GNU Linux-libre 6.7.9-gnu
[releases.git] / drivers / spi / spi.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6
7 #include <linux/acpi.h>
8 #include <linux/cache.h>
9 #include <linux/clk/clk-conf.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/dmaengine.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/export.h>
15 #include <linux/gpio/consumer.h>
16 #include <linux/highmem.h>
17 #include <linux/idr.h>
18 #include <linux/init.h>
19 #include <linux/ioport.h>
20 #include <linux/kernel.h>
21 #include <linux/kthread.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/mutex.h>
24 #include <linux/of_device.h>
25 #include <linux/of_irq.h>
26 #include <linux/percpu.h>
27 #include <linux/platform_data/x86/apple.h>
28 #include <linux/pm_domain.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/property.h>
31 #include <linux/ptp_clock_kernel.h>
32 #include <linux/sched/rt.h>
33 #include <linux/slab.h>
34 #include <linux/spi/spi.h>
35 #include <linux/spi/spi-mem.h>
36 #include <uapi/linux/sched/types.h>
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/spi.h>
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
41 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
42
43 #include "internals.h"
44
45 static DEFINE_IDR(spi_master_idr);
46
47 static void spidev_release(struct device *dev)
48 {
49         struct spi_device       *spi = to_spi_device(dev);
50
51         spi_controller_put(spi->controller);
52         kfree(spi->driver_override);
53         free_percpu(spi->pcpu_statistics);
54         kfree(spi);
55 }
56
57 static ssize_t
58 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
59 {
60         const struct spi_device *spi = to_spi_device(dev);
61         int len;
62
63         len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
64         if (len != -ENODEV)
65                 return len;
66
67         return sysfs_emit(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
68 }
69 static DEVICE_ATTR_RO(modalias);
70
71 static ssize_t driver_override_store(struct device *dev,
72                                      struct device_attribute *a,
73                                      const char *buf, size_t count)
74 {
75         struct spi_device *spi = to_spi_device(dev);
76         int ret;
77
78         ret = driver_set_override(dev, &spi->driver_override, buf, count);
79         if (ret)
80                 return ret;
81
82         return count;
83 }
84
85 static ssize_t driver_override_show(struct device *dev,
86                                     struct device_attribute *a, char *buf)
87 {
88         const struct spi_device *spi = to_spi_device(dev);
89         ssize_t len;
90
91         device_lock(dev);
92         len = sysfs_emit(buf, "%s\n", spi->driver_override ? : "");
93         device_unlock(dev);
94         return len;
95 }
96 static DEVICE_ATTR_RW(driver_override);
97
98 static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev)
99 {
100         struct spi_statistics __percpu *pcpu_stats;
101
102         if (dev)
103                 pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics);
104         else
105                 pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL);
106
107         if (pcpu_stats) {
108                 int cpu;
109
110                 for_each_possible_cpu(cpu) {
111                         struct spi_statistics *stat;
112
113                         stat = per_cpu_ptr(pcpu_stats, cpu);
114                         u64_stats_init(&stat->syncp);
115                 }
116         }
117         return pcpu_stats;
118 }
119
120 static ssize_t spi_emit_pcpu_stats(struct spi_statistics __percpu *stat,
121                                    char *buf, size_t offset)
122 {
123         u64 val = 0;
124         int i;
125
126         for_each_possible_cpu(i) {
127                 const struct spi_statistics *pcpu_stats;
128                 u64_stats_t *field;
129                 unsigned int start;
130                 u64 inc;
131
132                 pcpu_stats = per_cpu_ptr(stat, i);
133                 field = (void *)pcpu_stats + offset;
134                 do {
135                         start = u64_stats_fetch_begin(&pcpu_stats->syncp);
136                         inc = u64_stats_read(field);
137                 } while (u64_stats_fetch_retry(&pcpu_stats->syncp, start));
138                 val += inc;
139         }
140         return sysfs_emit(buf, "%llu\n", val);
141 }
142
143 #define SPI_STATISTICS_ATTRS(field, file)                               \
144 static ssize_t spi_controller_##field##_show(struct device *dev,        \
145                                              struct device_attribute *attr, \
146                                              char *buf)                 \
147 {                                                                       \
148         struct spi_controller *ctlr = container_of(dev,                 \
149                                          struct spi_controller, dev);   \
150         return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \
151 }                                                                       \
152 static struct device_attribute dev_attr_spi_controller_##field = {      \
153         .attr = { .name = file, .mode = 0444 },                         \
154         .show = spi_controller_##field##_show,                          \
155 };                                                                      \
156 static ssize_t spi_device_##field##_show(struct device *dev,            \
157                                          struct device_attribute *attr, \
158                                         char *buf)                      \
159 {                                                                       \
160         struct spi_device *spi = to_spi_device(dev);                    \
161         return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \
162 }                                                                       \
163 static struct device_attribute dev_attr_spi_device_##field = {          \
164         .attr = { .name = file, .mode = 0444 },                         \
165         .show = spi_device_##field##_show,                              \
166 }
167
168 #define SPI_STATISTICS_SHOW_NAME(name, file, field)                     \
169 static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \
170                                             char *buf)                  \
171 {                                                                       \
172         return spi_emit_pcpu_stats(stat, buf,                           \
173                         offsetof(struct spi_statistics, field));        \
174 }                                                                       \
175 SPI_STATISTICS_ATTRS(name, file)
176
177 #define SPI_STATISTICS_SHOW(field)                                      \
178         SPI_STATISTICS_SHOW_NAME(field, __stringify(field),             \
179                                  field)
180
181 SPI_STATISTICS_SHOW(messages);
182 SPI_STATISTICS_SHOW(transfers);
183 SPI_STATISTICS_SHOW(errors);
184 SPI_STATISTICS_SHOW(timedout);
185
186 SPI_STATISTICS_SHOW(spi_sync);
187 SPI_STATISTICS_SHOW(spi_sync_immediate);
188 SPI_STATISTICS_SHOW(spi_async);
189
190 SPI_STATISTICS_SHOW(bytes);
191 SPI_STATISTICS_SHOW(bytes_rx);
192 SPI_STATISTICS_SHOW(bytes_tx);
193
194 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)              \
195         SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,           \
196                                  "transfer_bytes_histo_" number,        \
197                                  transfer_bytes_histo[index])
198 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
199 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
200 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
201 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
202 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
203 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
204 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
205 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
206 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
207 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
208 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
209 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
210 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
211 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
212 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
213 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
214 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
215
216 SPI_STATISTICS_SHOW(transfers_split_maxsize);
217
218 static struct attribute *spi_dev_attrs[] = {
219         &dev_attr_modalias.attr,
220         &dev_attr_driver_override.attr,
221         NULL,
222 };
223
224 static const struct attribute_group spi_dev_group = {
225         .attrs  = spi_dev_attrs,
226 };
227
228 static struct attribute *spi_device_statistics_attrs[] = {
229         &dev_attr_spi_device_messages.attr,
230         &dev_attr_spi_device_transfers.attr,
231         &dev_attr_spi_device_errors.attr,
232         &dev_attr_spi_device_timedout.attr,
233         &dev_attr_spi_device_spi_sync.attr,
234         &dev_attr_spi_device_spi_sync_immediate.attr,
235         &dev_attr_spi_device_spi_async.attr,
236         &dev_attr_spi_device_bytes.attr,
237         &dev_attr_spi_device_bytes_rx.attr,
238         &dev_attr_spi_device_bytes_tx.attr,
239         &dev_attr_spi_device_transfer_bytes_histo0.attr,
240         &dev_attr_spi_device_transfer_bytes_histo1.attr,
241         &dev_attr_spi_device_transfer_bytes_histo2.attr,
242         &dev_attr_spi_device_transfer_bytes_histo3.attr,
243         &dev_attr_spi_device_transfer_bytes_histo4.attr,
244         &dev_attr_spi_device_transfer_bytes_histo5.attr,
245         &dev_attr_spi_device_transfer_bytes_histo6.attr,
246         &dev_attr_spi_device_transfer_bytes_histo7.attr,
247         &dev_attr_spi_device_transfer_bytes_histo8.attr,
248         &dev_attr_spi_device_transfer_bytes_histo9.attr,
249         &dev_attr_spi_device_transfer_bytes_histo10.attr,
250         &dev_attr_spi_device_transfer_bytes_histo11.attr,
251         &dev_attr_spi_device_transfer_bytes_histo12.attr,
252         &dev_attr_spi_device_transfer_bytes_histo13.attr,
253         &dev_attr_spi_device_transfer_bytes_histo14.attr,
254         &dev_attr_spi_device_transfer_bytes_histo15.attr,
255         &dev_attr_spi_device_transfer_bytes_histo16.attr,
256         &dev_attr_spi_device_transfers_split_maxsize.attr,
257         NULL,
258 };
259
260 static const struct attribute_group spi_device_statistics_group = {
261         .name  = "statistics",
262         .attrs  = spi_device_statistics_attrs,
263 };
264
265 static const struct attribute_group *spi_dev_groups[] = {
266         &spi_dev_group,
267         &spi_device_statistics_group,
268         NULL,
269 };
270
271 static struct attribute *spi_controller_statistics_attrs[] = {
272         &dev_attr_spi_controller_messages.attr,
273         &dev_attr_spi_controller_transfers.attr,
274         &dev_attr_spi_controller_errors.attr,
275         &dev_attr_spi_controller_timedout.attr,
276         &dev_attr_spi_controller_spi_sync.attr,
277         &dev_attr_spi_controller_spi_sync_immediate.attr,
278         &dev_attr_spi_controller_spi_async.attr,
279         &dev_attr_spi_controller_bytes.attr,
280         &dev_attr_spi_controller_bytes_rx.attr,
281         &dev_attr_spi_controller_bytes_tx.attr,
282         &dev_attr_spi_controller_transfer_bytes_histo0.attr,
283         &dev_attr_spi_controller_transfer_bytes_histo1.attr,
284         &dev_attr_spi_controller_transfer_bytes_histo2.attr,
285         &dev_attr_spi_controller_transfer_bytes_histo3.attr,
286         &dev_attr_spi_controller_transfer_bytes_histo4.attr,
287         &dev_attr_spi_controller_transfer_bytes_histo5.attr,
288         &dev_attr_spi_controller_transfer_bytes_histo6.attr,
289         &dev_attr_spi_controller_transfer_bytes_histo7.attr,
290         &dev_attr_spi_controller_transfer_bytes_histo8.attr,
291         &dev_attr_spi_controller_transfer_bytes_histo9.attr,
292         &dev_attr_spi_controller_transfer_bytes_histo10.attr,
293         &dev_attr_spi_controller_transfer_bytes_histo11.attr,
294         &dev_attr_spi_controller_transfer_bytes_histo12.attr,
295         &dev_attr_spi_controller_transfer_bytes_histo13.attr,
296         &dev_attr_spi_controller_transfer_bytes_histo14.attr,
297         &dev_attr_spi_controller_transfer_bytes_histo15.attr,
298         &dev_attr_spi_controller_transfer_bytes_histo16.attr,
299         &dev_attr_spi_controller_transfers_split_maxsize.attr,
300         NULL,
301 };
302
303 static const struct attribute_group spi_controller_statistics_group = {
304         .name  = "statistics",
305         .attrs  = spi_controller_statistics_attrs,
306 };
307
308 static const struct attribute_group *spi_master_groups[] = {
309         &spi_controller_statistics_group,
310         NULL,
311 };
312
313 static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats,
314                                               struct spi_transfer *xfer,
315                                               struct spi_controller *ctlr)
316 {
317         int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
318         struct spi_statistics *stats;
319
320         if (l2len < 0)
321                 l2len = 0;
322
323         get_cpu();
324         stats = this_cpu_ptr(pcpu_stats);
325         u64_stats_update_begin(&stats->syncp);
326
327         u64_stats_inc(&stats->transfers);
328         u64_stats_inc(&stats->transfer_bytes_histo[l2len]);
329
330         u64_stats_add(&stats->bytes, xfer->len);
331         if ((xfer->tx_buf) &&
332             (xfer->tx_buf != ctlr->dummy_tx))
333                 u64_stats_add(&stats->bytes_tx, xfer->len);
334         if ((xfer->rx_buf) &&
335             (xfer->rx_buf != ctlr->dummy_rx))
336                 u64_stats_add(&stats->bytes_rx, xfer->len);
337
338         u64_stats_update_end(&stats->syncp);
339         put_cpu();
340 }
341
342 /*
343  * modalias support makes "modprobe $MODALIAS" new-style hotplug work,
344  * and the sysfs version makes coldplug work too.
345  */
346 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name)
347 {
348         while (id->name[0]) {
349                 if (!strcmp(name, id->name))
350                         return id;
351                 id++;
352         }
353         return NULL;
354 }
355
356 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
357 {
358         const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
359
360         return spi_match_id(sdrv->id_table, sdev->modalias);
361 }
362 EXPORT_SYMBOL_GPL(spi_get_device_id);
363
364 const void *spi_get_device_match_data(const struct spi_device *sdev)
365 {
366         const void *match;
367
368         match = device_get_match_data(&sdev->dev);
369         if (match)
370                 return match;
371
372         return (const void *)spi_get_device_id(sdev)->driver_data;
373 }
374 EXPORT_SYMBOL_GPL(spi_get_device_match_data);
375
376 static int spi_match_device(struct device *dev, struct device_driver *drv)
377 {
378         const struct spi_device *spi = to_spi_device(dev);
379         const struct spi_driver *sdrv = to_spi_driver(drv);
380
381         /* Check override first, and if set, only use the named driver */
382         if (spi->driver_override)
383                 return strcmp(spi->driver_override, drv->name) == 0;
384
385         /* Attempt an OF style match */
386         if (of_driver_match_device(dev, drv))
387                 return 1;
388
389         /* Then try ACPI */
390         if (acpi_driver_match_device(dev, drv))
391                 return 1;
392
393         if (sdrv->id_table)
394                 return !!spi_match_id(sdrv->id_table, spi->modalias);
395
396         return strcmp(spi->modalias, drv->name) == 0;
397 }
398
399 static int spi_uevent(const struct device *dev, struct kobj_uevent_env *env)
400 {
401         const struct spi_device         *spi = to_spi_device(dev);
402         int rc;
403
404         rc = acpi_device_uevent_modalias(dev, env);
405         if (rc != -ENODEV)
406                 return rc;
407
408         return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
409 }
410
411 static int spi_probe(struct device *dev)
412 {
413         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
414         struct spi_device               *spi = to_spi_device(dev);
415         int ret;
416
417         ret = of_clk_set_defaults(dev->of_node, false);
418         if (ret)
419                 return ret;
420
421         if (dev->of_node) {
422                 spi->irq = of_irq_get(dev->of_node, 0);
423                 if (spi->irq == -EPROBE_DEFER)
424                         return -EPROBE_DEFER;
425                 if (spi->irq < 0)
426                         spi->irq = 0;
427         }
428
429         ret = dev_pm_domain_attach(dev, true);
430         if (ret)
431                 return ret;
432
433         if (sdrv->probe) {
434                 ret = sdrv->probe(spi);
435                 if (ret)
436                         dev_pm_domain_detach(dev, true);
437         }
438
439         return ret;
440 }
441
442 static void spi_remove(struct device *dev)
443 {
444         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
445
446         if (sdrv->remove)
447                 sdrv->remove(to_spi_device(dev));
448
449         dev_pm_domain_detach(dev, true);
450 }
451
452 static void spi_shutdown(struct device *dev)
453 {
454         if (dev->driver) {
455                 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
456
457                 if (sdrv->shutdown)
458                         sdrv->shutdown(to_spi_device(dev));
459         }
460 }
461
462 struct bus_type spi_bus_type = {
463         .name           = "spi",
464         .dev_groups     = spi_dev_groups,
465         .match          = spi_match_device,
466         .uevent         = spi_uevent,
467         .probe          = spi_probe,
468         .remove         = spi_remove,
469         .shutdown       = spi_shutdown,
470 };
471 EXPORT_SYMBOL_GPL(spi_bus_type);
472
473 /**
474  * __spi_register_driver - register a SPI driver
475  * @owner: owner module of the driver to register
476  * @sdrv: the driver to register
477  * Context: can sleep
478  *
479  * Return: zero on success, else a negative error code.
480  */
481 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
482 {
483         sdrv->driver.owner = owner;
484         sdrv->driver.bus = &spi_bus_type;
485
486         /*
487          * For Really Good Reasons we use spi: modaliases not of:
488          * modaliases for DT so module autoloading won't work if we
489          * don't have a spi_device_id as well as a compatible string.
490          */
491         if (sdrv->driver.of_match_table) {
492                 const struct of_device_id *of_id;
493
494                 for (of_id = sdrv->driver.of_match_table; of_id->compatible[0];
495                      of_id++) {
496                         const char *of_name;
497
498                         /* Strip off any vendor prefix */
499                         of_name = strnchr(of_id->compatible,
500                                           sizeof(of_id->compatible), ',');
501                         if (of_name)
502                                 of_name++;
503                         else
504                                 of_name = of_id->compatible;
505
506                         if (sdrv->id_table) {
507                                 const struct spi_device_id *spi_id;
508
509                                 spi_id = spi_match_id(sdrv->id_table, of_name);
510                                 if (spi_id)
511                                         continue;
512                         } else {
513                                 if (strcmp(sdrv->driver.name, of_name) == 0)
514                                         continue;
515                         }
516
517                         pr_warn("SPI driver %s has no spi_device_id for %s\n",
518                                 sdrv->driver.name, of_id->compatible);
519                 }
520         }
521
522         return driver_register(&sdrv->driver);
523 }
524 EXPORT_SYMBOL_GPL(__spi_register_driver);
525
526 /*-------------------------------------------------------------------------*/
527
528 /*
529  * SPI devices should normally not be created by SPI device drivers; that
530  * would make them board-specific.  Similarly with SPI controller drivers.
531  * Device registration normally goes into like arch/.../mach.../board-YYY.c
532  * with other readonly (flashable) information about mainboard devices.
533  */
534
535 struct boardinfo {
536         struct list_head        list;
537         struct spi_board_info   board_info;
538 };
539
540 static LIST_HEAD(board_list);
541 static LIST_HEAD(spi_controller_list);
542
543 /*
544  * Used to protect add/del operation for board_info list and
545  * spi_controller list, and their matching process also used
546  * to protect object of type struct idr.
547  */
548 static DEFINE_MUTEX(board_lock);
549
550 /**
551  * spi_alloc_device - Allocate a new SPI device
552  * @ctlr: Controller to which device is connected
553  * Context: can sleep
554  *
555  * Allows a driver to allocate and initialize a spi_device without
556  * registering it immediately.  This allows a driver to directly
557  * fill the spi_device with device parameters before calling
558  * spi_add_device() on it.
559  *
560  * Caller is responsible to call spi_add_device() on the returned
561  * spi_device structure to add it to the SPI controller.  If the caller
562  * needs to discard the spi_device without adding it, then it should
563  * call spi_dev_put() on it.
