GNU Linux-libre 4.14.313-gnu1
[releases.git] / drivers / staging / media / atomisp / i2c / mt9m114.c
1 /*
2  * Support for mt9m114 Camera Sensor.
3  *
4  * Copyright (c) 2010 Intel Corporation. All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License version
8  * 2 as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
18  * 02110-1301, USA.
19  *
20  */
21
22 #include <linux/module.h>
23 #include <linux/types.h>
24 #include <linux/kernel.h>
25 #include <linux/mm.h>
26 #include <linux/string.h>
27 #include <linux/errno.h>
28 #include <linux/init.h>
29 #include <linux/kmod.h>
30 #include <linux/device.h>
31 #include <linux/fs.h>
32 #include <linux/slab.h>
33 #include <linux/delay.h>
34 #include <linux/i2c.h>
35 #include <linux/gpio.h>
36 #include <linux/acpi.h>
37 #include "../include/linux/atomisp_gmin_platform.h"
38 #include <media/v4l2-device.h>
39
40 #include "mt9m114.h"
41
42 #define to_mt9m114_sensor(sd) container_of(sd, struct mt9m114_device, sd)
43
44 /*
45  * TODO: use debug parameter to actually define when debug messages should
46  * be printed.
47  */
48 static int debug;
49 static int aaalock;
50 module_param(debug, int, 0644);
51 MODULE_PARM_DESC(debug, "Debug level (0-1)");
52
53 static int mt9m114_t_vflip(struct v4l2_subdev *sd, int value);
54 static int mt9m114_t_hflip(struct v4l2_subdev *sd, int value);
55 static int mt9m114_wait_state(struct i2c_client *client, int timeout);
56
57 static int
58 mt9m114_read_reg(struct i2c_client *client, u16 data_length, u32 reg, u32 *val)
59 {
60         int err;
61         struct i2c_msg msg[2];
62         unsigned char data[4];
63
64         if (!client->adapter) {
65                 v4l2_err(client, "%s error, no client->adapter\n", __func__);
66                 return -ENODEV;
67         }
68
69         if (data_length != MISENSOR_8BIT && data_length != MISENSOR_16BIT
70                                          && data_length != MISENSOR_32BIT) {
71                 v4l2_err(client, "%s error, invalid data length\n", __func__);
72                 return -EINVAL;
73         }
74
75         msg[0].addr = client->addr;
76         msg[0].flags = 0;
77         msg[0].len = MSG_LEN_OFFSET;
78         msg[0].buf = data;
79
80         /* high byte goes out first */
81         data[0] = (u16) (reg >> 8);
82         data[1] = (u16) (reg & 0xff);
83
84         msg[1].addr = client->addr;
85         msg[1].len = data_length;
86         msg[1].flags = I2C_M_RD;
87         msg[1].buf = data;
88
89         err = i2c_transfer(client->adapter, msg, 2);
90
91         if (err >= 0) {
92                 *val = 0;
93                 /* high byte comes first */
94                 if (data_length == MISENSOR_8BIT)
95                         *val = data[0];
96                 else if (data_length == MISENSOR_16BIT)
97                         *val = data[1] + (data[0] << 8);
98                 else
99                         *val = data[3] + (data[2] << 8) +
100                             (data[1] << 16) + (data[0] << 24);
101
102                 return 0;
103         }
104
105         dev_err(&client->dev, "read from offset 0x%x error %d", reg, err);
106         return err;
107 }
108
109 static int
110 mt9m114_write_reg(struct i2c_client *client, u16 data_length, u16 reg, u32 val)
111 {
112         int num_msg;
113         struct i2c_msg msg;
114         unsigned char data[6] = {0};
115         u16 *wreg;
116         int retry = 0;
117
118         if (!client->adapter) {
119                 v4l2_err(client, "%s error, no client->adapter\n", __func__);
120                 return -ENODEV;
121         }
122
123         if (data_length != MISENSOR_8BIT && data_length != MISENSOR_16BIT
124                                          && data_length != MISENSOR_32BIT) {
125                 v4l2_err(client, "%s error, invalid data_length\n", __func__);
126                 return -EINVAL;
127         }
128
129         memset(&msg, 0, sizeof(msg));
130
131 again:
132         msg.addr = client->addr;
133         msg.flags = 0;
134         msg.len = 2 + data_length;
135         msg.buf = data;
136
137         /* high byte goes out first */
138         wreg = (u16 *)data;
139         *wreg = cpu_to_be16(reg);
140
141         if (data_length == MISENSOR_8BIT) {
142                 data[2] = (u8)(val);
143         } else if (data_length == MISENSOR_16BIT) {
144                 u16 *wdata = (u16 *)&data[2];
145                 *wdata = be16_to_cpu((u16)val);
146         } else {
147                 /* MISENSOR_32BIT */
148                 u32 *wdata = (u32 *)&data[2];
149                 *wdata = be32_to_cpu(val);
150         }
151
152         num_msg = i2c_transfer(client->adapter, &msg, 1);
153
154         /*
155          * HACK: Need some delay here for Rev 2 sensors otherwise some
156          * registers do not seem to load correctly.
157          */
158         mdelay(1);
159
160         if (num_msg >= 0)
161                 return 0;
162
163         dev_err(&client->dev, "write error: wrote 0x%x to offset 0x%x error %d",
164                 val, reg, num_msg);
165         if (retry <= I2C_RETRY_COUNT) {
166                 dev_dbg(&client->dev, "retrying... %d", retry);
167                 retry++;
168                 msleep(20);
169                 goto again;
170         }
171
172         return num_msg;
173 }
174
175 /**
176  * misensor_rmw_reg - Read/Modify/Write a value to a register in the sensor
177  * device
178  * @client: i2c driver client structure
179  * @data_length: 8/16/32-bits length
180  * @reg: register address
181  * @mask: masked out bits
182  * @set: bits set
183  *
184  * Read/modify/write a value to a register in the  sensor device.
185  * Returns zero if successful, or non-zero otherwise.
186  */
187 static int
188 misensor_rmw_reg(struct i2c_client *client, u16 data_length, u16 reg,
189                      u32 mask, u32 set)
190 {
191         int err;
192         u32 val;
193
194         /* Exit when no mask */
195         if (mask == 0)
196                 return 0;
197
198         /* @mask must not exceed data length */
199         switch (data_length) {
200         case MISENSOR_8BIT:
201                 if (mask & ~0xff)
202                         return -EINVAL;
203                 break;
204         case MISENSOR_16BIT:
205                 if (mask & ~0xffff)
206                         return -EINVAL;
207                 break;
208         case MISENSOR_32BIT:
209                 break;
210         default:
211                 /* Wrong @data_length */
212                 return -EINVAL;
213         }
214
215         err = mt9m114_read_reg(client, data_length, reg, &val);
216         if (err) {
217                 v4l2_err(client, "misensor_rmw_reg error exit, read failed\n");
218                 return -EINVAL;
219         }
220
221         val &= ~mask;
222
223         /*
224          * Perform the OR function if the @set exists.
225          * Shift @set value to target bit location. @set should set only
226          * bits included in @mask.
227          *
228          * REVISIT: This function expects @set to be non-shifted. Its shift
229          * value is then defined to be equal to mask's LSB position.
230          * How about to inform values in their right offset position and avoid
231          * this unneeded shift operation?
232          */
233         set <<= ffs(mask) - 1;
234         val |= set & mask;
235
236         err = mt9m114_write_reg(client, data_length, reg, val);
237         if (err) {
238                 v4l2_err(client, "misensor_rmw_reg error exit, write failed\n");
239                 return -EINVAL;
240         }
241
242         return 0;
243 }
244
245
246 static int __mt9m114_flush_reg_array(struct i2c_client *client,
247                                      struct mt9m114_write_ctrl *ctrl)
248 {
249         struct i2c_msg msg;
250         const int num_msg = 1;
251         int ret;
252         int retry = 0;
253
254         if (ctrl->index == 0)
255                 return 0;
256
257 again:
258         msg.addr = client->addr;
259         msg.flags = 0;
260         msg.len = 2 + ctrl->index;
261         ctrl->buffer.addr = cpu_to_be16(ctrl->buffer.addr);
262         msg.buf = (u8 *)&ctrl->buffer;
263
264         ret = i2c_transfer(client->adapter, &msg, num_msg);
265         if (ret != num_msg) {
266                 if (++retry <= I2C_RETRY_COUNT) {
267                         dev_dbg(&client->dev, "retrying... %d\n", retry);
268                         msleep(20);
269                         goto again;
270                 }
271                 dev_err(&client->dev, "%s: i2c transfer error\n", __func__);
272                 return -EIO;
273         }
274
275         ctrl->index = 0;
276
277         /*
278          * REVISIT: Previously we had a delay after writing data to sensor.
279          * But it was removed as our tests have shown it is not necessary
280          * anymore.
