GNU Linux-libre 5.10.153-gnu1
[releases.git] / drivers / staging / rtl8188eu / hal / phy.c
1 // SPDX-License-Identifier: GPL-2.0
2 /******************************************************************************
3  *
4  * Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved.
5  *
6  ******************************************************************************/
7 #define _RTL8188E_PHYCFG_C_
8
9 #include <osdep_service.h>
10 #include <drv_types.h>
11 #include <rtl8188e_hal.h>
12 #include <rf.h>
13 #include <phy.h>
14
15 #define MAX_PRECMD_CNT 16
16 #define MAX_RFDEPENDCMD_CNT 16
17 #define MAX_POSTCMD_CNT 16
18
19 #define MAX_DOZE_WAITING_TIMES_9x 64
20
21 static u32 cal_bit_shift(u32 bitmask)
22 {
23         u32 i;
24
25         for (i = 0; i <= 31; i++) {
26                 if (((bitmask >> i) & 0x1) == 1)
27                         break;
28         }
29         return i;
30 }
31
32 u32 phy_query_bb_reg(struct adapter *adapt, u32 regaddr, u32 bitmask)
33 {
34         u32 original_value, bit_shift;
35
36         original_value = usb_read32(adapt, regaddr);
37         bit_shift = cal_bit_shift(bitmask);
38         return (original_value & bitmask) >> bit_shift;
39 }
40
41 void phy_set_bb_reg(struct adapter *adapt, u32 regaddr, u32 bitmask, u32 data)
42 {
43         u32 original_value, bit_shift;
44
45         if (bitmask != bMaskDWord) { /* if not "double word" write */
46                 original_value = usb_read32(adapt, regaddr);
47                 bit_shift = cal_bit_shift(bitmask);
48                 data = (original_value & (~bitmask)) | (data << bit_shift);
49         }
50
51         usb_write32(adapt, regaddr, data);
52 }
53
54 static u32 rf_serial_read(struct adapter *adapt, enum rf_radio_path rfpath, u32 offset)
55 {
56         u32 ret = 0;
57         struct bb_reg_def *phyreg = &adapt->HalData->PHYRegDef[rfpath];
58         u32 tmplong, tmplong2;
59         u8 rfpi_enable = 0;
60
61         offset &= 0xff;
62
63         tmplong = phy_query_bb_reg(adapt, rFPGA0_XA_HSSIParameter2, bMaskDWord);
64         if (rfpath == RF_PATH_A)
65                 tmplong2 = tmplong;
66         else
67                 tmplong2 = phy_query_bb_reg(adapt, phyreg->rfHSSIPara2,
68                                             bMaskDWord);
69
70         tmplong2 = (tmplong2 & (~bLSSIReadAddress)) |
71                    (offset << 23) | bLSSIReadEdge;
72
73         phy_set_bb_reg(adapt, rFPGA0_XA_HSSIParameter2, bMaskDWord,
74                        tmplong & (~bLSSIReadEdge));
75         udelay(10);
76
77         phy_set_bb_reg(adapt, phyreg->rfHSSIPara2, bMaskDWord, tmplong2);
78         udelay(100);
79
80         udelay(10);
81
82         if (rfpath == RF_PATH_A)
83                 rfpi_enable = (u8)phy_query_bb_reg(adapt, rFPGA0_XA_HSSIParameter1, BIT(8));
84         else if (rfpath == RF_PATH_B)
85                 rfpi_enable = (u8)phy_query_bb_reg(adapt, rFPGA0_XB_HSSIParameter1, BIT(8));
86
87         if (rfpi_enable)
88                 ret = phy_query_bb_reg(adapt, phyreg->rfLSSIReadBackPi,
89                                        bLSSIReadBackData);
90         else
91                 ret = phy_query_bb_reg(adapt, phyreg->rfLSSIReadBack,
92                                        bLSSIReadBackData);
93         return ret;
94 }
95
96 static void rf_serial_write(struct adapter *adapt,
97                             enum rf_radio_path rfpath, u32 offset,
98                             u32 data)
99 {
100         u32 data_and_addr = 0;
101         struct bb_reg_def *phyreg = &adapt->HalData->PHYRegDef[rfpath];
102
103         offset &= 0xff;
104         data_and_addr = ((offset << 20) | (data & 0x000fffff)) & 0x0fffffff;
105         phy_set_bb_reg(adapt, phyreg->rf3wireOffset, bMaskDWord, data_and_addr);
106 }
107
108 u32 rtw_hal_read_rfreg(struct adapter *adapt, enum rf_radio_path rf_path,
109                        u32 reg_addr, u32 bit_mask)
110 {
111         u32 original_value, bit_shift;
112
113         original_value = rf_serial_read(adapt, rf_path, reg_addr);
114         bit_shift =  cal_bit_shift(bit_mask);
115         return (original_value & bit_mask) >> bit_shift;
116 }
117
118 void phy_set_rf_reg(struct adapter *adapt, enum rf_radio_path rf_path,
119                     u32 reg_addr, u32 bit_mask, u32 data)
120 {
121         u32 original_value, bit_shift;
122
123         /*  RF data is 12 bits only */
124         if (bit_mask != bRFRegOffsetMask) {
125                 original_value = rf_serial_read(adapt, rf_path, reg_addr);
126                 bit_shift =  cal_bit_shift(bit_mask);
127                 data = (original_value & (~bit_mask)) | (data << bit_shift);
128         }
129
130         rf_serial_write(adapt, rf_path, reg_addr, data);
131 }
132
133 static void get_tx_power_index(struct adapter *adapt, u8 channel, u8 *cck_pwr,
134                                u8 *ofdm_pwr, u8 *bw20_pwr, u8 *bw40_pwr)
135 {
136         struct hal_data_8188e *hal_data = adapt->HalData;
137         u8 index = (channel - 1);
138         u8 TxCount = 0, path_nums;
139
140         path_nums = 1;
141
142         for (TxCount = 0; TxCount < path_nums; TxCount++) {
143                 if (TxCount == RF_PATH_A) {
144                         cck_pwr[TxCount] = hal_data->Index24G_CCK_Base[TxCount][index];
145                         ofdm_pwr[TxCount] = hal_data->Index24G_BW40_Base[RF_PATH_A][index] +
146                                             hal_data->OFDM_24G_Diff[TxCount][RF_PATH_A];
147
148                         bw20_pwr[TxCount] = hal_data->Index24G_BW40_Base[RF_PATH_A][index] +
149                                             hal_data->BW20_24G_Diff[TxCount][RF_PATH_A];
150                         bw40_pwr[TxCount] = hal_data->Index24G_BW40_Base[TxCount][index];
151                 } else if (TxCount == RF_PATH_B) {
152                         cck_pwr[TxCount] = hal_data->Index24G_CCK_Base[TxCount][index];
153                         ofdm_pwr[TxCount] = hal_data->Index24G_BW40_Base[RF_PATH_A][index] +
154                         hal_data->BW20_24G_Diff[RF_PATH_A][index] +
155                         hal_data->BW20_24G_Diff[TxCount][index];
156
157                         bw20_pwr[TxCount] = hal_data->Index24G_BW40_Base[RF_PATH_A][index] +
158                         hal_data->BW20_24G_Diff[TxCount][RF_PATH_A] +
159                         hal_data->BW20_24G_Diff[TxCount][index];
160                         bw40_pwr[TxCount] = hal_data->Index24G_BW40_Base[TxCount][index];
161                 }
162         }
163 }
164
165 static void phy_power_index_check(struct adapter *adapt, u8 channel,
166                                   u8 *cck_pwr, u8 *ofdm_pwr, u8 *bw20_pwr,
167                                   u8 *bw40_pwr)
168 {
169         struct hal_data_8188e *hal_data = adapt->HalData;
170
171         hal_data->CurrentCckTxPwrIdx = cck_pwr[0];
172         hal_data->CurrentOfdm24GTxPwrIdx = ofdm_pwr[0];
173         hal_data->CurrentBW2024GTxPwrIdx = bw20_pwr[0];
174         hal_data->CurrentBW4024GTxPwrIdx = bw40_pwr[0];
175 }
176
177 void phy_set_tx_power_level(struct adapter *adapt, u8 channel)
178 {
