GNU Linux-libre 5.10.219-gnu1
[releases.git] / drivers / staging / rtl8188eu / core / rtw_efuse.c
1 // SPDX-License-Identifier: GPL-2.0
2 /******************************************************************************
3  *
4  * Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved.
5  *
6  ******************************************************************************/
7 #define _RTW_EFUSE_C_
8
9 #include <osdep_service.h>
10 #include <drv_types.h>
11 #include <rtw_efuse.h>
12 #include <usb_ops_linux.h>
13 #include <rtl8188e_hal.h>
14 #include <rtw_iol.h>
15
16 #define REG_EFUSE_CTRL          0x0030
17 #define EFUSE_CTRL                      REG_EFUSE_CTRL          /*  E-Fuse Control. */
18
19 enum{
20                 VOLTAGE_V25                                             = 0x03,
21                 LDOE25_SHIFT                                            = 28,
22         };
23
24 /*
25  * When we want to enable write operation, we should change to pwr on state.
26  * When we stop write, we should switch to 500k mode and disable LDO 2.5V.
27  */
28 static void efuse_power_switch(struct adapter *pAdapter, u8 write, u8 pwrstate)
29 {
30         u8 tempval;
31         u16 tmpv16;
32
33         if (pwrstate) {
34                 usb_write8(pAdapter, REG_EFUSE_ACCESS, EFUSE_ACCESS_ON);
35
36                 /*  1.2V Power: From VDDON with Power Cut(0x0000h[15]), default valid */
37                 tmpv16 = usb_read16(pAdapter, REG_SYS_ISO_CTRL);
38                 if (!(tmpv16 & PWC_EV12V)) {
39                         tmpv16 |= PWC_EV12V;
40                         usb_write16(pAdapter, REG_SYS_ISO_CTRL, tmpv16);
41                 }
42                 /*  Reset: 0x0000h[28], default valid */
43                 tmpv16 =  usb_read16(pAdapter, REG_SYS_FUNC_EN);
44                 if (!(tmpv16 & FEN_ELDR)) {
45                         tmpv16 |= FEN_ELDR;
46                         usb_write16(pAdapter, REG_SYS_FUNC_EN, tmpv16);
47                 }
48
49                 /*  Clock: Gated(0x0008h[5]) 8M(0x0008h[1]) clock from ANA, default valid */
50                 tmpv16 = usb_read16(pAdapter, REG_SYS_CLKR);
51                 if ((!(tmpv16 & LOADER_CLK_EN))  || (!(tmpv16 & ANA8M))) {
52                         tmpv16 |= (LOADER_CLK_EN | ANA8M);
53                         usb_write16(pAdapter, REG_SYS_CLKR, tmpv16);
54                 }
55
56                 if (write) {
57                         /*  Enable LDO 2.5V before read/write action */
58                         tempval = usb_read8(pAdapter, EFUSE_TEST + 3);
59                         tempval &= 0x0F;
60                         tempval |= (VOLTAGE_V25 << 4);
61                         usb_write8(pAdapter, EFUSE_TEST + 3, (tempval | 0x80));
62                 }
63         } else {
64                 usb_write8(pAdapter, REG_EFUSE_ACCESS, EFUSE_ACCESS_OFF);
65
66                 if (write) {
67                         /*  Disable LDO 2.5V after read/write action */
68                         tempval = usb_read8(pAdapter, EFUSE_TEST + 3);
69                         usb_write8(pAdapter, EFUSE_TEST + 3, (tempval & 0x7F));
70                 }
71         }
72 }
73
74 static void
75 efuse_phymap_to_logical(u8 *phymap, u16 _offset, u16 _size_byte, u8  *pbuf)
76 {
77         u8 *efuseTbl = NULL;
78         u8 rtemp8;
79         u16     eFuse_Addr = 0;
80         u8 offset, wren;
81         u16     i, j;
82         u16     **eFuseWord = NULL;
83         u16     efuse_utilized = 0;
84         u8 u1temp = 0;
85         void **tmp = NULL;
86
87         efuseTbl = kzalloc(EFUSE_MAP_LEN_88E, GFP_KERNEL);
88         if (!efuseTbl)
89                 return;
90
91         tmp = kcalloc(EFUSE_MAX_SECTION_88E,
92                       sizeof(void *) + EFUSE_MAX_WORD_UNIT * sizeof(u16),
93                       GFP_KERNEL);
94         if (!tmp) {
95                 DBG_88E("%s: alloc eFuseWord fail!\n", __func__);
96                 goto eFuseWord_failed;
97         }
98         for (i = 0; i < EFUSE_MAX_SECTION_88E; i++)
99                 tmp[i] = ((char *)(tmp + EFUSE_MAX_SECTION_88E)) + i * EFUSE_MAX_WORD_UNIT * sizeof(u16);
100         eFuseWord = (u16 **)tmp;
101
102         /*  0. Refresh efuse init map as all oxFF. */
103         for (i = 0; i < EFUSE_MAX_SECTION_88E; i++)
104                 for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++)
105                         eFuseWord[i][j] = 0xFFFF;
106
107         /*  */
108         /*  1. Read the first byte to check if efuse is empty!!! */
109         /*  */
110         /*  */
111         rtemp8 = *(phymap + eFuse_Addr);
112         if (rtemp8 != 0xFF) {
113                 efuse_utilized++;
114                 eFuse_Addr++;
115         } else {
116                 DBG_88E("EFUSE is empty efuse_Addr-%d efuse_data =%x\n", eFuse_Addr, rtemp8);
117                 goto exit;
118         }
119
120         /*  */
121         /*  2. Read real efuse content. Filter PG header and every section data. */
122         /*  */
123         while ((rtemp8 != 0xFF) && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E)) {