281          */
282
283         return 0;
284 }
285
286 static int __mt9m114_buf_reg_array(struct i2c_client *client,
287                                    struct mt9m114_write_ctrl *ctrl,
288                                    const struct misensor_reg *next)
289 {
290         u16 *data16;
291         u32 *data32;
292         int err;
293
294         /* Insufficient buffer? Let's flush and get more free space. */
295         if (ctrl->index + next->length >= MT9M114_MAX_WRITE_BUF_SIZE) {
296                 err = __mt9m114_flush_reg_array(client, ctrl);
297                 if (err)
298                         return err;
299         }
300
301         switch (next->length) {
302         case MISENSOR_8BIT:
303                 ctrl->buffer.data[ctrl->index] = (u8)next->val;
304                 break;
305         case MISENSOR_16BIT:
306                 data16 = (u16 *)&ctrl->buffer.data[ctrl->index];
307                 *data16 = cpu_to_be16((u16)next->val);
308                 break;
309         case MISENSOR_32BIT:
310                 data32 = (u32 *)&ctrl->buffer.data[ctrl->index];
311                 *data32 = cpu_to_be32(next->val);
312                 break;
313         default:
314                 return -EINVAL;
315         }
316
317         /* When first item is added, we need to store its starting address */
318         if (ctrl->index == 0)
319                 ctrl->buffer.addr = next->reg;
320
321         ctrl->index += next->length;
322
323         return 0;
324 }
325
326 static int
327 __mt9m114_write_reg_is_consecutive(struct i2c_client *client,
328                                    struct mt9m114_write_ctrl *ctrl,
329                                    const struct misensor_reg *next)
330 {
331         if (ctrl->index == 0)
332                 return 1;
333
334         return ctrl->buffer.addr + ctrl->index == next->reg;
335 }
336
337 /*
338  * mt9m114_write_reg_array - Initializes a list of mt9m114 registers
339  * @client: i2c driver client structure
340  * @reglist: list of registers to be written
341  * @poll: completion polling requirement
342  * This function initializes a list of registers. When consecutive addresses
343  * are found in a row on the list, this function creates a buffer and sends
344  * consecutive data in a single i2c_transfer().
345  *
346  * __mt9m114_flush_reg_array, __mt9m114_buf_reg_array() and
347  * __mt9m114_write_reg_is_consecutive() are internal functions to
348  * mt9m114_write_reg_array() and should be not used anywhere else.
349  *
350  */
351 static int mt9m114_write_reg_array(struct i2c_client *client,
352                                 const struct misensor_reg *reglist,
353                                 int poll)
354 {
355         const struct misensor_reg *next = reglist;
356         struct mt9m114_write_ctrl ctrl;
357         int err;
358
359         if (poll == PRE_POLLING) {
360                 err = mt9m114_wait_state(client, MT9M114_WAIT_STAT_TIMEOUT);
361                 if (err)
362                         return err;
363         }
364
365         ctrl.index = 0;
366         for (; next->length != MISENSOR_TOK_TERM; next++) {
367                 switch (next->length & MISENSOR_TOK_MASK) {
368                 case MISENSOR_TOK_DELAY:
369                         err = __mt9m114_flush_reg_array(client, &ctrl);
370                         if (err)
371                                 return err;
372                         msleep(next->val);
373                         break;
374                 case MISENSOR_TOK_RMW:
375                         err = __mt9m114_flush_reg_array(client, &ctrl);
376                         err |= misensor_rmw_reg(client,
377                                                 next->length &
378                                                         ~MISENSOR_TOK_RMW,
379                                                 next->reg, next->val,
380                                                 next->val2);
381                         if (err) {
382                                 dev_err(&client->dev, "%s read err. aborted\n",
383                                         __func__);
384                                 return -EINVAL;
385                         }
386                         break;
387                 default:
388                         /*
389                          * If next address is not consecutive, data needs to be
390                          * flushed before proceed.
391                          */
392                         if (!__mt9m114_write_reg_is_consecutive(client, &ctrl,
393                                                                 next)) {
394                                 err = __mt9m114_flush_reg_array(client, &ctrl);
395                                 if (err)
396                                         return err;
397                         }
398                         err = __mt9m114_buf_reg_array(client, &ctrl, next);
399                         if (err) {
400                                 v4l2_err(client, "%s: write error, aborted\n",
401                                          __func__);
402                                 return err;
403                         }
404                         break;
405                 }
406         }
407
408         err = __mt9m114_flush_reg_array(client, &ctrl);
409         if (err)
410                 return err;
411
412         if (poll == POST_POLLING)
413                 return mt9m114_wait_state(client, MT9M114_WAIT_STAT_TIMEOUT);
414
415         return 0;
416 }
417
418 static int mt9m114_wait_state(struct i2c_client *client, int timeout)
419 {
420         int ret;
421         unsigned int val;
422
423         while (timeout-- > 0) {
424                 ret = mt9m114_read_reg(client, MISENSOR_16BIT, 0x0080, &val);
425                 if (ret)
426                         return ret;
427                 if ((val & 0x2) == 0)
428                         return 0;
429                 msleep(20);
430         }
431
432         return -EINVAL;
433
434 }
435
436 static int mt9m114_set_suspend(struct v4l2_subdev *sd)
437 {
438         struct i2c_client *client = v4l2_get_subdevdata(sd);
439         return mt9m114_write_reg_array(client,
440                         mt9m114_standby_reg, POST_POLLING);
441 }
442
443 static int mt9m114_init_common(struct v4l2_subdev *sd)
444 {
445         struct i2c_client *client = v4l2_get_subdevdata(sd);
446
447         return mt9m114_write_reg_array(client, mt9m114_common, PRE_POLLING);
448 }
449
450 static int power_ctrl(struct v4l2_subdev *sd, bool flag)
451 {
452         int ret;
453         struct mt9m114_device *dev = to_mt9m114_sensor(sd);
454
455         if (!dev || !dev->platform_data)
456                 return -ENODEV;
457
458         /* Non-gmin platforms use the legacy callback */
459         if (dev->platform_data->power_ctrl)
460                 return dev->platform_data->power_ctrl(sd, flag);
461
462         if (flag) {
463                 ret = dev->platform_data->v2p8_ctrl(sd, 1);
464                 if (ret == 0) {
465                         ret = dev->platform_data->v1p8_ctrl(sd, 1);
466                         if (ret)
467                                 ret = dev->platform_data->v2p8_ctrl(sd, 0);
468                 }
469         } else {
470                 ret = dev->platform_data->v2p8_ctrl(sd, 0);
471                 ret = dev->platform_data->v1p8_ctrl(sd, 0);
472         }
473         return ret;
474 }
475
476 static int gpio_ctrl(struct v4l2_subdev *sd, bool flag)
477 {
478         int ret;
479         struct mt9m114_device *dev = to_mt9m114_sensor(sd);
480
481         if (!dev || !dev->platform_data)
482                 return -ENODEV;
483
484         /* Non-gmin platforms use the legacy callback */
485         if (dev->platform_data->gpio_ctrl)
486                 return dev->platform_data->gpio_ctrl(sd, flag);
487
488         /* Note: current modules wire only one GPIO signal (RESET#),
489          * but the schematic wires up two to the connector.  BIOS
490          * versions have been unfortunately inconsistent with which
491          * ACPI index RESET# is on, so hit both */
492
493         if (flag) {
494                 ret = dev->platform_data->gpio0_ctrl(sd, 0);
495                 ret = dev->platform_data->gpio1_ctrl(sd, 0);
496                 msleep(60);
497                 ret |= dev->platform_data->gpio0_ctrl(sd, 1);
498                 ret |= dev->platform_data->gpio1_ctrl(sd, 1);
499         } else {
500                 ret = dev->platform_data->gpio0_ctrl(sd, 0);
501                 ret = dev->platform_data->gpio1_ctrl(sd, 0);
502         }
503         return ret;
504 }
505
506 static int power_up(struct v4l2_subdev *sd)
507 {
508         struct mt9m114_device *dev = to_mt9m114_sensor(sd);
509         struct i2c_client *client = v4l2_get_subdevdata(sd);
510         int ret;
511
512         if (NULL == dev->platform_data) {
513                 dev_err(&client->dev, "no camera_sensor_platform_data");
514                 return -ENODEV;
515         }
516
517         /* power control */
518         ret = power_ctrl(sd, 1);
519         if (ret)
520                 goto fail_power;
521
522         /* flis clock control */
523         ret = dev->platform_data->flisclk_ctrl(sd, 1);
524         if (ret)
525                 goto fail_clk;
526
527         /* gpio ctrl */
528         ret = gpio_ctrl(sd, 1);
529         if (ret)
530                 dev_err(&client->dev, "gpio failed 1\n");
531         /*
532          * according to DS, 44ms is needed between power up and first i2c
533          * commend
534          */
535         msleep(50);
536
537         return 0;
538
539 fail_clk:
540         dev->platform_data->flisclk_ctrl(sd, 0);
541 fail_power:
542         power_ctrl(sd, 0);
543         dev_err(&client->dev, "sensor power-up failed\n");
544
545         return ret;
546 }
547
548 static int power_down(struct v4l2_subdev *sd)
549 {
550         struct mt9m114_device *dev = to_mt9m114_sensor(sd);
551         struct i2c_client *client = v4l2_get_subdevdata(sd);
552         int ret;
553
554         if (NULL == dev->platform_data) {
555                 dev_err(&client->dev, "no camera_sensor_platform_data");
556                 return -ENODEV;
557         }
558
559         ret = dev->platform_data->flisclk_ctrl(sd, 0);
560         if (ret)
561                 dev_err(&client->dev, "flisclk failed\n");
562
563         /* gpio ctrl */
564         ret = gpio_ctrl(sd, 0);
565         if (ret)
566                 dev_err(&client->dev, "gpio failed 1\n");
567
568         /* power control */
569         ret = power_ctrl(sd, 0);
570         if (ret)
571                 dev_err(&client->dev, "vprog failed.\n");
572
573         /*according to DS, 20ms is needed after power down*/
574         msleep(20);
575
576         return ret;
577 }
578
579 static int mt9m114_s_power(struct v4l2_subdev *sd, int power)
580 {
581         if (power == 0)
582                 return power_down(sd);
583         else {
584                 if (power_up(sd))
585                         return -EINVAL;
586
587                 return mt9m114_init_common(sd);
588         }
589 }
590
591 /*
592  * distance - calculate the distance
593  * @res: resolution
594  * @w: width
595  * @h: height
596  *
597  * Get the gap between resolution and w/h.
