GNU Linux-libre 4.14.328-gnu1
[releases.git] / drivers / staging / rtl8188eu / core / rtw_efuse.c
1 /******************************************************************************
2  *
3  * Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of version 2 of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12  * more details.
13  *
14  ******************************************************************************/
15 #define _RTW_EFUSE_C_
16
17 #include <osdep_service.h>
18 #include <drv_types.h>
19 #include <rtw_efuse.h>
20 #include <usb_ops_linux.h>
21 #include <rtl8188e_hal.h>
22 #include <rtw_iol.h>
23
24 #define REG_EFUSE_CTRL          0x0030
25 #define EFUSE_CTRL                      REG_EFUSE_CTRL          /*  E-Fuse Control. */
26
27 enum{
28                 VOLTAGE_V25                                             = 0x03,
29                 LDOE25_SHIFT                                            = 28,
30         };
31
32 /*
33  * Function:    Efuse_PowerSwitch
34  *
35  * Overview:    When we want to enable write operation, we should change to
36  *                              pwr on state. When we stop write, we should switch to 500k mode
37  *                              and disable LDO 2.5V.
38  */
39
40 void Efuse_PowerSwitch(
41                 struct adapter *pAdapter,
42                 u8 bWrite,
43                 u8 PwrState)
44 {
45         u8 tempval;
46         u16     tmpV16;
47
48         if (PwrState) {
49                 usb_write8(pAdapter, REG_EFUSE_ACCESS, EFUSE_ACCESS_ON);
50
51                 /*  1.2V Power: From VDDON with Power Cut(0x0000h[15]), defualt valid */
52                 tmpV16 = usb_read16(pAdapter, REG_SYS_ISO_CTRL);
53                 if (!(tmpV16 & PWC_EV12V)) {
54                         tmpV16 |= PWC_EV12V;
55                          usb_write16(pAdapter, REG_SYS_ISO_CTRL, tmpV16);
56                 }
57                 /*  Reset: 0x0000h[28], default valid */
58                 tmpV16 =  usb_read16(pAdapter, REG_SYS_FUNC_EN);
59                 if (!(tmpV16 & FEN_ELDR)) {
60                         tmpV16 |= FEN_ELDR;
61                         usb_write16(pAdapter, REG_SYS_FUNC_EN, tmpV16);
62                 }
63
64                 /*  Clock: Gated(0x0008h[5]) 8M(0x0008h[1]) clock from ANA, default valid */
65                 tmpV16 = usb_read16(pAdapter, REG_SYS_CLKR);
66                 if ((!(tmpV16 & LOADER_CLK_EN))  || (!(tmpV16 & ANA8M))) {
67                         tmpV16 |= (LOADER_CLK_EN | ANA8M);
68                         usb_write16(pAdapter, REG_SYS_CLKR, tmpV16);
69                 }
70
71                 if (bWrite) {
72                         /*  Enable LDO 2.5V before read/write action */
73                         tempval = usb_read8(pAdapter, EFUSE_TEST+3);
74                         tempval &= 0x0F;
75                         tempval |= (VOLTAGE_V25 << 4);
76                         usb_write8(pAdapter, EFUSE_TEST+3, (tempval | 0x80));
77                 }
78         } else {
79                 usb_write8(pAdapter, REG_EFUSE_ACCESS, EFUSE_ACCESS_OFF);
80
81                 if (bWrite) {
82                         /*  Disable LDO 2.5V after read/write action */
83                         tempval = usb_read8(pAdapter, EFUSE_TEST+3);
84                         usb_write8(pAdapter, EFUSE_TEST+3, (tempval & 0x7F));
85                 }
86         }
87 }
88
89 static void
90 efuse_phymap_to_logical(u8 *phymap, u16 _offset, u16 _size_byte, u8  *pbuf)
91 {
92         u8 *efuseTbl = NULL;
93         u8 rtemp8;
94         u16     eFuse_Addr = 0;
95         u8 offset, wren;
96         u16     i, j;
97         u16     **eFuseWord = NULL;
98         u16     efuse_utilized = 0;
99         u8 u1temp = 0;
100
101         efuseTbl = kzalloc(EFUSE_MAP_LEN_88E, GFP_KERNEL);
102         if (!efuseTbl)
103                 return;
104
105         eFuseWord = (u16 **)rtw_malloc2d(EFUSE_MAX_SECTION_88E, EFUSE_MAX_WORD_UNIT, sizeof(u16));
106         if (!eFuseWord) {
107                 DBG_88E("%s: alloc eFuseWord fail!\n", __func__);
108                 goto eFuseWord_failed;
109         }
110
111         /*  0. Refresh efuse init map as all oxFF. */
112         for (i = 0; i < EFUSE_MAX_SECTION_88E; i++)
113                 for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++)
114                         eFuseWord[i][j] = 0xFFFF;
115
116         /*  */
117         /*  1. Read the first byte to check if efuse is empty!!! */
118         /*  */
119         /*  */
120         rtemp8 = *(phymap+eFuse_Addr);
121         if (rtemp8 != 0xFF) {
122                 efuse_utilized++;
123                 eFuse_Addr++;
124         } else {
125                 DBG_88E("EFUSE is empty efuse_Addr-%d efuse_data =%x\n", eFuse_Addr, rtemp8);
126                 goto exit;
127         }
128
129         /*  */
130         /*  2. Read real efuse content. Filter PG header and every section data. */
131         /*  */
132         while ((rtemp8 != 0xFF) && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E)) {
133                 /*  Check PG header for section num. */