179         u8 cck_pwr[MAX_TX_COUNT] = {0};
180         u8 ofdm_pwr[MAX_TX_COUNT] = {0};/*  [0]:RF-A, [1]:RF-B */
181         u8 bw20_pwr[MAX_TX_COUNT] = {0};
182         u8 bw40_pwr[MAX_TX_COUNT] = {0};
183
184         get_tx_power_index(adapt, channel, &cck_pwr[0], &ofdm_pwr[0],
185                            &bw20_pwr[0], &bw40_pwr[0]);
186
187         phy_power_index_check(adapt, channel, &cck_pwr[0], &ofdm_pwr[0],
188                               &bw20_pwr[0], &bw40_pwr[0]);
189
190         rtl88eu_phy_rf6052_set_cck_txpower(adapt, &cck_pwr[0]);
191         rtl88eu_phy_rf6052_set_ofdm_txpower(adapt, &ofdm_pwr[0], &bw20_pwr[0],
192                                             &bw40_pwr[0], channel);
193 }
194
195 static void phy_set_bw_mode_callback(struct adapter *adapt)
196 {
197         struct hal_data_8188e *hal_data = adapt->HalData;
198         u8 reg_bw_opmode;
199         u8 reg_prsr_rsc;
200
201         if (adapt->bDriverStopped)
202                 return;
203
204         /* Set MAC register */
205
206         reg_bw_opmode = usb_read8(adapt, REG_BWOPMODE);
207         reg_prsr_rsc = usb_read8(adapt, REG_RRSR + 2);
208
209         switch (hal_data->CurrentChannelBW) {
210         case HT_CHANNEL_WIDTH_20:
211                 reg_bw_opmode |= BW_OPMODE_20MHZ;
212                 usb_write8(adapt, REG_BWOPMODE, reg_bw_opmode);
213                 break;
214         case HT_CHANNEL_WIDTH_40:
215                 reg_bw_opmode &= ~BW_OPMODE_20MHZ;
216                 usb_write8(adapt, REG_BWOPMODE, reg_bw_opmode);
217                 reg_prsr_rsc = (reg_prsr_rsc & 0x90) |
218                                (hal_data->nCur40MhzPrimeSC << 5);
219                 usb_write8(adapt, REG_RRSR + 2, reg_prsr_rsc);
220                 break;
221         default:
222                 break;
223         }
224
225         /* Set PHY related register */
226         switch (hal_data->CurrentChannelBW) {
227         case HT_CHANNEL_WIDTH_20:
228                 phy_set_bb_reg(adapt, rFPGA0_RFMOD, bRFMOD, 0x0);
229                 phy_set_bb_reg(adapt, rFPGA1_RFMOD, bRFMOD, 0x0);
230                 break;
231         case HT_CHANNEL_WIDTH_40:
232                 phy_set_bb_reg(adapt, rFPGA0_RFMOD, bRFMOD, 0x1);
233                 phy_set_bb_reg(adapt, rFPGA1_RFMOD, bRFMOD, 0x1);
234                 /* Set Control channel to upper or lower.
235                  * These settings are required only for 40MHz
236                  */
237                 phy_set_bb_reg(adapt, rCCK0_System, bCCKSideBand,
238                                (hal_data->nCur40MhzPrimeSC >> 1));
239                 phy_set_bb_reg(adapt, rOFDM1_LSTF, 0xC00,
240                                hal_data->nCur40MhzPrimeSC);
241                 phy_set_bb_reg(adapt, 0x818, (BIT(26) | BIT(27)),
242                                (hal_data->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER) ? 2 : 1);
243                 break;
244         default:
245                 break;
246         }
247
248         /* Set RF related register */
249         rtl88eu_phy_rf6052_set_bandwidth(adapt, hal_data->CurrentChannelBW);
250 }
251
252 void rtw_hal_set_bwmode(struct adapter *adapt, enum ht_channel_width bandwidth,
253                         unsigned char offset)
254 {
255         struct hal_data_8188e *hal_data = adapt->HalData;
256         enum ht_channel_width tmp_bw = hal_data->CurrentChannelBW;
257
258         hal_data->CurrentChannelBW = bandwidth;
259         hal_data->nCur40MhzPrimeSC = offset;
260
261         if ((!adapt->bDriverStopped) && (!adapt->bSurpriseRemoved))
262                 phy_set_bw_mode_callback(adapt);
263         else
264                 hal_data->CurrentChannelBW = tmp_bw;
265 }
266
267 static void phy_sw_chnl_callback(struct adapter *adapt, u8 channel)
268 {
269         u32 param1, param2;
270         struct hal_data_8188e *hal_data = adapt->HalData;
271
272         phy_set_tx_power_level(adapt, channel);
273
274         param1 = RF_CHNLBW;
275         param2 = channel;
276         hal_data->RfRegChnlVal[0] = (hal_data->RfRegChnlVal[0] &
277                                           0xfffffc00) | param2;
278         phy_set_rf_reg(adapt, 0, param1,
279                        bRFRegOffsetMask, hal_data->RfRegChnlVal[0]);
280 }
281
282 void rtw_hal_set_chan(struct adapter *adapt, u8 channel)
283 {
284         struct hal_data_8188e *hal_data = adapt->HalData;
285         u8 tmpchannel = hal_data->CurrentChannel;
286
287         if (channel == 0)
288                 channel = 1;
289
290         hal_data->CurrentChannel = channel;
291
292         if ((!adapt->bDriverStopped) && (!adapt->bSurpriseRemoved))
293                 phy_sw_chnl_callback(adapt, channel);
294         else
295                 hal_data->CurrentChannel = tmpchannel;
296 }
297
298 #define ODM_TXPWRTRACK_MAX_IDX_88E  6
299
300 void rtl88eu_dm_txpower_track_adjust(struct odm_dm_struct *dm_odm, u8 type,
301                                      u8 *direction, u32 *out_write_val)
302 {
303         u8 pwr_value = 0;
304         /*  Tx power tracking BB swing table. */
305         if (type == 0) { /* For OFDM adjust */
306                 ODM_RT_TRACE(dm_odm, ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,
307                              ("BbSwingIdxOfdm = %d BbSwingFlagOfdm=%d\n",
308                              dm_odm->BbSwingIdxOfdm, dm_odm->BbSwingFlagOfdm));
309
310                 if (dm_odm->BbSwingIdxOfdm <= dm_odm->BbSwingIdxOfdmBase) {
311                         *direction = 1;
312                         pwr_value = dm_odm->BbSwingIdxOfdmBase -
313                                      dm_odm->BbSwingIdxOfdm;
314                 } else {
315                         *direction = 2;
316                         pwr_value = dm_odm->BbSwingIdxOfdm -
317                                      dm_odm->BbSwingIdxOfdmBase;
318                 }
319
320         } else if (type == 1) { /* For CCK adjust. */
321                 ODM_RT_TRACE(dm_odm, ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,
322                              ("dm_odm->BbSwingIdxCck = %d dm_odm->BbSwingIdxCckBase = %d\n",
323                              dm_odm->BbSwingIdxCck, dm_odm->BbSwingIdxCckBase));
324
325                 if (dm_odm->BbSwingIdxCck <= dm_odm->BbSwingIdxCckBase) {
326                         *direction = 1;
327                         pwr_value = dm_odm->BbSwingIdxCckBase -
328                                      dm_odm->BbSwingIdxCck;
329                 } else {
330                         *direction = 2;
331                         pwr_value = dm_odm->BbSwingIdxCck -
332                                      dm_odm->BbSwingIdxCckBase;
333                 }
334         }
335
336         if (pwr_value >= ODM_TXPWRTRACK_MAX_IDX_88E && *direction == 1)
337                 pwr_value = ODM_TXPWRTRACK_MAX_IDX_88E;
338
339         *out_write_val = pwr_value | (pwr_value << 8) | (pwr_value << 16) |
340                          (pwr_value << 24);
341 }
342
343 static void dm_txpwr_track_setpwr(struct odm_dm_struct *dm_odm)
344 {