598  * res->width/height smaller than w/h wouldn't be considered.
599  * Returns the value of gap or -1 if fail.
600  */
601 #define LARGEST_ALLOWED_RATIO_MISMATCH 600
602 static int distance(struct mt9m114_res_struct const *res, u32 w, u32 h)
603 {
604         unsigned int w_ratio;
605         unsigned int h_ratio;
606         int match;
607
608         if (w == 0)
609                 return -1;
610         w_ratio = (res->width << 13) / w;
611         if (h == 0)
612                 return -1;
613         h_ratio = (res->height << 13) / h;
614         if (h_ratio == 0)
615                 return -1;
616         match   = abs(((w_ratio << 13) / h_ratio) - 8192);
617
618         if ((w_ratio < 8192) || (h_ratio < 8192) ||
619             (match > LARGEST_ALLOWED_RATIO_MISMATCH))
620                 return -1;
621
622         return w_ratio + h_ratio;
623 }
624
625 /* Return the nearest higher resolution index */
626 static int nearest_resolution_index(int w, int h)
627 {
628         int i;
629         int idx = -1;
630         int dist;
631         int min_dist = INT_MAX;
632         const struct mt9m114_res_struct *tmp_res = NULL;
633
634         for (i = 0; i < ARRAY_SIZE(mt9m114_res); i++) {
635                 tmp_res = &mt9m114_res[i];
636                 dist = distance(tmp_res, w, h);
637                 if (dist == -1)
638                         continue;
639                 if (dist < min_dist) {
640                         min_dist = dist;
641                         idx = i;
642                 }
643         }
644
645         return idx;
646 }
647
648 static int mt9m114_try_res(u32 *w, u32 *h)
649 {
650         int idx = 0;
651
652         if ((*w > MT9M114_RES_960P_SIZE_H)
653                 || (*h > MT9M114_RES_960P_SIZE_V)) {
654                 *w = MT9M114_RES_960P_SIZE_H;
655                 *h = MT9M114_RES_960P_SIZE_V;
656         } else {
657                 idx = nearest_resolution_index(*w, *h);
658
659                 /*
660                  * nearest_resolution_index() doesn't return smaller
661                  *  resolutions. If it fails, it means the requested
662                  *  resolution is higher than wecan support. Fallback
663                  *  to highest possible resolution in this case.
664                  */
665                 if (idx == -1)
666                         idx = ARRAY_SIZE(mt9m114_res) - 1;
667
668                 *w = mt9m114_res[idx].width;
669                 *h = mt9m114_res[idx].height;
670         }
671
672         return 0;
673 }
674
675 static struct mt9m114_res_struct *mt9m114_to_res(u32 w, u32 h)
676 {
677         int  index;
678
679         for (index = 0; index < N_RES; index++) {
680                 if ((mt9m114_res[index].width == w) &&
681                     (mt9m114_res[index].height == h))
682                         break;
683         }
684
685         /* No mode found */
686         if (index >= N_RES)
687                 return NULL;
688
689         return &mt9m114_res[index];
690 }
691
692 static int mt9m114_res2size(struct v4l2_subdev *sd, int *h_size, int *v_size)
693 {
694         struct mt9m114_device *dev = to_mt9m114_sensor(sd);
695         unsigned short hsize;
696         unsigned short vsize;
697
698         switch (dev->res) {
699         case MT9M114_RES_736P:
700                 hsize = MT9M114_RES_736P_SIZE_H;
701                 vsize = MT9M114_RES_736P_SIZE_V;
702                 break;
703         case MT9M114_RES_864P:
704                 hsize = MT9M114_RES_864P_SIZE_H;
705                 vsize = MT9M114_RES_864P_SIZE_V;
706                 break;
707         case MT9M114_RES_960P:
708                 hsize = MT9M114_RES_960P_SIZE_H;
709                 vsize = MT9M114_RES_960P_SIZE_V;
710                 break;
711         default:
712                 v4l2_err(sd, "%s: Resolution 0x%08x unknown\n", __func__,
713                          dev->res);
714                 return -EINVAL;
715         }
716
717         if (h_size != NULL)
718                 *h_size = hsize;
719         if (v_size != NULL)
720                 *v_size = vsize;
721
722         return 0;
723 }
724
725 static int mt9m114_get_intg_factor(struct i2c_client *client,
726                                 struct camera_mipi_info *info,
727                                 const struct mt9m114_res_struct *res)
728 {
729         struct atomisp_sensor_mode_data *buf = &info->data;
730         u32 reg_val;
731         int ret;
732
733         if (info == NULL)
734                 return -EINVAL;
735
736         ret =  mt9m114_read_reg(client, MISENSOR_32BIT,
737                                         REG_PIXEL_CLK, &reg_val);
738         if (ret)
739                 return ret;
740         buf->vt_pix_clk_freq_mhz = reg_val;
741
742         /* get integration time */
743         buf->coarse_integration_time_min = MT9M114_COARSE_INTG_TIME_MIN;
744         buf->coarse_integration_time_max_margin =
745                                         MT9M114_COARSE_INTG_TIME_MAX_MARGIN;
746
747         buf->fine_integration_time_min = MT9M114_FINE_INTG_TIME_MIN;
748         buf->fine_integration_time_max_margin =
749                                         MT9M114_FINE_INTG_TIME_MAX_MARGIN;
750
751         buf->fine_integration_time_def = MT9M114_FINE_INTG_TIME_MIN;
752
753         buf->frame_length_lines = res->lines_per_frame;
754         buf->line_length_pck = res->pixels_per_line;
755         buf->read_mode = res->bin_mode;
756
757         /* get the cropping and output resolution to ISP for this mode. */
758         ret =  mt9m114_read_reg(client, MISENSOR_16BIT,
759                                         REG_H_START, &reg_val);
760         if (ret)
761                 return ret;
762         buf->crop_horizontal_start = reg_val;
763
764         ret =  mt9m114_read_reg(client, MISENSOR_16BIT,
765                                         REG_V_START, &reg_val);
766         if (ret)
767                 return ret;
768         buf->crop_vertical_start = reg_val;
769
770         ret = mt9m114_read_reg(client, MISENSOR_16BIT,
771                                         REG_H_END, &reg_val);
772         if (ret)
773                 return ret;
774         buf->crop_horizontal_end = reg_val;
775
776         ret = mt9m114_read_reg(client, MISENSOR_16BIT,
777                                         REG_V_END, &reg_val);
778         if (ret)
779                 return ret;
780         buf->crop_vertical_end = reg_val;
781
782         ret = mt9m114_read_reg(client, MISENSOR_16BIT,
783                                         REG_WIDTH, &reg_val);
784         if (ret)
785                 return ret;
786         buf->output_width = reg_val;
787
788         ret = mt9m114_read_reg(client, MISENSOR_16BIT,
789                                         REG_HEIGHT, &reg_val);
790         if (ret)
791                 return ret;
792         buf->output_height = reg_val;
793
794         ret = mt9m114_read_reg(client, MISENSOR_16BIT,
795                                         REG_TIMING_HTS, &reg_val);
796         if (ret)
797                 return ret;
798         buf->line_length_pck = reg_val;
799
800         ret = mt9m114_read_reg(client, MISENSOR_16BIT,
801                                         REG_TIMING_VTS, &reg_val);
802         if (ret)
803                 return ret;
804         buf->frame_length_lines = reg_val;
805
806         buf->binning_factor_x = res->bin_factor_x ?