124                 /*  Check PG header for section num. */
125                 if ((rtemp8 & 0x1F) == 0x0F) {          /* extended header */
126                         u1temp = (rtemp8 & 0xE0) >> 5;
127                         rtemp8 = *(phymap + eFuse_Addr);
128                         if ((rtemp8 & 0x0F) == 0x0F) {
129                                 eFuse_Addr++;
130                                 rtemp8 = *(phymap + eFuse_Addr);
131
132                                 if (rtemp8 != 0xFF && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E))
133                                         eFuse_Addr++;
134                                 continue;
135                         } else {
136                                 offset = ((rtemp8 & 0xF0) >> 1) | u1temp;
137                                 wren = rtemp8 & 0x0F;
138                                 eFuse_Addr++;
139                         }
140                 } else {
141                         offset = (rtemp8 >> 4) & 0x0f;
142                         wren = rtemp8 & 0x0f;
143                 }
144
145                 if (offset < EFUSE_MAX_SECTION_88E) {
146                         /*  Get word enable value from PG header */
147                         for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
148                                 /*  Check word enable condition in the section */
149                                 if (!(wren & 0x01)) {
150                                         rtemp8 = *(phymap + eFuse_Addr);
151                                         eFuse_Addr++;
152                                         efuse_utilized++;
153                                         eFuseWord[offset][i] = (rtemp8 & 0xff);
154                                         if (eFuse_Addr >= EFUSE_REAL_CONTENT_LEN_88E)
155                                                 break;
156                                         rtemp8 = *(phymap + eFuse_Addr);
157                                         eFuse_Addr++;
158                                         efuse_utilized++;
159                                         eFuseWord[offset][i] |= (((u16)rtemp8 << 8) & 0xff00);
160
161                                         if (eFuse_Addr >= EFUSE_REAL_CONTENT_LEN_88E)
162                                                 break;
163                                 }
164                                 wren >>= 1;
165                         }
166                 }
167                 /*  Read next PG header */
168                 rtemp8 = *(phymap + eFuse_Addr);
169
170                 if (rtemp8 != 0xFF && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E)) {
171                         efuse_utilized++;
172                         eFuse_Addr++;
173                 }
174         }
175
176         /*  */
177         /*  3. Collect 16 sections and 4 word unit into Efuse map. */
178         /*  */
179         for (i = 0; i < EFUSE_MAX_SECTION_88E; i++) {
180                 for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) {
181                         efuseTbl[(i * 8) + (j * 2)] = (eFuseWord[i][j] & 0xff);
182                         efuseTbl[(i * 8) + ((j * 2) + 1)] = ((eFuseWord[i][j] >> 8) & 0xff);
183                 }
184         }
185
186         /*  */
187         /*  4. Copy from Efuse map to output pointer memory!!! */
188         /*  */
189         for (i = 0; i < _size_byte; i++)
190                 pbuf[i] = efuseTbl[_offset + i];
191
192         /*  */
193         /*  5. Calculate Efuse utilization. */
194         /*  */
195
196 exit:
197         kfree(eFuseWord);
198
199 eFuseWord_failed:
200         kfree(efuseTbl);
201 }
202
203 static void efuse_read_phymap_from_txpktbuf(
204         struct adapter  *adapter,
205         int bcnhead,    /* beacon head, where FW store len(2-byte) and efuse physical map. */
206         u8 *content,    /* buffer to store efuse physical map */
207         u16 *size       /* for efuse content: the max byte to read. will update to byte read */
208         )
209 {
210         u16 dbg_addr = 0;
211         unsigned long start = 0;
212         u8 reg_0x143 = 0;
213         u32 lo32 = 0, hi32 = 0;
214         u16 len = 0, count = 0;
215         int i = 0;
216         u16 limit = *size;
217
218         u8 *pos = content;
219
220         if (bcnhead < 0) /* if not valid */
221                 bcnhead = usb_read8(adapter, REG_TDECTRL + 1);
222
223         DBG_88E("%s bcnhead:%d\n", __func__, bcnhead);
224
225         usb_write8(adapter, REG_PKT_BUFF_ACCESS_CTRL, TXPKT_BUF_SELECT);
226
227         dbg_addr = bcnhead * 128 / 8; /* 8-bytes addressing */
228
229         while (1) {
230                 usb_write16(adapter, REG_PKTBUF_DBG_ADDR, dbg_addr + i);
231
232                 usb_write8(adapter, REG_TXPKTBUF_DBG, 0);
233                 start = jiffies;
234                 while (!(reg_0x143 = usb_read8(adapter, REG_TXPKTBUF_DBG)) &&
235                        jiffies_to_msecs(jiffies - start) < 1000) {