345         if (dm_odm->BbSwingFlagOfdm || dm_odm->BbSwingFlagCck) {
346                 ODM_RT_TRACE(dm_odm, ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,
347                              ("%s CH=%d\n", __func__, *dm_odm->pChannel));
348                 phy_set_tx_power_level(dm_odm->Adapter, *dm_odm->pChannel);
349                 dm_odm->BbSwingFlagOfdm = false;
350                 dm_odm->BbSwingFlagCck = false;
351         }
352 }
353
354 void rtl88eu_dm_txpower_tracking_callback_thermalmeter(struct adapter *adapt)
355 {
356         struct hal_data_8188e *hal_data = adapt->HalData;
357         u8 thermal_val = 0, delta, delta_lck, delta_iqk, offset;
358         u8 thermal_avg_count = 0;
359         u32 thermal_avg = 0;
360         s32 ele_d, temp_cck;
361         s8 ofdm_index[2], cck_index = 0;
362         s8 ofdm_index_old[2] = {0, 0}, cck_index_old = 0;
363         u32 i = 0, j = 0;
364
365         u8 ofdm_min_index = 6; /* OFDM BB Swing should be less than +3.0dB */
366         s8 ofdm_index_mapping[2][index_mapping_NUM_88E] = {
367                 /* 2.4G, decrease power */
368                 {0, 0, 2, 3, 4, 4, 5, 6, 7, 7, 8, 9, 10, 10, 11},
369                 /* 2.4G, increase power */
370                 {0, 0, -1, -2, -3, -4, -4, -4, -4, -5, -7, -8, -9, -9, -10},
371         };
372         u8 thermal_mapping[2][index_mapping_NUM_88E] = {
373                 /* 2.4G, decrease power */
374                 {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 27},
375                 /* 2.4G, increase power */
376                 {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 25, 25, 25},
377         };
378         struct odm_dm_struct *dm_odm = &hal_data->odmpriv;
379
380         dm_txpwr_track_setpwr(dm_odm);
381
382         dm_odm->RFCalibrateInfo.TXPowerTrackingCallbackCnt++;
383
384         dm_odm->RFCalibrateInfo.RegA24 = 0x090e1317;
385
386         thermal_val = (u8)rtw_hal_read_rfreg(adapt, RF_PATH_A,
387                                            RF_T_METER_88E, 0xfc00);
388
389         if (thermal_val) {
390                 /* Query OFDM path A default setting */
391                 ele_d = phy_query_bb_reg(adapt, rOFDM0_XATxIQImbalance, bMaskDWord) & bMaskOFDM_D;
392                 for (i = 0; i < OFDM_TABLE_SIZE_92D; i++) {
393                         if (ele_d == (OFDMSwingTable[i] & bMaskOFDM_D)) {
394                                 ofdm_index_old[0] = (u8)i;
395                                 dm_odm->BbSwingIdxOfdmBase = (u8)i;
396                                 break;
397                         }
398                 }
399
400                 /* Query CCK default setting From 0xa24 */
401                 temp_cck = dm_odm->RFCalibrateInfo.RegA24;
402
403                 for (i = 0; i < CCK_TABLE_SIZE; i++) {
404                         if ((dm_odm->RFCalibrateInfo.bCCKinCH14 &&
405                              memcmp(&temp_cck, &CCKSwingTable_Ch14[i][2], 4)) ||
406                             memcmp(&temp_cck, &CCKSwingTable_Ch1_Ch13[i][2], 4)) {
407                                 cck_index_old = (u8)i;
408                                 dm_odm->BbSwingIdxCckBase = (u8)i;
409                                 break;
410                         }
411                 }
412
413                 if (!dm_odm->RFCalibrateInfo.ThermalValue) {
414                         dm_odm->RFCalibrateInfo.ThermalValue = hal_data->EEPROMThermalMeter;
415                         dm_odm->RFCalibrateInfo.ThermalValue_LCK = thermal_val;
416                         dm_odm->RFCalibrateInfo.ThermalValue_IQK = thermal_val;
417
418                         dm_odm->RFCalibrateInfo.OFDM_index[0] = ofdm_index_old[0];
419                         dm_odm->RFCalibrateInfo.CCK_index = cck_index_old;
420                 }
421
422                 /* calculate average thermal meter */
423                 dm_odm->RFCalibrateInfo.ThermalValue_AVG[dm_odm->RFCalibrateInfo.ThermalValue_AVG_index] = thermal_val;
424                 dm_odm->RFCalibrateInfo.ThermalValue_AVG_index++;
425                 if (dm_odm->RFCalibrateInfo.ThermalValue_AVG_index == AVG_THERMAL_NUM_88E)
426                         dm_odm->RFCalibrateInfo.ThermalValue_AVG_index = 0;
427
428                 for (i = 0; i < AVG_THERMAL_NUM_88E; i++) {
429                         if (dm_odm->RFCalibrateInfo.ThermalValue_AVG[i]) {
430                                 thermal_avg += dm_odm->RFCalibrateInfo.ThermalValue_AVG[i];
431                                 thermal_avg_count++;
432                         }
433                 }
434
435                 if (thermal_avg_count)
436                         thermal_val = (u8)(thermal_avg / thermal_avg_count);
437
438                 if (dm_odm->RFCalibrateInfo.bDoneTxpower &&
439                     !dm_odm->RFCalibrateInfo.bReloadtxpowerindex) {
440                         delta = abs(thermal_val - dm_odm->RFCalibrateInfo.ThermalValue);
441                 } else {
442                         delta = abs(thermal_val - hal_data->EEPROMThermalMeter);
443                         if (dm_odm->RFCalibrateInfo.bReloadtxpowerindex) {
444                                 dm_odm->RFCalibrateInfo.bReloadtxpowerindex = false;
445                                 dm_odm->RFCalibrateInfo.bDoneTxpower = false;
446                         }
447                 }
448
449                 delta_lck = abs(dm_odm->RFCalibrateInfo.ThermalValue_LCK - thermal_val);
450                 delta_iqk = abs(dm_odm->RFCalibrateInfo.ThermalValue_IQK - thermal_val);
451
452                 /* Delta temperature is equal to or larger than 20 centigrade.*/
453                 if ((delta_lck >= 8)) {
454                         dm_odm->RFCalibrateInfo.ThermalValue_LCK = thermal_val;
455                         rtl88eu_phy_lc_calibrate(adapt);
456                 }
457
458                 if (delta > 0 && dm_odm->RFCalibrateInfo.TxPowerTrackControl) {
459                         delta = abs(hal_data->EEPROMThermalMeter - thermal_val);
460
461                         /* calculate new OFDM / CCK offset */
462                         if (thermal_val > hal_data->EEPROMThermalMeter)
463                                 j = 1;
464                         else
465                                 j = 0;
466                         for (offset = 0; offset < index_mapping_NUM_88E; offset++) {
467                                 if (delta < thermal_mapping[j][offset]) {
468                                         if (offset != 0)
469                                                 offset--;
470                                         break;
471                                 }
472                         }
473                         if (offset >= index_mapping_NUM_88E)
474                                 offset = index_mapping_NUM_88E - 1;
475
476                         /* Updating ofdm_index values with new OFDM / CCK offset */
477                         ofdm_index[0] = dm_odm->RFCalibrateInfo.OFDM_index[0] + ofdm_index_mapping[j][offset];
478                         if (ofdm_index[0] > OFDM_TABLE_SIZE_92D - 1)
479                                 ofdm_index[0] = OFDM_TABLE_SIZE_92D - 1;