807                                         res->bin_factor_x : 1;
808         buf->binning_factor_y = res->bin_factor_y ?
809                                         res->bin_factor_y : 1;
810         return 0;
811 }
812
813 static int mt9m114_get_fmt(struct v4l2_subdev *sd,
814                                 struct v4l2_subdev_pad_config *cfg,
815                                 struct v4l2_subdev_format *format)
816 {
817         struct v4l2_mbus_framefmt *fmt = &format->format;
818         int width, height;
819         int ret;
820         if (format->pad)
821                 return -EINVAL;
822         fmt->code = MEDIA_BUS_FMT_SGRBG10_1X10;
823
824         ret = mt9m114_res2size(sd, &width, &height);
825         if (ret)
826                 return ret;
827         fmt->width = width;
828         fmt->height = height;
829
830         return 0;
831 }
832
833 static int mt9m114_set_fmt(struct v4l2_subdev *sd,
834                            struct v4l2_subdev_pad_config *cfg,
835                            struct v4l2_subdev_format *format)
836 {
837         struct v4l2_mbus_framefmt *fmt = &format->format;
838         struct i2c_client *c = v4l2_get_subdevdata(sd);
839         struct mt9m114_device *dev = to_mt9m114_sensor(sd);
840         struct mt9m114_res_struct *res_index;
841         u32 width = fmt->width;
842         u32 height = fmt->height;
843         struct camera_mipi_info *mt9m114_info = NULL;
844
845         int ret;
846         if (format->pad)
847                 return -EINVAL;
848         dev->streamon = 0;
849         dev->first_exp = MT9M114_DEFAULT_FIRST_EXP;
850
851         mt9m114_info = v4l2_get_subdev_hostdata(sd);
852         if (mt9m114_info == NULL)
853                 return -EINVAL;
854
855         mt9m114_try_res(&width, &height);
856         if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
857                 cfg->try_fmt = *fmt;
858                 return 0;
859         }
860         res_index = mt9m114_to_res(width, height);
861
862         /* Sanity check */
863         if (unlikely(!res_index)) {
864                 WARN_ON(1);
865                 return -EINVAL;
866         }
867
868         switch (res_index->res) {
869         case MT9M114_RES_736P:
870                 ret = mt9m114_write_reg_array(c, mt9m114_736P_init, NO_POLLING);
871                 ret += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
872                                 MISENSOR_R_MODE_MASK, MISENSOR_NORMAL_SET);
873                 break;
874         case MT9M114_RES_864P:
875                 ret = mt9m114_write_reg_array(c, mt9m114_864P_init, NO_POLLING);
876                 ret += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
877                                 MISENSOR_R_MODE_MASK, MISENSOR_NORMAL_SET);
878                 break;
879         case MT9M114_RES_960P:
880                 ret = mt9m114_write_reg_array(c, mt9m114_976P_init, NO_POLLING);
881                 /* set sensor read_mode to Normal */
882                 ret += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
883                                 MISENSOR_R_MODE_MASK, MISENSOR_NORMAL_SET);
884                 break;
885         default:
886                 v4l2_err(sd, "set resolution: %d failed!\n", res_index->res);
887                 return -EINVAL;
888         }
889
890         if (ret)
891                 return -EINVAL;
892
893         ret = mt9m114_write_reg_array(c, mt9m114_chgstat_reg, POST_POLLING);
894         if (ret < 0)
895                 return ret;
896
897         if (mt9m114_set_suspend(sd))
898                 return -EINVAL;
899
900         if (dev->res != res_index->res) {
901                 int index;
902
903                 /* Switch to different size */
904                 if (width <= 640) {
905                         dev->nctx = 0x00; /* Set for context A */
906                 } else {
907                         /*
908                          * Context B is used for resolutions larger than 640x480
909                          * Using YUV for Context B.
910                          */
911                         dev->nctx = 0x01; /* set for context B */
912                 }
913
914                 /*
915                  * Marked current sensor res as being "used"
916                  *
917                  * REVISIT: We don't need to use an "used" field on each mode
918                  * list entry to know which mode is selected. If this
919                  * information is really necessary, how about to use a single
920                  * variable on sensor dev struct?
921                  */
922                 for (index = 0; index < N_RES; index++) {
923                         if ((width == mt9m114_res[index].width) &&
924                             (height == mt9m114_res[index].height)) {
925                                 mt9m114_res[index].used = true;
926                                 continue;
927                         }
928                         mt9m114_res[index].used = false;
929                 }
930         }
931         ret = mt9m114_get_intg_factor(c, mt9m114_info,
932                                         &mt9m114_res[res_index->res]);
933         if (ret) {
934                 dev_err(&c->dev, "failed to get integration_factor\n");
935                 return -EINVAL;
936         }
937         /*
938          * mt9m114 - we don't poll for context switch
939          * because it does not happen with streaming disabled.
940          */
941         dev->res = res_index->res;
942
943         fmt->width = width;
944         fmt->height = height;
945         fmt->code = MEDIA_BUS_FMT_SGRBG10_1X10;
946         return 0;
947 }
948
949 /* TODO: Update to SOC functions, remove exposure and gain */
950 static int mt9m114_g_focal(struct v4l2_subdev *sd, s32 *val)
951 {
952         *val = (MT9M114_FOCAL_LENGTH_NUM << 16) | MT9M114_FOCAL_LENGTH_DEM;
953         return 0;
954 }
955
956 static int mt9m114_g_fnumber(struct v4l2_subdev *sd, s32 *val)
957 {
958         /*const f number for mt9m114*/
959         *val = (MT9M114_F_NUMBER_DEFAULT_NUM << 16) | MT9M114_F_NUMBER_DEM;
960         return 0;
961 }
962
963 static int mt9m114_g_fnumber_range(struct v4l2_subdev *sd, s32 *val)
964 {
965         *val = (MT9M114_F_NUMBER_DEFAULT_NUM << 24) |
966                 (MT9M114_F_NUMBER_DEM << 16) |
967                 (MT9M114_F_NUMBER_DEFAULT_NUM << 8) | MT9M114_F_NUMBER_DEM;
968         return 0;
969 }
970
971 /* Horizontal flip the image. */
972 static int mt9m114_g_hflip(struct v4l2_subdev *sd, s32 *val)
973 {
974         struct i2c_client *c = v4l2_get_subdevdata(sd);
975         int ret;
976         u32 data;
977         ret = mt9m114_read_reg(c, MISENSOR_16BIT,
978                         (u32)MISENSOR_READ_MODE, &data);
979         if (ret)
980                 return ret;
981         *val = !!(data & MISENSOR_HFLIP_MASK);
982
983         return 0;
984 }
985
986 static int mt9m114_g_vflip(struct v4l2_subdev *sd, s32 *val)
987 {
988         struct i2c_client *c = v4l2_get_subdevdata(sd);
989         int ret;
990         u32 data;
991
992         ret = mt9m114_read_reg(c, MISENSOR_16BIT,
993                         (u32)MISENSOR_READ_MODE, &data);
994         if (ret)
995                 return ret;
996         *val = !!(data & MISENSOR_VFLIP_MASK);
997
998         return 0;
999 }
1000
1001 static long mt9m114_s_exposure(struct v4l2_subdev *sd,
1002                                struct atomisp_exposure *exposure)
1003 {
1004         struct i2c_client *client = v4l2_get_subdevdata(sd);
1005         struct mt9m114_device *dev = to_mt9m114_sensor(sd);
1006         int ret = 0;
1007         unsigned int coarse_integration = 0;
1008         unsigned int fine_integration = 0;
1009         unsigned int FLines = 0;
1010         unsigned int FrameLengthLines = 0; /* ExposureTime.FrameLengthLines; */
1011         unsigned int AnalogGain, DigitalGain;
1012         u32 AnalogGainToWrite = 0;
1013         u16 exposure_local[3];
1014
1015         dev_dbg(&client->dev, "%s(0x%X 0x%X 0x%X)\n", __func__,
1016                     exposure->integration_time[0], exposure->gain[0],
1017                     exposure->gain[1]);
1018
1019         coarse_integration = exposure->integration_time[0];
1020         /* fine_integration = ExposureTime.FineIntegrationTime; */
1021         /* FrameLengthLines = ExposureTime.FrameLengthLines; */
1022         FLines = mt9m114_res[dev->res].lines_per_frame;
1023         AnalogGain = exposure->gain[0];
1024         DigitalGain = exposure->gain[1];
1025         if (!dev->streamon) {
1026                 /*Save the first exposure values while stream is off*/
1027                 dev->first_exp = coarse_integration;
1028                 dev->first_gain = AnalogGain;
1029                 dev->first_diggain = DigitalGain;
1030         }
1031         /* DigitalGain = 0x400 * (((u16) DigitalGain) >> 8) +
1032         ((unsigned int)(0x400 * (((u16) DigitalGain) & 0xFF)) >>8); */
1033
1034         /* set frame length */
1035         if (FLines < coarse_integration + 6)
1036                 FLines = coarse_integration + 6;
1037         if (FLines < FrameLengthLines)
1038                 FLines = FrameLengthLines;
1039         ret = mt9m114_write_reg(client, MISENSOR_16BIT, 0x300A, FLines);
1040         if (ret) {
1041                 v4l2_err(client, "%s: fail to set FLines\n", __func__);
1042                 return -EINVAL;
1043         }
1044
1045         /* set coarse/fine integration */
1046         exposure_local[0] = REG_EXPO_COARSE;
1047         exposure_local[1] = (u16)coarse_integration;
1048         exposure_local[2] = (u16)fine_integration;
1049         /* 3A provide real exposure time.
