GNU Linux-libre 4.19.245-gnu1
[releases.git] / drivers / spi / spi.c
1 /*
2  * SPI init/core code
3  *
4  * Copyright (C) 2005 David Brownell
5  * Copyright (C) 2008 Secret Lab Technologies Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  */
17
18 #include <linux/kernel.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/cache.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/mutex.h>
25 #include <linux/of_device.h>
26 #include <linux/of_irq.h>
27 #include <linux/clk/clk-conf.h>
28 #include <linux/slab.h>
29 #include <linux/mod_devicetable.h>
30 #include <linux/spi/spi.h>
31 #include <linux/spi/spi-mem.h>
32 #include <linux/of_gpio.h>
33 #include <linux/pm_runtime.h>
34 #include <linux/pm_domain.h>
35 #include <linux/property.h>
36 #include <linux/export.h>
37 #include <linux/sched/rt.h>
38 #include <uapi/linux/sched/types.h>
39 #include <linux/delay.h>
40 #include <linux/kthread.h>
41 #include <linux/ioport.h>
42 #include <linux/acpi.h>
43 #include <linux/highmem.h>
44 #include <linux/idr.h>
45 #include <linux/platform_data/x86/apple.h>
46
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/spi.h>
49
50 #include "internals.h"
51
52 static DEFINE_IDR(spi_master_idr);
53
54 static void spidev_release(struct device *dev)
55 {
56         struct spi_device       *spi = to_spi_device(dev);
57
58         /* spi controllers may cleanup for released devices */
59         if (spi->controller->cleanup)
60                 spi->controller->cleanup(spi);
61
62         spi_controller_put(spi->controller);
63         kfree(spi);
64 }
65
66 static ssize_t
67 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
68 {
69         const struct spi_device *spi = to_spi_device(dev);
70         int len;
71
72         len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
73         if (len != -ENODEV)
74                 return len;
75
76         return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
77 }
78 static DEVICE_ATTR_RO(modalias);
79
80 #define SPI_STATISTICS_ATTRS(field, file)                               \
81 static ssize_t spi_controller_##field##_show(struct device *dev,        \
82                                              struct device_attribute *attr, \
83                                              char *buf)                 \
84 {                                                                       \
85         struct spi_controller *ctlr = container_of(dev,                 \
86                                          struct spi_controller, dev);   \
87         return spi_statistics_##field##_show(&ctlr->statistics, buf);   \
88 }                                                                       \
89 static struct device_attribute dev_attr_spi_controller_##field = {      \
90         .attr = { .name = file, .mode = 0444 },                         \
91         .show = spi_controller_##field##_show,                          \
92 };                                                                      \
93 static ssize_t spi_device_##field##_show(struct device *dev,            \
94                                          struct device_attribute *attr, \
95                                         char *buf)                      \
96 {                                                                       \
97         struct spi_device *spi = to_spi_device(dev);                    \
98         return spi_statistics_##field##_show(&spi->statistics, buf);    \
99 }                                                                       \
100 static struct device_attribute dev_attr_spi_device_##field = {          \
101         .attr = { .name = file, .mode = 0444 },                         \
102         .show = spi_device_##field##_show,                              \
103 }
104
105 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)      \
106 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
107                                             char *buf)                  \
108 {                                                                       \
109         unsigned long flags;                                            \
110         ssize_t len;                                                    \
111         spin_lock_irqsave(&stat->lock, flags);                          \
112         len = sprintf(buf, format_string, stat->field);                 \
113         spin_unlock_irqrestore(&stat->lock, flags);                     \
114         return len;                                                     \
115 }                                                                       \
116 SPI_STATISTICS_ATTRS(name, file)
117
118 #define SPI_STATISTICS_SHOW(field, format_string)                       \
119         SPI_STATISTICS_SHOW_NAME(field, __stringify(field),             \
120                                  field, format_string)
121
122 SPI_STATISTICS_SHOW(messages, "%lu");
123 SPI_STATISTICS_SHOW(transfers, "%lu");
124 SPI_STATISTICS_SHOW(errors, "%lu");
125 SPI_STATISTICS_SHOW(timedout, "%lu");
126
127 SPI_STATISTICS_SHOW(spi_sync, "%lu");
128 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
129 SPI_STATISTICS_SHOW(spi_async, "%lu");
130
131 SPI_STATISTICS_SHOW(bytes, "%llu");
132 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
133 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
134
135 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)              \
136         SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,           \
137                                  "transfer_bytes_histo_" number,        \
138                                  transfer_bytes_histo[index],  "%lu")
139 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
140 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
141 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
142 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
143 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
144 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
145 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
146 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
147 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
148 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
149 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
150 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
151 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
152 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
153 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
154 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
155 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
156
157 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
158
159 static struct attribute *spi_dev_attrs[] = {
160         &dev_attr_modalias.attr,
161         NULL,
162 };
163
164 static const struct attribute_group spi_dev_group = {
165         .attrs  = spi_dev_attrs,
166 };
167
168 static struct attribute *spi_device_statistics_attrs[] = {
169         &dev_attr_spi_device_messages.attr,
170         &dev_attr_spi_device_transfers.attr,
171         &dev_attr_spi_device_errors.attr,
172         &dev_attr_spi_device_timedout.attr,
173         &dev_attr_spi_device_spi_sync.attr,
174         &dev_attr_spi_device_spi_sync_immediate.attr,
175         &dev_attr_spi_device_spi_async.attr,
176         &dev_attr_spi_device_bytes.attr,
177         &dev_attr_spi_device_bytes_rx.attr,
178         &dev_attr_spi_device_bytes_tx.attr,
179         &dev_attr_spi_device_transfer_bytes_histo0.attr,
180         &dev_attr_spi_device_transfer_bytes_histo1.attr,
181         &dev_attr_spi_device_transfer_bytes_histo2.attr,
182         &dev_attr_spi_device_transfer_bytes_histo3.attr,
183         &dev_attr_spi_device_transfer_bytes_histo4.attr,
184         &dev_attr_spi_device_transfer_bytes_histo5.attr,
185         &dev_attr_spi_device_transfer_bytes_histo6.attr,
186         &dev_attr_spi_device_transfer_bytes_histo7.attr,
187         &dev_attr_spi_device_transfer_bytes_histo8.attr,
188         &dev_attr_spi_device_transfer_bytes_histo9.attr,
189         &dev_attr_spi_device_transfer_bytes_histo10.attr,
190         &dev_attr_spi_device_transfer_bytes_histo11.attr,
191         &dev_attr_spi_device_transfer_bytes_histo12.attr,
192         &dev_attr_spi_device_transfer_bytes_histo13.attr,
193         &dev_attr_spi_device_transfer_bytes_histo14.attr,
194         &dev_attr_spi_device_transfer_bytes_histo15.attr,
195         &dev_attr_spi_device_transfer_bytes_histo16.attr,
196         &dev_attr_spi_device_transfers_split_maxsize.attr,
197         NULL,
198 };
199
200 static const struct attribute_group spi_device_statistics_group = {
201         .name  = "statistics",
202         .attrs  = spi_device_statistics_attrs,
203 };
204
205 static const struct attribute_group *spi_dev_groups[] = {
206         &spi_dev_group,
207         &spi_device_statistics_group,
208         NULL,
209 };
210
211 static struct attribute *spi_controller_statistics_attrs[] = {
212         &dev_attr_spi_controller_messages.attr,
213         &dev_attr_spi_controller_transfers.attr,
214         &dev_attr_spi_controller_errors.attr,
215         &dev_attr_spi_controller_timedout.attr,
216         &dev_attr_spi_controller_spi_sync.attr,
217         &dev_attr_spi_controller_spi_sync_immediate.attr,
218         &dev_attr_spi_controller_spi_async.attr,
219         &dev_attr_spi_controller_bytes.attr,
220         &dev_attr_spi_controller_bytes_rx.attr,
221         &dev_attr_spi_controller_bytes_tx.attr,
222         &dev_attr_spi_controller_transfer_bytes_histo0.attr,
223         &dev_attr_spi_controller_transfer_bytes_histo1.attr,
224         &dev_attr_spi_controller_transfer_bytes_histo2.attr,
225         &dev_attr_spi_controller_transfer_bytes_histo3.attr,
226         &dev_attr_spi_controller_transfer_bytes_histo4.attr,
227         &dev_attr_spi_controller_transfer_bytes_histo5.attr,
228         &dev_attr_spi_controller_transfer_bytes_histo6.attr,
229         &dev_attr_spi_controller_transfer_bytes_histo7.attr,
230         &dev_attr_spi_controller_transfer_bytes_histo8.attr,
231         &dev_attr_spi_controller_transfer_bytes_histo9.attr,
232         &dev_attr_spi_controller_transfer_bytes_histo10.attr,
233         &dev_attr_spi_controller_transfer_bytes_histo11.attr,
234         &dev_attr_spi_controller_transfer_bytes_histo12.attr,
235         &dev_attr_spi_controller_transfer_bytes_histo13.attr,
236         &dev_attr_spi_controller_transfer_bytes_histo14.attr,
237         &dev_attr_spi_controller_transfer_bytes_histo15.attr,
238         &dev_attr_spi_controller_transfer_bytes_histo16.attr,
239         &dev_attr_spi_controller_transfers_split_maxsize.attr,
240         NULL,
241 };
242
243 static const struct attribute_group spi_controller_statistics_group = {
244         .name  = "statistics",
245         .attrs  = spi_controller_statistics_attrs,
246 };
247
248 static const struct attribute_group *spi_master_groups[] = {
249         &spi_controller_statistics_group,
250         NULL,
251 };
252
253 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
254                                        struct spi_transfer *xfer,
255                                        struct spi_controller *ctlr)
256 {
257         unsigned long flags;
258         int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
259
260         if (l2len < 0)
261                 l2len = 0;
262
263         spin_lock_irqsave(&stats->lock, flags);
264
265         stats->transfers++;
266         stats->transfer_bytes_histo[l2len]++;
267
268         stats->bytes += xfer->len;
269         if ((xfer->tx_buf) &&
270             (xfer->tx_buf != ctlr->dummy_tx))
271                 stats->bytes_tx += xfer->len;
272         if ((xfer->rx_buf) &&
273             (xfer->rx_buf != ctlr->dummy_rx))
274                 stats->bytes_rx += xfer->len;
275
276         spin_unlock_irqrestore(&stats->lock, flags);
277 }
278 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
279
280 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
281  * and the sysfs version makes coldplug work too.
282  */
283
284 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
285                                                 const struct spi_device *sdev)
286 {
287         while (id->name[0]) {
288                 if (!strcmp(sdev->modalias, id->name))
289                         return id;
290                 id++;
291         }
292         return NULL;
293 }
294
295 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
296 {
297         const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
298
299         return spi_match_id(sdrv->id_table, sdev);
300 }
301 EXPORT_SYMBOL_GPL(spi_get_device_id);
302
303 static int spi_match_device(struct device *dev, struct device_driver *drv)
304 {
305         const struct spi_device *spi = to_spi_device(dev);
306         const struct spi_driver *sdrv = to_spi_driver(drv);
307
308         /* Attempt an OF style match */
309         if (of_driver_match_device(dev, drv))
310                 return 1;
311
312         /* Then try ACPI */
313         if (acpi_driver_match_device(dev, drv))
314                 return 1;
315
316         if (sdrv->id_table)
317                 return !!spi_match_id(sdrv->id_table, spi);
318
319         return strcmp(spi->modalias, drv->name) == 0;
320 }
321
322 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
323 {
324         const struct spi_device         *spi = to_spi_device(dev);
325         int rc;
326
327         rc = acpi_device_uevent_modalias(dev, env);
328         if (rc != -ENODEV)
329                 return rc;
330
331         return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
332 }
333
334 struct bus_type spi_bus_type = {
335         .name           = "spi",
336         .dev_groups     = spi_dev_groups,
337         .match          = spi_match_device,
338         .uevent         = spi_uevent,
339 };
340 EXPORT_SYMBOL_GPL(spi_bus_type);
341
342
343 static int spi_drv_probe(struct device *dev)
344 {
345         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
346         struct spi_device               *spi = to_spi_device(dev);
347         int ret;
348
349         ret = of_clk_set_defaults(dev->of_node, false);
350         if (ret)
351                 return ret;
352
353         if (dev->of_node) {
354                 spi->irq = of_irq_get(dev->of_node, 0);
355                 if (spi->irq == -EPROBE_DEFER)
356                         return -EPROBE_DEFER;
357                 if (spi->irq < 0)
358                         spi->irq = 0;
359         }
360
361         ret = dev_pm_domain_attach(dev, true);
362         if (ret)
363                 return ret;
364
365         if (sdrv->probe) {
366                 ret = sdrv->probe(spi);
367                 if (ret)
368                         dev_pm_domain_detach(dev, true);
369         }
370
371         return ret;
372 }
373
374 static int spi_drv_remove(struct device *dev)
375 {
376         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
377         int ret = 0;
378
379         if (sdrv->remove)
380                 ret = sdrv->remove(to_spi_device(dev));
381         dev_pm_domain_detach(dev, true);
382
383         return ret;
384 }
385
386 static void spi_drv_shutdown(struct device *dev)
387 {
388         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
389
390         sdrv->shutdown(to_spi_device(dev));
391 }
392
393 /**
394  * __spi_register_driver - register a SPI driver
395  * @owner: owner module of the driver to register
396  * @sdrv: the driver to register
397  * Context: can sleep
398  *
399  * Return: zero on success, else a negative error code.
400  */
401 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
402 {
403         sdrv->driver.owner = owner;
404         sdrv->driver.bus = &spi_bus_type;
405         sdrv->driver.probe = spi_drv_probe;
406         sdrv->driver.remove = spi_drv_remove;
407         if (sdrv->shutdown)
408                 sdrv->driver.shutdown = spi_drv_shutdown;
409         return driver_register(&sdrv->driver);
410 }
411 EXPORT_SYMBOL_GPL(__spi_register_driver);
412
413 /*-------------------------------------------------------------------------*/
414
415 /* SPI devices should normally not be created by SPI device drivers; that
416  * would make them board-specific.  Similarly with SPI controller drivers.
417  * Device registration normally goes into like arch/.../mach.../board-YYY.c
418  * with other readonly (flashable) information about mainboard devices.
419  */
420
421 struct boardinfo {
422         struct list_head        list;
423         struct spi_board_info   board_info;
424 };
425
426 static LIST_HEAD(board_list);
427 static LIST_HEAD(spi_controller_list);
428
429 /*
430  * Used to protect add/del opertion for board_info list and
431  * spi_controller list, and their matching process
432  * also used to protect object of type struct idr
433  */
434 static DEFINE_MUTEX(board_lock);
435
436 /*
437  * Prevents addition of devices with same chip select and
438  * addition of devices below an unregistering controller.