564  *
565  * Return: a pointer to the new device, or NULL.
566  */
567 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
568 {
569         struct spi_device       *spi;
570
571         if (!spi_controller_get(ctlr))
572                 return NULL;
573
574         spi = kzalloc(sizeof(*spi), GFP_KERNEL);
575         if (!spi) {
576                 spi_controller_put(ctlr);
577                 return NULL;
578         }
579
580         spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL);
581         if (!spi->pcpu_statistics) {
582                 kfree(spi);
583                 spi_controller_put(ctlr);
584                 return NULL;
585         }
586
587         spi->master = spi->controller = ctlr;
588         spi->dev.parent = &ctlr->dev;
589         spi->dev.bus = &spi_bus_type;
590         spi->dev.release = spidev_release;
591         spi->mode = ctlr->buswidth_override_bits;
592
593         device_initialize(&spi->dev);
594         return spi;
595 }
596 EXPORT_SYMBOL_GPL(spi_alloc_device);
597
598 static void spi_dev_set_name(struct spi_device *spi)
599 {
600         struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
601
602         if (adev) {
603                 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
604                 return;
605         }
606
607         dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
608                      spi_get_chipselect(spi, 0));
609 }
610
611 static int spi_dev_check(struct device *dev, void *data)
612 {
613         struct spi_device *spi = to_spi_device(dev);
614         struct spi_device *new_spi = data;
615
616         if (spi->controller == new_spi->controller &&
617             spi_get_chipselect(spi, 0) == spi_get_chipselect(new_spi, 0))
618                 return -EBUSY;
619         return 0;
620 }
621
622 static void spi_cleanup(struct spi_device *spi)
623 {
624         if (spi->controller->cleanup)
625                 spi->controller->cleanup(spi);
626 }
627
628 static int __spi_add_device(struct spi_device *spi)
629 {
630         struct spi_controller *ctlr = spi->controller;
631         struct device *dev = ctlr->dev.parent;
632         int status;
633
634         /* Chipselects are numbered 0..max; validate. */
635         if (spi_get_chipselect(spi, 0) >= ctlr->num_chipselect) {
636                 dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, 0),
637                         ctlr->num_chipselect);
638                 return -EINVAL;
639         }
640
641         /* Set the bus ID string */
642         spi_dev_set_name(spi);
643
644         /*
645          * We need to make sure there's no other device with this
646          * chipselect **BEFORE** we call setup(), else we'll trash
647          * its configuration.
648          */
649         status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
650         if (status) {
651                 dev_err(dev, "chipselect %d already in use\n",
652                                 spi_get_chipselect(spi, 0));
653                 return status;
654         }
655
656         /* Controller may unregister concurrently */
657         if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
658             !device_is_registered(&ctlr->dev)) {
659                 return -ENODEV;
660         }
661
662         if (ctlr->cs_gpiods)
663                 spi_set_csgpiod(spi, 0, ctlr->cs_gpiods[spi_get_chipselect(spi, 0)]);
664
665         /*
666          * Drivers may modify this initial i/o setup, but will
667          * normally rely on the device being setup.  Devices
668          * using SPI_CS_HIGH can't coexist well otherwise...
669          */
670         status = spi_setup(spi);
671         if (status < 0) {
672                 dev_err(dev, "can't setup %s, status %d\n",
673                                 dev_name(&spi->dev), status);
674                 return status;
675         }
676
677         /* Device may be bound to an active driver when this returns */
678         status = device_add(&spi->dev);
679         if (status < 0) {
680                 dev_err(dev, "can't add %s, status %d\n",
681                                 dev_name(&spi->dev), status);
682                 spi_cleanup(spi);
683         } else {
684                 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
685         }
686
687         return status;
688 }
689
690 /**
691  * spi_add_device - Add spi_device allocated with spi_alloc_device
692  * @spi: spi_device to register
693  *
694  * Companion function to spi_alloc_device.  Devices allocated with
695  * spi_alloc_device can be added onto the SPI bus with this function.
696  *
697  * Return: 0 on success; negative errno on failure
698  */
699 int spi_add_device(struct spi_device *spi)
700 {
701         struct spi_controller *ctlr = spi->controller;
702         int status;
703
704         mutex_lock(&ctlr->add_lock);
705         status = __spi_add_device(spi);
706         mutex_unlock(&ctlr->add_lock);
707         return status;
708 }
709 EXPORT_SYMBOL_GPL(spi_add_device);
710
711 /**
712  * spi_new_device - instantiate one new SPI device
713  * @ctlr: Controller to which device is connected
714  * @chip: Describes the SPI device
715  * Context: can sleep
716  *
717  * On typical mainboards, this is purely internal; and it's not needed
718  * after board init creates the hard-wired devices.  Some development
719  * platforms may not be able to use spi_register_board_info though, and
720  * this is exported so that for example a USB or parport based adapter
721  * driver could add devices (which it would learn about out-of-band).
722  *
723  * Return: the new device, or NULL.
724  */
725 struct spi_device *spi_new_device(struct spi_controller *ctlr,
726                                   struct spi_board_info *chip)
727 {
728         struct spi_device       *proxy;
729         int                     status;
730
731         /*
732          * NOTE:  caller did any chip->bus_num checks necessary.
733          *
734          * Also, unless we change the return value convention to use
735          * error-or-pointer (not NULL-or-pointer), troubleshootability
736          * suggests syslogged diagnostics are best here (ugh).
737          */
738
739         proxy = spi_alloc_device(ctlr);
740         if (!proxy)
741                 return NULL;
742
743         WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
744
745         spi_set_chipselect(proxy, 0, chip->chip_select);
746         proxy->max_speed_hz = chip->max_speed_hz;
747         proxy->mode = chip->mode;
748         proxy->irq = chip->irq;
749         strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
750         proxy->dev.platform_data = (void *) chip->platform_data;
751         proxy->controller_data = chip->controller_data;
752         proxy->controller_state = NULL;
753
754         if (chip->swnode) {
755                 status = device_add_software_node(&proxy->dev, chip->swnode);
756                 if (status) {
757                         dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
758                                 chip->modalias, status);
759                         goto err_dev_put;
760                 }
761         }
762
763         status = spi_add_device(proxy);
764         if (status < 0)
765                 goto err_dev_put;
766
767         return proxy;
768
769 err_dev_put:
770         device_remove_software_node(&proxy->dev);
771         spi_dev_put(proxy);
772         return NULL;
773 }
774 EXPORT_SYMBOL_GPL(spi_new_device);
775
776 /**
777  * spi_unregister_device - unregister a single SPI device
778  * @spi: spi_device to unregister
779  *
780  * Start making the passed SPI device vanish. Normally this would be handled
781  * by spi_unregister_controller().
782  */
783 void spi_unregister_device(struct spi_device *spi)
784 {
785         if (!spi)
786                 return;
787
788         if (spi->dev.of_node) {
789                 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
790                 of_node_put(spi->dev.of_node);
791         }
792         if (ACPI_COMPANION(&spi->dev))
793                 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
794         device_remove_software_node(&spi->dev);
795         device_del(&spi->dev);
796         spi_cleanup(spi);
797         put_device(&spi->dev);
798 }
799 EXPORT_SYMBOL_GPL(spi_unregister_device);
800
801 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
802                                               struct spi_board_info *bi)
803 {
804         struct spi_device *dev;
805
806         if (ctlr->bus_num != bi->bus_num)
807                 return;
808
809         dev = spi_new_device(ctlr, bi);
810         if (!dev)
811                 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
812                         bi->modalias);
813 }
814
815 /**
816  * spi_register_board_info - register SPI devices for a given board
817  * @info: array of chip descriptors
818  * @n: how many descriptors are provided
819  * Context: can sleep
820  *
821  * Board-specific early init code calls this (probably during arch_initcall)
822  * with segments of the SPI device table.  Any device nodes are created later,
823  * after the relevant parent SPI controller (bus_num) is defined.  We keep
824  * this table of devices forever, so that reloading a controller driver will
825  * not make Linux forget about these hard-wired devices.
826  *
827  * Other code can also call this, e.g. a particular add-on board might provide
828  * SPI devices through its expansion connector, so code initializing that board
829  * would naturally declare its SPI devices.
830  *
831  * The board info passed can safely be __initdata ... but be careful of
832  * any embedded pointers (platform_data, etc), they're copied as-is.
833  *
834  * Return: zero on success, else a negative error code.
835  */
836 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
837 {
838         struct boardinfo *bi;
839         int i;
840
841         if (!n)
842                 return 0;
843
844         bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
845         if (!bi)
846                 return -ENOMEM;
847
848         for (i = 0; i < n; i++, bi++, info++) {
849                 struct spi_controller *ctlr;
850
851                 memcpy(&bi->board_info, info, sizeof(*info));
852
853                 mutex_lock(&board_lock);
854                 list_add_tail(&bi->list, &board_list);
855                 list_for_each_entry(ctlr, &spi_controller_list, list)
856                         spi_match_controller_to_boardinfo(ctlr,
857                                                           &bi->board_info);
858                 mutex_unlock(&board_lock);
859         }
860
861         return 0;
862 }
863
864 /*-------------------------------------------------------------------------*/
865
866 /* Core methods for SPI resource management */
867
868 /**
869  * spi_res_alloc - allocate a spi resource that is life-cycle managed
870  *                 during the processing of a spi_message while using
871  *                 spi_transfer_one
872  * @spi:     the SPI device for which we allocate memory
873  * @release: the release code to execute for this resource
874  * @size:    size to alloc and return
875  * @gfp:     GFP allocation flags
876  *
877  * Return: the pointer to the allocated data
878  *
879  * This may get enhanced in the future to allocate from a memory pool
880  * of the @spi_device or @spi_controller to avoid repeated allocations.
881  */
882 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release,
883                            size_t size, gfp_t gfp)
884 {
885         struct spi_res *sres;
886
887         sres = kzalloc(sizeof(*sres) + size, gfp);
888         if (!sres)
889                 return NULL;
890
891         INIT_LIST_HEAD(&sres->entry);
892         sres->release = release;
893
894         return sres->data;
895 }
896
897 /**
898  * spi_res_free - free an SPI resource
899  * @res: pointer to the custom data of a resource
900  */
901 static void spi_res_free(void *res)
902 {
903         struct spi_res *sres = container_of(res, struct spi_res, data);
904
905         if (!res)
906                 return;
907
908         WARN_ON(!list_empty(&sres->entry));
909         kfree(sres);
910 }
911
912 /**
913  * spi_res_add - add a spi_res to the spi_message
914  * @message: the SPI message
915  * @res:     the spi_resource
916  */
917 static void spi_res_add(struct spi_message *message, void *res)
918 {
919         struct spi_res *sres = container_of(res, struct spi_res, data);
920
921         WARN_ON(!list_empty(&sres->entry));
922         list_add_tail(&sres->entry, &message->resources);
923 }
924
925 /**
926  * spi_res_release - release all SPI resources for this message
927  * @ctlr:  the @spi_controller
928  * @message: the @spi_message
929  */
930 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
931 {
932         struct spi_res *res, *tmp;
933
934         list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
935                 if (res->release)
936                         res->release(ctlr, message, res->data);
937
938                 list_del(&res->entry);
939
940                 kfree(res);
941         }
942 }
943
944 /*-------------------------------------------------------------------------*/
945
946 static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
947 {
948         bool activate = enable;
949
950         /*
951          * Avoid calling into the driver (or doing delays) if the chip select
952          * isn't actually changing from the last time this was called.
953          */
954         if (!force && ((enable && spi->controller->last_cs == spi_get_chipselect(spi, 0)) ||
955                        (!enable && spi->controller->last_cs != spi_get_chipselect(spi, 0))) &&
956             (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
957                 return;
958
959         trace_spi_set_cs(spi, activate);
960
961         spi->controller->last_cs = enable ? spi_get_chipselect(spi, 0) : -1;
962         spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
963
964         if ((spi_get_csgpiod(spi, 0) || !spi->controller->set_cs_timing) && !activate)
965                 spi_delay_exec(&spi->cs_hold, NULL);
966
967         if (spi->mode & SPI_CS_HIGH)
968                 enable = !enable;
969
970         if (spi_get_csgpiod(spi, 0)) {
971                 if (!(spi->mode & SPI_NO_CS)) {
972                         /*
973                          * Historically ACPI has no means of the GPIO polarity and
974                          * thus the SPISerialBus() resource defines it on the per-chip
975                          * basis. In order to avoid a chain of negations, the GPIO
976                          * polarity is considered being Active High. Even for the cases
977                          * when _DSD() is involved (in the updated versions of ACPI)
978                          * the GPIO CS polarity must be defined Active High to avoid
979                          * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
980                          * into account.
981                          */
982                         if (has_acpi_companion(&spi->dev))
983                                 gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), !enable);
984                         else
985                                 /* Polarity handled by GPIO library */
986                                 gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), activate);
987                 }
988                 /* Some SPI masters need both GPIO CS & slave_select */
989                 if ((spi->controller->flags & SPI_CONTROLLER_GPIO_SS) &&
990                     spi->controller->set_cs)
991                         spi->controller->set_cs(spi, !enable);
992         } else if (spi->controller->set_cs) {
993                 spi->controller->set_cs(spi, !enable);
994         }
995
996         if (spi_get_csgpiod(spi, 0) || !spi->controller->set_cs_timing) {
997                 if (activate)
998                         spi_delay_exec(&spi->cs_setup, NULL);
999                 else
1000                         spi_delay_exec(&spi->cs_inactive, NULL);
1001         }
1002 }
1003
1004 #ifdef CONFIG_HAS_DMA
1005 static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev,
1006                              struct sg_table *sgt, void *buf, size_t len,
1007                              enum dma_data_direction dir, unsigned long attrs)
1008 {
1009         const bool vmalloced_buf = is_vmalloc_addr(buf);
1010         unsigned int max_seg_size = dma_get_max_seg_size(dev);
1011 #ifdef CONFIG_HIGHMEM
1012         const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
1013                                 (unsigned long)buf < (PKMAP_BASE +
1014                                         (LAST_PKMAP * PAGE_SIZE)));
1015 #else
1016         const bool kmap_buf = false;
1017 #endif
1018         int desc_len;
1019         int sgs;
1020         struct page *vm_page;
1021         struct scatterlist *sg;
1022         void *sg_buf;
1023         size_t min;
1024         int i, ret;
1025
1026         if (vmalloced_buf || kmap_buf) {
1027                 desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE);
1028                 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
1029         } else if (virt_addr_valid(buf)) {
1030                 desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len);
1031                 sgs = DIV_ROUND_UP(len, desc_len);
1032         } else {
1033                 return -EINVAL;
1034         }
1035
1036         ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
1037         if (ret != 0)
1038                 return ret;
1039
1040         sg = &sgt->sgl[0];
1041         for (i = 0; i < sgs; i++) {
1042
1043                 if (vmalloced_buf || kmap_buf) {
1044                         /*
1045                          * Next scatterlist entry size is the minimum between
1046                          * the desc_len and the remaining buffer length that
1047                          * fits in a page.
1048                          */
1049                         min = min_t(size_t, desc_len,
1050                                     min_t(size_t, len,
1051                                           PAGE_SIZE - offset_in_page(buf)));
1052                         if (vmalloced_buf)
1053                                 vm_page = vmalloc_to_page(buf);
1054                         else
1055                                 vm_page = kmap_to_page(buf);
1056                         if (!vm_page) {
1057                                 sg_free_table(sgt);
1058                                 return -ENOMEM;
1059                         }
1060                         sg_set_page(sg, vm_page,
1061                                     min, offset_in_page(buf));
1062                 } else {
1063                         min = min_t(size_t, len, desc_len);
1064                         sg_buf = buf;
1065                         sg_set_buf(sg, sg_buf, min);
1066                 }
1067
1068                 buf += min;
1069                 len -= min;
1070                 sg = sg_next(sg);
1071         }
1072
1073         ret = dma_map_sgtable(dev, sgt, dir, attrs);
1074         if (ret < 0) {
1075                 sg_free_table(sgt);
1076                 return ret;
1077         }
1078
1079         return 0;
1080 }
1081
1082 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
1083                 struct sg_table *sgt, void *buf, size_t len,
1084                 enum dma_data_direction dir)
1085 {
1086         return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0);
1087 }
1088
1089 static void spi_unmap_buf_attrs(struct spi_controller *ctlr,
1090                                 struct device *dev, struct sg_table *sgt,
1091                                 enum dma_data_direction dir,
1092                                 unsigned long attrs)
1093 {
1094         if (sgt->orig_nents) {
1095                 dma_unmap_sgtable(dev, sgt, dir, attrs);
1096                 sg_free_table(sgt);
1097                 sgt->orig_nents = 0;
1098                 sgt->nents = 0;
1099         }
1100 }
1101
1102 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
1103                    struct sg_table *sgt, enum dma_data_direction dir)
1104 {
1105         spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0);
1106 }
1107
1108 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1109 {
1110         struct device *tx_dev, *rx_dev;
1111         struct spi_transfer *xfer;
1112         int ret;
1113
1114         if (!ctlr->can_dma)
1115                 return 0;
1116
1117         if (ctlr->dma_tx)
1118                 tx_dev = ctlr->dma_tx->device->dev;
1119         else if (ctlr->dma_map_dev)
1120                 tx_dev = ctlr->dma_map_dev;
1121         else
1122                 tx_dev = ctlr->dev.parent;
1123
1124         if (ctlr->dma_rx)
1125                 rx_dev = ctlr->dma_rx->device->dev;
1126         else if (ctlr->dma_map_dev)
1127                 rx_dev = ctlr->dma_map_dev;
1128         else
1129                 rx_dev = ctlr->dev.parent;
1130
1131         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1132                 /* The sync is done before each transfer. */
1133                 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1134
1135                 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1136                         continue;
1137
1138                 if (xfer->tx_buf != NULL) {
1139                         ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1140                                                 (void *)xfer->tx_buf,
1141                                                 xfer->len, DMA_TO_DEVICE,
1142                                                 attrs);
1143                         if (ret != 0)
1144                                 return ret;
1145                 }
1146
1147                 if (xfer->rx_buf != NULL) {
1148                         ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1149                                                 xfer->rx_buf, xfer->len,
1150                                                 DMA_FROM_DEVICE, attrs);
1151                         if (ret != 0) {
1152                                 spi_unmap_buf_attrs(ctlr, tx_dev,
1153                                                 &xfer->tx_sg, DMA_TO_DEVICE,
1154                                                 attrs);
1155
1156                                 return ret;
1157                         }
1158                 }
1159         }
1160
1161         ctlr->cur_rx_dma_dev = rx_dev;
1162         ctlr->cur_tx_dma_dev = tx_dev;
1163         ctlr->cur_msg_mapped = true;
1164
1165         return 0;
1166 }
1167
1168 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1169 {
1170         struct device *rx_dev = ctlr->cur_rx_dma_dev;
1171         struct device *tx_dev = ctlr->cur_tx_dma_dev;
1172         struct spi_transfer *xfer;
1173
1174         if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
1175                 return 0;
1176
1177         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1178                 /* The sync has already been done after each transfer. */
1179                 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1180
1181                 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1182                         continue;
1183
1184                 spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1185                                     DMA_FROM_DEVICE, attrs);
1186                 spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1187                                     DMA_TO_DEVICE, attrs);
1188         }
1189
1190         ctlr->cur_msg_mapped = false;
1191
1192         return 0;
1193 }
1194
1195 static void spi_dma_sync_for_device(struct spi_controller *ctlr,
1196                                     struct spi_transfer *xfer)
1197 {
1198         struct device *rx_dev = ctlr->cur_rx_dma_dev;
1199         struct device *tx_dev = ctlr->cur_tx_dma_dev;
1200
1201         if (!ctlr->cur_msg_mapped)
1202                 return;
1203
1204         if (xfer->tx_sg.orig_nents)
1205                 dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1206         if (xfer->rx_sg.orig_nents)
1207                 dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1208 }
1209
1210 static void spi_dma_sync_for_cpu(struct spi_controller *ctlr,
1211                                  struct spi_transfer *xfer)
1212 {
1213         struct device *rx_dev = ctlr->cur_rx_dma_dev;
1214         struct device *tx_dev = ctlr->cur_tx_dma_dev;
1215
1216         if (!ctlr->cur_msg_mapped)
1217                 return;
1218
1219         if (xfer->rx_sg.orig_nents)
1220                 dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1221         if (xfer->tx_sg.orig_nents)
1222                 dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1223 }
1224 #else /* !CONFIG_HAS_DMA */
1225 static inline int __spi_map_msg(struct spi_controller *ctlr,
1226                                 struct spi_message *msg)
1227 {
1228         return 0;
1229 }
1230
1231 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1232                                   struct spi_message *msg)
1233 {
1234         return 0;
1235 }
1236
1237 static void spi_dma_sync_for_device(struct spi_controller *ctrl,
1238                                     struct spi_transfer *xfer)
1239 {
1240 }
1241
1242 static void spi_dma_sync_for_cpu(struct spi_controller *ctrl,
1243                                  struct spi_transfer *xfer)
1244 {
1245 }
1246 #endif /* !CONFIG_HAS_DMA */
1247
1248 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1249                                 struct spi_message *msg)
1250 {
1251         struct spi_transfer *xfer;
1252
1253         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1254                 /*
1255                  * Restore the original value of tx_buf or rx_buf if they are
1256                  * NULL.
