2 * Simple synchronous userspace interface to SPI devices
4 * Copyright (C) 2006 SWAPP
5 * Andrea Paterniani <a.paterniani@swapp-eng.it>
6 * Copyright (C) 2007 David Brownell (simplification, cleanup)
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
19 #include <linux/init.h>
20 #include <linux/module.h>
21 #include <linux/ioctl.h>
23 #include <linux/device.h>
24 #include <linux/err.h>
25 #include <linux/list.h>
26 #include <linux/errno.h>
27 #include <linux/mutex.h>
28 #include <linux/slab.h>
29 #include <linux/compat.h>
31 #include <linux/of_device.h>
32 #include <linux/acpi.h>
34 #include <linux/spi/spi.h>
35 #include <linux/spi/spidev.h>
37 #include <linux/uaccess.h>
41 * This supports access to SPI devices using normal userspace I/O calls.
42 * Note that while traditional UNIX/POSIX I/O semantics are half duplex,
43 * and often mask message boundaries, full SPI support requires full duplex
44 * transfers. There are several kinds of internal message boundaries to
45 * handle chipselect management and other protocol options.
47 * SPI has a character major number assigned. We allocate minor numbers
48 * dynamically using a bitmask. You must use hotplug tools, such as udev
49 * (or mdev with busybox) to create and destroy the /dev/spidevB.C device
50 * nodes, since there is no fixed association of minor numbers with any
51 * particular SPI bus or device.
53 #define SPIDEV_MAJOR 153 /* assigned */
54 #define N_SPI_MINORS 32 /* ... up to 256 */
56 static DECLARE_BITMAP(minors, N_SPI_MINORS);
59 /* Bit masks for spi_device.mode management. Note that incorrect
60 * settings for some settings can cause *lots* of trouble for other
61 * devices on a shared bus:
63 * - CS_HIGH ... this device will be active when it shouldn't be
64 * - 3WIRE ... when active, it won't behave as it should
65 * - NO_CS ... there will be no explicit message boundaries; this
66 * is completely incompatible with the shared bus model
67 * - READY ... transfers may proceed when they shouldn't.
69 * REVISIT should changing those flags be privileged?
71 #define SPI_MODE_MASK (SPI_CPHA | SPI_CPOL | SPI_CS_HIGH \
72 | SPI_LSB_FIRST | SPI_3WIRE | SPI_LOOP \
73 | SPI_NO_CS | SPI_READY | SPI_TX_DUAL \
74 | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)
79 struct spi_device *spi;
80 struct list_head device_entry;
82 /* TX/RX buffers are NULL unless this device is open (users > 0) */
83 struct mutex buf_lock;
90 static LIST_HEAD(device_list);
91 static DEFINE_MUTEX(device_list_lock);
93 static unsigned bufsiz = 4096;
94 module_param(bufsiz, uint, S_IRUGO);
95 MODULE_PARM_DESC(bufsiz, "data bytes in biggest supported SPI message");
97 /*-------------------------------------------------------------------------*/
100 spidev_sync(struct spidev_data *spidev, struct spi_message *message)
102 DECLARE_COMPLETION_ONSTACK(done);
104 struct spi_device *spi;
106 spin_lock_irq(&spidev->spi_lock);
108 spin_unlock_irq(&spidev->spi_lock);
113 status = spi_sync(spi, message);
116 status = message->actual_length;