439  */
440 static DEFINE_MUTEX(spi_add_lock);
441
442 /**
443  * spi_alloc_device - Allocate a new SPI device
444  * @ctlr: Controller to which device is connected
445  * Context: can sleep
446  *
447  * Allows a driver to allocate and initialize a spi_device without
448  * registering it immediately.  This allows a driver to directly
449  * fill the spi_device with device parameters before calling
450  * spi_add_device() on it.
451  *
452  * Caller is responsible to call spi_add_device() on the returned
453  * spi_device structure to add it to the SPI controller.  If the caller
454  * needs to discard the spi_device without adding it, then it should
455  * call spi_dev_put() on it.
456  *
457  * Return: a pointer to the new device, or NULL.
458  */
459 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
460 {
461         struct spi_device       *spi;
462
463         if (!spi_controller_get(ctlr))
464                 return NULL;
465
466         spi = kzalloc(sizeof(*spi), GFP_KERNEL);
467         if (!spi) {
468                 spi_controller_put(ctlr);
469                 return NULL;
470         }
471
472         spi->master = spi->controller = ctlr;
473         spi->dev.parent = &ctlr->dev;
474         spi->dev.bus = &spi_bus_type;
475         spi->dev.release = spidev_release;
476         spi->cs_gpio = -ENOENT;
477
478         spin_lock_init(&spi->statistics.lock);
479
480         device_initialize(&spi->dev);
481         return spi;
482 }
483 EXPORT_SYMBOL_GPL(spi_alloc_device);
484
485 static void spi_dev_set_name(struct spi_device *spi)
486 {
487         struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
488
489         if (adev) {
490                 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
491                 return;
492         }
493
494         dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
495                      spi->chip_select);
496 }
497
498 static int spi_dev_check(struct device *dev, void *data)
499 {
500         struct spi_device *spi = to_spi_device(dev);
501         struct spi_device *new_spi = data;
502
503         if (spi->controller == new_spi->controller &&
504             spi->chip_select == new_spi->chip_select)
505                 return -EBUSY;
506         return 0;
507 }
508
509 /**
510  * spi_add_device - Add spi_device allocated with spi_alloc_device
511  * @spi: spi_device to register
512  *
513  * Companion function to spi_alloc_device.  Devices allocated with
514  * spi_alloc_device can be added onto the spi bus with this function.
515  *
516  * Return: 0 on success; negative errno on failure
517  */
518 int spi_add_device(struct spi_device *spi)
519 {
520         struct spi_controller *ctlr = spi->controller;
521         struct device *dev = ctlr->dev.parent;
522         int status;
523
524         /* Chipselects are numbered 0..max; validate. */
525         if (spi->chip_select >= ctlr->num_chipselect) {
526                 dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
527                         ctlr->num_chipselect);
528                 return -EINVAL;
529         }
530
531         /* Set the bus ID string */
532         spi_dev_set_name(spi);
533
534         /* We need to make sure there's no other device with this
535          * chipselect **BEFORE** we call setup(), else we'll trash
536          * its configuration.  Lock against concurrent add() calls.
537          */
538         mutex_lock(&spi_add_lock);
539
540         status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
541         if (status) {
542                 dev_err(dev, "chipselect %d already in use\n",
543                                 spi->chip_select);
544                 goto done;
545         }
546
547         /* Controller may unregister concurrently */
548         if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
549             !device_is_registered(&ctlr->dev)) {
550                 status = -ENODEV;
551                 goto done;
552         }
553
554         if (ctlr->cs_gpios)
555                 spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
556
557         /* Drivers may modify this initial i/o setup, but will
558          * normally rely on the device being setup.  Devices
559          * using SPI_CS_HIGH can't coexist well otherwise...
560          */
561         status = spi_setup(spi);
562         if (status < 0) {
563                 dev_err(dev, "can't setup %s, status %d\n",
564                                 dev_name(&spi->dev), status);
565                 goto done;
566         }
567
568         /* Device may be bound to an active driver when this returns */
569         status = device_add(&spi->dev);
570         if (status < 0)
571                 dev_err(dev, "can't add %s, status %d\n",
572                                 dev_name(&spi->dev), status);
573         else
574                 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
575
576 done:
577         mutex_unlock(&spi_add_lock);
578         return status;
579 }
580 EXPORT_SYMBOL_GPL(spi_add_device);
581
582 /**
583  * spi_new_device - instantiate one new SPI device
584  * @ctlr: Controller to which device is connected
585  * @chip: Describes the SPI device
586  * Context: can sleep
587  *
588  * On typical mainboards, this is purely internal; and it's not needed
589  * after board init creates the hard-wired devices.  Some development
590  * platforms may not be able to use spi_register_board_info though, and
591  * this is exported so that for example a USB or parport based adapter
592  * driver could add devices (which it would learn about out-of-band).
593  *
594  * Return: the new device, or NULL.
595  */
596 struct spi_device *spi_new_device(struct spi_controller *ctlr,
597                                   struct spi_board_info *chip)
598 {
599         struct spi_device       *proxy;
600         int                     status;
601
602         /* NOTE:  caller did any chip->bus_num checks necessary.
603          *
604          * Also, unless we change the return value convention to use
605          * error-or-pointer (not NULL-or-pointer), troubleshootability
606          * suggests syslogged diagnostics are best here (ugh).
607          */
608
609         proxy = spi_alloc_device(ctlr);
610         if (!proxy)
611                 return NULL;
612
613         WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
614
615         proxy->chip_select = chip->chip_select;
616         proxy->max_speed_hz = chip->max_speed_hz;
617         proxy->mode = chip->mode;
618         proxy->irq = chip->irq;
619         strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
620         proxy->dev.platform_data = (void *) chip->platform_data;
621         proxy->controller_data = chip->controller_data;
622         proxy->controller_state = NULL;
623
624         if (chip->properties) {
625                 status = device_add_properties(&proxy->dev, chip->properties);
626                 if (status) {
627                         dev_err(&ctlr->dev,
628                                 "failed to add properties to '%s': %d\n",
629                                 chip->modalias, status);
630                         goto err_dev_put;
631                 }
632         }
633
634         status = spi_add_device(proxy);
635         if (status < 0)
636                 goto err_remove_props;
637
638         return proxy;
639
640 err_remove_props:
641         if (chip->properties)
642                 device_remove_properties(&proxy->dev);
643 err_dev_put:
644         spi_dev_put(proxy);
645         return NULL;
646 }
647 EXPORT_SYMBOL_GPL(spi_new_device);
648
649 /**
650  * spi_unregister_device - unregister a single SPI device
651  * @spi: spi_device to unregister
652  *
653  * Start making the passed SPI device vanish. Normally this would be handled
654  * by spi_unregister_controller().
655  */
656 void spi_unregister_device(struct spi_device *spi)
657 {
658         if (!spi)
659                 return;
660
661         if (spi->dev.of_node) {
662                 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
663                 of_node_put(spi->dev.of_node);
664         }
665         if (ACPI_COMPANION(&spi->dev))
666                 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
667         device_unregister(&spi->dev);
668 }
669 EXPORT_SYMBOL_GPL(spi_unregister_device);
670
671 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
672                                               struct spi_board_info *bi)
673 {
674         struct spi_device *dev;
675
676         if (ctlr->bus_num != bi->bus_num)
677                 return;
678
679         dev = spi_new_device(ctlr, bi);
680         if (!dev)
681                 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
682                         bi->modalias);
683 }
684
685 /**
686  * spi_register_board_info - register SPI devices for a given board
687  * @info: array of chip descriptors
688  * @n: how many descriptors are provided
689  * Context: can sleep
690  *
691  * Board-specific early init code calls this (probably during arch_initcall)
692  * with segments of the SPI device table.  Any device nodes are created later,
693  * after the relevant parent SPI controller (bus_num) is defined.  We keep
694  * this table of devices forever, so that reloading a controller driver will
695  * not make Linux forget about these hard-wired devices.
696  *
697  * Other code can also call this, e.g. a particular add-on board might provide
698  * SPI devices through its expansion connector, so code initializing that board
699  * would naturally declare its SPI devices.
700  *
701  * The board info passed can safely be __initdata ... but be careful of
702  * any embedded pointers (platform_data, etc), they're copied as-is.
703  * Device properties are deep-copied though.
704  *
705  * Return: zero on success, else a negative error code.
706  */
707 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
708 {
709         struct boardinfo *bi;
710         int i;
711
712         if (!n)
713                 return 0;
714
715         bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
716         if (!bi)
717                 return -ENOMEM;
718
719         for (i = 0; i < n; i++, bi++, info++) {
720                 struct spi_controller *ctlr;
721
722                 memcpy(&bi->board_info, info, sizeof(*info));
723                 if (info->properties) {
724                         bi->board_info.properties =
725                                         property_entries_dup(info->properties);
726                         if (IS_ERR(bi->board_info.properties))
727                                 return PTR_ERR(bi->board_info.properties);
728                 }
729
730                 mutex_lock(&board_lock);
731                 list_add_tail(&bi->list, &board_list);
732                 list_for_each_entry(ctlr, &spi_controller_list, list)
733                         spi_match_controller_to_boardinfo(ctlr,
734                                                           &bi->board_info);
735                 mutex_unlock(&board_lock);
736         }
737
738         return 0;
739 }
740
741 /*-------------------------------------------------------------------------*/
742
743 static void spi_set_cs(struct spi_device *spi, bool enable)
744 {
745         if (spi->mode & SPI_CS_HIGH)
746                 enable = !enable;
747
748         if (gpio_is_valid(spi->cs_gpio)) {
749                 gpio_set_value(spi->cs_gpio, !enable);
750                 /* Some SPI masters need both GPIO CS & slave_select */
751                 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
752                     spi->controller->set_cs)
753                         spi->controller->set_cs(spi, !enable);
754         } else if (spi->controller->set_cs) {
755                 spi->controller->set_cs(spi, !enable);
756         }
757 }
758
759 #ifdef CONFIG_HAS_DMA
760 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
761                 struct sg_table *sgt, void *buf, size_t len,
762                 enum dma_data_direction dir)
763 {
764         const bool vmalloced_buf = is_vmalloc_addr(buf);
765         unsigned int max_seg_size = dma_get_max_seg_size(dev);
766 #ifdef CONFIG_HIGHMEM
767         const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
768                                 (unsigned long)buf < (PKMAP_BASE +
769                                         (LAST_PKMAP * PAGE_SIZE)));
770 #else
771         const bool kmap_buf = false;
772 #endif
773         int desc_len;
774         int sgs;
775         struct page *vm_page;
776         struct scatterlist *sg;
777         void *sg_buf;
778         size_t min;
779         int i, ret;
780
781         if (vmalloced_buf || kmap_buf) {
782                 desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE);
783                 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
784         } else if (virt_addr_valid(buf)) {
785                 desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len);
786                 sgs = DIV_ROUND_UP(len, desc_len);
787         } else {
788                 return -EINVAL;
789         }
790
791         ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
792         if (ret != 0)
793                 return ret;
794
795         sg = &sgt->sgl[0];
796         for (i = 0; i < sgs; i++) {
797
798                 if (vmalloced_buf || kmap_buf) {
799                         /*
800                          * Next scatterlist entry size is the minimum between
801                          * the desc_len and the remaining buffer length that
802                          * fits in a page.
803                          */
804                         min = min_t(size_t, desc_len,
805                                     min_t(size_t, len,
806                                           PAGE_SIZE - offset_in_page(buf)));
807                         if (vmalloced_buf)
808                                 vm_page = vmalloc_to_page(buf);
809                         else
810                                 vm_page = kmap_to_page(buf);
811                         if (!vm_page) {
812                                 sg_free_table(sgt);
813                                 return -ENOMEM;
814                         }
815                         sg_set_page(sg, vm_page,
816                                     min, offset_in_page(buf));
817                 } else {
818                         min = min_t(size_t, len, desc_len);
819                         sg_buf = buf;
820                         sg_set_buf(sg, sg_buf, min);
821                 }
822
823                 buf += min;
824                 len -= min;
825                 sg = sg_next(sg);
826         }
827
828         ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
829         if (!ret)
830                 ret = -ENOMEM;
831         if (ret < 0) {
832                 sg_free_table(sgt);
833                 return ret;
834         }
835
836         sgt->nents = ret;
837
838         return 0;
839 }
840
841 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
842                    struct sg_table *sgt, enum dma_data_direction dir)
843 {
844         if (sgt->orig_nents) {
845                 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
846                 sg_free_table(sgt);
847         }
848 }
849
850 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
851 {
852         struct device *tx_dev, *rx_dev;
853         struct spi_transfer *xfer;
854         int ret;
855
856         if (!ctlr->can_dma)
857                 return 0;
858
859         if (ctlr->dma_tx)
860                 tx_dev = ctlr->dma_tx->device->dev;
861         else
862                 tx_dev = ctlr->dev.parent;
863
864         if (ctlr->dma_rx)
865                 rx_dev = ctlr->dma_rx->device->dev;
866         else
867                 rx_dev = ctlr->dev.parent;
868
869         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
870                 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
871                         continue;
872
873                 if (xfer->tx_buf != NULL) {
874                         ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
875                                           (void *)xfer->tx_buf, xfer->len,
876                                           DMA_TO_DEVICE);
877                         if (ret != 0)
878                                 return ret;
879                 }
880
881                 if (xfer->rx_buf != NULL) {
882                         ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
883                                           xfer->rx_buf, xfer->len,
884                                           DMA_FROM_DEVICE);
885                         if (ret != 0) {
886                                 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
887                                               DMA_TO_DEVICE);
888                                 return ret;
889                         }
890                 }
891         }
892
893         ctlr->cur_msg_mapped = true;
894
895         return 0;
896 }
897
898 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
899 {
900         struct spi_transfer *xfer;
901         struct device *tx_dev, *rx_dev;
902
903         if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
904                 return 0;
905
906         if (ctlr->dma_tx)
907                 tx_dev = ctlr->dma_tx->device->dev;
908         else
909                 tx_dev = ctlr->dev.parent;
910
911         if (ctlr->dma_rx)
912                 rx_dev = ctlr->dma_rx->device->dev;
913         else
914                 rx_dev = ctlr->dev.parent;
915
916         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
917                 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
918                         continue;
919
920                 spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
921                 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
922         }
923
924         return 0;
925 }
926 #else /* !CONFIG_HAS_DMA */
927 static inline int __spi_map_msg(struct spi_controller *ctlr,
928                                 struct spi_message *msg)
929 {
930         return 0;
931 }
932
933 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
934                                   struct spi_message *msg)
935 {
936         return 0;
937 }
938 #endif /* !CONFIG_HAS_DMA */
939
940 static inline int spi_unmap_msg(struct spi_controller *ctlr,
941                                 struct spi_message *msg)
942 {
943         struct spi_transfer *xfer;
944
945         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
946                 /*
947                  * Restore the original value of tx_buf or rx_buf if they are
948                  * NULL.