1257                  */
1258                 if (xfer->tx_buf == ctlr->dummy_tx)
1259                         xfer->tx_buf = NULL;
1260                 if (xfer->rx_buf == ctlr->dummy_rx)
1261                         xfer->rx_buf = NULL;
1262         }
1263
1264         return __spi_unmap_msg(ctlr, msg);
1265 }
1266
1267 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1268 {
1269         struct spi_transfer *xfer;
1270         void *tmp;
1271         unsigned int max_tx, max_rx;
1272
1273         if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1274                 && !(msg->spi->mode & SPI_3WIRE)) {
1275                 max_tx = 0;
1276                 max_rx = 0;
1277
1278                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1279                         if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1280                             !xfer->tx_buf)
1281                                 max_tx = max(xfer->len, max_tx);
1282                         if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1283                             !xfer->rx_buf)
1284                                 max_rx = max(xfer->len, max_rx);
1285                 }
1286
1287                 if (max_tx) {
1288                         tmp = krealloc(ctlr->dummy_tx, max_tx,
1289                                        GFP_KERNEL | GFP_DMA | __GFP_ZERO);
1290                         if (!tmp)
1291                                 return -ENOMEM;
1292                         ctlr->dummy_tx = tmp;
1293                 }
1294
1295                 if (max_rx) {
1296                         tmp = krealloc(ctlr->dummy_rx, max_rx,
1297                                        GFP_KERNEL | GFP_DMA);
1298                         if (!tmp)
1299                                 return -ENOMEM;
1300                         ctlr->dummy_rx = tmp;
1301                 }
1302
1303                 if (max_tx || max_rx) {
1304                         list_for_each_entry(xfer, &msg->transfers,
1305                                             transfer_list) {
1306                                 if (!xfer->len)
1307                                         continue;
1308                                 if (!xfer->tx_buf)
1309                                         xfer->tx_buf = ctlr->dummy_tx;
1310                                 if (!xfer->rx_buf)
1311                                         xfer->rx_buf = ctlr->dummy_rx;
1312                         }
1313                 }
1314         }
1315
1316         return __spi_map_msg(ctlr, msg);
1317 }
1318
1319 static int spi_transfer_wait(struct spi_controller *ctlr,
1320                              struct spi_message *msg,
1321                              struct spi_transfer *xfer)
1322 {
1323         struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1324         struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1325         u32 speed_hz = xfer->speed_hz;
1326         unsigned long long ms;
1327
1328         if (spi_controller_is_slave(ctlr)) {
1329                 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1330                         dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1331                         return -EINTR;
1332                 }
1333         } else {
1334                 if (!speed_hz)
1335                         speed_hz = 100000;
1336
1337                 /*
1338                  * For each byte we wait for 8 cycles of the SPI clock.
1339                  * Since speed is defined in Hz and we want milliseconds,
1340                  * use respective multiplier, but before the division,
1341                  * otherwise we may get 0 for short transfers.
1342                  */
1343                 ms = 8LL * MSEC_PER_SEC * xfer->len;
1344                 do_div(ms, speed_hz);
1345
1346                 /*
1347                  * Increase it twice and add 200 ms tolerance, use
1348                  * predefined maximum in case of overflow.
1349                  */
1350                 ms += ms + 200;
1351                 if (ms > UINT_MAX)
1352                         ms = UINT_MAX;
1353
1354                 ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1355                                                  msecs_to_jiffies(ms));
1356
1357                 if (ms == 0) {
1358                         SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1359                         SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1360                         dev_err(&msg->spi->dev,
1361                                 "SPI transfer timed out\n");
1362                         return -ETIMEDOUT;
1363                 }
1364         }
1365
1366         return 0;
1367 }
1368
1369 static void _spi_transfer_delay_ns(u32 ns)
1370 {
1371         if (!ns)
1372                 return;
1373         if (ns <= NSEC_PER_USEC) {
1374                 ndelay(ns);
1375         } else {
1376                 u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1377
1378                 if (us <= 10)
1379                         udelay(us);
1380                 else
1381                         usleep_range(us, us + DIV_ROUND_UP(us, 10));
1382         }
1383 }
1384
1385 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1386 {
1387         u32 delay = _delay->value;
1388         u32 unit = _delay->unit;
1389         u32 hz;
1390
1391         if (!delay)
1392                 return 0;
1393
1394         switch (unit) {
1395         case SPI_DELAY_UNIT_USECS:
1396                 delay *= NSEC_PER_USEC;
1397                 break;
1398         case SPI_DELAY_UNIT_NSECS:
1399                 /* Nothing to do here */
1400                 break;
1401         case SPI_DELAY_UNIT_SCK:
1402                 /* Clock cycles need to be obtained from spi_transfer */
1403                 if (!xfer)
1404                         return -EINVAL;
1405                 /*
1406                  * If there is unknown effective speed, approximate it
1407                  * by underestimating with half of the requested Hz.
1408                  */
1409                 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1410                 if (!hz)
1411                         return -EINVAL;
1412
1413                 /* Convert delay to nanoseconds */
1414                 delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1415                 break;
1416         default:
1417                 return -EINVAL;
1418         }
1419
1420         return delay;
1421 }
1422 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1423
1424 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1425 {
1426         int delay;
1427
1428         might_sleep();
1429
1430         if (!_delay)
1431                 return -EINVAL;
1432
1433         delay = spi_delay_to_ns(_delay, xfer);
1434         if (delay < 0)
1435                 return delay;
1436
1437         _spi_transfer_delay_ns(delay);
1438
1439         return 0;
1440 }
1441 EXPORT_SYMBOL_GPL(spi_delay_exec);
1442
1443 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1444                                           struct spi_transfer *xfer)
1445 {
1446         u32 default_delay_ns = 10 * NSEC_PER_USEC;
1447         u32 delay = xfer->cs_change_delay.value;
1448         u32 unit = xfer->cs_change_delay.unit;
1449         int ret;
1450
1451         /* Return early on "fast" mode - for everything but USECS */
1452         if (!delay) {
1453                 if (unit == SPI_DELAY_UNIT_USECS)
1454                         _spi_transfer_delay_ns(default_delay_ns);
1455                 return;
1456         }
1457
1458         ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1459         if (ret) {
1460                 dev_err_once(&msg->spi->dev,
1461                              "Use of unsupported delay unit %i, using default of %luus\n",
1462                              unit, default_delay_ns / NSEC_PER_USEC);
1463                 _spi_transfer_delay_ns(default_delay_ns);
1464         }
1465 }
1466
1467 void spi_transfer_cs_change_delay_exec(struct spi_message *msg,
1468                                                   struct spi_transfer *xfer)
1469 {
1470         _spi_transfer_cs_change_delay(msg, xfer);
1471 }
1472 EXPORT_SYMBOL_GPL(spi_transfer_cs_change_delay_exec);
1473
1474 /*
1475  * spi_transfer_one_message - Default implementation of transfer_one_message()
1476  *
1477  * This is a standard implementation of transfer_one_message() for
1478  * drivers which implement a transfer_one() operation.  It provides
1479  * standard handling of delays and chip select management.
1480  */
1481 static int spi_transfer_one_message(struct spi_controller *ctlr,
1482                                     struct spi_message *msg)
1483 {
1484         struct spi_transfer *xfer;
1485         bool keep_cs = false;
1486         int ret = 0;
1487         struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1488         struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1489
1490         xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list);
1491         spi_set_cs(msg->spi, !xfer->cs_off, false);
1492
1493         SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1494         SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1495
1496         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1497                 trace_spi_transfer_start(msg, xfer);
1498
1499                 spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1500                 spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1501
1502                 if (!ctlr->ptp_sts_supported) {
1503                         xfer->ptp_sts_word_pre = 0;
1504                         ptp_read_system_prets(xfer->ptp_sts);
1505                 }
1506
1507                 if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1508                         reinit_completion(&ctlr->xfer_completion);
1509
1510 fallback_pio:
1511                         spi_dma_sync_for_device(ctlr, xfer);
1512                         ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1513                         if (ret < 0) {
1514                                 spi_dma_sync_for_cpu(ctlr, xfer);
1515
1516                                 if (ctlr->cur_msg_mapped &&
1517                                    (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1518                                         __spi_unmap_msg(ctlr, msg);
1519                                         ctlr->fallback = true;
1520                                         xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1521                                         goto fallback_pio;
1522                                 }
1523
1524                                 SPI_STATISTICS_INCREMENT_FIELD(statm,
1525                                                                errors);
1526                                 SPI_STATISTICS_INCREMENT_FIELD(stats,
1527                                                                errors);
1528                                 dev_err(&msg->spi->dev,
1529                                         "SPI transfer failed: %d\n", ret);
1530                                 goto out;
1531                         }
1532
1533                         if (ret > 0) {
1534                                 ret = spi_transfer_wait(ctlr, msg, xfer);
1535                                 if (ret < 0)
1536                                         msg->status = ret;
1537                         }
1538
1539                         spi_dma_sync_for_cpu(ctlr, xfer);
1540                 } else {
1541                         if (xfer->len)
1542                                 dev_err(&msg->spi->dev,
1543                                         "Bufferless transfer has length %u\n",
1544                                         xfer->len);
1545                 }
1546
1547                 if (!ctlr->ptp_sts_supported) {
1548                         ptp_read_system_postts(xfer->ptp_sts);
1549                         xfer->ptp_sts_word_post = xfer->len;
1550                 }
1551
1552                 trace_spi_transfer_stop(msg, xfer);
1553
1554                 if (msg->status != -EINPROGRESS)
1555                         goto out;
1556
1557                 spi_transfer_delay_exec(xfer);
1558
1559                 if (xfer->cs_change) {
1560                         if (list_is_last(&xfer->transfer_list,
1561                                          &msg->transfers)) {
1562                                 keep_cs = true;
1563                         } else {
1564                                 if (!xfer->cs_off)
1565                                         spi_set_cs(msg->spi, false, false);
1566                                 _spi_transfer_cs_change_delay(msg, xfer);
1567                                 if (!list_next_entry(xfer, transfer_list)->cs_off)
1568                                         spi_set_cs(msg->spi, true, false);
1569                         }
1570                 } else if (!list_is_last(&xfer->transfer_list, &msg->transfers) &&
1571                            xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) {
1572                         spi_set_cs(msg->spi, xfer->cs_off, false);
1573                 }
1574
1575                 msg->actual_length += xfer->len;
1576         }
1577
1578 out:
1579         if (ret != 0 || !keep_cs)
1580                 spi_set_cs(msg->spi, false, false);
1581
1582         if (msg->status == -EINPROGRESS)
1583                 msg->status = ret;
1584
1585         if (msg->status && ctlr->handle_err)
1586                 ctlr->handle_err(ctlr, msg);
1587
1588         spi_finalize_current_message(ctlr);
1589
1590         return ret;
1591 }
1592
1593 /**
1594  * spi_finalize_current_transfer - report completion of a transfer
1595  * @ctlr: the controller reporting completion
1596  *
1597  * Called by SPI drivers using the core transfer_one_message()
1598  * implementation to notify it that the current interrupt driven
1599  * transfer has finished and the next one may be scheduled.
1600  */
1601 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1602 {
1603         complete(&ctlr->xfer_completion);
1604 }
1605 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1606
1607 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1608 {
1609         if (ctlr->auto_runtime_pm) {
1610                 pm_runtime_mark_last_busy(ctlr->dev.parent);
1611                 pm_runtime_put_autosuspend(ctlr->dev.parent);
1612         }
1613 }
1614
1615 static int __spi_pump_transfer_message(struct spi_controller *ctlr,
1616                 struct spi_message *msg, bool was_busy)
1617 {
1618         struct spi_transfer *xfer;
1619         int ret;
1620
1621         if (!was_busy && ctlr->auto_runtime_pm) {
1622                 ret = pm_runtime_get_sync(ctlr->dev.parent);
1623                 if (ret < 0) {
1624                         pm_runtime_put_noidle(ctlr->dev.parent);
1625                         dev_err(&ctlr->dev, "Failed to power device: %d\n",
1626                                 ret);
1627
1628                         msg->status = ret;
1629                         spi_finalize_current_message(ctlr);
1630
1631                         return ret;
1632                 }
1633         }
1634
1635         if (!was_busy)
1636                 trace_spi_controller_busy(ctlr);
1637
1638         if (!was_busy && ctlr->prepare_transfer_hardware) {
1639                 ret = ctlr->prepare_transfer_hardware(ctlr);
1640                 if (ret) {
1641                         dev_err(&ctlr->dev,
1642                                 "failed to prepare transfer hardware: %d\n",
1643                                 ret);
1644
1645                         if (ctlr->auto_runtime_pm)
1646                                 pm_runtime_put(ctlr->dev.parent);
1647
1648                         msg->status = ret;
1649                         spi_finalize_current_message(ctlr);
1650
1651                         return ret;
1652                 }
1653         }
1654
1655         trace_spi_message_start(msg);
1656
1657         ret = spi_split_transfers_maxsize(ctlr, msg,
1658                                           spi_max_transfer_size(msg->spi),
1659                                           GFP_KERNEL | GFP_DMA);
1660         if (ret) {
1661                 msg->status = ret;
1662                 spi_finalize_current_message(ctlr);
1663                 return ret;
1664         }
1665
1666         if (ctlr->prepare_message) {
1667                 ret = ctlr->prepare_message(ctlr, msg);
1668                 if (ret) {
1669                         dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1670                                 ret);
1671                         msg->status = ret;
1672                         spi_finalize_current_message(ctlr);
1673                         return ret;
1674                 }
1675                 msg->prepared = true;
1676         }
1677
1678         ret = spi_map_msg(ctlr, msg);
1679         if (ret) {
1680                 msg->status = ret;
1681                 spi_finalize_current_message(ctlr);
1682                 return ret;
1683         }
1684
1685         if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1686                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1687                         xfer->ptp_sts_word_pre = 0;
1688                         ptp_read_system_prets(xfer->ptp_sts);
1689                 }
1690         }
1691
1692         /*
1693          * Drivers implementation of transfer_one_message() must arrange for
1694          * spi_finalize_current_message() to get called. Most drivers will do
1695          * this in the calling context, but some don't. For those cases, a
1696          * completion is used to guarantee that this function does not return
1697          * until spi_finalize_current_message() is done accessing
1698          * ctlr->cur_msg.
1699          * Use of the following two flags enable to opportunistically skip the
1700          * use of the completion since its use involves expensive spin locks.
1701          * In case of a race with the context that calls
1702          * spi_finalize_current_message() the completion will always be used,
1703          * due to strict ordering of these flags using barriers.
1704          */
1705         WRITE_ONCE(ctlr->cur_msg_incomplete, true);
1706         WRITE_ONCE(ctlr->cur_msg_need_completion, false);
1707         reinit_completion(&ctlr->cur_msg_completion);
1708         smp_wmb(); /* Make these available to spi_finalize_current_message() */
1709
1710         ret = ctlr->transfer_one_message(ctlr, msg);
1711         if (ret) {
1712                 dev_err(&ctlr->dev,
1713                         "failed to transfer one message from queue\n");
1714                 return ret;
1715         }
1716
1717         WRITE_ONCE(ctlr->cur_msg_need_completion, true);
1718         smp_mb(); /* See spi_finalize_current_message()... */
1719         if (READ_ONCE(ctlr->cur_msg_incomplete))
1720                 wait_for_completion(&ctlr->cur_msg_completion);
1721
1722         return 0;
1723 }
1724
1725 /**
1726  * __spi_pump_messages - function which processes SPI message queue
1727  * @ctlr: controller to process queue for
1728  * @in_kthread: true if we are in the context of the message pump thread
1729  *
1730  * This function checks if there is any SPI message in the queue that
1731  * needs processing and if so call out to the driver to initialize hardware
1732  * and transfer each message.
1733  *
1734  * Note that it is called both from the kthread itself and also from
1735  * inside spi_sync(); the queue extraction handling at the top of the
1736  * function should deal with this safely.