236                         DBG_88E("%s polling reg_0x143:0x%02x, reg_0x106:0x%02x\n", __func__, reg_0x143, usb_read8(adapter, 0x106));
237                         usleep_range(1000, 2000);
238                 }
239
240                 lo32 = usb_read32(adapter, REG_PKTBUF_DBG_DATA_L);
241                 hi32 = usb_read32(adapter, REG_PKTBUF_DBG_DATA_H);
242
243                 if (i == 0) {
244                         u8 lenc[2];
245                         u16 lenbak, aaabak;
246                         u16 aaa;
247
248                         lenc[0] = usb_read8(adapter, REG_PKTBUF_DBG_DATA_L);
249                         lenc[1] = usb_read8(adapter, REG_PKTBUF_DBG_DATA_L + 1);
250
251                         aaabak = le16_to_cpup((__le16 *)lenc);
252                         lenbak = le16_to_cpu(*((__le16 *)lenc));
253                         aaa = le16_to_cpup((__le16 *)&lo32);
254                         len = le16_to_cpu(*((__le16 *)&lo32));
255
256                         limit = min_t(u16, len - 2, limit);
257
258                         DBG_88E("%s len:%u, lenbak:%u, aaa:%u, aaabak:%u\n", __func__, len, lenbak, aaa, aaabak);
259
260                         memcpy(pos, ((u8 *)&lo32) + 2, (limit >= count + 2) ? 2 : limit - count);
261                         count += (limit >= count + 2) ? 2 : limit - count;
262                         pos = content + count;
263
264                 } else {
265                         memcpy(pos, ((u8 *)&lo32), (limit >= count + 4) ? 4 : limit - count);
266                         count += (limit >= count + 4) ? 4 : limit - count;
267                         pos = content + count;
268                 }
269
270                 if (limit > count && len - 2 > count) {
271                         memcpy(pos, (u8 *)&hi32, (limit >= count + 4) ? 4 : limit - count);
272                         count += (limit >= count + 4) ? 4 : limit - count;
273                         pos = content + count;
274                 }
275
276                 if (limit <= count || len - 2 <= count)
277                         break;
278                 i++;
279         }
280         usb_write8(adapter, REG_PKT_BUFF_ACCESS_CTRL, DISABLE_TRXPKT_BUF_ACCESS);
281         DBG_88E("%s read count:%u\n", __func__, count);
282         *size = count;
283 }
284
285 static s32 iol_read_efuse(struct adapter *padapter, u8 txpktbuf_bndy, u16 offset, u16 size_byte, u8 *logical_map)
286 {
287         s32 status = _FAIL;
288         u8 physical_map[512];
289         u16 size = 512;
290
291         usb_write8(padapter, REG_TDECTRL + 1, txpktbuf_bndy);
292         memset(physical_map, 0xFF, 512);
293         usb_write8(padapter, REG_PKT_BUFF_ACCESS_CTRL, TXPKT_BUF_SELECT);
294         status = iol_execute(padapter, CMD_READ_EFUSE_MAP);
295         if (status == _SUCCESS)
296                 efuse_read_phymap_from_txpktbuf(padapter, txpktbuf_bndy, physical_map, &size);
297         efuse_phymap_to_logical(physical_map, offset, size_byte, logical_map);
298         return status;
299 }
300
301 void efuse_ReadEFuse(struct adapter *Adapter, u8 efuseType, u16 _offset, u16 _size_byte, u8 *pbuf)
302 {
303         if (rtw_iol_applied(Adapter)) {
304                 rtw_hal_power_on(Adapter);
305                 iol_mode_enable(Adapter, 1);
306                 iol_read_efuse(Adapter, 0, _offset, _size_byte, pbuf);
307                 iol_mode_enable(Adapter, 0);
308         }
309 }
310
311 u8 Efuse_WordEnableDataWrite(struct adapter *pAdapter, u16 efuse_addr, u8 word_en, u8 *data)
312 {
313         u16     tmpaddr = 0;
314         u16     start_addr = efuse_addr;
315         u8 badworden = 0x0F;
316         u8 tmpdata[8];
317
318         memset(tmpdata, 0xff, PGPKT_DATA_SIZE);
319
320         if (!(word_en & BIT(0))) {
321                 tmpaddr = start_addr;
322                 efuse_OneByteWrite(pAdapter, start_addr++, data[0]);
323                 efuse_OneByteWrite(pAdapter, start_addr++, data[1]);
324
325                 efuse_OneByteRead(pAdapter, tmpaddr, &tmpdata[0]);
326                 efuse_OneByteRead(pAdapter, tmpaddr + 1, &tmpdata[1]);
327                 if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1]))
328                         badworden &= (~BIT(0));
329         }
330         if (!(word_en & BIT(1))) {
331                 tmpaddr = start_addr;
332                 efuse_OneByteWrite(pAdapter, start_addr++, data[2]);
333                 efuse_OneByteWrite(pAdapter, start_addr++, data[3]);
334
335                 efuse_OneByteRead(pAdapter, tmpaddr, &tmpdata[2]);
336                 efuse_OneByteRead(pAdapter, tmpaddr + 1, &tmpdata[3]);
337                 if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3]))
338                         badworden &= (~BIT(1));
339         }
340         if (!(word_en & BIT(2))) {
341                 tmpaddr = start_addr;
342                 efuse_OneByteWrite(pAdapter, start_addr++, data[4]);
343                 efuse_OneByteWrite(pAdapter, start_addr++, data[5]);
344
345                 efuse_OneByteRead(pAdapter, tmpaddr, &tmpdata[4]);