1050                 should not translate to any value here. */
1051         ret = mt9m114_write_reg(client, MISENSOR_16BIT,
1052                         REG_EXPO_COARSE, (u16)(coarse_integration));
1053         if (ret) {
1054                 v4l2_err(client, "%s: fail to set exposure time\n", __func__);
1055                 return -EINVAL;
1056         }
1057
1058         /*
1059         // set analog/digital gain
1060         switch(AnalogGain)
1061         {
1062         case 0:
1063           AnalogGainToWrite = 0x0;
1064           break;
1065         case 1:
1066           AnalogGainToWrite = 0x20;
1067           break;
1068         case 2:
1069           AnalogGainToWrite = 0x60;
1070           break;
1071         case 4:
1072           AnalogGainToWrite = 0xA0;
1073           break;
1074         case 8:
1075           AnalogGainToWrite = 0xE0;
1076           break;
1077         default:
1078           AnalogGainToWrite = 0x20;
1079           break;
1080         }
1081         */
1082         if (DigitalGain >= 16 || DigitalGain <= 1)
1083                 DigitalGain = 1;
1084         /* AnalogGainToWrite =
1085                 (u16)((DigitalGain << 12) | AnalogGainToWrite); */
1086         AnalogGainToWrite = (u16)((DigitalGain << 12) | (u16)AnalogGain);
1087         ret = mt9m114_write_reg(client, MISENSOR_16BIT,
1088                                         REG_GAIN, AnalogGainToWrite);
1089         if (ret) {
1090                 v4l2_err(client, "%s: fail to set AnalogGainToWrite\n",
1091                         __func__);
1092                 return -EINVAL;
1093         }
1094
1095         return ret;
1096 }
1097
1098 static long mt9m114_ioctl(struct v4l2_subdev *sd, unsigned int cmd, void *arg)
1099 {
1100
1101         switch (cmd) {
1102         case ATOMISP_IOC_S_EXPOSURE:
1103                 return mt9m114_s_exposure(sd, arg);
1104         default:
1105                 return -EINVAL;
1106         }
1107
1108         return 0;
1109 }
1110
1111 /* This returns the exposure time being used. This should only be used
1112    for filling in EXIF data, not for actual image processing. */
1113 static int mt9m114_g_exposure(struct v4l2_subdev *sd, s32 *value)
1114 {
1115         struct i2c_client *client = v4l2_get_subdevdata(sd);
1116         u32 coarse;
1117         int ret;
1118
1119         /* the fine integration time is currently not calculated */
1120         ret = mt9m114_read_reg(client, MISENSOR_16BIT,
1121                                REG_EXPO_COARSE, &coarse);
1122         if (ret)
1123                 return ret;
1124
1125         *value = coarse;
1126         return 0;
1127 }
1128 #ifndef CSS15
1129 /*
1130  * This function will return the sensor supported max exposure zone number.
1131  * the sensor which supports max exposure zone number is 1.
1132  */
1133 static int mt9m114_g_exposure_zone_num(struct v4l2_subdev *sd, s32 *val)
1134 {
1135         *val = 1;
1136
1137         return 0;
1138 }
1139
1140 /*
1141  * set exposure metering, average/center_weighted/spot/matrix.
1142  */
1143 static int mt9m114_s_exposure_metering(struct v4l2_subdev *sd, s32 val)
1144 {
1145         struct i2c_client *client = v4l2_get_subdevdata(sd);
1146         int ret;
1147
1148         switch (val) {
1149         case V4L2_EXPOSURE_METERING_SPOT:
1150                 ret = mt9m114_write_reg_array(client, mt9m114_exp_average,
1151                                                 NO_POLLING);
1152                 if (ret) {
1153                         dev_err(&client->dev, "write exp_average reg err.\n");
1154                         return ret;
1155                 }
1156                 break;
1157         case V4L2_EXPOSURE_METERING_CENTER_WEIGHTED:
1158         default:
1159                 ret = mt9m114_write_reg_array(client, mt9m114_exp_center,
1160                                                 NO_POLLING);
1161                 if (ret) {
1162                         dev_err(&client->dev, "write exp_default reg err");
1163                         return ret;
1164                 }
1165         }
1166
1167         return 0;
1168 }
1169
1170 /*
1171  * This function is for touch exposure feature.
1172  */
1173 static int mt9m114_s_exposure_selection(struct v4l2_subdev *sd,
1174                                         struct v4l2_subdev_pad_config *cfg,
1175                                         struct v4l2_subdev_selection *sel)
1176 {
1177         struct i2c_client *client = v4l2_get_subdevdata(sd);
1178         struct misensor_reg exp_reg;
1179         int width, height;
1180         int grid_width, grid_height;
1181         int grid_left, grid_top, grid_right, grid_bottom;
1182         int win_left, win_top, win_right, win_bottom;
1183         int i, j;
1184         int ret;
1185
1186         if (sel->which != V4L2_SUBDEV_FORMAT_TRY &&
1187             sel->which != V4L2_SUBDEV_FORMAT_ACTIVE)
1188                 return -EINVAL;
1189
1190         grid_left = sel->r.left;
1191         grid_top = sel->r.top;
1192         grid_right = sel->r.left + sel->r.width - 1;
1193         grid_bottom = sel->r.top + sel->r.height - 1;
1194
1195         ret = mt9m114_res2size(sd, &width, &height);
1196         if (ret)
1197                 return ret;
1198
1199         grid_width = width / 5;
1200         grid_height = height / 5;
1201
1202         if (grid_width && grid_height) {
1203                 win_left = grid_left / grid_width;
1204                 win_top = grid_top / grid_height;
1205                 win_right = grid_right / grid_width;
1206                 win_bottom = grid_bottom / grid_height;
1207         } else {
1208                 dev_err(&client->dev, "Incorrect exp grid.\n");
1209                 return -EINVAL;
1210         }
1211
1212         win_left   = clamp_t(int, win_left, 0, 4);
1213         win_top    = clamp_t(int, win_top, 0, 4);
1214         win_right  = clamp_t(int, win_right, 0, 4);
1215         win_bottom = clamp_t(int, win_bottom, 0, 4);
1216
1217         ret = mt9m114_write_reg_array(client, mt9m114_exp_average, NO_POLLING);
1218         if (ret) {
1219                 dev_err(&client->dev, "write exp_average reg err.\n");
1220                 return ret;
1221         }
1222
1223         for (i = win_top; i <= win_bottom; i++) {
1224                 for (j = win_left; j <= win_right; j++) {
1225                         exp_reg = mt9m114_exp_win[i][j];
1226
1227                         ret = mt9m114_write_reg(client, exp_reg.length,
1228                                                 exp_reg.reg, exp_reg.val);
1229                         if (ret) {
1230                                 dev_err(&client->dev, "write exp_reg err.\n");
1231                                 return ret;
1232                         }
1233                 }
1234         }
1235
1236         return 0;
1237 }
1238 #endif
1239
1240 static int mt9m114_g_bin_factor_x(struct v4l2_subdev *sd, s32 *val)
1241 {
1242         struct mt9m114_device *dev = to_mt9m114_sensor(sd);
1243
1244         *val = mt9m114_res[dev->res].bin_factor_x;
1245
1246         return 0;
1247 }
1248
1249 static int mt9m114_g_bin_factor_y(struct v4l2_subdev *sd, s32 *val)
1250 {
1251         struct mt9m114_device *dev = to_mt9m114_sensor(sd);
1252
1253         *val = mt9m114_res[dev->res].bin_factor_y;
1254
1255         return 0;
1256 }
1257
1258 static int mt9m114_s_ev(struct v4l2_subdev *sd, s32 val)
1259 {
1260         struct i2c_client *c = v4l2_get_subdevdata(sd);
1261         s32 luma = 0x37;
1262         int err;
1263
1264         /* EV value only support -2 to 2
1265          * 0: 0x37, 1:0x47, 2:0x57, -1:0x27, -2:0x17
1266          */
1267         if (val < -2 || val > 2)
1268                 return -EINVAL;
1269         luma += 0x10 * val;
1270         dev_dbg(&c->dev, "%s val:%d luma:0x%x\n", __func__, val, luma);
1271         err = mt9m114_write_reg(c, MISENSOR_16BIT, 0x098E, 0xC87A);
1272         if (err) {
1273                 dev_err(&c->dev, "%s logic addr access error\n", __func__);
1274                 return err;
1275         }
1276         err = mt9m114_write_reg(c, MISENSOR_8BIT, 0xC87A, (u32)luma);
1277         if (err) {