1737  */
1738 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1739 {
1740         struct spi_message *msg;
1741         bool was_busy = false;
1742         unsigned long flags;
1743         int ret;
1744
1745         /* Take the I/O mutex */
1746         mutex_lock(&ctlr->io_mutex);
1747
1748         /* Lock queue */
1749         spin_lock_irqsave(&ctlr->queue_lock, flags);
1750
1751         /* Make sure we are not already running a message */
1752         if (ctlr->cur_msg)
1753                 goto out_unlock;
1754
1755         /* Check if the queue is idle */
1756         if (list_empty(&ctlr->queue) || !ctlr->running) {
1757                 if (!ctlr->busy)
1758                         goto out_unlock;
1759
1760                 /* Defer any non-atomic teardown to the thread */
1761                 if (!in_kthread) {
1762                         if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1763                             !ctlr->unprepare_transfer_hardware) {
1764                                 spi_idle_runtime_pm(ctlr);
1765                                 ctlr->busy = false;
1766                                 ctlr->queue_empty = true;
1767                                 trace_spi_controller_idle(ctlr);
1768                         } else {
1769                                 kthread_queue_work(ctlr->kworker,
1770                                                    &ctlr->pump_messages);
1771                         }
1772                         goto out_unlock;
1773                 }
1774
1775                 ctlr->busy = false;
1776                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1777
1778                 kfree(ctlr->dummy_rx);
1779                 ctlr->dummy_rx = NULL;
1780                 kfree(ctlr->dummy_tx);
1781                 ctlr->dummy_tx = NULL;
1782                 if (ctlr->unprepare_transfer_hardware &&
1783                     ctlr->unprepare_transfer_hardware(ctlr))
1784                         dev_err(&ctlr->dev,
1785                                 "failed to unprepare transfer hardware\n");
1786                 spi_idle_runtime_pm(ctlr);
1787                 trace_spi_controller_idle(ctlr);
1788
1789                 spin_lock_irqsave(&ctlr->queue_lock, flags);
1790                 ctlr->queue_empty = true;
1791                 goto out_unlock;
1792         }
1793
1794         /* Extract head of queue */
1795         msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1796         ctlr->cur_msg = msg;
1797
1798         list_del_init(&msg->queue);
1799         if (ctlr->busy)
1800                 was_busy = true;
1801         else
1802                 ctlr->busy = true;
1803         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1804
1805         ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
1806         kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1807
1808         ctlr->cur_msg = NULL;
1809         ctlr->fallback = false;
1810
1811         mutex_unlock(&ctlr->io_mutex);
1812
1813         /* Prod the scheduler in case transfer_one() was busy waiting */
1814         if (!ret)
1815                 cond_resched();
1816         return;
1817
1818 out_unlock:
1819         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1820         mutex_unlock(&ctlr->io_mutex);
1821 }
1822
1823 /**
1824  * spi_pump_messages - kthread work function which processes spi message queue
1825  * @work: pointer to kthread work struct contained in the controller struct
1826  */
1827 static void spi_pump_messages(struct kthread_work *work)
1828 {
1829         struct spi_controller *ctlr =
1830                 container_of(work, struct spi_controller, pump_messages);
1831
1832         __spi_pump_messages(ctlr, true);
1833 }
1834
1835 /**
1836  * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp
1837  * @ctlr: Pointer to the spi_controller structure of the driver
1838  * @xfer: Pointer to the transfer being timestamped
1839  * @progress: How many words (not bytes) have been transferred so far
1840  * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1841  *            transfer, for less jitter in time measurement. Only compatible
1842  *            with PIO drivers. If true, must follow up with
1843  *            spi_take_timestamp_post or otherwise system will crash.
1844  *            WARNING: for fully predictable results, the CPU frequency must
1845  *            also be under control (governor).
1846  *
1847  * This is a helper for drivers to collect the beginning of the TX timestamp
1848  * for the requested byte from the SPI transfer. The frequency with which this
1849  * function must be called (once per word, once for the whole transfer, once
1850  * per batch of words etc) is arbitrary as long as the @tx buffer offset is
1851  * greater than or equal to the requested byte at the time of the call. The
1852  * timestamp is only taken once, at the first such call. It is assumed that
1853  * the driver advances its @tx buffer pointer monotonically.
1854  */
1855 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1856                             struct spi_transfer *xfer,
1857                             size_t progress, bool irqs_off)
1858 {
1859         if (!xfer->ptp_sts)
1860                 return;
1861
1862         if (xfer->timestamped)
1863                 return;
1864
1865         if (progress > xfer->ptp_sts_word_pre)
1866                 return;
1867
1868         /* Capture the resolution of the timestamp */
1869         xfer->ptp_sts_word_pre = progress;
1870
1871         if (irqs_off) {
1872                 local_irq_save(ctlr->irq_flags);
1873                 preempt_disable();
1874         }
1875
1876         ptp_read_system_prets(xfer->ptp_sts);
1877 }
1878 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1879
1880 /**
1881  * spi_take_timestamp_post - helper to collect the end of the TX timestamp
1882  * @ctlr: Pointer to the spi_controller structure of the driver
1883  * @xfer: Pointer to the transfer being timestamped
1884  * @progress: How many words (not bytes) have been transferred so far
1885  * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1886  *
1887  * This is a helper for drivers to collect the end of the TX timestamp for
1888  * the requested byte from the SPI transfer. Can be called with an arbitrary
1889  * frequency: only the first call where @tx exceeds or is equal to the
1890  * requested word will be timestamped.
1891  */
1892 void spi_take_timestamp_post(struct spi_controller *ctlr,
1893                              struct spi_transfer *xfer,
1894                              size_t progress, bool irqs_off)
1895 {
1896         if (!xfer->ptp_sts)
1897                 return;
1898
1899         if (xfer->timestamped)
1900                 return;
1901
1902         if (progress < xfer->ptp_sts_word_post)
1903                 return;
1904
1905         ptp_read_system_postts(xfer->ptp_sts);
1906
1907         if (irqs_off) {
1908                 local_irq_restore(ctlr->irq_flags);
1909                 preempt_enable();
1910         }
1911
1912         /* Capture the resolution of the timestamp */
1913         xfer->ptp_sts_word_post = progress;
1914
1915         xfer->timestamped = 1;
1916 }
1917 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
1918
1919 /**
1920  * spi_set_thread_rt - set the controller to pump at realtime priority
1921  * @ctlr: controller to boost priority of
1922  *
1923  * This can be called because the controller requested realtime priority
1924  * (by setting the ->rt value before calling spi_register_controller()) or
1925  * because a device on the bus said that its transfers needed realtime
1926  * priority.
1927  *
1928  * NOTE: at the moment if any device on a bus says it needs realtime then
1929  * the thread will be at realtime priority for all transfers on that
1930  * controller.  If this eventually becomes a problem we may see if we can
1931  * find a way to boost the priority only temporarily during relevant
1932  * transfers.
1933  */
1934 static void spi_set_thread_rt(struct spi_controller *ctlr)
1935 {
1936         dev_info(&ctlr->dev,
1937                 "will run message pump with realtime priority\n");
1938         sched_set_fifo(ctlr->kworker->task);
1939 }
1940
1941 static int spi_init_queue(struct spi_controller *ctlr)
1942 {
1943         ctlr->running = false;
1944         ctlr->busy = false;
1945         ctlr->queue_empty = true;
1946
1947         ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
1948         if (IS_ERR(ctlr->kworker)) {
1949                 dev_err(&ctlr->dev, "failed to create message pump kworker\n");
1950                 return PTR_ERR(ctlr->kworker);
1951         }
1952
1953         kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1954
1955         /*
1956          * Controller config will indicate if this controller should run the
1957          * message pump with high (realtime) priority to reduce the transfer
1958          * latency on the bus by minimising the delay between a transfer
1959          * request and the scheduling of the message pump thread. Without this
1960          * setting the message pump thread will remain at default priority.
1961          */
1962         if (ctlr->rt)
1963                 spi_set_thread_rt(ctlr);
1964
1965         return 0;
1966 }
1967
1968 /**
1969  * spi_get_next_queued_message() - called by driver to check for queued
1970  * messages
1971  * @ctlr: the controller to check for queued messages
1972  *
1973  * If there are more messages in the queue, the next message is returned from
1974  * this call.
1975  *
1976  * Return: the next message in the queue, else NULL if the queue is empty.
1977  */
1978 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1979 {
1980         struct spi_message *next;
1981         unsigned long flags;
1982
1983         /* Get a pointer to the next message, if any */
1984         spin_lock_irqsave(&ctlr->queue_lock, flags);
1985         next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1986                                         queue);
1987         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1988
1989         return next;
1990 }
1991 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1992
1993 /**
1994  * spi_finalize_current_message() - the current message is complete
1995  * @ctlr: the controller to return the message to
1996  *
1997  * Called by the driver to notify the core that the message in the front of the
1998  * queue is complete and can be removed from the queue.
1999  */
2000 void spi_finalize_current_message(struct spi_controller *ctlr)
2001 {
2002         struct spi_transfer *xfer;
2003         struct spi_message *mesg;
2004         int ret;
2005
2006         mesg = ctlr->cur_msg;
2007
2008         if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
2009                 list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
2010                         ptp_read_system_postts(xfer->ptp_sts);
2011                         xfer->ptp_sts_word_post = xfer->len;
2012                 }
2013         }
2014
2015         if (unlikely(ctlr->ptp_sts_supported))
2016                 list_for_each_entry(xfer, &mesg->transfers, transfer_list)
2017                         WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
2018
2019         spi_unmap_msg(ctlr, mesg);
2020
2021         /*
2022          * In the prepare_messages callback the SPI bus has the opportunity
2023          * to split a transfer to smaller chunks.
2024          *
2025          * Release the split transfers here since spi_map_msg() is done on
2026          * the split transfers.
2027          */
2028         spi_res_release(ctlr, mesg);
2029
2030         if (mesg->prepared && ctlr->unprepare_message) {
2031                 ret = ctlr->unprepare_message(ctlr, mesg);
2032                 if (ret) {
2033                         dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
2034                                 ret);
2035                 }
2036         }
2037
2038         mesg->prepared = false;
2039
2040         WRITE_ONCE(ctlr->cur_msg_incomplete, false);
2041         smp_mb(); /* See __spi_pump_transfer_message()... */
2042         if (READ_ONCE(ctlr->cur_msg_need_completion))
2043                 complete(&ctlr->cur_msg_completion);
2044
2045         trace_spi_message_done(mesg);
2046
2047         mesg->state = NULL;
2048         if (mesg->complete)
2049                 mesg->complete(mesg->context);
2050 }
2051 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
2052
2053 static int spi_start_queue(struct spi_controller *ctlr)
2054 {
2055         unsigned long flags;
2056
2057         spin_lock_irqsave(&ctlr->queue_lock, flags);
2058
2059         if (ctlr->running || ctlr->busy) {
2060                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2061                 return -EBUSY;
2062         }
2063
2064         ctlr->running = true;
2065         ctlr->cur_msg = NULL;
2066         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2067
2068         kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2069
2070         return 0;
2071 }
2072
2073 static int spi_stop_queue(struct spi_controller *ctlr)
2074 {
2075         unsigned long flags;
2076         unsigned limit = 500;
2077         int ret = 0;
2078
2079         spin_lock_irqsave(&ctlr->queue_lock, flags);
2080
2081         /*
2082          * This is a bit lame, but is optimized for the common execution path.
2083          * A wait_queue on the ctlr->busy could be used, but then the common
2084          * execution path (pump_messages) would be required to call wake_up or
2085          * friends on every SPI message. Do this instead.
2086          */
2087         while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
2088                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2089                 usleep_range(10000, 11000);
2090                 spin_lock_irqsave(&ctlr->queue_lock, flags);
2091         }
2092
2093         if (!list_empty(&ctlr->queue) || ctlr->busy)
2094                 ret = -EBUSY;
2095         else
2096                 ctlr->running = false;
2097
2098         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2099
2100         return ret;
2101 }
2102
2103 static int spi_destroy_queue(struct spi_controller *ctlr)
2104 {
2105         int ret;
2106
2107         ret = spi_stop_queue(ctlr);
2108
2109         /*
2110          * kthread_flush_worker will block until all work is done.
2111          * If the reason that stop_queue timed out is that the work will never
2112          * finish, then it does no good to call flush/stop thread, so
2113          * return anyway.
2114          */
2115         if (ret) {
2116                 dev_err(&ctlr->dev, "problem destroying queue\n");
2117                 return ret;
2118         }
2119
2120         kthread_destroy_worker(ctlr->kworker);
2121
2122         return 0;
2123 }
2124
2125 static int __spi_queued_transfer(struct spi_device *spi,
2126                                  struct spi_message *msg,
2127                                  bool need_pump)
2128 {
2129         struct spi_controller *ctlr = spi->controller;
2130         unsigned long flags;
2131
2132         spin_lock_irqsave(&ctlr->queue_lock, flags);
2133
2134         if (!ctlr->running) {
2135                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2136                 return -ESHUTDOWN;
2137         }
2138         msg->actual_length = 0;
2139         msg->status = -EINPROGRESS;
2140
2141         list_add_tail(&msg->queue, &ctlr->queue);
2142         ctlr->queue_empty = false;
2143         if (!ctlr->busy && need_pump)
2144                 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2145
2146         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2147         return 0;
2148 }
2149
2150 /**
2151  * spi_queued_transfer - transfer function for queued transfers
2152  * @spi: SPI device which is requesting transfer
2153  * @msg: SPI message which is to handled is queued to driver queue
2154  *
2155  * Return: zero on success, else a negative error code.
2156  */
2157 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
2158 {
2159         return __spi_queued_transfer(spi, msg, true);
2160 }
2161
2162 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
2163 {
2164         int ret;
2165
2166         ctlr->transfer = spi_queued_transfer;
2167         if (!ctlr->transfer_one_message)
2168                 ctlr->transfer_one_message = spi_transfer_one_message;
2169
2170         /* Initialize and start queue */
2171         ret = spi_init_queue(ctlr);
2172         if (ret) {
2173                 dev_err(&ctlr->dev, "problem initializing queue\n");
2174                 goto err_init_queue;
2175         }
2176         ctlr->queued = true;
2177         ret = spi_start_queue(ctlr);
2178         if (ret) {
2179                 dev_err(&ctlr->dev, "problem starting queue\n");
2180                 goto err_start_queue;
2181         }
2182
2183         return 0;
2184
2185 err_start_queue:
2186         spi_destroy_queue(ctlr);
2187 err_init_queue:
2188         return ret;
2189 }
2190
2191 /**
2192  * spi_flush_queue - Send all pending messages in the queue from the callers'
2193  *                   context
2194  * @ctlr: controller to process queue for
2195  *
2196  * This should be used when one wants to ensure all pending messages have been
2197  * sent before doing something. Is used by the spi-mem code to make sure SPI
2198  * memory operations do not preempt regular SPI transfers that have been queued
2199  * before the spi-mem operation.
2200  */
2201 void spi_flush_queue(struct spi_controller *ctlr)
2202 {
2203         if (ctlr->transfer == spi_queued_transfer)
2204                 __spi_pump_messages(ctlr, false);
2205 }
2206
2207 /*-------------------------------------------------------------------------*/
2208
2209 #if defined(CONFIG_OF)
2210 static void of_spi_parse_dt_cs_delay(struct device_node *nc,
2211                                      struct spi_delay *delay, const char *prop)
2212 {
2213         u32 value;
2214
2215         if (!of_property_read_u32(nc, prop, &value)) {
2216                 if (value > U16_MAX) {
2217                         delay->value = DIV_ROUND_UP(value, 1000);
2218                         delay->unit = SPI_DELAY_UNIT_USECS;
2219                 } else {
2220                         delay->value = value;
2221                         delay->unit = SPI_DELAY_UNIT_NSECS;
2222                 }
2223         }
2224 }
2225
2226 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
2227                            struct device_node *nc)
2228 {
2229         u32 value;
2230         int rc;
2231
2232         /* Mode (clock phase/polarity/etc.) */
2233         if (of_property_read_bool(nc, "spi-cpha"))
2234                 spi->mode |= SPI_CPHA;
2235         if (of_property_read_bool(nc, "spi-cpol"))
2236                 spi->mode |= SPI_CPOL;
2237         if (of_property_read_bool(nc, "spi-3wire"))
2238                 spi->mode |= SPI_3WIRE;
2239         if (of_property_read_bool(nc, "spi-lsb-first"))
2240                 spi->mode |= SPI_LSB_FIRST;
2241         if (of_property_read_bool(nc, "spi-cs-high"))
2242                 spi->mode |= SPI_CS_HIGH;
2243
2244         /* Device DUAL/QUAD mode */
2245         if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2246                 switch (value) {
2247                 case 0:
2248                         spi->mode |= SPI_NO_TX;
2249                         break;
2250                 case 1:
2251                         break;
2252                 case 2:
2253                         spi->mode |= SPI_TX_DUAL;
2254                         break;
2255                 case 4:
2256                         spi->mode |= SPI_TX_QUAD;
2257                         break;
2258                 case 8:
2259                         spi->mode |= SPI_TX_OCTAL;
2260                         break;
2261                 default:
2262                         dev_warn(&ctlr->dev,
2263                                 "spi-tx-bus-width %d not supported\n",
2264                                 value);
2265                         break;
2266                 }
2267         }
2268
2269         if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2270                 switch (value) {
2271                 case 0:
2272                         spi->mode |= SPI_NO_RX;
2273                         break;
2274                 case 1:
2275                         break;
2276                 case 2:
2277                         spi->mode |= SPI_RX_DUAL;
2278                         break;
2279                 case 4:
2280                         spi->mode |= SPI_RX_QUAD;
2281                         break;
2282                 case 8:
2283                         spi->mode |= SPI_RX_OCTAL;
2284                         break;
2285                 default:
2286                         dev_warn(&ctlr->dev,
2287                                 "spi-rx-bus-width %d not supported\n",
2288                                 value);
2289                         break;
2290                 }
2291         }
2292
2293         if (spi_controller_is_slave(ctlr)) {
2294                 if (!of_node_name_eq(nc, "slave")) {
2295                         dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2296                                 nc);
2297                         return -EINVAL;
2298                 }
2299                 return 0;
2300         }
2301
2302         /* Device address */
2303         rc = of_property_read_u32(nc, "reg", &value);
2304         if (rc) {
2305                 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2306                         nc, rc);
2307                 return rc;
2308         }
2309         spi_set_chipselect(spi, 0, value);
2310
2311         /* Device speed */
2312         if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2313                 spi->max_speed_hz = value;
2314
2315         /* Device CS delays */
2316         of_spi_parse_dt_cs_delay(nc, &spi->cs_setup, "spi-cs-setup-delay-ns");
2317         of_spi_parse_dt_cs_delay(nc, &spi->cs_hold, "spi-cs-hold-delay-ns");
2318         of_spi_parse_dt_cs_delay(nc, &spi->cs_inactive, "spi-cs-inactive-delay-ns");
2319
2320         return 0;
2321 }
2322
2323 static struct spi_device *
2324 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2325 {
2326         struct spi_device *spi;
2327         int rc;
2328
2329         /* Alloc an spi_device */
2330         spi = spi_alloc_device(ctlr);
2331         if (!spi) {
2332                 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2333                 rc = -ENOMEM;
2334                 goto err_out;
2335         }
2336
2337         /* Select device driver */
2338         rc = of_alias_from_compatible(nc, spi->modalias,
2339                                       sizeof(spi->modalias));
2340         if (rc < 0) {
2341                 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2342                 goto err_out;
2343         }
2344
2345         rc = of_spi_parse_dt(ctlr, spi, nc);
2346         if (rc)
2347                 goto err_out;
2348
2349         /* Store a pointer to the node in the device structure */
2350         of_node_get(nc);
2351
2352         device_set_node(&spi->dev, of_fwnode_handle(nc));
2353
2354         /* Register the new device */
2355         rc = spi_add_device(spi);
2356         if (rc) {
2357                 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2358                 goto err_of_node_put;
2359         }
2360
2361         return spi;
2362
2363 err_of_node_put:
2364         of_node_put(nc);
2365 err_out:
2366         spi_dev_put(spi);
2367         return ERR_PTR(rc);
2368 }
2369
2370 /**
2371  * of_register_spi_devices() - Register child devices onto the SPI bus
2372  * @ctlr:       Pointer to spi_controller device
2373  *
2374  * Registers an spi_device for each child node of controller node which
2375  * represents a valid SPI slave.