949                  */
950                 if (xfer->tx_buf == ctlr->dummy_tx)
951                         xfer->tx_buf = NULL;
952                 if (xfer->rx_buf == ctlr->dummy_rx)
953                         xfer->rx_buf = NULL;
954         }
955
956         return __spi_unmap_msg(ctlr, msg);
957 }
958
959 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
960 {
961         struct spi_transfer *xfer;
962         void *tmp;
963         unsigned int max_tx, max_rx;
964
965         if (ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) {
966                 max_tx = 0;
967                 max_rx = 0;
968
969                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
970                         if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
971                             !xfer->tx_buf)
972                                 max_tx = max(xfer->len, max_tx);
973                         if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
974                             !xfer->rx_buf)
975                                 max_rx = max(xfer->len, max_rx);
976                 }
977
978                 if (max_tx) {
979                         tmp = krealloc(ctlr->dummy_tx, max_tx,
980                                        GFP_KERNEL | GFP_DMA);
981                         if (!tmp)
982                                 return -ENOMEM;
983                         ctlr->dummy_tx = tmp;
984                         memset(tmp, 0, max_tx);
985                 }
986
987                 if (max_rx) {
988                         tmp = krealloc(ctlr->dummy_rx, max_rx,
989                                        GFP_KERNEL | GFP_DMA);
990                         if (!tmp)
991                                 return -ENOMEM;
992                         ctlr->dummy_rx = tmp;
993                 }
994
995                 if (max_tx || max_rx) {
996                         list_for_each_entry(xfer, &msg->transfers,
997                                             transfer_list) {
998                                 if (!xfer->len)
999                                         continue;
1000                                 if (!xfer->tx_buf)
1001                                         xfer->tx_buf = ctlr->dummy_tx;
1002                                 if (!xfer->rx_buf)
1003                                         xfer->rx_buf = ctlr->dummy_rx;
1004                         }
1005                 }
1006         }
1007
1008         return __spi_map_msg(ctlr, msg);
1009 }
1010
1011 /*
1012  * spi_transfer_one_message - Default implementation of transfer_one_message()
1013  *
1014  * This is a standard implementation of transfer_one_message() for
1015  * drivers which implement a transfer_one() operation.  It provides
1016  * standard handling of delays and chip select management.
1017  */
1018 static int spi_transfer_one_message(struct spi_controller *ctlr,
1019                                     struct spi_message *msg)
1020 {
1021         struct spi_transfer *xfer;
1022         bool keep_cs = false;
1023         int ret = 0;
1024         unsigned long long ms = 1;
1025         struct spi_statistics *statm = &ctlr->statistics;
1026         struct spi_statistics *stats = &msg->spi->statistics;
1027
1028         spi_set_cs(msg->spi, true);
1029
1030         SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1031         SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1032
1033         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1034                 trace_spi_transfer_start(msg, xfer);
1035
1036                 spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1037                 spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1038
1039                 if (xfer->tx_buf || xfer->rx_buf) {
1040                         reinit_completion(&ctlr->xfer_completion);
1041
1042                         ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1043                         if (ret < 0) {
1044                                 SPI_STATISTICS_INCREMENT_FIELD(statm,
1045                                                                errors);
1046                                 SPI_STATISTICS_INCREMENT_FIELD(stats,
1047                                                                errors);
1048                                 dev_err(&msg->spi->dev,
1049                                         "SPI transfer failed: %d\n", ret);
1050                                 goto out;
1051                         }
1052
1053                         if (ret > 0) {
1054                                 ret = 0;
1055                                 ms = 8LL * 1000LL * xfer->len;
1056                                 do_div(ms, xfer->speed_hz);
1057                                 ms += ms + 200; /* some tolerance */
1058
1059                                 if (ms > UINT_MAX)
1060                                         ms = UINT_MAX;
1061
1062                                 ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1063                                                                  msecs_to_jiffies(ms));
1064                         }
1065
1066                         if (ms == 0) {
1067                                 SPI_STATISTICS_INCREMENT_FIELD(statm,
1068                                                                timedout);
1069                                 SPI_STATISTICS_INCREMENT_FIELD(stats,
1070                                                                timedout);
1071                                 dev_err(&msg->spi->dev,
1072                                         "SPI transfer timed out\n");
1073                                 msg->status = -ETIMEDOUT;
1074                         }
1075                 } else {
1076                         if (xfer->len)
1077                                 dev_err(&msg->spi->dev,
1078                                         "Bufferless transfer has length %u\n",
1079                                         xfer->len);
1080                 }
1081
1082                 trace_spi_transfer_stop(msg, xfer);
1083
1084                 if (msg->status != -EINPROGRESS)
1085                         goto out;
1086
1087                 if (xfer->delay_usecs) {
1088                         u16 us = xfer->delay_usecs;
1089
1090                         if (us <= 10)
1091                                 udelay(us);
1092                         else
1093                                 usleep_range(us, us + DIV_ROUND_UP(us, 10));
1094                 }
1095
1096                 if (xfer->cs_change) {
1097                         if (list_is_last(&xfer->transfer_list,
1098                                          &msg->transfers)) {
1099                                 keep_cs = true;
1100                         } else {
1101                                 spi_set_cs(msg->spi, false);
1102                                 udelay(10);
1103                                 spi_set_cs(msg->spi, true);
1104                         }
1105                 }
1106
1107                 msg->actual_length += xfer->len;
1108         }
1109
1110 out:
1111         if (ret != 0 || !keep_cs)
1112                 spi_set_cs(msg->spi, false);
1113
1114         if (msg->status == -EINPROGRESS)
1115                 msg->status = ret;
1116
1117         if (msg->status && ctlr->handle_err)
1118                 ctlr->handle_err(ctlr, msg);
1119
1120         spi_finalize_current_message(ctlr);
1121
1122         return ret;
1123 }
1124
1125 /**
1126  * spi_finalize_current_transfer - report completion of a transfer
1127  * @ctlr: the controller reporting completion
1128  *
1129  * Called by SPI drivers using the core transfer_one_message()
1130  * implementation to notify it that the current interrupt driven
1131  * transfer has finished and the next one may be scheduled.
1132  */
1133 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1134 {
1135         complete(&ctlr->xfer_completion);
1136 }
1137 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1138
1139 /**
1140  * __spi_pump_messages - function which processes spi message queue
1141  * @ctlr: controller to process queue for
1142  * @in_kthread: true if we are in the context of the message pump thread
1143  *
1144  * This function checks if there is any spi message in the queue that
1145  * needs processing and if so call out to the driver to initialize hardware
1146  * and transfer each message.
1147  *
1148  * Note that it is called both from the kthread itself and also from
1149  * inside spi_sync(); the queue extraction handling at the top of the
1150  * function should deal with this safely.
1151  */
1152 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1153 {
1154         unsigned long flags;
1155         bool was_busy = false;
1156         int ret;
1157
1158         /* Lock queue */
1159         spin_lock_irqsave(&ctlr->queue_lock, flags);
1160
1161         /* Make sure we are not already running a message */
1162         if (ctlr->cur_msg) {
1163                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1164                 return;
1165         }
1166
1167         /* If another context is idling the device then defer */
1168         if (ctlr->idling) {
1169                 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1170                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1171                 return;
1172         }
1173
1174         /* Check if the queue is idle */
1175         if (list_empty(&ctlr->queue) || !ctlr->running) {
1176                 if (!ctlr->busy) {
1177                         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1178                         return;
1179                 }
1180
1181                 /* Only do teardown in the thread */
1182                 if (!in_kthread) {
1183                         kthread_queue_work(&ctlr->kworker,
1184                                            &ctlr->pump_messages);
1185                         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1186                         return;
1187                 }
1188
1189                 ctlr->busy = false;
1190                 ctlr->idling = true;
1191                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1192
1193                 kfree(ctlr->dummy_rx);
1194                 ctlr->dummy_rx = NULL;
1195                 kfree(ctlr->dummy_tx);
1196                 ctlr->dummy_tx = NULL;
1197                 if (ctlr->unprepare_transfer_hardware &&
1198                     ctlr->unprepare_transfer_hardware(ctlr))
1199                         dev_err(&ctlr->dev,
1200                                 "failed to unprepare transfer hardware\n");
1201                 if (ctlr->auto_runtime_pm) {
1202                         pm_runtime_mark_last_busy(ctlr->dev.parent);
1203                         pm_runtime_put_autosuspend(ctlr->dev.parent);
1204                 }
1205                 trace_spi_controller_idle(ctlr);
1206
1207                 spin_lock_irqsave(&ctlr->queue_lock, flags);
1208                 ctlr->idling = false;
1209                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1210                 return;
1211         }
1212
1213         /* Extract head of queue */
1214         ctlr->cur_msg =
1215                 list_first_entry(&ctlr->queue, struct spi_message, queue);
1216
1217         list_del_init(&ctlr->cur_msg->queue);
1218         if (ctlr->busy)
1219                 was_busy = true;
1220         else
1221                 ctlr->busy = true;
1222         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1223
1224         mutex_lock(&ctlr->io_mutex);
1225
1226         if (!was_busy && ctlr->auto_runtime_pm) {
1227                 ret = pm_runtime_get_sync(ctlr->dev.parent);
1228                 if (ret < 0) {
1229                         pm_runtime_put_noidle(ctlr->dev.parent);
1230                         dev_err(&ctlr->dev, "Failed to power device: %d\n",
1231                                 ret);
1232                         mutex_unlock(&ctlr->io_mutex);
1233                         return;
1234                 }
1235         }
1236
1237         if (!was_busy)
1238                 trace_spi_controller_busy(ctlr);
1239
1240         if (!was_busy && ctlr->prepare_transfer_hardware) {
1241                 ret = ctlr->prepare_transfer_hardware(ctlr);
1242                 if (ret) {
1243                         dev_err(&ctlr->dev,
1244                                 "failed to prepare transfer hardware\n");
1245
1246                         if (ctlr->auto_runtime_pm)
1247                                 pm_runtime_put(ctlr->dev.parent);
1248                         mutex_unlock(&ctlr->io_mutex);
1249                         return;
1250                 }
1251         }
1252
1253         trace_spi_message_start(ctlr->cur_msg);
1254
1255         if (ctlr->prepare_message) {
1256                 ret = ctlr->prepare_message(ctlr, ctlr->cur_msg);
1257                 if (ret) {
1258                         dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1259                                 ret);
1260                         ctlr->cur_msg->status = ret;
1261                         spi_finalize_current_message(ctlr);
1262                         goto out;
1263                 }
1264                 ctlr->cur_msg_prepared = true;
1265         }
1266
1267         ret = spi_map_msg(ctlr, ctlr->cur_msg);
1268         if (ret) {
1269                 ctlr->cur_msg->status = ret;
1270                 spi_finalize_current_message(ctlr);
1271                 goto out;
1272         }
1273
1274         ret = ctlr->transfer_one_message(ctlr, ctlr->cur_msg);
1275         if (ret) {
1276                 dev_err(&ctlr->dev,
1277                         "failed to transfer one message from queue\n");
1278                 goto out;
1279         }
1280
1281 out:
1282         mutex_unlock(&ctlr->io_mutex);
1283
1284         /* Prod the scheduler in case transfer_one() was busy waiting */
1285         if (!ret)
1286                 cond_resched();
1287 }
1288
1289 /**
1290  * spi_pump_messages - kthread work function which processes spi message queue
1291  * @work: pointer to kthread work struct contained in the controller struct
1292  */
1293 static void spi_pump_messages(struct kthread_work *work)
1294 {
1295         struct spi_controller *ctlr =
1296                 container_of(work, struct spi_controller, pump_messages);
1297
1298         __spi_pump_messages(ctlr, true);
1299 }
1300
1301 static int spi_init_queue(struct spi_controller *ctlr)
1302 {
1303         struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1304
1305         ctlr->running = false;
1306         ctlr->busy = false;
1307
1308         kthread_init_worker(&ctlr->kworker);
1309         ctlr->kworker_task = kthread_run(kthread_worker_fn, &ctlr->kworker,
1310                                          "%s", dev_name(&ctlr->dev));
1311         if (IS_ERR(ctlr->kworker_task)) {
1312                 dev_err(&ctlr->dev, "failed to create message pump task\n");
1313                 return PTR_ERR(ctlr->kworker_task);
1314         }
1315         kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1316
1317         /*
1318          * Controller config will indicate if this controller should run the
1319          * message pump with high (realtime) priority to reduce the transfer
1320          * latency on the bus by minimising the delay between a transfer
1321          * request and the scheduling of the message pump thread. Without this
1322          * setting the message pump thread will remain at default priority.
1323          */
1324         if (ctlr->rt) {
1325                 dev_info(&ctlr->dev,
1326                         "will run message pump with realtime priority\n");
1327                 sched_setscheduler(ctlr->kworker_task, SCHED_FIFO, &param);
1328         }
1329
1330         return 0;
1331 }
1332
1333 /**
1334  * spi_get_next_queued_message() - called by driver to check for queued
1335  * messages
1336  * @ctlr: the controller to check for queued messages
1337  *
1338  * If there are more messages in the queue, the next message is returned from
1339  * this call.
1340  *
1341  * Return: the next message in the queue, else NULL if the queue is empty.
1342  */
1343 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1344 {
1345         struct spi_message *next;
1346         unsigned long flags;
1347
1348         /* get a pointer to the next message, if any */
1349         spin_lock_irqsave(&ctlr->queue_lock, flags);
1350         next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1351                                         queue);
1352         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1353
1354         return next;
1355 }
1356 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1357
1358 /**
1359  * spi_finalize_current_message() - the current message is complete
1360  * @ctlr: the controller to return the message to
1361  *
1362  * Called by the driver to notify the core that the message in the front of the
1363  * queue is complete and can be removed from the queue.
1364  */
1365 void spi_finalize_current_message(struct spi_controller *ctlr)
1366 {
1367         struct spi_message *mesg;
1368         unsigned long flags;
1369         int ret;
1370
1371         spin_lock_irqsave(&ctlr->queue_lock, flags);
1372         mesg = ctlr->cur_msg;
1373         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1374
1375         spi_unmap_msg(ctlr, mesg);
1376
1377         /* In the prepare_messages callback the spi bus has the opportunity to
1378          * split a transfer to smaller chunks.