480                         else if (ofdm_index[0] < ofdm_min_index)
481                                 ofdm_index[0] = ofdm_min_index;
482
483                         cck_index = dm_odm->RFCalibrateInfo.CCK_index + ofdm_index_mapping[j][offset];
484                         if (cck_index > CCK_TABLE_SIZE - 1)
485                                 cck_index = CCK_TABLE_SIZE - 1;
486                         else if (cck_index < 0)
487                                 cck_index = 0;
488
489                         /* 2 temporarily remove bNOPG */
490                         /* Config by SwingTable */
491                         if (dm_odm->RFCalibrateInfo.TxPowerTrackControl) {
492                                 dm_odm->RFCalibrateInfo.bDoneTxpower = true;
493
494                                 /*  Revse TX power table. */
495                                 dm_odm->BbSwingIdxOfdm = (u8)ofdm_index[0];
496                                 dm_odm->BbSwingIdxCck = (u8)cck_index;
497
498                                 if (dm_odm->BbSwingIdxOfdmCurrent != dm_odm->BbSwingIdxOfdm) {
499                                         dm_odm->BbSwingIdxOfdmCurrent = dm_odm->BbSwingIdxOfdm;
500                                         dm_odm->BbSwingFlagOfdm = true;
501                                 }
502
503                                 if (dm_odm->BbSwingIdxCckCurrent != dm_odm->BbSwingIdxCck) {
504                                         dm_odm->BbSwingIdxCckCurrent = dm_odm->BbSwingIdxCck;
505                                         dm_odm->BbSwingFlagCck = true;
506                                 }
507                         }
508                 }
509
510                 /* Delta temperature is equal to or larger than 20 centigrade.*/
511                 if (delta_iqk >= 8) {
512                         dm_odm->RFCalibrateInfo.ThermalValue_IQK = thermal_val;
513                         rtl88eu_phy_iq_calibrate(adapt, false);
514                 }
515                 /* update thermal meter value */
516                 if (dm_odm->RFCalibrateInfo.TxPowerTrackControl)
517                         dm_odm->RFCalibrateInfo.ThermalValue = thermal_val;
518         }
519         dm_odm->RFCalibrateInfo.TXPowercount = 0;
520 }
521
522 #define MAX_TOLERANCE 5
523
524 static u8 phy_path_a_iqk(struct adapter *adapt, bool config_pathb)
525 {
526         u32 reg_eac, reg_e94, reg_e9c;
527         u8 result = 0x00;
528
529         /* 1 Tx IQK */
530         /* path-A IQK setting */
531         phy_set_bb_reg(adapt, rTx_IQK_Tone_A, bMaskDWord, 0x10008c1c);
532         phy_set_bb_reg(adapt, rRx_IQK_Tone_A, bMaskDWord, 0x30008c1c);
533         phy_set_bb_reg(adapt, rTx_IQK_PI_A, bMaskDWord, 0x8214032a);
534         phy_set_bb_reg(adapt, rRx_IQK_PI_A, bMaskDWord, 0x28160000);
535
536         /* LO calibration setting */
537         phy_set_bb_reg(adapt, rIQK_AGC_Rsp, bMaskDWord, 0x00462911);
538
539         /* One shot, path A LOK & IQK */
540         phy_set_bb_reg(adapt, rIQK_AGC_Pts, bMaskDWord, 0xf9000000);
541         phy_set_bb_reg(adapt, rIQK_AGC_Pts, bMaskDWord, 0xf8000000);
542
543         mdelay(IQK_DELAY_TIME_88E);
544
545         reg_eac = phy_query_bb_reg(adapt, rRx_Power_After_IQK_A_2, bMaskDWord);
546         reg_e94 = phy_query_bb_reg(adapt, rTx_Power_Before_IQK_A, bMaskDWord);
547         reg_e9c = phy_query_bb_reg(adapt, rTx_Power_After_IQK_A, bMaskDWord);
548
549         if (!(reg_eac & BIT(28)) &&
550             (((reg_e94 & 0x03FF0000) >> 16) != 0x142) &&
551             (((reg_e9c & 0x03FF0000) >> 16) != 0x42))
552                 result |= 0x01;
553         return result;
554 }
555
556 static u8 phy_path_a_rx_iqk(struct adapter *adapt, bool configPathB)
557 {
558         u32 reg_eac, reg_e94, reg_e9c, reg_ea4, u4tmp;
559         u8 result = 0x00;
560         struct odm_dm_struct *dm_odm = &adapt->HalData->odmpriv;
561
562         /* 1 Get TXIMR setting */
563         /* modify RXIQK mode table */
564         phy_set_bb_reg(adapt, rFPGA0_IQK, bMaskDWord, 0x00000000);
565         phy_set_rf_reg(adapt, RF_PATH_A, RF_WE_LUT, bRFRegOffsetMask, 0x800a0);
566         phy_set_rf_reg(adapt, RF_PATH_A, RF_RCK_OS, bRFRegOffsetMask, 0x30000);
567         phy_set_rf_reg(adapt, RF_PATH_A, RF_TXPA_G1, bRFRegOffsetMask, 0x0000f);
568         phy_set_rf_reg(adapt, RF_PATH_A, RF_TXPA_G2, bRFRegOffsetMask, 0xf117B);
569
570         /* PA,PAD off */
571         phy_set_rf_reg(adapt, RF_PATH_A, 0xdf, bRFRegOffsetMask, 0x980);
572         phy_set_rf_reg(adapt, RF_PATH_A, 0x56, bRFRegOffsetMask, 0x51000);
573
574         phy_set_bb_reg(adapt, rFPGA0_IQK, bMaskDWord, 0x80800000);
575
576         /* IQK setting */
577         phy_set_bb_reg(adapt, rTx_IQK, bMaskDWord, 0x01007c00);
578         phy_set_bb_reg(adapt, rRx_IQK, bMaskDWord, 0x81004800);
579
580         /* path-A IQK setting */
581         phy_set_bb_reg(adapt, rTx_IQK_Tone_A, bMaskDWord, 0x10008c1c);
582         phy_set_bb_reg(adapt, rRx_IQK_Tone_A, bMaskDWord, 0x30008c1c);
583         phy_set_bb_reg(adapt, rTx_IQK_PI_A, bMaskDWord, 0x82160c1f);
584         phy_set_bb_reg(adapt, rRx_IQK_PI_A, bMaskDWord, 0x28160000);
585
586         /* LO calibration setting */
587         phy_set_bb_reg(adapt, rIQK_AGC_Rsp, bMaskDWord, 0x0046a911);
588
589         /* One shot, path A LOK & IQK */
590         phy_set_bb_reg(adapt, rIQK_AGC_Pts, bMaskDWord, 0xf9000000);
591         phy_set_bb_reg(adapt, rIQK_AGC_Pts, bMaskDWord, 0xf8000000);
592
593         /* delay x ms */
594         mdelay(IQK_DELAY_TIME_88E);
595
596         /* Check failed */
597         reg_eac = phy_query_bb_reg(adapt, rRx_Power_After_IQK_A_2, bMaskDWord);
598         reg_e94 = phy_query_bb_reg(adapt, rTx_Power_Before_IQK_A, bMaskDWord);
599         reg_e9c = phy_query_bb_reg(adapt, rTx_Power_After_IQK_A, bMaskDWord);
600
601         if (!(reg_eac & BIT(28)) &&
602             (((reg_e94 & 0x03FF0000) >> 16) != 0x142) &&
603             (((reg_e9c & 0x03FF0000) >> 16) != 0x42))
604                 result |= 0x01;
605         else                                    /* if Tx not OK, ignore Rx */
606                 return result;
607
608         u4tmp = 0x80007C00 | (reg_e94 & 0x3FF0000)  | ((reg_e9c & 0x3FF0000) >> 16);
609         phy_set_bb_reg(adapt, rTx_IQK, bMaskDWord, u4tmp);
610
611         /* 1 RX IQK */
612         /* modify RXIQK mode table */
613         ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD,
614                      ("Path-A Rx IQK modify RXIQK mode table 2!\n"));
615         phy_set_bb_reg(adapt, rFPGA0_IQK, bMaskDWord, 0x00000000);
616         phy_set_rf_reg(adapt, RF_PATH_A, RF_WE_LUT, bRFRegOffsetMask, 0x800a0);
617         phy_set_rf_reg(adapt, RF_PATH_A, RF_RCK_OS, bRFRegOffsetMask, 0x30000);
618         phy_set_rf_reg(adapt, RF_PATH_A, RF_TXPA_G1, bRFRegOffsetMask, 0x0000f);
619         phy_set_rf_reg(adapt, RF_PATH_A, RF_TXPA_G2, bRFRegOffsetMask, 0xf7ffa);
620         phy_set_bb_reg(adapt, rFPGA0_IQK, bMaskDWord, 0x80800000);
621
622         /* IQK setting */
623         phy_set_bb_reg(adapt, rRx_IQK, bMaskDWord, 0x01004800);
624
