the SKB... */
830                         skb_pull(skb, bytes);
831
832                         /* Encryption routine will move the header forward in order
833                          * to insert the IV between the header and the payload
834                          */
835                         if (encrypt)
836                                 ieee80211_encrypt_fragment(ieee, skb_frag, hdr_len);
837                         if (ieee->config &
838                         (CFG_IEEE80211_COMPUTE_FCS | CFG_IEEE80211_RESERVE_FCS))
839                                 skb_put(skb_frag, 4);
840                 }
841
842                 if(qos_actived)
843                 {
844                   if (ieee->seq_ctrl[UP2AC(skb->priority) + 1] == 0xFFF)
845                         ieee->seq_ctrl[UP2AC(skb->priority) + 1] = 0;
846                   else
847                         ieee->seq_ctrl[UP2AC(skb->priority) + 1]++;
848                 } else {
849                   if (ieee->seq_ctrl[0] == 0xFFF)
850                         ieee->seq_ctrl[0] = 0;
851                   else
852                         ieee->seq_ctrl[0]++;
853                 }
854         }else{
855                 if (unlikely(skb->len < sizeof(struct rtl_80211_hdr_3addr))) {
856                         printk(KERN_WARNING "%s: skb too small (%d).\n",
857                         ieee->dev->name, skb->len);
858                         goto success;
859                 }
860
861                 txb = ieee80211_alloc_txb(1, skb->len, GFP_ATOMIC);
862                 if(!txb){
863                         printk(KERN_WARNING "%s: Could not allocate TXB\n",
864                         ieee->dev->name);
865                         goto failed;
866                 }
867
868                 txb->encrypted = 0;
869                 txb->payload_size = __cpu_to_le16(skb->len);
870                 skb_put_data(txb->fragments[0], skb->data, skb->len);
871         }
872
873  success:
874 //WB add to fill data tcb_desc here. only first fragment is considered, need to change, and you may remove to other place.
875         if (txb)
876         {
877                 struct cb_desc *tcb_desc = (struct cb_desc *)(txb->fragments[0]->cb + MAX_DEV_ADDR_SIZE);
878                 tcb_desc->bTxEnableFwCalcDur = 1;
879                 if (is_multicast_ether_addr(header.addr1))
880                         tcb_desc->bMulticast = 1;
881                 if (is_broadcast_ether_addr(header.addr1))
882                         tcb_desc->bBroadcast = 1;
883                 ieee80211_txrate_selectmode(ieee, tcb_desc);
884                 if (tcb_desc->bMulticast ||  tcb_desc->bBroadcast)
885                         tcb_desc->data_rate = ieee->basic_rate;
886                 else
887                         tcb_desc->data_rate = CURRENT_RATE(ieee->mode, ieee->rate, ieee->HTCurrentOperaRate);
888                 ieee80211_qurey_ShortPreambleMode(ieee, tcb_desc);
889                 ieee80211_tx_query_agg_cap(ieee, txb->fragments[0], tcb_desc);
890                 ieee80211_query_HTCapShortGI(ieee, tcb_desc);
891                 ieee80211_query_BandwidthMode(ieee, tcb_desc);
892                 ieee80211_query_protectionmode(ieee, tcb_desc, txb->fragments[0]);
893                 ieee80211_query_seqnum(ieee, txb->fragments[0], header.addr1);
894         }
895         spin_unlock_irqrestore(&ieee->lock, flags);
896         dev_kfree_skb_any(skb);
897         if (txb) {
898                 if (ieee->softmac_features & IEEE_SOFTMAC_TX_QUEUE){
899                         ieee80211_softmac_xmit(txb, ieee);
900                 }else{
901                         if ((*ieee->hard_start_xmit)(txb, dev) == 0) {
902                                 stats->tx_packets++;
903                                 stats->tx_bytes += __le16_to_cpu(txb->payload_size);
904                                 return 0;
905                         }
906                         ieee80211_txb_free(txb);
907                 }
908         }
909
910         return 0;
911
912  failed:
913         spin_unlock_irqrestore(&ieee->lock, flags);
914         netif_stop_queue(dev);
915         stats->tx_errors++;
916         return 1;
917
918 }