134                 if ((rtemp8 & 0x1F) == 0x0F) {          /* extended header */
135                         u1temp = (rtemp8 & 0xE0) >> 5;
136                         rtemp8 = *(phymap+eFuse_Addr);
137                         if ((rtemp8 & 0x0F) == 0x0F) {
138                                 eFuse_Addr++;
139                                 rtemp8 = *(phymap+eFuse_Addr);
140
141                                 if (rtemp8 != 0xFF && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E))
142                                         eFuse_Addr++;
143                                 continue;
144                         } else {
145                                 offset = ((rtemp8 & 0xF0) >> 1) | u1temp;
146                                 wren = rtemp8 & 0x0F;
147                                 eFuse_Addr++;
148                         }
149                 } else {
150                         offset = (rtemp8 >> 4) & 0x0f;
151                         wren = rtemp8 & 0x0f;
152                 }
153
154                 if (offset < EFUSE_MAX_SECTION_88E) {
155                         /*  Get word enable value from PG header */
156                         for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
157                                 /*  Check word enable condition in the section */
158                                 if (!(wren & 0x01)) {
159                                         rtemp8 = *(phymap+eFuse_Addr);
160                                         eFuse_Addr++;
161                                         efuse_utilized++;
162                                         eFuseWord[offset][i] = (rtemp8 & 0xff);
163                                         if (eFuse_Addr >= EFUSE_REAL_CONTENT_LEN_88E)
164                                                 break;
165                                         rtemp8 = *(phymap+eFuse_Addr);
166                                         eFuse_Addr++;
167                                         efuse_utilized++;
168                                         eFuseWord[offset][i] |= (((u16)rtemp8 << 8) & 0xff00);
169
170                                         if (eFuse_Addr >= EFUSE_REAL_CONTENT_LEN_88E)
171                                                 break;
172                                 }
173                                 wren >>= 1;
174                         }
175                 }
176                 /*  Read next PG header */
177                 rtemp8 = *(phymap+eFuse_Addr);
178
179                 if (rtemp8 != 0xFF && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E)) {
180                         efuse_utilized++;
181                         eFuse_Addr++;
182                 }
183         }
184
185         /*  */
186         /*  3. Collect 16 sections and 4 word unit into Efuse map. */
187         /*  */
188         for (i = 0; i < EFUSE_MAX_SECTION_88E; i++) {
189                 for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) {
190                         efuseTbl[(i*8)+(j*2)] = (eFuseWord[i][j] & 0xff);
191                         efuseTbl[(i*8)+((j*2)+1)] = ((eFuseWord[i][j] >> 8) & 0xff);
192                 }
193         }
194
195         /*  */
196         /*  4. Copy from Efuse map to output pointer memory!!! */
197         /*  */
198         for (i = 0; i < _size_byte; i++)
199                 pbuf[i] = efuseTbl[_offset+i];
200
201         /*  */
202         /*  5. Calculate Efuse utilization. */
203         /*  */
204
205 exit:
206         kfree(eFuseWord);
207
208 eFuseWord_failed:
209         kfree(efuseTbl);
210 }
211
212 static void efuse_read_phymap_from_txpktbuf(
213         struct adapter  *adapter,
214         int bcnhead,    /* beacon head, where FW store len(2-byte) and efuse physical map. */
215         u8 *content,    /* buffer to store efuse physical map */
216         u16 *size       /* for efuse content: the max byte to read. will update to byte read */
217         )
218 {
219         u16 dbg_addr = 0;
220         unsigned long start = 0;
221         u8 reg_0x143 = 0;
222         u32 lo32 = 0, hi32 = 0;
223         u16 len = 0, count = 0;
224         int i = 0;
225         u16 limit = *size;
226
227         u8 *pos = content;
228
229         if (bcnhead < 0) /* if not valid */
230                 bcnhead = usb_read8(adapter, REG_TDECTRL+1);
231
232         DBG_88E("%s bcnhead:%d\n", __func__, bcnhead);
233
234         usb_write8(adapter, REG_PKT_BUFF_ACCESS_CTRL, TXPKT_BUF_SELECT);
235
236         dbg_addr = bcnhead*128/8; /* 8-bytes addressing */
237
238         while (1) {
239                 usb_write16(adapter, REG_PKTBUF_DBG_ADDR, dbg_addr+i);
240
241                 usb_write8(adapter, REG_TXPKTBUF_DBG, 0);
242                 start = jiffies;
243                 while (!(reg_0x143 = usb_read8(adapter, REG_TXPKTBUF_DBG)) &&
244                        jiffies_to_msecs(jiffies - start) < 1000) {
245                         DBG_88E("%s polling reg_0x143:0x%02x, reg_0x106:0x%02x\n", __func__, reg_0x143, usb_read8(adapter, 0x106));
246                         usleep_range(1000, 2000);
247                 }
248
249                 lo32 = usb_read32(adapter, REG_PKTBUF_DBG_DATA_L);