625         /* path-A IQK setting */
626         phy_set_bb_reg(adapt, rTx_IQK_Tone_A, bMaskDWord, 0x38008c1c);
627         phy_set_bb_reg(adapt, rRx_IQK_Tone_A, bMaskDWord, 0x18008c1c);
628         phy_set_bb_reg(adapt, rTx_IQK_PI_A, bMaskDWord, 0x82160c05);
629         phy_set_bb_reg(adapt, rRx_IQK_PI_A, bMaskDWord, 0x28160c1f);
630
631         /* LO calibration setting */
632         phy_set_bb_reg(adapt, rIQK_AGC_Rsp, bMaskDWord, 0x0046a911);
633
634         phy_set_bb_reg(adapt, rIQK_AGC_Pts, bMaskDWord, 0xf9000000);
635         phy_set_bb_reg(adapt, rIQK_AGC_Pts, bMaskDWord, 0xf8000000);
636
637         mdelay(IQK_DELAY_TIME_88E);
638
639         /*  Check failed */
640         reg_eac = phy_query_bb_reg(adapt, rRx_Power_After_IQK_A_2, bMaskDWord);
641         reg_e94 = phy_query_bb_reg(adapt, rTx_Power_Before_IQK_A, bMaskDWord);
642         reg_e9c = phy_query_bb_reg(adapt, rTx_Power_After_IQK_A, bMaskDWord);
643         reg_ea4 = phy_query_bb_reg(adapt, rRx_Power_Before_IQK_A_2, bMaskDWord);
644
645         /* reload RF 0xdf */
646         phy_set_bb_reg(adapt, rFPGA0_IQK, bMaskDWord, 0x00000000);
647         phy_set_rf_reg(adapt, RF_PATH_A, 0xdf, bRFRegOffsetMask, 0x180);
648
649         if (!(reg_eac & BIT(27)) && /* if Tx is OK, check whether Rx is OK */
650             (((reg_ea4 & 0x03FF0000) >> 16) != 0x132) &&
651             (((reg_eac & 0x03FF0000) >> 16) != 0x36))
652                 result |= 0x02;
653         else
654                 ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD,
655                              ("Path A Rx IQK fail!!\n"));
656
657         return result;
658 }
659
660 static u8 phy_path_b_iqk(struct adapter *adapt)
661 {
662         u32 regeac, regeb4, regebc, regec4, regecc;
663         u8 result = 0x00;
664         struct odm_dm_struct *dm_odm = &adapt->HalData->odmpriv;
665
666         /* One shot, path B LOK & IQK */
667         phy_set_bb_reg(adapt, rIQK_AGC_Cont, bMaskDWord, 0x00000002);
668         phy_set_bb_reg(adapt, rIQK_AGC_Cont, bMaskDWord, 0x00000000);
669
670         mdelay(IQK_DELAY_TIME_88E);
671
672         regeac = phy_query_bb_reg(adapt, rRx_Power_After_IQK_A_2, bMaskDWord);
673         regeb4 = phy_query_bb_reg(adapt, rTx_Power_Before_IQK_B, bMaskDWord);
674         regebc = phy_query_bb_reg(adapt, rTx_Power_After_IQK_B, bMaskDWord);
675         regec4 = phy_query_bb_reg(adapt, rRx_Power_Before_IQK_B_2, bMaskDWord);
676         regecc = phy_query_bb_reg(adapt, rRx_Power_After_IQK_B_2, bMaskDWord);
677
678         if (!(regeac & BIT(31)) &&
679             (((regeb4 & 0x03FF0000) >> 16) != 0x142) &&
680             (((regebc & 0x03FF0000) >> 16) != 0x42))
681                 result |= 0x01;
682         else
683                 return result;
684
685         if (!(regeac & BIT(30)) &&
686             (((regec4 & 0x03FF0000) >> 16) != 0x132) &&
687             (((regecc & 0x03FF0000) >> 16) != 0x36))
688                 result |= 0x02;
689         else
690                 ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION,
691                              ODM_DBG_LOUD,  ("Path B Rx IQK fail!!\n"));
692         return result;
693 }
694
695 static void patha_fill_iqk(struct adapter *adapt, bool iqkok, s32 result[][8],
696                            u8 final_candidate, bool txonly)
697 {
698         u32 oldval_0, x, tx0_a, reg;
699         s32 y, tx0_c;
700
701         if (final_candidate == 0xFF) {
702                 return;
703         } else if (iqkok) {
704                 oldval_0 = (phy_query_bb_reg(adapt, rOFDM0_XATxIQImbalance, bMaskDWord) >> 22) & 0x3FF;
705
706                 x = result[final_candidate][0];
707                 if ((x & 0x00000200) != 0)
708                         x = x | 0xFFFFFC00;
709
710                 tx0_a = (x * oldval_0) >> 8;
711                 phy_set_bb_reg(adapt, rOFDM0_XATxIQImbalance, 0x3FF, tx0_a);
712                 phy_set_bb_reg(adapt, rOFDM0_ECCAThreshold, BIT(31),
713                                ((x * oldval_0 >> 7) & 0x1));
714
715                 y = result[final_candidate][1];
716                 if ((y & 0x00000200) != 0)
717                         y = y | 0xFFFFFC00;
718
719                 tx0_c = (y * oldval_0) >> 8;
720                 phy_set_bb_reg(adapt, rOFDM0_XCTxAFE, 0xF0000000,
721                                ((tx0_c & 0x3C0) >> 6));
722                 phy_set_bb_reg(adapt, rOFDM0_XATxIQImbalance, 0x003F0000,
723                                (tx0_c & 0x3F));
724                 phy_set_bb_reg(adapt, rOFDM0_ECCAThreshold, BIT(29),
725                                ((y * oldval_0 >> 7) & 0x1));
726
727                 if (txonly)
728                         return;
729
730                 reg = result[final_candidate][2];
731                 phy_set_bb_reg(adapt, rOFDM0_XARxIQImbalance, 0x3FF, reg);
732
733                 reg = result[final_candidate][3] & 0x3F;
734                 phy_set_bb_reg(adapt, rOFDM0_XARxIQImbalance, 0xFC00, reg);
735
736                 reg = (result[final_candidate][3] >> 6) & 0xF;
737                 phy_set_bb_reg(adapt, rOFDM0_RxIQExtAnta, 0xF0000000, reg);
738         }
739 }
740
741 static void pathb_fill_iqk(struct adapter *adapt, bool iqkok, s32 result[][8],
742                            u8 final_candidate, bool txonly)
743 {
744         u32 oldval_1, x, tx1_a, reg;
745         s32 y, tx1_c;
746
747         if (final_candidate == 0xFF) {
748                 return;
749         } else if (iqkok) {
750                 oldval_1 = (phy_query_bb_reg(adapt, rOFDM0_XBTxIQImbalance, bMaskDWord) >> 22) & 0x3FF;
751
752                 x = result[final_candidate][4];
753                 if ((x & 0x00000200) != 0)
754                         x = x | 0xFFFFFC00;
755                 tx1_a = (x * oldval_1) >> 8;
756                 phy_set_bb_reg(adapt, rOFDM0_XBTxIQImbalance, 0x3FF, tx1_a);
757
758                 phy_set_bb_reg(adapt, rOFDM0_ECCAThreshold, BIT(27),
759                                ((x * oldval_1 >> 7) & 0x1));
760
761                 y = result[final_candidate][5];
762                 if ((y & 0x00000200) != 0)
763                         y = y | 0xFFFFFC00;
764
765                 tx1_c = (y * oldval_1) >> 8;
766
767                 phy_set_bb_reg(adapt, rOFDM0_XDTxAFE, 0xF0000000,
768                                ((tx1_c & 0x3C0) >> 6));
769                 phy_set_bb_reg(adapt, rOFDM0_XBTxIQImbalance, 0x003F0000,
770                                (tx1_c & 0x3F));
771                 phy_set_bb_reg(adapt, rOFDM0_ECCAThreshold, BIT(25),
772                                ((y * oldval_1 >> 7) & 0x1));
773
774                 if (txonly)
775                         return;
776
777                 reg = result[final_candidate][6];
778                 phy_set_bb_reg(adapt, rOFDM0_XBRxIQImbalance, 0x3FF, reg);
779
780                 reg = result[final_candidate][7] & 0x3F;
781                 phy_set_bb_reg(adapt, rOFDM0_XBRxIQImbalance, 0xFC00, reg);
782
783                 reg = (result[final_candidate][7] >> 6) & 0xF;
784                 phy_set_bb_reg(adapt, rOFDM0_AGCRSSITable, 0x0000F000, reg);