346                 efuse_OneByteRead(pAdapter, tmpaddr + 1, &tmpdata[5]);
347                 if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5]))
348                         badworden &= (~BIT(2));
349         }
350         if (!(word_en & BIT(3))) {
351                 tmpaddr = start_addr;
352                 efuse_OneByteWrite(pAdapter, start_addr++, data[6]);
353                 efuse_OneByteWrite(pAdapter, start_addr++, data[7]);
354
355                 efuse_OneByteRead(pAdapter, tmpaddr, &tmpdata[6]);
356                 efuse_OneByteRead(pAdapter, tmpaddr + 1, &tmpdata[7]);
357                 if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7]))
358                         badworden &= (~BIT(3));
359         }
360         return badworden;
361 }
362
363 static u16 Efuse_GetCurrentSize(struct adapter *pAdapter)
364 {
365         u16     efuse_addr = 0;
366         u8 hoffset = 0, hworden = 0;
367         u8 efuse_data, word_cnts = 0;
368
369         rtw_hal_get_hwreg(pAdapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_addr);
370
371         while (efuse_OneByteRead(pAdapter, efuse_addr, &efuse_data) &&
372                AVAILABLE_EFUSE_ADDR(efuse_addr)) {
373                 if (efuse_data == 0xFF)
374                         break;
375                 if ((efuse_data & 0x1F) == 0x0F) { /* extended header */
376                         hoffset = efuse_data;
377                         efuse_addr++;
378                         efuse_OneByteRead(pAdapter, efuse_addr, &efuse_data);
379                         if ((efuse_data & 0x0F) == 0x0F) {
380                                 efuse_addr++;
381                                 continue;
382                         } else {
383                                 hoffset = ((hoffset & 0xE0) >> 5) |
384                                           ((efuse_data & 0xF0) >> 1);
385                                 hworden = efuse_data & 0x0F;
386                         }
387                 } else {
388                         hoffset = (efuse_data >> 4) & 0x0F;
389                         hworden =  efuse_data & 0x0F;
390                 }
391                 word_cnts = Efuse_CalculateWordCnts(hworden);
392                 /* read next header */
393                 efuse_addr = efuse_addr + (word_cnts * 2) + 1;
394         }
395
396         rtw_hal_set_hwreg(pAdapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_addr);
397
398         return efuse_addr;
399 }
400
401 int Efuse_PgPacketRead(struct adapter *pAdapter, u8 offset, u8 *data)
402 {
403         u8 ReadState = PG_STATE_HEADER;
404         int     bDataEmpty = true;
405         u8 efuse_data, word_cnts = 0;
406         u16     efuse_addr = 0;
407         u8 hoffset = 0, hworden = 0;
408         u8 tmpidx = 0;
409         u8 tmpdata[8];
410         u8 tmp_header = 0;
411
412         if (!data)
413                 return false;
414         if (offset > EFUSE_MAX_SECTION_88E)
415                 return false;
416
417         memset(data, 0xff, sizeof(u8) * PGPKT_DATA_SIZE);
418         memset(tmpdata, 0xff, sizeof(u8) * PGPKT_DATA_SIZE);
419
420         /*  <Roger_TODO> Efuse has been pre-programmed dummy 5Bytes at the end of Efuse by CP. */
421         /*  Skip dummy parts to prevent unexpected data read from Efuse. */
422         /*  By pass right now. 2009.02.19. */
423         while (AVAILABLE_EFUSE_ADDR(efuse_addr)) {
424                 /*   Header Read ------------- */
425                 if (ReadState & PG_STATE_HEADER) {
426                         if (efuse_OneByteRead(pAdapter, efuse_addr, &efuse_data) && (efuse_data != 0xFF)) {
427                                 if (EXT_HEADER(efuse_data)) {
428                                         tmp_header = efuse_data;
429                                         efuse_addr++;
430                                         efuse_OneByteRead(pAdapter, efuse_addr, &efuse_data);
431                                         if (!ALL_WORDS_DISABLED(efuse_data)) {
432                                                 hoffset = ((tmp_header & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1);
433                                                 hworden = efuse_data & 0x0F;
434                                         } else {
435                                                 DBG_88E("Error, All words disabled\n");
436                                                 efuse_addr++;
437                                                 continue;
438                                         }
439                                 } else {
440                                         hoffset = (efuse_data >> 4) & 0x0F;
441                                         hworden =  efuse_data & 0x0F;
442                                 }
443                                 word_cnts = Efuse_CalculateWordCnts(hworden);
444                                 bDataEmpty = true;
445
446                                 if (hoffset == offset) {
447                                         for (tmpidx = 0; tmpidx < word_cnts * 2; tmpidx++) {