2376  */
2377 static void of_register_spi_devices(struct spi_controller *ctlr)
2378 {
2379         struct spi_device *spi;
2380         struct device_node *nc;
2381
2382         for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2383                 if (of_node_test_and_set_flag(nc, OF_POPULATED))
2384                         continue;
2385                 spi = of_register_spi_device(ctlr, nc);
2386                 if (IS_ERR(spi)) {
2387                         dev_warn(&ctlr->dev,
2388                                  "Failed to create SPI device for %pOF\n", nc);
2389                         of_node_clear_flag(nc, OF_POPULATED);
2390                 }
2391         }
2392 }
2393 #else
2394 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2395 #endif
2396
2397 /**
2398  * spi_new_ancillary_device() - Register ancillary SPI device
2399  * @spi:         Pointer to the main SPI device registering the ancillary device
2400  * @chip_select: Chip Select of the ancillary device
2401  *
2402  * Register an ancillary SPI device; for example some chips have a chip-select
2403  * for normal device usage and another one for setup/firmware upload.
2404  *
2405  * This may only be called from main SPI device's probe routine.
2406  *
2407  * Return: 0 on success; negative errno on failure
2408  */
2409 struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2410                                              u8 chip_select)
2411 {
2412         struct spi_controller *ctlr = spi->controller;
2413         struct spi_device *ancillary;
2414         int rc = 0;
2415
2416         /* Alloc an spi_device */
2417         ancillary = spi_alloc_device(ctlr);
2418         if (!ancillary) {
2419                 rc = -ENOMEM;
2420                 goto err_out;
2421         }
2422
2423         strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2424
2425         /* Use provided chip-select for ancillary device */
2426         spi_set_chipselect(ancillary, 0, chip_select);
2427
2428         /* Take over SPI mode/speed from SPI main device */
2429         ancillary->max_speed_hz = spi->max_speed_hz;
2430         ancillary->mode = spi->mode;
2431
2432         WARN_ON(!mutex_is_locked(&ctlr->add_lock));
2433
2434         /* Register the new device */
2435         rc = __spi_add_device(ancillary);
2436         if (rc) {
2437                 dev_err(&spi->dev, "failed to register ancillary device\n");
2438                 goto err_out;
2439         }
2440
2441         return ancillary;
2442
2443 err_out:
2444         spi_dev_put(ancillary);
2445         return ERR_PTR(rc);
2446 }
2447 EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2448
2449 #ifdef CONFIG_ACPI
2450 struct acpi_spi_lookup {
2451         struct spi_controller   *ctlr;
2452         u32                     max_speed_hz;
2453         u32                     mode;
2454         int                     irq;
2455         u8                      bits_per_word;
2456         u8                      chip_select;
2457         int                     n;
2458         int                     index;
2459 };
2460
2461 static int acpi_spi_count(struct acpi_resource *ares, void *data)
2462 {
2463         struct acpi_resource_spi_serialbus *sb;
2464         int *count = data;
2465
2466         if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
2467                 return 1;
2468
2469         sb = &ares->data.spi_serial_bus;
2470         if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI)
2471                 return 1;
2472
2473         *count = *count + 1;
2474
2475         return 1;
2476 }
2477
2478 /**
2479  * acpi_spi_count_resources - Count the number of SpiSerialBus resources
2480  * @adev:       ACPI device
2481  *
2482  * Return: the number of SpiSerialBus resources in the ACPI-device's
2483  * resource-list; or a negative error code.
2484  */
2485 int acpi_spi_count_resources(struct acpi_device *adev)
2486 {
2487         LIST_HEAD(r);
2488         int count = 0;
2489         int ret;
2490
2491         ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count);
2492         if (ret < 0)
2493                 return ret;
2494
2495         acpi_dev_free_resource_list(&r);
2496
2497         return count;
2498 }
2499 EXPORT_SYMBOL_GPL(acpi_spi_count_resources);
2500
2501 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2502                                             struct acpi_spi_lookup *lookup)
2503 {
2504         const union acpi_object *obj;
2505
2506         if (!x86_apple_machine)
2507                 return;
2508
2509         if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2510             && obj->buffer.length >= 4)
2511                 lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2512
2513         if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2514             && obj->buffer.length == 8)
2515                 lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2516
2517         if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2518             && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2519                 lookup->mode |= SPI_LSB_FIRST;
2520
2521         if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2522             && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2523                 lookup->mode |= SPI_CPOL;
2524
2525         if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2526             && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2527                 lookup->mode |= SPI_CPHA;
2528 }
2529
2530 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2531 {
2532         struct acpi_spi_lookup *lookup = data;
2533         struct spi_controller *ctlr = lookup->ctlr;
2534
2535         if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2536                 struct acpi_resource_spi_serialbus *sb;
2537                 acpi_handle parent_handle;
2538                 acpi_status status;
2539
2540                 sb = &ares->data.spi_serial_bus;
2541                 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2542
2543                         if (lookup->index != -1 && lookup->n++ != lookup->index)
2544                                 return 1;
2545
2546                         status = acpi_get_handle(NULL,
2547                                                  sb->resource_source.string_ptr,
2548                                                  &parent_handle);
2549
2550                         if (ACPI_FAILURE(status))
2551                                 return -ENODEV;
2552
2553                         if (ctlr) {
2554                                 if (ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2555                                         return -ENODEV;
2556                         } else {
2557                                 struct acpi_device *adev;
2558
2559                                 adev = acpi_fetch_acpi_dev(parent_handle);
2560                                 if (!adev)
2561                                         return -ENODEV;
2562
2563                                 ctlr = acpi_spi_find_controller_by_adev(adev);
2564                                 if (!ctlr)
2565                                         return -EPROBE_DEFER;
2566
2567                                 lookup->ctlr = ctlr;
2568                         }
2569
2570                         /*
2571                          * ACPI DeviceSelection numbering is handled by the
2572                          * host controller driver in Windows and can vary
2573                          * from driver to driver. In Linux we always expect
2574                          * 0 .. max - 1 so we need to ask the driver to
2575                          * translate between the two schemes.
2576                          */
2577                         if (ctlr->fw_translate_cs) {
2578                                 int cs = ctlr->fw_translate_cs(ctlr,
2579                                                 sb->device_selection);
2580                                 if (cs < 0)
2581                                         return cs;
2582                                 lookup->chip_select = cs;
2583                         } else {
2584                                 lookup->chip_select = sb->device_selection;
2585                         }
2586
2587                         lookup->max_speed_hz = sb->connection_speed;
2588                         lookup->bits_per_word = sb->data_bit_length;
2589
2590                         if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2591                                 lookup->mode |= SPI_CPHA;
2592                         if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2593                                 lookup->mode |= SPI_CPOL;
2594                         if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2595                                 lookup->mode |= SPI_CS_HIGH;
2596                 }
2597         } else if (lookup->irq < 0) {
2598                 struct resource r;
2599
2600                 if (acpi_dev_resource_interrupt(ares, 0, &r))
2601                         lookup->irq = r.start;
2602         }
2603
2604         /* Always tell the ACPI core to skip this resource */
2605         return 1;
2606 }
2607
2608 /**
2609  * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information
2610  * @ctlr: controller to which the spi device belongs
2611  * @adev: ACPI Device for the spi device
2612  * @index: Index of the spi resource inside the ACPI Node
2613  *
2614  * This should be used to allocate a new SPI device from and ACPI Device node.
2615  * The caller is responsible for calling spi_add_device to register the SPI device.
2616  *
2617  * If ctlr is set to NULL, the Controller for the SPI device will be looked up
2618  * using the resource.
2619  * If index is set to -1, index is not used.
2620  * Note: If index is -1, ctlr must be set.
2621  *
2622  * Return: a pointer to the new device, or ERR_PTR on error.
2623  */
2624 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
2625                                          struct acpi_device *adev,
2626                                          int index)
2627 {
2628         acpi_handle parent_handle = NULL;
2629         struct list_head resource_list;
2630         struct acpi_spi_lookup lookup = {};
2631         struct spi_device *spi;
2632         int ret;
2633
2634         if (!ctlr && index == -1)
2635                 return ERR_PTR(-EINVAL);
2636
2637         lookup.ctlr             = ctlr;
2638         lookup.irq              = -1;
2639         lookup.index            = index;
2640         lookup.n                = 0;
2641
2642         INIT_LIST_HEAD(&resource_list);
2643         ret = acpi_dev_get_resources(adev, &resource_list,
2644                                      acpi_spi_add_resource, &lookup);
2645         acpi_dev_free_resource_list(&resource_list);
2646
2647         if (ret < 0)
2648                 /* Found SPI in _CRS but it points to another controller */
2649                 return ERR_PTR(ret);
2650
2651         if (!lookup.max_speed_hz &&
2652             ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2653             ACPI_HANDLE(lookup.ctlr->dev.parent) == parent_handle) {
2654                 /* Apple does not use _CRS but nested devices for SPI slaves */
2655                 acpi_spi_parse_apple_properties(adev, &lookup);
2656         }
2657
2658         if (!lookup.max_speed_hz)
2659                 return ERR_PTR(-ENODEV);
2660
2661         spi = spi_alloc_device(lookup.ctlr);
2662         if (!spi) {
2663                 dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n",
2664                         dev_name(&adev->dev));
2665                 return ERR_PTR(-ENOMEM);
2666         }
2667
2668         ACPI_COMPANION_SET(&spi->dev, adev);
2669         spi->max_speed_hz       = lookup.max_speed_hz;
2670         spi->mode               |= lookup.mode;
2671         spi->irq                = lookup.irq;
2672         spi->bits_per_word      = lookup.bits_per_word;
2673         spi_set_chipselect(spi, 0, lookup.chip_select);
2674
2675         return spi;
2676 }
2677 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc);
2678
2679 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2680                                             struct acpi_device *adev)
2681 {
2682         struct spi_device *spi;
2683
2684         if (acpi_bus_get_status(adev) || !adev->status.present ||
2685             acpi_device_enumerated(adev))
2686                 return AE_OK;
2687
2688         spi = acpi_spi_device_alloc(ctlr, adev, -1);
2689         if (IS_ERR(spi)) {
2690                 if (PTR_ERR(spi) == -ENOMEM)
2691                         return AE_NO_MEMORY;
2692                 else
2693                         return AE_OK;
2694         }
2695
2696         acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2697                           sizeof(spi->modalias));
2698
2699         if (spi->irq < 0)
2700                 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2701
2702         acpi_device_set_enumerated(adev);
2703
2704         adev->power.flags.ignore_parent = true;
2705         if (spi_add_device(spi)) {
2706                 adev->power.flags.ignore_parent = false;
2707                 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2708                         dev_name(&adev->dev));
2709                 spi_dev_put(spi);
2710         }
2711
2712         return AE_OK;
2713 }
2714
2715 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2716                                        void *data, void **return_value)
2717 {
2718         struct acpi_device *adev = acpi_fetch_acpi_dev(handle);
2719         struct spi_controller *ctlr = data;
2720
2721         if (!adev)
2722                 return AE_OK;
2723
2724         return acpi_register_spi_device(ctlr, adev);
2725 }
2726
2727 #define SPI_ACPI_ENUMERATE_MAX_DEPTH            32
2728
2729 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2730 {
2731         acpi_status status;
2732         acpi_handle handle;
2733
2734         handle = ACPI_HANDLE(ctlr->dev.parent);
2735         if (!handle)
2736                 return;
2737
2738         status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2739                                      SPI_ACPI_ENUMERATE_MAX_DEPTH,
2740                                      acpi_spi_add_device, NULL, ctlr, NULL);
2741         if (ACPI_FAILURE(status))
2742                 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2743 }
2744 #else
2745 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2746 #endif /* CONFIG_ACPI */
2747
2748 static void spi_controller_release(struct device *dev)
2749 {
2750         struct spi_controller *ctlr;
2751
2752         ctlr = container_of(dev, struct spi_controller, dev);
2753         kfree(ctlr);
2754 }
2755
2756 static struct class spi_master_class = {
2757         .name           = "spi_master",
2758         .dev_release    = spi_controller_release,
2759         .dev_groups     = spi_master_groups,
2760 };
2761
2762 #ifdef CONFIG_SPI_SLAVE
2763 /**
2764  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2765  *                   controller
2766  * @spi: device used for the current transfer
2767  */
2768 int spi_slave_abort(struct spi_device *spi)
2769 {
2770         struct spi_controller *ctlr = spi->controller;
2771
2772         if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2773                 return ctlr->slave_abort(ctlr);
2774
2775         return -ENOTSUPP;
2776 }
2777 EXPORT_SYMBOL_GPL(spi_slave_abort);
2778
2779 int spi_target_abort(struct spi_device *spi)
2780 {
2781         struct spi_controller *ctlr = spi->controller;
2782
2783         if (spi_controller_is_target(ctlr) && ctlr->target_abort)
2784                 return ctlr->target_abort(ctlr);
2785
2786         return -ENOTSUPP;
2787 }
2788 EXPORT_SYMBOL_GPL(spi_target_abort);
2789
2790 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2791                           char *buf)
2792 {
2793         struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2794                                                    dev);
2795         struct device *child;
2796
2797         child = device_find_any_child(&ctlr->dev);
2798         return sysfs_emit(buf, "%s\n", child ? to_spi_device(child)->modalias : NULL);
2799 }
2800
2801 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2802                            const char *buf, size_t count)
2803 {
2804         struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2805                                                    dev);
2806         struct spi_device *spi;
2807         struct device *child;
2808         char name[32];
2809         int rc;
2810
2811         rc = sscanf(buf, "%31s", name);
2812         if (rc != 1 || !name[0])
2813                 return -EINVAL;
2814
2815         child = device_find_any_child(&ctlr->dev);
2816         if (child) {
2817                 /* Remove registered slave */
2818                 device_unregister(child);
2819                 put_device(child);
2820         }
2821
2822         if (strcmp(name, "(null)")) {
2823                 /* Register new slave */
2824                 spi = spi_alloc_device(ctlr);
2825                 if (!spi)
2826                         return -ENOMEM;
2827
2828                 strscpy(spi->modalias, name, sizeof(spi->modalias));
2829
2830                 rc = spi_add_device(spi);
2831                 if (rc) {
2832                         spi_dev_put(spi);
2833                         return rc;
2834                 }
2835         }
2836
2837         return count;
2838 }
2839
2840 static DEVICE_ATTR_RW(slave);
2841
2842 static struct attribute *spi_slave_attrs[] = {
2843         &dev_attr_slave.attr,
2844         NULL,
2845 };
2846
2847 static const struct attribute_group spi_slave_group = {
2848         .attrs = spi_slave_attrs,
2849 };
2850
2851 static const struct attribute_group *spi_slave_groups[] = {
2852         &spi_controller_statistics_group,
2853         &spi_slave_group,
2854         NULL,
2855 };
2856
2857 static struct class spi_slave_class = {
2858         .name           = "spi_slave",
2859         .dev_release    = spi_controller_release,
2860         .dev_groups     = spi_slave_groups,
2861 };
2862 #else
2863 extern struct class spi_slave_class;    /* dummy */
2864 #endif
2865
2866 /**
2867  * __spi_alloc_controller - allocate an SPI master or slave controller
2868  * @dev: the controller, possibly using the platform_bus
2869  * @size: how much zeroed driver-private data to allocate; the pointer to this
2870  *      memory is in the driver_data field of the returned device, accessible
2871  *      with spi_controller_get_devdata(); the memory is cacheline aligned;
2872  *      drivers granting DMA access to portions of their private data need to
2873  *      round up @size using ALIGN(size, dma_get_cache_alignment()).
2874  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2875  *      slave (true) controller
2876  * Context: can sleep
2877  *
2878  * This call is used only by SPI controller drivers, which are the
2879  * only ones directly touching chip registers.  It's how they allocate
2880  * an spi_controller structure, prior to calling spi_register_controller().
2881  *
2882  * This must be called from context that can sleep.
2883  *
2884  * The caller is responsible for assigning the bus number and initializing the
2885  * controller's methods before calling spi_register_controller(); and (after
2886  * errors adding the device) calling spi_controller_put() to prevent a memory
2887  * leak.
2888  *
2889  * Return: the SPI controller structure on success, else NULL.
2890  */
2891 struct spi_controller *__spi_alloc_controller(struct device *dev,
2892                                               unsigned int size, bool slave)
2893 {
2894         struct spi_controller   *ctlr;
2895         size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2896
2897         if (!dev)
2898                 return NULL;
2899
2900         ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2901         if (!ctlr)
2902                 return NULL;
2903
2904         device_initialize(&ctlr->dev);
2905         INIT_LIST_HEAD(&ctlr->queue);
2906         spin_lock_init(&ctlr->queue_lock);
2907         spin_lock_init(&ctlr->bus_lock_spinlock);
2908         mutex_init(&ctlr->bus_lock_mutex);
2909         mutex_init(&ctlr->io_mutex);
2910         mutex_init(&ctlr->add_lock);
2911         ctlr->bus_num = -1;
2912         ctlr->num_chipselect = 1;
2913         ctlr->slave = slave;
2914         if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2915                 ctlr->dev.class = &spi_slave_class;
2916         else
2917                 ctlr->dev.class = &spi_master_class;
2918         ctlr->dev.parent = dev;
2919         pm_suspend_ignore_children(&ctlr->dev, true);
2920         spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2921
2922         return ctlr;
2923 }
2924 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2925
2926 static void devm_spi_release_controller(struct device *dev, void *ctlr)
2927 {
2928         spi_controller_put(*(struct spi_controller **)ctlr);
2929 }
2930
2931 /**
2932  * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
2933  * @dev: physical device of SPI controller
2934  * @size: how much zeroed driver-private data to allocate
2935  * @slave: whether to allocate an SPI master (false) or SPI slave (true)
2936  * Context: can sleep
2937  *
2938  * Allocate an SPI controller and automatically release a reference on it
2939  * when @dev is unbound from its driver.  Drivers are thus relieved from
2940  * having to call spi_controller_put().
2941  *
2942  * The arguments to this function are identical to __spi_alloc_controller().