785         }
786 }
787
788 static void save_adda_registers(struct adapter *adapt, const u32 *addareg,
789                                 u32 *backup, u32 register_num)
790 {
791         u32 i;
792
793         for (i = 0; i < register_num; i++)
794                 backup[i] = phy_query_bb_reg(adapt, addareg[i], bMaskDWord);
795 }
796
797 static void save_mac_registers(struct adapter *adapt, const u32 *mac_reg,
798                                u32 *backup)
799 {
800         u32 i;
801
802         for (i = 0; i < (IQK_MAC_REG_NUM - 1); i++)
803                 backup[i] = usb_read8(adapt, mac_reg[i]);
804
805         backup[i] = usb_read32(adapt, mac_reg[i]);
806 }
807
808 static void reload_adda_reg(struct adapter *adapt, const u32 *adda_reg,
809                             u32 *backup, u32 regiester_num)
810 {
811         u32 i;
812
813         for (i = 0; i < regiester_num; i++)
814                 phy_set_bb_reg(adapt, adda_reg[i], bMaskDWord, backup[i]);
815 }
816
817 static void reload_mac_registers(struct adapter *adapt, const u32 *mac_reg,
818                                  u32 *backup)
819 {
820         u32 i;
821
822         for (i = 0; i < (IQK_MAC_REG_NUM - 1); i++)
823                 usb_write8(adapt, mac_reg[i], (u8)backup[i]);
824
825         usb_write32(adapt, mac_reg[i], backup[i]);
826 }
827
828 static void path_adda_on(struct adapter *adapt, const u32 *adda_reg,
829                          bool is_path_a_on, bool is2t)
830 {
831         u32 path_on;
832         u32 i;
833
834         if (!is2t) {
835                 path_on = 0x0bdb25a0;
836                 phy_set_bb_reg(adapt, adda_reg[0], bMaskDWord, 0x0b1b25a0);
837         } else {
838                 path_on = is_path_a_on ? 0x04db25a4 : 0x0b1b25a4;
839                 phy_set_bb_reg(adapt, adda_reg[0], bMaskDWord, path_on);
840         }
841
842         for (i = 1; i < IQK_ADDA_REG_NUM; i++)
843                 phy_set_bb_reg(adapt, adda_reg[i], bMaskDWord, path_on);
844 }
845
846 static void mac_setting_calibration(struct adapter *adapt, const u32 *mac_reg,
847                                     u32 *backup)
848 {
849         u32 i = 0;
850
851         usb_write8(adapt, mac_reg[i], 0x3F);
852
853         for (i = 1; i < (IQK_MAC_REG_NUM - 1); i++)
854                 usb_write8(adapt, mac_reg[i], (u8)(backup[i] & (~BIT(3))));
855
856         usb_write8(adapt, mac_reg[i], (u8)(backup[i] & (~BIT(5))));
857 }
858
859 static void path_a_standby(struct adapter *adapt)
860 {
861         phy_set_bb_reg(adapt, rFPGA0_IQK, bMaskDWord, 0x0);
862         phy_set_bb_reg(adapt, 0x840, bMaskDWord, 0x00010000);
863         phy_set_bb_reg(adapt, rFPGA0_IQK, bMaskDWord, 0x80800000);
864 }
865
866 static void pi_mode_switch(struct adapter *adapt, bool pi_mode)
867 {
868         u32 mode;
869
870         mode = pi_mode ? 0x01000100 : 0x01000000;
871         phy_set_bb_reg(adapt, rFPGA0_XA_HSSIParameter1, bMaskDWord, mode);
872         phy_set_bb_reg(adapt, rFPGA0_XB_HSSIParameter1, bMaskDWord, mode);
873 }
874
875 static bool simularity_compare(struct adapter *adapt, s32 resulta[][8],
876                                u8 c1, u8 c2)
877 {
878         u32 i, j, diff, sim_bitmap = 0, bound;
879         u8 final_candidate[2] = {0xFF, 0xFF};   /* for path A and path B */
880         bool result = true;
881         s32 tmp1 = 0, tmp2 = 0;
882
883         bound = 4;
884
885         for (i = 0; i < bound; i++) {
886                 if ((i == 1) || (i == 3) || (i == 5) || (i == 7)) {
887                         if ((resulta[c1][i] & 0x00000200) != 0)
888                                 tmp1 = resulta[c1][i] | 0xFFFFFC00;
889                         else
890                                 tmp1 = resulta[c1][i];
891
892                         if ((resulta[c2][i] & 0x00000200) != 0)
893                                 tmp2 = resulta[c2][i] | 0xFFFFFC00;
894                         else
895                                 tmp2 = resulta[c2][i];
896                 } else {
897                         tmp1 = resulta[c1][i];
898                         tmp2 = resulta[c2][i];
899                 }
900
901                 diff = abs(tmp1 - tmp2);
902
903                 if (diff > MAX_TOLERANCE) {
904                         if ((i == 2 || i == 6) && !sim_bitmap) {
905                                 if (resulta[c1][i] + resulta[c1][i + 1] == 0)
906                                         final_candidate[(i / 4)] = c2;
907                                 else if (resulta[c2][i] + resulta[c2][i + 1] == 0)
908                                         final_candidate[(i / 4)] = c1;
909                                 else
910                                         sim_bitmap = sim_bitmap | (1 << i);
911                         } else {
912                                 sim_bitmap = sim_bitmap | (1 << i);
913                         }
914                 }
915         }
916
917         if (sim_bitmap == 0) {
918                 for (i = 0; i < (bound / 4); i++) {
919                         if (final_candidate[i] != 0xFF) {
920                                 for (j = i * 4; j < (i + 1) * 4 - 2; j++)
921                                         resulta[3][j] = resulta[final_candidate[i]][j];
922                                 result = false;
923                         }
924                 }
925                 return result;
926         }
927
928         if (!(sim_bitmap & 0x03)) {                /* path A TX OK */
929                 for (i = 0; i < 2; i++)
930                         resulta[3][i] = resulta[c1][i];
931         }
932         if (!(sim_bitmap & 0x0c)) {                /* path A RX OK */
933                 for (i = 2; i < 4; i++)
934                         resulta[3][i] = resulta[c1][i];
935         }
936
937         if (!(sim_bitmap & 0x30)) { /* path B TX OK */
938                 for (i = 4; i < 6; i++)
939                         resulta[3][i] = resulta[c1][i];
940         }
941
942         if (!(sim_bitmap & 0xc0)) { /* path B RX OK */
943                 for (i = 6; i < 8; i++)
944                         resulta[3][i] = resulta[c1][i];
945         }
946         return false;
947 }
948
949 static void phy_iq_calibrate(struct adapter *adapt, s32 result[][8],
950                              u8 t, bool is2t)
951 {
952         struct odm_dm_struct *dm_odm = &adapt->HalData->odmpriv;
953         u32 i;
954         u8 path_a_ok, path_b_ok;
955         static const u32 adda_reg[IQK_ADDA_REG_NUM] = {
956                 rFPGA0_XCD_SwitchControl, rBlue_Tooth,
957                 rRx_Wait_CCA, rTx_CCK_RFON,
958                 rTx_CCK_BBON, rTx_OFDM_RFON,
959                 rTx_OFDM_BBON, rTx_To_Rx,
960                 rTx_To_Tx, rRx_CCK,
961                 rRx_OFDM, rRx_Wait_RIFS,
962                 rRx_TO_Rx, rStandby,
963                 rSleep, rPMPD_ANAEN
964         };
965         static const u32 iqk_mac_reg[IQK_MAC_REG_NUM] = {
966                 REG_TXPAUSE, REG_BCN_CTRL,
967                 REG_BCN_CTRL_1, REG_GPIO_MUXCFG
968         };
969         /* since 92C & 92D have the different define in IQK_BB_REG */