1379          * Release splited transfers here since spi_map_msg is done on the
1380          * splited transfers.
1381          */
1382         spi_res_release(ctlr, mesg);
1383
1384         if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1385                 ret = ctlr->unprepare_message(ctlr, mesg);
1386                 if (ret) {
1387                         dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1388                                 ret);
1389                 }
1390         }
1391
1392         spin_lock_irqsave(&ctlr->queue_lock, flags);
1393         ctlr->cur_msg = NULL;
1394         ctlr->cur_msg_prepared = false;
1395         kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1396         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1397
1398         trace_spi_message_done(mesg);
1399
1400         mesg->state = NULL;
1401         if (mesg->complete)
1402                 mesg->complete(mesg->context);
1403 }
1404 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1405
1406 static int spi_start_queue(struct spi_controller *ctlr)
1407 {
1408         unsigned long flags;
1409
1410         spin_lock_irqsave(&ctlr->queue_lock, flags);
1411
1412         if (ctlr->running || ctlr->busy) {
1413                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1414                 return -EBUSY;
1415         }
1416
1417         ctlr->running = true;
1418         ctlr->cur_msg = NULL;
1419         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1420
1421         kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1422
1423         return 0;
1424 }
1425
1426 static int spi_stop_queue(struct spi_controller *ctlr)
1427 {
1428         unsigned long flags;
1429         unsigned limit = 500;
1430         int ret = 0;
1431
1432         spin_lock_irqsave(&ctlr->queue_lock, flags);
1433
1434         /*
1435          * This is a bit lame, but is optimized for the common execution path.
1436          * A wait_queue on the ctlr->busy could be used, but then the common
1437          * execution path (pump_messages) would be required to call wake_up or
1438          * friends on every SPI message. Do this instead.
1439          */
1440         while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1441                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1442                 usleep_range(10000, 11000);
1443                 spin_lock_irqsave(&ctlr->queue_lock, flags);
1444         }
1445
1446         if (!list_empty(&ctlr->queue) || ctlr->busy)
1447                 ret = -EBUSY;
1448         else
1449                 ctlr->running = false;
1450
1451         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1452
1453         if (ret) {
1454                 dev_warn(&ctlr->dev, "could not stop message queue\n");
1455                 return ret;
1456         }
1457         return ret;
1458 }
1459
1460 static int spi_destroy_queue(struct spi_controller *ctlr)
1461 {
1462         int ret;
1463
1464         ret = spi_stop_queue(ctlr);
1465
1466         /*
1467          * kthread_flush_worker will block until all work is done.
1468          * If the reason that stop_queue timed out is that the work will never
1469          * finish, then it does no good to call flush/stop thread, so
1470          * return anyway.
1471          */
1472         if (ret) {
1473                 dev_err(&ctlr->dev, "problem destroying queue\n");
1474                 return ret;
1475         }
1476
1477         kthread_flush_worker(&ctlr->kworker);
1478         kthread_stop(ctlr->kworker_task);
1479
1480         return 0;
1481 }
1482
1483 static int __spi_queued_transfer(struct spi_device *spi,
1484                                  struct spi_message *msg,
1485                                  bool need_pump)
1486 {
1487         struct spi_controller *ctlr = spi->controller;
1488         unsigned long flags;
1489
1490         spin_lock_irqsave(&ctlr->queue_lock, flags);
1491
1492         if (!ctlr->running) {
1493                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1494                 return -ESHUTDOWN;
1495         }
1496         msg->actual_length = 0;
1497         msg->status = -EINPROGRESS;
1498
1499         list_add_tail(&msg->queue, &ctlr->queue);
1500         if (!ctlr->busy && need_pump)
1501                 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1502
1503         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1504         return 0;
1505 }
1506
1507 /**
1508  * spi_queued_transfer - transfer function for queued transfers
1509  * @spi: spi device which is requesting transfer
1510  * @msg: spi message which is to handled is queued to driver queue
1511  *
1512  * Return: zero on success, else a negative error code.
1513  */
1514 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1515 {
1516         return __spi_queued_transfer(spi, msg, true);
1517 }
1518
1519 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1520 {
1521         int ret;
1522
1523         ctlr->transfer = spi_queued_transfer;
1524         if (!ctlr->transfer_one_message)
1525                 ctlr->transfer_one_message = spi_transfer_one_message;
1526
1527         /* Initialize and start queue */
1528         ret = spi_init_queue(ctlr);
1529         if (ret) {
1530                 dev_err(&ctlr->dev, "problem initializing queue\n");
1531                 goto err_init_queue;
1532         }
1533         ctlr->queued = true;
1534         ret = spi_start_queue(ctlr);
1535         if (ret) {
1536                 dev_err(&ctlr->dev, "problem starting queue\n");
1537                 goto err_start_queue;
1538         }
1539
1540         return 0;
1541
1542 err_start_queue:
1543         spi_destroy_queue(ctlr);
1544 err_init_queue:
1545         return ret;
1546 }
1547
1548 /**
1549  * spi_flush_queue - Send all pending messages in the queue from the callers'
1550  *                   context
1551  * @ctlr: controller to process queue for
1552  *
1553  * This should be used when one wants to ensure all pending messages have been
1554  * sent before doing something. Is used by the spi-mem code to make sure SPI
1555  * memory operations do not preempt regular SPI transfers that have been queued
1556  * before the spi-mem operation.
1557  */
1558 void spi_flush_queue(struct spi_controller *ctlr)
1559 {
1560         if (ctlr->transfer == spi_queued_transfer)
1561                 __spi_pump_messages(ctlr, false);
1562 }
1563
1564 /*-------------------------------------------------------------------------*/
1565
1566 #if defined(CONFIG_OF)
1567 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1568                            struct device_node *nc)
1569 {
1570         u32 value;
1571         int rc;
1572
1573         /* Mode (clock phase/polarity/etc.) */
1574         if (of_property_read_bool(nc, "spi-cpha"))
1575                 spi->mode |= SPI_CPHA;
1576         if (of_property_read_bool(nc, "spi-cpol"))
1577                 spi->mode |= SPI_CPOL;
1578         if (of_property_read_bool(nc, "spi-cs-high"))
1579                 spi->mode |= SPI_CS_HIGH;
1580         if (of_property_read_bool(nc, "spi-3wire"))
1581                 spi->mode |= SPI_3WIRE;
1582         if (of_property_read_bool(nc, "spi-lsb-first"))
1583                 spi->mode |= SPI_LSB_FIRST;
1584
1585         /* Device DUAL/QUAD mode */
1586         if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1587                 switch (value) {
1588                 case 1:
1589                         break;
1590                 case 2:
1591                         spi->mode |= SPI_TX_DUAL;
1592                         break;
1593                 case 4:
1594                         spi->mode |= SPI_TX_QUAD;
1595                         break;
1596                 default:
1597                         dev_warn(&ctlr->dev,
1598                                 "spi-tx-bus-width %d not supported\n",
1599                                 value);
1600                         break;
1601                 }
1602         }
1603
1604         if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1605                 switch (value) {
1606                 case 1:
1607                         break;
1608                 case 2:
1609                         spi->mode |= SPI_RX_DUAL;
1610                         break;
1611                 case 4:
1612                         spi->mode |= SPI_RX_QUAD;
1613                         break;
1614                 default:
1615                         dev_warn(&ctlr->dev,
1616                                 "spi-rx-bus-width %d not supported\n",
1617                                 value);
1618                         break;
1619                 }
1620         }
1621
1622         if (spi_controller_is_slave(ctlr)) {
1623                 if (strcmp(nc->name, "slave")) {
1624                         dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
1625                                 nc);
1626                         return -EINVAL;
1627                 }
1628                 return 0;
1629         }
1630
1631         /* Device address */
1632         rc = of_property_read_u32(nc, "reg", &value);
1633         if (rc) {
1634                 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
1635                         nc, rc);
1636                 return rc;
1637         }
1638         spi->chip_select = value;
1639
1640         /* Device speed */
1641         rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1642         if (rc) {
1643                 dev_err(&ctlr->dev,
1644                         "%pOF has no valid 'spi-max-frequency' property (%d)\n", nc, rc);
1645                 return rc;
1646         }
1647         spi->max_speed_hz = value;
1648
1649         return 0;
1650 }
1651
1652 static struct spi_device *
1653 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
1654 {
1655         struct spi_device *spi;
1656         int rc;
1657
1658         /* Alloc an spi_device */
1659         spi = spi_alloc_device(ctlr);
1660         if (!spi) {
1661                 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
1662                 rc = -ENOMEM;
1663                 goto err_out;
1664         }
1665
1666         /* Select device driver */
1667         rc = of_modalias_node(nc, spi->modalias,
1668                                 sizeof(spi->modalias));
1669         if (rc < 0) {
1670                 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
1671                 goto err_out;
1672         }
1673
1674         rc = of_spi_parse_dt(ctlr, spi, nc);
1675         if (rc)
1676                 goto err_out;
1677
1678         /* Store a pointer to the node in the device structure */
1679         of_node_get(nc);
1680         spi->dev.of_node = nc;
1681         spi->dev.fwnode = of_fwnode_handle(nc);
1682
1683         /* Register the new device */
1684         rc = spi_add_device(spi);
1685         if (rc) {
1686                 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
1687                 goto err_of_node_put;
1688         }
1689
1690         return spi;
1691
1692 err_of_node_put:
1693         of_node_put(nc);
1694 err_out:
1695         spi_dev_put(spi);
1696         return ERR_PTR(rc);
1697 }
1698
1699 /**
1700  * of_register_spi_devices() - Register child devices onto the SPI bus
1701  * @ctlr:       Pointer to spi_controller device
1702  *
1703  * Registers an spi_device for each child node of controller node which
1704  * represents a valid SPI slave.
1705  */
1706 static void of_register_spi_devices(struct spi_controller *ctlr)
1707 {
1708         struct spi_device *spi;
1709         struct device_node *nc;
1710
1711         if (!ctlr->dev.of_node)
1712                 return;
1713
1714         for_each_available_child_of_node(ctlr->dev.of_node, nc) {
1715                 if (of_node_test_and_set_flag(nc, OF_POPULATED))
1716                         continue;
1717                 spi = of_register_spi_device(ctlr, nc);
1718                 if (IS_ERR(spi)) {
1719                         dev_warn(&ctlr->dev,
1720                                  "Failed to create SPI device for %pOF\n", nc);
1721                         of_node_clear_flag(nc, OF_POPULATED);
1722                 }
1723         }
1724 }
1725 #else
1726 static void of_register_spi_devices(struct spi_controller *ctlr) { }
1727 #endif
1728
1729 #ifdef CONFIG_ACPI
1730 static void acpi_spi_parse_apple_properties(struct spi_device *spi)
1731 {
1732         struct acpi_device *dev = ACPI_COMPANION(&spi->dev);
1733         const union acpi_object *obj;
1734
1735         if (!x86_apple_machine)
1736                 return;
1737
1738         if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
1739             && obj->buffer.length >= 4)
1740                 spi->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
1741
1742         if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
1743             && obj->buffer.length == 8)
1744                 spi->bits_per_word = *(u64 *)obj->buffer.pointer;
1745
1746         if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
1747             && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
1748                 spi->mode |= SPI_LSB_FIRST;
1749
1750         if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
1751             && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
1752                 spi->mode |= SPI_CPOL;
1753
1754         if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
1755             && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
1756                 spi->mode |= SPI_CPHA;
1757 }
1758
1759 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1760 {
1761         struct spi_device *spi = data;
1762         struct spi_controller *ctlr = spi->controller;
1763
1764         if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1765                 struct acpi_resource_spi_serialbus *sb;
1766
1767                 sb = &ares->data.spi_serial_bus;
1768                 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1769                         /*
1770                          * ACPI DeviceSelection numbering is handled by the
1771                          * host controller driver in Windows and can vary
1772                          * from driver to driver. In Linux we always expect
1773                          * 0 .. max - 1 so we need to ask the driver to
1774                          * translate between the two schemes.