1278                 dev_err(&c->dev, "%s write target_average_luma failed\n",
1279                         __func__);
1280                 return err;
1281         }
1282         udelay(10);
1283
1284         return 0;
1285 }
1286
1287 static int mt9m114_g_ev(struct v4l2_subdev *sd, s32 *val)
1288 {
1289         struct i2c_client *c = v4l2_get_subdevdata(sd);
1290         int err;
1291         u32 luma;
1292
1293         err = mt9m114_write_reg(c, MISENSOR_16BIT, 0x098E, 0xC87A);
1294         if (err) {
1295                 dev_err(&c->dev, "%s logic addr access error\n", __func__);
1296                 return err;
1297         }
1298         err = mt9m114_read_reg(c, MISENSOR_8BIT, 0xC87A, &luma);
1299         if (err) {
1300                 dev_err(&c->dev, "%s read target_average_luma failed\n",
1301                         __func__);
1302                 return err;
1303         }
1304         luma -= 0x17;
1305         luma /= 0x10;
1306         *val = (s32)luma - 2;
1307         dev_dbg(&c->dev, "%s val:%d\n", __func__, *val);
1308
1309         return 0;
1310 }
1311
1312 /* Fake interface
1313  * mt9m114 now can not support 3a_lock
1314 */
1315 static int mt9m114_s_3a_lock(struct v4l2_subdev *sd, s32 val)
1316 {
1317         aaalock = val;
1318         return 0;
1319 }
1320
1321 static int mt9m114_g_3a_lock(struct v4l2_subdev *sd, s32 *val)
1322 {
1323         if (aaalock)
1324                 return V4L2_LOCK_EXPOSURE | V4L2_LOCK_WHITE_BALANCE
1325                         | V4L2_LOCK_FOCUS;
1326         return 0;
1327 }
1328
1329 static int mt9m114_s_ctrl(struct v4l2_ctrl *ctrl)
1330 {
1331         struct mt9m114_device *dev =
1332             container_of(ctrl->handler, struct mt9m114_device, ctrl_handler);
1333         struct i2c_client *client = v4l2_get_subdevdata(&dev->sd);
1334         int ret = 0;
1335
1336         switch (ctrl->id) {
1337         case V4L2_CID_VFLIP:
1338                 dev_dbg(&client->dev, "%s: CID_VFLIP:%d.\n",
1339                         __func__, ctrl->val);
1340                 ret = mt9m114_t_vflip(&dev->sd, ctrl->val);
1341                 break;
1342         case V4L2_CID_HFLIP:
1343                 dev_dbg(&client->dev, "%s: CID_HFLIP:%d.\n",
1344                         __func__, ctrl->val);
1345                 ret = mt9m114_t_hflip(&dev->sd, ctrl->val);
1346                 break;
1347 #ifndef CSS15
1348         case V4L2_CID_EXPOSURE_METERING:
1349                 ret = mt9m114_s_exposure_metering(&dev->sd, ctrl->val);
1350                 break;
1351 #endif
1352         case V4L2_CID_EXPOSURE:
1353                 ret = mt9m114_s_ev(&dev->sd, ctrl->val);
1354                 break;
1355         case V4L2_CID_3A_LOCK:
1356                 ret = mt9m114_s_3a_lock(&dev->sd, ctrl->val);
1357                 break;
1358         default:
1359                 ret = -EINVAL;
1360         }
1361         return ret;
1362 }
1363
1364 static int mt9m114_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
1365 {
1366         struct mt9m114_device *dev =
1367             container_of(ctrl->handler, struct mt9m114_device, ctrl_handler);
1368         int ret = 0;
1369
1370         switch (ctrl->id) {
1371         case V4L2_CID_VFLIP:
1372                 ret = mt9m114_g_vflip(&dev->sd, &ctrl->val);
1373                 break;
1374         case V4L2_CID_HFLIP:
1375                 ret = mt9m114_g_hflip(&dev->sd, &ctrl->val);
1376                 break;
1377         case V4L2_CID_FOCAL_ABSOLUTE:
1378                 ret = mt9m114_g_focal(&dev->sd, &ctrl->val);
1379                 break;
1380         case V4L2_CID_FNUMBER_ABSOLUTE:
1381                 ret = mt9m114_g_fnumber(&dev->sd, &ctrl->val);
1382                 break;
1383         case V4L2_CID_FNUMBER_RANGE:
1384                 ret = mt9m114_g_fnumber_range(&dev->sd, &ctrl->val);
1385                 break;
1386         case V4L2_CID_EXPOSURE_ABSOLUTE:
1387                 ret = mt9m114_g_exposure(&dev->sd, &ctrl->val);
1388                 break;
1389 #ifndef CSS15
1390         case V4L2_CID_EXPOSURE_ZONE_NUM:
1391                 ret = mt9m114_g_exposure_zone_num(&dev->sd, &ctrl->val);
1392                 break;
1393 #endif
1394         case V4L2_CID_BIN_FACTOR_HORZ:
1395                 ret = mt9m114_g_bin_factor_x(&dev->sd, &ctrl->val);
1396                 break;
1397         case V4L2_CID_BIN_FACTOR_VERT:
1398                 ret = mt9m114_g_bin_factor_y(&dev->sd, &ctrl->val);
1399                 break;
1400         case V4L2_CID_EXPOSURE:
1401                 ret = mt9m114_g_ev(&dev->sd, &ctrl->val);
1402                 break;
1403         case V4L2_CID_3A_LOCK:
1404                 ret = mt9m114_g_3a_lock(&dev->sd, &ctrl->val);
1405                 break;
1406         default:
1407                 ret = -EINVAL;
1408         }
1409
1410         return ret;
1411 }
1412
1413 static const struct v4l2_ctrl_ops ctrl_ops = {
1414         .s_ctrl = mt9m114_s_ctrl,
1415         .g_volatile_ctrl = mt9m114_g_volatile_ctrl
1416 };
1417
1418 static struct v4l2_ctrl_config mt9m114_controls[] = {
1419         {
1420          .ops = &ctrl_ops,
1421          .id = V4L2_CID_VFLIP,
1422          .name = "Image v-Flip",
1423          .type = V4L2_CTRL_TYPE_INTEGER,
1424          .min = 0,
1425          .max = 1,
1426          .step = 1,
1427          .def = 0,
1428          },
1429         {
1430          .ops = &ctrl_ops,
1431          .id = V4L2_CID_HFLIP,
1432          .name = "Image h-Flip",
1433          .type = V4L2_CTRL_TYPE_INTEGER,
1434          .min = 0,
1435          .max = 1,
1436          .step = 1,
1437          .def = 0,
1438          },
1439         {
1440          .ops = &ctrl_ops,
1441          .id = V4L2_CID_FOCAL_ABSOLUTE,
1442          .name = "focal length",
1443          .type = V4L2_CTRL_TYPE_INTEGER,
1444          .min = MT9M114_FOCAL_LENGTH_DEFAULT,
1445          .max = MT9M114_FOCAL_LENGTH_DEFAULT,
1446          .step = 1,
1447          .def = MT9M114_FOCAL_LENGTH_DEFAULT,
1448          .flags = 0,
1449          },
1450         {
1451          .ops = &ctrl_ops,
1452          .id = V4L2_CID_FNUMBER_ABSOLUTE,
1453          .name = "f-number",
1454          .type = V4L2_CTRL_TYPE_INTEGER,
1455          .min = MT9M114_F_NUMBER_DEFAULT,
1456          .max = MT9M114_F_NUMBER_DEFAULT,
1457          .step = 1,
1458          .def = MT9M114_F_NUMBER_DEFAULT,
1459          .flags = 0,
1460          },
1461         {
1462          .ops = &ctrl_ops,
1463          .id = V4L2_CID_FNUMBER_RANGE,
1464          .name = "f-number range",
1465          .type = V4L2_CTRL_TYPE_INTEGER,
1466          .min = MT9M114_F_NUMBER_RANGE,
1467          .max = MT9M114_F_NUMBER_RANGE,
1468          .step = 1,
1469          .def = MT9M114_F_NUMBER_RANGE,
1470          .flags = 0,
1471          },
1472         {
1473          .ops = &ctrl_ops,
1474          .id = V4L2_CID_EXPOSURE_ABSOLUTE,
1475          .name = "exposure",
1476          .type = V4L2_CTRL_TYPE_INTEGER,
1477          .min = 0,
1478          .max = 0xffff,
1479          .step = 1,
1480          .def = 0,
1481          .flags = 0,
1482          },
1483 #ifndef CSS15
1484         {
1485          .ops = &ctrl_ops,
1486          .id = V4L2_CID_EXPOSURE_ZONE_NUM,
1487          .name = "one-time exposure zone number",
1488          .type = V4L2_CTRL_TYPE_INTEGER,
1489          .min = 0,
1490          .max = 0xffff,
1491          .step = 1,
1492          .def = 0,
1493          .flags = 0,
1494          },
1495         {
1496          .ops = &ctrl_ops,
1497          .id = V4L2_CID_EXPOSURE_METERING,
1498          .name = "metering",
1499          .type = V4L2_CTRL_TYPE_MENU,
1500          .min = 0,
1501          .max = 3,
1502          .step = 0,
1503          .def = 1,
1504          .flags = 0,
1505          },
1506 #endif
1507         {
1508          .ops = &ctrl_ops,
1509          .id = V4L2_CID_BIN_FACTOR_HORZ,
1510          .name = "horizontal binning factor",
1511          .type = V4L2_CTRL_TYPE_INTEGER,
1512          .min = 0,
1513          .max = MT9M114_BIN_FACTOR_MAX,
1514          .step = 1,
1515          .def = 0,
1516          .flags = 0,
1517          },
1518         {
1519          .ops = &ctrl_ops,