970         static const u32 iqk_bb_reg_92c[IQK_BB_REG_NUM] = {
971                 rOFDM0_TRxPathEnable, rOFDM0_TRMuxPar,
972                 rFPGA0_XCD_RFInterfaceSW, rConfig_AntA, rConfig_AntB,
973                 rFPGA0_XAB_RFInterfaceSW, rFPGA0_XA_RFInterfaceOE,
974                 rFPGA0_XB_RFInterfaceOE, rFPGA0_RFMOD
975         };
976
977         u32 retry_count = 9;
978
979         if (*dm_odm->mp_mode == 1)
980                 retry_count = 9;
981         else
982                 retry_count = 2;
983
984         if (t == 0) {
985                 /*  Save ADDA parameters, turn Path A ADDA on */
986                 save_adda_registers(adapt, adda_reg, dm_odm->RFCalibrateInfo.ADDA_backup,
987                                     IQK_ADDA_REG_NUM);
988                 save_mac_registers(adapt, iqk_mac_reg,
989                                    dm_odm->RFCalibrateInfo.IQK_MAC_backup);
990                 save_adda_registers(adapt, iqk_bb_reg_92c,
991                                     dm_odm->RFCalibrateInfo.IQK_BB_backup, IQK_BB_REG_NUM);
992         }
993
994         path_adda_on(adapt, adda_reg, true, is2t);
995         if (t == 0)
996                 dm_odm->RFCalibrateInfo.bRfPiEnable = (u8)phy_query_bb_reg(adapt, rFPGA0_XA_HSSIParameter1,
997                                                                            BIT(8));
998
999         if (!dm_odm->RFCalibrateInfo.bRfPiEnable) {
1000                 /*  Switch BB to PI mode to do IQ Calibration. */
1001                 pi_mode_switch(adapt, true);
1002         }
1003
1004         /* BB setting */
1005         phy_set_bb_reg(adapt, rFPGA0_RFMOD, BIT(24), 0x00);
1006         phy_set_bb_reg(adapt, rOFDM0_TRxPathEnable, bMaskDWord, 0x03a05600);
1007         phy_set_bb_reg(adapt, rOFDM0_TRMuxPar, bMaskDWord, 0x000800e4);
1008         phy_set_bb_reg(adapt, rFPGA0_XCD_RFInterfaceSW, bMaskDWord, 0x22204000);
1009
1010         phy_set_bb_reg(adapt, rFPGA0_XAB_RFInterfaceSW, BIT(10), 0x01);
1011         phy_set_bb_reg(adapt, rFPGA0_XAB_RFInterfaceSW, BIT(26), 0x01);
1012         phy_set_bb_reg(adapt, rFPGA0_XA_RFInterfaceOE, BIT(10), 0x00);
1013         phy_set_bb_reg(adapt, rFPGA0_XB_RFInterfaceOE, BIT(10), 0x00);
1014
1015         if (is2t) {
1016                 phy_set_bb_reg(adapt, rFPGA0_XA_LSSIParameter, bMaskDWord,
1017                                0x00010000);
1018                 phy_set_bb_reg(adapt, rFPGA0_XB_LSSIParameter, bMaskDWord,
1019                                0x00010000);
1020         }
1021
1022         /* MAC settings */
1023         mac_setting_calibration(adapt, iqk_mac_reg,
1024                                 dm_odm->RFCalibrateInfo.IQK_MAC_backup);
1025
1026         /* Page B init */
1027         /* AP or IQK */
1028         phy_set_bb_reg(adapt, rConfig_AntA, bMaskDWord, 0x0f600000);
1029
1030         if (is2t)
1031                 phy_set_bb_reg(adapt, rConfig_AntB, bMaskDWord, 0x0f600000);
1032
1033         /*  IQ calibration setting */
1034         phy_set_bb_reg(adapt, rFPGA0_IQK, bMaskDWord, 0x80800000);
1035         phy_set_bb_reg(adapt, rTx_IQK, bMaskDWord, 0x01007c00);
1036         phy_set_bb_reg(adapt, rRx_IQK, bMaskDWord, 0x81004800);
1037
1038         for (i = 0; i < retry_count; i++) {
1039                 path_a_ok = phy_path_a_iqk(adapt, is2t);
1040                 if (path_a_ok == 0x01) {
1041                         result[t][0] = (phy_query_bb_reg(adapt, rTx_Power_Before_IQK_A,
1042                                                          bMaskDWord) & 0x3FF0000) >> 16;
1043                         result[t][1] = (phy_query_bb_reg(adapt, rTx_Power_After_IQK_A,
1044                                                          bMaskDWord) & 0x3FF0000) >> 16;
1045                         break;
1046                 }
1047         }
1048
1049         for (i = 0; i < retry_count; i++) {
1050                 path_a_ok = phy_path_a_rx_iqk(adapt, is2t);
1051                 if (path_a_ok == 0x03) {
1052                         result[t][2] = (phy_query_bb_reg(adapt, rRx_Power_Before_IQK_A_2,
1053                                                          bMaskDWord) & 0x3FF0000) >> 16;
1054                         result[t][3] = (phy_query_bb_reg(adapt, rRx_Power_After_IQK_A_2,
1055                                                          bMaskDWord) & 0x3FF0000) >> 16;
1056                         break;
1057                 }
1058                 ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD,
1059                              ("Path A Rx IQK Fail!!\n"));
1060         }
1061
1062         if (path_a_ok == 0x00) {
1063                 ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD,
1064                              ("Path A IQK failed!!\n"));
1065         }
1066
1067         if (is2t) {
1068                 path_a_standby(adapt);
1069
1070                 /*  Turn Path B ADDA on */
1071                 path_adda_on(adapt, adda_reg, false, is2t);
1072
1073                 for (i = 0; i < retry_count; i++) {
1074                         path_b_ok = phy_path_b_iqk(adapt);
1075                         if (path_b_ok == 0x03) {
1076                                 result[t][4] = (phy_query_bb_reg(adapt, rTx_Power_Before_IQK_B,
1077                                                                  bMaskDWord) & 0x3FF0000) >> 16;
1078                                 result[t][5] = (phy_query_bb_reg(adapt, rTx_Power_After_IQK_B,
1079                                                                  bMaskDWord) & 0x3FF0000) >> 16;
1080                                 result[t][6] = (phy_query_bb_reg(adapt, rRx_Power_Before_IQK_B_2,
1081                                                                  bMaskDWord) & 0x3FF0000) >> 16;
1082                                 result[t][7] = (phy_query_bb_reg(adapt, rRx_Power_After_IQK_B_2,
1083                                                                  bMaskDWord) & 0x3FF0000) >> 16;
1084                                 break;
1085                         } else if (i == (retry_count - 1) && path_b_ok == 0x01) {       /* Tx IQK OK */
1086                                 result[t][4] = (phy_query_bb_reg(adapt, rTx_Power_Before_IQK_B,
1087                                                                  bMaskDWord) & 0x3FF0000) >> 16;
1088                                 result[t][5] = (phy_query_bb_reg(adapt, rTx_Power_After_IQK_B,
1089                                                                  bMaskDWord) & 0x3FF0000) >> 16;
1090                         }
1091                 }
1092
1093                 if (path_b_ok == 0x00) {
1094                         ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD,
1095                                      ("Path B IQK failed!!\n"));
1096                 }
1097         }
1098
1099         /* Back to BB mode, load original value */
1100         phy_set_bb_reg(adapt, rFPGA0_IQK, bMaskDWord, 0);
1101
1102         if (t != 0) {
1103                 if (!dm_odm->RFCalibrateInfo.bRfPiEnable) {
1104                         /* Switch back BB to SI mode after
1105                          * finish IQ Calibration.