250                 hi32 = usb_read32(adapter, REG_PKTBUF_DBG_DATA_H);
251
252                 if (i == 0) {
253                         u8 lenc[2];
254                         u16 lenbak, aaabak;
255                         u16 aaa;
256
257                         lenc[0] = usb_read8(adapter, REG_PKTBUF_DBG_DATA_L);
258                         lenc[1] = usb_read8(adapter, REG_PKTBUF_DBG_DATA_L+1);
259
260                         aaabak = le16_to_cpup((__le16 *)lenc);
261                         lenbak = le16_to_cpu(*((__le16 *)lenc));
262                         aaa = le16_to_cpup((__le16 *)&lo32);
263                         len = le16_to_cpu(*((__le16 *)&lo32));
264
265                         limit = min_t(u16, len-2, limit);
266
267                         DBG_88E("%s len:%u, lenbak:%u, aaa:%u, aaabak:%u\n", __func__, len, lenbak, aaa, aaabak);
268
269                         memcpy(pos, ((u8 *)&lo32)+2, (limit >= count+2) ? 2 : limit-count);
270                         count += (limit >= count+2) ? 2 : limit-count;
271                         pos = content+count;
272
273                 } else {
274                         memcpy(pos, ((u8 *)&lo32), (limit >= count+4) ? 4 : limit-count);
275                         count += (limit >= count+4) ? 4 : limit-count;
276                         pos = content+count;
277                 }
278
279                 if (limit > count && len-2 > count) {
280                         memcpy(pos, (u8 *)&hi32, (limit >= count+4) ? 4 : limit-count);
281                         count += (limit >= count+4) ? 4 : limit-count;
282                         pos = content+count;
283                 }
284
285                 if (limit <= count || len-2 <= count)
286                         break;
287                 i++;
288         }
289         usb_write8(adapter, REG_PKT_BUFF_ACCESS_CTRL, DISABLE_TRXPKT_BUF_ACCESS);
290         DBG_88E("%s read count:%u\n", __func__, count);
291         *size = count;
292 }
293
294 static s32 iol_read_efuse(struct adapter *padapter, u8 txpktbuf_bndy, u16 offset, u16 size_byte, u8 *logical_map)
295 {
296         s32 status = _FAIL;
297         u8 physical_map[512];
298         u16 size = 512;
299
300         usb_write8(padapter, REG_TDECTRL+1, txpktbuf_bndy);
301         memset(physical_map, 0xFF, 512);
302         usb_write8(padapter, REG_PKT_BUFF_ACCESS_CTRL, TXPKT_BUF_SELECT);
303         status = iol_execute(padapter, CMD_READ_EFUSE_MAP);
304         if (status == _SUCCESS)
305                 efuse_read_phymap_from_txpktbuf(padapter, txpktbuf_bndy, physical_map, &size);
306         efuse_phymap_to_logical(physical_map, offset, size_byte, logical_map);
307         return status;
308 }
309
310 void efuse_ReadEFuse(struct adapter *Adapter, u8 efuseType, u16 _offset, u16 _size_byte, u8 *pbuf)
311 {
312
313         if (rtw_IOL_applied(Adapter)) {
314                 rtw_hal_power_on(Adapter);
315                 iol_mode_enable(Adapter, 1);
316                 iol_read_efuse(Adapter, 0, _offset, _size_byte, pbuf);
317                 iol_mode_enable(Adapter, 0);
318         }
319 }
320
321 u8 Efuse_WordEnableDataWrite(struct adapter *pAdapter, u16 efuse_addr, u8 word_en, u8 *data)
322 {
323         u16     tmpaddr = 0;
324         u16     start_addr = efuse_addr;
325         u8 badworden = 0x0F;
326         u8 tmpdata[8];
327
328         memset(tmpdata, 0xff, PGPKT_DATA_SIZE);
329
330         if (!(word_en & BIT(0))) {
331                 tmpaddr = start_addr;
332                 efuse_OneByteWrite(pAdapter, start_addr++, data[0]);
333                 efuse_OneByteWrite(pAdapter, start_addr++, data[1]);
334
335                 efuse_OneByteRead(pAdapter, tmpaddr, &tmpdata[0]);
336                 efuse_OneByteRead(pAdapter, tmpaddr+1, &tmpdata[1]);
337                 if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1]))
338                         badworden &= (~BIT(0));
339         }
340         if (!(word_en & BIT(1))) {
341                 tmpaddr = start_addr;
342                 efuse_OneByteWrite(pAdapter, start_addr++, data[2]);
343                 efuse_OneByteWrite(pAdapter, start_addr++, data[3]);
344
345                 efuse_OneByteRead(pAdapter, tmpaddr, &tmpdata[2]);
346                 efuse_OneByteRead(pAdapter, tmpaddr+1, &tmpdata[3]);
347                 if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3]))
348                         badworden &= (~BIT(1));
349         }
350         if (!(word_en & BIT(2))) {
351                 tmpaddr = start_addr;
352                 efuse_OneByteWrite(pAdapter, start_addr++, data[4]);
353                 efuse_OneByteWrite(pAdapter, start_addr++, data[5]);
354
355                 efuse_OneByteRead(pAdapter, tmpaddr, &tmpdata[4]);
356                 efuse_OneByteRead(pAdapter, tmpaddr+1, &tmpdata[5]);
357                 if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5]))
358                         badworden &= (~BIT(2));
359         }
360         if (!(word_en & BIT(3))) {
361                 tmpaddr = start_addr;
362                 efuse_OneByteWrite(pAdapter, start_addr++, data[6]);