448                                                 if (efuse_OneByteRead(pAdapter, efuse_addr + 1 + tmpidx, &efuse_data)) {
449                                                         tmpdata[tmpidx] = efuse_data;
450                                                         if (efuse_data != 0xff)
451                                                                 bDataEmpty = false;
452                                                 }
453                                         }
454                                         if (!bDataEmpty) {
455                                                 ReadState = PG_STATE_DATA;
456                                         } else {/* read next header */
457                                                 efuse_addr = efuse_addr + (word_cnts * 2) + 1;
458                                                 ReadState = PG_STATE_HEADER;
459                                         }
460                                 } else {/* read next header */
461                                         efuse_addr = efuse_addr + (word_cnts * 2) + 1;
462                                         ReadState = PG_STATE_HEADER;
463                                 }
464                         } else {
465                                 break;
466                         }
467                 } else if (ReadState & PG_STATE_DATA) {
468                         /*   Data section Read ------------- */
469                         efuse_WordEnableDataRead(hworden, tmpdata, data);
470                         efuse_addr = efuse_addr + (word_cnts * 2) + 1;
471                         ReadState = PG_STATE_HEADER;
472                 }
473         }
474
475         if ((data[0] == 0xff) && (data[1] == 0xff) && (data[2] == 0xff)  && (data[3] == 0xff) &&
476             (data[4] == 0xff) && (data[5] == 0xff) && (data[6] == 0xff)  && (data[7] == 0xff))
477                 return false;
478         else
479                 return true;
480 }
481
482 static bool hal_EfuseFixHeaderProcess(struct adapter *pAdapter, u8 efuseType, struct pgpkt *pFixPkt, u16 *pAddr)
483 {
484         u8 originaldata[8], badworden = 0;
485         u16     efuse_addr = *pAddr;
486         u32     PgWriteSuccess = 0;
487
488         memset(originaldata, 0xff, 8);
489
490         if (Efuse_PgPacketRead(pAdapter, pFixPkt->offset, originaldata)) {
491                 /* check if data exist */
492                 badworden = Efuse_WordEnableDataWrite(pAdapter, efuse_addr + 1, pFixPkt->word_en, originaldata);
493
494                 if (badworden != 0xf) { /*  write fail */
495                         PgWriteSuccess = Efuse_PgPacketWrite(pAdapter, pFixPkt->offset, badworden, originaldata);
496
497                         if (!PgWriteSuccess)
498                                 return false;
499
500                         efuse_addr = Efuse_GetCurrentSize(pAdapter);
501                 } else {
502                         efuse_addr = efuse_addr + (pFixPkt->word_cnts * 2) + 1;
503                 }
504         } else {
505                 efuse_addr = efuse_addr + (pFixPkt->word_cnts * 2) + 1;
506         }
507         *pAddr = efuse_addr;
508         return true;
509 }
510
511 static bool hal_EfusePgPacketWrite2ByteHeader(struct adapter *pAdapter, u8 efuseType, u16 *pAddr, struct pgpkt *pTargetPkt)
512 {
513         bool ret = false;
514         u16 efuse_addr = *pAddr;
515         u16 efuse_max_available_len =
516                 EFUSE_REAL_CONTENT_LEN_88E - EFUSE_OOB_PROTECT_BYTES_88E;
517         u8 pg_header = 0, tmp_header = 0, pg_header_temp = 0;
518         u8 repeatcnt = 0;
519
520         while (efuse_addr < efuse_max_available_len) {
521                 pg_header = ((pTargetPkt->offset & 0x07) << 5) | 0x0F;
522                 efuse_OneByteWrite(pAdapter, efuse_addr, pg_header);
523                 efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header);
524
525                 while (tmp_header == 0xFF) {
526                         if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_)
527                                 return false;
528
529                         efuse_OneByteWrite(pAdapter, efuse_addr, pg_header);
530                         efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header);
531                 }
532
533                 /* to write ext_header */
534                 if (tmp_header == pg_header) {
535                         efuse_addr++;
536                         pg_header_temp = pg_header;
537                         pg_header = ((pTargetPkt->offset & 0x78) << 1) | pTargetPkt->word_en;
538
539                         efuse_OneByteWrite(pAdapter, efuse_addr, pg_header);
540                         efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header);
541
542                         while (tmp_header == 0xFF) {
543                                 if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_)
544                                         return false;
545
546                                 efuse_OneByteWrite(pAdapter, efuse_addr, pg_header);