121 static inline ssize_t
122 spidev_sync_write(struct spidev_data *spidev, size_t len)
124 struct spi_transfer t = {
125 .tx_buf = spidev->tx_buffer,
127 .speed_hz = spidev->speed_hz,
129 struct spi_message m;
131 spi_message_init(&m);
132 spi_message_add_tail(&t, &m);
133 return spidev_sync(spidev, &m);
136 static inline ssize_t
137 spidev_sync_read(struct spidev_data *spidev, size_t len)
139 struct spi_transfer t = {
140 .rx_buf = spidev->rx_buffer,
142 .speed_hz = spidev->speed_hz,
144 struct spi_message m;
146 spi_message_init(&m);
147 spi_message_add_tail(&t, &m);
148 return spidev_sync(spidev, &m);
151 /*-------------------------------------------------------------------------*/
153 /* Read-only message with current device setup */
155 spidev_read(struct file *filp, char __user *buf, size_t count, loff_t *f_pos)
157 struct spidev_data *spidev;
160 /* chipselect only toggles at start or end of operation */
164 spidev = filp->private_data;
166 mutex_lock(&spidev->buf_lock);
167 status = spidev_sync_read(spidev, count);
169 unsigned long missing;
171 missing = copy_to_user(buf, spidev->rx_buffer, status);
172 if (missing == status)
175 status = status - missing;
177 mutex_unlock(&spidev->buf_lock);
182 /* Write-only message with current device setup */
184 spidev_write(struct file *filp, const char __user *buf,
185 size_t count, loff_t *f_pos)
187 struct spidev_data *spidev;
189 unsigned long missing;
191 /* chipselect only toggles at start or end of operation */
195 spidev = filp->private_data;
197 mutex_lock(&spidev->buf_lock);
198 missing = copy_from_user(spidev->tx_buffer, buf, count);
200 status = spidev_sync_write(spidev, count);
203 mutex_unlock(&spidev->buf_lock);
208 static int spidev_message(struct spidev_data *spidev,
209 struct spi_ioc_transfer *u_xfers, unsigned n_xfers)
211 struct spi_message msg;
212 struct spi_transfer *k_xfers;
213 struct spi_transfer *k_tmp;
214 struct spi_ioc_transfer *u_tmp;
215 unsigned n, total, tx_total, rx_total;
217 int status = -EFAULT;
219 spi_message_init(&msg);
220 k_xfers = kcalloc(n_xfers, sizeof(*k_tmp), GFP_KERNEL);
224 /* Construct spi_message, copying any tx data to bounce buffer.
225 * We walk the array of user-provided transfers, using each one
226 * to initialize a kernel version of the same transfer.
228 tx_buf = spidev->tx_buffer;
229 rx_buf = spidev->rx_buffer;
233 for (n = n_xfers, k_tmp = k_xfers, u_tmp = u_xfers;
235 n--, k_tmp++, u_tmp++) {
236 k_tmp->len = u_tmp->len;
239 /* Since the function returns the total length of transfers
240 * on success, restrict the total to positive int values to
241 * avoid the return value looking like an error. Also check
242 * each transfer length to avoid arithmetic overflow.
244 if (total > INT_MAX || k_tmp->len > INT_MAX) {
250 /* this transfer needs space in RX bounce buffer */
251 rx_total += k_tmp->len;
252 if (rx_total > bufsiz) {
256 k_tmp->rx_buf = rx_buf;
257 if (!access_ok(VERIFY_WRITE, (u8 __user *)
258 (uintptr_t) u_tmp->rx_buf,
261 rx_buf += k_tmp->len;