1775                          */
1776                         if (ctlr->fw_translate_cs) {
1777                                 int cs = ctlr->fw_translate_cs(ctlr,
1778                                                 sb->device_selection);
1779                                 if (cs < 0)
1780                                         return cs;
1781                                 spi->chip_select = cs;
1782                         } else {
1783                                 spi->chip_select = sb->device_selection;
1784                         }
1785
1786                         spi->max_speed_hz = sb->connection_speed;
1787
1788                         if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1789                                 spi->mode |= SPI_CPHA;
1790                         if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1791                                 spi->mode |= SPI_CPOL;
1792                         if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1793                                 spi->mode |= SPI_CS_HIGH;
1794                 }
1795         } else if (spi->irq < 0) {
1796                 struct resource r;
1797
1798                 if (acpi_dev_resource_interrupt(ares, 0, &r))
1799                         spi->irq = r.start;
1800         }
1801
1802         /* Always tell the ACPI core to skip this resource */
1803         return 1;
1804 }
1805
1806 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
1807                                             struct acpi_device *adev)
1808 {
1809         struct list_head resource_list;
1810         struct spi_device *spi;
1811         int ret;
1812
1813         if (acpi_bus_get_status(adev) || !adev->status.present ||
1814             acpi_device_enumerated(adev))
1815                 return AE_OK;
1816
1817         spi = spi_alloc_device(ctlr);
1818         if (!spi) {
1819                 dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
1820                         dev_name(&adev->dev));
1821                 return AE_NO_MEMORY;
1822         }
1823
1824         ACPI_COMPANION_SET(&spi->dev, adev);
1825         spi->irq = -1;
1826
1827         INIT_LIST_HEAD(&resource_list);
1828         ret = acpi_dev_get_resources(adev, &resource_list,
1829                                      acpi_spi_add_resource, spi);
1830         acpi_dev_free_resource_list(&resource_list);
1831
1832         acpi_spi_parse_apple_properties(spi);
1833
1834         if (ret < 0 || !spi->max_speed_hz) {
1835                 spi_dev_put(spi);
1836                 return AE_OK;
1837         }
1838
1839         acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
1840                           sizeof(spi->modalias));
1841
1842         if (spi->irq < 0)
1843                 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
1844
1845         acpi_device_set_enumerated(adev);
1846
1847         adev->power.flags.ignore_parent = true;
1848         if (spi_add_device(spi)) {
1849                 adev->power.flags.ignore_parent = false;
1850                 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
1851                         dev_name(&adev->dev));
1852                 spi_dev_put(spi);
1853         }
1854
1855         return AE_OK;
1856 }
1857
1858 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1859                                        void *data, void **return_value)
1860 {
1861         struct spi_controller *ctlr = data;
1862         struct acpi_device *adev;
1863
1864         if (acpi_bus_get_device(handle, &adev))
1865                 return AE_OK;
1866
1867         return acpi_register_spi_device(ctlr, adev);
1868 }
1869
1870 static void acpi_register_spi_devices(struct spi_controller *ctlr)
1871 {
1872         acpi_status status;
1873         acpi_handle handle;
1874
1875         handle = ACPI_HANDLE(ctlr->dev.parent);
1876         if (!handle)
1877                 return;
1878
1879         status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1880                                      acpi_spi_add_device, NULL, ctlr, NULL);
1881         if (ACPI_FAILURE(status))
1882                 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
1883 }
1884 #else
1885 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
1886 #endif /* CONFIG_ACPI */
1887
1888 static void spi_controller_release(struct device *dev)
1889 {
1890         struct spi_controller *ctlr;
1891
1892         ctlr = container_of(dev, struct spi_controller, dev);
1893         kfree(ctlr);
1894 }
1895
1896 static struct class spi_master_class = {
1897         .name           = "spi_master",
1898         .owner          = THIS_MODULE,
1899         .dev_release    = spi_controller_release,
1900         .dev_groups     = spi_master_groups,
1901 };
1902
1903 #ifdef CONFIG_SPI_SLAVE
1904 /**
1905  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
1906  *                   controller
1907  * @spi: device used for the current transfer
1908  */
1909 int spi_slave_abort(struct spi_device *spi)
1910 {
1911         struct spi_controller *ctlr = spi->controller;
1912
1913         if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
1914                 return ctlr->slave_abort(ctlr);
1915
1916         return -ENOTSUPP;
1917 }
1918 EXPORT_SYMBOL_GPL(spi_slave_abort);
1919
1920 static int match_true(struct device *dev, void *data)
1921 {
1922         return 1;
1923 }
1924
1925 static ssize_t spi_slave_show(struct device *dev,
1926                               struct device_attribute *attr, char *buf)
1927 {
1928         struct spi_controller *ctlr = container_of(dev, struct spi_controller,
1929                                                    dev);
1930         struct device *child;
1931
1932         child = device_find_child(&ctlr->dev, NULL, match_true);
1933         return sprintf(buf, "%s\n",
1934                        child ? to_spi_device(child)->modalias : NULL);
1935 }
1936
1937 static ssize_t spi_slave_store(struct device *dev,
1938                                struct device_attribute *attr, const char *buf,
1939                                size_t count)
1940 {
1941         struct spi_controller *ctlr = container_of(dev, struct spi_controller,
1942                                                    dev);
1943         struct spi_device *spi;
1944         struct device *child;
1945         char name[32];
1946         int rc;
1947
1948         rc = sscanf(buf, "%31s", name);
1949         if (rc != 1 || !name[0])
1950                 return -EINVAL;
1951
1952         child = device_find_child(&ctlr->dev, NULL, match_true);
1953         if (child) {
1954                 /* Remove registered slave */
1955                 device_unregister(child);
1956                 put_device(child);
1957         }
1958
1959         if (strcmp(name, "(null)")) {
1960                 /* Register new slave */
1961                 spi = spi_alloc_device(ctlr);
1962                 if (!spi)
1963                         return -ENOMEM;
1964
1965                 strlcpy(spi->modalias, name, sizeof(spi->modalias));
1966
1967                 rc = spi_add_device(spi);
1968                 if (rc) {
1969                         spi_dev_put(spi);
1970                         return rc;
1971                 }
1972         }
1973
1974         return count;
1975 }
1976
1977 static DEVICE_ATTR(slave, 0644, spi_slave_show, spi_slave_store);
1978
1979 static struct attribute *spi_slave_attrs[] = {
1980         &dev_attr_slave.attr,
1981         NULL,
1982 };
1983
1984 static const struct attribute_group spi_slave_group = {
1985         .attrs = spi_slave_attrs,
1986 };
1987
1988 static const struct attribute_group *spi_slave_groups[] = {
1989         &spi_controller_statistics_group,
1990         &spi_slave_group,
1991         NULL,
1992 };
1993
1994 static struct class spi_slave_class = {
1995         .name           = "spi_slave",
1996         .owner          = THIS_MODULE,
1997         .dev_release    = spi_controller_release,
1998         .dev_groups     = spi_slave_groups,
1999 };
2000 #else
2001 extern struct class spi_slave_class;    /* dummy */
2002 #endif
2003
2004 /**
2005  * __spi_alloc_controller - allocate an SPI master or slave controller
2006  * @dev: the controller, possibly using the platform_bus
2007  * @size: how much zeroed driver-private data to allocate; the pointer to this
2008  *      memory is in the driver_data field of the returned device,
2009  *      accessible with spi_controller_get_devdata().
2010  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2011  *      slave (true) controller
2012  * Context: can sleep
2013  *
2014  * This call is used only by SPI controller drivers, which are the
2015  * only ones directly touching chip registers.  It's how they allocate
2016  * an spi_controller structure, prior to calling spi_register_controller().
2017  *
2018  * This must be called from context that can sleep.
2019  *
2020  * The caller is responsible for assigning the bus number and initializing the
2021  * controller's methods before calling spi_register_controller(); and (after
2022  * errors adding the device) calling spi_controller_put() to prevent a memory
2023  * leak.
2024  *
2025  * Return: the SPI controller structure on success, else NULL.
2026  */
2027 struct spi_controller *__spi_alloc_controller(struct device *dev,
2028                                               unsigned int size, bool slave)
2029 {
2030         struct spi_controller   *ctlr;
2031
2032         if (!dev)
2033                 return NULL;
2034
2035         ctlr = kzalloc(size + sizeof(*ctlr), GFP_KERNEL);
2036         if (!ctlr)
2037                 return NULL;
2038
2039         device_initialize(&ctlr->dev);
2040         ctlr->bus_num = -1;
2041         ctlr->num_chipselect = 1;
2042         ctlr->slave = slave;
2043         if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2044                 ctlr->dev.class = &spi_slave_class;
2045         else
2046                 ctlr->dev.class = &spi_master_class;
2047         ctlr->dev.parent = dev;
2048         pm_suspend_ignore_children(&ctlr->dev, true);
2049         spi_controller_set_devdata(ctlr, &ctlr[1]);
2050
2051         return ctlr;
2052 }
2053 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2054
2055 static void devm_spi_release_controller(struct device *dev, void *ctlr)
2056 {
2057         spi_controller_put(*(struct spi_controller **)ctlr);
2058 }
2059
2060 /**
2061  * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
2062  * @dev: physical device of SPI controller
2063  * @size: how much zeroed driver-private data to allocate
2064  * @slave: whether to allocate an SPI master (false) or SPI slave (true)
2065  * Context: can sleep
2066  *
2067  * Allocate an SPI controller and automatically release a reference on it
2068  * when @dev is unbound from its driver.  Drivers are thus relieved from
2069  * having to call spi_controller_put().
2070  *
2071  * The arguments to this function are identical to __spi_alloc_controller().
2072  *
2073  * Return: the SPI controller structure on success, else NULL.
2074  */
2075 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
2076                                                    unsigned int size,
2077                                                    bool slave)
2078 {
2079         struct spi_controller **ptr, *ctlr;
2080
2081         ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
2082                            GFP_KERNEL);
2083         if (!ptr)
2084                 return NULL;
2085
2086         ctlr = __spi_alloc_controller(dev, size, slave);
2087         if (ctlr) {
2088                 ctlr->devm_allocated = true;
2089                 *ptr = ctlr;
2090                 devres_add(dev, ptr);
2091         } else {
2092                 devres_free(ptr);
2093         }
2094
2095         return ctlr;
2096 }
2097 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
2098
2099 #ifdef CONFIG_OF
2100 static int of_spi_register_master(struct spi_controller *ctlr)
2101 {
2102         int nb, i, *cs;
2103         struct device_node *np = ctlr->dev.of_node;
2104
2105         if (!np)
2106                 return 0;
2107
2108         nb = of_gpio_named_count(np, "cs-gpios");
2109         ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2110
2111         /* Return error only for an incorrectly formed cs-gpios property */
2112         if (nb == 0 || nb == -ENOENT)
2113                 return 0;
2114         else if (nb < 0)
2115                 return nb;
2116
2117         cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int),
2118                           GFP_KERNEL);
2119         ctlr->cs_gpios = cs;
2120
2121         if (!ctlr->cs_gpios)
2122                 return -ENOMEM;
2123
2124         for (i = 0; i < ctlr->num_chipselect; i++)
2125                 cs[i] = -ENOENT;
2126
2127         for (i = 0; i < nb; i++)
2128                 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2129
2130         return 0;
2131 }
2132 #else
2133 static int of_spi_register_master(struct spi_controller *ctlr)
2134 {
2135         return 0;
2136 }
2137 #endif
2138
2139 static int spi_controller_check_ops(struct spi_controller *ctlr)
2140 {
2141         /*
2142          * The controller may implement only the high-level SPI-memory like
2143          * operations if it does not support regular SPI transfers, and this is
2144          * valid use case.
2145          * If ->mem_ops is NULL, we request that at least one of the
2146          * ->transfer_xxx() method be implemented.
2147          */
2148         if (ctlr->mem_ops) {
2149                 if (!ctlr->mem_ops->exec_op)
2150                         return -EINVAL;
2151         } else if (!ctlr->transfer && !ctlr->transfer_one &&
2152                    !ctlr->transfer_one_message) {
2153                 return -EINVAL;
2154         }
2155
2156         return 0;
2157 }
2158
2159 /**
2160  * spi_register_controller - register SPI master or slave controller
2161  * @ctlr: initialized master, originally from spi_alloc_master() or
2162  *      spi_alloc_slave()
2163  * Context: can sleep
2164  *
2165  * SPI controllers connect to their drivers using some non-SPI bus,
2166  * such as the platform bus.  The final stage of probe() in that code
2167  * includes calling spi_register_controller() to hook up to this SPI bus glue.
2168  *
2169  * SPI controllers use board specific (often SOC specific) bus numbers,
2170  * and board-specific addressing for SPI devices combines those numbers
2171  * with chip select numbers.  Since SPI does not directly support dynamic
2172  * device identification, boards need configuration tables telling which
2173  * chip is at which address.
2174  *
2175  * This must be called from context that can sleep.  It returns zero on
2176  * success, else a negative error code (dropping the controller's refcount).
2177  * After a successful return, the caller is responsible for calling
2178  * spi_unregister_controller().
2179  *
2180  * Return: zero on success, else a negative error code.
2181  */
2182 int spi_register_controller(struct spi_controller *ctlr)
2183 {
2184         struct device           *dev = ctlr->dev.parent;
2185         struct boardinfo        *bi;
2186         int                     status = -ENODEV;
2187         int                     id, first_dynamic;
2188
2189         if (!dev)
2190                 return -ENODEV;
2191
2192         /*
2193          * Make sure all necessary hooks are implemented before registering
2194          * the SPI controller.
2195          */
2196         status = spi_controller_check_ops(ctlr);
2197         if (status)
2198                 return status;
2199
2200         if (!spi_controller_is_slave(ctlr)) {
2201                 status = of_spi_register_master(ctlr);
2202                 if (status)
2203                         return status;
2204         }
2205
2206         /* even if it's just one always-selected device, there must
2207          * be at least one chipselect
2208          */
2209         if (ctlr->num_chipselect == 0)
2210                 return -EINVAL;
2211         if (ctlr->bus_num >= 0) {
2212                 /* devices with a fixed bus num must check-in with the num */
2213                 mutex_lock(&board_lock);
2214                 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2215                         ctlr->bus_num + 1, GFP_KERNEL);
2216                 mutex_unlock(&board_lock);
2217                 if (WARN(id < 0, "couldn't get idr"))
2218                         return id == -ENOSPC ? -EBUSY : id;
2219                 ctlr->bus_num = id;
2220         } else if (ctlr->dev.of_node) {
2221                 /* allocate dynamic bus number using Linux idr */
2222                 id = of_alias_get_id(ctlr->dev.of_node, "spi");
2223                 if (id >= 0) {
2224                         ctlr->bus_num = id;
2225                         mutex_lock(&board_lock);
2226                         id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2227                                        ctlr->bus_num + 1, GFP_KERNEL);
2228                         mutex_unlock(&board_lock);
2229                         if (WARN(id < 0, "couldn't get idr"))
2230                                 return id == -ENOSPC ? -EBUSY : id;
2231                 }
2232         }
2233         if (ctlr->bus_num < 0) {
2234                 first_dynamic = of_alias_get_highest_id("spi");
2235                 if (first_dynamic < 0)
2236                         first_dynamic = 0;
2237                 else
2238                         first_dynamic++;
2239
2240                 mutex_lock(&board_lock);
2241                 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2242                                0, GFP_KERNEL);
2243                 mutex_unlock(&board_lock);
2244                 if (WARN(id < 0, "couldn't get idr"))
2245                         return id;
2246                 ctlr->bus_num = id;
2247         }
2248         INIT_LIST_HEAD(&ctlr->queue);
2249         spin_lock_init(&ctlr->queue_lock);
2250         spin_lock_init(&ctlr->bus_lock_spinlock);
2251         mutex_init(&ctlr->bus_lock_mutex);
2252         mutex_init(&ctlr->io_mutex);
2253         ctlr->bus_lock_flag = 0;
2254         init_completion(&ctlr->xfer_completion);
2255         if (!ctlr->max_dma_len)
2256                 ctlr->max_dma_len = INT_MAX;
2257
2258         /* register the device, then userspace will see it.
2259          * registration fails if the bus ID is in use.
2260          */
2261         dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2262         status = device_add(&ctlr->dev);
2263         if (status < 0) {
2264                 /* free bus id */
2265                 mutex_lock(&board_lock);
2266                 idr_remove(&spi_master_idr, ctlr->bus_num);
2267                 mutex_unlock(&board_lock);
2268                 goto done;
2269         }
2270         dev_dbg(dev, "registered %s %s\n",
2271                         spi_controller_is_slave(ctlr) ? "slave" : "master",
2272                         dev_name(&ctlr->dev));
2273
2274         /*
2275          * If we're using a queued driver, start the queue. Note that we don't
2276          * need the queueing logic if the driver is only supporting high-level
2277          * memory operations.