547                                 efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header);
548                         }
549
550                         if ((tmp_header & 0x0F) == 0x0F) {      /* word_en PG fail */
551                                 if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_)
552                                         return false;
553
554                                 efuse_addr++;
555                                 continue;
556                         } else if (pg_header != tmp_header) {   /* offset PG fail */
557                                 struct pgpkt    fixPkt;
558
559                                 fixPkt.offset = ((pg_header_temp & 0xE0) >> 5) | ((tmp_header & 0xF0) >> 1);
560                                 fixPkt.word_en = tmp_header & 0x0F;
561                                 fixPkt.word_cnts = Efuse_CalculateWordCnts(fixPkt.word_en);
562                                 if (!hal_EfuseFixHeaderProcess(pAdapter, efuseType, &fixPkt, &efuse_addr))
563                                         return false;
564                         } else {
565                                 ret = true;
566                                 break;
567                         }
568                 } else if ((tmp_header & 0x1F) == 0x0F) {               /* wrong extended header */
569                         efuse_addr += 2;
570                         continue;
571                 }
572         }
573
574         *pAddr = efuse_addr;
575         return ret;
576 }
577
578 static bool hal_EfusePgPacketWrite1ByteHeader(struct adapter *pAdapter, u8 efuseType, u16 *pAddr, struct pgpkt *pTargetPkt)
579 {
580         bool ret = false;
581         u8 pg_header = 0, tmp_header = 0;
582         u16     efuse_addr = *pAddr;
583         u8 repeatcnt = 0;
584
585         pg_header = ((pTargetPkt->offset << 4) & 0xf0) | pTargetPkt->word_en;
586
587         efuse_OneByteWrite(pAdapter, efuse_addr, pg_header);
588         efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header);
589
590         while (tmp_header == 0xFF) {
591                 if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_)
592                         return false;
593                 efuse_OneByteWrite(pAdapter, efuse_addr, pg_header);
594                 efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header);
595         }
596
597         if (pg_header == tmp_header) {
598                 ret = true;
599         } else {
600                 struct pgpkt    fixPkt;
601
602                 fixPkt.offset = (tmp_header >> 4) & 0x0F;
603                 fixPkt.word_en = tmp_header & 0x0F;
604                 fixPkt.word_cnts = Efuse_CalculateWordCnts(fixPkt.word_en);
605                 if (!hal_EfuseFixHeaderProcess(pAdapter, efuseType, &fixPkt, &efuse_addr))
606                         return false;
607         }
608
609         *pAddr = efuse_addr;
610         return ret;
611 }
612
613 static bool hal_EfusePgPacketWriteData(struct adapter *pAdapter, u8 efuseType, u16 *pAddr, struct pgpkt *pTargetPkt)
614 {
615         u16     efuse_addr = *pAddr;
616         u8 badworden;
617         u32     PgWriteSuccess = 0;
618
619         badworden = Efuse_WordEnableDataWrite(pAdapter, efuse_addr + 1, pTargetPkt->word_en, pTargetPkt->data);
620         if (badworden == 0x0F) {
621                 /*  write ok */
622                 return true;
623         }
624         /* reorganize other pg packet */
625         PgWriteSuccess = Efuse_PgPacketWrite(pAdapter, pTargetPkt->offset, badworden, pTargetPkt->data);
626         if (!PgWriteSuccess)
627                 return false;
628         else
629                 return true;
630 }
631
632 static bool
633 hal_EfusePgPacketWriteHeader(
634                                 struct adapter *pAdapter,
635                                 u8 efuseType,
636                                 u16                             *pAddr,
637                                 struct pgpkt *pTargetPkt)
638 {
639         bool ret = false;
640
641         if (pTargetPkt->offset >= EFUSE_MAX_SECTION_BASE)
642                 ret = hal_EfusePgPacketWrite2ByteHeader(pAdapter, efuseType, pAddr, pTargetPkt);
643         else
644                 ret = hal_EfusePgPacketWrite1ByteHeader(pAdapter, efuseType, pAddr, pTargetPkt);
645
646         return ret;
647 }
648
649 static bool wordEnMatched(struct pgpkt *pTargetPkt, struct pgpkt *pCurPkt,
650                           u8 *pWden)
651 {
652         u8 match_word_en = 0x0F;        /*  default all words are disabled */
653
654         /*  check if the same words are enabled both target and current PG packet */
655         if (((pTargetPkt->word_en & BIT(0)) == 0) &&
656             ((pCurPkt->word_en & BIT(0)) == 0))
657                 match_word_en &= ~BIT(0);                               /*  enable word 0 */
658         if (((pTargetPkt->word_en & BIT(1)) == 0) &&
659             ((pCurPkt->word_en & BIT(1)) == 0))