1520          .id = V4L2_CID_BIN_FACTOR_VERT,
1521          .name = "vertical binning factor",
1522          .type = V4L2_CTRL_TYPE_INTEGER,
1523          .min = 0,
1524          .max = MT9M114_BIN_FACTOR_MAX,
1525          .step = 1,
1526          .def = 0,
1527          .flags = 0,
1528          },
1529         {
1530          .ops = &ctrl_ops,
1531          .id = V4L2_CID_EXPOSURE,
1532          .name = "exposure biasx",
1533          .type = V4L2_CTRL_TYPE_INTEGER,
1534          .min = -2,
1535          .max = 2,
1536          .step = 1,
1537          .def = 0,
1538          .flags = 0,
1539          },
1540         {
1541          .ops = &ctrl_ops,
1542          .id = V4L2_CID_3A_LOCK,
1543          .name = "3a lock",
1544          .type = V4L2_CTRL_TYPE_BITMASK,
1545          .min = 0,
1546          .max = V4L2_LOCK_EXPOSURE | V4L2_LOCK_WHITE_BALANCE | V4L2_LOCK_FOCUS,
1547          .step = 1,
1548          .def = 0,
1549          .flags = 0,
1550          },
1551 };
1552
1553 static int mt9m114_detect(struct mt9m114_device *dev, struct i2c_client *client)
1554 {
1555         struct i2c_adapter *adapter = client->adapter;
1556         u32 retvalue;
1557
1558         if (!i2c_check_functionality(adapter, I2C_FUNC_I2C)) {
1559                 dev_err(&client->dev, "%s: i2c error", __func__);
1560                 return -ENODEV;
1561         }
1562         mt9m114_read_reg(client, MISENSOR_16BIT, (u32)MT9M114_PID, &retvalue);
1563         dev->real_model_id = retvalue;
1564
1565         if (retvalue != MT9M114_MOD_ID) {
1566                 dev_err(&client->dev, "%s: failed: client->addr = %x\n",
1567                         __func__, client->addr);
1568                 return -ENODEV;
1569         }
1570
1571         return 0;
1572 }
1573
1574 static int
1575 mt9m114_s_config(struct v4l2_subdev *sd, int irq, void *platform_data)
1576 {
1577         struct mt9m114_device *dev = to_mt9m114_sensor(sd);
1578         struct i2c_client *client = v4l2_get_subdevdata(sd);
1579         int ret;
1580
1581         if (NULL == platform_data)
1582                 return -ENODEV;
1583
1584         dev->platform_data =
1585             (struct camera_sensor_platform_data *)platform_data;
1586
1587         if (dev->platform_data->platform_init) {
1588                 ret = dev->platform_data->platform_init(client);
1589                 if (ret) {
1590                         v4l2_err(client, "mt9m114 platform init err\n");
1591                         return ret;
1592                 }
1593         }
1594         ret = power_up(sd);
1595         if (ret) {
1596                 v4l2_err(client, "mt9m114 power-up err");
1597                 return ret;
1598         }
1599
1600         /* config & detect sensor */
1601         ret = mt9m114_detect(dev, client);
1602         if (ret) {
1603                 v4l2_err(client, "mt9m114_detect err s_config.\n");
1604                 goto fail_detect;
1605         }
1606
1607         ret = dev->platform_data->csi_cfg(sd, 1);
1608         if (ret)
1609                 goto fail_csi_cfg;
1610
1611         ret = mt9m114_set_suspend(sd);
1612         if (ret) {
1613                 v4l2_err(client, "mt9m114 suspend err");
1614                 return ret;
1615         }
1616
1617         ret = power_down(sd);
1618         if (ret) {
1619                 v4l2_err(client, "mt9m114 power down err");
1620                 return ret;
1621         }
1622
1623         return ret;
1624
1625 fail_csi_cfg:
1626         dev->platform_data->csi_cfg(sd, 0);
1627 fail_detect:
1628         power_down(sd);
1629         dev_err(&client->dev, "sensor power-gating failed\n");
1630         return ret;
1631 }
1632
1633 /* Horizontal flip the image. */
1634 static int mt9m114_t_hflip(struct v4l2_subdev *sd, int value)
1635 {
1636         struct i2c_client *c = v4l2_get_subdevdata(sd);
1637         struct mt9m114_device *dev = to_mt9m114_sensor(sd);
1638         int err;
1639         /* set for direct mode */
1640         err = mt9m114_write_reg(c, MISENSOR_16BIT, 0x098E, 0xC850);
1641         if (value) {
1642                 /* enable H flip ctx A */
1643                 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC850, 0x01, 0x01);
1644                 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC851, 0x01, 0x01);
1645                 /* ctx B */
1646                 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC888, 0x01, 0x01);
1647                 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC889, 0x01, 0x01);
1648
1649                 err += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
1650                                         MISENSOR_HFLIP_MASK, MISENSOR_FLIP_EN);
1651
1652                 dev->bpat = MT9M114_BPAT_GRGRBGBG;
1653         } else {
1654                 /* disable H flip ctx A */
1655                 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC850, 0x01, 0x00);
1656                 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC851, 0x01, 0x00);
1657                 /* ctx B */
1658                 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC888, 0x01, 0x00);
1659                 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC889, 0x01, 0x00);
1660
1661                 err += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
1662                                         MISENSOR_HFLIP_MASK, MISENSOR_FLIP_DIS);
1663
1664                 dev->bpat = MT9M114_BPAT_BGBGGRGR;
1665         }
1666
1667         err += mt9m114_write_reg(c, MISENSOR_8BIT, 0x8404, 0x06);
1668         udelay(10);
1669
1670         return !!err;
1671 }
1672
1673 /* Vertically flip the image */
1674 static int mt9m114_t_vflip(struct v4l2_subdev *sd, int value)
1675 {
1676         struct i2c_client *c = v4l2_get_subdevdata(sd);
1677         int err;
1678         /* set for direct mode */
1679         err = mt9m114_write_reg(c, MISENSOR_16BIT, 0x098E, 0xC850);
1680         if (value >= 1) {
1681                 /* enable H flip - ctx A */
1682                 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC850, 0x02, 0x01);
1683                 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC851, 0x02, 0x01);
1684                 /* ctx B */
1685                 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC888, 0x02, 0x01);
1686                 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC889, 0x02, 0x01);
1687
1688                 err += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
1689                                         MISENSOR_VFLIP_MASK, MISENSOR_FLIP_EN);
1690         } else {
1691                 /* disable H flip - ctx A */
1692                 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC850, 0x02, 0x00);
1693                 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC851, 0x02, 0x00);
1694                 /* ctx B */
1695                 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC888, 0x02, 0x00);
1696                 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC889, 0x02, 0x00);
1697
1698                 err += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
1699                                         MISENSOR_VFLIP_MASK, MISENSOR_FLIP_DIS);
1700         }
1701
1702         err += mt9m114_write_reg(c, MISENSOR_8BIT, 0x8404, 0x06);
1703         udelay(10);
1704
1705         return !!err;
1706 }
1707 static int mt9m114_s_parm(struct v4l2_subdev *sd,
1708                         struct v4l2_streamparm *param)
1709 {
1710         return 0;
1711 }
1712
1713 static int mt9m114_g_frame_interval(struct v4l2_subdev *sd,
1714                                    struct v4l2_subdev_frame_interval *interval)
1715 {
1716         struct mt9m114_device *dev = to_mt9m114_sensor(sd);
1717
1718         interval->interval.numerator = 1;
1719         interval->interval.denominator = mt9m114_res[dev->res].fps;
1720
1721         return 0;
1722 }
1723
1724 static int mt9m114_s_stream(struct v4l2_subdev *sd, int enable)
1725 {
1726         int ret;
1727         struct i2c_client *c = v4l2_get_subdevdata(sd);
1728         struct mt9m114_device *dev = to_mt9m114_sensor(sd);
1729         struct atomisp_exposure exposure;
1730