363                 efuse_OneByteWrite(pAdapter, start_addr++, data[7]);
364
365                 efuse_OneByteRead(pAdapter, tmpaddr, &tmpdata[6]);
366                 efuse_OneByteRead(pAdapter, tmpaddr+1, &tmpdata[7]);
367                 if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7]))
368                         badworden &= (~BIT(3));
369         }
370         return badworden;
371 }
372
373 static u16 Efuse_GetCurrentSize(struct adapter *pAdapter)
374 {
375         int     bContinual = true;
376         u16     efuse_addr = 0;
377         u8 hoffset = 0, hworden = 0;
378         u8 efuse_data, word_cnts = 0;
379
380         rtw_hal_get_hwreg(pAdapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_addr);
381
382         while (bContinual &&
383                efuse_OneByteRead(pAdapter, efuse_addr, &efuse_data) &&
384                AVAILABLE_EFUSE_ADDR(efuse_addr)) {
385                 if (efuse_data != 0xFF) {
386                         if ((efuse_data&0x1F) == 0x0F) {                /* extended header */
387                                 hoffset = efuse_data;
388                                 efuse_addr++;
389                                 efuse_OneByteRead(pAdapter, efuse_addr, &efuse_data);
390                                 if ((efuse_data & 0x0F) == 0x0F) {
391                                         efuse_addr++;
392                                         continue;
393                                 } else {
394                                         hoffset = ((hoffset & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1);
395                                         hworden = efuse_data & 0x0F;
396                                 }
397                         } else {
398                                 hoffset = (efuse_data>>4) & 0x0F;
399                                 hworden =  efuse_data & 0x0F;
400                         }
401                         word_cnts = Efuse_CalculateWordCnts(hworden);
402                         /* read next header */
403                         efuse_addr = efuse_addr + (word_cnts*2)+1;
404                 } else {
405                         bContinual = false;
406                 }
407         }
408
409         rtw_hal_set_hwreg(pAdapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_addr);
410
411         return efuse_addr;
412 }
413
414 int Efuse_PgPacketRead(struct adapter *pAdapter, u8 offset, u8 *data)
415 {
416         u8 ReadState = PG_STATE_HEADER;
417         int     bContinual = true;
418         int     bDataEmpty = true;
419         u8 efuse_data, word_cnts = 0;
420         u16     efuse_addr = 0;
421         u8 hoffset = 0, hworden = 0;
422         u8 tmpidx = 0;
423         u8 tmpdata[8];
424         u8 tmp_header = 0;
425
426         if (!data)
427                 return false;
428         if (offset > EFUSE_MAX_SECTION_88E)
429                 return false;
430
431         memset(data, 0xff, sizeof(u8) * PGPKT_DATA_SIZE);
432         memset(tmpdata, 0xff, sizeof(u8) * PGPKT_DATA_SIZE);
433
434         /*  <Roger_TODO> Efuse has been pre-programmed dummy 5Bytes at the end of Efuse by CP. */
435         /*  Skip dummy parts to prevent unexpected data read from Efuse. */
436         /*  By pass right now. 2009.02.19. */
437         while (bContinual && AVAILABLE_EFUSE_ADDR(efuse_addr)) {
438                 /*   Header Read ------------- */
439                 if (ReadState & PG_STATE_HEADER) {
440                         if (efuse_OneByteRead(pAdapter, efuse_addr, &efuse_data) && (efuse_data != 0xFF)) {
441                                 if (EXT_HEADER(efuse_data)) {
442                                         tmp_header = efuse_data;
443                                         efuse_addr++;
444                                         efuse_OneByteRead(pAdapter, efuse_addr, &efuse_data);
445                                         if (!ALL_WORDS_DISABLED(efuse_data)) {
446                                                 hoffset = ((tmp_header & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1);
447                                                 hworden = efuse_data & 0x0F;
448                                         } else {
449                                                 DBG_88E("Error, All words disabled\n");
450                                                 efuse_addr++;
451                                                 continue;
452                                         }
453                                 } else {
454                                         hoffset = (efuse_data>>4) & 0x0F;
455                                         hworden =  efuse_data & 0x0F;
456                                 }
457                                 word_cnts = Efuse_CalculateWordCnts(hworden);
458                                 bDataEmpty = true;
459
460                                 if (hoffset == offset) {
461                                         for (tmpidx = 0; tmpidx < word_cnts*2; tmpidx++) {
462                                                 if (efuse_OneByteRead(pAdapter, efuse_addr+1+tmpidx, &efuse_data)) {