1106                          */
1107                         pi_mode_switch(adapt, false);
1108                 }
1109
1110                 /*  Reload ADDA power saving parameters */
1111                 reload_adda_reg(adapt, adda_reg, dm_odm->RFCalibrateInfo.ADDA_backup,
1112                                 IQK_ADDA_REG_NUM);
1113
1114                 /*  Reload MAC parameters */
1115                 reload_mac_registers(adapt, iqk_mac_reg,
1116                                      dm_odm->RFCalibrateInfo.IQK_MAC_backup);
1117
1118                 reload_adda_reg(adapt, iqk_bb_reg_92c, dm_odm->RFCalibrateInfo.IQK_BB_backup,
1119                                 IQK_BB_REG_NUM);
1120
1121                 /*  Restore RX initial gain */
1122                 phy_set_bb_reg(adapt, rFPGA0_XA_LSSIParameter,
1123                                bMaskDWord, 0x00032ed3);
1124                 if (is2t)
1125                         phy_set_bb_reg(adapt, rFPGA0_XB_LSSIParameter,
1126                                        bMaskDWord, 0x00032ed3);
1127
1128                 /* load 0xe30 IQC default value */
1129                 phy_set_bb_reg(adapt, rTx_IQK_Tone_A, bMaskDWord, 0x01008c00);
1130                 phy_set_bb_reg(adapt, rRx_IQK_Tone_A, bMaskDWord, 0x01008c00);
1131         }
1132 }
1133
1134 static void phy_lc_calibrate(struct adapter *adapt, bool is2t)
1135 {
1136         u8 tmpreg;
1137         u32 rf_a_mode = 0, rf_b_mode = 0, lc_cal;
1138
1139         /* Check continuous TX and Packet TX */
1140         tmpreg = usb_read8(adapt, 0xd03);
1141
1142         if ((tmpreg & 0x70) != 0)
1143                 usb_write8(adapt, 0xd03, tmpreg & 0x8F);
1144         else
1145                 usb_write8(adapt, REG_TXPAUSE, 0xFF);
1146
1147         if ((tmpreg & 0x70) != 0) {
1148                 /* 1. Read original RF mode */
1149                 /* Path-A */
1150                 rf_a_mode = rtw_hal_read_rfreg(adapt, RF_PATH_A, RF_AC,
1151                                                bMask12Bits);
1152
1153                 /* Path-B */
1154                 if (is2t)
1155                         rf_b_mode = rtw_hal_read_rfreg(adapt, RF_PATH_B, RF_AC,
1156                                                        bMask12Bits);
1157
1158                 /* 2. Set RF mode = standby mode */
1159                 /* Path-A */
1160                 phy_set_rf_reg(adapt, RF_PATH_A, RF_AC, bMask12Bits,
1161                                (rf_a_mode & 0x8FFFF) | 0x10000);
1162
1163                 /* Path-B */
1164                 if (is2t)
1165                         phy_set_rf_reg(adapt, RF_PATH_B, RF_AC, bMask12Bits,
1166                                        (rf_b_mode & 0x8FFFF) | 0x10000);
1167         }
1168
1169         /* 3. Read RF reg18 */
1170         lc_cal = rtw_hal_read_rfreg(adapt, RF_PATH_A, RF_CHNLBW, bMask12Bits);
1171
1172         /* 4. Set LC calibration begin bit15 */
1173         phy_set_rf_reg(adapt, RF_PATH_A, RF_CHNLBW, bMask12Bits,
1174                        lc_cal | 0x08000);
1175
1176         msleep(100);
1177
1178         /* Restore original situation */
1179         if ((tmpreg & 0x70) != 0) {
1180                 /* Deal with continuous TX case */
1181                 /* Path-A */
1182                 usb_write8(adapt, 0xd03, tmpreg);
1183                 phy_set_rf_reg(adapt, RF_PATH_A, RF_AC, bMask12Bits, rf_a_mode);
1184
1185                 /* Path-B */
1186                 if (is2t)
1187                         phy_set_rf_reg(adapt, RF_PATH_B, RF_AC, bMask12Bits,
1188                                        rf_b_mode);
1189         } else {
1190                 /* Deal with Packet TX case */
1191                 usb_write8(adapt, REG_TXPAUSE, 0x00);
1192         }
1193 }
1194
1195 void rtl88eu_phy_iq_calibrate(struct adapter *adapt, bool recovery)
1196 {
1197         struct odm_dm_struct *dm_odm = &adapt->HalData->odmpriv;
1198         s32 result[4][8];
1199         u8 i, final;
1200         bool pathaok, pathbok;
1201         s32 reg_e94, reg_e9c, reg_ea4, reg_eb4, reg_ebc, reg_ec4;
1202         bool is12simular, is13simular, is23simular;
1203         bool singletone = false, carrier_sup = false;
1204         u32 iqk_bb_reg_92c[IQK_BB_REG_NUM] = {
1205                 rOFDM0_XARxIQImbalance, rOFDM0_XBRxIQImbalance,
1206                 rOFDM0_ECCAThreshold, rOFDM0_AGCRSSITable,
1207                 rOFDM0_XATxIQImbalance, rOFDM0_XBTxIQImbalance,
1208                 rOFDM0_XCTxAFE, rOFDM0_XDTxAFE,
1209                 rOFDM0_RxIQExtAnta};
1210         bool is2t;
1211
1212         is2t = false;
1213
1214         if (!(dm_odm->SupportAbility & ODM_RF_CALIBRATION))
1215                 return;
1216
1217         if (singletone || carrier_sup)
1218                 return;
1219
1220         if (recovery) {
1221                 ODM_RT_TRACE(dm_odm, ODM_COMP_INIT, ODM_DBG_LOUD,
1222                              ("phy_iq_calibrate: Return due to recovery!\n"));
1223                 reload_adda_reg(adapt, iqk_bb_reg_92c,
1224                                 dm_odm->RFCalibrateInfo.IQK_BB_backup_recover, 9);
1225                 return;
1226         }
1227
1228         memset(result, 0, sizeof(result));
1229         for (i = 0; i < 8; i += 2)
1230                 result[3][i] = 0x100;
1231
1232         final = 0xff;
1233         pathaok = false;
1234         pathbok = false;
1235         is12simular = false;
1236         is23simular = false;
1237         is13simular = false;
1238
1239         for (i = 0; i < 3; i++) {
1240                 phy_iq_calibrate(adapt, result, i, is2t);
1241
1242                 if (i == 1) {
1243                         is12simular = simularity_compare(adapt, result, 0, 1);
1244                         if (is12simular) {
1245                                 final = 0;
1246                                 break;
1247                         }
1248                 }
1249
1250                 if (i == 2) {
1251                         is13simular = simularity_compare(adapt, result, 0, 2);
1252                         if (is13simular) {
1253                                 final = 0;
1254                                 break;
1255                         }
1256                         is23simular = simularity_compare(adapt, result, 1, 2);
1257                         if (is23simular)
1258                                 final = 1;
1259                         else
1260                                 final = 3;
1261                 }
1262         }
1263
1264         for (i = 0; i < 4; i++) {
1265                 reg_e94 = result[i][0];
1266                 reg_e9c = result[i][1];
1267                 reg_ea4 = result[i][2];
1268                 reg_eb4 = result[i][4];
1269                 reg_ebc = result[i][5];
1270                 reg_ec4 = result[i][6];
1271         }
1272
1273         if (final != 0xff) {
1274                 reg_e94 = result[final][0];
1275                 reg_e9c = result[final][1];
1276                 reg_ea4 = result[final][2];
1277                 reg_eb4 = result[final][4];
1278                 reg_ebc = result[final][5];
1279                 dm_odm->RFCalibrateInfo.RegE94 = reg_e94;
1280                 dm_odm->RFCalibrateInfo.RegE9C = reg_e9c;
1281                 dm_odm->RFCalibrateInfo.RegEB4 = reg_eb4;
1282                 dm_odm->RFCalibrateInfo.RegEBC = reg_ebc;
1283                 reg_ec4 = result[final][6];
1284                 pathaok = true;
1285                 pathbok = true;
1286         } else {
1287                 ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD,
1288                              ("IQK: FAIL use default value\n"));
1289                 dm_odm->RFCalibrateInfo.RegE94 = 0x100;
1290                 dm_odm->RFCalibrateInfo.RegEB4 = 0x100;
1291                 dm_odm->RFCalibrateInfo.RegE9C = 0x0;
1292                 dm_odm->RFCalibrateInfo.RegEBC = 0x0;
1293         }
1294         if (reg_e94 != 0)
1295                 patha_fill_iqk(adapt, pathaok, result, final,
1296                                (reg_ea4 == 0));
1297         if (is2t) {
1298                 if (reg_eb4 != 0)
1299                         pathb_fill_iqk(adapt, pathbok, result, final,
1300                                        (reg_ec4 == 0));
1301         }
1302
1303         if (final < 4) {
1304                 for (i = 0; i < IQK_Matrix_REG_NUM; i++)
1305                         dm_odm->RFCalibrateInfo.IQKMatrixRegSetting[0].Value[0][i] = result[final][i];
1306                 dm_odm->RFCalibrateInfo.IQKMatrixRegSetting[0].bIQKDone = true;
1307         }
1308
1309         save_adda_registers(adapt, iqk_bb_reg_92c,
1310                             dm_odm->RFCalibrateInfo.IQK_BB_backup_recover, 9);
1311 }
1312
1313 void rtl88eu_phy_lc_calibrate(struct adapter *adapt)
1314 {
1315         bool singletone = false, carrier_sup = false;
1316         u32 timeout = 2000, timecount = 0;
1317         struct odm_dm_struct *dm_odm = &adapt->HalData->odmpriv;
1318
1319         if (!(dm_odm->SupportAbility & ODM_RF_CALIBRATION))
1320                 return;
1321         if (singletone || carrier_sup)
1322                 return;
1323
1324         while (*dm_odm->pbScanInProcess && timecount < timeout) {
1325                 mdelay(50);
1326                 timecount += 50;
1327         }
1328
1329         dm_odm->RFCalibrateInfo.bLCKInProgress = true;
1330
1331         phy_lc_calibrate(adapt, false);
1332
1333         dm_odm->RFCalibrateInfo.bLCKInProgress = false;
1334 }