2278          */
2279         if (ctlr->transfer) {
2280                 dev_info(dev, "controller is unqueued, this is deprecated\n");
2281         } else if (ctlr->transfer_one || ctlr->transfer_one_message) {
2282                 status = spi_controller_initialize_queue(ctlr);
2283                 if (status) {
2284                         device_del(&ctlr->dev);
2285                         /* free bus id */
2286                         mutex_lock(&board_lock);
2287                         idr_remove(&spi_master_idr, ctlr->bus_num);
2288                         mutex_unlock(&board_lock);
2289                         goto done;
2290                 }
2291         }
2292         /* add statistics */
2293         spin_lock_init(&ctlr->statistics.lock);
2294
2295         mutex_lock(&board_lock);
2296         list_add_tail(&ctlr->list, &spi_controller_list);
2297         list_for_each_entry(bi, &board_list, list)
2298                 spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2299         mutex_unlock(&board_lock);
2300
2301         /* Register devices from the device tree and ACPI */
2302         of_register_spi_devices(ctlr);
2303         acpi_register_spi_devices(ctlr);
2304 done:
2305         return status;
2306 }
2307 EXPORT_SYMBOL_GPL(spi_register_controller);
2308
2309 static void devm_spi_unregister(struct device *dev, void *res)
2310 {
2311         spi_unregister_controller(*(struct spi_controller **)res);
2312 }
2313
2314 /**
2315  * devm_spi_register_controller - register managed SPI master or slave
2316  *      controller
2317  * @dev:    device managing SPI controller
2318  * @ctlr: initialized controller, originally from spi_alloc_master() or
2319  *      spi_alloc_slave()
2320  * Context: can sleep
2321  *
2322  * Register a SPI device as with spi_register_controller() which will
2323  * automatically be unregistered and freed.
2324  *
2325  * Return: zero on success, else a negative error code.
2326  */
2327 int devm_spi_register_controller(struct device *dev,
2328                                  struct spi_controller *ctlr)
2329 {
2330         struct spi_controller **ptr;
2331         int ret;
2332
2333         ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2334         if (!ptr)
2335                 return -ENOMEM;
2336
2337         ret = spi_register_controller(ctlr);
2338         if (!ret) {
2339                 *ptr = ctlr;
2340                 devres_add(dev, ptr);
2341         } else {
2342                 devres_free(ptr);
2343         }
2344
2345         return ret;
2346 }
2347 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2348
2349 static int __unregister(struct device *dev, void *null)
2350 {
2351         spi_unregister_device(to_spi_device(dev));
2352         return 0;
2353 }
2354
2355 /**
2356  * spi_unregister_controller - unregister SPI master or slave controller
2357  * @ctlr: the controller being unregistered
2358  * Context: can sleep
2359  *
2360  * This call is used only by SPI controller drivers, which are the
2361  * only ones directly touching chip registers.
2362  *
2363  * This must be called from context that can sleep.
2364  *
2365  * Note that this function also drops a reference to the controller.
2366  */
2367 void spi_unregister_controller(struct spi_controller *ctlr)
2368 {
2369         struct spi_controller *found;
2370         int id = ctlr->bus_num;
2371
2372         /* Prevent addition of new devices, unregister existing ones */
2373         if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
2374                 mutex_lock(&spi_add_lock);
2375
2376         device_for_each_child(&ctlr->dev, NULL, __unregister);
2377
2378         /* First make sure that this controller was ever added */
2379         mutex_lock(&board_lock);
2380         found = idr_find(&spi_master_idr, id);
2381         mutex_unlock(&board_lock);
2382         if (ctlr->queued) {
2383                 if (spi_destroy_queue(ctlr))
2384                         dev_err(&ctlr->dev, "queue remove failed\n");
2385         }
2386         mutex_lock(&board_lock);
2387         list_del(&ctlr->list);
2388         mutex_unlock(&board_lock);
2389
2390         device_del(&ctlr->dev);
2391
2392         /* Release the last reference on the controller if its driver
2393          * has not yet been converted to devm_spi_alloc_master/slave().
2394          */
2395         if (!ctlr->devm_allocated)
2396                 put_device(&ctlr->dev);
2397
2398         /* free bus id */
2399         mutex_lock(&board_lock);
2400         if (found == ctlr)
2401                 idr_remove(&spi_master_idr, id);
2402         mutex_unlock(&board_lock);
2403
2404         if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
2405                 mutex_unlock(&spi_add_lock);
2406 }
2407 EXPORT_SYMBOL_GPL(spi_unregister_controller);
2408
2409 int spi_controller_suspend(struct spi_controller *ctlr)
2410 {
2411         int ret;
2412
2413         /* Basically no-ops for non-queued controllers */
2414         if (!ctlr->queued)
2415                 return 0;
2416
2417         ret = spi_stop_queue(ctlr);
2418         if (ret)
2419                 dev_err(&ctlr->dev, "queue stop failed\n");
2420
2421         return ret;
2422 }
2423 EXPORT_SYMBOL_GPL(spi_controller_suspend);
2424
2425 int spi_controller_resume(struct spi_controller *ctlr)
2426 {
2427         int ret;
2428
2429         if (!ctlr->queued)
2430                 return 0;
2431
2432         ret = spi_start_queue(ctlr);
2433         if (ret)
2434                 dev_err(&ctlr->dev, "queue restart failed\n");
2435
2436         return ret;
2437 }
2438 EXPORT_SYMBOL_GPL(spi_controller_resume);
2439
2440 static int __spi_controller_match(struct device *dev, const void *data)
2441 {
2442         struct spi_controller *ctlr;
2443         const u16 *bus_num = data;
2444
2445         ctlr = container_of(dev, struct spi_controller, dev);
2446         return ctlr->bus_num == *bus_num;
2447 }
2448
2449 /**
2450  * spi_busnum_to_master - look up master associated with bus_num
2451  * @bus_num: the master's bus number
2452  * Context: can sleep
2453  *
2454  * This call may be used with devices that are registered after
2455  * arch init time.  It returns a refcounted pointer to the relevant
2456  * spi_controller (which the caller must release), or NULL if there is
2457  * no such master registered.
2458  *
2459  * Return: the SPI master structure on success, else NULL.
2460  */
2461 struct spi_controller *spi_busnum_to_master(u16 bus_num)
2462 {
2463         struct device           *dev;
2464         struct spi_controller   *ctlr = NULL;
2465
2466         dev = class_find_device(&spi_master_class, NULL, &bus_num,
2467                                 __spi_controller_match);
2468         if (dev)
2469                 ctlr = container_of(dev, struct spi_controller, dev);
2470         /* reference got in class_find_device */
2471         return ctlr;
2472 }
2473 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2474
2475 /*-------------------------------------------------------------------------*/
2476
2477 /* Core methods for SPI resource management */
2478
2479 /**
2480  * spi_res_alloc - allocate a spi resource that is life-cycle managed
2481  *                 during the processing of a spi_message while using
2482  *                 spi_transfer_one
2483  * @spi:     the spi device for which we allocate memory
2484  * @release: the release code to execute for this resource
2485  * @size:    size to alloc and return
2486  * @gfp:     GFP allocation flags
2487  *
2488  * Return: the pointer to the allocated data
2489  *
2490  * This may get enhanced in the future to allocate from a memory pool
2491  * of the @spi_device or @spi_controller to avoid repeated allocations.
2492  */
2493 void *spi_res_alloc(struct spi_device *spi,
2494                     spi_res_release_t release,
2495                     size_t size, gfp_t gfp)
2496 {
2497         struct spi_res *sres;
2498
2499         sres = kzalloc(sizeof(*sres) + size, gfp);
2500         if (!sres)
2501                 return NULL;
2502
2503         INIT_LIST_HEAD(&sres->entry);
2504         sres->release = release;
2505
2506         return sres->data;
2507 }
2508 EXPORT_SYMBOL_GPL(spi_res_alloc);
2509
2510 /**
2511  * spi_res_free - free an spi resource
2512  * @res: pointer to the custom data of a resource
2513  *
2514  */
2515 void spi_res_free(void *res)
2516 {
2517         struct spi_res *sres = container_of(res, struct spi_res, data);
2518
2519         if (!res)
2520                 return;
2521
2522         WARN_ON(!list_empty(&sres->entry));
2523         kfree(sres);
2524 }
2525 EXPORT_SYMBOL_GPL(spi_res_free);
2526
2527 /**
2528  * spi_res_add - add a spi_res to the spi_message
2529  * @message: the spi message
2530  * @res:     the spi_resource
2531  */
2532 void spi_res_add(struct spi_message *message, void *res)
2533 {
2534         struct spi_res *sres = container_of(res, struct spi_res, data);
2535
2536         WARN_ON(!list_empty(&sres->entry));
2537         list_add_tail(&sres->entry, &message->resources);
2538 }
2539 EXPORT_SYMBOL_GPL(spi_res_add);
2540
2541 /**
2542  * spi_res_release - release all spi resources for this message
2543  * @ctlr:  the @spi_controller
2544  * @message: the @spi_message
2545  */
2546 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
2547 {
2548         struct spi_res *res;
2549
2550         while (!list_empty(&message->resources)) {
2551                 res = list_last_entry(&message->resources,
2552                                       struct spi_res, entry);
2553
2554                 if (res->release)
2555                         res->release(ctlr, message, res->data);
2556
2557                 list_del(&res->entry);
2558
2559                 kfree(res);
2560         }
2561 }
2562 EXPORT_SYMBOL_GPL(spi_res_release);
2563
2564 /*-------------------------------------------------------------------------*/
2565
2566 /* Core methods for spi_message alterations */
2567
2568 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
2569                                             struct spi_message *msg,
2570                                             void *res)
2571 {
2572         struct spi_replaced_transfers *rxfer = res;
2573         size_t i;
2574
2575         /* call extra callback if requested */
2576         if (rxfer->release)
2577                 rxfer->release(ctlr, msg, res);
2578
2579         /* insert replaced transfers back into the message */
2580         list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2581
2582         /* remove the formerly inserted entries */
2583         for (i = 0; i < rxfer->inserted; i++)
2584                 list_del(&rxfer->inserted_transfers[i].transfer_list);
2585 }
2586
2587 /**
2588  * spi_replace_transfers - replace transfers with several transfers
2589  *                         and register change with spi_message.resources
2590  * @msg:           the spi_message we work upon
2591  * @xfer_first:    the first spi_transfer we want to replace
2592  * @remove:        number of transfers to remove
2593  * @insert:        the number of transfers we want to insert instead
2594  * @release:       extra release code necessary in some circumstances
2595  * @extradatasize: extra data to allocate (with alignment guarantees
2596  *                 of struct @spi_transfer)
2597  * @gfp:           gfp flags
2598  *
2599  * Returns: pointer to @spi_replaced_transfers,
2600  *          PTR_ERR(...) in case of errors.
2601  */
2602 struct spi_replaced_transfers *spi_replace_transfers(
2603         struct spi_message *msg,
2604         struct spi_transfer *xfer_first,
2605         size_t remove,
2606         size_t insert,
2607         spi_replaced_release_t release,
2608         size_t extradatasize,
2609         gfp_t gfp)
2610 {
2611         struct spi_replaced_transfers *rxfer;
2612         struct spi_transfer *xfer;
2613         size_t i;
2614
2615         /* allocate the structure using spi_res */
2616         rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2617                               insert * sizeof(struct spi_transfer)
2618                               + sizeof(struct spi_replaced_transfers)
2619                               + extradatasize,
2620                               gfp);
2621         if (!rxfer)
2622                 return ERR_PTR(-ENOMEM);
2623
2624         /* the release code to invoke before running the generic release */
2625         rxfer->release = release;
2626
2627         /* assign extradata */
2628         if (extradatasize)
2629                 rxfer->extradata =
2630                         &rxfer->inserted_transfers[insert];
2631
2632         /* init the replaced_transfers list */
2633         INIT_LIST_HEAD(&rxfer->replaced_transfers);
2634
2635         /* assign the list_entry after which we should reinsert
2636          * the @replaced_transfers - it may be spi_message.messages!
2637          */
2638         rxfer->replaced_after = xfer_first->transfer_list.prev;
2639
2640         /* remove the requested number of transfers */
2641         for (i = 0; i < remove; i++) {
2642                 /* if the entry after replaced_after it is msg->transfers
2643                  * then we have been requested to remove more transfers
2644                  * than are in the list
2645                  */
2646                 if (rxfer->replaced_after->next == &msg->transfers) {
2647                         dev_err(&msg->spi->dev,
2648                                 "requested to remove more spi_transfers than are available\n");
2649                         /* insert replaced transfers back into the message */
2650                         list_splice(&rxfer->replaced_transfers,
2651                                     rxfer->replaced_after);
2652
2653                         /* free the spi_replace_transfer structure */
2654                         spi_res_free(rxfer);
2655
2656                         /* and return with an error */
2657                         return ERR_PTR(-EINVAL);
2658                 }
2659
2660                 /* remove the entry after replaced_after from list of
2661                  * transfers and add it to list of replaced_transfers
2662                  */
2663                 list_move_tail(rxfer->replaced_after->next,
2664                                &rxfer->replaced_transfers);
2665         }
2666
2667         /* create copy of the given xfer with identical settings
2668          * based on the first transfer to get removed
2669          */
2670         for (i = 0; i < insert; i++) {
2671                 /* we need to run in reverse order */
2672                 xfer = &rxfer->inserted_transfers[insert - 1 - i];
2673
2674                 /* copy all spi_transfer data */
2675                 memcpy(xfer, xfer_first, sizeof(*xfer));
2676
2677                 /* add to list */
2678                 list_add(&xfer->transfer_list, rxfer->replaced_after);
2679
2680                 /* clear cs_change and delay_usecs for all but the last */
2681                 if (i) {
2682                         xfer->cs_change = false;
2683                         xfer->delay_usecs = 0;
2684                 }
2685         }
2686
2687         /* set up inserted */
2688         rxfer->inserted = insert;
2689
2690         /* and register it with spi_res/spi_message */
2691         spi_res_add(msg, rxfer);
2692
2693         return rxfer;
2694 }
2695 EXPORT_SYMBOL_GPL(spi_replace_transfers);
2696
2697 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
2698                                         struct spi_message *msg,
2699                                         struct spi_transfer **xferp,
2700                                         size_t maxsize,
2701                                         gfp_t gfp)
2702 {
2703         struct spi_transfer *xfer = *xferp, *xfers;
2704         struct spi_replaced_transfers *srt;
2705         size_t offset;
2706         size_t count, i;
2707
2708         /* warn once about this fact that we are splitting a transfer */
2709         dev_warn_once(&msg->spi->dev,
2710                       "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n",
2711                       xfer->len, maxsize);
2712
2713         /* calculate how many we have to replace */
2714         count = DIV_ROUND_UP(xfer->len, maxsize);
2715
2716         /* create replacement */
2717         srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2718         if (IS_ERR(srt))
2719                 return PTR_ERR(srt);
2720         xfers = srt->inserted_transfers;
2721
2722         /* now handle each of those newly inserted spi_transfers
2723          * note that the replacements spi_transfers all are preset
2724          * to the same values as *xferp, so tx_buf, rx_buf and len
2725          * are all identical (as well as most others)
2726          * so we just have to fix up len and the pointers.