463                                                         tmpdata[tmpidx] = efuse_data;
464                                                         if (efuse_data != 0xff)
465                                                                 bDataEmpty = false;
466                                                 }
467                                         }
468                                         if (bDataEmpty == false) {
469                                                 ReadState = PG_STATE_DATA;
470                                         } else {/* read next header */
471                                                 efuse_addr = efuse_addr + (word_cnts*2)+1;
472                                                 ReadState = PG_STATE_HEADER;
473                                         }
474                                 } else {/* read next header */
475                                         efuse_addr = efuse_addr + (word_cnts*2)+1;
476                                         ReadState = PG_STATE_HEADER;
477                                 }
478                         } else {
479                                 bContinual = false;
480                         }
481                 } else if (ReadState & PG_STATE_DATA) {
482                         /*   Data section Read ------------- */
483                         efuse_WordEnableDataRead(hworden, tmpdata, data);
484                         efuse_addr = efuse_addr + (word_cnts*2)+1;
485                         ReadState = PG_STATE_HEADER;
486                 }
487
488         }
489
490         if ((data[0] == 0xff) && (data[1] == 0xff) && (data[2] == 0xff)  && (data[3] == 0xff) &&
491             (data[4] == 0xff) && (data[5] == 0xff) && (data[6] == 0xff)  && (data[7] == 0xff))
492                 return false;
493         else
494                 return true;
495 }
496
497 static bool hal_EfuseFixHeaderProcess(struct adapter *pAdapter, u8 efuseType, struct pgpkt *pFixPkt, u16 *pAddr)
498 {
499         u8 originaldata[8], badworden = 0;
500         u16     efuse_addr = *pAddr;
501         u32     PgWriteSuccess = 0;
502
503         memset(originaldata, 0xff, 8);
504
505         if (Efuse_PgPacketRead(pAdapter, pFixPkt->offset, originaldata)) {
506                 /* check if data exist */
507                 badworden = Efuse_WordEnableDataWrite(pAdapter, efuse_addr+1, pFixPkt->word_en, originaldata);
508
509                 if (badworden != 0xf) { /*  write fail */
510                         PgWriteSuccess = Efuse_PgPacketWrite(pAdapter, pFixPkt->offset, badworden, originaldata);
511
512                         if (!PgWriteSuccess)
513                                 return false;
514                         else
515                                 efuse_addr = Efuse_GetCurrentSize(pAdapter);
516                 } else {
517                         efuse_addr = efuse_addr + (pFixPkt->word_cnts*2) + 1;
518                 }
519         } else {
520                 efuse_addr = efuse_addr + (pFixPkt->word_cnts*2) + 1;
521         }
522         *pAddr = efuse_addr;
523         return true;
524 }
525
526 static bool hal_EfusePgPacketWrite2ByteHeader(struct adapter *pAdapter, u8 efuseType, u16 *pAddr, struct pgpkt *pTargetPkt)
527 {
528         bool bRet = false;
529         u16 efuse_addr = *pAddr;
530         u16 efuse_max_available_len =
531                 EFUSE_REAL_CONTENT_LEN_88E - EFUSE_OOB_PROTECT_BYTES_88E;
532         u8 pg_header = 0, tmp_header = 0, pg_header_temp = 0;
533         u8 repeatcnt = 0;
534
535         while (efuse_addr < efuse_max_available_len) {
536                 pg_header = ((pTargetPkt->offset & 0x07) << 5) | 0x0F;
537                 efuse_OneByteWrite(pAdapter, efuse_addr, pg_header);
538                 efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header);
539
540                 while (tmp_header == 0xFF) {
541                         if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_)
542                                 return false;
543
544                         efuse_OneByteWrite(pAdapter, efuse_addr, pg_header);
545                         efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header);
546                 }
547
548                 /* to write ext_header */
549                 if (tmp_header == pg_header) {
550                         efuse_addr++;
551                         pg_header_temp = pg_header;
552                         pg_header = ((pTargetPkt->offset & 0x78) << 1) | pTargetPkt->word_en;
553
554                         efuse_OneByteWrite(pAdapter, efuse_addr, pg_header);
555                         efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header);
556
557                         while (tmp_header == 0xFF) {
558                                 if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_)
559                                         return false;
560
561                                 efuse_OneByteWrite(pAdapter, efuse_addr, pg_header);
562                                 efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header);
563                         }
564