2943  *
2944  * Return: the SPI controller structure on success, else NULL.
2945  */
2946 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
2947                                                    unsigned int size,
2948                                                    bool slave)
2949 {
2950         struct spi_controller **ptr, *ctlr;
2951
2952         ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
2953                            GFP_KERNEL);
2954         if (!ptr)
2955                 return NULL;
2956
2957         ctlr = __spi_alloc_controller(dev, size, slave);
2958         if (ctlr) {
2959                 ctlr->devm_allocated = true;
2960                 *ptr = ctlr;
2961                 devres_add(dev, ptr);
2962         } else {
2963                 devres_free(ptr);
2964         }
2965
2966         return ctlr;
2967 }
2968 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
2969
2970 /**
2971  * spi_get_gpio_descs() - grab chip select GPIOs for the master
2972  * @ctlr: The SPI master to grab GPIO descriptors for
2973  */
2974 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2975 {
2976         int nb, i;
2977         struct gpio_desc **cs;
2978         struct device *dev = &ctlr->dev;
2979         unsigned long native_cs_mask = 0;
2980         unsigned int num_cs_gpios = 0;
2981
2982         nb = gpiod_count(dev, "cs");
2983         if (nb < 0) {
2984                 /* No GPIOs at all is fine, else return the error */
2985                 if (nb == -ENOENT)
2986                         return 0;
2987                 return nb;
2988         }
2989
2990         ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2991
2992         cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2993                           GFP_KERNEL);
2994         if (!cs)
2995                 return -ENOMEM;
2996         ctlr->cs_gpiods = cs;
2997
2998         for (i = 0; i < nb; i++) {
2999                 /*
3000                  * Most chipselects are active low, the inverted
3001                  * semantics are handled by special quirks in gpiolib,
3002                  * so initializing them GPIOD_OUT_LOW here means
3003                  * "unasserted", in most cases this will drive the physical
3004                  * line high.
3005                  */
3006                 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
3007                                                       GPIOD_OUT_LOW);
3008                 if (IS_ERR(cs[i]))
3009                         return PTR_ERR(cs[i]);
3010
3011                 if (cs[i]) {
3012                         /*
3013                          * If we find a CS GPIO, name it after the device and
3014                          * chip select line.
3015                          */
3016                         char *gpioname;
3017
3018                         gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
3019                                                   dev_name(dev), i);
3020                         if (!gpioname)
3021                                 return -ENOMEM;
3022                         gpiod_set_consumer_name(cs[i], gpioname);
3023                         num_cs_gpios++;
3024                         continue;
3025                 }
3026
3027                 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
3028                         dev_err(dev, "Invalid native chip select %d\n", i);
3029                         return -EINVAL;
3030                 }
3031                 native_cs_mask |= BIT(i);
3032         }
3033
3034         ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
3035
3036         if ((ctlr->flags & SPI_CONTROLLER_GPIO_SS) && num_cs_gpios &&
3037             ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
3038                 dev_err(dev, "No unused native chip select available\n");
3039                 return -EINVAL;
3040         }
3041
3042         return 0;
3043 }
3044
3045 static int spi_controller_check_ops(struct spi_controller *ctlr)
3046 {
3047         /*
3048          * The controller may implement only the high-level SPI-memory like
3049          * operations if it does not support regular SPI transfers, and this is
3050          * valid use case.
3051          * If ->mem_ops or ->mem_ops->exec_op is NULL, we request that at least
3052          * one of the ->transfer_xxx() method be implemented.
3053          */
3054         if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) {
3055                 if (!ctlr->transfer && !ctlr->transfer_one &&
3056                    !ctlr->transfer_one_message) {
3057                         return -EINVAL;
3058                 }
3059         }
3060
3061         return 0;
3062 }
3063
3064 /* Allocate dynamic bus number using Linux idr */
3065 static int spi_controller_id_alloc(struct spi_controller *ctlr, int start, int end)
3066 {
3067         int id;
3068
3069         mutex_lock(&board_lock);
3070         id = idr_alloc(&spi_master_idr, ctlr, start, end, GFP_KERNEL);
3071         mutex_unlock(&board_lock);
3072         if (WARN(id < 0, "couldn't get idr"))
3073                 return id == -ENOSPC ? -EBUSY : id;
3074         ctlr->bus_num = id;
3075         return 0;
3076 }
3077
3078 /**
3079  * spi_register_controller - register SPI master or slave controller
3080  * @ctlr: initialized master, originally from spi_alloc_master() or
3081  *      spi_alloc_slave()
3082  * Context: can sleep
3083  *
3084  * SPI controllers connect to their drivers using some non-SPI bus,
3085  * such as the platform bus.  The final stage of probe() in that code
3086  * includes calling spi_register_controller() to hook up to this SPI bus glue.
3087  *
3088  * SPI controllers use board specific (often SOC specific) bus numbers,
3089  * and board-specific addressing for SPI devices combines those numbers
3090  * with chip select numbers.  Since SPI does not directly support dynamic
3091  * device identification, boards need configuration tables telling which
3092  * chip is at which address.
3093  *
3094  * This must be called from context that can sleep.  It returns zero on
3095  * success, else a negative error code (dropping the controller's refcount).
3096  * After a successful return, the caller is responsible for calling
3097  * spi_unregister_controller().
3098  *
3099  * Return: zero on success, else a negative error code.
3100  */
3101 int spi_register_controller(struct spi_controller *ctlr)
3102 {
3103         struct device           *dev = ctlr->dev.parent;
3104         struct boardinfo        *bi;
3105         int                     first_dynamic;
3106         int                     status;
3107
3108         if (!dev)
3109                 return -ENODEV;
3110
3111         /*
3112          * Make sure all necessary hooks are implemented before registering
3113          * the SPI controller.
3114          */
3115         status = spi_controller_check_ops(ctlr);
3116         if (status)
3117                 return status;
3118
3119         if (ctlr->bus_num < 0)
3120                 ctlr->bus_num = of_alias_get_id(ctlr->dev.of_node, "spi");
3121         if (ctlr->bus_num >= 0) {
3122                 /* Devices with a fixed bus num must check-in with the num */
3123                 status = spi_controller_id_alloc(ctlr, ctlr->bus_num, ctlr->bus_num + 1);
3124                 if (status)
3125                         return status;
3126         }
3127         if (ctlr->bus_num < 0) {
3128                 first_dynamic = of_alias_get_highest_id("spi");
3129                 if (first_dynamic < 0)
3130                         first_dynamic = 0;
3131                 else
3132                         first_dynamic++;
3133
3134                 status = spi_controller_id_alloc(ctlr, first_dynamic, 0);
3135                 if (status)
3136                         return status;
3137         }
3138         ctlr->bus_lock_flag = 0;
3139         init_completion(&ctlr->xfer_completion);
3140         init_completion(&ctlr->cur_msg_completion);
3141         if (!ctlr->max_dma_len)
3142                 ctlr->max_dma_len = INT_MAX;
3143
3144         /*
3145          * Register the device, then userspace will see it.
3146          * Registration fails if the bus ID is in use.
3147          */
3148         dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
3149
3150         if (!spi_controller_is_slave(ctlr) && ctlr->use_gpio_descriptors) {
3151                 status = spi_get_gpio_descs(ctlr);
3152                 if (status)
3153                         goto free_bus_id;
3154                 /*
3155                  * A controller using GPIO descriptors always
3156                  * supports SPI_CS_HIGH if need be.
3157                  */
3158                 ctlr->mode_bits |= SPI_CS_HIGH;
3159         }
3160
3161         /*
3162          * Even if it's just one always-selected device, there must
3163          * be at least one chipselect.
3164          */
3165         if (!ctlr->num_chipselect) {
3166                 status = -EINVAL;
3167                 goto free_bus_id;
3168         }
3169
3170         /* Setting last_cs to -1 means no chip selected */
3171         ctlr->last_cs = -1;
3172
3173         status = device_add(&ctlr->dev);
3174         if (status < 0)
3175                 goto free_bus_id;
3176         dev_dbg(dev, "registered %s %s\n",
3177                         spi_controller_is_slave(ctlr) ? "slave" : "master",
3178                         dev_name(&ctlr->dev));
3179
3180         /*
3181          * If we're using a queued driver, start the queue. Note that we don't
3182          * need the queueing logic if the driver is only supporting high-level
3183          * memory operations.
3184          */
3185         if (ctlr->transfer) {
3186                 dev_info(dev, "controller is unqueued, this is deprecated\n");
3187         } else if (ctlr->transfer_one || ctlr->transfer_one_message) {
3188                 status = spi_controller_initialize_queue(ctlr);
3189                 if (status) {
3190                         device_del(&ctlr->dev);
3191                         goto free_bus_id;
3192                 }
3193         }
3194         /* Add statistics */
3195         ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev);
3196         if (!ctlr->pcpu_statistics) {
3197                 dev_err(dev, "Error allocating per-cpu statistics\n");
3198                 status = -ENOMEM;
3199                 goto destroy_queue;
3200         }
3201
3202         mutex_lock(&board_lock);
3203         list_add_tail(&ctlr->list, &spi_controller_list);
3204         list_for_each_entry(bi, &board_list, list)
3205                 spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
3206         mutex_unlock(&board_lock);
3207
3208         /* Register devices from the device tree and ACPI */
3209         of_register_spi_devices(ctlr);
3210         acpi_register_spi_devices(ctlr);
3211         return status;
3212
3213 destroy_queue:
3214         spi_destroy_queue(ctlr);
3215 free_bus_id:
3216         mutex_lock(&board_lock);
3217         idr_remove(&spi_master_idr, ctlr->bus_num);
3218         mutex_unlock(&board_lock);
3219         return status;
3220 }
3221 EXPORT_SYMBOL_GPL(spi_register_controller);
3222
3223 static void devm_spi_unregister(struct device *dev, void *res)
3224 {
3225         spi_unregister_controller(*(struct spi_controller **)res);
3226 }
3227
3228 /**
3229  * devm_spi_register_controller - register managed SPI master or slave
3230  *      controller
3231  * @dev:    device managing SPI controller
3232  * @ctlr: initialized controller, originally from spi_alloc_master() or
3233  *      spi_alloc_slave()
3234  * Context: can sleep
3235  *
3236  * Register a SPI device as with spi_register_controller() which will
3237  * automatically be unregistered and freed.
3238  *
3239  * Return: zero on success, else a negative error code.
3240  */
3241 int devm_spi_register_controller(struct device *dev,
3242                                  struct spi_controller *ctlr)
3243 {
3244         struct spi_controller **ptr;
3245         int ret;
3246
3247         ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
3248         if (!ptr)
3249                 return -ENOMEM;
3250
3251         ret = spi_register_controller(ctlr);
3252         if (!ret) {
3253                 *ptr = ctlr;
3254                 devres_add(dev, ptr);
3255         } else {
3256                 devres_free(ptr);
3257         }
3258
3259         return ret;
3260 }
3261 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
3262
3263 static int __unregister(struct device *dev, void *null)
3264 {
3265         spi_unregister_device(to_spi_device(dev));
3266         return 0;
3267 }
3268
3269 /**
3270  * spi_unregister_controller - unregister SPI master or slave controller
3271  * @ctlr: the controller being unregistered
3272  * Context: can sleep
3273  *
3274  * This call is used only by SPI controller drivers, which are the
3275  * only ones directly touching chip registers.
3276  *
3277  * This must be called from context that can sleep.
3278  *
3279  * Note that this function also drops a reference to the controller.
3280  */
3281 void spi_unregister_controller(struct spi_controller *ctlr)
3282 {
3283         struct spi_controller *found;
3284         int id = ctlr->bus_num;
3285
3286         /* Prevent addition of new devices, unregister existing ones */
3287         if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3288                 mutex_lock(&ctlr->add_lock);
3289
3290         device_for_each_child(&ctlr->dev, NULL, __unregister);
3291
3292         /* First make sure that this controller was ever added */
3293         mutex_lock(&board_lock);
3294         found = idr_find(&spi_master_idr, id);
3295         mutex_unlock(&board_lock);
3296         if (ctlr->queued) {
3297                 if (spi_destroy_queue(ctlr))
3298                         dev_err(&ctlr->dev, "queue remove failed\n");
3299         }
3300         mutex_lock(&board_lock);
3301         list_del(&ctlr->list);
3302         mutex_unlock(&board_lock);
3303
3304         device_del(&ctlr->dev);
3305
3306         /* Free bus id */
3307         mutex_lock(&board_lock);
3308         if (found == ctlr)
3309                 idr_remove(&spi_master_idr, id);
3310         mutex_unlock(&board_lock);
3311
3312         if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3313                 mutex_unlock(&ctlr->add_lock);
3314
3315         /*
3316          * Release the last reference on the controller if its driver
3317          * has not yet been converted to devm_spi_alloc_master/slave().
3318          */
3319         if (!ctlr->devm_allocated)
3320                 put_device(&ctlr->dev);
3321 }
3322 EXPORT_SYMBOL_GPL(spi_unregister_controller);
3323
3324 static inline int __spi_check_suspended(const struct spi_controller *ctlr)
3325 {
3326         return ctlr->flags & SPI_CONTROLLER_SUSPENDED ? -ESHUTDOWN : 0;
3327 }
3328
3329 static inline void __spi_mark_suspended(struct spi_controller *ctlr)
3330 {
3331         mutex_lock(&ctlr->bus_lock_mutex);
3332         ctlr->flags |= SPI_CONTROLLER_SUSPENDED;
3333         mutex_unlock(&ctlr->bus_lock_mutex);
3334 }
3335
3336 static inline void __spi_mark_resumed(struct spi_controller *ctlr)
3337 {
3338         mutex_lock(&ctlr->bus_lock_mutex);
3339         ctlr->flags &= ~SPI_CONTROLLER_SUSPENDED;
3340         mutex_unlock(&ctlr->bus_lock_mutex);
3341 }
3342
3343 int spi_controller_suspend(struct spi_controller *ctlr)
3344 {
3345         int ret = 0;
3346
3347         /* Basically no-ops for non-queued controllers */
3348         if (ctlr->queued) {
3349                 ret = spi_stop_queue(ctlr);
3350                 if (ret)
3351                         dev_err(&ctlr->dev, "queue stop failed\n");
3352         }
3353
3354         __spi_mark_suspended(ctlr);
3355         return ret;
3356 }
3357 EXPORT_SYMBOL_GPL(spi_controller_suspend);
3358
3359 int spi_controller_resume(struct spi_controller *ctlr)
3360 {
3361         int ret = 0;
3362
3363         __spi_mark_resumed(ctlr);
3364
3365         if (ctlr->queued) {
3366                 ret = spi_start_queue(ctlr);
3367                 if (ret)
3368                         dev_err(&ctlr->dev, "queue restart failed\n");
3369         }
3370         return ret;
3371 }
3372 EXPORT_SYMBOL_GPL(spi_controller_resume);
3373
3374 /*-------------------------------------------------------------------------*/
3375
3376 /* Core methods for spi_message alterations */
3377
3378 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3379                                             struct spi_message *msg,
3380                                             void *res)
3381 {
3382         struct spi_replaced_transfers *rxfer = res;
3383         size_t i;
3384
3385         /* Call extra callback if requested */
3386         if (rxfer->release)
3387                 rxfer->release(ctlr, msg, res);
3388
3389         /* Insert replaced transfers back into the message */
3390         list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3391
3392         /* Remove the formerly inserted entries */
3393         for (i = 0; i < rxfer->inserted; i++)
3394                 list_del(&rxfer->inserted_transfers[i].transfer_list);
3395 }
3396
3397 /**
3398  * spi_replace_transfers - replace transfers with several transfers
3399  *                         and register change with spi_message.resources
3400  * @msg:           the spi_message we work upon
3401  * @xfer_first:    the first spi_transfer we want to replace
3402  * @remove:        number of transfers to remove
3403  * @insert:        the number of transfers we want to insert instead
3404  * @release:       extra release code necessary in some circumstances
3405  * @extradatasize: extra data to allocate (with alignment guarantees
3406  *                 of struct @spi_transfer)
3407  * @gfp:           gfp flags
3408  *
3409  * Returns: pointer to @spi_replaced_transfers,
3410  *          PTR_ERR(...) in case of errors.
3411  */
3412 static struct spi_replaced_transfers *spi_replace_transfers(
3413         struct spi_message *msg,
3414         struct spi_transfer *xfer_first,
3415         size_t remove,
3416         size_t insert,
3417         spi_replaced_release_t release,
3418         size_t extradatasize,
3419         gfp_t gfp)
3420 {
3421         struct spi_replaced_transfers *rxfer;
3422         struct spi_transfer *xfer;
3423         size_t i;
3424
3425         /* Allocate the structure using spi_res */
3426         rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3427                               struct_size(rxfer, inserted_transfers, insert)
3428                               + extradatasize,
3429                               gfp);
3430         if (!rxfer)
3431                 return ERR_PTR(-ENOMEM);
3432
3433         /* The release code to invoke before running the generic release */
3434         rxfer->release = release;
3435
3436         /* Assign extradata */
3437         if (extradatasize)
3438                 rxfer->extradata =
3439                         &rxfer->inserted_transfers[insert];
3440
3441         /* Init the replaced_transfers list */
3442         INIT_LIST_HEAD(&rxfer->replaced_transfers);
3443
3444         /*
3445          * Assign the list_entry after which we should reinsert
3446          * the @replaced_transfers - it may be spi_message.messages!
3447          */
3448         rxfer->replaced_after = xfer_first->transfer_list.prev;
3449
3450         /* Remove the requested number of transfers */
3451         for (i = 0; i < remove; i++) {
3452                 /*
3453                  * If the entry after replaced_after it is msg->transfers
3454                  * then we have been requested to remove more transfers
3455                  * than are in the list.
3456                  */
3457                 if (rxfer->replaced_after->next == &msg->transfers) {
3458                         dev_err(&msg->spi->dev,
3459                                 "requested to remove more spi_transfers than are available\n");
3460                         /* Insert replaced transfers back into the message */
3461                         list_splice(&rxfer->replaced_transfers,
3462                                     rxfer->replaced_after);
3463
3464                         /* Free the spi_replace_transfer structure... */
3465                         spi_res_free(rxfer);
3466
3467                         /* ...and return with an error */
3468                         return ERR_PTR(-EINVAL);
3469                 }
3470
3471                 /*
3472                  * Remove the entry after replaced_after from list of
3473                  * transfers and add it to list of replaced_transfers.
3474                  */
3475                 list_move_tail(rxfer->replaced_after->next,
3476                                &rxfer->replaced_transfers);
3477         }
3478
3479         /*
3480          * Create copy of the given xfer with identical settings
3481          * based on the first transfer to get removed.