660                 match_word_en &= ~BIT(1);                               /*  enable word 1 */
661         if (((pTargetPkt->word_en & BIT(2)) == 0) &&
662             ((pCurPkt->word_en & BIT(2)) == 0))
663                 match_word_en &= ~BIT(2);                               /*  enable word 2 */
664         if (((pTargetPkt->word_en & BIT(3)) == 0) &&
665             ((pCurPkt->word_en & BIT(3)) == 0))
666                 match_word_en &= ~BIT(3);                               /*  enable word 3 */
667
668         *pWden = match_word_en;
669
670         if (match_word_en != 0xf)
671                 return true;
672         else
673                 return false;
674 }
675
676 static bool hal_EfuseCheckIfDatafollowed(struct adapter *pAdapter, u8 word_cnts, u16 startAddr)
677 {
678         bool ret = false;
679         u8 i, efuse_data;
680
681         for (i = 0; i < (word_cnts * 2); i++) {
682                 if (efuse_OneByteRead(pAdapter, (startAddr + i), &efuse_data) && (efuse_data != 0xFF))
683                         ret = true;
684         }
685         return ret;
686 }
687
688 static bool hal_EfusePartialWriteCheck(struct adapter *pAdapter, u8 efuseType, u16 *pAddr, struct pgpkt *pTargetPkt)
689 {
690         bool ret = false;
691         u8 i, efuse_data = 0, cur_header = 0;
692         u8 matched_wden = 0, badworden = 0;
693         u16 startAddr = 0;
694         u16 efuse_max_available_len =
695                 EFUSE_REAL_CONTENT_LEN_88E - EFUSE_OOB_PROTECT_BYTES_88E;
696         struct pgpkt curPkt;
697
698         rtw_hal_get_hwreg(pAdapter, HW_VAR_EFUSE_BYTES, (u8 *)&startAddr);
699         startAddr %= EFUSE_REAL_CONTENT_LEN;
700
701         while (1) {
702                 if (startAddr >= efuse_max_available_len) {
703                         ret = false;
704                         break;
705                 }
706
707                 if (efuse_OneByteRead(pAdapter, startAddr, &efuse_data) && (efuse_data != 0xFF)) {
708                         if (EXT_HEADER(efuse_data)) {
709                                 cur_header = efuse_data;
710                                 startAddr++;
711                                 efuse_OneByteRead(pAdapter, startAddr, &efuse_data);
712                                 if (ALL_WORDS_DISABLED(efuse_data)) {
713                                         ret = false;
714                                         break;
715                                 }
716                                 curPkt.offset = ((cur_header & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1);
717                                 curPkt.word_en = efuse_data & 0x0F;
718                         } else {
719                                 cur_header  =  efuse_data;
720                                 curPkt.offset = (cur_header >> 4) & 0x0F;
721                                 curPkt.word_en = cur_header & 0x0F;
722                         }
723
724                         curPkt.word_cnts = Efuse_CalculateWordCnts(curPkt.word_en);
725                         /*  if same header is found but no data followed */
726                         /*  write some part of data followed by the header. */
727                         if ((curPkt.offset == pTargetPkt->offset) &&
728                             (!hal_EfuseCheckIfDatafollowed(pAdapter, curPkt.word_cnts, startAddr + 1)) &&
729                             wordEnMatched(pTargetPkt, &curPkt, &matched_wden)) {
730                                 /*  Here to write partial data */
731                                 badworden = Efuse_WordEnableDataWrite(pAdapter, startAddr + 1, matched_wden, pTargetPkt->data);
732                                 if (badworden != 0x0F) {
733                                         u32     PgWriteSuccess = 0;
734                                         /*  if write fail on some words, write these bad words again */
735
736                                         PgWriteSuccess = Efuse_PgPacketWrite(pAdapter, pTargetPkt->offset, badworden, pTargetPkt->data);
737
738                                         if (!PgWriteSuccess) {
739                                                 ret = false;    /*  write fail, return */
740                                                 break;
741                                         }
742                                 }
743                                 /*  partial write ok, update the target packet for later use */
744                                 for (i = 0; i < 4; i++) {
745                                         if ((matched_wden & (0x1 << i)) == 0)   /*  this word has been written */
746                                                 pTargetPkt->word_en |= (0x1 << i);      /*  disable the word */
747                                 }
748                                 pTargetPkt->word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en);
749                         }
750                         /*  read from next header */
751                         startAddr = startAddr + (curPkt.word_cnts * 2) + 1;
752                 } else {