565                         if ((tmp_header & 0x0F) == 0x0F) {      /* word_en PG fail */
566                                 if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_)
567                                         return false;
568
569                                 efuse_addr++;
570                                 continue;
571                         } else if (pg_header != tmp_header) {   /* offset PG fail */
572                                 struct pgpkt    fixPkt;
573
574                                 fixPkt.offset = ((pg_header_temp & 0xE0) >> 5) | ((tmp_header & 0xF0) >> 1);
575                                 fixPkt.word_en = tmp_header & 0x0F;
576                                 fixPkt.word_cnts = Efuse_CalculateWordCnts(fixPkt.word_en);
577                                 if (!hal_EfuseFixHeaderProcess(pAdapter, efuseType, &fixPkt, &efuse_addr))
578                                         return false;
579                         } else {
580                                 bRet = true;
581                                 break;
582                         }
583                 } else if ((tmp_header & 0x1F) == 0x0F) {               /* wrong extended header */
584                         efuse_addr += 2;
585                         continue;
586                 }
587         }
588
589         *pAddr = efuse_addr;
590         return bRet;
591 }
592
593 static bool hal_EfusePgPacketWrite1ByteHeader(struct adapter *pAdapter, u8 efuseType, u16 *pAddr, struct pgpkt *pTargetPkt)
594 {
595         bool bRet = false;
596         u8 pg_header = 0, tmp_header = 0;
597         u16     efuse_addr = *pAddr;
598         u8 repeatcnt = 0;
599
600         pg_header = ((pTargetPkt->offset << 4) & 0xf0) | pTargetPkt->word_en;
601
602         efuse_OneByteWrite(pAdapter, efuse_addr, pg_header);
603         efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header);
604
605         while (tmp_header == 0xFF) {
606                 if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_)
607                         return false;
608                 efuse_OneByteWrite(pAdapter, efuse_addr, pg_header);
609                 efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header);
610         }
611
612         if (pg_header == tmp_header) {
613                 bRet = true;
614         } else {
615                 struct pgpkt    fixPkt;
616
617                 fixPkt.offset = (tmp_header>>4) & 0x0F;
618                 fixPkt.word_en = tmp_header & 0x0F;
619                 fixPkt.word_cnts = Efuse_CalculateWordCnts(fixPkt.word_en);
620                 if (!hal_EfuseFixHeaderProcess(pAdapter, efuseType, &fixPkt, &efuse_addr))
621                         return false;
622         }
623
624         *pAddr = efuse_addr;
625         return bRet;
626 }
627
628 static bool hal_EfusePgPacketWriteData(struct adapter *pAdapter, u8 efuseType, u16 *pAddr, struct pgpkt *pTargetPkt)
629 {
630         u16     efuse_addr = *pAddr;
631         u8 badworden = 0;
632         u32     PgWriteSuccess = 0;
633
634         badworden = 0x0f;
635         badworden = Efuse_WordEnableDataWrite(pAdapter, efuse_addr+1, pTargetPkt->word_en, pTargetPkt->data);
636         if (badworden == 0x0F) {
637                 /*  write ok */
638                 return true;
639         }
640         /* reorganize other pg packet */
641         PgWriteSuccess = Efuse_PgPacketWrite(pAdapter, pTargetPkt->offset, badworden, pTargetPkt->data);
642         if (!PgWriteSuccess)
643                 return false;
644         else
645                 return true;
646 }
647
648 static bool
649 hal_EfusePgPacketWriteHeader(
650                                 struct adapter *pAdapter,
651                                 u8 efuseType,
652                                 u16                             *pAddr,
653                                 struct pgpkt *pTargetPkt)
654 {
655         bool bRet = false;
656
657         if (pTargetPkt->offset >= EFUSE_MAX_SECTION_BASE)
658                 bRet = hal_EfusePgPacketWrite2ByteHeader(pAdapter, efuseType, pAddr, pTargetPkt);
659         else
660                 bRet = hal_EfusePgPacketWrite1ByteHeader(pAdapter, efuseType, pAddr, pTargetPkt);
661
662         return bRet;
663 }
664
665 static bool wordEnMatched(struct pgpkt *pTargetPkt, struct pgpkt *pCurPkt,
666                           u8 *pWden)
667 {
668         u8 match_word_en = 0x0F;        /*  default all words are disabled */
669
670         /*  check if the same words are enabled both target and current PG packet */
671         if (((pTargetPkt->word_en & BIT(0)) == 0) &&
672             ((pCurPkt->word_en & BIT(0)) == 0))
673                 match_word_en &= ~BIT(0);                               /*  enable word 0 */
674         if (((pTargetPkt->word_en & BIT(1)) == 0) &&
675             ((pCurPkt->word_en & BIT(1)) == 0))
676                 match_word_en &= ~BIT(1);                               /*  enable word 1 */
677         if (((pTargetPkt->word_en & BIT(2)) == 0) &&
678             ((pCurPkt->word_en & BIT(2)) == 0))
679                 match_word_en &= ~BIT(2);                               /*  enable word 2 */