2727          *
2728          * this also includes support for the depreciated
2729          * spi_message.is_dma_mapped interface
2730          */
2731
2732         /* the first transfer just needs the length modified, so we
2733          * run it outside the loop
2734          */
2735         xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
2736
2737         /* all the others need rx_buf/tx_buf also set */
2738         for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2739                 /* update rx_buf, tx_buf and dma */
2740                 if (xfers[i].rx_buf)
2741                         xfers[i].rx_buf += offset;
2742                 if (xfers[i].rx_dma)
2743                         xfers[i].rx_dma += offset;
2744                 if (xfers[i].tx_buf)
2745                         xfers[i].tx_buf += offset;
2746                 if (xfers[i].tx_dma)
2747                         xfers[i].tx_dma += offset;
2748
2749                 /* update length */
2750                 xfers[i].len = min(maxsize, xfers[i].len - offset);
2751         }
2752
2753         /* we set up xferp to the last entry we have inserted,
2754          * so that we skip those already split transfers
2755          */
2756         *xferp = &xfers[count - 1];
2757
2758         /* increment statistics counters */
2759         SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
2760                                        transfers_split_maxsize);
2761         SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2762                                        transfers_split_maxsize);
2763
2764         return 0;
2765 }
2766
2767 /**
2768  * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2769  *                              when an individual transfer exceeds a
2770  *                              certain size
2771  * @ctlr:    the @spi_controller for this transfer
2772  * @msg:   the @spi_message to transform
2773  * @maxsize:  the maximum when to apply this
2774  * @gfp: GFP allocation flags
2775  *
2776  * Return: status of transformation
2777  */
2778 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
2779                                 struct spi_message *msg,
2780                                 size_t maxsize,
2781                                 gfp_t gfp)
2782 {
2783         struct spi_transfer *xfer;
2784         int ret;
2785
2786         /* iterate over the transfer_list,
2787          * but note that xfer is advanced to the last transfer inserted
2788          * to avoid checking sizes again unnecessarily (also xfer does
2789          * potentiall belong to a different list by the time the
2790          * replacement has happened
2791          */
2792         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2793                 if (xfer->len > maxsize) {
2794                         ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
2795                                                            maxsize, gfp);
2796                         if (ret)
2797                                 return ret;
2798                 }
2799         }
2800
2801         return 0;
2802 }
2803 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2804
2805 /*-------------------------------------------------------------------------*/
2806
2807 /* Core methods for SPI controller protocol drivers.  Some of the
2808  * other core methods are currently defined as inline functions.
2809  */
2810
2811 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
2812                                         u8 bits_per_word)
2813 {
2814         if (ctlr->bits_per_word_mask) {
2815                 /* Only 32 bits fit in the mask */
2816                 if (bits_per_word > 32)
2817                         return -EINVAL;
2818                 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
2819                         return -EINVAL;
2820         }
2821
2822         return 0;
2823 }
2824
2825 /**
2826  * spi_setup - setup SPI mode and clock rate
2827  * @spi: the device whose settings are being modified
2828  * Context: can sleep, and no requests are queued to the device
2829  *
2830  * SPI protocol drivers may need to update the transfer mode if the
2831  * device doesn't work with its default.  They may likewise need
2832  * to update clock rates or word sizes from initial values.  This function
2833  * changes those settings, and must be called from a context that can sleep.
2834  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2835  * effect the next time the device is selected and data is transferred to
2836  * or from it.  When this function returns, the spi device is deselected.
2837  *
2838  * Note that this call will fail if the protocol driver specifies an option
2839  * that the underlying controller or its driver does not support.  For
2840  * example, not all hardware supports wire transfers using nine bit words,
2841  * LSB-first wire encoding, or active-high chipselects.
2842  *
2843  * Return: zero on success, else a negative error code.
2844  */
2845 int spi_setup(struct spi_device *spi)
2846 {
2847         unsigned        bad_bits, ugly_bits;
2848         int             status;
2849
2850         /* check mode to prevent that DUAL and QUAD set at the same time
2851          */
2852         if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2853                 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2854                 dev_err(&spi->dev,
2855                 "setup: can not select dual and quad at the same time\n");
2856                 return -EINVAL;
2857         }
2858         /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2859          */
2860         if ((spi->mode & SPI_3WIRE) && (spi->mode &
2861                 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
2862                 return -EINVAL;
2863         /* help drivers fail *cleanly* when they need options
2864          * that aren't supported with their current controller
2865          */
2866         bad_bits = spi->mode & ~spi->controller->mode_bits;
2867         ugly_bits = bad_bits &
2868                     (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
2869         if (ugly_bits) {
2870                 dev_warn(&spi->dev,
2871                          "setup: ignoring unsupported mode bits %x\n",
2872                          ugly_bits);
2873                 spi->mode &= ~ugly_bits;
2874                 bad_bits &= ~ugly_bits;
2875         }
2876         if (bad_bits) {
2877                 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2878                         bad_bits);
2879                 return -EINVAL;
2880         }
2881
2882         if (!spi->bits_per_word)
2883                 spi->bits_per_word = 8;
2884
2885         status = __spi_validate_bits_per_word(spi->controller,
2886                                               spi->bits_per_word);
2887         if (status)
2888                 return status;
2889
2890         if (!spi->max_speed_hz)
2891                 spi->max_speed_hz = spi->controller->max_speed_hz;
2892
2893         if (spi->controller->setup)
2894                 status = spi->controller->setup(spi);
2895
2896         spi_set_cs(spi, false);
2897
2898         dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2899                         (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2900                         (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2901                         (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2902                         (spi->mode & SPI_3WIRE) ? "3wire, " : "",
2903                         (spi->mode & SPI_LOOP) ? "loopback, " : "",
2904                         spi->bits_per_word, spi->max_speed_hz,
2905                         status);
2906
2907         return status;
2908 }
2909 EXPORT_SYMBOL_GPL(spi_setup);
2910
2911 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2912 {
2913         struct spi_controller *ctlr = spi->controller;
2914         struct spi_transfer *xfer;
2915         int w_size;
2916
2917         if (list_empty(&message->transfers))
2918                 return -EINVAL;
2919
2920         /* Half-duplex links include original MicroWire, and ones with
2921          * only one data pin like SPI_3WIRE (switches direction) or where
2922          * either MOSI or MISO is missing.  They can also be caused by
2923          * software limitations.
2924          */
2925         if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
2926             (spi->mode & SPI_3WIRE)) {
2927                 unsigned flags = ctlr->flags;
2928
2929                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
2930                         if (xfer->rx_buf && xfer->tx_buf)
2931                                 return -EINVAL;
2932                         if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
2933                                 return -EINVAL;
2934                         if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
2935                                 return -EINVAL;
2936                 }
2937         }
2938
2939         /**
2940          * Set transfer bits_per_word and max speed as spi device default if
2941          * it is not set for this transfer.
2942          * Set transfer tx_nbits and rx_nbits as single transfer default
2943          * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2944          */
2945         message->frame_length = 0;
2946         list_for_each_entry(xfer, &message->transfers, transfer_list) {
2947                 message->frame_length += xfer->len;
2948                 if (!xfer->bits_per_word)
2949                         xfer->bits_per_word = spi->bits_per_word;
2950
2951                 if (!xfer->speed_hz)
2952                         xfer->speed_hz = spi->max_speed_hz;
2953                 if (!xfer->speed_hz)
2954                         xfer->speed_hz = ctlr->max_speed_hz;
2955
2956                 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
2957                         xfer->speed_hz = ctlr->max_speed_hz;
2958
2959                 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
2960                         return -EINVAL;
2961
2962                 /*
2963                  * SPI transfer length should be multiple of SPI word size
2964                  * where SPI word size should be power-of-two multiple
2965                  */
2966                 if (xfer->bits_per_word <= 8)
2967                         w_size = 1;
2968                 else if (xfer->bits_per_word <= 16)
2969                         w_size = 2;
2970                 else
2971                         w_size = 4;
2972
2973                 /* No partial transfers accepted */
2974                 if (xfer->len % w_size)
2975                         return -EINVAL;
2976
2977                 if (xfer->speed_hz && ctlr->min_speed_hz &&
2978                     xfer->speed_hz < ctlr->min_speed_hz)
2979                         return -EINVAL;
2980
2981                 if (xfer->tx_buf && !xfer->tx_nbits)
2982                         xfer->tx_nbits = SPI_NBITS_SINGLE;
2983                 if (xfer->rx_buf && !xfer->rx_nbits)
2984                         xfer->rx_nbits = SPI_NBITS_SINGLE;
2985                 /* check transfer tx/rx_nbits:
2986                  * 1. check the value matches one of single, dual and quad
2987                  * 2. check tx/rx_nbits match the mode in spi_device
2988                  */
2989                 if (xfer->tx_buf) {
2990                         if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
2991                                 xfer->tx_nbits != SPI_NBITS_DUAL &&
2992                                 xfer->tx_nbits != SPI_NBITS_QUAD)
2993                                 return -EINVAL;
2994                         if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2995                                 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2996                                 return -EINVAL;
2997                         if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2998                                 !(spi->mode & SPI_TX_QUAD))
2999                                 return -EINVAL;
3000                 }
3001                 /* check transfer rx_nbits */
3002                 if (xfer->rx_buf) {
3003                         if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3004                                 xfer->rx_nbits != SPI_NBITS_DUAL &&
3005                                 xfer->rx_nbits != SPI_NBITS_QUAD)
3006                                 return -EINVAL;
3007                         if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3008                                 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3009                                 return -EINVAL;
3010                         if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3011                                 !(spi->mode & SPI_RX_QUAD))
3012                                 return -EINVAL;
3013                 }
3014         }
3015
3016         message->status = -EINPROGRESS;
3017
3018         return 0;
3019 }
3020
3021 static int __spi_async(struct spi_device *spi, struct spi_message *message)
3022 {
3023         struct spi_controller *ctlr = spi->controller;
3024
3025         /*
3026          * Some controllers do not support doing regular SPI transfers. Return
3027          * ENOTSUPP when this is the case.
3028          */
3029         if (!ctlr->transfer)
3030                 return -ENOTSUPP;
3031
3032         message->spi = spi;
3033
3034         SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
3035         SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
3036
3037         trace_spi_message_submit(message);
3038
3039         return ctlr->transfer(spi, message);
3040 }
3041
3042 /**
3043  * spi_async - asynchronous SPI transfer
3044  * @spi: device with which data will be exchanged
3045  * @message: describes the data transfers, including completion callback
3046  * Context: any (irqs may be blocked, etc)
3047  *
3048  * This call may be used in_irq and other contexts which can't sleep,
3049  * as well as from task contexts which can sleep.
3050  *
3051  * The completion callback is invoked in a context which can't sleep.
3052  * Before that invocation, the value of message->status is undefined.
3053  * When the callback is issued, message->status holds either zero (to
3054  * indicate complete success) or a negative error code.  After that
3055  * callback returns, the driver which issued the transfer request may
3056  * deallocate the associated memory; it's no longer in use by any SPI
3057  * core or controller driver code.
3058  *
3059  * Note that although all messages to a spi_device are handled in
3060  * FIFO order, messages may go to different devices in other orders.
3061  * Some device might be higher priority, or have various "hard" access
3062  * time requirements, for example.
3063  *
3064  * On detection of any fault during the transfer, processing of
3065  * the entire message is aborted, and the device is deselected.
3066  * Until returning from the associated message completion callback,
3067  * no other spi_message queued to that device will be processed.
3068  * (This rule applies equally to all the synchronous transfer calls,
3069  * which are wrappers around this core asynchronous primitive.)
3070  *
3071  * Return: zero on success, else a negative error code.
3072  */
3073 int spi_async(struct spi_device *spi, struct spi_message *message)
3074 {
3075         struct spi_controller *ctlr = spi->controller;
3076         int ret;
3077         unsigned long flags;
3078
3079         ret = __spi_validate(spi, message);
3080         if (ret != 0)
3081                 return ret;
3082
3083         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3084
3085         if (ctlr->bus_lock_flag)
3086                 ret = -EBUSY;
3087         else
3088                 ret = __spi_async(spi, message);
3089
3090         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3091
3092         return ret;
3093 }
3094 EXPORT_SYMBOL_GPL(spi_async);
3095
3096 /**
3097  * spi_async_locked - version of spi_async with exclusive bus usage
3098  * @spi: device with which data will be exchanged
3099  * @message: describes the data transfers, including completion callback
3100  * Context: any (irqs may be blocked, etc)
3101  *
3102  * This call may be used in_irq and other contexts which can't sleep,
3103  * as well as from task contexts which can sleep.
3104  *
3105  * The completion callback is invoked in a context which can't sleep.
3106  * Before that invocation, the value of message->status is undefined.
3107  * When the callback is issued, message->status holds either zero (to
3108  * indicate complete success) or a negative error code.  After that
3109  * callback returns, the driver which issued the transfer request may
3110  * deallocate the associated memory; it's no longer in use by any SPI
3111  * core or controller driver code.
3112  *
3113  * Note that although all messages to a spi_device are handled in
3114  * FIFO order, messages may go to different devices in other orders.
3115  * Some device might be higher priority, or have various "hard" access
3116  * time requirements, for example.
3117  *
3118  * On detection of any fault during the transfer, processing of
3119  * the entire message is aborted, and the device is deselected.
3120  * Until returning from the associated message completion callback,
3121  * no other spi_message queued to that device will be processed.
3122  * (This rule applies equally to all the synchronous transfer calls,
3123  * which are wrappers around this core asynchronous primitive.)
3124  *
3125  * Return: zero on success, else a negative error code.
3126  */
3127 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3128 {
3129         struct spi_controller *ctlr = spi->controller;
3130         int ret;
3131         unsigned long flags;
3132
3133         ret = __spi_validate(spi, message);
3134         if (ret != 0)
3135                 return ret;
3136
3137         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3138
3139         ret = __spi_async(spi, message);
3140
3141         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3142
3143         return ret;
3144
3145 }
3146 EXPORT_SYMBOL_GPL(spi_async_locked);
3147
3148 /*-------------------------------------------------------------------------*/
3149
3150 /* Utility methods for SPI protocol drivers, layered on
3151  * top of the core.  Some other utility methods are defined as
3152  * inline functions.