3482          */
3483         for (i = 0; i < insert; i++) {
3484                 /* We need to run in reverse order */
3485                 xfer = &rxfer->inserted_transfers[insert - 1 - i];
3486
3487                 /* Copy all spi_transfer data */
3488                 memcpy(xfer, xfer_first, sizeof(*xfer));
3489
3490                 /* Add to list */
3491                 list_add(&xfer->transfer_list, rxfer->replaced_after);
3492
3493                 /* Clear cs_change and delay for all but the last */
3494                 if (i) {
3495                         xfer->cs_change = false;
3496                         xfer->delay.value = 0;
3497                 }
3498         }
3499
3500         /* Set up inserted... */
3501         rxfer->inserted = insert;
3502
3503         /* ...and register it with spi_res/spi_message */
3504         spi_res_add(msg, rxfer);
3505
3506         return rxfer;
3507 }
3508
3509 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3510                                         struct spi_message *msg,
3511                                         struct spi_transfer **xferp,
3512                                         size_t maxsize,
3513                                         gfp_t gfp)
3514 {
3515         struct spi_transfer *xfer = *xferp, *xfers;
3516         struct spi_replaced_transfers *srt;
3517         size_t offset;
3518         size_t count, i;
3519
3520         /* Calculate how many we have to replace */
3521         count = DIV_ROUND_UP(xfer->len, maxsize);
3522
3523         /* Create replacement */
3524         srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3525         if (IS_ERR(srt))
3526                 return PTR_ERR(srt);
3527         xfers = srt->inserted_transfers;
3528
3529         /*
3530          * Now handle each of those newly inserted spi_transfers.
3531          * Note that the replacements spi_transfers all are preset
3532          * to the same values as *xferp, so tx_buf, rx_buf and len
3533          * are all identical (as well as most others)
3534          * so we just have to fix up len and the pointers.
3535          *
3536          * This also includes support for the depreciated
3537          * spi_message.is_dma_mapped interface.
3538          */
3539
3540         /*
3541          * The first transfer just needs the length modified, so we
3542          * run it outside the loop.
3543          */
3544         xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3545
3546         /* All the others need rx_buf/tx_buf also set */
3547         for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3548                 /* Update rx_buf, tx_buf and DMA */
3549                 if (xfers[i].rx_buf)
3550                         xfers[i].rx_buf += offset;
3551                 if (xfers[i].rx_dma)
3552                         xfers[i].rx_dma += offset;
3553                 if (xfers[i].tx_buf)
3554                         xfers[i].tx_buf += offset;
3555                 if (xfers[i].tx_dma)
3556                         xfers[i].tx_dma += offset;
3557
3558                 /* Update length */
3559                 xfers[i].len = min(maxsize, xfers[i].len - offset);
3560         }
3561
3562         /*
3563          * We set up xferp to the last entry we have inserted,
3564          * so that we skip those already split transfers.
3565          */
3566         *xferp = &xfers[count - 1];
3567
3568         /* Increment statistics counters */
3569         SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics,
3570                                        transfers_split_maxsize);
3571         SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics,
3572                                        transfers_split_maxsize);
3573
3574         return 0;
3575 }
3576
3577 /**
3578  * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3579  *                               when an individual transfer exceeds a
3580  *                               certain size
3581  * @ctlr:    the @spi_controller for this transfer
3582  * @msg:   the @spi_message to transform
3583  * @maxsize:  the maximum when to apply this
3584  * @gfp: GFP allocation flags
3585  *
3586  * Return: status of transformation
3587  */
3588 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3589                                 struct spi_message *msg,
3590                                 size_t maxsize,
3591                                 gfp_t gfp)
3592 {
3593         struct spi_transfer *xfer;
3594         int ret;
3595
3596         /*
3597          * Iterate over the transfer_list,
3598          * but note that xfer is advanced to the last transfer inserted
3599          * to avoid checking sizes again unnecessarily (also xfer does
3600          * potentially belong to a different list by the time the
3601          * replacement has happened).
3602          */
3603         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3604                 if (xfer->len > maxsize) {
3605                         ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3606                                                            maxsize, gfp);
3607                         if (ret)
3608                                 return ret;
3609                 }
3610         }
3611
3612         return 0;
3613 }
3614 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3615
3616
3617 /**
3618  * spi_split_transfers_maxwords - split SPI transfers into multiple transfers
3619  *                                when an individual transfer exceeds a
3620  *                                certain number of SPI words
3621  * @ctlr:     the @spi_controller for this transfer
3622  * @msg:      the @spi_message to transform
3623  * @maxwords: the number of words to limit each transfer to
3624  * @gfp:      GFP allocation flags
3625  *
3626  * Return: status of transformation
3627  */
3628 int spi_split_transfers_maxwords(struct spi_controller *ctlr,
3629                                  struct spi_message *msg,
3630                                  size_t maxwords,
3631                                  gfp_t gfp)
3632 {
3633         struct spi_transfer *xfer;
3634
3635         /*
3636          * Iterate over the transfer_list,
3637          * but note that xfer is advanced to the last transfer inserted
3638          * to avoid checking sizes again unnecessarily (also xfer does
3639          * potentially belong to a different list by the time the
3640          * replacement has happened).
3641          */
3642         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3643                 size_t maxsize;
3644                 int ret;
3645
3646                 maxsize = maxwords * roundup_pow_of_two(BITS_TO_BYTES(xfer->bits_per_word));
3647                 if (xfer->len > maxsize) {
3648                         ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3649                                                            maxsize, gfp);
3650                         if (ret)
3651                                 return ret;
3652                 }
3653         }
3654
3655         return 0;
3656 }
3657 EXPORT_SYMBOL_GPL(spi_split_transfers_maxwords);
3658
3659 /*-------------------------------------------------------------------------*/
3660
3661 /*
3662  * Core methods for SPI controller protocol drivers. Some of the
3663  * other core methods are currently defined as inline functions.
3664  */
3665
3666 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3667                                         u8 bits_per_word)
3668 {
3669         if (ctlr->bits_per_word_mask) {
3670                 /* Only 32 bits fit in the mask */
3671                 if (bits_per_word > 32)
3672                         return -EINVAL;
3673                 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3674                         return -EINVAL;
3675         }
3676
3677         return 0;
3678 }
3679
3680 /**
3681  * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3682  * @spi: the device that requires specific CS timing configuration
3683  *
3684  * Return: zero on success, else a negative error code.
3685  */
3686 static int spi_set_cs_timing(struct spi_device *spi)
3687 {
3688         struct device *parent = spi->controller->dev.parent;
3689         int status = 0;
3690
3691         if (spi->controller->set_cs_timing && !spi_get_csgpiod(spi, 0)) {
3692                 if (spi->controller->auto_runtime_pm) {
3693                         status = pm_runtime_get_sync(parent);
3694                         if (status < 0) {
3695                                 pm_runtime_put_noidle(parent);
3696                                 dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3697                                         status);
3698                                 return status;
3699                         }
3700
3701                         status = spi->controller->set_cs_timing(spi);
3702                         pm_runtime_mark_last_busy(parent);
3703                         pm_runtime_put_autosuspend(parent);
3704                 } else {
3705                         status = spi->controller->set_cs_timing(spi);
3706                 }
3707         }
3708         return status;
3709 }
3710
3711 /**
3712  * spi_setup - setup SPI mode and clock rate
3713  * @spi: the device whose settings are being modified
3714  * Context: can sleep, and no requests are queued to the device
3715  *
3716  * SPI protocol drivers may need to update the transfer mode if the
3717  * device doesn't work with its default.  They may likewise need
3718  * to update clock rates or word sizes from initial values.  This function
3719  * changes those settings, and must be called from a context that can sleep.
3720  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3721  * effect the next time the device is selected and data is transferred to
3722  * or from it.  When this function returns, the SPI device is deselected.
3723  *
3724  * Note that this call will fail if the protocol driver specifies an option
3725  * that the underlying controller or its driver does not support.  For
3726  * example, not all hardware supports wire transfers using nine bit words,
3727  * LSB-first wire encoding, or active-high chipselects.
3728  *
3729  * Return: zero on success, else a negative error code.
3730  */
3731 int spi_setup(struct spi_device *spi)
3732 {
3733         unsigned        bad_bits, ugly_bits;
3734         int             status = 0;
3735
3736         /*
3737          * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3738          * are set at the same time.
3739          */
3740         if ((hweight_long(spi->mode &
3741                 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3742             (hweight_long(spi->mode &
3743                 (SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3744                 dev_err(&spi->dev,
3745                 "setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3746                 return -EINVAL;
3747         }
3748         /* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */
3749         if ((spi->mode & SPI_3WIRE) && (spi->mode &
3750                 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3751                  SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3752                 return -EINVAL;
3753         /*
3754          * Help drivers fail *cleanly* when they need options
3755          * that aren't supported with their current controller.
3756          * SPI_CS_WORD has a fallback software implementation,
3757          * so it is ignored here.
3758          */
3759         bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3760                                  SPI_NO_TX | SPI_NO_RX);
3761         ugly_bits = bad_bits &
3762                     (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3763                      SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3764         if (ugly_bits) {
3765                 dev_warn(&spi->dev,
3766                          "setup: ignoring unsupported mode bits %x\n",
3767                          ugly_bits);
3768                 spi->mode &= ~ugly_bits;
3769                 bad_bits &= ~ugly_bits;
3770         }
3771         if (bad_bits) {
3772                 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3773                         bad_bits);
3774                 return -EINVAL;
3775         }
3776
3777         if (!spi->bits_per_word) {
3778                 spi->bits_per_word = 8;
3779         } else {
3780                 /*
3781                  * Some controllers may not support the default 8 bits-per-word
3782                  * so only perform the check when this is explicitly provided.
3783                  */
3784                 status = __spi_validate_bits_per_word(spi->controller,
3785                                                       spi->bits_per_word);
3786                 if (status)
3787                         return status;
3788         }
3789
3790         if (spi->controller->max_speed_hz &&
3791             (!spi->max_speed_hz ||
3792              spi->max_speed_hz > spi->controller->max_speed_hz))
3793                 spi->max_speed_hz = spi->controller->max_speed_hz;
3794
3795         mutex_lock(&spi->controller->io_mutex);
3796
3797         if (spi->controller->setup) {
3798                 status = spi->controller->setup(spi);
3799                 if (status) {
3800                         mutex_unlock(&spi->controller->io_mutex);
3801                         dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3802                                 status);
3803                         return status;
3804                 }
3805         }
3806
3807         status = spi_set_cs_timing(spi);
3808         if (status) {
3809                 mutex_unlock(&spi->controller->io_mutex);
3810                 return status;
3811         }
3812
3813         if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3814                 status = pm_runtime_resume_and_get(spi->controller->dev.parent);
3815                 if (status < 0) {
3816                         mutex_unlock(&spi->controller->io_mutex);
3817                         dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3818                                 status);
3819                         return status;
3820                 }
3821
3822                 /*
3823                  * We do not want to return positive value from pm_runtime_get,
3824                  * there are many instances of devices calling spi_setup() and
3825                  * checking for a non-zero return value instead of a negative
3826                  * return value.
3827                  */
3828                 status = 0;
3829
3830                 spi_set_cs(spi, false, true);
3831                 pm_runtime_mark_last_busy(spi->controller->dev.parent);
3832                 pm_runtime_put_autosuspend(spi->controller->dev.parent);
3833         } else {
3834                 spi_set_cs(spi, false, true);
3835         }
3836
3837         mutex_unlock(&spi->controller->io_mutex);
3838
3839         if (spi->rt && !spi->controller->rt) {
3840                 spi->controller->rt = true;
3841                 spi_set_thread_rt(spi->controller);
3842         }
3843
3844         trace_spi_setup(spi, status);
3845
3846         dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3847                         spi->mode & SPI_MODE_X_MASK,
3848                         (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3849                         (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3850                         (spi->mode & SPI_3WIRE) ? "3wire, " : "",
3851                         (spi->mode & SPI_LOOP) ? "loopback, " : "",
3852                         spi->bits_per_word, spi->max_speed_hz,
3853                         status);
3854
3855         return status;
3856 }
3857 EXPORT_SYMBOL_GPL(spi_setup);
3858
3859 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
3860                                        struct spi_device *spi)
3861 {
3862         int delay1, delay2;
3863
3864         delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
3865         if (delay1 < 0)
3866                 return delay1;
3867
3868         delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
3869         if (delay2 < 0)
3870                 return delay2;
3871
3872         if (delay1 < delay2)
3873                 memcpy(&xfer->word_delay, &spi->word_delay,
3874                        sizeof(xfer->word_delay));
3875
3876         return 0;
3877 }
3878
3879 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3880 {
3881         struct spi_controller *ctlr = spi->controller;
3882         struct spi_transfer *xfer;
3883         int w_size;
3884
3885         if (list_empty(&message->transfers))
3886                 return -EINVAL;
3887
3888         /*
3889          * If an SPI controller does not support toggling the CS line on each
3890          * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3891          * for the CS line, we can emulate the CS-per-word hardware function by
3892          * splitting transfers into one-word transfers and ensuring that
3893          * cs_change is set for each transfer.
3894          */
3895         if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3896                                           spi_get_csgpiod(spi, 0))) {
3897                 size_t maxsize = BITS_TO_BYTES(spi->bits_per_word);
3898                 int ret;
3899
3900                 /* spi_split_transfers_maxsize() requires message->spi */
3901                 message->spi = spi;
3902
3903                 ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3904                                                   GFP_KERNEL);
3905                 if (ret)
3906                         return ret;
3907
3908                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3909                         /* Don't change cs_change on the last entry in the list */
3910                         if (list_is_last(&xfer->transfer_list, &message->transfers))
3911                                 break;
3912                         xfer->cs_change = 1;
3913                 }
3914         }
3915
3916         /*
3917          * Half-duplex links include original MicroWire, and ones with
3918          * only one data pin like SPI_3WIRE (switches direction) or where
3919          * either MOSI or MISO is missing.  They can also be caused by
3920          * software limitations.
3921          */
3922         if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3923             (spi->mode & SPI_3WIRE)) {
3924                 unsigned flags = ctlr->flags;
3925
3926                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3927                         if (xfer->rx_buf && xfer->tx_buf)
3928                                 return -EINVAL;
3929                         if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3930                                 return -EINVAL;
3931                         if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3932                                 return -EINVAL;
3933                 }
3934         }
3935
3936         /*
3937          * Set transfer bits_per_word and max speed as spi device default if
3938          * it is not set for this transfer.
3939          * Set transfer tx_nbits and rx_nbits as single transfer default
3940          * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3941          * Ensure transfer word_delay is at least as long as that required by
3942          * device itself.
3943          */
3944         message->frame_length = 0;
3945         list_for_each_entry(xfer, &message->transfers, transfer_list) {
3946                 xfer->effective_speed_hz = 0;
3947                 message->frame_length += xfer->len;
3948                 if (!xfer->bits_per_word)
3949                         xfer->bits_per_word = spi->bits_per_word;
3950
3951                 if (!xfer->speed_hz)
3952                         xfer->speed_hz = spi->max_speed_hz;
3953
3954                 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3955                         xfer->speed_hz = ctlr->max_speed_hz;
3956
3957                 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3958                         return -EINVAL;
3959
3960                 /*
3961                  * SPI transfer length should be multiple of SPI word size
3962                  * where SPI word size should be power-of-two multiple.
3963                  */
3964                 if (xfer->bits_per_word <= 8)
3965                         w_size = 1;
3966                 else if (xfer->bits_per_word <= 16)
3967                         w_size = 2;
3968                 else
3969                         w_size = 4;
3970
3971                 /* No partial transfers accepted */
3972                 if (xfer->len % w_size)
3973                         return -EINVAL;
3974
3975                 if (xfer->speed_hz && ctlr->min_speed_hz &&
3976                     xfer->speed_hz < ctlr->min_speed_hz)
3977                         return -EINVAL;
3978
3979                 if (xfer->tx_buf && !xfer->tx_nbits)
3980                         xfer->tx_nbits = SPI_NBITS_SINGLE;
3981                 if (xfer->rx_buf && !xfer->rx_nbits)
3982                         xfer->rx_nbits = SPI_NBITS_SINGLE;
3983                 /*
3984                  * Check transfer tx/rx_nbits:
3985                  * 1. check the value matches one of single, dual and quad
3986                  * 2. check tx/rx_nbits match the mode in spi_device
3987                  */
3988                 if (xfer->tx_buf) {
3989                         if (spi->mode & SPI_NO_TX)
3990                                 return -EINVAL;
3991                         if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3992                                 xfer->tx_nbits != SPI_NBITS_DUAL &&
3993                                 xfer->tx_nbits != SPI_NBITS_QUAD)
3994                                 return -EINVAL;
3995                         if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3996                                 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3997                                 return -EINVAL;
3998                         if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3999                                 !(spi->mode & SPI_TX_QUAD))
4000                                 return -EINVAL;
4001                 }
4002                 /* Check transfer rx_nbits */
4003                 if (xfer->rx_buf) {
4004                         if (spi->mode & SPI_NO_RX)
4005                                 return -EINVAL;
4006                         if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
4007                                 xfer->rx_nbits != SPI_NBITS_DUAL &&
4008                                 xfer->rx_nbits != SPI_NBITS_QUAD)
4009                                 return -EINVAL;
4010                         if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
4011                                 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
4012                                 return -EINVAL;
4013                         if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
4014                                 !(spi->mode & SPI_RX_QUAD))
4015                                 return -EINVAL;
4016                 }
4017
4018                 if (_spi_xfer_word_delay_update(xfer, spi))
4019                         return -EINVAL;
4020         }
4021
4022         message->status = -EINPROGRESS;
4023
4024         return 0;
4025 }
4026
4027 static int __spi_async(struct spi_device *spi, struct spi_message *message)
4028 {
4029         struct spi_controller *ctlr = spi->controller;
4030         struct spi_transfer *xfer;
4031
4032         /*
4033          * Some controllers do not support doing regular SPI transfers. Return
4034          * ENOTSUPP when this is the case.
4035          */
4036         if (!ctlr->transfer)
4037                 return -ENOTSUPP;
4038
4039         message->spi = spi;
4040
4041         SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async);
4042         SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async);
4043
4044         trace_spi_message_submit(message);
4045
4046         if (!ctlr->ptp_sts_supported) {
4047                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
4048                         xfer->ptp_sts_word_pre = 0;
4049                         ptp_read_system_prets(xfer->ptp_sts);
4050                 }
4051         }
4052
4053         return ctlr->transfer(spi, message);
4054 }
4055
4056 /**
4057  * spi_async - asynchronous SPI transfer
4058  * @spi: device with which data will be exchanged
4059  * @message: describes the data transfers, including completion callback
4060  * Context: any (IRQs may be blocked, etc)
4061  *
4062  * This call may be used in_irq and other contexts which can't sleep,
4063  * as well as from task contexts which can sleep.
4064  *
4065  * The completion callback is invoked in a context which can't sleep.
4066  * Before that invocation, the value of message->status is undefined.
4067  * When the callback is issued, message->status holds either zero (to
4068  * indicate complete success) or a negative error code.  After that
4069  * callback returns, the driver which issued the transfer request may
4070  * deallocate the associated memory; it's no longer in use by any SPI
4071  * core or controller driver code.