680         if (((pTargetPkt->word_en & BIT(3)) == 0) &&
681             ((pCurPkt->word_en & BIT(3)) == 0))
682                 match_word_en &= ~BIT(3);                               /*  enable word 3 */
683
684         *pWden = match_word_en;
685
686         if (match_word_en != 0xf)
687                 return true;
688         else
689                 return false;
690 }
691
692 static bool hal_EfuseCheckIfDatafollowed(struct adapter *pAdapter, u8 word_cnts, u16 startAddr)
693 {
694         bool bRet = false;
695         u8 i, efuse_data;
696
697         for (i = 0; i < (word_cnts*2); i++) {
698                 if (efuse_OneByteRead(pAdapter, (startAddr+i), &efuse_data) && (efuse_data != 0xFF))
699                         bRet = true;
700         }
701         return bRet;
702 }
703
704 static bool hal_EfusePartialWriteCheck(struct adapter *pAdapter, u8 efuseType, u16 *pAddr, struct pgpkt *pTargetPkt)
705 {
706         bool bRet = false;
707         u8 i, efuse_data = 0, cur_header = 0;
708         u8 matched_wden = 0, badworden = 0;
709         u16 startAddr = 0;
710         u16 efuse_max_available_len =
711                 EFUSE_REAL_CONTENT_LEN_88E - EFUSE_OOB_PROTECT_BYTES_88E;
712         struct pgpkt curPkt;
713
714         rtw_hal_get_hwreg(pAdapter, HW_VAR_EFUSE_BYTES, (u8 *)&startAddr);
715         startAddr %= EFUSE_REAL_CONTENT_LEN;
716
717         while (1) {
718                 if (startAddr >= efuse_max_available_len) {
719                         bRet = false;
720                         break;
721                 }
722
723                 if (efuse_OneByteRead(pAdapter, startAddr, &efuse_data) && (efuse_data != 0xFF)) {
724                         if (EXT_HEADER(efuse_data)) {
725                                 cur_header = efuse_data;
726                                 startAddr++;
727                                 efuse_OneByteRead(pAdapter, startAddr, &efuse_data);
728                                 if (ALL_WORDS_DISABLED(efuse_data)) {
729                                         bRet = false;
730                                         break;
731                                 } else {
732                                         curPkt.offset = ((cur_header & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1);
733                                         curPkt.word_en = efuse_data & 0x0F;
734                                 }
735                         } else {
736                                 cur_header  =  efuse_data;
737                                 curPkt.offset = (cur_header>>4) & 0x0F;
738                                 curPkt.word_en = cur_header & 0x0F;
739                         }
740
741                         curPkt.word_cnts = Efuse_CalculateWordCnts(curPkt.word_en);
742                         /*  if same header is found but no data followed */
743                         /*  write some part of data followed by the header. */
744                         if ((curPkt.offset == pTargetPkt->offset) &&
745                             (!hal_EfuseCheckIfDatafollowed(pAdapter, curPkt.word_cnts, startAddr+1)) &&
746                             wordEnMatched(pTargetPkt, &curPkt, &matched_wden)) {
747                                 /*  Here to write partial data */
748                                 badworden = Efuse_WordEnableDataWrite(pAdapter, startAddr+1, matched_wden, pTargetPkt->data);
749                                 if (badworden != 0x0F) {
750                                         u32     PgWriteSuccess = 0;
751                                         /*  if write fail on some words, write these bad words again */
752
753                                         PgWriteSuccess = Efuse_PgPacketWrite(pAdapter, pTargetPkt->offset, badworden, pTargetPkt->data);
754
755                                         if (!PgWriteSuccess) {
756                                                 bRet = false;   /*  write fail, return */
757                                                 break;
758                                         }
759                                 }
760                                 /*  partial write ok, update the target packet for later use */
761                                 for (i = 0; i < 4; i++) {
762                                         if ((matched_wden & (0x1<<i)) == 0)     /*  this word has been written */
763                                                 pTargetPkt->word_en |= (0x1<<i);        /*  disable the word */
764                                 }
765                                 pTargetPkt->word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en);
766                         }
767                         /*  read from next header */
768                         startAddr = startAddr + (curPkt.word_cnts*2) + 1;
769                 } else {
770                         /*  not used header, 0xff */
771                         *pAddr = startAddr;
772                         bRet = true;
773                         break;
774                 }
775         }
776         return bRet;
777 }
778
779 static bool
780 hal_EfusePgCheckAvailableAddr(