753                         /*  not used header, 0xff */
754                         *pAddr = startAddr;
755                         ret = true;
756                         break;
757                 }
758         }
759         return ret;
760 }
761
762 static void hal_EfuseConstructPGPkt(u8 offset, u8 word_en, u8 *pData, struct pgpkt *pTargetPkt)
763 {
764         memset((void *)pTargetPkt->data, 0xFF, sizeof(u8) * 8);
765         pTargetPkt->offset = offset;
766         pTargetPkt->word_en = word_en;
767         efuse_WordEnableDataRead(word_en, pData, pTargetPkt->data);
768         pTargetPkt->word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en);
769 }
770
771 bool Efuse_PgPacketWrite(struct adapter *pAdapter, u8 offset, u8 word_en, u8 *pData)
772 {
773         struct pgpkt    targetPkt;
774         u16                     startAddr = 0;
775         u8 efuseType = EFUSE_WIFI;
776
777         if (Efuse_GetCurrentSize(pAdapter) >= EFUSE_MAP_LEN_88E)
778                 return false;
779
780         hal_EfuseConstructPGPkt(offset, word_en, pData, &targetPkt);
781
782         if (!hal_EfusePartialWriteCheck(pAdapter, efuseType, &startAddr, &targetPkt))
783                 return false;
784
785         if (!hal_EfusePgPacketWriteHeader(pAdapter, efuseType, &startAddr, &targetPkt))
786                 return false;
787
788         if (!hal_EfusePgPacketWriteData(pAdapter, efuseType, &startAddr, &targetPkt))
789                 return false;
790
791         return true;
792 }
793
794 u8 Efuse_CalculateWordCnts(u8 word_en)
795 {
796         u8 word_cnts = 0;
797
798         if (!(word_en & BIT(0)))
799                 word_cnts++; /*  0 : write enable */
800         if (!(word_en & BIT(1)))
801                 word_cnts++;
802         if (!(word_en & BIT(2)))
803                 word_cnts++;
804         if (!(word_en & BIT(3)))
805                 word_cnts++;
806         return word_cnts;
807 }
808
809 u8 efuse_OneByteRead(struct adapter *pAdapter, u16 addr, u8 *data)
810 {
811         u8 tmpidx = 0;
812         u8 result;
813
814         usb_write8(pAdapter, EFUSE_CTRL + 1, (u8)(addr & 0xff));
815         usb_write8(pAdapter, EFUSE_CTRL + 2, ((u8)((addr >> 8) & 0x03)) |
816                    (usb_read8(pAdapter, EFUSE_CTRL + 2) & 0xFC));
817
818         usb_write8(pAdapter, EFUSE_CTRL + 3,  0x72);/* read cmd */
819
820         while (!(0x80 & usb_read8(pAdapter, EFUSE_CTRL + 3)) && (tmpidx < 100))
821                 tmpidx++;
822         if (tmpidx < 100) {
823                 *data = usb_read8(pAdapter, EFUSE_CTRL);
824                 result = true;
825         } else {
826                 *data = 0xff;
827                 result = false;
828         }
829         return result;
830 }
831
832 u8 efuse_OneByteWrite(struct adapter *pAdapter, u16 addr, u8 data)
833 {
834         u8 tmpidx = 0;
835         u8 result;
836
837         usb_write8(pAdapter, EFUSE_CTRL + 1, (u8)(addr & 0xff));
838         usb_write8(pAdapter, EFUSE_CTRL + 2,
839                    (usb_read8(pAdapter, EFUSE_CTRL + 2) & 0xFC) |
840                    (u8)((addr >> 8) & 0x03));
841         usb_write8(pAdapter, EFUSE_CTRL, data);/* data */
842
843         usb_write8(pAdapter, EFUSE_CTRL + 3, 0xF2);/* write cmd */
844
845         while ((0x80 &  usb_read8(pAdapter, EFUSE_CTRL + 3)) && (tmpidx < 100))
846                 tmpidx++;
847
848         if (tmpidx < 100)
849                 result = true;
850         else
851                 result = false;
852
853         return result;
854 }
855
856 /* Read allowed word in current efuse section data. */
857 void efuse_WordEnableDataRead(u8 word_en, u8 *sourdata, u8 *targetdata)
858 {
859         if (!(word_en & BIT(0))) {
860                 targetdata[0] = sourdata[0];
861                 targetdata[1] = sourdata[1];
862         }
863         if (!(word_en & BIT(1))) {
864                 targetdata[2] = sourdata[2];
865                 targetdata[3] = sourdata[3];
866         }
867         if (!(word_en & BIT(2))) {
868                 targetdata[4] = sourdata[4];
869                 targetdata[5] = sourdata[5];
870         }
871         if (!(word_en & BIT(3))) {
872                 targetdata[6] = sourdata[6];
873                 targetdata[7] = sourdata[7];
874         }
875 }
876
877 /* Read All Efuse content */
878 static void Efuse_ReadAllMap(struct adapter *pAdapter, u8 efuseType, u8 *Efuse)
879 {
880         efuse_power_switch(pAdapter, false, true);
881
882         efuse_ReadEFuse(pAdapter, efuseType, 0, EFUSE_MAP_LEN_88E, Efuse);
883
884         efuse_power_switch(pAdapter, false, false);
885 }
886
887 /* Transfer current EFUSE content to shadow init and modify map. */
888 void EFUSE_ShadowMapUpdate(struct adapter *pAdapter, u8 efuseType)
889 {
890         struct eeprom_priv *pEEPROM = GET_EEPROM_EFUSE_PRIV(pAdapter);
891
892         if (pEEPROM->bautoload_fail_flag)
893                 memset(pEEPROM->efuse_eeprom_data, 0xFF, EFUSE_MAP_LEN_88E);
894         else
895                 Efuse_ReadAllMap(pAdapter, efuseType, pEEPROM->efuse_eeprom_data);
896 }