3153  */
3154
3155 static void spi_complete(void *arg)
3156 {
3157         complete(arg);
3158 }
3159
3160 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3161 {
3162         DECLARE_COMPLETION_ONSTACK(done);
3163         int status;
3164         struct spi_controller *ctlr = spi->controller;
3165         unsigned long flags;
3166
3167         status = __spi_validate(spi, message);
3168         if (status != 0)
3169                 return status;
3170
3171         message->complete = spi_complete;
3172         message->context = &done;
3173         message->spi = spi;
3174
3175         SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3176         SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3177
3178         /* If we're not using the legacy transfer method then we will
3179          * try to transfer in the calling context so special case.
3180          * This code would be less tricky if we could remove the
3181          * support for driver implemented message queues.
3182          */
3183         if (ctlr->transfer == spi_queued_transfer) {
3184                 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3185
3186                 trace_spi_message_submit(message);
3187
3188                 status = __spi_queued_transfer(spi, message, false);
3189
3190                 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3191         } else {
3192                 status = spi_async_locked(spi, message);
3193         }
3194
3195         if (status == 0) {
3196                 /* Push out the messages in the calling context if we
3197                  * can.
3198                  */
3199                 if (ctlr->transfer == spi_queued_transfer) {
3200                         SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3201                                                        spi_sync_immediate);
3202                         SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3203                                                        spi_sync_immediate);
3204                         __spi_pump_messages(ctlr, false);
3205                 }
3206
3207                 wait_for_completion(&done);
3208                 status = message->status;
3209         }
3210         message->context = NULL;
3211         return status;
3212 }
3213
3214 /**
3215  * spi_sync - blocking/synchronous SPI data transfers
3216  * @spi: device with which data will be exchanged
3217  * @message: describes the data transfers
3218  * Context: can sleep
3219  *
3220  * This call may only be used from a context that may sleep.  The sleep
3221  * is non-interruptible, and has no timeout.  Low-overhead controller
3222  * drivers may DMA directly into and out of the message buffers.
3223  *
3224  * Note that the SPI device's chip select is active during the message,
3225  * and then is normally disabled between messages.  Drivers for some
3226  * frequently-used devices may want to minimize costs of selecting a chip,
3227  * by leaving it selected in anticipation that the next message will go
3228  * to the same chip.  (That may increase power usage.)
3229  *
3230  * Also, the caller is guaranteeing that the memory associated with the
3231  * message will not be freed before this call returns.
3232  *
3233  * Return: zero on success, else a negative error code.
3234  */
3235 int spi_sync(struct spi_device *spi, struct spi_message *message)
3236 {
3237         int ret;
3238
3239         mutex_lock(&spi->controller->bus_lock_mutex);
3240         ret = __spi_sync(spi, message);
3241         mutex_unlock(&spi->controller->bus_lock_mutex);
3242
3243         return ret;
3244 }
3245 EXPORT_SYMBOL_GPL(spi_sync);
3246
3247 /**
3248  * spi_sync_locked - version of spi_sync with exclusive bus usage
3249  * @spi: device with which data will be exchanged
3250  * @message: describes the data transfers
3251  * Context: can sleep
3252  *
3253  * This call may only be used from a context that may sleep.  The sleep
3254  * is non-interruptible, and has no timeout.  Low-overhead controller
3255  * drivers may DMA directly into and out of the message buffers.
3256  *
3257  * This call should be used by drivers that require exclusive access to the
3258  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3259  * be released by a spi_bus_unlock call when the exclusive access is over.
3260  *
3261  * Return: zero on success, else a negative error code.
3262  */
3263 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3264 {
3265         return __spi_sync(spi, message);
3266 }
3267 EXPORT_SYMBOL_GPL(spi_sync_locked);
3268
3269 /**
3270  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3271  * @ctlr: SPI bus master that should be locked for exclusive bus access
3272  * Context: can sleep
3273  *
3274  * This call may only be used from a context that may sleep.  The sleep
3275  * is non-interruptible, and has no timeout.
3276  *
3277  * This call should be used by drivers that require exclusive access to the
3278  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3279  * exclusive access is over. Data transfer must be done by spi_sync_locked
3280  * and spi_async_locked calls when the SPI bus lock is held.
3281  *
3282  * Return: always zero.
3283  */
3284 int spi_bus_lock(struct spi_controller *ctlr)
3285 {
3286         unsigned long flags;
3287
3288         mutex_lock(&ctlr->bus_lock_mutex);
3289
3290         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3291         ctlr->bus_lock_flag = 1;
3292         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3293
3294         /* mutex remains locked until spi_bus_unlock is called */
3295
3296         return 0;
3297 }
3298 EXPORT_SYMBOL_GPL(spi_bus_lock);
3299
3300 /**
3301  * spi_bus_unlock - release the lock for exclusive SPI bus usage
3302  * @ctlr: SPI bus master that was locked for exclusive bus access
3303  * Context: can sleep
3304  *
3305  * This call may only be used from a context that may sleep.  The sleep
3306  * is non-interruptible, and has no timeout.
3307  *
3308  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3309  * call.
3310  *
3311  * Return: always zero.
3312  */
3313 int spi_bus_unlock(struct spi_controller *ctlr)
3314 {
3315         ctlr->bus_lock_flag = 0;
3316
3317         mutex_unlock(&ctlr->bus_lock_mutex);
3318
3319         return 0;
3320 }
3321 EXPORT_SYMBOL_GPL(spi_bus_unlock);
3322
3323 /* portable code must never pass more than 32 bytes */
3324 #define SPI_BUFSIZ      max(32, SMP_CACHE_BYTES)
3325
3326 static u8       *buf;
3327
3328 /**
3329  * spi_write_then_read - SPI synchronous write followed by read
3330  * @spi: device with which data will be exchanged
3331  * @txbuf: data to be written (need not be dma-safe)
3332  * @n_tx: size of txbuf, in bytes
3333  * @rxbuf: buffer into which data will be read (need not be dma-safe)
3334  * @n_rx: size of rxbuf, in bytes
3335  * Context: can sleep
3336  *
3337  * This performs a half duplex MicroWire style transaction with the
3338  * device, sending txbuf and then reading rxbuf.  The return value
3339  * is zero for success, else a negative errno status code.
3340  * This call may only be used from a context that may sleep.
3341  *
3342  * Parameters to this routine are always copied using a small buffer;
3343  * portable code should never use this for more than 32 bytes.
3344  * Performance-sensitive or bulk transfer code should instead use
3345  * spi_{async,sync}() calls with dma-safe buffers.
3346  *
3347  * Return: zero on success, else a negative error code.
3348  */
3349 int spi_write_then_read(struct spi_device *spi,
3350                 const void *txbuf, unsigned n_tx,
3351                 void *rxbuf, unsigned n_rx)
3352 {
3353         static DEFINE_MUTEX(lock);
3354
3355         int                     status;
3356         struct spi_message      message;
3357         struct spi_transfer     x[2];
3358         u8                      *local_buf;
3359
3360         /* Use preallocated DMA-safe buffer if we can.  We can't avoid
3361          * copying here, (as a pure convenience thing), but we can
3362          * keep heap costs out of the hot path unless someone else is
3363          * using the pre-allocated buffer or the transfer is too large.
3364          */
3365         if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3366                 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3367                                     GFP_KERNEL | GFP_DMA);
3368                 if (!local_buf)
3369                         return -ENOMEM;
3370         } else {
3371                 local_buf = buf;
3372         }
3373
3374         spi_message_init(&message);
3375         memset(x, 0, sizeof(x));
3376         if (n_tx) {
3377                 x[0].len = n_tx;
3378                 spi_message_add_tail(&x[0], &message);
3379         }
3380         if (n_rx) {
3381                 x[1].len = n_rx;
3382                 spi_message_add_tail(&x[1], &message);
3383         }
3384
3385         memcpy(local_buf, txbuf, n_tx);
3386         x[0].tx_buf = local_buf;
3387         x[1].rx_buf = local_buf + n_tx;
3388
3389         /* do the i/o */
3390         status = spi_sync(spi, &message);
3391         if (status == 0)
3392                 memcpy(rxbuf, x[1].rx_buf, n_rx);
3393
3394         if (x[0].tx_buf == buf)
3395                 mutex_unlock(&lock);
3396         else
3397                 kfree(local_buf);
3398
3399         return status;
3400 }
3401 EXPORT_SYMBOL_GPL(spi_write_then_read);
3402
3403 /*-------------------------------------------------------------------------*/
3404
3405 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
3406 static int __spi_of_device_match(struct device *dev, void *data)
3407 {
3408         return dev->of_node == data;
3409 }
3410
3411 /* must call put_device() when done with returned spi_device device */
3412 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3413 {
3414         struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
3415                                                 __spi_of_device_match);
3416         return dev ? to_spi_device(dev) : NULL;
3417 }
3418
3419 static int __spi_of_controller_match(struct device *dev, const void *data)
3420 {
3421         return dev->of_node == data;
3422 }
3423
3424 /* the spi controllers are not using spi_bus, so we find it with another way */
3425 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
3426 {
3427         struct device *dev;
3428
3429         dev = class_find_device(&spi_master_class, NULL, node,
3430                                 __spi_of_controller_match);
3431         if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3432                 dev = class_find_device(&spi_slave_class, NULL, node,
3433                                         __spi_of_controller_match);
3434         if (!dev)
3435                 return NULL;
3436
3437         /* reference got in class_find_device */
3438         return container_of(dev, struct spi_controller, dev);
3439 }
3440
3441 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3442                          void *arg)
3443 {
3444         struct of_reconfig_data *rd = arg;
3445         struct spi_controller *ctlr;
3446         struct spi_device *spi;
3447
3448         switch (of_reconfig_get_state_change(action, arg)) {
3449         case OF_RECONFIG_CHANGE_ADD:
3450                 ctlr = of_find_spi_controller_by_node(rd->dn->parent);
3451                 if (ctlr == NULL)
3452                         return NOTIFY_OK;       /* not for us */
3453
3454                 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3455                         put_device(&ctlr->dev);
3456                         return NOTIFY_OK;
3457                 }
3458
3459                 spi = of_register_spi_device(ctlr, rd->dn);
3460                 put_device(&ctlr->dev);
3461
3462                 if (IS_ERR(spi)) {
3463                         pr_err("%s: failed to create for '%pOF'\n",
3464                                         __func__, rd->dn);
3465                         of_node_clear_flag(rd->dn, OF_POPULATED);
3466                         return notifier_from_errno(PTR_ERR(spi));
3467                 }
3468                 break;
3469
3470         case OF_RECONFIG_CHANGE_REMOVE:
3471                 /* already depopulated? */
3472                 if (!of_node_check_flag(rd->dn, OF_POPULATED))
3473                         return NOTIFY_OK;
3474
3475                 /* find our device by node */
3476                 spi = of_find_spi_device_by_node(rd->dn);
3477                 if (spi == NULL)
3478                         return NOTIFY_OK;       /* no? not meant for us */
3479
3480                 /* unregister takes one ref away */
3481                 spi_unregister_device(spi);
3482
3483                 /* and put the reference of the find */
3484                 put_device(&spi->dev);
3485                 break;
3486         }
3487
3488         return NOTIFY_OK;
3489 }
3490
3491 static struct notifier_block spi_of_notifier = {
3492         .notifier_call = of_spi_notify,
3493 };
3494 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3495 extern struct notifier_block spi_of_notifier;
3496 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3497
3498 #if IS_ENABLED(CONFIG_ACPI)
3499 static int spi_acpi_controller_match(struct device *dev, const void *data)
3500 {
3501         return ACPI_COMPANION(dev->parent) == data;
3502 }
3503
3504 static int spi_acpi_device_match(struct device *dev, void *data)
3505 {
3506         return ACPI_COMPANION(dev) == data;
3507 }
3508
3509 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
3510 {
3511         struct device *dev;
3512
3513         dev = class_find_device(&spi_master_class, NULL, adev,
3514                                 spi_acpi_controller_match);
3515         if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3516                 dev = class_find_device(&spi_slave_class, NULL, adev,
3517                                         spi_acpi_controller_match);
3518         if (!dev)
3519                 return NULL;
3520
3521         return container_of(dev, struct spi_controller, dev);
3522 }
3523
3524 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
3525 {
3526         struct device *dev;
3527
3528         dev = bus_find_device(&spi_bus_type, NULL, adev, spi_acpi_device_match);
3529
3530         return dev ? to_spi_device(dev) : NULL;
3531 }
3532
3533 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
3534                            void *arg)
3535 {
3536         struct acpi_device *adev = arg;
3537         struct spi_controller *ctlr;
3538         struct spi_device *spi;
3539
3540         switch (value) {
3541         case ACPI_RECONFIG_DEVICE_ADD:
3542                 ctlr = acpi_spi_find_controller_by_adev(adev->parent);
3543                 if (!ctlr)
3544                         break;
3545
3546                 acpi_register_spi_device(ctlr, adev);
3547                 put_device(&ctlr->dev);
3548                 break;
3549         case ACPI_RECONFIG_DEVICE_REMOVE:
3550                 if (!acpi_device_enumerated(adev))
3551                         break;
3552
3553                 spi = acpi_spi_find_device_by_adev(adev);
3554                 if (!spi)
3555                         break;
3556
3557                 spi_unregister_device(spi);
3558                 put_device(&spi->dev);
3559                 break;
3560         }
3561
3562         return NOTIFY_OK;
3563 }
3564
3565 static struct notifier_block spi_acpi_notifier = {
3566         .notifier_call = acpi_spi_notify,
3567 };
3568 #else
3569 extern struct notifier_block spi_acpi_notifier;
3570 #endif
3571
3572 static int __init spi_init(void)
3573 {
3574         int     status;
3575
3576         buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3577         if (!buf) {
3578                 status = -ENOMEM;
3579                 goto err0;
3580         }
3581
3582         status = bus_register(&spi_bus_type);
3583         if (status < 0)
3584                 goto err1;
3585
3586         status = class_register(&spi_master_class);
3587         if (status < 0)
3588                 goto err2;
3589
3590         if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
3591                 status = class_register(&spi_slave_class);
3592                 if (status < 0)
3593                         goto err3;
3594         }
3595
3596         if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3597                 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
3598         if (IS_ENABLED(CONFIG_ACPI))
3599                 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
3600
3601         return 0;
3602
3603 err3:
3604         class_unregister(&spi_master_class);
3605 err2:
3606         bus_unregister(&spi_bus_type);
3607 err1:
3608         kfree(buf);
3609         buf = NULL;
3610 err0:
3611         return status;
3612 }
3613
3614 /* board_info is normally registered in arch_initcall(),
3615  * but even essential drivers wait till later
3616  *
3617  * REVISIT only boardinfo really needs static linking. the rest (device and
3618  * driver registration) _could_ be dynamically linked (modular) ... costs
3619  * include needing to have boardinfo data structures be much more public.
3620  */
3621 postcore_initcall(spi_init);
3622