264 /* this transfer needs space in TX bounce buffer */
265 tx_total += k_tmp->len;
266 if (tx_total > bufsiz) {
270 k_tmp->tx_buf = tx_buf;
271 if (copy_from_user(tx_buf, (const u8 __user *)
272 (uintptr_t) u_tmp->tx_buf,
275 tx_buf += k_tmp->len;
278 k_tmp->cs_change = !!u_tmp->cs_change;
279 k_tmp->tx_nbits = u_tmp->tx_nbits;
280 k_tmp->rx_nbits = u_tmp->rx_nbits;
281 k_tmp->bits_per_word = u_tmp->bits_per_word;
282 k_tmp->delay_usecs = u_tmp->delay_usecs;
283 k_tmp->speed_hz = u_tmp->speed_hz;
284 if (!k_tmp->speed_hz)
285 k_tmp->speed_hz = spidev->speed_hz;
287 dev_dbg(&spidev->spi->dev,
288 " xfer len %u %s%s%s%dbits %u usec %uHz\n",
290 u_tmp->rx_buf ? "rx " : "",
291 u_tmp->tx_buf ? "tx " : "",
292 u_tmp->cs_change ? "cs " : "",
293 u_tmp->bits_per_word ? : spidev->spi->bits_per_word,
295 u_tmp->speed_hz ? : spidev->spi->max_speed_hz);
297 spi_message_add_tail(k_tmp, &msg);
300 status = spidev_sync(spidev, &msg);
304 /* copy any rx data out of bounce buffer */
305 rx_buf = spidev->rx_buffer;
306 for (n = n_xfers, u_tmp = u_xfers; n; n--, u_tmp++) {
308 if (__copy_to_user((u8 __user *)
309 (uintptr_t) u_tmp->rx_buf, rx_buf,
314 rx_buf += u_tmp->len;
324 static struct spi_ioc_transfer *
325 spidev_get_ioc_message(unsigned int cmd, struct spi_ioc_transfer __user *u_ioc,
328 struct spi_ioc_transfer *ioc;
331 /* Check type, command number and direction */
332 if (_IOC_TYPE(cmd) != SPI_IOC_MAGIC
333 || _IOC_NR(cmd) != _IOC_NR(SPI_IOC_MESSAGE(0))
334 || _IOC_DIR(cmd) != _IOC_WRITE)
335 return ERR_PTR(-ENOTTY);
337 tmp = _IOC_SIZE(cmd);
338 if ((tmp % sizeof(struct spi_ioc_transfer)) != 0)
339 return ERR_PTR(-EINVAL);
340 *n_ioc = tmp / sizeof(struct spi_ioc_transfer);
344 /* copy into scratch area */
345 ioc = kmalloc(tmp, GFP_KERNEL);
347 return ERR_PTR(-ENOMEM);
348 if (__copy_from_user(ioc, u_ioc, tmp)) {
350 return ERR_PTR(-EFAULT);
356 spidev_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
360 struct spidev_data *spidev;
361 struct spi_device *spi;
364 struct spi_ioc_transfer *ioc;
366 /* Check type and command number */
367 if (_IOC_TYPE(cmd) != SPI_IOC_MAGIC)
370 /* Check access direction once here; don't repeat below.
371 * IOC_DIR is from the user perspective, while access_ok is
372 * from the kernel perspective; so they look reversed.
374 if (_IOC_DIR(cmd) & _IOC_READ)
375 err = !access_ok(VERIFY_WRITE,
376 (void __user *)arg, _IOC_SIZE(cmd));
377 if (err == 0 && _IOC_DIR(cmd) & _IOC_WRITE)
378 err = !access_ok(VERIFY_READ,
379 (void __user *)arg, _IOC_SIZE(cmd));
383 /* guard against device removal before, or while,
384 * we issue this ioctl.
386 spidev = filp->private_data;
387 spin_lock_irq(&spidev->spi_lock);
388 spi = spi_dev_get(spidev->spi);
389 spin_unlock_irq(&spidev->spi_lock);
394 /* use the buffer lock here for triple duty:
395 * - prevent I/O (from us) so calling spi_setup() is safe;
396 * - prevent concurrent SPI_IOC_WR_* from morphing
397 * data fields while SPI_IOC_RD_* reads them;
398 * - SPI_IOC_MESSAGE needs the buffer locked "normally".