1731         if (enable) {
1732                 ret = mt9m114_write_reg_array(c, mt9m114_chgstat_reg,
1733                                         POST_POLLING);
1734                 if (ret < 0)
1735                         return ret;
1736
1737                 if (dev->first_exp > MT9M114_MAX_FIRST_EXP) {
1738                         exposure.integration_time[0] = dev->first_exp;
1739                         exposure.gain[0] = dev->first_gain;
1740                         exposure.gain[1] = dev->first_diggain;
1741                         mt9m114_s_exposure(sd, &exposure);
1742                 }
1743                 dev->streamon = 1;
1744
1745         } else {
1746                 dev->streamon = 0;
1747                 ret = mt9m114_set_suspend(sd);
1748         }
1749
1750         return ret;
1751 }
1752
1753 static int mt9m114_enum_mbus_code(struct v4l2_subdev *sd,
1754                                   struct v4l2_subdev_pad_config *cfg,
1755                                   struct v4l2_subdev_mbus_code_enum *code)
1756 {
1757         if (code->index)
1758                 return -EINVAL;
1759         code->code = MEDIA_BUS_FMT_SGRBG10_1X10;
1760
1761         return 0;
1762 }
1763
1764 static int mt9m114_enum_frame_size(struct v4l2_subdev *sd,
1765                                    struct v4l2_subdev_pad_config *cfg,
1766                                    struct v4l2_subdev_frame_size_enum *fse)
1767 {
1768
1769         unsigned int index = fse->index;
1770
1771         if (index >= N_RES)
1772                 return -EINVAL;
1773
1774         fse->min_width = mt9m114_res[index].width;
1775         fse->min_height = mt9m114_res[index].height;
1776         fse->max_width = mt9m114_res[index].width;
1777         fse->max_height = mt9m114_res[index].height;
1778
1779         return 0;
1780 }
1781
1782 static int mt9m114_g_skip_frames(struct v4l2_subdev *sd, u32 *frames)
1783 {
1784         int index;
1785         struct mt9m114_device *snr = to_mt9m114_sensor(sd);
1786
1787         if (frames == NULL)
1788                 return -EINVAL;
1789
1790         for (index = 0; index < N_RES; index++) {
1791                 if (mt9m114_res[index].res == snr->res)
1792                         break;
1793         }
1794
1795         if (index >= N_RES)
1796                 return -EINVAL;
1797
1798         *frames = mt9m114_res[index].skip_frames;
1799
1800         return 0;
1801 }
1802
1803 static const struct v4l2_subdev_video_ops mt9m114_video_ops = {
1804         .s_parm = mt9m114_s_parm,
1805         .s_stream = mt9m114_s_stream,
1806         .g_frame_interval = mt9m114_g_frame_interval,
1807 };
1808
1809 static const struct v4l2_subdev_sensor_ops mt9m114_sensor_ops = {
1810         .g_skip_frames  = mt9m114_g_skip_frames,
1811 };
1812
1813 static const struct v4l2_subdev_core_ops mt9m114_core_ops = {
1814         .s_power = mt9m114_s_power,
1815         .ioctl = mt9m114_ioctl,
1816 };
1817
1818 /* REVISIT: Do we need pad operations? */
1819 static const struct v4l2_subdev_pad_ops mt9m114_pad_ops = {
1820         .enum_mbus_code = mt9m114_enum_mbus_code,
1821         .enum_frame_size = mt9m114_enum_frame_size,
1822         .get_fmt = mt9m114_get_fmt,
1823         .set_fmt = mt9m114_set_fmt,
1824 #ifndef CSS15
1825         .set_selection = mt9m114_s_exposure_selection,
1826 #endif
1827 };
1828
1829 static const struct v4l2_subdev_ops mt9m114_ops = {
1830         .core = &mt9m114_core_ops,
1831         .video = &mt9m114_video_ops,
1832         .pad = &mt9m114_pad_ops,
1833         .sensor = &mt9m114_sensor_ops,
1834 };
1835
1836 static const struct media_entity_operations mt9m114_entity_ops = {
1837         .link_setup = NULL,
1838 };
1839
1840 static int mt9m114_remove(struct i2c_client *client)
1841 {
1842         struct mt9m114_device *dev;
1843         struct v4l2_subdev *sd = i2c_get_clientdata(client);
1844
1845         dev = container_of(sd, struct mt9m114_device, sd);
1846         dev->platform_data->csi_cfg(sd, 0);
1847         if (dev->platform_data->platform_deinit)
1848                 dev->platform_data->platform_deinit();
1849         v4l2_device_unregister_subdev(sd);
1850         media_entity_cleanup(&dev->sd.entity);
1851         v4l2_ctrl_handler_free(&dev->ctrl_handler);
1852         kfree(dev);
1853         return 0;
1854 }
1855
1856 static int mt9m114_probe(struct i2c_client *client,
1857                        const struct i2c_device_id *id)
1858 {
1859         struct mt9m114_device *dev;
1860         int ret = 0;
1861         unsigned int i;
1862         void *pdata;
1863
1864         /* Setup sensor configuration structure */
1865         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1866         if (!dev) {
1867                 dev_err(&client->dev, "out of memory\n");
1868                 return -ENOMEM;
1869         }
1870
1871         v4l2_i2c_subdev_init(&dev->sd, client, &mt9m114_ops);
1872         pdata = client->dev.platform_data;
1873         if (ACPI_COMPANION(&client->dev))
1874                 pdata = gmin_camera_platform_data(&dev->sd,
1875                                                   ATOMISP_INPUT_FORMAT_RAW_10,
1876                                                   atomisp_bayer_order_grbg);
1877         if (pdata)
1878                 ret = mt9m114_s_config(&dev->sd, client->irq, pdata);
1879         if (!pdata || ret) {
1880                 v4l2_device_unregister_subdev(&dev->sd);
1881                 kfree(dev);
1882                 return ret;
1883         }
1884
1885         ret = atomisp_register_i2c_module(&dev->sd, pdata, RAW_CAMERA);
1886         if (ret) {
1887                 v4l2_device_unregister_subdev(&dev->sd);
1888                 kfree(dev);
1889                 /* Coverity CID 298095 - return on error */
1890                 return ret;
1891         }
1892
1893         /*TODO add format code here*/
1894         dev->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
1895         dev->pad.flags = MEDIA_PAD_FL_SOURCE;
1896         dev->format.code = MEDIA_BUS_FMT_SGRBG10_1X10;
1897         dev->sd.entity.function = MEDIA_ENT_F_CAM_SENSOR;
1898
1899         ret =
1900             v4l2_ctrl_handler_init(&dev->ctrl_handler,
1901                                    ARRAY_SIZE(mt9m114_controls));
1902         if (ret) {
1903                 mt9m114_remove(client);
1904                 return ret;
1905         }
1906
1907         for (i = 0; i < ARRAY_SIZE(mt9m114_controls); i++)
1908                 v4l2_ctrl_new_custom(&dev->ctrl_handler, &mt9m114_controls[i],
1909                                      NULL);
1910
1911         if (dev->ctrl_handler.error) {
1912                 mt9m114_remove(client);
1913                 return dev->ctrl_handler.error;
1914         }
1915
1916         /* Use same lock for controls as for everything else. */
1917         dev->ctrl_handler.lock = &dev->input_lock;
1918         dev->sd.ctrl_handler = &dev->ctrl_handler;
1919
1920         /* REVISIT: Do we need media controller? */
1921         ret = media_entity_pads_init(&dev->sd.entity, 1, &dev->pad);
1922         if (ret) {
1923                 mt9m114_remove(client);
1924                 return ret;
1925         }
1926         return 0;
1927 }
1928
1929 MODULE_DEVICE_TABLE(i2c, mt9m114_id);
1930
1931 static const struct acpi_device_id mt9m114_acpi_match[] = {
1932         { "INT33F0" },
1933         { "CRMT1040" },
1934         {},
1935 };
1936
1937 MODULE_DEVICE_TABLE(acpi, mt9m114_acpi_match);
1938
1939 static struct i2c_driver mt9m114_driver = {
1940         .driver = {
1941                 .name = "mt9m114",
1942                 .acpi_match_table = ACPI_PTR(mt9m114_acpi_match),
1943         },
1944         .probe = mt9m114_probe,
1945         .remove = mt9m114_remove,
1946         .id_table = mt9m114_id,
1947 };
1948
1949 static __init int init_mt9m114(void)
1950 {
1951         return i2c_add_driver(&mt9m114_driver);
1952 }
1953
1954 static __exit void exit_mt9m114(void)
1955 {
1956         i2c_del_driver(&mt9m114_driver);
1957 }
1958
1959 module_init(init_mt9m114);
1960 module_exit(exit_mt9m114);
1961
1962 MODULE_AUTHOR("Shuguang Gong <Shuguang.gong@intel.com>");
1963 MODULE_LICENSE("GPL");