781                 struct adapter *pAdapter,
782                 u8 efuseType
783         )
784 {
785         if (Efuse_GetCurrentSize(pAdapter) >= EFUSE_MAP_LEN_88E)
786                 return false;
787         return true;
788 }
789
790 static void hal_EfuseConstructPGPkt(u8 offset, u8 word_en, u8 *pData, struct pgpkt *pTargetPkt)
791 {
792         memset((void *)pTargetPkt->data, 0xFF, sizeof(u8)*8);
793         pTargetPkt->offset = offset;
794         pTargetPkt->word_en = word_en;
795         efuse_WordEnableDataRead(word_en, pData, pTargetPkt->data);
796         pTargetPkt->word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en);
797 }
798
799 bool Efuse_PgPacketWrite(struct adapter *pAdapter, u8 offset, u8 word_en, u8 *pData)
800 {
801         struct pgpkt    targetPkt;
802         u16                     startAddr = 0;
803         u8 efuseType = EFUSE_WIFI;
804
805         if (!hal_EfusePgCheckAvailableAddr(pAdapter, efuseType))
806                 return false;
807
808         hal_EfuseConstructPGPkt(offset, word_en, pData, &targetPkt);
809
810         if (!hal_EfusePartialWriteCheck(pAdapter, efuseType, &startAddr, &targetPkt))
811                 return false;
812
813         if (!hal_EfusePgPacketWriteHeader(pAdapter, efuseType, &startAddr, &targetPkt))
814                 return false;
815
816         if (!hal_EfusePgPacketWriteData(pAdapter, efuseType, &startAddr, &targetPkt))
817                 return false;
818
819         return true;
820 }
821
822 u8 Efuse_CalculateWordCnts(u8 word_en)
823 {
824         u8 word_cnts = 0;
825
826         if (!(word_en & BIT(0)))
827                 word_cnts++; /*  0 : write enable */
828         if (!(word_en & BIT(1)))
829                 word_cnts++;
830         if (!(word_en & BIT(2)))
831                 word_cnts++;
832         if (!(word_en & BIT(3)))
833                 word_cnts++;
834         return word_cnts;
835 }
836
837 u8 efuse_OneByteRead(struct adapter *pAdapter, u16 addr, u8 *data)
838 {
839         u8 tmpidx = 0;
840         u8 result;
841
842         usb_write8(pAdapter, EFUSE_CTRL+1, (u8)(addr & 0xff));
843         usb_write8(pAdapter, EFUSE_CTRL+2, ((u8)((addr>>8) & 0x03)) |
844                    (usb_read8(pAdapter, EFUSE_CTRL+2) & 0xFC));
845
846         usb_write8(pAdapter, EFUSE_CTRL+3,  0x72);/* read cmd */
847
848         while (!(0x80 & usb_read8(pAdapter, EFUSE_CTRL+3)) && (tmpidx < 100))
849                 tmpidx++;
850         if (tmpidx < 100) {
851                 *data = usb_read8(pAdapter, EFUSE_CTRL);
852                 result = true;
853         } else {
854                 *data = 0xff;
855                 result = false;
856         }
857         return result;
858 }
859
860 u8 efuse_OneByteWrite(struct adapter *pAdapter, u16 addr, u8 data)
861 {
862         u8 tmpidx = 0;
863         u8 result;
864
865         usb_write8(pAdapter, EFUSE_CTRL+1, (u8)(addr&0xff));
866         usb_write8(pAdapter, EFUSE_CTRL+2,
867                    (usb_read8(pAdapter, EFUSE_CTRL+2) & 0xFC) |
868                    (u8)((addr>>8) & 0x03));
869         usb_write8(pAdapter, EFUSE_CTRL, data);/* data */
870
871         usb_write8(pAdapter, EFUSE_CTRL+3, 0xF2);/* write cmd */
872
873         while ((0x80 &  usb_read8(pAdapter, EFUSE_CTRL+3)) && (tmpidx < 100))
874                 tmpidx++;
875
876         if (tmpidx < 100)
877                 result = true;
878         else
879                 result = false;
880
881         return result;
882 }
883
884 /*
885  * Overview:   Read allowed word in current efuse section data.
886  */
887 void efuse_WordEnableDataRead(u8 word_en, u8 *sourdata, u8 *targetdata)
888 {
889         if (!(word_en & BIT(0))) {
890                 targetdata[0] = sourdata[0];
891                 targetdata[1] = sourdata[1];
892         }
893         if (!(word_en & BIT(1))) {
894                 targetdata[2] = sourdata[2];
895                 targetdata[3] = sourdata[3];
896         }
897         if (!(word_en & BIT(2))) {
898                 targetdata[4] = sourdata[4];
899                 targetdata[5] = sourdata[5];
900         }
901         if (!(word_en & BIT(3))) {
902                 targetdata[6] = sourdata[6];
903                 targetdata[7] = sourdata[7];
904         }
905 }
906
907 /*
908  * Overview:    Read All Efuse content
909  */
910 static void Efuse_ReadAllMap(struct adapter *pAdapter, u8 efuseType, u8 *Efuse)
911 {
912         Efuse_PowerSwitch(pAdapter, false, true);
913
914         efuse_ReadEFuse(pAdapter, efuseType, 0, EFUSE_MAP_LEN_88E, Efuse);
915
916         Efuse_PowerSwitch(pAdapter, false, false);
917 }
918
919 /*
920  * Overview:    Transfer current EFUSE content to shadow init and modify map.
921  */
922 void EFUSE_ShadowMapUpdate(
923         struct adapter *pAdapter,
924         u8 efuseType)
925 {
926         struct eeprom_priv *pEEPROM = GET_EEPROM_EFUSE_PRIV(pAdapter);
927
928         if (pEEPROM->bautoload_fail_flag)
929                 memset(pEEPROM->efuse_eeprom_data, 0xFF, EFUSE_MAP_LEN_88E);
930         else
931                 Efuse_ReadAllMap(pAdapter, efuseType, pEEPROM->efuse_eeprom_data);
932 }