400 mutex_lock(&spidev->buf_lock);
404 case SPI_IOC_RD_MODE:
405 retval = __put_user(spi->mode & SPI_MODE_MASK,
408 case SPI_IOC_RD_MODE32:
409 retval = __put_user(spi->mode & SPI_MODE_MASK,
410 (__u32 __user *)arg);
412 case SPI_IOC_RD_LSB_FIRST:
413 retval = __put_user((spi->mode & SPI_LSB_FIRST) ? 1 : 0,
416 case SPI_IOC_RD_BITS_PER_WORD:
417 retval = __put_user(spi->bits_per_word, (__u8 __user *)arg);
419 case SPI_IOC_RD_MAX_SPEED_HZ:
420 retval = __put_user(spidev->speed_hz, (__u32 __user *)arg);
424 case SPI_IOC_WR_MODE:
425 case SPI_IOC_WR_MODE32:
426 if (cmd == SPI_IOC_WR_MODE)
427 retval = __get_user(tmp, (u8 __user *)arg);
429 retval = __get_user(tmp, (u32 __user *)arg);
431 u32 save = spi->mode;
433 if (tmp & ~SPI_MODE_MASK) {
438 tmp |= spi->mode & ~SPI_MODE_MASK;
439 spi->mode = (u16)tmp;
440 retval = spi_setup(spi);
444 dev_dbg(&spi->dev, "spi mode %x\n", tmp);
447 case SPI_IOC_WR_LSB_FIRST:
448 retval = __get_user(tmp, (__u8 __user *)arg);
450 u32 save = spi->mode;
453 spi->mode |= SPI_LSB_FIRST;
455 spi->mode &= ~SPI_LSB_FIRST;
456 retval = spi_setup(spi);
460 dev_dbg(&spi->dev, "%csb first\n",
464 case SPI_IOC_WR_BITS_PER_WORD:
465 retval = __get_user(tmp, (__u8 __user *)arg);
467 u8 save = spi->bits_per_word;
469 spi->bits_per_word = tmp;
470 retval = spi_setup(spi);
472 spi->bits_per_word = save;
474 dev_dbg(&spi->dev, "%d bits per word\n", tmp);
477 case SPI_IOC_WR_MAX_SPEED_HZ:
478 retval = __get_user(tmp, (__u32 __user *)arg);
480 u32 save = spi->max_speed_hz;
482 spi->max_speed_hz = tmp;
483 retval = spi_setup(spi);
485 spidev->speed_hz = tmp;
487 dev_dbg(&spi->dev, "%d Hz (max)\n", tmp);
488 spi->max_speed_hz = save;
493 /* segmented and/or full-duplex I/O request */
494 /* Check message and copy into scratch area */
495 ioc = spidev_get_ioc_message(cmd,
496 (struct spi_ioc_transfer __user *)arg, &n_ioc);
498 retval = PTR_ERR(ioc);
502 break; /* n_ioc is also 0 */
504 /* translate to spi_message, execute */
505 retval = spidev_message(spidev, ioc, n_ioc);
510 mutex_unlock(&spidev->buf_lock);
517 spidev_compat_ioc_message(struct file *filp, unsigned int cmd,
520 struct spi_ioc_transfer __user *u_ioc;
522 struct spidev_data *spidev;
523 struct spi_device *spi;
525 struct spi_ioc_transfer *ioc;
527 u_ioc = (struct spi_ioc_transfer __user *) compat_ptr(arg);
528 if (!access_ok(VERIFY_READ, u_ioc, _IOC_SIZE(cmd)))
531 /* guard against device removal before, or while,
532 * we issue this ioctl.
534 spidev = filp->private_data;
535 spin_lock_irq(&spidev->spi_lock);
536 spi = spi_dev_get(spidev->spi);
537 spin_unlock_irq(&spidev->spi_lock);
542 /* SPI_IOC_MESSAGE needs the buffer locked "normally" */
543 mutex_lock(&spidev->buf_lock);
545 /* Check message and copy into scratch area */
546 ioc = spidev_get_ioc_message(cmd, u_ioc, &n_ioc);
548 retval = PTR_ERR(ioc);
552 goto done; /* n_ioc is also 0 */
554 /* Convert buffer pointers */
555 for (n = 0; n < n_ioc; n++) {
556 ioc[n].rx_buf = (uintptr_t) compat_ptr(ioc[n].rx_buf);
557 ioc[n].tx_buf = (uintptr_t) compat_ptr(ioc[n].tx_buf);
560 /* translate to spi_message, execute */
561 retval = spidev_message(spidev, ioc, n_ioc);
565 mutex_unlock(&spidev->buf_lock);
571 spidev_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
573 if (_IOC_TYPE(cmd) == SPI_IOC_MAGIC
574 && _IOC_NR(cmd) == _IOC_NR(SPI_IOC_MESSAGE(0))
575 && _IOC_DIR(cmd) == _IOC_WRITE)
576 return spidev_compat_ioc_message(filp, cmd, arg);
578 return spidev_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
581 #define spidev_compat_ioctl NULL
582 #endif /* CONFIG_COMPAT */
584 static int spidev_open(struct inode *inode, struct file *filp)