4072  *
4073  * Note that although all messages to a spi_device are handled in
4074  * FIFO order, messages may go to different devices in other orders.
4075  * Some device might be higher priority, or have various "hard" access
4076  * time requirements, for example.
4077  *
4078  * On detection of any fault during the transfer, processing of
4079  * the entire message is aborted, and the device is deselected.
4080  * Until returning from the associated message completion callback,
4081  * no other spi_message queued to that device will be processed.
4082  * (This rule applies equally to all the synchronous transfer calls,
4083  * which are wrappers around this core asynchronous primitive.)
4084  *
4085  * Return: zero on success, else a negative error code.
4086  */
4087 int spi_async(struct spi_device *spi, struct spi_message *message)
4088 {
4089         struct spi_controller *ctlr = spi->controller;
4090         int ret;
4091         unsigned long flags;
4092
4093         ret = __spi_validate(spi, message);
4094         if (ret != 0)
4095                 return ret;
4096
4097         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4098
4099         if (ctlr->bus_lock_flag)
4100                 ret = -EBUSY;
4101         else
4102                 ret = __spi_async(spi, message);
4103
4104         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4105
4106         return ret;
4107 }
4108 EXPORT_SYMBOL_GPL(spi_async);
4109
4110 /**
4111  * spi_async_locked - version of spi_async with exclusive bus usage
4112  * @spi: device with which data will be exchanged
4113  * @message: describes the data transfers, including completion callback
4114  * Context: any (IRQs may be blocked, etc)
4115  *
4116  * This call may be used in_irq and other contexts which can't sleep,
4117  * as well as from task contexts which can sleep.
4118  *
4119  * The completion callback is invoked in a context which can't sleep.
4120  * Before that invocation, the value of message->status is undefined.
4121  * When the callback is issued, message->status holds either zero (to
4122  * indicate complete success) or a negative error code.  After that
4123  * callback returns, the driver which issued the transfer request may
4124  * deallocate the associated memory; it's no longer in use by any SPI
4125  * core or controller driver code.
4126  *
4127  * Note that although all messages to a spi_device are handled in
4128  * FIFO order, messages may go to different devices in other orders.
4129  * Some device might be higher priority, or have various "hard" access
4130  * time requirements, for example.
4131  *
4132  * On detection of any fault during the transfer, processing of
4133  * the entire message is aborted, and the device is deselected.
4134  * Until returning from the associated message completion callback,
4135  * no other spi_message queued to that device will be processed.
4136  * (This rule applies equally to all the synchronous transfer calls,
4137  * which are wrappers around this core asynchronous primitive.)
4138  *
4139  * Return: zero on success, else a negative error code.
4140  */
4141 static int spi_async_locked(struct spi_device *spi, struct spi_message *message)
4142 {
4143         struct spi_controller *ctlr = spi->controller;
4144         int ret;
4145         unsigned long flags;
4146
4147         ret = __spi_validate(spi, message);
4148         if (ret != 0)
4149                 return ret;
4150
4151         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4152
4153         ret = __spi_async(spi, message);
4154
4155         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4156
4157         return ret;
4158
4159 }
4160
4161 static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg)
4162 {
4163         bool was_busy;
4164         int ret;
4165
4166         mutex_lock(&ctlr->io_mutex);
4167
4168         was_busy = ctlr->busy;
4169
4170         ctlr->cur_msg = msg;
4171         ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
4172         if (ret)
4173                 dev_err(&ctlr->dev, "noqueue transfer failed\n");
4174         ctlr->cur_msg = NULL;
4175         ctlr->fallback = false;
4176
4177         if (!was_busy) {
4178                 kfree(ctlr->dummy_rx);
4179                 ctlr->dummy_rx = NULL;
4180                 kfree(ctlr->dummy_tx);
4181                 ctlr->dummy_tx = NULL;
4182                 if (ctlr->unprepare_transfer_hardware &&
4183                     ctlr->unprepare_transfer_hardware(ctlr))
4184                         dev_err(&ctlr->dev,
4185                                 "failed to unprepare transfer hardware\n");
4186                 spi_idle_runtime_pm(ctlr);
4187         }
4188
4189         mutex_unlock(&ctlr->io_mutex);
4190 }
4191
4192 /*-------------------------------------------------------------------------*/
4193
4194 /*
4195  * Utility methods for SPI protocol drivers, layered on
4196  * top of the core.  Some other utility methods are defined as
4197  * inline functions.
4198  */
4199
4200 static void spi_complete(void *arg)
4201 {
4202         complete(arg);
4203 }
4204
4205 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
4206 {
4207         DECLARE_COMPLETION_ONSTACK(done);
4208         int status;
4209         struct spi_controller *ctlr = spi->controller;
4210
4211         if (__spi_check_suspended(ctlr)) {
4212                 dev_warn_once(&spi->dev, "Attempted to sync while suspend\n");
4213                 return -ESHUTDOWN;
4214         }
4215
4216         status = __spi_validate(spi, message);
4217         if (status != 0)
4218                 return status;
4219
4220         message->spi = spi;
4221
4222         SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync);
4223         SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync);
4224
4225         /*
4226          * Checking queue_empty here only guarantees async/sync message
4227          * ordering when coming from the same context. It does not need to
4228          * guard against reentrancy from a different context. The io_mutex
4229          * will catch those cases.
4230          */
4231         if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) {
4232                 message->actual_length = 0;
4233                 message->status = -EINPROGRESS;
4234
4235                 trace_spi_message_submit(message);
4236
4237                 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate);
4238                 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate);
4239
4240                 __spi_transfer_message_noqueue(ctlr, message);
4241
4242                 return message->status;
4243         }
4244
4245         /*
4246          * There are messages in the async queue that could have originated
4247          * from the same context, so we need to preserve ordering.
4248          * Therefor we send the message to the async queue and wait until they
4249          * are completed.
4250          */
4251         message->complete = spi_complete;
4252         message->context = &done;
4253         status = spi_async_locked(spi, message);
4254         if (status == 0) {
4255                 wait_for_completion(&done);
4256                 status = message->status;
4257         }
4258         message->context = NULL;
4259
4260         return status;
4261 }
4262
4263 /**
4264  * spi_sync - blocking/synchronous SPI data transfers
4265  * @spi: device with which data will be exchanged
4266  * @message: describes the data transfers
4267  * Context: can sleep
4268  *
4269  * This call may only be used from a context that may sleep.  The sleep
4270  * is non-interruptible, and has no timeout.  Low-overhead controller
4271  * drivers may DMA directly into and out of the message buffers.
4272  *
4273  * Note that the SPI device's chip select is active during the message,
4274  * and then is normally disabled between messages.  Drivers for some
4275  * frequently-used devices may want to minimize costs of selecting a chip,
4276  * by leaving it selected in anticipation that the next message will go
4277  * to the same chip.  (That may increase power usage.)
4278  *
4279  * Also, the caller is guaranteeing that the memory associated with the
4280  * message will not be freed before this call returns.
4281  *
4282  * Return: zero on success, else a negative error code.
4283  */
4284 int spi_sync(struct spi_device *spi, struct spi_message *message)
4285 {
4286         int ret;
4287
4288         mutex_lock(&spi->controller->bus_lock_mutex);
4289         ret = __spi_sync(spi, message);
4290         mutex_unlock(&spi->controller->bus_lock_mutex);
4291
4292         return ret;
4293 }
4294 EXPORT_SYMBOL_GPL(spi_sync);
4295
4296 /**
4297  * spi_sync_locked - version of spi_sync with exclusive bus usage
4298  * @spi: device with which data will be exchanged
4299  * @message: describes the data transfers
4300  * Context: can sleep
4301  *
4302  * This call may only be used from a context that may sleep.  The sleep
4303  * is non-interruptible, and has no timeout.  Low-overhead controller
4304  * drivers may DMA directly into and out of the message buffers.
4305  *
4306  * This call should be used by drivers that require exclusive access to the
4307  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
4308  * be released by a spi_bus_unlock call when the exclusive access is over.
4309  *
4310  * Return: zero on success, else a negative error code.
4311  */
4312 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
4313 {
4314         return __spi_sync(spi, message);
4315 }
4316 EXPORT_SYMBOL_GPL(spi_sync_locked);
4317
4318 /**
4319  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
4320  * @ctlr: SPI bus master that should be locked for exclusive bus access
4321  * Context: can sleep
4322  *
4323  * This call may only be used from a context that may sleep.  The sleep
4324  * is non-interruptible, and has no timeout.
4325  *
4326  * This call should be used by drivers that require exclusive access to the
4327  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
4328  * exclusive access is over. Data transfer must be done by spi_sync_locked
4329  * and spi_async_locked calls when the SPI bus lock is held.
4330  *
4331  * Return: always zero.
4332  */
4333 int spi_bus_lock(struct spi_controller *ctlr)
4334 {
4335         unsigned long flags;
4336
4337         mutex_lock(&ctlr->bus_lock_mutex);
4338
4339         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4340         ctlr->bus_lock_flag = 1;
4341         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4342
4343         /* Mutex remains locked until spi_bus_unlock() is called */
4344
4345         return 0;
4346 }
4347 EXPORT_SYMBOL_GPL(spi_bus_lock);
4348
4349 /**
4350  * spi_bus_unlock - release the lock for exclusive SPI bus usage
4351  * @ctlr: SPI bus master that was locked for exclusive bus access
4352  * Context: can sleep
4353  *
4354  * This call may only be used from a context that may sleep.  The sleep
4355  * is non-interruptible, and has no timeout.
4356  *
4357  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4358  * call.
4359  *
4360  * Return: always zero.
4361  */
4362 int spi_bus_unlock(struct spi_controller *ctlr)
4363 {
4364         ctlr->bus_lock_flag = 0;
4365
4366         mutex_unlock(&ctlr->bus_lock_mutex);
4367
4368         return 0;
4369 }
4370 EXPORT_SYMBOL_GPL(spi_bus_unlock);
4371
4372 /* Portable code must never pass more than 32 bytes */
4373 #define SPI_BUFSIZ      max(32, SMP_CACHE_BYTES)
4374
4375 static u8       *buf;
4376
4377 /**
4378  * spi_write_then_read - SPI synchronous write followed by read
4379  * @spi: device with which data will be exchanged
4380  * @txbuf: data to be written (need not be DMA-safe)
4381  * @n_tx: size of txbuf, in bytes
4382  * @rxbuf: buffer into which data will be read (need not be DMA-safe)
4383  * @n_rx: size of rxbuf, in bytes
4384  * Context: can sleep
4385  *
4386  * This performs a half duplex MicroWire style transaction with the
4387  * device, sending txbuf and then reading rxbuf.  The return value
4388  * is zero for success, else a negative errno status code.
4389  * This call may only be used from a context that may sleep.
4390  *
4391  * Parameters to this routine are always copied using a small buffer.
4392  * Performance-sensitive or bulk transfer code should instead use
4393  * spi_{async,sync}() calls with DMA-safe buffers.
4394  *
4395  * Return: zero on success, else a negative error code.
4396  */
4397 int spi_write_then_read(struct spi_device *spi,
4398                 const void *txbuf, unsigned n_tx,
4399                 void *rxbuf, unsigned n_rx)
4400 {
4401         static DEFINE_MUTEX(lock);
4402
4403         int                     status;
4404         struct spi_message      message;
4405         struct spi_transfer     x[2];
4406         u8                      *local_buf;
4407
4408         /*
4409          * Use preallocated DMA-safe buffer if we can. We can't avoid
4410          * copying here, (as a pure convenience thing), but we can
4411          * keep heap costs out of the hot path unless someone else is
4412          * using the pre-allocated buffer or the transfer is too large.
4413          */
4414         if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4415                 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4416                                     GFP_KERNEL | GFP_DMA);
4417                 if (!local_buf)
4418                         return -ENOMEM;
4419         } else {
4420                 local_buf = buf;
4421         }
4422
4423         spi_message_init(&message);
4424         memset(x, 0, sizeof(x));
4425         if (n_tx) {
4426                 x[0].len = n_tx;
4427                 spi_message_add_tail(&x[0], &message);
4428         }
4429         if (n_rx) {
4430                 x[1].len = n_rx;
4431                 spi_message_add_tail(&x[1], &message);
4432         }
4433
4434         memcpy(local_buf, txbuf, n_tx);
4435         x[0].tx_buf = local_buf;
4436         x[1].rx_buf = local_buf + n_tx;
4437
4438         /* Do the I/O */
4439         status = spi_sync(spi, &message);
4440         if (status == 0)
4441                 memcpy(rxbuf, x[1].rx_buf, n_rx);
4442
4443         if (x[0].tx_buf == buf)
4444                 mutex_unlock(&lock);
4445         else
4446                 kfree(local_buf);
4447
4448         return status;
4449 }
4450 EXPORT_SYMBOL_GPL(spi_write_then_read);
4451
4452 /*-------------------------------------------------------------------------*/
4453
4454 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4455 /* Must call put_device() when done with returned spi_device device */
4456 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4457 {
4458         struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4459
4460         return dev ? to_spi_device(dev) : NULL;
4461 }
4462
4463 /* The spi controllers are not using spi_bus, so we find it with another way */
4464 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4465 {
4466         struct device *dev;
4467
4468         dev = class_find_device_by_of_node(&spi_master_class, node);
4469         if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4470                 dev = class_find_device_by_of_node(&spi_slave_class, node);
4471         if (!dev)
4472                 return NULL;
4473
4474         /* Reference got in class_find_device */
4475         return container_of(dev, struct spi_controller, dev);
4476 }
4477
4478 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4479                          void *arg)
4480 {
4481         struct of_reconfig_data *rd = arg;
4482         struct spi_controller *ctlr;
4483         struct spi_device *spi;
4484
4485         switch (of_reconfig_get_state_change(action, arg)) {
4486         case OF_RECONFIG_CHANGE_ADD:
4487                 ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4488                 if (ctlr == NULL)
4489                         return NOTIFY_OK;       /* Not for us */
4490
4491                 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4492                         put_device(&ctlr->dev);
4493                         return NOTIFY_OK;
4494                 }
4495
4496                 /*
4497                  * Clear the flag before adding the device so that fw_devlink
4498                  * doesn't skip adding consumers to this device.
4499                  */
4500                 rd->dn->fwnode.flags &= ~FWNODE_FLAG_NOT_DEVICE;
4501                 spi = of_register_spi_device(ctlr, rd->dn);
4502                 put_device(&ctlr->dev);
4503
4504                 if (IS_ERR(spi)) {
4505                         pr_err("%s: failed to create for '%pOF'\n",
4506                                         __func__, rd->dn);
4507                         of_node_clear_flag(rd->dn, OF_POPULATED);
4508                         return notifier_from_errno(PTR_ERR(spi));
4509                 }
4510                 break;
4511
4512         case OF_RECONFIG_CHANGE_REMOVE:
4513                 /* Already depopulated? */
4514                 if (!of_node_check_flag(rd->dn, OF_POPULATED))
4515                         return NOTIFY_OK;
4516
4517                 /* Find our device by node */
4518                 spi = of_find_spi_device_by_node(rd->dn);
4519                 if (spi == NULL)
4520                         return NOTIFY_OK;       /* No? not meant for us */
4521
4522                 /* Unregister takes one ref away */
4523                 spi_unregister_device(spi);
4524
4525                 /* And put the reference of the find */
4526                 put_device(&spi->dev);
4527                 break;
4528         }
4529
4530         return NOTIFY_OK;
4531 }
4532
4533 static struct notifier_block spi_of_notifier = {
4534         .notifier_call = of_spi_notify,
4535 };
4536 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4537 extern struct notifier_block spi_of_notifier;
4538 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4539
4540 #if IS_ENABLED(CONFIG_ACPI)
4541 static int spi_acpi_controller_match(struct device *dev, const void *data)
4542 {
4543         return ACPI_COMPANION(dev->parent) == data;
4544 }
4545
4546 struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4547 {
4548         struct device *dev;
4549
4550         dev = class_find_device(&spi_master_class, NULL, adev,
4551                                 spi_acpi_controller_match);
4552         if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4553                 dev = class_find_device(&spi_slave_class, NULL, adev,
4554                                         spi_acpi_controller_match);
4555         if (!dev)
4556                 return NULL;
4557
4558         return container_of(dev, struct spi_controller, dev);
4559 }
4560 EXPORT_SYMBOL_GPL(acpi_spi_find_controller_by_adev);
4561
4562 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4563 {
4564         struct device *dev;
4565
4566         dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4567         return to_spi_device(dev);
4568 }
4569
4570 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4571                            void *arg)
4572 {
4573         struct acpi_device *adev = arg;
4574         struct spi_controller *ctlr;
4575         struct spi_device *spi;
4576
4577         switch (value) {
4578         case ACPI_RECONFIG_DEVICE_ADD:
4579                 ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev));
4580                 if (!ctlr)
4581                         break;
4582
4583                 acpi_register_spi_device(ctlr, adev);
4584                 put_device(&ctlr->dev);
4585                 break;
4586         case ACPI_RECONFIG_DEVICE_REMOVE:
4587                 if (!acpi_device_enumerated(adev))
4588                         break;
4589
4590                 spi = acpi_spi_find_device_by_adev(adev);
4591                 if (!spi)
4592                         break;
4593
4594                 spi_unregister_device(spi);
4595                 put_device(&spi->dev);
4596                 break;
4597         }
4598
4599         return NOTIFY_OK;
4600 }
4601
4602 static struct notifier_block spi_acpi_notifier = {
4603         .notifier_call = acpi_spi_notify,
4604 };
4605 #else
4606 extern struct notifier_block spi_acpi_notifier;
4607 #endif
4608
4609 static int __init spi_init(void)
4610 {
4611         int     status;
4612
4613         buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4614         if (!buf) {
4615                 status = -ENOMEM;
4616                 goto err0;
4617         }
4618
4619         status = bus_register(&spi_bus_type);
4620         if (status < 0)
4621                 goto err1;
4622
4623         status = class_register(&spi_master_class);
4624         if (status < 0)
4625                 goto err2;
4626
4627         if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4628                 status = class_register(&spi_slave_class);
4629                 if (status < 0)
4630                         goto err3;
4631         }
4632
4633         if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4634                 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4635         if (IS_ENABLED(CONFIG_ACPI))
4636                 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4637
4638         return 0;
4639
4640 err3:
4641         class_unregister(&spi_master_class);
4642 err2:
4643         bus_unregister(&spi_bus_type);
4644 err1:
4645         kfree(buf);
4646         buf = NULL;
4647 err0:
4648         return status;
4649 }
4650
4651 /*
4652  * A board_info is normally registered in arch_initcall(),
4653  * but even essential drivers wait till later.
4654  *
4655  * REVISIT only boardinfo really needs static linking. The rest (device and
4656  * driver registration) _could_ be dynamically linked (modular) ... Costs
4657  * include needing to have boardinfo data structures be much more public.
4658  */
4659 postcore_initcall(spi_init);