586 struct spidev_data *spidev;
589 mutex_lock(&device_list_lock);
591 list_for_each_entry(spidev, &device_list, device_entry) {
592 if (spidev->devt == inode->i_rdev) {
599 pr_debug("spidev: nothing for minor %d\n", iminor(inode));
603 if (!spidev->tx_buffer) {
604 spidev->tx_buffer = kmalloc(bufsiz, GFP_KERNEL);
605 if (!spidev->tx_buffer) {
606 dev_dbg(&spidev->spi->dev, "open/ENOMEM\n");
612 if (!spidev->rx_buffer) {
613 spidev->rx_buffer = kmalloc(bufsiz, GFP_KERNEL);
614 if (!spidev->rx_buffer) {
615 dev_dbg(&spidev->spi->dev, "open/ENOMEM\n");
617 goto err_alloc_rx_buf;
622 filp->private_data = spidev;
623 nonseekable_open(inode, filp);
625 mutex_unlock(&device_list_lock);
629 kfree(spidev->tx_buffer);
630 spidev->tx_buffer = NULL;
632 mutex_unlock(&device_list_lock);
636 static int spidev_release(struct inode *inode, struct file *filp)
638 struct spidev_data *spidev;
641 mutex_lock(&device_list_lock);
642 spidev = filp->private_data;
643 filp->private_data = NULL;
645 spin_lock_irq(&spidev->spi_lock);
646 /* ... after we unbound from the underlying device? */
647 dofree = (spidev->spi == NULL);
648 spin_unlock_irq(&spidev->spi_lock);
652 if (!spidev->users) {
654 kfree(spidev->tx_buffer);
655 spidev->tx_buffer = NULL;
657 kfree(spidev->rx_buffer);
658 spidev->rx_buffer = NULL;
663 spidev->speed_hz = spidev->spi->max_speed_hz;
665 #ifdef CONFIG_SPI_SLAVE
667 spi_slave_abort(spidev->spi);
669 mutex_unlock(&device_list_lock);
674 static const struct file_operations spidev_fops = {
675 .owner = THIS_MODULE,
676 /* REVISIT switch to aio primitives, so that userspace
677 * gets more complete API coverage. It'll simplify things
678 * too, except for the locking.
680 .write = spidev_write,
682 .unlocked_ioctl = spidev_ioctl,
683 .compat_ioctl = spidev_compat_ioctl,
685 .release = spidev_release,
689 /*-------------------------------------------------------------------------*/
691 /* The main reason to have this class is to make mdev/udev create the
692 * /dev/spidevB.C character device nodes exposing our userspace API.
693 * It also simplifies memory management.
696 static struct class *spidev_class;
699 static const struct of_device_id spidev_dt_ids[] = {
700 { .compatible = "rohm,dh2228fv" },
701 { .compatible = "lineartechnology,ltc2488" },
704 MODULE_DEVICE_TABLE(of, spidev_dt_ids);
709 /* Dummy SPI devices not to be used in production systems */
710 #define SPIDEV_ACPI_DUMMY 1
712 static const struct acpi_device_id spidev_acpi_ids[] = {
714 * The ACPI SPT000* devices are only meant for development and
715 * testing. Systems used in production should have a proper ACPI
716 * description of the connected peripheral and they should also use
717 * a proper driver instead of poking directly to the SPI bus.
719 { "SPT0001", SPIDEV_ACPI_DUMMY },
720 { "SPT0002", SPIDEV_ACPI_DUMMY },
721 { "SPT0003", SPIDEV_ACPI_DUMMY },
724 MODULE_DEVICE_TABLE(acpi, spidev_acpi_ids);
726 static void spidev_probe_acpi(struct spi_device *spi)
728 const struct acpi_device_id *id;
730 if (!has_acpi_companion(&spi->dev))
733 id = acpi_match_device(spidev_acpi_ids, &spi->dev);
737 if (id->driver_data == SPIDEV_ACPI_DUMMY)
738 dev_warn(&spi->dev, "do not use this driver in production systems!\n");
741 static inline void spidev_probe_acpi(struct spi_device *spi) {}
744 /*-------------------------------------------------------------------------*/
746 static int spidev_probe(struct spi_device *spi)
748 struct spidev_data *spidev;
753 * spidev should never be referenced in DT without a specific
754 * compatible string, it is a Linux implementation thing
755 * rather than a description of the hardware.
757 WARN(spi->dev.of_node &&
758 of_device_is_compatible(spi->dev.of_node, "spidev"),
759 "%pOF: buggy DT: spidev listed directly in DT\n", spi->dev.of_node);
761 spidev_probe_acpi(spi);
763 /* Allocate driver data */
764 spidev = kzalloc(sizeof(*spidev), GFP_KERNEL);
768 /* Initialize the driver data */
770 spin_lock_init(&spidev->spi_lock);
771 mutex_init(&spidev->buf_lock);
773 INIT_LIST_HEAD(&spidev->device_entry);
775 /* If we can allocate a minor number, hook up this device.
776 * Reusing minors is fine so long as udev or mdev is working.
778 mutex_lock(&device_list_lock);
779 minor = find_first_zero_bit(minors, N_SPI_MINORS);
780 if (minor < N_SPI_MINORS) {
783 spidev->devt = MKDEV(SPIDEV_MAJOR, minor);
784 dev = device_create(spidev_class, &spi->dev, spidev->devt,
785 spidev, "spidev%d.%d",
786 spi->master->bus_num, spi->chip_select);
787 status = PTR_ERR_OR_ZERO(dev);
789 dev_dbg(&spi->dev, "no minor number available!\n");
793 set_bit(minor, minors);
794 list_add(&spidev->device_entry, &device_list);
796 mutex_unlock(&device_list_lock);
798 spidev->speed_hz = spi->max_speed_hz;
801 spi_set_drvdata(spi, spidev);
808 static int spidev_remove(struct spi_device *spi)
810 struct spidev_data *spidev = spi_get_drvdata(spi);
812 /* prevent new opens */
813 mutex_lock(&device_list_lock);
814 /* make sure ops on existing fds can abort cleanly */
815 spin_lock_irq(&spidev->spi_lock);
817 spin_unlock_irq(&spidev->spi_lock);
819 list_del(&spidev->device_entry);
820 device_destroy(spidev_class, spidev->devt);
821 clear_bit(MINOR(spidev->devt), minors);
822 if (spidev->users == 0)
824 mutex_unlock(&device_list_lock);
829 static struct spi_driver spidev_spi_driver = {
832 .of_match_table = of_match_ptr(spidev_dt_ids),
833 .acpi_match_table = ACPI_PTR(spidev_acpi_ids),
835 .probe = spidev_probe,
836 .remove = spidev_remove,
838 /* NOTE: suspend/resume methods are not necessary here.
839 * We don't do anything except pass the requests to/from
840 * the underlying controller. The refrigerator handles
841 * most issues; the controller driver handles the rest.
845 /*-------------------------------------------------------------------------*/
847 static int __init spidev_init(void)
851 /* Claim our 256 reserved device numbers. Then register a class
852 * that will key udev/mdev to add/remove /dev nodes. Last, register
853 * the driver which manages those device numbers.
855 BUILD_BUG_ON(N_SPI_MINORS > 256);
856 status = register_chrdev(SPIDEV_MAJOR, "spi", &spidev_fops);
860 spidev_class = class_create(THIS_MODULE, "spidev");
861 if (IS_ERR(spidev_class)) {
862 unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
863 return PTR_ERR(spidev_class);
866 status = spi_register_driver(&spidev_spi_driver);
868 class_destroy(spidev_class);
869 unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
873 module_init(spidev_init);
875 static void __exit spidev_exit(void)
877 spi_unregister_driver(&spidev_spi_driver);
878 class_destroy(spidev_class);
879 unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
881 module_exit(spidev_exit);
883 MODULE_AUTHOR("Andrea Paterniani, <a.paterniani@swapp-eng.it>");
884 MODULE_DESCRIPTION("User mode SPI device interface");
885 MODULE_LICENSE("GPL");
886 MODULE_ALIAS("spi:spidev");